WorldWideScience

Sample records for based neutron beams

  1. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  2. Thermal neutron beam modification studies using an isotope based neutron radiography facility

    International Nuclear Information System (INIS)

    Baheti, G.L.; Khatri, P.K.; Meghwal, L.R.; Meena, V.L.

    1996-01-01

    Neutron radiography has established itself as one of the advanced NDT technique. Isotope based facilities are being developed to make the technique available for inplant use. Quality of neutron radiograph obtained is a function of beam parameters like flux, Cd ratio and neutron to gamma ratio, scattered neutrons etc. These parameters can be modified using design features of the facility. Effect of modifications in these parameters on final image quality has been studied and were found to be useful in meeting the widely varying radiographic requirements, particularly through an isotope based facility. These modifications can also overcome some of the inherent limitations of isotope based neutron radiography facilities. (author)

  3. The design of the electronic system on neutron beam monitor based on GEM

    International Nuclear Information System (INIS)

    Zuo Min; Zhuang Bao'an; Zhao Yubin; Chen Shaojia; Wang Na; Zhang Hongyu; Zhao Jingwei

    2012-01-01

    The Neutron Beam Monitor - a GEM based system used to monitor the neutron beams in real time - is introduced. The electronic parts are described in details, including the principles of the circuit, the system structure, the design of the Daughterboard and the logic and algorithm of the FPGA on the Monitor board. The test results are also given out in the final. (authors)

  4. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  5. Study of low energy neutron beam formation based on GEANT4 simulations

    Science.gov (United States)

    Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.

    2017-07-01

    The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.

  6. A Study on Optimized Neutron Beam Generation by Analysis of Neutron Angular Distribution from 7Li(p,n)7Be Reaction for Accelerator-Based BNCT

    International Nuclear Information System (INIS)

    Kim, Kyung O

    2008-02-01

    Perpendicular neutrons (i.e., solid angle bin of 50-150 .deg. ) among ones generated from 7 Li(p,n) 7 Be reaction, which are focused on the relative low energy regions, was used to produce optimized epithermal neutron beam for Accelerator-based BNCT. By this time, most of the studies for generating the therapeutic neutron beam have used the neutrons emitted to the collinear with the incoming proton. However, it is very difficult to produce the high quantity of epithermal neutrons due to the relative high energy neutrons to be used. In this study, it was found that perpendicular neutrons (solid angle 50-150 .deg. ) include about two times as many neutrons in the energy range of 100 - 300 keV as the existing studies. In particular, epithermal neutron beam from the dual beam port assembly was simulated by MCNPX: this assembly was designed for using the neutrons in optimized neutron angle bin (solid angle 50-150 .deg. ). As the results of the IAEA recommendations for all parameters, and moderation length could be reduced. The advantage depth (AD) and dose rate in the mathematical phantom are calculated to evaluate the dosimetric characterization of the designed epithermal neutron beams. It was recognized that the tumor positioned at the maximum depth of 70 mm from skin could be treated, and tumor at 60 mm depth is approximately taken with only a treatment of a few minutes by using the beam from the dual beam port assembly. It is therefore expected that the neutrons emitted into the solid angle bin of 50 - 150 .deg. from 7 Li(p,n) 7 Be reaction are very effective to produce epithermal neutron beam for BNCT. The new dual beam port assembly which is possible to generate the therapeutic neutron beam satisfies with the IAEA recommendations at each beam port and can be used for reference study of epithermal neutron beam design

  7. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  8. Convergent beam neutron crystallography

    Science.gov (United States)

    Gibson, Walter M.; Schultz, Arthur J.; Richardson, James W.; Carpenter, John M.; Mildner, David F. R.; Chen-Mayer, Heather H.; Miller, M. E.; Maxey, E.; Prask, Henry J.; Gnaeupel-Herold, Thomas H.; Youngman, Russell

    2004-01-01

    Applications of neutron diffraction for small samples (small fiducial areas are limited by the available neutron flux density. Recent demonstrations of convergent beam electron and x-ray diffraction and focusing of cold (λ>1 Å) neutrons suggest the possibility to use convergent beam neutron diffraction for small sample crystallography. We have carried out a systematic study of diffraction of both monoenergetic and broad bandwidth neutrons at the NIST Research Reactor and at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory. Combining convergent beams with time-of-flight Laue diffraction is particularly attractive for high efficiency small sample diffraction studies. We have studied single crystal and powder diffraction of neutrons with convergence angles as large as 15° and have observed diffracted peak intensity gains greater than 20. The convergent beam method (CBM) shows promise for crystallography on small samples of small to medium size molecules (potentially even for proteins), ultra-high pressure samples, and for mapping of strain and texture distributions in larger samples.

  9. Production of epithermal neutron beams for BNCT

    CERN Document Server

    Bisceglie, E; Colonna, N; Paticchio, V; Santorelli, P; Variale, V

    2002-01-01

    The use of boron neutron capture therapy (BNCT) for the treatment of deep-seated tumors requires neutron beams of suitable energy and intensity. Simulations indicate the optimal energy to reside in the epithermal region, in particular between 1 and 10 keV. Therapeutic neutron beams with high spectral purity in this energy range could be produced with accelerator-based neutron sources through a suitable neutron-producing reaction. Herein, we report on different solutions that have been investigated as possible sources of epithermal neutron beams for BNCT. The potential use of such sources for a hospital-based therapeutic facility is discussed.

  10. Neutron beams for therapy

    International Nuclear Information System (INIS)

    Kuplenikov, Eh.L.; Dovbnya, A.N.; Telegin, Yu.N.; Tsymbal, V.A.; Kandybej, S.S.

    2011-01-01

    It was given the analysis and generalization of the study results carried out during some decades in many world countries on application of thermal, epithermal and fast neutrons for neutron, gamma-neutron and neutron-capture therapy. The main attention is focused on the practical application possibility of the accumulated experience for the base creation for medical research and the cancer patients effective treatment.

  11. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    International Nuclear Information System (INIS)

    Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.

    2001-01-01

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac

  12. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  13. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  14. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  15. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators

    International Nuclear Information System (INIS)

    Martin, Guido; Abrahantes, Arian

    2004-01-01

    A conceptual design of a beam-shaping assembly for boron neutron capture therapy using deuterium-tritium accelerator based neutrons source is developed. Calculations based on a simple geometry model for the radiation transport are initially performed to estimate the assembly materials and their linear dimensions. Afterward, the assembly geometry is produced, optimized and verified. In order to perform these calculations the general-purpose MCNP code is used. Irradiation time and therapeutic gain are utilized as beam assessment parameters. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation. In the present beam-shaping assembly proposal, the therapeutic gain is improved by 23% and the accelerator current required for a fixed irradiation period is reduced by six times compared to previous proposals based on the same D-T reaction

  16. Structural integrity assessment based on the HFR Petten neutron beam facilities

    International Nuclear Information System (INIS)

    Ohms, C.; Youtsos, A.G.; Idsert, P. van den

    2002-01-01

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently investigated applications. (orig.)

  17. Structural integrity assessment based on the HFR Petten neutron beam facilities

    Science.gov (United States)

    Ohms, C.; Youtsos, A. G.; van den Idsert, P.

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently investigated applications.

  18. Structural integrity assessment based on the HFR Petten neutron beam facilities

    CERN Document Server

    Ohms, C; Idsert, P V D

    2002-01-01

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently in...

  19. Materials for neutron beam optimization for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    2001-01-01

    Several prospective materials (neutron filter/moderator, beam reflector, gamma ray shielding and beam collimator) were studied with a view to generating thermal and epithermal neutron beams suited for boron neutron capture therapy (BNCT). The beams are delivered from the thermal and thermalizing column exits situated on two opposite faces of a TRIGA-II type reactor. An investigation was performed with Monte Carlo calculations from a viewpoint of obtaining sufficiently intense thermal and epithermal neutron beams separately, and little adulterated both with neutrons of extraneous energy ranges and with gamma rays. High-density graphite (G) would be the most suitable material for thermal neutron beams as a neutron filter/moderator, and the combination of aluminum (Al) and aluminum fluoride (AlF 3 ) for epithermal neutron beams. The graphite would be also the most promising material for thermal neutron beams as a beam reflector while for epithermal neutron beams the choice would be lead fluoride (PbF 2 ). The PbF 2 would be also the most suitable material for epithermal neutron beams as a gamma ray shielding, and bismuth (Bi) for thermal neutron beam. The PbF 2 would be also the most useful material for epithermal neutron beam as a beam collimator while for thermal neutron beam the choice would be the graphite. The epithermal neutron beam for BNCT could be optimized with the progressive use of PbF 2 . (author)

  20. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  1. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  2. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    OpenAIRE

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H. -M.

    2012-01-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has ...

  3. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  4. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  5. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    International Nuclear Information System (INIS)

    Cortesi, M; Zboray, R; Adams, R; Prasser, H-M; Dangendorf, V

    2012-01-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  6. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    Science.gov (United States)

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.-M.

    2012-02-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  7. Experiments with neutron-rich isomeric beams

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Lewitowicz, M.; Pfuetzner, M.

    1998-01-01

    A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented

  8. Neutron beams implemented at nuclear research reactors for BNCT

    Science.gov (United States)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  9. Three Online Neutron Beam Experiments Based on the iLab Shared Architecture

    Directory of Open Access Journals (Sweden)

    Yakov Ostrocsky

    2011-02-01

    Full Text Available Students at MIT have traditionally executed certain experiments in the containment building of the MIT nuclear reactor as part of courses in Nuclear Engineering and the third year laboratory course for Physics majors. A joint team of faculty and research staff from the MIT Nuclear Reactor Laboratory (MIT-NRL and MIT’s Center for Educational Computing Initiatives have implemented online versions of three classic experiments; (a a determination of MIT reactor coolant temperature through measurement of thermal neutron velocity, (b a demonstration of the DeBroglie relationship of the kinetic energy and momentum of thermal neutrons and study of Bragg diffraction through a single copper crystal at various orientations, and (c a measurement of beam depletion using a variety of shielding filters. These online experiments were implemented using the LabVIEW® virtual instrumentation package and the interactive version of the iLab Shared Architecture (ISA. Initial assessment of the online experiments indicates that they achieve comparable educational outcomes to traditional versions of the labs executed in the reactor containment building.

  10. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  11. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  13. Neutron beam instruments for neutron science at HANARO

    International Nuclear Information System (INIS)

    Kim, Y.K.

    2009-01-01

    HANARO (Highly Advanced Neutron Application Reactor) came on line as the first criticality achieved in 1995. Since then a lot of experimental facilities for various utilizations have been gradually installed over the years up until now. Neutron science actually began with the neutron radiography facility completed in 1997. Thereafter, a series of thermal neutron beam instruments have been added and opened for the users. Some of them are high resolution power diffractometer, four circle diffractometer, small angle neutron spectrometer, and vertical-type reflectometer. The cold neutron research facility project was initiated in 2003, which envisions installation of cold neutron source, related systems, 5 neutron guides, and 7 instruments to satisfy the needs of cold neutron beam as the indispensable tool in NT, BT and other emerging technologies. Cold neutron guide building had been completed in October, 2008. Cold neutrons are planned to be produced later this year. Installations of neutron guides and associated instruments are to be finalized by the middle of 2010, ready for use. A 20 m detector vacuum tank and 20 m pre-sample flight path for 40 m SANS are already in place at the guide hall. Currently, there are about 450 users working with thermal neutron instruments. Once cold neutron instruments are available, we expect the number of users will double within next 3 years. (author)

  14. Silicon detectors for the n-TOF neutron beams monitoring

    CERN Document Server

    Cosentino, L.; Barbagallo, M.; Colonna, N.; Damone, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  15. Properties of the TRIUMF neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gan, L. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Abegg, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Berdoz, A.R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Birchall, J. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Campbell, J.R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Davis, C.A. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics]|[TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada); Green, P.W. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Greeniaus, L.G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Helmer, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Korkmaz, E. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Lee, L. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Li, J. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Miller, C.A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Opper, A.K. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Page, S.A. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Ramsay, W.D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Soukup, J. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Van Oers, W.T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Zhao, J. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics

    1995-11-01

    Properties of the TRIUMF neutron beam (4A/2) are presented and compared with a Monte Carlo prediction. The beam intensity profile, energy spectrum and polarization are predicted taking into account the beamline geometry, energy losses in the LD{sub 2} production target, the properties of the vector pd{yields} vector npp reaction, and the scattering of neutrons from the collimator walls. The results allow for improved corrections to systematic errors in a number of TRIUMF neutron experiments. (orig.).

  16. Properties of the TRIUMF neutron beam

    International Nuclear Information System (INIS)

    Gan, L.; Berdoz, A.R.; Green, P.W.; Greeniaus, L.G.; Helmer, R.; Korkmaz, E.; Lee, L.; Miller, C.A.; Opper, A.K.; Page, S.A.; Van Oers, W.T.H.; Zhao, J.

    1995-01-01

    Properties of the TRIUMF neutron beam (4A/2) are presented and compared with a Monte Carlo prediction. The beam intensity profile, energy spectrum and polarization are predicted taking into account the beamline geometry, energy losses in the LD 2 production target, the properties of the vector pd→ vector npp reaction, and the scattering of neutrons from the collimator walls. The results allow for improved corrections to systematic errors in a number of TRIUMF neutron experiments. (orig.)

  17. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  18. Neutron fan beam source for neutron radiography purpose

    International Nuclear Information System (INIS)

    Le Tourneur, P.; Bach, P.; Dance, W. E.

    1999-01-01

    The development of the DIANE neutron radiography system included a sealed-tube neutron generator for this purpose and the optimization of the system's neutron beam quality in terms of divergence and useful thermal neutron yield for each 14-MeV neutron produced. Following this development, the concept of a DIANE fan beam source is herewith introduced. The goal which drives this design is one of economy: by simply increasing the aperture dimension of a conventional DIANE beam in one plane of its collimator axis to a small-angle, fan-shaped output, the useful beam area for neutron radiography would be substantially increased. Thus with the same source, the throughput, or number of objects under examination at any given time, would be augmented significantly. Presented here are the design of this thermal neutron source and the initial Monte Carlo calculations. Taking into account the experience with the conventional DIANE neutron radiography system, these result are discussed and the potential of and interest in such a fan-beam source are explored

  19. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  20. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  1. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    Science.gov (United States)

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Neutron beams: a new tool for industry

    International Nuclear Information System (INIS)

    Windsor, C.; Wright, C.

    1980-01-01

    The ability of neutron probes to penetrate substances gives industrial researchers a unique tool to investigate the inside of completed components or a large bulk of material. The quality control of material containing defects can be undertaken with neutron beams using one of the following methods; neutron radiography which reveals structural flaws of millimetre sizes, small angle scattering which picks out fluctuations in density and composition that are in the pico-to-nanometre size range (10 -12 - 10 -9 m), or neutron diffraction which shows up structures on the sub-nanometre scale of atomic spacings. The three techniques are considered and specific examples of their use described. (U.K.)

  3. Beam profiles for fast neutrons; and reply

    International Nuclear Information System (INIS)

    Bewley, D.K.; Parnell, C.J.; Bloch, P.

    1976-01-01

    The authors express surprise that Bloch et al. (Bloch, P.H., Hendry, G.O., Hilton, J.L., Quam, W.M., Reinhard, D.K., and Wilson, C., 1976, Phys. Med. Biol., Vol. 21, 450) justified a target size of 5.5 x 5.5 cm in a neutron generator by comparison with the profile given by a 2.5 MV X-ray generator. The penumbral width of this new neutron generator is more than twice that of a modern megavoltage X-ray machine, and larger than those of beams from standard 60 Co units, or of the Hammersmith Hospital cyclotron beam. The large target size of the neutron generator may have to be accepted as a necessary evil, but should not be considered satisfactory. In reply, one of the authors of the original note presents the results of calculations of beam profiles for 14 MeV neutron beams in a tissue-equivalent phantom, and suggests that the broader profiles are principally caused by the larger probability of side scatter, not by source size. The most fruitful approach to sharpening the neutron beam profile would seem to be to design a field flattening filter to increase relative dose near the edge inside the geometrically defined field. Calculations indicating that Bewley and Parnell have underestimated the penumbral widths of 60 Co beams are also presented. (U.K.)

  4. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  5. A white beam neutron spin splitter

    Energy Technology Data Exchange (ETDEWEB)

    Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  6. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  7. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Applications of a micro-pixel chamber (μPIC) based, time-resolved neutron imaging detector at pulsed neutron beams

    Science.gov (United States)

    Parker, J. D.; Harada, M.; Hattori, K.; Iwaki, S.; Kabuki, S.; Kishimoto, Y.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nishimura, H.; Oku, T.; Sawano, T.; Shinohara, T.; Suzuki, J.-I.; Takada, A.; Tanimori, T.; Ueno, K.; Ikeno, M.; Tanaka, M.; Uchida, T.

    2014-04-01

    The realization of high-intensity, pulsed spallation neutron sources such as J-PARC in Japan and SNS in the US has brought time-of-flight (TOF) based neutron techniques to the fore and spurred the development of new detector technologies. When combined with high-resolution imaging, TOF-based methods become powerful tools for direct imaging of material properties, including crystal structure/internal strain, isotopic/temperature distributions, and internal and external magnetic fields. To carry out such measurements in the high-intensities and high gamma backgrounds found at spallation sources, we have developed a new time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber (μPIC) coupled with a field-programmable-gate-array-based data acquisition system. The detector combines 100μm-level (σ) spatial and sub-μs time resolutions with low gamma sensitivity of less than 10-12 and a rate capability on the order of Mcps (mega-counts-per-second). Here, we demonstrate the application of our detector to TOF-based techniques with examples of Bragg-edge transmission and neutron resonance transmission imaging (with computed tomography) carried out at J-PARC. We also consider the direct imaging of magnetic fields with our detector using polarized neutrons.

  9. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  10. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    International Nuclear Information System (INIS)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-01-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρ s ) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach

  11. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  12. National facility for neutron beam research

    Indian Academy of Sciences (India)

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview ...

  13. On The Deign And Construction Of A Radiation Shielding System For Development Of Neutron Beams Based On The Horizontal Channel No.2 Of Dalat Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Pham Ngoc Son; Nguyen Nhi Dien

    2011-01-01

    An optimal structural system of filtered neutron beam and radiation shielding has been designed and calculated using the Monte-Carlo code MCNP5. The system was constructed and installed into the horizontal channel No. 2 of the Dalat reactor. The neutron beam is applied for experimental studies on nuclear physics, nuclear data measurements, and personal training. (author)

  14. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  15. Other applications of neutron beams in material sciences

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1997-01-01

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  16. Design of a model for BSA to meet free beam parameters for BNCT based on multiplier system for D–T neutron source

    International Nuclear Information System (INIS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Kasesaz, Yaser

    2012-01-01

    Highlights: ► The possibility of using natural uranium as a neutron multiplier for D–T neutron generator is examined. ► To optimize output neutron beam, a moderator/filter/reflector arrangement was designed. ► The MCNP4C code has been used for BSA optimization and other simulations. ► The results show that using this system the BNCT in-air recommended parameters are met. - Abstract: Extensive research has recently been carried out for the development of high-energy D–T neutron generators as neutron sources for BNCT. The energy of these high-energy neutrons must be reduced by designing a Beam Shaping Assembly (BSA) to make them usable for BNCT. However, the neutron flux decreases drastically as neutrons pass through different materials of BSA. Therefore, it is very important to find ways to treat the neutrons economically. In this paper the possibility of using natural uranium as a neutron multiplier is investigated in order to increase the number of neutrons emitted from D–T neutron generator. According to the simulations and performed calculations, a sphere containing natural uranium as neutron multiplier was used to increase the number of neutrons generated by the D–T neutron generator. The energy of fast neutrons that are generated by D–T fusion reaction and amplified by neutron multiplier system is decreased using proper materials as moderators and fast neutron filters in BSA. The gamma rays which are generated as a result of neutron interaction with moderators are removed from neutron spectrum using bismuth as the gamma filter. Also, a thermal neutron absorber omits undesired low-energy neutrons which lead to a high radiation dose for the skin and soft tissues. The results show that passing neutrons through such a BSA causes the establishment of free beam parameters yet the reduction of the output beam intensity is unavoidable. The neutron spectrum related to our BSA has a proper epithermal flux and the fast and thermal neutron fluxes are

  17. SU-F-T-183: Design of a Beam Shaping Assembly of a Compact DD-Based Boron Neutron Capture Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, M; Liu, Y; Nie, L [Purdue University, West Lafayette, Indiana (United States)

    2016-06-15

    Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics are measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.

  18. Recent tendency to neutron beam experiments

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1979-01-01

    The application of neutron beam experiment to the study of reactor materials is described in this paper. In Japan, neutron beam experiments have been developed, using reactors JRR-2, JRR-3 and KUR-1. Most of experimental apparatuses in Japan are neutron diffraction systems and three-axis neutron spectrometers, similarly to those in U.S.A. and Canada. In Europe, cold neutron experiments have been developed. The most interesting experiment at present is the small angle scattering experiment. This technique can be applied to the other field than solid state physics. Nondestructive measurements for large samples can be made. Measurement while controlling outside conditions, and measurement for radioactive substances of considerable intensity are possible. Statistical mean values for larger volumes can be obtained as compared with electron microscope observation. Effects of multiple scattering are negligible. A non-destructive test of the properties of turbine blades was made at the GALILEO research reactor. The results were useful for the estimation of the residual life of the blades. Anomaly in the welded parts of pressure vessels for reactors can be detected by the small angle scattering method. The voids in irradiated samples were also observed by this technique. (Kato, T.)

  19. The first neutron beam hits EAR2

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    On 25 July 2014, about a year after construction work began, the Experimental Area 2 (EAR2) of CERN’s neutron facility n_TOF recorded its first beam. Unique in many aspects, EAR2 will start its rich programme of experimental physics this autumn.   The last part of the EAR2 beamline: the neutrons come from the underground target and reach the top of the beamline, where they hit the samples. Built about 20 metres above the neutron production target, EAR2 is in fact a bunker connected to the n_TOF underground facilities via a duct 80 cm in diameter, where the beamline is installed. The feet of the bunker support pillars are located on the concrete structure of the n_TOF tunnel and part of the structure lies above the old ISR building. A beam dump located on the roof of the building completes the structure. Neutrons are used by physicists to study neutron-induced reactions with applications in a number of fields, including nuclear waste transmutation, nuclear technology, nuclear astrop...

  20. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  1. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  2. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  3. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  4. A Transparent Detector for n_TOF Neutron Beam Monitoring

    CERN Document Server

    Andriamonje, S; Vlachoudis, V; Guerrero, C; Schillebeeckx, P; Losito, R; Sarmento, R; Calviani, M; Giganon, A; Gunsing, F; Berthoumieux, E; Siegler, P; Kadi, Y

    2011-01-01

    In order to obtain high precision cross-section measurements using the time-of-flight technique, it is important to know with good accuracy the neutron fluence at the measuring station. The detector dedicated to these measurements should be placed upstream of the detectors used for capture and fission cross-section measurements. The main requirement is to reduce the material of the detector as much as possible, in order to minimize the perturbation of the neutron beam and, especially, the background produced by the device itself. According to these considerations, a new neutron detector equipped with a small-mass device based on MicroMegas ``Micro-bulk{''} technology has been developed as a monitoring detector for the CERN n\\_TOF neutron beam. A description of the different characteristics of tins innovative concept of transparent detector for neutron beam monitoring is presented. The result obtained in the commissioning of the new spallation target of the n\\_TOF facility at CERN is shown, compared with simul...

  5. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Geoffrey L [ORNL; Snow, William M [ORNL; Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Nico, Jeffrey S [ORNL; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Yue, A [University of Tennessee, Knoxville (UTK); Laptev, A [Los Alamos National Laboratory (LANL); Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  6. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Science.gov (United States)

    Dewey, M.; Coakley, K.; Gilliam, D.; Greene, G.; Laptev, A.; Nico, J.; Snow, W.; Wietfeldt, F.; Yue, A.

    2009-12-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  7. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  8. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  9. Study of computerized tomography using neutron beam

    International Nuclear Information System (INIS)

    Pereira, W.W.

    1991-05-01

    This paper aims to demonstrate the advantages, shortcomings and complementaries of a tomography development using neutrons over the one employing gamma rays in the context of their applications to non destructive essays. A simulated experimental study was performed in order to compare the two aforementioned tomographic procedures as applied to some materials. These materials were chosen for their clear advantages and complementaries as, for instance, aluminium, iron, plastic and aluminium hydroxide. In this work two tomographic systems, are employed both with parallel beams. The first with a gamma radiation source (Caesium-137), with an energy of 662 KeV and an activity of 3,9 x 10 9 Bq (100 mCi) and the second one employing a neutron source, the Argonaut Reactor of the Instituto de Engenharia Nuclear, IEN/CNEN, from where the thermal neutron beam of about 10 5 n/(cm.s) was obtained. It is possible to conclude from the simulated and experimental results, by means of image analysis and distortion measurements, that for a given material the adequate radiation and its energy may be chosen so as to better characterize it. (author)

  10. Optimization of a neutron production target and a beam shaping assembly based on the 7Li( p, n) 7Be reaction for BNCT

    Science.gov (United States)

    Burlon, A. A.; Kreiner, A. J.; Valda, A. A.; Minsky, D. M.; Somacal, H. R.; Debray, M. E.; Stoliar, P.

    2005-02-01

    In this work a thick LiF target was studied through the 7Li( p, n) 7Be reaction as a neutron source for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) to provide a testing ground for numerical simulations aimed at producing an optimized neutron production target and beam shaping assembly design. Proton beams in the 1.88-2.0 MeV energy range were produced with the tandem accelerator TANDAR ( TANDem ARgentino) at the Comisión Nacional de Energía Atómica (CNEA) in Buenos Aires, Argentina. A cylindrical water-filled head-phantom, containing a boric acid sample, was irradiated to study the resulting neutron flux. The dose deposited in the boric acid sample was inferred through the Compton-suppressed detection of the gamma radiation produced from the 10B( n, αγ) 7Li capture reaction. The thermal neutron flux was evaluated using bare and Cd-covered activation gold foils. In all cases, Monte Carlo simulations have been done showing good agreement with the experimental results. Extensive MCNP simulation trials have then been performed after the preliminary calculation tool validation in order to optimize a neutron beam shaping assembly. These simulations include a thick Li metal target (instead of LiF), a whole-body phantom, two different moderator-reflector assemblies (Al/AlF 3/LiF, Fluental ®, as moderator and lead as reflector and a combination of Al, PTFE (polytetrafluoroethylene) and LiF as moderator and lead as reflector) and the treatment room. The doses were evaluated for proton bombarding energies of 1.92 MeV (near to the threshold of the reaction), 2.0 MeV, 2.3 MeV (near the reaction resonance) and 2.5 MeV, and for three Fluental ® and Al/PTFE/LiF moderator thicknesses (18, 26 and 34 cm). In a later instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10B( n, α) 7Li reaction) and a 10B uptake 50% greater than the healthy tissue one, was considered for the scalp. To evaluate the doses in the phantom, a comparison of

  11. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G.; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 Hedown to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semi spherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  12. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 He down to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semispherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  13. Neutron capture therapy beams at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Choi, J.R.; Clement, S.D.; Harling, O.K.; Zamenhof, R.G.

    1990-01-01

    Several neutron beams that could be used for neutron capture therapy at MITR-II are dosimetrically characterized and their suitability for the treatment of glioblastoma multiforme and other types of tumors are described. The types of neutron beams studied are: (1) those filtered by various thicknesses of cadmium, D2O, 6Li, and bismuth; and (2) epithermal beams achieved by filtration with aluminum, sulfur, cadmium, 6Li, and bismuth. Measured dose vs. depth data are presented in polyethylene phantom with references to what can be expected in brain. The results indicate that both types of neutron beams are useful for neutron capture therapy. The first type of neutron beams have good therapeutic advantage depths (approximately 5 cm) and excellent in-phantom ratios of therapeutic dose to background dose. Such beams would be useful for treating tumors located at relatively shallow depths in the brain. On the other hand, the second type of neutron beams have superior therapeutic advantage depths (greater than 6 cm) and good in-phantom therapeutic advantage ratios. Such beams, when used along with bilateral irradiation schemes, would be able to treat tumors at any depth in the brain. Numerical examples of what could be achieved with these beams, using RBEs, fractionated-dose delivery, unilateral, and bilateral irradiation are presented in the paper. Finally, additional plans for further neutron beam development at MITR-II are discussed

  14. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Directory of Open Access Journals (Sweden)

    Hara Kaoru Y.

    2017-01-01

    Full Text Available By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  15. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Science.gov (United States)

    Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao

    2017-09-01

    By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  16. Materials research with neutron beams from a research reactor

    International Nuclear Information System (INIS)

    Root, J.; Banks, D.

    2015-01-01

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  17. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  18. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  19. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  20. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  1. OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX

    Directory of Open Access Journals (Sweden)

    I Made Ardana

    2017-10-01

    OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL. Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya

  2. Neutron beam instrumentation at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    2003-01-01

    Full text: ANSTO is building a nuclear reactor to replace the HIFAR research reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be used for both neutron beam research and radioisotope production. This reactor will provide Australian scientists with a modern powerful facility for condensed matter research and medical applications well into the 21 st century. A large liquid D 2 moderator will generate intense cold neutron beams that will be transported to a suite of neutron beam instruments in a neutron guide hall by supermirror neutron guides. The contract for construction of the reactor, irradiation facilities and neutron beam-lines, with the exception of the neutron beam instruments, was awarded to INVAP S.E. in July 2000. The neutron beam instruments are being developed by ANSTO in consultation with the Australian user community. Work on both fronts is progressing on schedule. The presentation will include a review the planned scientific and irradiation capabilities, a description of the facility and the key technologies employed to generate and transport the intense neutron beams and a status report on our progress to date

  3. Opportunities for neutron beam research at the OPAL reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane

    2015-01-01

    The OPAL nuclear research reactor, at Lucas Heights, is a modern 20 MW pool type reactor. OPAL is used for scientific research using neutron beams, radioisotope production (particularly for radiopharmaceuticals) and industrial irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After seven years in construction, the reactor and neutron beam facilities were commissioned in 2007. OPAL now has ten first rate neutron spectrometers in operation, including one radiography/tomography instrument, with three more in commissioning. The presentation will include an introduction to the OPAL neutron beam facility, including some discussion of our strategic objectives. It will also provide scientific highlights from our research selected to illustrate the potential for applications in materials science

  4. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  5. Development and Applications of Residual Stress Measurements Using Neutron Beams

    OpenAIRE

    ABRIOLA S. A.; BALAGUROV A.; BASHIR J.; DAS A.; EDWARDS L.; GNAEUPEL-HEROLD T.; GOH B.; IONITA I.; MIKULA P.; OHMS Carsten; PELD N.; SCHNEIDER Rainer; SUTIARSO S.; TOROK G.; VENTER A.

    2012-01-01

    The deep penetration and selective absorption of neutrons make them a powerful tool in nondestructive testing of materials with large samples or objects. Residual stress formed in a material during manufacturing, welding, utilization or repairs can be measured by means of neutron diffraction. In fact, neutron diffraction is the only non-destructive testing method, which can facilitate 3-D mapping of residual stress in a bulk component. Stress measurement using neutron beams is a technique ...

  6. The neutron beam users tape management system

    International Nuclear Information System (INIS)

    Lyall, B.; Johnson, M.W.

    1977-02-01

    Systems are described for dealing with data collected at the High Flux Reactor, Institut Laue-Langevin, Grenoble and brought on magnetic tape to the Neutron Beam Research Unit at the Rutherford Laboratory. The first system, named GNAT, was designed to archive the incoming 800 bpi tapes onto 6250 bpi tapes (to enable them to return to the ILL). The archiving program, besides choosing the archive tapes, keeping a record of the data sets archived, and writing the archive tape, should be able to cope with incoming tapes whose formats are somewhat different from the standard IBM format. The second system, named FONT, was designed to maintain a record of all the tapes in the NBRU's possession, their whereabouts and what data, if any, are on them. (U.K.)

  7. The conceptual calculation for the neutron beam device at Mark 1

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Zhu Yangni; Gao Jijin; Li Yiguo; Ji Jinzhong

    2006-01-01

    The thermal neutron beam device, epithermal neutron beam device and test duct experiment device are designed by using Monte Carlo method at 30 kW Mark 1( -1). The compared calculation for transverse cross section dimension, moderator, reflector and others of neutron filter device are studied in this paper. The three optimized neutron beams including thermal neutron beam, epithermal neutron beam and the beam for measuring blood boron density, whose neutron flux density per reactor power are rather high, are also introduced. The results show that the BNCT neutron beam can be designed by using 30kW -1 reactor. (author)

  8. Upgrade for the epithermal neutron beam at NRI Rez

    International Nuclear Information System (INIS)

    Marek, M.; Flibor, S.; Viererbl, L.; Burian, J.; Rejchrt, J.; Klupak, V.; Gambarini, G.; Vanossi, E.

    2006-01-01

    The epithermal neutron beam facility designed for pre-clinical neutron capture therapy research has been operated at LVR-15 reactor for more than ten years. The construction of the beam filter has been recently modified especially for the shielding quality of the beam shutter to be improved. The parameters of the upgraded beam were calculated with the MCNP code and a new source term for the NCTPLAN treatment planning software was evaluated. The calculated source term was consequently scaled according to the results of measurements in the free beam and in the 50x50x25 cm 3 water phantom. (author)

  9. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  10. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  11. Dosimetry of clinical neutron and proton beams: An overview of recommendations

    International Nuclear Information System (INIS)

    Vynckier, S.

    2004-01-01

    Neutron therapy beams are obtained by accelerating protons or deuterons on Beryllium. These neutron therapy beams present comparable dosimetric characteristics as those for photon beams obtained with linear accelerators; for instance, the penetration of a p(65) + Be neutron beam is comparable with the penetration of an 8 MV photon beam. In order to be competitive with conventional photon beam therapy, the dosimetric characteristics of the neutron beam should therefore not deviate too much from the photon beam characteristics. This paper presents a brief summary of the neutron beams used in radiotherapy. The dosimetry of the clinical neutron beams is described. Finally, recent and future developments in the field of physics for neutron therapy is mentioned. In the last two decades, a considerable number of centres have established radiotherapy treatment facilities using proton beams with energies between 50 and 250 MeV. Clinical applications require a relatively uniform dose to be delivered to the volume to be treated, and for this purpose the proton beam has to be spread out, both laterally and in depth. The technique is called 'beam modulation' and creates a region of high dose uniformity referred to as the 'spread-out Bragg peak'. Meanwhile, reference dosimetry in these beams had to catch up with photon and electron beams for which a much longer tradition of dosimetry exists. Proton beam dosimetry can be performed using different types of dosemeters, such as calorimeters, Faraday cups, track detectors and ionisation chambers. National standard dosimetry laboratories will, however, not provide a standard for the dosimetry of proton beams. To achieve uniformity on an international level, the use of an ionisation chamber should be considered. This paper reviews and summarises the basic principles and recommendations for the absorbed dose determination in a proton beam, utilising ionisation chambers calibrated in terms of absorbed dose to water. These recommendations

  12. Study of materials properties by neutron beam applications

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Kim, H. J.; Kim, B. C.; Jun, B. C.; Lee, J. S.; Seong, B. S.; Shim, H. S.; Choi, B. H.; Ho, J. W.; Kang, S. K.; Kim, J. Y.; Park, D. K.; Kim, C. K.; Kim, C. J.; Cho, Y. S.

    1997-10-01

    Horizontal and vertical beam ports related works for neutron beam experimental facilities in HANARO has been done. And the preparation works of neutron spectrometers, design, manufacture and installation of the high resolution powder diffractometer, the four circle diffractometer, the polarized neutron spectrometer, the small angle neutron spectrometer and the position sensitive detector unit for residual stress measurement have been done. The status for each spectrometer are described. The development of neutron spectroscopy technique for the crystal structure analysis on YBa 2 Cu 3 O 7-x , U 3 Si, Pb(Yb,Nb)O 3 by neutron diffraction, the anisotropic properties of textured orthorhombic polycrystalline materials and the low temperature sample environment facility has been performed and neutron reflectometry has been reviewed. After the design and manufacture of neutron radiography facility, it has been installed at NR beam tube and its' performance evaluation has been done. The image processing technique for real time testing is under development. As for neutron transmutation doping, design of irradiation tube, estimation on neutron flux distribution and flux quality, and study of irradiation damage recovery under annealing have been tried. (author). 11 refs., 40 tabs., 86 figs.

  13. Dosimetric properties of the fast neutron therapy beams at TAMVEC

    International Nuclear Information System (INIS)

    Almond, P.R.; Smith, A.R.; Smathers, J.R.; Otte, V.A.

    1975-01-01

    In October 1972, M.D. Anderson Hospital and Tumor Institute of the University of Texas System Cancer Center initiated a clinical trial of fast neutron radiotherapy using the cyclotron at Texas A and M University. Initially, the study used neutrons produced by bombarding beryllium with 16 MeV deuterons, but since March, 1973, neutrons from 50 MeV deuterons have been used. The dosimetric properties of the 30 MeV beams have also been measured for comparison with the neutron beams from D-T generators. The three beams are compared in terms of dose rate, skin sparing, depth dose and field flatness. Isodose curves for treatment planning were generated using the decrement line method and compared to curves measured by a computer controlled isodose plotter. This system was also used to measure the isodose curves for wedge fields. Dosimetry checks on various patients were made using silicon diodes as in vivo fast neutron dosimeters

  14. Neutron spectroscopy measurements and modeling of neutral beam heating fast ion dynamics

    International Nuclear Information System (INIS)

    Hellesen, C; Sunden, E Andersson; Conroy, S; Ericsson, G; Johnson, M Gatu; Hjalmarsson, A; Kaellne, J; Ronchi, E; Sjoestrand, H; Weiszflog, M; Albergante, M; Ballabio, L; Gorini, G; Tardocchi, M; Giacomelli, L; Jenkins, I; Voitsekhovitch, I

    2010-01-01

    The energy spectrum of the neutron emission from beam-target reactions in fusion plasmas at the Joint European Torus (JET) has been investigated. Different beam energies as well as injection angles were used. Both measurements and simulations of the energy spectrum were done. The measurements were made with the time-of-flight spectrometer TOFOR. Simulations of the neutron spectrum were based on first-principle calculations of neutral beam deposition profiles and the fast ion slowing down in the plasma using the code NUBEAM, which is a module of the TRANSP package. The shape of the neutron energy spectrum was seen to vary significantly depending on the energy of the beams as well as the injection angle and the deposition profile in the plasma. Cross validations of the measured and modeled neutron energy spectra were made, showing a good agreement for all investigated scenarios.

  15. Beam splitting to improve target life in neutron generators

    International Nuclear Information System (INIS)

    Farrell, J.P.

    1976-01-01

    In a neutron generator in which a tritium-titanium target is bombarded by a deuterium ion beam, the target half-life is increased by separating the beam with a weak magnetic field to provide three separate beams of atomic, diatomic, and triatomic deuterium ions which all strike the target at different adjacent locations. Beam separation in this manner eliminates the problem of one type ion impairing the neutron generating efficiency of other type ions, thereby effecting more efficient utilization of the target material

  16. A new 2D-micromegas detector for neutron beam diagnostic at n_TOF

    CERN Document Server

    Andriamonje, S; Vlachoudis, V; Guerrero, C; Losito, R; Calviani, M; Gunsing, F; Colonna, N; Papaevangelou, T; Berthoumieux, E; Weiss, C; Kadi, Y

    2011-01-01

    A novel detector for 2D neutron beam diagnostic has been jointly developed by CERN and CEA in the framework of the n\\_TOF Collaboration for investigation of the neutron beam spatial characteristics, namely position and profile as a function of the neutron energy. The detector is based on the already established MicroMegas ``Bulk{''} technology and has been evolved from the one used for the CAST (CERN Axion Solar Telescope) experiment but equipped with an appropriate neutron/charged particle converter for neutron detection. The experimental results obtained in the 2009 commissioning run of the n\\_TOF facility and a comparison with simulations performed by means of FLUKA code are given, together with future perspectives and possible applications for this original type of neutron detector.

  17. Neutron beam applications using low power research reactor Malaysia perspectives

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Azali Muhammad; Faridah Idris; Adnan Bokhari; Muhd Noor Yunus

    2003-01-01

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One area currently focussed on is the utilisation of neutron beam ports available at this 1MW reactor. Projects undertaken are the development and utilisation of the Neutron Radiography (myNR), Small Angle Neutron Scattering (mySANS) and Boron Neutron Capture Therapy (BNCT) - preliminary study. In order to implement active research programmes, a group comprised of researcher from research institutes and academic institutions, has formed: known as Malaysian Reactor Interest Group (MRIG). This paper describes the recent status the above neutron beam facilities and their application in industrial, health and material technology research and education. The related activities of MRIG are also highlighted. (author)

  18. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Daniel M. [ORDELA, Inc., Oak Ridge, TN (United States)

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors with a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  19. Neutron beam line design of a white neutron source at CSNS

    Science.gov (United States)

    Jing, Hantao; Zhang, Liying; Tang, Jingyu; Ruan, Xichao; Ning, Changjun; Yu, Yongji; Wang, Pengcheng; Li, Qiang; Ren, Jie; Tang, Hongqing; Wang, Xiangqi

    2017-09-01

    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017.

  20. Study and production of polarized monochromatic thermal neutron beams

    International Nuclear Information System (INIS)

    Beiln, H.

    1963-06-01

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10 -3 - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe 3 O 4 crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [fr

  1. Characteristics of neutron beam for prompt gamma neutron activation analysis diffracted by pyrolytic graphite monochromator

    International Nuclear Information System (INIS)

    Jun, Byung-Jin; Seong, Baek-Seok; Kim, Myung-Seop; Byun, Soo-Hyun; Choi, Hee-Dong

    1999-01-01

    As a method to obtain high thermal neutron flux with low background for a prompt gamma neutron activation analysis (PGAA) system which will be constructed at HANARO, a 30 MW research reactor in Korea Atomic Energy Research Institute, diffraction of a spare white beam before any filtering is adopted. The PGAA system will use a thermal neutron beam diffracted vertically by pyrolytic graphite (PG) crystals with the mosaic spread of 0.8 degree at near the surface of reactor biological shield. The ratio of diffracted beam flux to white beam is determined by the integrated reflectivity of the monochromator. To estimated neutron flux after diffraction, convolution of the incident beam divergence and crystal mosaicity is simulated using the Monte Carlo method. If the beam is focussed by the bent PGs, the expected flux at the sample position is about 3 x 10 8 n/cm 2 -s which is about 4% of white beam flux. The characteristics of neutron beam diffracted by the PG are investigated experimentally to confirm the neuron flux and its profile at the PGAA system. The comparative experiment is performed in the CN horizontal beam line of HANARO. Diffracted spectra with the Bragg angles of 22.5 and 45 degree are measured by using time-of-flight spectrometer and fluxes before and after diffraction are determined by gold-wire activation. The theoretical estimation agrees with the experimental verification with in 20%. (author)

  2. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  3. Development of a Boron Neutron Capture Enhanced Fast Neutron Therapy Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, Jeremy Ed [Georgia Tech

    2002-01-01

    The combination of fast neutron therapy and boron neutron capture therapy is currently under investigation at several fast neutron therapy centers worldwide. This treatment method, termed boron neutron capture enhanced fast neutron therapy (BNCEFNT) utilizes a boron containing drug to selectively increase the dose to the target tumor. BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiforme. A neutron therapy beam for boron neutron capture enhanced fast neutron therapy has been developed for the existing Fermilab Neutron Therapy Facility. This beam produces a significant dose enhancement due to the the boron neutron capture reaction. The beam was developed by designing a filter and collimator system using the Monte Carlo radiation transport code, MCNPX. The MCNPX code was benchmarked against depth-dose measurements of the standard treatment beam. The new BNCEFNT beam is filtered with 18.3-cm of low carbon steel and is collimated with steel. Measurements of the dose enhancement of the new BNCEFNT beam were performed with paired tissue equivalent ion chambers. One of the ion chambers has boron incorporated in the wall of the chamber to measure the dose due to boron neutron capture. The measured boron dose enhancement of the BNCEFNT beam is (16.3 ± 2.6)% per 100-ppm 10B for a 20-cm diameter beam and (10.0 ± 1.6)% per 100-ppm 10B for a 10-cm diameter beam. The dose rate of the new beam is reduced to 4.4% of the dose rate of the standard treatment beam. xxi A conceptual design that overcomes the reduced dose rate is also presented. This design uses a tungsten collimator placed near the patient, with a 1.5-cm tungsten filter just upstream of the collimator. Using graphite moderation of neutrons around the patient a percent dose enhancement of 15% can be attained with good collimation, for field sizes as small as 5 × 5 cm2 , and without a reduction in dose rate.

  4. Investigating in-field and out-of-field neutron contamination in high-energy medical linear accelerators based on the treatment factors of field size, depth, beam modifiers, and beam type.

    Science.gov (United States)

    Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan

    2015-07-01

    We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  6. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    CERN Document Server

    Yamamoto, T; Horiguchi, Y; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Yamamoto, K

    2002-01-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without sup 1 sup 0 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of sup 1 sup 0 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99+-0.24, 3.04+-0.19 and 1.43+-0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50+-0.32, 2.34+-0.30 and 2.17+-0.28 for EN...

  7. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  8. Beam Instrumentation for the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Witkover, R. L.; Cameron, P. R.; Shea, T. J.; Connolly, R. C.; Kesselman, M.

    1999-01-01

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10 -4 . A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring

  9. Novel optics for conditioning neutron beams. II Focussing neutrons with a 'lobster-eye' optic

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Griffin, S.L.; Klein, A.G.; Nugent, K.A.

    1998-01-01

    Square-channel capillary, or 'Lobster-eye' arrays have been shown to be the optimum geometry for array optics. This configuration leads to a novel class of conditioning devices for X-ray and neutron beams. We present the first results of the focussing of neutrons with a Pb glass square-channel array. (authors)

  10. Development of the RRR cold neutron beam facility

    International Nuclear Information System (INIS)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel

    2002-01-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  11. National facility for neutron beam research

    Indian Academy of Sciences (India)

    When CIRUS (a medium flux, natural U, heavy water moderated, light water cooled reactor; max rated thermal power 40 MW, max central thermal neutron flux ∼6×1013 neutrons/cm2/s) got commissioned in 1960, trained manpower was available for effective utilisation of this reactor, to initiate large-scale programmes.

  12. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  13. A single-beam deuteron compact accelerator for neutron generation

    International Nuclear Information System (INIS)

    Araujo, Wagner Leite; Campos, Tarcisio Passos Ribeiro de

    2011-01-01

    Portable neutron generators are devices composed by small size accelerators that produce neutrons through fusion between hydrogen isotopes. These reactions are characterized by appreciable cross section at energies at the tens of keV, which enables device portability. The project baselines follow the same physical and engineering principles of any other particle accelerators. The generator consists of a gas reservoir, apparatus for ion production, few electrodes to accelerate and focus the ion beam, and a metal hydride target where fusion reactions occur. Neutron generator applications include geophysical measurements, indus- trial process control, environmental, research, nation's security and mechanical structure analysis.This article presents a design of a compact accelerator for d-d neutron generators, describing the physical theory applied to the deuteron extraction system, and simulating the ion beam transport in the accelerator. (author)

  14. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  15. Beam divergence correction method for neutron resonance spin echo spectroscope

    International Nuclear Information System (INIS)

    Maruyama, Ryuji; Tasaki, Seiji; Hino, Masahiro; Kitaguchi, Masaaki; Kawabata, Yuji; Ebisawa, Toru

    2005-01-01

    A beam divergence correction method for Neutron resonance spin echo (NRSE) spectroscope was proposed and the effectiveness is evaluated by simulation. When a beam divergence correction coil was introduced into NRSE spectroscope and the optimum magnetic field was given, the visibility of spin echo signal was recovered by controlling scattering of phase difference generated by beam divergence. The effectiveness of the correction method was proved by the above result. Principle of NRSE spectroscopy, decrease of spin polarization rate by beam divergence and its correction method, structure of divergence angle correction coil and the magnetic field calculation and result of simulation are described. (S.Y.)

  16. Micro structural evaluation technique of steel using neutron beam

    International Nuclear Information System (INIS)

    Nakamichi, Haruo; Sato, Kaoru; Sueyoshi, Hitoshi

    2016-01-01

    Structural analysis using Neutrons is a very unique technique for its strong penetration ability through steels. Numerous evaluation techniques are available at present, and JFE Steel has been adapting the technique through participating in research activities such as in the Iron and Steel Institute of Japan. This paper introduces some results including precipitation evaluation using a small angle scattering, residual strain estimation through diffractions, and in-situ transformation observation by time-of-flight methods of neutron beams diffraction. (author)

  17. Dosimetric characteristics of the thermal neutron beam facility for neutron capture therapy at Hanaro reactor

    International Nuclear Information System (INIS)

    Lee, Dong Han; Suh, Soheigh; Ji, Young Hoon

    2006-01-01

    The thermal neutron beam facility utilizing a typical tangential beam port for Neutron Capture Therapy was installed at the Hanaro, 30 MW multi-purpose research reactor. In order to determine the different dose components in phantoms irradiated with a mixed thermal neutron beam and gamma-ray for clinical applications, various techniques were applied including the use of activation foils, TLDs and ionization chambers. The water phantom was utilized in the measurement. The results of the measurement were compared with MCNP4B calculations. The thermal neutron fluxes were 1.02E9 and 6.07E8/cm 2 ·s at 10 and 20 mm depth in water, respectively. The gamma-ray dose rate was 5.10 Gy/hr at 20 mm depth in water. The result of this study can be used as basic data for subsequent BNCT clinical application. (author)

  18. Water imaging in living plant by nondestructive neutron beam analysis

    International Nuclear Information System (INIS)

    Nakanishi, M. Tomoko

    1998-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15um. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  19. Floppy disc units for data collection from neutron beam experiments

    International Nuclear Information System (INIS)

    Hall, J.W.

    1976-02-01

    The replacement of paper tape output facilities on neutron beam equipment on DIDO and PLUTO reactors by floppy discs will improve reliability and provide a more manageable data storage medium. The cost of floppy disc drives is about the same as a tape punch and printer and less than other devices such as a magnetic tape. Suitable floppy disc controllers are not at present available and a unit was designed as a directly pluggable replacement for paper tape punches. This design was taken as the basis in the development of a prototype unit for use in neutron beam equipment. The circuit operation for this prototype unit is described. (author)

  20. Proportional counter measurements in neutron therapy beams

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1984-01-01

    Dosimetry for clinical neutron therapy requires a characterization of radiation quality in addition to the specification of absorbed dose. Generally, a very simple approach has been adopted which consists in separating total absorbed dose into neutron and photon fractions. This is explained by the requirement of clinical dosimetry to apply methods suitable for routine measurements, by the lack of generally accepted improved alternatives, and by the fact that radiation quality is only one of several problems in neutron therapy not sufficiently solved. Spectra measured with low-pressure tissue-equivalent proportional counters (experimental microdosimetry) provide a detailed description of the physical properties of the radiation field at neutron therapy facilities. These descriptions are suitable for explaining the influence of different parameters (collimation, field size, phantom) on radiation quality. Although the physical properties of the radiation field as described by the measured microdosimetric distributions and quantities are not the only properties relevant for radiation effects, in general there are reasons to believe that they provide a suitable radiation quality characterization for the limited range of applications in neutron therapy. (author)

  1. BINP pilot accelerator-based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Belchenko, Yuriy; Burdakov, Alexander; Davydenko, Vladimir; Ivanov, Alexander; Kobets, Valeriy; Kudryavtsev, Andrey; Savkin, Valeriy; Shirokov, Valeriy; Taskaev, Sergey

    2006-01-01

    Neutron source based on accelerator has been proposed for neutron capture therapy at hospital. Innovative approach is based upon tandem accelerator with vacuum insulation and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot innovative accelerator based neutron source is under going to start operating now at BINP, Novosibirsk. Negative ion source with Penning geometry of electrodes has been manufactured and dc H - ion beam has been obtained. Study of beam transport was carried out using prototype of tandem accelerator. Tandem accelerator and ion optical channels have been manufactured and assembled. Neutron producing target has been manufactured, thermal regimes of target were studied, and lithium evaporation on target substrate was realized. In the report, the pilot facility design is given and design features of facility components are discussed. Current status of project realization, results of experiments and simulations are presented. (author)

  2. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  3. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  4. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  5. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  6. Tailoring beams for small-angle neutron diffractometers

    International Nuclear Information System (INIS)

    Crawford, R.K.; Carpenter, J.M.

    1988-01-01

    Small-angle neutron scattering instruments can be built to use either steady-state or time-of-flight techniques, although only the latter are practical at pulsed neutron sources. The techniques used to provide beams of suitable quality, wavelength range and angular collimation are considered in detail for steady-state and time-of-flight instruments at reactor neutron sources, and for time-of-flight instruments at pulsed neutron sources. For both instrument types a cold neutron source provides a definite advantage. Most, but not all, steady-state instruments use long flight paths, which can be shown to provide conditions which are optimum in many ways. However, frame-overlap considerations force the use of a short flight path for time-of-flight instruments, and this in turn forces these instruments to use different collimation and beam-quality techniques from those that are usually used for steady-state instruments. Although adequate techniques now exist for building short-flight-path small-angle neutron scattering instruments, some of these short-path techniques are still developing, and can be expected to improve in the future. At present the time-of-flight instruments are more difficult to build and use, but for many experiments this difficulty is more than compensated by the large wave-vector range covered in a single measurement with such instruments. (orig.)

  7. Absolute calibration of a cold and thermal neutron detector using monochromatic neutron beam

    Science.gov (United States)

    Choi, Jin Ha; Cude-Woods, Christopher; Ito, Takeyasu; Young, Albert

    2017-09-01

    Time of flight spectra for cold neutrons exiting the moderator volume of the LANSCE UCN source has been obtained using a commercial neutron scintillator, EJ-426, coupled to a Hamamatsu R1355. The absolute efficiency for this detector system was determined using a 37.4 meV (monochromatic) neutron beam from the Neutron Powder Diffraction Facility (NPDF) at North Carolina State University's PULSTAR reactor. We measured the absolute neutron flux at the NPDF through thin foil activation and explored threshold effects through analysis of the measured pulse height distribution for effectively pure neutron signals from the NPDF beam. Non-uniformity of the flux profile across the detector and the detection efficiency as a function of the point of incidence of neutrons on the scintillator was explored using a X-Y translation system to perform scans using either fixed or movable apertures. The results are generally consistent with our expectations for this system, and provide a quantitative assessment of the sensitivity of this system to cold and thermal neutrons. This project was funded by the National Science Foundation and the Department of Energy.

  8. Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, J.S.

    2005-01-01

    Full text: Australia's new research reactor, OPAL, has been designed for high quality neutron beam science and radioisotope production. It has a capacity for eighteen neutron beam instruments to be located at the reactor face and in a neutron guide hall. The new neutron beam facility features a 20 litre liquid deuterium cold neutron source and supermirror neutron reflecting guides for intense cold and thermal neutron beams. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, where criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. The lecture will outline Australia's aspirations for neutron science at the OPAL reactor, and describe the neutron beam facility under construction. The status of this project and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed. This project is the culmination of almost a decade of effort. We now eagerly anticipate catapulting Australia's neutron beam science capability to meet the best in the world today. (author)

  9. ASIC based neutron monitor

    International Nuclear Information System (INIS)

    Shastrakar, R.S.; Madavi, Vaishali; Chandratre, V.B.; Manna, A.; Jakati, R.K.; Kataria, S.K.; Gopalakrishnan, N.

    2005-01-01

    A Neutron monitor is designed and developed using the OCTPREM, ADAM ASIC and the triplex LCD devices developed by Electronics Division BARC. The Neutron monitor uses BF3 as detector. The Neutron monitor is subdivided into three modules front end pulse processing using the OCTPREM ASIC, H.V. Unit, and the counting display unit using ADAM ASIC. The monitor features low power design and portable. The unit demonstrates the success of the devices developed in Electronics Division BARC. (author)

  10. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm

  11. Proceedings of the 5. symposium on neutron dosimetry. Beam dosimetry

    International Nuclear Information System (INIS)

    Schraube, H.; Burger, G.; Booz, J.

    1985-01-01

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantitites, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  12. Physics with Ultracold and Thermal Neutron Beams

    International Nuclear Information System (INIS)

    None

    2004-01-01

    The final report is broken into 5 segments, reflecting research conclusions reached during specific time periods: 1991-1997, 1997-1999, 1999-2000, 2000-2001, and 2001-2002. The first part of the work reported was carried out at the 2 Mw research reactor of the Rhode Island Nuclaer Science Center (RJNSC). Chosen for study was the slow phase separation in mixtures of oil and water in the presence of a surfactant, and the structural features of an oil layer during the slow build-up from the gas phase. The results of these measurements, as well as studies of the capillary wave properties of oil/surfactant/water interfaces are described. The second part of the work was performed at the neutron reflection facilities of the Intennse Pulsed Neutron Source at Argonne and of the NBSR reactor at NIST. At Argonne, the uniaxial magnetic order of an Fe/CR superlattice was investigated, while the experiments at NIST studied the swelling behavior of ordered thin films of diblock copolymers when they were exposed to solvent vapors. The third part of the work was concerned with the storage properties of ultracold neturons in a trap. New experiments on spectral evolution during storage, using the UCN source of the Institut Laue-Langevin were able to be run. Subsequent periods focussed on the ultracold neutrons work, spin valve multilayer systems, and pseudo-partial wetting

  13. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. This publication is a compilation of the main results and findings of the CRP, and the CD-ROM accompanying this publication contains 19 reports with additional relevant technical details

  14. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector. Annex: Individual Reports

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. The publication IAEA-TECDOC-1773 is a compilation of the main results and findings of the CRP, and this CD-ROM accompanying the publication contains 19 reports with additional relevant

  15. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  16. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  17. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements. Annex: Individual Reports

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  18. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  19. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  20. Larmor-precession based neutron scattering instrumentation

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2009-01-01

    The Larmor precession of the neutron spin in a magnetic field allows the attachment of a Larmor clock to every neutron. Such Larmor labelling opens the possibility for the development of unusual neutron scattering techniques, where the energy (momentum) resolution does not require the initial and final states to be well selected. This principally allows for achievement of very high energy (momentum) resolution that is not feasible at all with conventional neutron scattering techniques, because the required neutron beam monochromatization (collimation) will result in intolerable intensity losses. Such decoupling of resolution and collimation allows, for example, for a significant increase in the luminosity of small-angle scattering or high-resolution diffractometers; the fact that opens new perspectives for their implementation at middle flux neutron sources. Different kinds of Larmor clock-based instrumentation, particularly two alternative NSE techniques using rotating and time-gradient magnetic field arrangements, which can be considered as inexpensive and affordable alternatives to present day NSE techniques, will be discussed and results of simulations and first experiments will be presented. (author)

  1. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  2. Accelerator based continuous neutron source.

    CERN Document Server

    Shapiro, S M; Ruggiero, A G

    2003-01-01

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate pr...

  3. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-01

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity

  4. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  5. Geant4 simulations of NIST beam neutron lifetime experiment

    Science.gov (United States)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  6. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Prospects for a new cold neutron beam measurement of theneutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Greene, G [University of Tennessee, Knoxville (UTK); Yue, A [University of Tennessee, Knoxville (UTK); Greene, G [Oak Ridge National Laboratory (ORNL); Laptev, A [Los Alamos National Laboratory (LANL); Snow, W [Indiana University Cyclotron Facility, Bloomington, IN; Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  8. Status report of the program on neutron beam utilization at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1996-08-01

    The thermal reactor is an intense source not only of thermal neutron, but also intermediate as well as fast neutrons. Using the filtered neutron beam technique at steady state atomic reactor allows receiving the neutrons in the intermediate energy region with the most available intense flux at present. In the near time at the Dalat reactor the filtered neutron beam technique has been applied. Utilization of the filtered neutron beams in basic and applied researches has been a important activity of the Dalat Nuclear Research Institute (DNRI). This report presents some relevant characteristics of the filtered neutron beams and their utilization in nuclear data measurements, neutron capture gamma ray spectroscopy, neutron radiography, neutron dose calibration and other applications. (author). 3 refs, 2 figs

  9. Monitoring elastic strain and damage by neutron and synchrotron beams

    International Nuclear Information System (INIS)

    Withers, P.J.

    2001-01-01

    Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)

  10. Characterization of the n_TOF EAR-2 neutron beam

    Directory of Open Access Journals (Sweden)

    Chen Y.H.

    2017-01-01

    Full Text Available The experimental area 2 (EAR-2 at CERNs neutron time-of-flight facility (n_TOF, which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1. The Parallel Plate Avalanche Counter (PPAC monitor experiment was performed to characterize the beam pro↓le and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash.

  11. Characterization of the n_TOF EAR-2 neutron beam

    Science.gov (United States)

    Chen, Y. H.; Tassan-Got, L.; Audouin, L.; Le Naour, C.; Durán, I.; Casarejos, E.; Aberle, O.; Andrzejewski, J.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n_TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam pro↓le and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash.

  12. Systematic error in the precision measurement of the mean wavelength of a nearly monochromatic neutron beam due to geometric errors

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Yue, A.T. [University of Tennessee, Knoxville, TN (United States); Laptev, A.B. [Tulane University, New Orleans, LA (United States)

    2009-12-11

    Many experiments at neutron scattering facilities require nearly monochromatic neutron beams. In such experiments, one must accurately measure the mean wavelength of the beam. We seek to reduce the systematic uncertainty of this measurement to approximately 0.1%. This work is motivated mainly by an effort to improve the measurement of the neutron lifetime determined from data collected in a 2003 in-beam experiment performed at NIST. More specifically, we seek to reduce systematic uncertainty by calibrating the neutron detector used in this lifetime experiment. This calibration requires simultaneous measurement of the responses of both the neutron detector used in the lifetime experiment and an absolute black neutron detector to a highly collimated nearly monochromatic beam of cold neutrons, as well as a separate measurement of the mean wavelength of the neutron beam. The calibration uncertainty will depend on the uncertainty of the measured efficiency of the black neutron detector and the uncertainty of the measured mean wavelength. The mean wavelength of the beam is measured by Bragg diffracting the beam from a nearly perfect silicon analyzer crystal. Given the rocking curve data and knowledge of the directions of the rocking axis and the normal to the scattering planes in the silicon crystal, one determines the mean wavelength of the beam. In practice, the direction of the rocking axis and the normal to the silicon scattering planes are not known exactly. Based on Monte Carlo simulation studies, we quantify systematic uncertainties in the mean wavelength measurement due to these geometric errors. Both theoretical and empirical results are presented and compared.

  13. Systematic error in the precision measurement of the mean wavelength of a nearly monochromatic neutron beam due to geometric errors

    Science.gov (United States)

    Coakley, K. J.; Dewey, M. S.; Yue, A. T.; Laptev, A. B.

    2009-12-01

    Many experiments at neutron scattering facilities require nearly monochromatic neutron beams. In such experiments, one must accurately measure the mean wavelength of the beam. We seek to reduce the systematic uncertainty of this measurement to approximately 0.1%. This work is motivated mainly by an effort to improve the measurement of the neutron lifetime determined from data collected in a 2003 in-beam experiment performed at NIST. More specifically, we seek to reduce systematic uncertainty by calibrating the neutron detector used in this lifetime experiment. This calibration requires simultaneous measurement of the responses of both the neutron detector used in the lifetime experiment and an absolute black neutron detector to a highly collimated nearly monochromatic beam of cold neutrons, as well as a separate measurement of the mean wavelength of the neutron beam. The calibration uncertainty will depend on the uncertainty of the measured efficiency of the black neutron detector and the uncertainty of the measured mean wavelength. The mean wavelength of the beam is measured by Bragg diffracting the beam from a nearly perfect silicon analyzer crystal. Given the rocking curve data and knowledge of the directions of the rocking axis and the normal to the scattering planes in the silicon crystal, one determines the mean wavelength of the beam. In practice, the direction of the rocking axis and the normal to the silicon scattering planes are not known exactly. Based on Monte Carlo simulation studies, we quantify systematic uncertainties in the mean wavelength measurement due to these geometric errors. Both theoretical and empirical results are presented and compared.

  14. Nondestructive water imaging by neutron beam analysis in living plants

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Matsubayashi, M.

    1997-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15 μm. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  15. Physics at the new CERN neutron beam line

    CERN Document Server

    Guerrero, C

    2014-01-01

    A new neutron beam line (n_TOF EAR - 2) is being built at CERN within the n_TOF facility. Compared to the existing 185 meters long time - of - flight beam line, the new one (which will operate in parallel) will feature a shorter flight of 20 meters, providing a 2 7 times more intense neutron flux extending from thermal to 300 MeV. The scientific program is now bein g discussed and the first detailed proposals will be refereed by February 2014. This contribution is devoted to present and discuss the expected performance of the facility, briefly, and the details of some of the first measureme nts foreseen for 2014 and 2015.

  16. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  17. 4{pi} Neutron detection with low-intensity radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Del Zoppo, A. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy)], E-mail: delzoppo@lns.infn.it; Figuera, P. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Musumarra, A. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Colonna, N. [INFN-Sezione di Bari, Via Orabona 4, I70126, Bari (Italy); Alba, R.; Bonomo, C. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Cherubini, S. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Cosentino, L.; Di Pietro, A. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Gulino, M. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); La Cognata, M. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Lamia, L. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Pellegriti, M.G.; Pizzone, R.G. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Rolfs, C. [Institut fur Physik mit Ionenstrahlen, Ruhr-Universitaet Bochum, Bochum (Germany); Romano, S.; Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Tudisco, S. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy)] (and others)

    2007-11-01

    The feasibility of inclusive neutron production measurements in reactions induced by low-intensity radioactive beams using a 4{pi} thermalization counter is studied. The time response of the detector is investigated experimentally by a technique that results in an enhanced sensitivity to weak components with long capture times. Complementary Monte Carlo simulations are presented. The capture time response is found to be independent on the neutron energy above 0.1 MeV. The capability of the capture time information in the unambiguous identification of neutron signals correlated to the projectile arrival on the target even in the presence of an intense background contamination is shown. As an application case, the {sup 8}Li({sup 4}He,n){sup 11}B reaction at the Big-Bang temperature is commented.

  18. Neutron detection with low-intensity radioactive beams

    Science.gov (United States)

    Del Zoppo, A.; Figuera, P.; Musumarra, A.; Colonna, N.; Alba, R.; Bonomo, C.; Cherubini, S.; Cosentino, L.; Di Pietro, A.; Gulino, M.; La Cognata, M.; Lamia, L.; Pellegriti, M. G.; Pizzone, R. G.; Rolfs, C.; Romano, S.; Spitaleri, C.; Tudisco, S.; Tumino, A.

    2007-11-01

    The feasibility of inclusive neutron production measurements in reactions induced by low-intensity radioactive beams using a 4π thermalization counter is studied. The time response of the detector is investigated experimentally by a technique that results in an enhanced sensitivity to weak components with long capture times. Complementary Monte Carlo simulations are presented. The capture time response is found to be independent on the neutron energy above 0.1 MeV. The capability of the capture time information in the unambiguous identification of neutron signals correlated to the projectile arrival on the target even in the presence of an intense background contamination is shown. As an application case, the 8Li( 4He,n) 11B reaction at the Big-Bang temperature is commented.

  19. Neutron detection with low-intensity radioactive beams

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Figuera, P.; Musumarra, A.; Colonna, N.; Alba, R.; Bonomo, C.; Cherubini, S.; Cosentino, L.; Di Pietro, A.; Gulino, M.; La Cognata, M.; Lamia, L.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Spitaleri, C.; Tudisco, S.

    2007-01-01

    The feasibility of inclusive neutron production measurements in reactions induced by low-intensity radioactive beams using a 4π thermalization counter is studied. The time response of the detector is investigated experimentally by a technique that results in an enhanced sensitivity to weak components with long capture times. Complementary Monte Carlo simulations are presented. The capture time response is found to be independent on the neutron energy above 0.1 MeV. The capability of the capture time information in the unambiguous identification of neutron signals correlated to the projectile arrival on the target even in the presence of an intense background contamination is shown. As an application case, the 8 Li( 4 He,n) 11 B reaction at the Big-Bang temperature is commented

  20. Expanding options in radiation oncology: neutron beam therapy

    International Nuclear Information System (INIS)

    Cohen, L.

    1982-01-01

    Twelve years experience with neutron beam therapy in Britain, the USA, Europe and Japan shows that local control is achievable in late-stage epidermoid cancer somewhat more frequently than with conventional radiotherapy. Tumours reputed to be radioresistant (salivary gland, bladder, rectosigmoid, melanoma, bone and soft-tissue sarcomas) have proved to be particularly responsive to neutrons. Pilot studies in brain and pancreatic tumours suggest promising new approaches to management of cancer in these sites. The availability of neutron therapy in the clinical environment opens new prospects for irradiation of 'radioresistant' tumours, permits more conservative cancer surgery, expands the use of elective chemotherapy and provides a wider range of options for cancer patients. (author)

  1. Radiobiological intercomparisons of fast neutron beams used for therapy in Japan and the United States

    International Nuclear Information System (INIS)

    Hall, E.J.; Withers, H.R.; Geraci, J.P.; Meyn, R.E.; Rasey, J.; Todd, P.; Sheline, G.E.

    1979-01-01

    A variety of portable biological systems have been used to intercompare the neutron beams used for radiotherapy in Japan and in the United States. The two neutron centers in Japan have been compared with the four in th United States; all of the machines differ in energy and consequently the biological effectiveness varies from one to another. The biological systems used included survival in three lines of mammalian cells cultured in vitro, the response of mouse skin, the survival of crypt cells in the mouse jejunum, and the loss of weight or DNA in the mouse testes. Based on the biological data, estimates have been made of the relative potency of the various neutron beams that will be invaluable when the time comes to evaluate clinical results

  2. Evaluation of JRR-4 neutron beam using tumor cells

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Torii, Yoshiya; Kishi, Toshiaki; Horiguchi, Yoji

    2001-03-01

    For preparation of irradiation plan of boron-neutron capture therapy (BNCT), not only the physical dose is important, but also weighted factors or RBE are also necessary on the evaluation of the effect on the organism. Physical dose calculated by dose evaluation system (JCDS : JAERI Computational Dosimetry System) must appropriately carry out the weighting by various cells like tumor, central nerve, glia, and the vascular in proportion to JRR-4 each irradiation mode. In-vitro biological experiment which used 9L gliosarcoma and C6 glioma in the head water phantom was carried out in order to evaluate these effect. Neutron beam characteristics of JRR-4 were also evaluated from the functions of survival fraction of these cells. As a result of the evaluation, it became clear that the dose evaluation calculated from physical dose of the boron and nitrogen carried out in traditional BNCT of Japan using thermal neutron is applicable for thermal and epi-thermal mixed neutron beam. (author)

  3. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  4. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  5. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  6. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications)

    International Nuclear Information System (INIS)

    Varela G, A.

    2003-01-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the 2 H(d, n) 3 He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  7. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choopan Dastjerdi, M.H., E-mail: mdastjerdi@aeoi.org.ir [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khalafi, H.; Kasesaz, Y.; Mirvakili, S.M.; Emami, J.; Ghods, H.; Ezzati, A. [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2016-05-11

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150–250. The thermal neutron flux at the image plane can be varied from 2.26×10{sup 6} to 6.5×10{sup 6} n cm{sup −2} s{sup −1}. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  8. Consequences of trapped beam ions of the analysis of neutron emission data

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Hone, M.; Jarvis, O.N.; Laundy, B.; Sadler, G.; Belle, P. van

    1989-01-01

    Neutron energy spectra have been measured during D o neutral beam heating of deuterium plasmas. The thermonuclear to beam-plasma neutron production ratios are deduced. For a non-radial spectrometer line-of-sight, the trapped beam-ion fraction must be considered. (author) 5 refs., 4 figs

  9. ISOL Beams of Neutron-Rich Oxygen Isotopes

    CERN Document Server

    Köster, U; Bergmann, U; Catherall, R; Cederkäll, J; Dillmann, I; Dubois, M; Durantel, F; Fraile-Prieto, L M; Franchoo, S; Gaubert, G; Gaudefroy, L; Hallmann, O; Huet-Equilbec, C; Jacquot, B; Jardin, P; Kratz, K L; Lecesne, N; Leroy, R; López, A; Maunoury, L; Pacquet, J Y; Pfeiffer, B; Saint-Laurent, M G; Stodel, C; Villari, A C C; Weissman, L

    2005-01-01

    ISOL beams of $19-22^$O were produced at ISOLDE and GANIL. At ISOLDE the neutron-rich oxygen isotopes are produced by 1.4GeV proton-induced reactionsin a UC_X/graphite target. The target is connected via a water-cooled transfer line (to retain all non-volatile isobars) to an ISOLDE type FEBIAD ion source wherethe released CO is dominantly ionized as CO^+, $^19-22$O beams were also produced at SPIRAL (GANIL). A 77.5 MeV/nucleon $^36$S beam was fragmented in a thick graphite target, coupled by a cold tranfer tube to an ECR ion source which ionizes the released CO dominantly as O^+ and CO+.

  10. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  11. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  12. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  13. Characteristics of the IR neutron beam in Hanaro and the recent development for its use in dynamic neutron radiography

    International Nuclear Information System (INIS)

    Lim, I.C.; Lee, B.C.; Kobayashi, H.; Sim, C.M.; Kim, M.S.; Lee, C.H.; Jun, B.J.; Watanabe, S.; Satoh, M.

    2004-01-01

    In HANARO, a BNCT facility was built at its IR beam port which can be used for neutron radiography as well. The values of important parameters for neutron radiography such as neutron flux, the L/D ratio and the effective energy of IR beam were obtained. The neutron flux was estimated theoretically by using an MCNP computer code simulation and was also obtained by using gold wire activation method. The L/D ratio was obtained by using the geometrical information for IR beam port as well as by using the Kobayashi's L/D device. The effective energy was measured by using the Kobayashi's BQI 1001. These evaluation of beam characteristics shows that the BNCT facility of HANARO is excellent for the dynamic neutron radiography. (orig.)

  14. National facility for neutron beam research

    Indian Academy of Sciences (India)

    Molecular reorientations in liquid crystals, microemulsions, etc. (iii) Inelastic spectroscopy: • Study of complex materials, especially of minerals, has continued based on a combination of inelastic scattering experiments, calculations of phonon spec- tra and computer simulation experiments. • A noteworthy experiment in ...

  15. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  16. Determination of the total neutron cross section using average energy shift method for filtered neutron beam

    Directory of Open Access Journals (Sweden)

    О. О. Gritzay

    2016-12-01

    Full Text Available Development of the technique for determination of the total neutron cross sections from the measurements of sample transmission by filtered neutrons, scattered on hydrogen is described. One of the methods of the transmission determination TH52Cr from the measurements of 52Cr sample, using average energy shift method for filtered neutron beam is presented. Using two methods of the experimental data processing, one of which is presented in this paper (another in [1], there is presented a set of transmissions, obtained for different samples and for different measurement angles. Two methods are fundamentally different; therefore, we can consider the obtained processing results, using these methods as independent. In future, obtained set of transmissions is planned to be used for determination of the parameters E0, Гn and R/ of the resonance 52Cr at the energy of 50 keV.

  17. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  18. Summary of mirror experiments relevant to beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1988-01-01

    A promising design for a deuterium-tritium (DT) neutron source is based on the injection of neutral beams into a dense, warm plasma column. Its purpose is to test materials for possible use in fusion reactors. A series of designs have evolved, from a 4-T version to an 8-T version. Intense fluxes of 5--10 MW/m 2 is achieved at the plasma surface, sufficient to complete end-of-life tests in one to two years. In this report, we review data from earlier mirror experiments that are relevant to such neutron sources. Most of these data are from 2XIIB, which was the only facility to ever inject 5 MW of neutral beams into a single mirror call. The major physics issues for a beam-plasma neutron source are magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, cold-ion fueling of the midplane to allow two-component reactions, and operation in the Spitzer conduction regime, where the power is removed to the ends by an axial gradient in the electron temperature T/sub e/. We show in this report that the conditions required for a neutron source have now been demonstrated in experiments. 20 refs., 15 figs., 3 tabs

  19. Characterization of the New n_TOF Neutron Beam: Fluence, Profile and Resolution

    CERN Document Server

    Guerrero, C; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Andrzejewski, J; Karadimos, D; Mengoni, A; Mendoza, E; Ganesan, S; Vlachoudis, V; Praena, J; Becares, V; Cortes, G; Variale, V; Quinones, J; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Sarmento, R; Becvar, F; Goncalves, I F; Martin-Fuertes, F; Cerutti, F; Pina, G; Mosconi, M; Tagliente, G; Duran, I; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    After a halt of four years, the n\\_TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and efficient cooling. The first measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated fission chambers, the n\\_TOF Silicon Monitor, a MicroMegas detector with (10)B and (235)U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron fluence. The spatial profile of the beam has been studied with a specially designed ``X-Y{''} MicroMegas which provided a 2D image of the beam as a function of neutron energy. Both properties have been compared with simulations performed. with the FLUKA code. The characterization of the resolution function is based on results from simulations which have been verified by the study of narrow capture...

  20. Dehydration process of fish analyzed by neutron beam imaging

    International Nuclear Information System (INIS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T.M.

    2009-01-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  1. Multi-beam neutron guide system at IRI, Delft

    International Nuclear Information System (INIS)

    Well, A.A. van; Gibcus, H.P.M.; Gommers, R.M.; Haan, V.O. de; Labohm, F.; Verkooijen, A.H.M.

    2001-01-01

    One of the main facilities of the Interfaculty Reactor Institute (IRI) at the Delft University of Technology is the swimming-pool type research reactor HOR. In 1963 it was critical for the first time. The power raised from 100 kW in 1963 to 500 kW in 1965. In 1968, forced cooling was introduced. From that time on, the reactor is operated at 2 MW, 5 days per week. The reactor comprises a variety of irradiation facilities, used among others for radioisotope production and neutron activation analysis. It is equipped with six horizontal radial beam tubes, originally used for neutron-scattering experiments. Throughout the years, the research activities have grown steadily, both in the development of new techniques and in applying these techniques in new research areas. (orig.)

  2. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jr., Thomas Dean [Univ. of Virginia, Charlottesville, VA (United States)

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 108 n/cm2 • s. The fast neutron and gamma radiation KERMA factors are 10 x 10-11cGy•cm2/nepi and 20 x 10-11 cGy•cm2/nepi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  3. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    Mill, A.J.; Harvey, J.R.

    1980-01-01

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10 -3 eV up to 10 7 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  4. Design of back-streaming white neutron beam line at CSNS.

    Science.gov (United States)

    Zhang, L Y; Jing, H T; Tang, J Y; Li, Q; Ruan, X C; Ren, J; Ning, C J; Yu, Y J; Tan, Z X; Wang, P C; He, Y C; Wang, X Q

    2018-02-01

    A white neutron beam line using back-streaming neutrons from the spallation target is under construction at China Spallation Neutron Source (CSNS). Different spectrometers, to be installed in the so-called Back-n beam line for nuclear data measurements, are also being developed in phases. The physical design of the beam line is carried out with the help of a complicated collimation system and a sophisticated neutron dump, taking the overview of the neutron beam characteristics into account. This includes energy spectrum, flux and time structure, the optimizations of neutron beam spots and in-hall background. The wide neutron energy range of 1eV-100MeV is excellent for supporting different applications, especially nuclear data measurements. At Endstation#2, which is about 80m away from the target, the main properties of the beam line include neutron flux of 10 6 n/cm 2 /s, time resolution of a few per mille over nearly the entire energy range, and in-hall background of about 0.01/cm 2 /s for both neutron and gamma. With its first commission in late 2017, Back-n will not only be the first high-performance white neutron source in China, but also one of the best white neutron sources in the world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Base neutron noise in PWRs

    International Nuclear Information System (INIS)

    Kosaly, G.; Albrecht, R.W.; Dailey, D.J.; Fry, D.N.

    1981-01-01

    Considerable activity has been devoted in recent years to the use of neutron noise for investigation of problems in pressurized-water reactors (PWRs). The investigators have found that neutron noise provides an effective way to monitor reactor internal vibrations such as vertical and lateral core motion; core support barrel and thermal shield shell modes, bending modes of fuel assemblies, and control rod vibrations. However, noise analysts have also concluded that diagnosis of a problem is easier if baseline data for normal plant operation is available. Therefore, the authors have obtained ex-core neutron noise signatures from eight PWRs to determine the similarity of signatures between plants and to build a base of data to determine the sources of neutron noise and thus the potential diagnostic information contained in the data. It is concluded that: (1) ex-core neutron noise contains information about the vibration of components in the pressure vessel; (2) baseline signature acquisition can aid understanding of plant specific vibration frequencies and provide a bases for diagnosis of future problems if they occur; and (3) abnormal core support barrel vibration can most likely be detected over and above the plant-to-plant signature variation observed thus far

  6. Development and Applications of Residual Stress Measurements Using Neutron Beams

    International Nuclear Information System (INIS)

    2014-01-01

    The deep penetration and selective absorption of neutrons make them a powerful tool for the non-destructive testing of large samples of material or large objects. Residual stress that is formed in a material during manufacturing, welding, utilization or repair can be measured by means of neutron diffraction. In fact, neutron diffraction is the only non-destructive testing method which can facilitate three dimensional mapping of residual stress in a bulk component. Stress measurement using neutron beams is a technique that enables this kind of high quality non-destructive investigation, and provides insight into the material strain and stress state deep within engineering components and structures under various conditions representative of those which might be experienced in service. Such studies are of importance to improve the quality of industrial components in production and to optimize design criteria in applications. Anisotropies in macroscopic properties such as thermal and electrical conductivities, for instance of fuel elements, and mechanical properties of materials depend on the textures developed during their preparation or thermal treatment. Such textures also can be studied using neutron diffraction techniques. There is currently substantial scientific and industrial demand for high quality non-destructive residual stress measurements, and the continuing competitive drive to optimize performance and minimize weight in many applications indicates that this demand will continue to grow. As such, the neutron diffraction technique is an increasingly important tool for mechanical and materials engineering in the search for improved manufacturing processes to reduce stress and distortion. Considering this trend, and in accordance with its purpose of promoting the peaceful use of nuclear applications, in 2006-2009 the IAEA organized a Coordinated Research Project on the Development and Application of the Techniques of Residual Stress Measurements in Materials

  7. Physical and microdosimetric studies of neutron beams used in radiobiology

    International Nuclear Information System (INIS)

    Lavigne, Bernard.

    1978-10-01

    Microdosimetry is concerned with the energy imparted in microscopic regions irradiated with different radiations. The energy imparted is subject to random fluctuations. The probability distribution may be estimated by measurements or by computing code. The results obtained with a tissue-equivalent proportional counter of Rossi type are compared with those obtained by means of the computer code of DENNIS and EDWARDS. Beams of monoenergetic neutrons of 0.68 MeV, 2.18 MeV, 3.53 MeV, 5.5 MeV and 14.18 MeV, and fission neutrons were used. The computer code requires that neutron spectrum and W, the mean energy expanded in a gas per ion pair formed are determined. The first part of the report thus describes: -spectrometric measurements done with a NE 213 scintillator; -W measurements with a chamber operating alternately as ionization chamber and proportional counter. Results are given for H + , He + , C + , N + and O + ions in argon and tissue-equivalent gas in the energy range 25 keV - 500 keV [fr

  8. Physical bases of magnetic neutron diffraction

    International Nuclear Information System (INIS)

    Izyumov, Yu.A.

    1997-01-01

    The paper is a review of the authors work on use of the symmetry theory in neutron diffraction analysis of magnetic structures. A magnetic structure to be describe in terms of mixing coefficients for irreducible representations basis functions of the crystal space group. An algorithm given for determination of the wave vector and the atomic magnetic moments orientations of a crystal via determination of the mixing coefficients. Symmetry aspects of polarized neutrons are studied, particular dependence of magnetic scattering cross section on polarization of the neutron beam and change the polarization vector of the scattering beam

  9. Polarized neutron beam properties for measuring parity-violating spin rotation in liquid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Micherdzinska, A.M., E-mail: amicherd@gwu.ed [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); George Washington University, Washington, DC 20052 (United States); Bass, C.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Bass, T.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Gan, K. [George Washington University, Washington, DC 20052 (United States); Luo, D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Markoff, D.M. [North Carolina Central University, Durham, NC 27707 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Opper, A.K. [George Washington University, Washington, DC 20052 (United States); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Snow, W.M. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Swanson, H.E. [University of Washington/CENPA, Seattle, WA 98195 (United States); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-03-01

    Measurements of parity-violating neutron spin rotation can provide insight into the poorly understood nucleon-nucleon weak interaction. Because the expected rotation angle per unit length is small (10{sup -7} rad/m), several properties of the polarized cold neutron beam phase space and the neutron optical elements of the polarimeter must be measured to quantify possible systematic effects. This paper presents (1) an analysis of a class of possible systematic uncertainties in neutron spin rotation measurements associated with the neutron polarimetry, and (2) measurements of the relevant neutron beam properties (intensity distribution, energy spectrum, and the product of the neutron beam polarization and the analyzing power as a function of the beam phase space properties) on the NG-6 cold neutron beam-line at the National Institute of Standards and Technology Center for Neutron Research. We conclude that the phase space nonuniformities of the polarimeter in this beam are small enough that a parity-violating neutron spin rotation measurement in n-{sup 4}He with systematic uncertainties at the 10{sup -7} rad/m level is possible.

  10. Development of neutron beam facilities for the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, S.J.

    2002-01-01

    Full text: Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the replacement research reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with four times the neutron flux of HIFAR, a cold neutron source and large neutron guide hall. Cold and thermal neutrons will be transported to the neutron beam instruments with modern supermirror guides. INVAP SE has been contracted to build the reactor and associated infrastructure, with the exception of the neutron beam instruments. With conceptual design complete, detailed engineering is well advanced and site preparation has commenced. ANSTO is developing an initial suite of eight neutron beam instruments in close consultation with the Australian user community. Design of six of the neutron beam instruments is progressing well. The presentation will include a review the planned scientific capabilities, a description of the neutron beam facility and a status report on progress to date on the instrument development program

  11. Neutron spectrum and flux of the cold neutron beam port (C2-3) in JRR-3M

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Ebisawa, Toru; Tasaki, Seiji; Suzuki, Masatoshi; Soyama, Kazuhiko

    2000-03-01

    Neutron beam research in JRR-3M has been promoted and novel experiments using quite very low energy neutrons are proposed in these days. To cope with these new demands, the neutron spectrum and the flux at the end of the cold neutron beam (C2-3) were measured. Both of the time of flight method and the θ -2 θ method were used to measure the spectrum in the very long wavelength range until 4.5 nm. It showed the possibility of the very low energy neutron application. The neutron flux was also measured by the gold foil activation method and it is 2.3x10 8 n/cm 2 /s. These measured results shows the agreements with the results of the commissioning test of JRR-3M about 10 years ago. The aged deterioration of the cold guide tube is not found out. (author)

  12. Role of IUC-DAEF in promoting neutron beam research in India

    Indian Academy of Sciences (India)

    Mumbai Centre of IUC-DAEF promotes and supports the use of neutron facilities at Dhruva reactor by the university scientists. To augment the existing neutron scattering facilities, IUC-DAEF has developed a neutron beam line at Dhruva reactor. The present paper gives a brief survey of the activities and achievements of ...

  13. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  14. Use of accelerator based neutron sources

    International Nuclear Information System (INIS)

    2000-05-01

    With the objective of discussing new requirements related to the use of accelerator based neutron generators an Advisory Group meeting was held in October 1998 in Vienna. This meeting was devoted to the specific field of the utilization of accelerator based neutron generators. This TECDOC reports on the technical discussions and presentations that took place at this meeting and reflects the current status of neutron generators. The 14 MeV neutron generators manufactured originally for neutron activation analysis are utilised also for nuclear structure and reaction studies, nuclear data acquisition, radiation effects and damage studies, fusion related studies, neutron radiography

  15. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  16. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1994-12-31

    The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.

  17. Accelerator-based neutron capture therapy

    International Nuclear Information System (INIS)

    JONES, D.T.L.; Sabbert, J.K.

    1998-01-01

    The possibilities of neutron capture therapy (NCT) were mooted as long ago as 1936. This treatment modality depends on the uptake in tumours of a nucleus with a high thermal neutron capture cross section and subsequent exposure to a thermal neutron beam. The capture reaction which has received most attention is 10 B(n,a) 7 Li in which the high-LET products have ranges of the order of cell dimensions. The boron must therefore be taken up in the tumour cells themselves. The 157 Gd(n,Y) 158 Gd reaction has also been examined as it has a cross section 67 times greater than 10 B neutron capture. The low-LET products have longer ranges and therefore do not need to be taken up precisely in the tumour cells. The chemistry of Gd compounds are also well known as they are used as contrast agents in MRI. fe The first patients with advanced brain tumours were treated in the USA in the 1950's and in Japan in the 1960's using reactor beams and boron compounds, Some encouraging results were obtained. Reactor beams have energies in the MeV range end need to be moderated for NCT. However, thermal beams do riot have sufficient penetration for the treatment of deep-seated tumours and the generation of intense epithermal (keV) beams is now receiving considerable attention. Reactors themselves are not ideal for medical treatments: they cannot generally be located in hospitals because of safety factors and public resistance; they are often located at remote locations which are inconvenient and conventional fractionation may not be feasible; fixed horizontal beams have to be used resulting in limited treatment planning options. The use of low-energy accelerators to produce epithermal neutron beams is under serious consideration. These can be relatively small devices providing multi directional beams and which could be located in hospitals. They therefore offer an attractive alternative to reactor beams. The reactions considered most favourable are 7 Li(p,n) 7 Be and 9 Be(p,n) 9 B with

  18. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  19. Beam based alignment at LEP

    CERN Document Server

    Dehning, Bernd; Mugnai, G; Reichel, I; Schmidt, R; Sonnemann, F; Tecker, F A

    2004-01-01

    We describe a beam-based method for finding the relative offset between beam position monitors (BPMs) and the magnetic centres of the adjacent quadrupole magnets. The strength of a given quadrupole is modulated and the induced closed orbit oscillation measured for different beam positions, reaching a minimum when the beam is centred in the quadrupole. The BPM reading at this point is a measure of its offset, which may be determined at LEP with an accuracy of ~40x10-6 m.

  20. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  1. Determination of the neutron energy and spatial distributions of the neutron beam from the TSR-II in the large beam shield

    International Nuclear Information System (INIS)

    Clifford, C.E.; Muckenthaler, F.J.

    1976-01-01

    The TSR-II reactor of the ORNL Tower Shielding Facility has recently been relocated within a new, fixed shield. A principal feature of the new shield is a beam port of considerably larger area than that of its predecessor. The usable neutron flux has thereby been increased by a factor of approximately 200. The bare beam neutron spectrum behind the new shield has been experimentally determined over the energy range from 0.8 to 16 MeV. A high level of fission product gamma ray background prevented measurement of bare beam spectra below 0.8 MeV, however neutron spectra in the energy range from 8 keV to 1.4 MeV were obtained for two simple, calculable shielding configurations. Also measured in the present work were weighted integral flux distributions and fast neutron dose rates

  2. The application of the neutron beam to radiotherapy

    International Nuclear Information System (INIS)

    King, K.

    1980-01-01

    The article discusses neutron interactions, neutron sources and damage to cells caused by neutrons and lists the disadvantages of using neutrons in cancer therapy. The only advantage of neutrons over x-rays is that they can destroy hypoxic cells, an advantage which may offset the disadvantages

  3. Neutron Flux Measurement Produced by BNCT Target using Proton Beam

    International Nuclear Information System (INIS)

    Ha, Jang Ho; Kim, Yong Kyun; Chai, Jong Seo; Kim, Jong Kyung

    2005-01-01

    We are investigating neutron production target system performance for boron captured neutron therapy (BNCT). The epithermal neutron is useful for this therapy and in present study we performed a simple method to measure neutron flux and energy, which are important for the accurate cancer therapy. The simple method and result of neutron flux and energy measurement experiment are presented

  4. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  5. Neutron beam facilities at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2003-01-01

    Full text: The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has 'space' for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in January 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 6 out of 8 instruments have been specified and costed. At present the instrumentation project carries ∼15% contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments. In December 2002, ANSTO formed the Bragg Institute, with the intent of nurturing strong external partnerships, and covering all aspects of neutron and X-ray scattering, including research using synchrotron radiation. I will discuss the present status and predicted performance of the neutron-beam facilities at the Replacement Reactor, and the opportunities that all of this presents for scientific research in Australia, with particular

  6. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  7. An accelerator-based neutron microbeam system for studies of radiation effects.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Bigelow, Alan W; Akselrod, Mark S; Sykora, Jeff G; Brenner, David J

    2011-06-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the ⁷Li(p,n)⁷Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min⁻¹. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy.

  8. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  9. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    Science.gov (United States)

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Analysis of neutron production in passively scattered ion-beam therapy

    International Nuclear Information System (INIS)

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Wongyun Jung; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-01-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12 0.18 and 0.0067 0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. (authors)

  11. Determination and analysis of neutron flux distribution on radial Piercing beam port for utilization of Kartini research reactor

    International Nuclear Information System (INIS)

    Widarto

    2002-01-01

    Determination and analysis of neutron flux measurements on radial piercing beam port have been done as completion experimental data document and progressing on utilization of the Kartini research reactor purposes. The analysis and determination of the neutron flux have been carried out by using Au foils detector neutron activation analysis method which put on the radius of cross section (19 cm) and a long of radial piercing beam port (310 cm) Based on the calculation, distribution of the thermal neutron flux is around (8.3 ± 0.9) x 10 5 ncm -2 s -1 to (6.8 ± 0.5) x 10 7 ncm -2 s -1 and fast neutron is (5.0 ± 0.2) x 10 5 ncm -2 s -1 to (1.43 ± 0.6) x 10 7 ncm -2 s -1 . Analyzing by means of curve fitting method could be concluded that the neutron flux distribution on radial piercing beam port has profiled as a polynomial curve. (author)

  12. The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements

    CERN Document Server

    Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.

  13. Can Neutron Beam Components and Radiographic Image Quality be determined by the Use of Beam Purity and Sensitivity Indicators?

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    radiography f a c i l i t i e s of the European Community. The direct, transfer and track-etch methods using different f i lm recording materials were used. Neutron beam components were calculated from film density measurements under the beam purity indicators and radiographic image quality was assessed......In the Euratom Neutron Radiography Working Group Test Program beam purity and s e n s i t i v i t y indicators, as prescribed by the ASTM E 545-81 were used together with the NRWG beam purity i n d i c a t o r - f u e l and c a l i b r a t i o n fuel pin. They were radiographed together at neutron...

  14. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  15. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications); Desarrollo de un haz de neutrones monoenergeticos (Aspectos teoricos, desarrollos experimentales y aplicaciones)

    Energy Technology Data Exchange (ETDEWEB)

    Varela G, A

    2003-07-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the {sup 2} H(d, n) {sup 3} He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  16. Simulations Of Neutron Beam Optic For Neutron Radiography Collimator Using Ray Tracing Methodology

    International Nuclear Information System (INIS)

    Norfarizan Mohd Said; Muhammad Rawi Mohamed Zin

    2014-01-01

    Ray- tracing is a technique for simulating the performance of neutron instruments. McStas, the open-source software package based on a meta-language, is a tool for carrying out ray-tracing simulations. The program has been successfully applied in investigating neutron guide design, flux optimization and other related areas with high complexity and precision. The aim of this paper is to discuss the implementation of ray-tracing technique with McStas for simulating the performance of neutron collimation system developed for imaging system of TRIGA RTP reactor. The code for the simulation was developed and the results are presented. The analysis of the performance is reported and discussed. (author)

  17. PRR1 rehabilitation and the current and future neutron beam utilization program

    International Nuclear Information System (INIS)

    Calix, Virginia S.

    2003-01-01

    The PRR1 research reactor is the center for nuclear science R and D in the Philippines. It is located in Metro Manila inside the campus of the University of the Philippines. It is a General Electric designed reactor and was commissioned in 1963 with a rated thermal power of 1 MW. It was operated for 20 years enabling the Institute to pursue activities in radioisotope production, neutron scattering, activation analyses and other R and D activities requiring neutron beams. In 1984 it was converted to a 3 MW TRIGA Type reactor. Conversion was completed and test run was successfully accomplished in 1988. In the same year the reactor was shut down due to a leak in the aluminum linear of the reactor pool. During the repair deterioration of the other parts of the reactor was discovered that could affect the safety of its operation. A rehabilitation program is made that include the reactor core box and all the other peripherals that could affect its safety operation and to address present regulatory concerns. Modification of the core box and its position in the pool opens opportunities and possibilities to suit specific neutron beam application for the users. Plans for this will be presented as well as the strategy of the Institute to satisfy the current need for reactor based facilities to enhanced implementation of the Country's S and T Program. (author)

  18. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  19. Progress in neutron beam development at the HFR Petten (feasibility study for a BNCT facility)

    International Nuclear Information System (INIS)

    Constantine, G.; Moss, R.L.; Watkins, P.R.D.; Perks, C.A.; Delafield, H.J.; Ross, D.; Voorbraak, W.P.; Paardekooper, A.; Freudenreich, W.E.; Stecher-Rasmussen, F.

    1990-08-01

    Boron Neutron Capture Therapy, using intermediate energy neutrons to achieve the deep penetration essential for treating brain tumours, can be implemented with a filtered reactor neutron beam. This is designed to minimize the mean energy of the neutrons to keep proton recoil damage to the scalp within normal tissue tolerance limits whilst delivering the required thermal neutron fluence to the tumour over a reasonably short period. This can only be realized in conjunction with a high power density reactor. At the Joint Research Centre Petten an optimized neutron filter is currently being built for installation into the HB11 beam tube of the High Flux Reactor HFR. Part of the development leading to this design has been an extensive study of broad spectrum, filtered beam performance on the HB7 beam tube facility. A wide range of calculations was performed using the Monte Carlo code, MCPN, supported by validation experiments in which several filter configuration incorporating aluminium, sulphur, liquid argon, titanium and cadmium were installed for low power measurements of the neutron fluence rate, neutron spectra and beam gamma-ray contamination. The measurements were carried out within a successful European collaboration. Evaluations were made of the reactor core edge and unfiltered beam spectra, for comparison with MCNP calculations. Multi-foil activation methods and also gamma dose determination in the filtered beam using thermo-luminescent detectors were performed by the ECN. The Harwell/ Birmingham University collaborators undertook the neutron spectrum measurements in the filtered beam. proton recoil spectrometry was used above 30 keV, combined with a multi-sphere and BF 3 chamber response modification technique. Subsequent spectrum adjustment was carried out with the SENSAK code. The agreement between the calculated and measured spectra has given confidence in the reactor and filter modelling methods used to design the HB11 therapy facility. (author). 12 refs

  20. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  1. Beam based systems and controls

    CERN Document Server

    Jacquet, D

    2012-01-01

    This presentation will give a review from the operations team of the performance and issues of the beam based systems, namely RF, ADT, beam instrumentation, controls and injection systems. For each of these systems, statistics on performance and availability will be presented with the main issues encountered in 2012. The possible improvements for operational efficiency and safety will be discussed, with an attempt to answer the question "Are we ready for the new challenges brought by the 25ns beam and increased energy after LSI? ".

  2. Overview on neutron beam industry-focused strategic research in Malaysia

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Razali Kassim; Abdul Jalil Abdul Hamid; Azali Muhammad; Muhammad Rawi Mohd Zain; Azhar Azmi

    2002-01-01

    The TRIGA MARK II research reactor (RTP) at the Malaysian Institute for Nuclear Technology Research (MINT) was commissioned in July 1982. RTP is a 1 MW steady state reactor which being used for reactor training and research related to neutron. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. Projects undertaken are the development and utilization of the neutron radiography (myNR) and small angle neutron scattering (mySANS) facilities. This poster highlights the recent status the above neutron beam facilities and their application in materials science and technology research and education. (Author)

  3. Proposal for an accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.

    1975-07-01

    An Accelerator-based Neutron Generator is described that consists of a 30-MeV deuteron linear accelerator using a flowing liquid lithium target. With a continuous deuteron current of 100 milliamperes, a source intensity of more than 10 16 neutrons per second will be produced. The neutrons will be emitted in a roughly collimated beam. The proposed facility can be divided into two areas: the 30-MeV linear accelerator and the multiple-target experimental area. The 30-MeV accelerator will consist of eight rf accelerating cavities in a single vacuum tank, each cavity being powered by its own rf power amplifier operating at 50 MHz. To shield the beam bunches from the rf field when it is in the decelerating direction, 66 ''drift tubes'' will be included; the drift-tube structures will include quadrupole magnets which will keep the beam focused. The accelerator will produce a continuous beam of 100 milliamperes. Beam power will thus be 3.0 megawatts; total power including rf losses in the accelerating cavities will be 4.5 megawatts. The injectors for the linear accelerator will be two 500-kV dc accelerators, one for injection of D + ions and the other for D - ions. They can be used simultaneously or one can serve as a spare in case of breakdown or maintenance of the other. (U.S.)

  4. Neutron beam measurement of industrial polymer materials for composition and bulk integrity

    International Nuclear Information System (INIS)

    Rogante, M; Rosta, L; Heaton, M E

    2013-01-01

    Neutron beam techniques, among other non-destructive diagnostics, are particularly irreplaceable in the complete analysis of industrial materials and components when supplying fundamental information. In this paper, nanoscale small-angle neutron scattering analysis and prompt gamma activation analysis for the characterization of industrial polymers are considered. The basic theoretical aspects are briefly introduced and some applications are presented. The investigations of the SU-8 polymer in axial airflow microturbines—i.e. microelectromechanical systems—are presented foremost. Also presented are full and feasibility studies on polyurethanes, composites based on cross-linked polymers reinforced by carbon fibres and polymer cement concrete. The obtained results have provided a substantial contribution to the improvement of the considered materials, and indeed confirmed the industrial applicability of the adopted techniques in the analysis of polymers. (paper)

  5. Neutron beam measurement of industrial polymer materials for composition and bulk integrity

    Science.gov (United States)

    Rogante, M.; Rosta, L.; Heaton, M. E.

    2013-10-01

    Neutron beam techniques, among other non-destructive diagnostics, are particularly irreplaceable in the complete analysis of industrial materials and components when supplying fundamental information. In this paper, nanoscale small-angle neutron scattering analysis and prompt gamma activation analysis for the characterization of industrial polymers are considered. The basic theoretical aspects are briefly introduced and some applications are presented. The investigations of the SU-8 polymer in axial airflow microturbines—i.e. microelectromechanical systems—are presented foremost. Also presented are full and feasibility studies on polyurethanes, composites based on cross-linked polymers reinforced by carbon fibres and polymer cement concrete. The obtained results have provided a substantial contribution to the improvement of the considered materials, and indeed confirmed the industrial applicability of the adopted techniques in the analysis of polymers.

  6. Method to evaluate the L/D ratio of neutron imaging beams

    Energy Technology Data Exchange (ETDEWEB)

    Pugliesi, R.; Pereira, M.A. Stanojev; Schoueri, R.M., E-mail: pugliesi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-04-01

    An alternative simple method to evaluate the L/D ratio of neutron imaging beams is proposed. It is based on the behavior of the ratio 'x/Ut', which asymptotically tends to L/D for large values of the parameter 'x', that corresponds to the distance separating a gadolinium test object to the scintillator plane, where its image is formed. The method was applied to the neutron imaging equipment of the Nuclear and Energy Research Institute IPEN/CNEN-SP and the obtained result was L/D = (104 ± 4). The consistency of the proposed method was verified by comparing this value with those ones obtained by a well - known and established procedure. (author)

  7. High sensitivity MOSFET-based neutron dosimetry

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Konstantakos, V.; Zamani, M.; Siskos, S.; Laopoulos, T.; Sarrabayrouse, G.

    2010-01-01

    A new dosemeter based on a metal-oxide-semiconductor field effect transistor sensitive to both neutrons and gamma radiation was manufactured at LAAS-CNRS Laboratory, Toulouse, France. In order to be used for neutron dosimetry, a thin film of lithium fluoride was deposited on the surface of the gate of the device. The characteristics of the dosemeter, such as the dependence of its response to neutron dose and dose rate, were investigated. The studied dosemeter was very sensitive to gamma rays compared to other dosemeters proposed in the literature. Its response in thermal neutrons was found to be much higher than in fast neutrons and gamma rays.

  8. Beam energy variability and other system considerations for a deuteron linac materials research neutron source

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1989-01-01

    There are many overall system aspects and tradeoffs that must be considered in the design of a deuteron linac based neutron source for materials research, in order to obtain a facility with the best possible response to the user's needs, efficient and reliable operation and maintenance, at the optimum construction and operating cost. These considerations should be included in the facility design from the earliest conceptual stages, and rechecked at each stage to insure consistency and balance. Some of system requirements, particularly that of beam energy variability and its implications, are outlined in this talk. (author)

  9. Measurement of Relative Biological Effectiveness (RBE) for the Radiation Beam from Neutron Source Reactor YAYOI -Comparisons with Cyclotron Neutron and 60Co Gamma Ray-

    OpenAIRE

    HIROAKI, WAKABAYASHI; SHOZO, SUZUKI; AKIRA, ITO; Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo; Institute of Medical Science, the University of Tokyo; Institute of Medical Science, the University of Tokyo

    1983-01-01

    Radiation biology and/or therapy research and development for a research reactor beam need specific RBEs of neutrons as well as of specific reactions. RBEs for reactor beams measured in situ condition are interesting because actual radiation effects on each biological system are different depending on detailed conditions of irradiation. A small powered research reactor (Fast Neutron Source Reactor: YAYOI) was examined here as a neutron beam source for obtaining survival curves in a manner usu...

  10. Radiobiology studies for the evaluation of epithermal neutron beams used for BNCT

    International Nuclear Information System (INIS)

    Green, S.; Jones, B.; Mill, A.J.

    2006-01-01

    This paper outlines our plans for a study to establish the radiobiological effectiveness of the various mixes of radiation components present in an epithermal neutron beam designed for BNCT and to incorporate these data into clinical protocols for the treatment of malignant glioma. This is a description of work which is funded and just now beginning in Birmingham so no results can be presented. Our project will involve a combination of experimental measurements carried out in Birmingham and in Boston and mathematical modelling carried out in Birmingham. Despite all the extant in-vitro and in-vivo work, there is no widely accepted method to determine biological effect by accounting for variations in beam component mix, dose rate and treatment fractionation for disparate from the various BNCT centres. The objectives of this study are: To develop a cell-based radiobiology protocol to provide essential data on safety and efficacy of beams for Boron Neutron Capture Therapy (BNCT) in advance of clinical trials. To exploit the facilities at Massachusetts Institute of Technology for variable dose-rate epithermal irradiations to validate the above protocol. To develop mathematical models of this radiobiological system that can be used to inform decisions on dose selection, fractionation schedules, BNCT use as supplementary boosts or for re-treatment of recurrent cancers. To provide fundamental data relevant to the understanding of the radiobiology of simultaneous mixed high-and low-LET radiations over a clinically relevant dose-range. (author)

  11. Application of semiconductor MOSFET and pin diode dosimeters to epithermal neutron beam dose distribution measurements in phantoms

    International Nuclear Information System (INIS)

    Carolan, M.G.; Wallace, S.A.; Allen, B.J.; Rosenfeld, A.B.; Mathur, J.N.

    1996-01-01

    For any clinical application of Boron Neutron Capture Therapy (BNCT) fast and accurate dose calculations will be required for treatment planning. Such calculations are also necessary for the planning and interpretation of results from pre-clinical and clinical trials where the speed of calculation is not so critical. A dose calculation system based on the MCNP Monte Carlo Neutron transport code has been developed by Wallace. This system takes image data from CT scans and constructs a voxel based geometrical model for input into MCNP. To validate the calculations, a number of phantoms were constructed and exposed in the HB11 epithermal neutron beam at the HFR of the CEC Joint Research Centre in Petten. The doses recorded by arrays of PIN diode neutron dosimeters and MOSFET gamma dosimeters in these phantoms were compared with the calculated results from the MCNP dose planning system. Initial results have been reported elsewhere. Poster 197. (author)

  12. A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials

    Science.gov (United States)

    Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.

    2016-12-01

    A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.

  13. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    International Nuclear Information System (INIS)

    Verbeke, Jerome M.

    1999-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only

  14. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  15. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system

    Czech Academy of Sciences Publication Activity Database

    Mojzeszek, N.; Farah, J.; Klodowska, M.; Ploc, Ondřej; Stolarczyk, L.; Waligorski, M. P. R.; Olko, P.

    2017-01-01

    Roč. 34, č. 2 (2017), s. 80-84 ISSN 1120-1797 Institutional support: RVO:61389005 Keywords : secondary neutrons * proton therapy * pencil beam scanning systtems * out-of-field doses * stray neutron doses * TEPC Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 1.990, year: 2016

  16. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  17. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...

  18. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  19. Measurement of neutron spectra in a silicon filtered neutron beam using stilbene detectors at the LVR-15 research reactor.

    Science.gov (United States)

    Košťál, Michal; Šoltés, Jaroslav; Viererbl, Ladislav; Matěj, Zdeněk; Cvachovec, František; Rypar, Vojtěch; Losa, Evžen

    2017-10-01

    A well-defined neutron spectrum is an essential tool for calibration and tests of spectrometry and dosimetry detectors, and evaluation methods for spectra processing. Many of the nowadays used neutron standards are calibrated against a fission spectrum which has a rather smooth energy dependence. In recent time, at the LVR-15 research reactor in Rez, an alternative approach was tested for the needs of fast neutron spectrometry detector calibration. This process comprises detector tests in a neutron beam, filtered by one meter of single-crystalline silicon, which contains several significant peaks in the fast neutron energy range. Tests in such neutron field can possibly reveal specific problems in the deconvolution matrix of the detection system, which may stay hidden in fields with a smooth structure and can provide a tool for a proper energy calibration. Test with several stilbene scintillator crystals in two different beam configurations supplemented by Monte-Carlo transport calculations have been carried out. The results have shown a high level of agreement between the experimental data and simulation, proving thus the accuracy of used deconvolution matrix. The chosen approach can, thus, provide a well-defined neutron reference field with a peaked structure for further tests of spectra evaluation methods and scintillation detector energy calibration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    BNCT (Boron Neutron Capture Therapy. BNCT utilizes neutron nature by 10B deposited on cancer cells. The superiority of BNCT compared to the rradiation therapy is the high level of selectivity since its level is within cell. This study was carried out on collimator modelling in radial beam port of reactor Kartini for BNCT. The modelling was conducted by simulation using software of Monte CarloN-Particle version5 (MCNP 5. MCNP5 is a package of the programs for both simulating and calculating the problem of particle transport by following the life cycle of a neutron since its birth from fission reaction, transport on materials, until eventually lost due to the absorption reaction or out from the system. The collimator modelling used materials which varied in size in order to generate the value of each of the parameters in accordance with the recommendation of the IAEA, the epithermal neutron flux (Фepi > 1.0 x 109n.cm-2s-1, the ratio between the neutron dose rate fast and epithermal neutron flux (Ḋf/Фepi 0.7. Based on the results of the optimization of the modeling, the materials and sizes of the collimator construction obtained were 0.75 cm Ni as collimator wall, 22 cm Al as a moderator and 4.5 cm Bi as a gamma shield. The outputs of the radiation beam generated from collimator modeling of the radial beam port were Фepi = 5.25 x 106 n.cm-2.s-1, Ḋf/Фepi = 1.17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1.70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1.51 and J/Фepi = 0.731. Based on this study, the results of the beam radiation coming out of the radial beam port did not fully meet the criteria recommended by the IAEA so need to continue this study to get the criteria of IAEA. Keywords: BNCT, radial beamport, MCNP 5, collimator

  1. Measurements of thermal- and slow-neutron dose distributions in ordinary concrete shield using a reactor neutron beam of different energy ranges

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Makarious, A.S.; El-Kolaly, M.A.; Afifi, Y.A.

    1980-01-01

    Experimental studies on the distribution and attenuation of thermal and slow neutron doses in ordinary concrete shield have been carried-out. A collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor was used. Measurements were performed using, a direct beam, cadmium filtered beam and boron carbide filtered beam. The neutron doses were measured using thermolumin-escent Li/sub 2/B/sub 4/O/sub 7/ detectors. The measured data have been analyzed and a group of attenuation curves were given for beams of reactor neutrons of different energy. These curves show that cadmium and boron carbide filters tend to decrease the neutron doses specially at the beginning of penetration. The data were transformed to that which would be obtained using neutron sources of different geometries.

  2. Neutron and alpha particle energy spectrum and angular distribution effects from beam--plasma D-T fusion

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1975-04-01

    The following five topics are discussed: (1) origin of energy spread in fusion neutrons, (2) magnitude of neutron energy spread from beam--plasma fusions, (3) techniques for calculation of fusion product particle spectra, (4) neutron spectra from fusion in isotropic plasmas, and (5) calculation of fusion neutron energy and angle distributions. (U.S.)

  3. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  4. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    International Nuclear Information System (INIS)

    Kosunen, A.

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?) water air , in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in 60 Co gamma beams. In photon beam dosimetry (S I ?) water air can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation). To improve the accuracy

  5. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  6. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  7. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Clement, S.D.; Harling, O.K.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction

  8. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  9. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  10. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Science.gov (United States)

    Osipenko, M.; Ripani, M.; Alba, R.; Ricco, G.; Schillaci, M.; Barbagallo, M.; Boccaccio, P.; Celentano, A.; Colonna, N.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Esposito, J.; Figuera, P.; Finocchiaro, P.; Kostyukov, A.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Viberti, C. M.

    2013-09-01

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a 3He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10 MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60-70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  11. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    International Nuclear Information System (INIS)

    Osipenko, M.; Ripani, M.; Alba, R.; Ricco, G.; Schillaci, M.; Barbagallo, M.; Boccaccio, P.; Celentano, A.; Colonna, N.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Esposito, J.; Figuera, P.; Finocchiaro, P.; Kostyukov, A.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Viberti, C.M.

    2013-01-01

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a 3 He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed

  12. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  13. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  14. Fusion between heavy neutron-rich nuclei using radioactive and stable ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, D.; Liang, J.F.; Gross, C.J.; Beene, J.R.; Varner, R.L.; Galindo U, A.; Gomez del Campo, J.; Mueller, P.E.; Stracener, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Amro, H.; Kolata, J.J. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Bierman, J.D. [Physics Department AD-51, Gonzaga Universiy, Spokane, WA 99258-0051 (United States); Caraley, A.L. [Department of Physics, State University of New York at Oswego, Oswego, NY 13126 (United States); Chavez L, E.; Ortiz, M.E. [lFUNAM, 04510 Mexico D.F. (Mexico); Jones, K.L. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08856 (United States); Loveland, W.; Sprunger, P.H.; Vinodkumar, A.M. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2007-12-15

    Evaporation residues (ERs) and fission products were measured following bombardment of {sup 64}Ni with radioactive Sn and Te neutron rich isotopes. The experimental setup was tailored to measurements with low intensity radioactive beams and the data obtained show the obvious enhancement of ER production (survival) with the addition of neutrons to the fused system. A calculation of nucleus-nucleus capture within a WKB formalism incorporating neutron transfer in a two step approach was performed. Using global potentials in our calculations we attempted to predict trends as well as account for measured capture cross sections of collisions between heavy nuclei with large neutron excess. (Author)

  15. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  16. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...... example for a reactor beam transmitted through a 30 cm Bi filter. The effective cross section differs 0.5% from the capture cross section at 2200 m/s. For a 20 mg/cm2 Au foil the correction for beam attenuation and hardening through the foil is 0.7% and the activity correction is 1.5%....

  17. In-phantom spectra and dose distributions from a high-energy neutron therapy beam

    Energy Technology Data Exchange (ETDEWEB)

    Benck, S. E-mail: benck@fynu.ucl.ac.be; D' Errico, F.; Denis, J.-M.; Meulders, J.-P.; Nath, R.; Pitcher, E.J

    2002-01-01

    In radiotherapy with external beams, healthy tissues surrounding the target volumes are inevitably irradiated. In the case of neutron therapy, the estimation of dose to the organs surrounding the target volume is particularly challenging, because of the varying contributions from primary and secondary neutrons and photons of different energies. The neutron doses to tissues surrounding the target volume at the Louvain-la-Neuve (LLN) facility were investigated in this work. At LLN, primary neutrons have a broad spectrum with a mean energy of about 30 MeV. The transport of a 10x10 cm{sup 2} beam through a water phantom was simulated by means of the Monte Carlo code MCNPX. Distributions of energy-differential values of neutron fluence, kerma and kerma equivalent were estimated at different locations in a water phantom. The evolution of neutron dose and dose equivalent inside the phantom was deduced. Measurements of absorbed dose and of dose equivalent were then carried out in a water phantom using an ionization chamber and superheated drop detectors (SDDs). On the beam axis, the calculations agreed well with the ionization chamber data, but disagreed significantly from the SDD data due to the detector's under-response to neutrons above 20 MeV. Off the beam axis, the calculated absorbed doses were significantly lower than the ionization chamber readings, since gamma fields were not accounted for. The calculated data are doses from neutron-induced charge particles, and these agreed with the values measured by the photon-insensitive SDDs. When exposed to the degraded spectra off the beam axis, the SDD offered reliable estimates of the neutron dose equivalent.

  18. Compact ion chamber based neutron detector

    Science.gov (United States)

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  19. Evaluation of biological characteristics of neutron beam generated from MC50 cyclotron

    International Nuclear Information System (INIS)

    Eom, Keun Yong; Wu, Hong Gyun; Park, Hye Jin; Huh, Soon Nyung; Ye, Sung Joon; Lee, Dong Han; Park, Suk Won

    2006-01-01

    To evaluate biological characteristics of neutron beam generated by MC50 cyclotron located in the Korea Institute of Radiological and Medical Sciences (KIRAMS). The neutron beams generated with 15 mm Beryllium target hit by 35 MeV proton beam was used and dosimetry data was measured before in-vitro study. We irradiated 0, 1, 2, 3, 4 and 5 Gy of neutron beam to EMT-6 cell line and surviving fraction (SF) was measured. The SF curve was also examined at the same dose when applying lead shielding to avoid gamma ray component. In the X-ray experiment, SF curve was obtained after irradiation of 0, 2, 5, 10 and 15 Gy. The neutron beams have 84% of neutron and 16% of gamma component at the depth of 2 cm with the field size of 26 x 26 cm 2 , beam current 20 μ A, and dose rate of 9.25 cGy/min. The SF curve from X-ray, when fitted to linear-quadratic (LQ) model, had 0.611 as α / β ratio (α = 0.0204, β = 0.0334, R 2 = 0.999, respectively). The SF curve from neutron beam had shoulders at low dose area and fitted well to LQ model with the value of R 2 exceeding 0.99 in all experiments. The mean value of alpha and beta were -0.315 (range, -0.25 4 ∼ -0.360) and 0.247 (0.220 ∼ 0.262), respectively. The addition of lead shielding resulted in no straightening of SF curve and shoulders in low dose area still existed. The RBE of neutron beam was in range of 2.07 ∼ 2.19 with SF = 0.1 and 2.21 ∼ 2.35 with SF = 0.01, respectively. The neutron beam from MC50 cyclotron has significant amount of gamma component and this may have contributed to form the shoulder of survival curve. The RBE of neutron beam-generated by MC50 was about 2.2

  20. Neutron Beam Utilization At The TRIGA Mark II Reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Buchelt, R.J.; Koerner, S.; Rauch, H.

    2008-01-01

    A review is given about the research activities around the 250 kW TRIGA reactor Vienna, which are adequate to other neutron sources of comparable or bigger size. The topics selected for presentation range from neutron radiography, materials irradiation, neutron small-angle scattering, neutron activation analysis, neutron polarisation to neutron interferometry. It is the aim of this presentation to stimulate programs for more efficient use around TRIGA research reactors with neutron flux densities of 10 13 cm -2 s -1 at the centre of the reactor core. One briefly describes the experimental facilities installed at the 250 kW TRIGA reactor of the Austrian Universities in Vienna and presented a great part of the current research activities performed with them. Most of the techniques and experiments presented are adequate for implementation to other reactors of similar or even higher power. Those technologies which require extremely specialized know-how not generally available at every research institute are not treated here or are just mentioned without any further details. It is common knowledge that due to the relatively low neutron fluxes of such reactors one of the most important applications of neutron scattering on condensed matter, namely the study of atomic and molecular dynamics of solids and liquids, a priori must remain out of consideration. However, this does not mean that it is in general impossible to develop new or to improve existing techniques for such experiments at TRIGA research reactors. In fact such developing work has always been a crucial point of the research efforts in the variety of fields of applied and fundamental neutron physics. On the other hand, a small reactor facility is optimally suited to perform neutron activation analysis due to the rather short transfer distances of the sample into the reactor core. (authors)

  1. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    calculate the pairing gaps in neutron matter and provide uncertainty estimates. The formation of heavy elements in the early universe proceeds through the rapid neutron-capture process. This process requires precise knowledge of the properties of very neutron-rich nuclei, which are unstable and at present not accessible in experiments. Thus, one can explore their properties only with theoretical calculations. Currently the only approach to the properties of all nuclei are energy-density functionals (EDFs). All EDFs used today are based on phenomenological models and fits to stable nuclei, which makes their predictive power for unknown (neutron-rich) nuclei unclear. Deriving an ab initio EDF directly from the nuclear forces is an important goal of nuclear theory. A promising approach is the optimised effective potential (OEP) method. We take a step into that direction and calculate neutron drops within the OEP formalism. In addition to the exact-exchange approximation we study for the first time the effect of second-order contributions and compare to quantum Monte Carlo and other results.

  2. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  3. An assessment of the secondary neutron dose in the passive scattering proton beam facility of the national cancer center

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2017-06-15

    The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a 3He neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from 4.942 ± 0.031 mSv/Gy at the end of the field to 0.324 ± 0.006 mSv/Gy at 150 cm in axial distance.

  4. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  5. Improved penetration from spectral hardening of reactor produced epithermal neutron beams using 6Li filtration

    International Nuclear Information System (INIS)

    Binns, P.J.; Riley, K.J.; Kiger, W.S. III; Harling, O.K.

    2006-01-01

    The use of an optional 6 Li-filter in a clinical epithermal neutron beam was studied using Monte Carlo calculations of the fission converter beam (FCB) and radiation transport through an ellipsoidal water phantom. The design premise was to produce a beam with the highest possible advantage depth (AD) while also maximizing the advantage depth dose rate (ADDR) and advantage ratio (AR). This was achieved by spectral modification using a 6 Li-filter 8 mm thick that preferentially removes neutrons of the lowest energies in the epithermal range. Predicted gains in beam performance were confirmed by measurement and are greater for smaller field sizes. An increase of 6 mm in the AD to 9.9 cm with a concomitant loss in beam intensity of 52% was realized with the 12 cm diameter field. (author)

  6. Neutron beam utilization at the TRIGA Mark II reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Ismail, S.; Koerner, S.; Baron, M.; Hainbuchner, M.; Badurek, G.; Buchelt, R.J.

    1999-01-01

    A review is given about the research activities around the 250 kw TRIGA reactor Vienna, which are adequate to other neutron sources of comparable or bigger size. The topics selected for presentation range from neutron radiography, materials irradiation, neutron small-angle scattering, neutron activation analysis, neutron polarization to neutron interferometry. It is the aim of this presentation to stimulate programs for more efficient use around TRIGA research reactors with neutron flux densities of 1013 cm-2a-1 at the center of the reactor core. We briefly describe the experimental facilities installed at the 250 kw TRIGA reactor of the Austrian Universities in Vienna and present a great part of the current research activities performed with them. We believe that most of the techniques and experiments presented here are adequate for implementation to other reactors of similar or even higher power. Those technologies which require extremely specialized know-how not generally available at every research Inst.e will not be treated here or are just mentioned without any further details.(author)

  7. Prompt gamma-ray analysis using cold and thermal guided neutron beams

    International Nuclear Information System (INIS)

    Yonezawa, C.; Magara, M.; Hoshi, M.; Tachikawa, E.; Sawahata, H.; Ito, Y.

    1995-01-01

    A permanent and stand-alone neutron-induced prompt γ-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M has been constructed. The characteristics of the system, including neutron beam and γ-ray spectrometer were measured. Owing to the absence of fast neutrons and the low γ-ray background, analytical sensitivities and detection limits better than those in other PGA systems have been achieved. Analytical results of ten elements in Standard Reference Material of Coal Fly Ash agreed well with those obtained by other methods. Isotopic analysis of Ni and its application to accurate and precise determination of Ni by stable isotope dilution method were performed. (author) 14 refs.; 4 figs.; 1 tab

  8. Optimization of cold neutron beam extraction at ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    from which the moderator is viewed. This study does not only show changes in both cold and thermal neutron flux, depending on extraction position, but also shows that there are significant differences in the wavelength spectrum and origin of neutrons depending on the angel of view.......The present study takes its origin in the baseline design of European Spallation Source where a cold and a thermal moderator are situated next to each other enabling bispectral extraction. The study aims at mapping the differences in various neutron distributions depending on the angle and position...

  9. Study of very neutron-rich nuclei produced by means of a 48Ca beam

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Artukh, A.G.

    1991-01-01

    The results of experiments with a 48 Ca beam performed at GANIL are presented and discussed. More than 30 very neutron-rich isotopes were identified or studied for the first time. The evidence for particle-unstable character of the 26 O isotope is reported. Half-life measurements for light neutron rich nuclei are compared with different theoretical predictions. (author) 14 refs.; 6 figs.; 1 tab

  10. Moisture imaging of a camphor tree by neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tomoko M. [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences; Karakama, Isamu; Sakura, Tsuguo; Matsubayashi, Masashi

    1998-05-01

    Moisture distribution of a camphor tree was presented. A 23 year old camphor tree was downed at university forest and a wood disk, about 1 cm in width, was lumbered out from the breast height of the tree. The wood disk as well as a newly developing branch of the tree were irradiated with thermal neutrons at an atomic reactor installed at Japan Atomic Energy Research Institute. The total flux of thermal neutron was 3.0 x 10{sup 9} n/cm{sup 2}. Water specific images of the disk and a branch were presented with high resolution, which was estimated to be about 16 {mu}m. In the case of wood disk, moisture decreasing manner while drying was also shown through neutron image. Neutron images showed that the moisture decreasing rate in sapwood was similar to that of heartwood. (author)

  11. Imaging of water in living plant using neutron beam and positron emitting nuclides

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2001-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam as well as positron emitting nuclides. With high specificity to water, neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. To know real-time water movement, positron emitting nuclides, 18 F or 15 O was produced by a cyclotron. We present how water uptake activity was shown using these these nuclides. (author)

  12. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Ganda, Francesco; Vujic, Jasmina; Greenspan, Ehud; Leung, Ka-Ngo

    2010-01-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  13. Radiation damage in silicon due to albedo neutrons emitted from hadronic beam dumps (Fe and U)

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Bishop, B.L.

    1987-01-01

    Calculations have been carried out to determine the level of radiation damage that can be expected from albedo neutrons when 1- and 5-GeV negative pions are incident on iron and uranium beam dumps. The calculated damage data are presented in several ways including neutron fluence above 0.111 MeV, 1 MeV equivalent neutron fluence, damage energy deposition, and DPA or displacements per atom. Details are presented as to the method of calculation. 14 refs., 1 fig., 1 tab

  14. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  15. Moderator/collimator for a proton/deuteron linac to produce a high-intensity, high-quality thermal neutron beam for neutron radiography

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Imel, G.R.; McMichael, G.E.

    1995-01-01

    Reactor based high resolution neutron radiography facilities are able to deliver a well-collimated (L/D ≥100) thermal flux of 10 6 n/cm 2 ·sec to an image plane. This is well in excess of that achievable with the present accelerator based systems such as sealed tube D-T sources, Van der Graaff's, small cyclotrons, or low duty factor linacs. However, continuous wave linacs can accelerate tens of milliamperes of protons to 2.5 to 4 MeV. The MCNP code has been used to analyze target/moderator configurations that could be used with Argonne's Continuous Wave Linac (ACWL). These analyses have shown that ACWL could be modified to generate a neutron beam that has a high intensity and is of high quality

  16. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  17. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    International Nuclear Information System (INIS)

    Maglieri, R; Seuntjens, J; Kildea, J; Liang, L; DeBlois, F; Evans, M; Licea, A; Dubeau, J; Witharana, S

    2014-01-01

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10 2 n/Gy, 0.026 × 10 2 n/Gy and 0.59 × 101 2 n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co-authors Dubeau

  18. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  19. Design of a beam shaping assembly for an accelerator-based BNCT system

    International Nuclear Information System (INIS)

    Stichelbaut, F.; Forton, E.; Jongen, Y.

    2006-01-01

    A complete BNCT system based on a high-intensity proton accelerator is developed by the IBA company. The neutron beam is produced via the 7 Li(p,n) 7 Be reaction using a solid lithium target. The neutron energy spectrum is tailored with a beam shaping assembly surrounding the target. This device is the object of an extensive R and D project and is fully designed with the Monte Carlo simulation code MCNPX. The emphasis is put on the treatment quality, notably the radiation dose at the skin level, and the achievable neutron flux. (author)

  20. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  1. In the wonderland of ultra-parallel neutron beams

    Indian Academy of Sciences (India)

    -Hart proposal to attain a sharp, nearly rectangular profile by Bragg reflecting neutrons multiply from a channel-cut single crystal, was realized in its totality three and a half decades later by achieving the corresponding Darwin reflection curves ...

  2. Collimator optimization studies for the new MIT epithermal neutron beam

    International Nuclear Information System (INIS)

    Riley, K.J.; Ali, S.J.; Harling, O.K.

    2000-01-01

    A patient collimator has been designed for the epithermal neutron facility now being commissioned at MIT. Collimator performance both in and out of field was evaluated using the Monte Carlo code MCNP. A two piece design that can accommodate different circular field sizes will be manufactured using a composite lead, epoxy, boron and lithium mixture. (author)

  3. Calorimetric dosimetry in neutron and charged particle beams

    International Nuclear Information System (INIS)

    McDonald, J.C.; Ma, I.C.; Laughlin, J.S.

    1978-01-01

    A portable tissue-equivalent (TE) calorimetric, constructed of A-150 plastic, has been employed for the measurement of absorbed dose in several neutron radiotherapy fields. Comparisons of spherical, cylindrical, and thimble shaped TE ionization chambers have been carried out using either air, or a flow of TE gas in the chamber

  4. Precision measurement of thermal neutron beam densities using a 3He proportional counter

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Bahnsen, A.; Brown, W.K.

    1967-01-01

    of ±0.4%. Fundamental advantages of the method include the 1ν dependence of the 3He(n, p)T cross section up to 1 keV, and the assurance of homogeneity even for very small macroscopic cross sections, because of the gaseous detector material. Although the method requires a relatively clean neutron beam...

  5. Scintillation spectrometer system for measuring fast-neutron spectra in beam geometry

    International Nuclear Information System (INIS)

    Simons, G.G.; Larson, J.M.; Reynolds, R.S.

    1977-05-01

    A high-energy liquid-organic scintillation spectrometer system is described. This spectrometer was developed to measure neutron spectra in extracted beams from zero-power fast reactors. The highly efficient NE-213 scintillation solution was used as the neutron detection medium. Identification and removal of gamma-ray-induced events was accomplished using electronic pulse shape discrimination. Instrumentation used to process the discrete pulses stemming from neutron and gamma-ray interactions, within the scintillation solution, is described in detail. Evaluation of the system's performance is discussed for a gamma-ray discrimination ratio of nominally 1000:1, a total countrate of 3000 cps, and a dynamic range corresponding to neutron energies from 1 to 10 MeV. Operation above 10 MeV is certainly possible. However, since the neutron flux above 10 MeV was negligible in the radiation fields of interest in this work, the operating characteristics of the spectrometer were not evaluated above 10 MeV. Neutron spectra are reported for extracted beam measurements made on ZPPR assembly 4, phase 2

  6. Application of semiconductors for dosimetry of fast-neutron therapy beam

    International Nuclear Information System (INIS)

    Yudelev, M.; Alyousef, K.; Brandon, J.; Perevertailo, V.; Lerch, M. L. F.; Rosenfeld, A. B.

    2004-01-01

    Two types of ion implanted miniature p-i-n diodes were tested in a d(48.5) + Be fast-neutron beam produced in the Detroit superconducting cyclotron. The increase in forward voltage drop caused by neutron-induced damage was correlated with neutron dose measured in a water phantom. The neutron and gamma dose components were predetermined using twin detector (Tissue-equivalent ion chamber paired with miniature Geiger-Mueller counter) method. The increase in the voltage drop for 1 mA injection current was monitored together with the cyclotron beam target current, thus the differential voltage drop could be defined precisely for given radiation dose. The average neutron sensitivities of tested diodes were 1.284 ± 0.014 and 0.528 ± 0.058 mV per cGy. The miniature detectors can be utilised in characterisation of small radiation fields and in the regions of high dose gradient as well as for in vivo dosimetry of the patients undergoing fast-neutron therapy. (authors)

  7. In-phantom spectra and dose distributions from a high-energy neutron therapy beam

    CERN Document Server

    Benck, S; Denis, J M; Meulders, J P; Nath, R; Pitcher, E J

    2002-01-01

    In radiotherapy with external beams, healthy tissues surrounding the target volumes are inevitably irradiated. In the case of neutron therapy, the estimation of dose to the organs surrounding the target volume is particularly challenging, because of the varying contributions from primary and secondary neutrons and photons of different energies. The neutron doses to tissues surrounding the target volume at the Louvain-la-Neuve (LLN) facility were investigated in this work. At LLN, primary neutrons have a broad spectrum with a mean energy of about 30 MeV. The transport of a 10x10 cm sup 2 beam through a water phantom was simulated by means of the Monte Carlo code MCNPX. Distributions of energy-differential values of neutron fluence, kerma and kerma equivalent were estimated at different locations in a water phantom. The evolution of neutron dose and dose equivalent inside the phantom was deduced. Measurements of absorbed dose and of dose equivalent were then carried out in a water phantom using an ionization ch...

  8. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  10. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  11. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    Science.gov (United States)

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    Science.gov (United States)

    Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  13. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    Directory of Open Access Journals (Sweden)

    Chiaveri E.

    2017-01-01

    Full Text Available The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1, low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2, located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  14. Characterisation of the polarised neutron beam at the small angle scattering instrument SANS-I with a polarised proton target

    International Nuclear Information System (INIS)

    Aswal, V.K.; Brandt, B. van den; Hautle, P.; Kohlbrecher, J.; Konter, J.A.; Michels, A.; Piegsa, F.M.; Stahn, J.; Petegem, S. van; Zimmer, O.

    2008-01-01

    A transmission neutron polariser (Fe/Si supermirror) has been successfully implemented in the small angle neutron scattering instrument SANS-I at the SINQ neutron source. The polariser is needed for investigations of magnetic nanostructures as well as for spin contrast variation techniques relying on the spin-dependent neutron scattering length of polarised nuclei. The V-shaped polariser is installed in the first section of the collimator system of the SANS instrument and its performance is optimised for neutrons with a wavelength between 0.5 and 1.0 nm. For a precise polarisation analysis of a beam with selectable incident divergence, such as in SANS experiments, an opaque spin filter is ideal. We used a solid polarised proton target exploiting the strong spin-dependent neutron scattering cross-section of hydrogen and determined the neutron beam polarisation to a precision of δp/p∼0.5% for different collimations in a broad wavelength band

  15. Characterisation of the polarised neutron beam at the small angle scattering instrument SANS-I with a polarised proton target

    Science.gov (United States)

    Aswal, V. K.; van den Brandt, B.; Hautle, P.; Kohlbrecher, J.; Konter, J. A.; Michels, A.; Piegsa, F. M.; Stahn, J.; Van Petegem, S.; Zimmer, O.

    2008-02-01

    A transmission neutron polariser (Fe/Si supermirror) has been successfully implemented in the small angle neutron scattering instrument SANS-I at the SINQ neutron source. The polariser is needed for investigations of magnetic nanostructures as well as for spin contrast variation techniques relying on the spin-dependent neutron scattering length of polarised nuclei. The V-shaped polariser is installed in the first section of the collimator system of the SANS instrument and its performance is optimised for neutrons with a wavelength between 0.5 and 1.0 nm. For a precise polarisation analysis of a beam with selectable incident divergence, such as in SANS experiments, an opaque spin filter is ideal. We used a solid polarised proton target exploiting the strong spin-dependent neutron scattering cross-section of hydrogen and determined the neutron beam polarisation to a precision of δp/p˜0.5% for different collimations in a broad wavelength band.

  16. In the wonderland of ultra-parallel neutron beams

    Indian Academy of Sciences (India)

    Revealing vital statistics sans all fat. May I present her sizzling hot physiques. To readers of Pramana ... loss in the beam intensity. 2. Bragg collimators. With the advent of nearly perfect ... mented by Rauch's group to attain a substantial reduction [5] in the tail intensities. 798. Pramana – J. Phys., Vol. 71, No. 4, October 2008 ...

  17. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  18. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  19. Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Talebitaher, A. [Physics Department, University of Regina, Saskatchewan, Canada S4S 0A2 (Canada); Springham, S.V., E-mail: stuart.springham@nie.edu.sg [Natural Sciences and Science Education, National Institute of Education, 637616 (Singapore); Rawat, R.S.; Lee, P. [Natural Sciences and Science Education, National Institute of Education, 637616 (Singapore)

    2017-03-11

    The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6–16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D{sup +} ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that ~ 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated (~ 80%) in the pinch column region.

  20. Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.

  1. Report on neutron beam utilization and study of high Tc superconductors at NRI

    Energy Technology Data Exchange (ETDEWEB)

    Vuong Huu Tan [Nuclear Physics Dept., Nuclear Research Inst. (NRI), Dalat (Viet Nam)

    1998-10-01

    Utilization of reactor neutron beams at NRI for research and applications up to November 1996 had been presented at the last Workshop in Jakarta (25-28 Nov., 1996). This paper describes new research and applications carried out at Nuclear Physics Department of NRI after that time. They consist of neutron beam developments, neutron activation cross section measurements for waste disposal assessment and in-vivo prompt gamma neutron activation analysis for Cd determination in organs. After the last Sub-Workshop on Neutron Scattering in Serpong (21-23 Nov., 1996), we were accepted to participate in the Regional Program on Study of High Tc Superconductors with the topic `The mechanism of Pb and Sb dopant role on superconductivity of 2223 phase of Bi-Sr-Ca-Cu-O system`. Indeed, this study has begun at NRI only since August, 1997 due to the problem of materials. The study has been carried out in collaboration with the Hanoi State University (Superconductors Department) where experts and equipment for superconductors research have been considered as the best ones in Vietnam. Primary results in this study are presented in this workshop. (author)

  2. A novel methodology to determine the divergence of a neutron beam

    Science.gov (United States)

    Souza, E. S.; Almeida, G. L.; Lopes, R. T.

    2016-12-01

    This work posits a novel approach to characterize the divergence of a neutron beam emerging from a reactor port. Unlike the usual inverse of the L/D ratio, the term divergence as employed here refers to the deviation from an ideal parallel beam emitted from a surface source. Within this concept, an ideal point source in spite of its conical beam would not exhibit any divergence. Hence, the beam divergence of a surface source is more adequately characterized adopting the notion of Rocking Curve - RC, a term borrowed from the X-ray diffraction field. After this idea, every point of the surface source emits neutrons in all directions but with different intensities following a bell-shaped profile. Once the RC semi-width is determined, it is possible to assess its effect upon the quality of an acquired neutron radiograph, since it incorporates degrading agents such as geometrical unsharpness, neutron scattering, noise and statistical dispersion. In this work an inverse procedure is applied, i.e., to use an actual neutron radiograph to find the RC semi-width. To accomplish this task, synthetic images - generated with defined RC semi-widths and object-detector gaps - are compared with experimental ones acquired with the same gaps in order to find the most resemblance between them. The angular semi-width of the best synthetic image is assigned to that of the experimental one, defining thus the aimed beam divergence, which has been compared with a different method with a fair agreement. An equivalent procedure embedded in the algorithm has been employed to evaluate the L/D using the same radiographic images. The outcome fairly agrees with the value inferred from the neutron flux ratio at different locations. Both approaches RC semi-width and L/D ratio yielded consistent results with other utterly different methods. Yet, the rocking curve approach forecasts more precisely the neutron pattern hitting the detector and does not need a precisely machined test-object as required

  3. Neutron diffraction study of residual strains across electron beam welds in AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Braham, C.; Ceretti, M.; Coppola, R.; Lodini, A.; Rustichelli, F.; Tosto, S.

    1995-01-01

    The results of neutron diffraction investigation of the strains produced across an electron-beam (EB) weld in SA AISI 316L reference steel for NET are presented. The sample size was 10 x 5 x 3 cm 3 and the measurements have been carried out at different distances from the weld plane with a spatial resolution of approximately 8 mm 3 in the bulk of the material. Grain size and crystallographic texture effects were investigated, on the same sample, by means of X-ray diffraction and metallography. A method to determine the stress field from the neutron diffraction data even in the presence of strong texture is discussed. (orig.)

  4. Neutron-based portable drug probe

    International Nuclear Information System (INIS)

    Womble, P. C.; Vourvopoulos, G.; Ball Howard, J.; Paschal, J.

    1999-01-01

    Based on previous measurements, a probe prototype for contraband detection utilizing the neutron technique of Pulsed Fast-Thermal Neutron Analysis (PFTNA) is being constructed. The prototype weighs less than 45 kg and is composed of a probe (5 cm diameter), a power pack and a data acquisition and display system. The probe is designed to be inserted in confined spaces such as the boiler of a ship or a tanker truck filled with liquid. The probe provides information on a) the elemental content, and b) the density variations of the interrogated object. By measuring elemental content, the probe can differentiate between innocuous materials and drugs. Density variations can be found through fast neutron transmission. In all cases, hidden drugs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios

  5. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  6. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  7. A neutronic feasibility study for LEU conversion of the High Flux Beam Reactor (HFBR)

    International Nuclear Information System (INIS)

    Pond, R.B.; Hanan, N.A.; Matos, J.E.

    1997-01-01

    A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm 3 in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept. (author)

  8. The fast neutron facility at the research reactor Munich. Determination of the beam quality and medical applications

    International Nuclear Information System (INIS)

    Wagner, F. M.; Koester, L.

    1990-01-01

    At the research reactor FRM, fast and epithermal neutron beams are generated by a thermal-to-fast neutron converter and/or near core scatterers. The dosimetry and spectroscopy of the resulting intense mixed beams of neutron and gamma radiation with a wide range of energies set spetial tasks for neutron dosimetry and spectroscopy. The twin chamber method and some others are briefly described. Neutron spectroscopy is performed by a Li-6 sandwich spectrometer covering the full neutron spectrum of a well-collimated mixed beam from about 20 keV to 8 MeV. The data registration is assisted by a microcomputer which generates sum and triton spectra on-line. Sum analysis is applied to neutron energies greater than 0.3 MeV; the intermediate neutron spectrum is evaluated by unfolding of the triton spectrum. Moreover, a brief overview of the reactor neutron therapy (RENT) at the FRM is given. After a number of animal experiments for the determination of the biological effectiveness relative to X-rays, clinical irradiations have been started in 1985. The most important indications for RENT are listed. 140 patients with bad prognoses have been treated since. The average tumour control rate of 60% is surprisingly high. Possibilities for an assisting Boron Neutron Capture Therapy (BNCT) are shown. 8 figs., 23 refs

  9. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  10. Nuclear Waste Removal Using Particle Beams Incineration with Fast Neutrons

    CERN Document Server

    Revol, Jean Pierre Charles

    1997-01-01

    The management of nuclear waste is one of the major obstacles to the acceptability of nuclear power as a main source of energy for the future. TARC, a new experiment at CERN, is testing the practicality of Carlo Rubbia's idea to make use of Adiabatic Resonance Crossing to transmute long-lived fission fragments into short-lived or stable nuclides. Spallation neutrons produced in a large Lead assembly have a high probability to be captured at the energies of cross-section resonances in elements such as 99Tc, 129I, etc. An accelerator-driven sub-critical device using Thorium (Energy Amplifier) would be very effective in eliminating TRansUranic elements which constitute the most dangerous part of nuclear waste while producing from it large amounts of energy. In addition, such a system could transform, at a high rate and little energetic cost, long-lived fission fragments into short-lived elements.

  11. Proton-neutron interaction at N≅Z. First observation of the Tz = 1 nucleus 4694Pd48 in beam

    International Nuclear Information System (INIS)

    Gorska, M.; Grzywacz, R.; Rejmund, M.; Foltescu, D.; Roth, H.; Skeppstedt, Oe.; Schubart, R.; Grawe, H.; Heese, J.; Maier, K.H.; Spohr, K.; Fossan, D.B.

    1996-01-01

    Neutron deficient nuclei close to N ≅ Z are expected to exhibit a new kind of pairing based on the T=0, I=1, I max configuration, which in the (p 1/2 , g 9/2 )shell model space below 100 Sn is governed by the g 2 9/2 proton (π)-neutron(ν) interaction. The experimental data exhibit strongly bound g 2 9/2 , T=0, I=1 + ,9 + . In the experimentally barely studied far from stability upper πg 9/2 shell due to the hole-hole character of the πν interaction spin gap isomers are expected. For this reason the γ decay of isomers produced in the 58 Ni ion beams interaction with 40 Ca target. The 94 Pd isomer has been found as an example of mentioned above spin gap isomers

  12. LICORNE: A new and unique facility for producing intense, kinematically focused neutron beams at the IPN Orsay

    Directory of Open Access Journals (Sweden)

    Wilson J.N.

    2013-12-01

    Full Text Available LICORNE is a new neutron source recently installed at the tandem accelerator of the Institut de Physique Nucléaire d'Orsay, where a Li7-beam is used to bombard a hydrogen-containing target to produce an intense forward-directed neutron beam. The directionality of the beam, which is the unique characteristic of LICORNE, will permit the installation of γ-ray detectors dedicated to the investigation of fission fragment de-excitation which are unimpeded by neutrons from the source. A first experimental program will focus on the measurement of prompt γ-ray emission in the neutron-induced fission of fertile and fissile isotopes at incident neutron energies relevant for the core design of Generation-IV nuclear reactors. Other potential uses of the LICORNE facility for both fundamental and applied physics research are also presented.

  13. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    Science.gov (United States)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  14. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  15. Status report on treatment planning with the fast neutron beam at Hamburg-Eppendorf

    International Nuclear Information System (INIS)

    Hess, A.; Schmidt, R.; Franke, H.D.

    1981-01-01

    For treatment planning with the fast neutron beam (DT, 14 MeV) at the Radiotherapy Department of the University Hospital Hamburg-Eppendorf the decrement line method is applied to compute isodose curves (total beam or neutrons and gamma-rays separately). The isodose curves are generated by a measured depth dose distribution and one lateral dose distribution at 10 cm phantom depth assuming two crossing points of the decrement lines at the edges of the collimator. By this method isodose charts have been generated for all available field sizes at 80 cm SSD. For the determination of depth dose values at different SSD a modified inverse square law has to be taken into account. Computerized treatment plans are calculated with the same technique used by the SIDOS-U1 (Siemens) planning system. (orig.)

  16. On the e-linac-based neutron yield

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2010-01-01

    We treat neutron generating in high atomic number materials due to the photonuclear reactions induced by the Bremsstrahlung of an electron beam produced by linear electron accelerator (e-linac). The dependence of neutron yield on the electron energy and the irradiated sample size is considered for various sample materials. The calculations are performed without resort to the so-called 'numerical Monte Carlo simulation'. The acquired neutron yields are well correlated with the data asserted in investigations performed at a number of the e-linac-driven neutron sources

  17. Development and application of a dosimetry reference for high-energy neutrons beams

    International Nuclear Information System (INIS)

    Caumes, J.; Ostrowsky, A.; Mancaux, M.; Steinschaden, K.; Cance, M.

    1984-06-01

    A tissue equivalent calorimeter, made of Shonka A-150 plastic, has been constructed in order to create a primary standard for high energy neutrons and to establish a calibration procedure for ionization chambers used in neutron therapy. After a detailed description of the calorimeter and the associated measuring system, the preliminary tests are presented, in particular, the evolution of the response as a function of accumulated dose. The measurements of the total absorbed dose (n + γ) by calorimetry in a neutron beam, in order to determine chamber's calibration factors in terms of absorbed dose to A-150 plastic, have been performed at the Neutrontherapy Unit of the Centre Hospitalier Regional d'Orleans (cyclotron of C.N.R.S., p(34) - Be). The uncertainty in the determination of the total absorbed dose to the tissu equivalent material using the new procedure is 3 % lower than that obtained with the usual procedure, derived from an exposure calibration [fr

  18. Ibaraki prefecture's neutron beam lines in J-PARC and outline of industrial applications

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2008-01-01

    The outlines of J-PARC and Ibaraki Prefecture's two neutron facilities for the structural analysis of materials and living materials in J-PARC/MLF (Materials and Life Science Facility) are described. The status of the industrial use of these facilities is also mentioned. The building of J-PARC/MLF was completed and about ten sets of neutron apparatuses have been in preparation. The round-table conference of MLF users started in the beginning of September and is in progress toward the public use scheduled in December, 2008. The detailed design of these two neutron facilities for industrial use was completed and its greater part has been produced. The uses of Ibaraki Prefecture's beam lines will produce the materials with highly additional values and with highly reliable structures by the measurement of residual stresses, etc. Furthermore, these uses may be connected to the development of medicine for incurable diseases. (M.H.)

  19. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  20. Improving the beam quality of the neutron radiography facility using the SLOWPOKE-2 at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Lewis, W.J.; Bennett, L.G.I.; Teshima, P.

    1996-01-01

    At the SLOWPOKE-2 Facility at the Royal Military College of Canada, a neutron radiography facility has been designed and installed, and the beam quality has been improved by performing a series of radiographs using American standard for testing and materials (ASTM) E 545 indicators. Other means of determining the progress such as bubble detectors and activation foils were used. Modifications to the nosepiece of the beam tube including shielding and linings for fast neutron and gamma radiation were made. (orig.)

  1. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  2. Neutron Productions from thin Be target irradiated by 50 MeV/u 238U beam

    Directory of Open Access Journals (Sweden)

    Lee Hee-Seock

    2017-01-01

    Full Text Available Neutrons generated from thin beryllium target by 50 MeV/u 238U beam were measured using activation analysis at 15, 30, 45, and 90 degrees from the beam direction. A 0.085 mm-thick Be stripper of RIBF was used as the neutron generating target. Activation detectors of bismuth, cobalt, and aluminum were placed out of the stripper chamber. The threshold reactions of 209Bi(n, xn210-xBi(x=4~8, 59Co(n, xn60-xCO(x=2~5, 59Co(n, 2nα54Mn, 27Al(n, α24Na, and 27Al(n,2nα22Na were applied to measure the production rates of radionuclides. The neutron spectra were obtained using an unfolding method with the SAND-II code. All of production rates and neutron spectra were compared with the calculated results using Monte Carlo codes, the PHITS and the FLUKA. The FLUKA results showed better agreement with the measurements than the PHITS. The discrepancy between the measurements and the calculations were discussed.

  3. Investigation on metal corrosion phenomena by using synchrotron radiation and neutron beams

    International Nuclear Information System (INIS)

    Nakayama, Takenori

    2015-01-01

    Synchrotron radiation beam, which can be used as diffraction, X-ray absorption fine structure, imaging, photoelectron spectroscopy, etc., has an advantage of ultra-bright, highly-directional, and so forth in comparison with conventional X-ray equipment. Therefore, its application has been expanded to various metal corrosion phenomena such as atmospheric corrosion of steels, the influence of alloying elements on the formation and structure of rusts of weathering steels, the underpotential deposition behavior of Pb on Ni electrode, the non-destructive in-depth analysis of the passive film of stainless steel, etc. In contrast, neutron beam, which can be used as neutron diffraction, small angle neutron scattering, neutron imaging, etc., has unique properties such as high transmittance and high sensitivity to hydrogen and water. From these features, it has been applied to metal corrosion researches such as the change of average size and volume fraction of weathering steel rusts during wet/dry cycles, the direct observation of water motion under blister of under-film corroded steels, etc. (author)

  4. Neutrons around thick target bombarded by 50 MeV/u sup 1 sup 8 O-ion beam

    CERN Document Server

    Li, G; Li, Z; Su, Y; Zhang, S

    1999-01-01

    Neutron energy, fluence rate, angular distributions and dose equivalent rate distributions around thick Be, Cu, Au targets bombarded by a 50 MeV/u sup 1 sup 8 O-ion beam were measured by using a threshold detector activation method. The neutron yields and emission rates in the forward direction were obtained. (author)

  5. A polyethylene-B4C based concrete for enhanced neutron shielding at neutron research facilities

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Perrey, H.; Fissum, K.; Rofors, E.; Scherzinger, J.; Bentley, P. M.

    2017-07-01

    We present the development of a specialized concrete for neutron shielding at neutron research facilities, based on the addition of hydrogen atoms in the form of polyethylene and also B4C for enhancing the neutron capture properties of the concrete. We show information on the mechanical properties of the concrete and the neutronics, in particular its relevance to modern spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. The new concrete exhibits a 15% lower mass density, a compressible strength of 50% relative to a standard concrete and a significant increase in performance of shielding against MeV neutrons and lower energies. The concrete could find application at the ESS in for example common shielding components, individual beamline shielding and instrument caves. Initial neutronic tests of the concrete, carried out at Lund University, have also verified the performance in the MeV neutron energy range and the results are presented.

  6. Material identification based upon energy-dependent attenuation of neutrons

    Science.gov (United States)

    Marleau, Peter

    2015-10-06

    Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.

  7. Calibration of a neutron detector based on single event upset of SRAM memories

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, C., E-mail: carles.domingo@uab.ca [Departament de Fisica, Univ. Autonoma de Barcelona, E-08193 Bellaterra (Spain); Gomez, F. [Dpto. de Particulas, Univ. de Santiago, 15782 Santiago de Compostela (Spain); Sanchez-Doblado, F. [Dpto. de Fisiologia Medica y Biofisica, Univ. de Sevilla, 41009 Sevilla (Spain); Servicio de Radiofisica, Hospital Univ. Virgen Macarena, 41009 Sevilla (Spain); Hartmann, G.H. [DKFZ E0400, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Amgarou, K.; Garcia-Fuste, M.J. [Departament de Fisica, Univ. Autonoma de Barcelona, E-08193 Bellaterra (Spain); Romero, M.T. [Dpto. de Fisiologia Medica y Biofisica, Univ. de Sevilla, 41009 Sevilla (Spain); Boettger, R.; Nolte, R.; Wissmann, F.; Zimbal, A.; Schuhmacher, H. [PTB, Bundesallee 100, 38116 Braunschweig (Germany)

    2010-12-15

    One of the challenges of measuring neutron fluences around medical linacs is the fact that the scattered photon fluence is important and higher than the surrounding neutron leakage fluence. Additionally most electron accelerators are pulsed, with repetition rates of the order of hundreds of Hertz, while the pulse duration is in the microsecond range. For this reason, neutron fluence around RT linacs is usually measured through passive methods, with the inconvenience of their time consuming analysis. A new neutron detector, based on the relation between Single Event Upsets (SEU) in digital SRAM memories and the existing thermal neutron fluence, has been developed. This work reports the calibration results of prototypes of this detector, obtained from exposures to the Physikalisch-Technische Bundesanstalt in Braunschweig (PTB) moderated {sup 252}Cf source, to PTB quasi-monoenergetic neutron beams of 0.565 MeV, 1.2 MeV, 5 MeV, 8 MeV and 14.8 MeV, and to the GKSS thermal neutron beam.

  8. SU-F-T-217: A Comprehensive Monte-Carlo Study of Out-Of-Field Secondary Neutron Spectra in a Scanned-Beam Proton Therapy Treatment Room

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Parodi, K [LMU Munich, Department of Medical Physics, Garching / Munich, Bavaria (Germany); Trinkl, S; Mares, V; Ruehm, W; Wielunski, M [Helmholtz Zentrum Munich, Institute of Radiation Protection, Neuherberg, Bavaria (Germany); Wilkens, J [Technical University of Munich, Department of Physics, Munich, Germany, Garching, Bavaria (Germany); Klinikum rechts der Isar, Department of Radiation Oncology, Munich (Germany); Hillbrand, M [Rinecker Proton Therapy Center, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To simulate secondary neutron radiation-fields produced at different positions during phantom irradiation inside a scanning proton therapy gantry treatment room. Further, to identify origin, energy distribution and angular emission as function of proton beam energy. Methods: GEANT4 and FLUKA Monte-Carlo codes were used to model the relevant parts of the treatment room in a gantry-equipped pencil beam scanning proton therapy facility including walls, floor, metallic gantry-components, patient table and the homogeneous PMMA target. The proton beams were modeled based on experimental beam ranges in water and spot shapes in air. Neutron energy spectra were simulated at 0°, 45°, 90° and 135° relative to the beam axis at 2m distance from isocenter, as well as 11×11 cm2 fields for 75MeV, 140MeV, 200MeV and for 118MeV with 5cm PMMA range-shifter. The total neutron energy distribution was recorded for these four positions and proton energies. Additionally, the room-components generating secondary neutrons in the room and their contributions to the total spectrum were identified and quantified. Results: FLUKA and GEANT4 simulated neutron spectra showed good general agreement in the whole energy range of 10{sup −}9 to 10{sup 2} MeV. Comparison of measured spectra with the simulated contributions of the various room components helped to limit the complexity of the room model, by identifying the dominant contributions to the secondary neutron spectrum. The iron of the bending magnet and counterweight were identified as sources of secondary evaporation-neutrons, which were lacking in simplified room models. Conclusion: Thorough Monte-Carlo simulations have been performed to complement Bonner-sphere spectrometry measurements of secondary neutrons in a clinical proton therapy treatment room. Such calculations helped disentangling the origin of secondary neutrons and their dominant contributions to measured spectra, besides providing a useful validation of widely

  9. Performance evaluation of beam emanation correction coil for neutron resonance spin echo spectrometer by simulation

    International Nuclear Information System (INIS)

    Maruyama, R.; Tasaki, S.; Hino, M.; Kawabata, Y.

    2004-01-01

    Neutron resonance spin echo (NRSE) method is a spectrometer which uses two RSF (resonance spin flipper) instead of the quietness magnetic field of Mezei type NSE spectrometer, and to measure the change in the speed of the neutron by using the phase difference accumulated in the section between a coupled of RSF in proportion to the resonance frequency of RSF. Having the feature that the magnetic field integration does not depend on the energy resolution by this substitution, and limiting the energy resolution of the NRSE spectrometer become only the beam emanations. The difference of the phase difference by the beam emanation can be corrected by introducing the magnetic field guide with the best magnetic field distribution for the emanation beam. In this research, the beam emanation correction coil for the high-resolution NRSE spectrometer is proposed, and the performance is evaluated by the simulation. As a result, the effectiveness of the correction method proposed by this research was shown. (T.Tanaka)

  10. Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States

    CERN Multimedia

    Andreoiu, C; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...

  11. Simulation study of liquid scintillator basedneutron detector

    International Nuclear Information System (INIS)

    Banerjee, K.; Kundu, S.; Bhattacharya, C.; Dey, A.; Bhattacharya, S.

    2004-01-01

    Neutron multiplicity detectors play an important role in deciphering the complexities of intermediate energy nucleus-nucleus reactions. Several neutron multiplicity detectors are in operation. As part of the super conducting cyclotron utilization project, it has been planned to make one liquid scintillator based neutron multiplicity detector at VECC, Kolkata. Here reported are initial results of the simulation study of the characteristics of a large liquid scintillator based neutron multiplicity detector

  12. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  13. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomic fraction >90 percent was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D+ beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. We observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  14. Microwave Ion Source and Beam Injection for an Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm 2 and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D + beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  15. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jay [Department of Radiological Technology, Central Taiwan University of Science and Technology, Taiwan (China); Chang, S-J [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan (China); Chuang, K-S [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Taiwan (China); Hsueh, Y-W [Department of Engineering and System Science, National Tsing-Hua University, Taiwan (China); Yeh, K-C [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Taiwan (China); Wang, J-N [Department of Engineering and System Science, National Tsing-Hua University, Taiwan (China); Tsai, W-P [Division of Rheumatology, Immunology and Allergy, Chang Gung Memorial Hospital, Taiwan (China)

    2007-03-21

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li{sub 2}CO{sub 3} was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  16. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  17. Detectors for Energy-Resolved Fast Neutron Imaging

    OpenAIRE

    Dangendorf, V.; Breskin, A.; Chechik, R.; Feldman, G.; Goldberg, M. B.; Jagutzki, O.; Kersten, C.; Laczko, G.; Mor, I.; Spillman, U.; Vartsky, D.

    2004-01-01

    Two detectors for energy-resolved fast-neutron imaging in pulsed broad-energy neutron beams are presented. The first one is a neutron-counting detector based on a solid neutron converter coupled to a gaseous electron multiplier (GEM). The second is an integrating imaging technique, based on a scintillator for neutron conversion and an optical imaging system with fast framing capability.

  18. The usage of electron beam to produce radio isotopes through the uranium fission by γ-rays and neutrons

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.V.

    2010-01-01

    We treat the production of desirable radio isotopes due to the 238 U photo-fission by the bremsstrahlung induced in converter by an initial electron beam provided by a linear electron accelerator. We consider as well the radio isotope production through the 238 U fission by the neutrons that stem in the 238 U sample irradiated by that bremsstrahlung. The yield of the most applicable radio isotope 99 Mo is calculated. We correlate the findings acquired in the work presented with those obtained by treating the nuclear photo-neutron reaction. Menace of the plutonium contamination of an irradiated uranium sample because of the neutron capture by 238 U is considered. As we get convinced, the photo-neutron production of radio isotopes proves to be more practicable than the production by the uranium photo- and neutron-fission. Both methods are certain to be brought into action due to usage of the electron beam provided by modern linear accelerators

  19. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Incident neutron spectra on the first wall and their application to energetic ion diagnostics in beam-injected deuterium-tritium tokamak plasmas

    Science.gov (United States)

    Sugiyama, S.; Matsuura, H.; Uchiyama, D.

    2017-09-01

    A diagnostic method for small non-Maxwellian tails in fuel-ion velocity distribution functions is proposed; this method uses the anisotropy of neutron emissions, and it is based on the numerical analysis of the incident fast neutron spectrum on the first wall of a fusion device. Neutron energy spectra are investigated for each incident position along the first wall and each angle of incidence assuming an ITER-like deuterium-tritium plasma; it is heated by tangential-neutral-beam injection. Evaluating the incident neutron spectra at all wall positions and angles of incidence enables the selective measurement of non-Gaussian components in the neutron emission spectrum for energetic ion diagnostics; in addition, the optimal detector position and orientation can be determined. At the optimal detector position and orientation, the ratio of non-Gaussian components to the Gaussian peak can be two orders of magnitude greater than the ratio in the neutron emission spectrum. This result can improve the accuracy of energetic ion diagnostics in plasmas when small, anisotropic non-Maxwellian tails are formed in fuel ion velocity distribution functions. We focus on the non-Gaussian components greater than 14 MeV, where the effect of the background noise (i.e., slowing-down neutrons by scattering throughout the machine structure) can be ignored.

  1. It may be Possible to Use a Neutron Beam as Propulsion for Spacecraft

    Science.gov (United States)

    Kriske, Richard M.

    2016-01-01

    It may be possible to keep Xenon 135 in a Superpositioned state with Xe-136 and Cs 135, the two decay products of Xenon 135. This may be done using a Gamma Ray or an X-ray Laser. At first glance it has the look and feel of yet another Noble Gas Laser. The difference is that it uses Neutron states within the Nucleus. The Neutrons would be emitted with a modulated Gamma or X-ray photon. In essence it may be possible to have a totally new type of Laser---This author calls them "Matter Lasers", where a lower energy photon with fewer Quantum Numbers would be used with a Noble Gas to produce a particle beam with higher energy and more Quantum Numbers. It may be possible to replace cumbersome particle accelerators with this type of Laser, to make mass from energy, via a Neutron Gas. This would be a great technological advance in Rocket Propulsion as well; low mass photon to high mass particle, such as a Higgs particle or a Top Quark. The Xenon 135, could come from a Fission Reactor within the Space Craft, as it is a reactor poison. The workings of an X-ray laser is already known and table top versions of it have been developed. Gamma Ray lasers are already in use and have been tested. A Laser would have a columnated beam with a very precise direction, unlike just a Neutron source which would go in all directions. Of course this beam could be used as a spectroscopic tool as well, in order to determine the composition of the matter that the spacecraft encounters. The spectroscopic tool could look for "Dark Matter" and other exotic types of matter that may occur in outerspace. The spacecraft could potentially reach "near speed of light velocities" in a fairly short time, since the Laser would be firing off massive particles, with great momentum. Lastly the precise Neutron beam could be used as a very powerful weapon or as a way of clearing space debri, since it could "force Nuclear Reactions" onto the object being fired upon, making it the ultimate space weapon, and

  2. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  3. Modeling and design of a new core-moderator assembly and neutron beam ports for the Penn State Breazeale Nuclear Reactor (PSBR)

    Science.gov (United States)

    Ucar, Dundar

    modeling, the amount of heat generated by the fuel is assumed to be transferred totally into the coolant. Therefore, the surface heat flux is applied to the fuel cladding outer surface by considering the depleted fuel composition of each individual fuel rod under a reference core loading condition defined as; 53H at 1MW full power. In order to model the entire PSBR reactor, fine mesh discretization was achieved with 22 millions structured and unstructured computational meshes. The conductive heat transfer inside the fuel rods was ignored in order to decrease the computational mesh requirement. Since the PSBR core operates in the subcooled nucleate boiling region, the CFD simulation of new PSBR design was completed utilizing an Eulerian-Eulerian multiphase flow formulation and RPI wall boiling model. The simulation results showed that the new moderator tank geometry results in secondary flow entering into the core due to decrease in the cross-flow area. Notably, the radial flow improves the local heat transfer conditions by providing radial-mixing in the core. Bubble nucleation occurs on the heated fuel rods but bubbles are collapsing in the subcooled fluid. Furthermore, the bulk fluid properties are not affected by the bubble formation. Yet, subcooled boiling enhances the heat transfer on the fuel rods. Five neutron beam ports are designed for the new reactor. The geometrical configuration, filter and collimator system designs of each neutron beam ports are selected based on the requirements of the experimental facilities. A cold neutron beam port which utilizes cold neutrons from three curved guide tubes is considered. Therefore, there will be seven neutron beams available in the new facility. The neutronic analyses of the new beam port designs were achieved by using MCNP5 code and Burned Coupled Simulation Tool for the PSBR. The MCNP simulation results showed that thermal neutron flux was increased by a factor of minimum 1.23 times and maximum 2.68 times in the new beam

  4. Out‐of‐field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators

    Science.gov (United States)

    Cardenas, Carlos E.; Nitsch, Paige L.; Kudchadker, Rajat J.; Howell, Rebecca M.

    2016-01-01

    Out‐of‐field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high‐energy electron beams. To better understand the extent of these exposures, we measured out‐of‐field dose characteristics of electron applicators for high‐energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out‐of‐field dose profiles and percent depth‐dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out‐of‐field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out‐of‐field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central‐axis, which was found to be higher than typical out‐of‐field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for

  5. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  6. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  7. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac.

    Science.gov (United States)

    Ghasemi, A; Pourfallah, T Allahverdi; Akbari, M R; Babapour, H; Shahidi, M

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10(-6) (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10(-8) Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10(-5) and 1.74 × 10(-5) Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  9. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun [Korea Atomic Energy Research Institute, Taejon (Korea)

    2001-03-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10{sup 14} nominally at the nose in the D{sub 2}O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  11. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    International Nuclear Information System (INIS)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun

    2001-01-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10 14 nominally at the nose in the D 2 O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  12. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  13. Neutronics design of accelerator-driven system for power flattening and beam current reduction

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Iwanaga, Kohei; Tsujimoto, Kazufumi; Kurata, Yuji; Oigawa, Hiroyuki; Iwasaki, Tomohiko

    2008-01-01

    In the present neutronics design of the Accelerator-Driven System (ADS) cooled by lead-bismuth eutectic (LBE), we investigated several methods to reduce the power peak and beam current, and estimated the temperature reductions of the cladding tube and beam window from the conventional design. The methods are adjustment of inert matrix ratio in fuel in each burn-up cycle, multiregion design in terms of pin radius or inert matrix content, and modification of the level of the beam window position and the height of the central fuel assemblies. As a result, we optimized the ADS combined with the adjustment of the inert matrix ratio in each burn-up cycle, multiregion design in terms of inert matrix content and deepened window level. The maximum temperatures of the optimized ADS at the surface of the cladding tube and the beam window were reduced by 91 and 38degC, respectively. The maximum beam current was improved from 20.3 to 15.6 mA. (author)

  14. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    Science.gov (United States)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  15. Total cross section measurement of radioactive isotopes with a thin beam neutron spectrometer

    International Nuclear Information System (INIS)

    Razbudej, V.F.; Vertebnyj, V.P.; Padun, G.S.; Muravitskij, A.V.

    1975-01-01

    The method for measuring the neutron total cross sections of radioactive isotopes by a time-of-flight spectrometer with a narrow (0.17 mm in diameter) beam of thermal neutrons is described. The distinguishing feature of this method is the use of capillary samples with a small amount of substance (0.05-1.0 mg). The energy range is 0.01-0.3 eV. The total cross sections of irradiated samples of sub(153)Eu and sub(151)Eu are measured. From them are obtained the cross sections of sub(152)Eu (Tsub(1/2)=12.4 g) and of sub(154)E (Tsub(1/2)=8.6 yr); they equal 11400+-1400 and 1530+-190 barn at E=0.0253 eV. The cross section of the sub(152)Eu absorption for the thermal spectrum (T=333 K) is determined by the activation method; it is 8900+-1200 barn

  16. Contribution to the development of a primary standard for high energy neutron beams

    International Nuclear Information System (INIS)

    Mancaux, M.

    1983-12-01

    A tissue equivalent calorimeter, made of Shonka A-150 plastic, has been constructed in order to create a primary standard for high energy neutrons and to establish a calibration procedure for ionization chambers used in neutrontherapy. After a detailed description of the calorimeter and the associated measuring system, the preliminary tests are presented, in particular, the evolution of the response as a function of accumulated dose. The measurements of the total absorbed dose (n + γ) by calorimetry in a neutron beam, in order to determine chambers' calibration factors in terms of absorbed dose to A-150 plastic, have been performed at the Neutrontherapy Unit of the Centre Hospitalier Regional d'Orleans. The uncertainty in the determination of the total absorbed dose to the tissu equivalent material using the new procedure is 3% lower than that obtained with the usual procedure, derived from an exposure calibration [fr

  17. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  18. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    International Nuclear Information System (INIS)

    William Charlton

    2007-01-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions

  19. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  20. Desain Beam Shaping Assembly (BSA berbasis D-D Neutron Generator 2,45 MeV untuk Uji Fasilitas BNCT

    Directory of Open Access Journals (Sweden)

    Desman P. Gulo

    2015-12-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is one of the cancer treatments that are being developed in nowadays. In order to support BNCT treatment for cancer that exists in underneath skin like breast cancer, the facility needs a generator that is able to produce epithermal neutron. One of the generator that is able to produce neutron is D-D neutron generator with 2.45 MeV energy. Based on the calculation of this paper, we found that the total production of neutron per second (neutron yield from Neutron Generator (NG by PSTA-BATAN Yogyakarta is 2.55×1011 n/s. The energy and flux that we found is in the range of quick neutron. Thus, it needs to be moderated to the level of epithermal neutron which is located in the interval energy of 1 eV to 10 KeV with 109 n/cm2s flux. This number is the recommendation standard from IAEA. Beam Shaping Assembly (BSA is needed in order to moderate the quick neutron to the level of epithermal neutron. One part of BSA that has the responsibility in moderating the quick neutron to epithermal neutron is the moderator. The substance of moderator used in this paper is MgF2 and A1F3. The thickness of moderator has been set in in such a way by using MCNPX software in order to fulfill the standard of IAEA. As the result of optimizing BSA moderator, the data obtain epithermal flux with the total number of 4.64×108 n/cm2/s for both of moderators with the thickness of moderator up to 15 cm. At the end of this research, the number of epithermal flux does not follow the standard of IAEA. This is because the flux neutron that is being produced by NG is relatively small. In conclusion, the NG from PSTA-BATAN Yogyakarta is not ready to be used for the BNCT treatment facility for the underneath skin cancer like breast cancer.

  1. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  2. Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2). 1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundam...

  3. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    Zaghloul, R.; Abd El-Haleam, A.; Mostafa, M.; Gantner, E.; Ache, H.J.

    1993-04-01

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm 3 . Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  4. In-beam γ-ray spectroscopy of the neutron rich 39Si

    International Nuclear Information System (INIS)

    Sohler, D.; Dombradi, Zs.; Achouri, N.L.; Angelique, J.C.; Bastin, B.; Azaiez, F.; Baiborodin, D.; Borcea, R.

    2009-01-01

    Complete text of publication follows. In order to clarify the role of proton excitations across the Z = 14 subshell closure in neutron-rich Si isotopes, we investigated the structure of the 14 39 Si 25 isotope, having three neutron-hole configurations with respect to an N = 28 core. The excited states of 39 Si were studied by in-beam γ-ray spectroscopy trough fragmentation of radioactive beams. The experiment was performed at the GANIL facility in France. The radioactive beams were produced by the fragmentation of the stable 48 Ca beam of 60 MeV/u energy and 4μA intensity on a 12 C target in the SISSI device. The cocktail beam produced was impinged onto a 9 Be target. The nuclei produced in the secondary fragmentation reaction were selected and unambiguously identified by the SPEG spectrometer. In the performed experiment the 39 Si nuclei were obtained via 1p, 1p1n, 2p1n and 2p2n knockout reactions from the 40,41 P and 42,43 S secondary beams. To measure the γ rays emitted from the excited states, the secondary target was surrounded by the 4π 'Chateau de Crystal' array consisting of 74 BaF 2 scintillators. The γ-ray spectra were generated by gating event-by-event on the incoming secondary beam particles and the ejectiles after the secondary target. For the γ rays emitted by the fast moving fragments accurate Doppler correction was performed. From the obtained γ spectra of 39 Si displayed in Figure 1, two strong γ transitions at 163 and 397 keV as well as weaker ones at 303, 657, 906, 1143 and 1551 keV have been identified. γγ coincidences were obtained in 39 Si after having added all data from the various reaction channels giving rise to 39 Si. Analysing these data the 163 keV transition was found to be in coincidence with the 657, 1143 and 1551 keV ones, but not with the 397 keV transition. The two lines of the 303+397 keV doublet are in mutual coincidence, and one or both of them are found in coincidence with the 906 keV transition.

  5. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  6. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  7. Accuracy of the thermal neutron absorption cross section measurements (based on examples of selected pulsed beam methods); Dokladnosc pomiarow przekroju czynnego absorpcji neutronow termicznych (na przykladzie wybranych metod impulsowych)

    Energy Technology Data Exchange (ETDEWEB)

    Krynicka, E. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1997-12-31

    The problem of accuracy of the thermal neutron macroscopic absorption cross section determination is discussed on examples of selected measurement methods which use non-stationary neutron fields. The computer simulation method elaborated by the author is presented as a procedure for estimating the standard deviation of the measured absorption cross section. The computer simulation method presented can be easily utilized to estimate the accuracy of measurement of various physical magnitudes. (author) 46 refs, 3 figs, 1 tab

  8. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS).

    Science.gov (United States)

    Hardin, Robert A; Liu, Yun; Long, Cary; Aleksandrov, Alexander; Blokland, Willem

    2011-02-14

    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 μrad (horizontal) to 4 μrad (vertical), corresponding to beam drifts of only 0.5 mm × 1 mm at the furthest measurement station located 250 meters away from the light source.

  9. A neutron amplifier: prospects for reactor-based waste transmutation

    International Nuclear Information System (INIS)

    Blanovsky, A.

    2004-01-01

    A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform radioactive waste burning in high flux subcritical reactors (HFSR) that have primary system size, power density and cost comparable to a pressurized water reactor (PWR). Another approach for actinide transmutation is a molten salt subcritical reactor proposed by Russian scientists. To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket with solid and liquid fuels. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed in the absorber zone. In the HFSR, neptunium-plutonium fuel is circulated in the booster and blanket, and americium-curium in the absorber zone and outer reflector. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster, where they can provide additional neutrons (source-dominated mode) or all the necessary excitation without an external neutron source (self-amplifying mode). With a blanket neutron multiplication gain of 20 and a booster gain of 50, an external neutron source rate of at least 10 15 n/s (0.7 MW D-T or 2.5 MW electron beam power) is needed to control the HFSR that produces 300 MWt. Most of the power could be generated in the blanket that burns about 100 kg of actinides a year. The analysis takes into consideration a wide range of HFSR design aspects including the wave model of observed relativistic phenomena, plant seismic diagnostics, fission electric cells (FEC) with a multistage collector (anode) and layered cathode. (author)

  10. Production of fast neutrons from deuteron beams in view of producing radioactive heavy ions beams; Etude de la production de neutrons rapides a partir de faisceaux de deutons en vue de la mise en oeuvre de faisceaux d'ions lourds radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N

    2000-11-01

    This thesis is part of two research and development programmes for the study of neutron rich radioactive nuclear beam production. The technique is based on the ISOL method and can be summarized as follows. Fast neutrons are generated by the break-up of deuterons in a thick target. These neutrons irradiate a fissionable {sup 238}U target. The resulting fission products are extracted from the target, ionised, mass selected and post-accelerated. The aim of the thesis is to study the neutron angular and energetic distributions. After a bibliographical research to justify the choice of deuterons as the best projectile, we developed more specifically three points: - the extension of the activation detector method for neutron spectroscopy to a wide energy range (1 to 150 MeV), - the experimental measurement of neutron angular and energetic distributions produced by deuterons on thick targets. The deuteron energy ranges from 17 to 200 MeV and the thick targets were Be, C and U, - the realization of a code based on Serber's theory to predict the neutron distribution for any couple (deuteron energy-thick target). We conclude that for our application the most suitable target is C and the best deuteron energy is about 100 MeV. (author)

  11. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  12. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.

    Science.gov (United States)

    Horst, Felix; Czarnecki, Damian; Zink, Klemens

    2015-11-01

    Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry-although considered to be very low-is widely unexplored. In this work, Monte Carlo based investigations into this issue performed with fluka and egsnrc are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. egsnrc was used for the photon and fluka for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons' impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons' influence, a theoretically required correction factor was defined and calculated for five representative water depths. The neutrons' impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons' influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose 6Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on 6Li. The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types of TLD chips was quantified and was as expected found to be very

  13. Prognostic Implications of Prostate Specific Antigen in Patients Following Fast Neutron Beam Therapy at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, James D. [Fermilab; Hatcher, Madeline A. [Fermilab; Gagnon, Patrick J. [Fermilab; Lennox, Arlene J. [Fermilab; Tanner, Andrew S. [Fermilab; Shafer, Jeffrey P. [Fermilab; Smoron, Geoffrey L. [Fermilab

    1996-01-01

    Preliminary results regarding prognostic implications of PSA in prostate cancer patients treated with the neutron beam at Fermilab have been published by Saroja et. al. (1) Seventy patients were included, in three groups. Group I included patients whose PSA decreased to the reference range of 0-4 ng/mL following therapy and stayed there. Group II included patients whose PSA dropped below 4 ng/mL and then increased. Group III included patients whose PSA remained elevated. This presentation updates that paper, now looking at 186 patients who had pretreatment PSA values available. The most significant result from analyzing Fermilab data appears to be the effect of neutron irradiation on local control, irrespective in some cases of subsequent changes in PSA value. The determination of local control is clinical rather than pathological, and only time and re-biopsy studies will allow us to know the efficacy of neutron therapy in locally controlling prostate cancer, independent of eventual outcome and PSA values. Fermilab data to date are very promising (2).

  14. Evaluation of apoptosis and micronucleation induced by reactor neutron beams with two different cadmium ratios in total and quiescent cell populations within solid tumors

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Ono, Koji; Sakurai, Yoshinori; Takagaki, Masao; Kobayashi, Tooru; Kinashi, Yuko; Suzuki, Minoru

    2001-01-01

    increased both frequencies for total cells more than BSH did. Nevertheless, the sensitivity of Q cells treated with BPA was lower than that of Q cells treated with BSH. Whether based on the MN frequency or the apoptosis frequency, similar results concerning the sensitivity difference between total and Q cells, the values of RBE, and the enhancement effect by the use of 10 B-compound were obtained. Conclusion: Apoptosis frequency, as well as the MN frequency, can be applied to our method for measuring the Q cell response to reactor neutron beam irradiation within solid tumor in which the ratio of apoptosis to total cell death is relatively high, as in EL4 tumor. The absolute radiation dose required to achieve the same endpoint for Q cells is much higher than that for total cells when combined with 10 B-compound, especially with BPA

  15. Optimisation of pulse shape discrimination using EJ299-33 for high energy neutron detection in proton beam therapy

    Science.gov (United States)

    Chung, S.; Kacperek, A.; Speller, R.; Gutierrez, A.

    2017-11-01

    It is widely understood that proton beam therapy has considerable clinical benefits over photon therapy for treating certain types of tumours. Protons deposit most of their energy in a very localised area, the so-called Bragg peak, sparing surrounding healthy tissue and critical organs from radiation. However, secondary neutrons and gamma rays are generated in the beam nozzle and inside the patient. Clinically, it is highly desirable to monitor the neutron dose the patient is exposed to, and this requires a neutron detector sensitive to high energies. EJ299-33 is a solid plastic scintillator capable of discriminating neutrons from gamma rays using pulse shape analysis of scintillation light. EJ299-33 has the potential to detect neutrons with energies up to 100 MeV and does not present leakage and flammability hazards generally associated with liquid scintillators. Experimental measurements with 60Co, 137Cs and 241AmBe sources were performed to calibrate and optimise pulse shape discrimination parameters. We also performed experimental measurements at the Clatterbridge Cancer Centre in a 60 MeV passive scattered beam to detect high energy neutrons.

  16. Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: Neutron diffraction and the contour method

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W., E-mail: dbrown@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holden, T.M. [Northern Stress Technologies, Deep River, Ontario, K0J 1P0 (Canada); Clausen, B.; Prime, M.B.; Sisneros, T.A.; Swenson, H. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Vaja, J. [Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)

    2011-02-15

    Neutron diffraction and contour method measurements were conducted to assess the stresses associated with an electron-beam, circumferential, partial penetration weld of a uranium tube. To obtain reasonable results in the coarse-grained base metal, the specimen was continuously rotated during the neutron experiments to average over the entire circumference. The severe anisotropic character of uranium, which has an orthorhombic crystal structure, forces a number of judicious choices to be made in the neutron analysis. For the contour method, the cylindrical geometry necessitated the development of a two-step process, and discontinuities across the unwelded portion of the joint required special treatment. High tensile hoop stresses ({approx}300 MPa) were found in the center of the weld close to the outside diameter. Balancing hoop compression was observed in the far-field stress profile. Also, a tensile axial stress (85 {+-} 25 MPa) was observed near the outer diameter.

  17. Radical distributions in ammonium tartrate single crystals exposed to photon and neutron beams

    International Nuclear Information System (INIS)

    Marrale, M.; Longo, A.; Brai, M.; Barbon, A.; Brustolon, M.

    2014-01-01

    The radiation therapy carried out by means of heavy charged particles (such as carbon ions) and neutrons is rapidly becoming widespread worldwide. The success of these radiation therapies relies on the high density of energy released by these particles or by secondary particles produced after primary interaction with matter. The biological damages produced by ionising radiations in tissues and cells depend more properly on the energy released per unit pathlength, which is the linear energy transfer and which determines the radiation quality. To improve the therapy effectiveness, it is necessary to grasp the mechanisms of free radical production and distribution after irradiation with these particles when compared with the photon beams. In this work some preliminary results on the analysis of the spatial distributions of the free radicals produced after exposure of ammonium tartrate crystals to various radiation beams ( 60 Co gamma photons and thermal neutrons) were reported. Electron spin resonance analyses were performed by the electron spin echo technique, which allows the determination of local spin concentrations and by double electron-electron resonance technique, which is able to measure the spatial distance distribution (range 1.5-8 nm) among pairs of radicals in solids. The results of these analyses are discussed on the basis of the different distributions of free radicals produced by the two different radiation beams used. This paper extends to the single crystal case, a similar work done on AT powder irradiated with different beams, with assessment of microscopic radical concentration by determining the amount of ID contribution and obtaining the inter-radical distance distributions by double microwave irradiation. In this paper single crystals of AT have been exposed to 60 Co photons and neutrons. The results confirm that advanced pulse EPR techniques allow the direct measurement of the local free radical concentration and provide information about the

  18. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  19. Neutron powder diffraction of small-volume samples at high pressure using compact opposed-anvil cells and focused beam

    International Nuclear Information System (INIS)

    Okuchi, T; Sasaki, S; Ohno, Y; Abe, J; Osakabe, T; Hattori, T; Sano-Furukawa, A; Utsumi, W; Arima, H; Harjo, S; Ito, T; Aizawa, K; Komatsu, K; Kagi, H

    2012-01-01

    Neutron powder diffraction techniques of small-volume samples at high pressure using compact opposed-anvil cells were developed at J-PARC pulsed neutron source. For this purpose we apply a few types of super-hard materials as opposed anvils with culet diameters between 3 to 5 mm. Generated pressures with these anvils were up to 9 GPa for 2 to 4 mm 3 and up to 14 GPa for 0.7 mm 3 sample volumes, which not only depends on the anvil geometry and material but even more depends on the metallic gasket geometry and material. A representative anvil geometry with 4 mm in culet diameter, along with TiZr 'null alloy' metallic gasket containing varying sample volumes, were then applied to time-of-flight neutron powder diffraction experiments, where methane hydrate of 4 mm 3 volume and lead of 0.7 mm 3 volume were separately measured and their signal-to-background ratios were evaluated. A neutron-focusing optics was used to concentrate the neutron beam into these small-volume samples to increase the intensity of diffraction. Although spurious diffraction peaks from the anvils were prominent, more than seven diffraction peaks are clearly observed from both of the samples. In spite of the smaller sample capacity than previous standard high-pressure apparatus for neutron, it is concluded that the opposed-anvil cells will become alternative apparatuses for neutron scattering at strong pulsed neutron sources where sufficient neutron intensity was granted.

  20. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  1. Uranium target for electron accelerator based neutron source for BNCT

    International Nuclear Information System (INIS)

    Tonchev, A.P.; Harmon, F.; Collens, T.J.; Kennedy, K.; Sabourov, A.; Harker, Y.D.; Nigg, D.W.; Jones, J.L.

    2001-01-01

    Calculations of the epithermal-neutron yield of photoneutrons from a uranium-beryllium converter using a 27 MeV electron linear accelerator have been investigated. In this concept, relativistic electron beams from a 30 MeV LINAC impinge upon a small uranium sphere surrounded by a cylindrical tank of circulating heavy water (D 2 O) nested in a beryllium cube. The photo-fission neutron spectrum from the uranium sphere is thermalized in deuterium and beryllium, filtered and moderated in special material (AlF 3 /Al/LiF), and directed to the patient. The results of these calculations demonstrate that photoneutron devices could offer a promising alternative to nuclear reactors for the production of epithermal neutrons for Neutron Capture Therapy. The predicted parameter for the epithermal flux is more than 10 8 n.cm -2 .mA -1

  2. Use of neutron beams for low and medium flux research reactors: R and D programmes in materials science. Report of an advisory group meeting held in Vienna, 29 March - 1 April 1993

    International Nuclear Information System (INIS)

    1995-10-01

    The report is intended to provide guidelines to research reactor owners and operators for promoting and developing neutron beam based research programmes for solid state studies using neutron scattering techniques. It is expected to benefit ongoing facilities and programmes by encouraging use of improved techniques for detection, signal acquisition, signal processing, etc. and new programmes by assisting in the selection of appropriate equipment, instrument design and research plans. Refs, figs and tabs

  3. A NEW METHOD FOR MEASURING NEUTRON-SKIN THICKNESS IN RARE ISOTOPE BEAMS

    NARCIS (Netherlands)

    Krasznahorkay, A.; Csatlos, M.; Stuhl, L.; Algora, A.; Gulyas, J.; Timar, J.; Paar, N.; Vretenar, D.; Harakeh, M. N.

    A new method, based on the excitation of the anti-analog giant dipole resonance (AGDR) in (p, n) reaction, for measuring the neutron-skin thickness has been tested. The gamma-decay of the AGDR to the isobaric analog state (IAS) has been measured. The difference in excitation energy of the AGDR and

  4. An intense neutron generator based on a proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G.A.; Milton, J.C.D.; Vogt, E.W

    1964-07-01

    A study has been made of the demand for a neutron facility with a thermal flux of {>=} 10{sup 16} n cm{sup -2} sec{sup -1} and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of {pi} and {mu} mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics

  5. Neutron polarisers for diffraction experiments

    International Nuclear Information System (INIS)

    Cussen, L.D.; Goossens, D.J.; Hicks, T.J.

    2000-01-01

    Full text: Every neutron in a neutron beam has a spin which is either up or down. In an unpolarised beam, half the neutrons are up and half are down. A neutron polariser is a device which creates an imbalance in the number of up and down spin neutrons in the beam, thus giving a net beam polarisation. The three most common techniques for polarising neutron beams are supermirrors, Heusler alloy polarising monochromators and neutron spin filters. Supermirrors use the difference in refractive index for up and down spin neutrons at a magnetic/non-magnetic interface to selectively remove neutrons of one spin state from the beam. Heusler alloy polarisers give polarised beams through spin dependent Bragg reflection, and transmission filters work by preferentially absorbing the neutrons in one spin state. The most promising filter material is polarised gaseous 3 He, in which the lone neutron is polarised and then the atom will preferentially absorb a neutron of the opposite spin. All three techniques have different advantages. Here, we compare the three techniques by generating quality factors which relate closely to an instruments performance in an experiment and determining which polariser will give the best quality factor for a given type of experiment. We find that supermirrors give the best results when narrow angular divergence of the neutron beam is desired, while filters are best when short wavelengths and wide angular divergence is required. For a powder diffractometer, this implies that a supermirror would be used to polarise the incident beam, while a large array of supermirrors or a single curved transmission filter could be used to analyse the polarisation of the diffracted intensity. We note that while Heusler alloys have advantages in that they combine polarisation with monochromation, on purely performance based criteria, they are not competitive with supermirrors or well-developed transmission filter technology

  6. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Science.gov (United States)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  7. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    International Nuclear Information System (INIS)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-01-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  8. Thermally optimized lithium neutron producing target design for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Park Shane; Joo Hyeong Min; Jang Byeong Ill; Jeun, Gyoodong; Kim Jong Kyung; Chai, Jong Seo

    2006-01-01

    In accelerator-based Boron Neutron Capture Therapy (BNCT), 7 Li(p,n) 7 Be reaction is prevalently used as a neutron source. However, lithium has a very low melting point and poor thermal conductivity. Thus lithium target needs an efficient cooling. In this study, ways of increasing proton beam diameter and slanting target are proposed to reduce the heat density of lithium target. Thermal analysis on the lithium target design shows that water cooling is feasible if the proton beam diameter and target slopes are in the available range of the contour plots generated from this study. On the basis of the thermal analysis, the prototype of target system was designed and manufactured. Full-model thermal analysis and temperature measuring experiment were subsequently performed. The calculated temperature distribution coincided with the contour plots and the experimental results. These results will be used in the manufacture of the prototype accelerator-based BNCT facility at Hanyang University. (author)

  9. Beam-induced back-streaming electron suppression analysis for an accelerator type neutron generator designed for 40Ar/39Ar geochronology.

    Science.gov (United States)

    Waltz, Cory; Ayllon, Mauricio; Becker, Tim; Bernstein, Lee; Leung, Ka-Ngo; Kirsch, Leo; Renne, Paul; Bibber, Karl Van

    2017-07-01

    A facility based on a next-generation, high-flux D-D neutron generator has been commissioned and it is now operational at the University of California, Berkeley. The current generator designed for 40 Ar/ 39 Ar dating of geological materials produces nearly monoenergetic 2.45MeV neutrons at outputs of 10 8 n/s. The narrow energy range is advantageous relative to the 235 U fission spectrum neutrons due to (i) reduced 39 Ar recoil energy, (ii) minimized production of interfering argon isotopes from K, Ca, and Cl, and (iii) reduced total activity for radiological safety and waste generation. Calculations provided show that future conditioning at higher currents and voltages will allow for a neutron output of over 10 10 n/s, which is a necessary requirement for production of measurable quantities of 39 Ar through the reaction 39 K(n,p) 39 Ar. A significant problem encountered with increasing deuteron current was beam-induced electron backstreaming. Two methods of suppressing secondary electrons resulting from the deuterium beam striking the target were tested: the application of static electric and magnetic fields. Computational simulations of both techniques were done using a finite element analysis in COMSOL Multiphysics ® . Experimental tests verified these simulations. The most reliable suppression was achieved via the implementation of an electrostatic shroud with a voltage offset of -800V relative to the target. Copyright © 2017. Published by Elsevier Ltd.

  10. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  11. A polarizing neutron periscope for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)], E-mail: Michael.Schulz@frm2.tum.de; Boeni, Peter [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Calzada, Elbio; Muehlbauer, Martin [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Neubauer, Andreas [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Schillinger, Burkhard [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)

    2009-06-21

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  12. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  13. Simulation study of the photon quality correction factors of ionization chambers for FiR 1 epithermal neutron beam

    International Nuclear Information System (INIS)

    Koivunoro, H.; Uusi-Simola, J.; Savolainen, S.; Kotiluoto, P.; Auterinen, I.; Kosunen, A.

    2006-01-01

    At FiR 1 BNCT facility in Finland, neutron-insensitive Mg(Ar) ionization chambers are used for photon dose measurements in an epithermal neutron beam. Previously, photon sensitivity factors for the chamber for the measurements in a water phantom in FiR 1 beam have been determined experimentally from measurements in 60 Co gamma and in a 6 MV clinical accelerator photon beams. However, the response of the ionization chamber in a water phantom depends on energy spectrum and angle of the photons and the secondary electrons created inside the phantom and may differ depending on type of the irradiation source (accelerator vs. an epithermal neutron beam). Also, the experimental sensitivity factor does not take into account the possible perturbations in the photon production in phantom caused by the ionization chamber materials. Therefore, it is necessary to determine the photon quality correction factors (k Qγ ) for the Mg(Ar) chamber at the FiR 1 beam through computer simulations. In this study, the k Qγ factors have been determined for Mg(Ar) chamber from Monte Carlo calculations of absorbed photon dose at two depths in a water phantom using MCNP code. The k qγ factors obtained with this method are compared to the sensitivity factors determined with measurements in an accelerator photon beam and to the k Qγ factors published previously. (author)

  14. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  15. Semiautomatic beam-based LHC collimator alignment

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2012-05-01

    Full Text Available Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  16. Semiautomatic beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Sammut, Nicholas; Wollmann, Daniel

    2012-05-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  17. Semiautomatic beam-based LHC collimator alignment

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Wollmann, Daniel; Sammut, Nicholas; Rossi, Adriana; Redaelli, Stefano

    2012-01-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  18. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  19. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. On the radiation beaming of bright X-ray pulsars and constraints on neutron star mass-radius relation

    Science.gov (United States)

    Mushtukov, Alexander A.; Verhagen, Patrick A.; Tsygankov, Sergey S.; van der Klis, Michiel; Lutovinov, Alexander A.; Larchenkova, Tatiana I.

    2018-03-01

    The luminosity of accreting magnetized neutron stars can largely exceed the Eddington value due to appearance of accretion columns. The height of the columns can be comparable to the neutron star radius. The columns produce the X-rays detected by the observer directly and illuminate the stellar surface, which reprocesses the X-rays and causes additional component of the observed flux. The geometry of the column and the illuminated part of the surface determine the radiation beaming. Curved space-time affects the angular flux distribution. We construct a simple model of the beam patterns formed by direct and reflected flux from the column. We take into account the possibility of appearance of accretion columns, whose height is comparable to the neutron star radius. We argue that depending on the compactness of the star, the flux from the column can be either strongly amplified due to gravitational lensing, or significantly reduced due to column eclipse by the star. The eclipses of high accretion columns result in specific features in pulse profiles. Their detection can put constraints on the neutron star radius. We speculate that column eclipses are observed in X-ray pulsar V 0332+53, leading us to the conclusion of large neutron star radius in this system (˜15 km if M ˜ 1.4 M⊙). We point out that the beam pattern can be strongly affected by scattering in the accretion channel at high luminosity, which has to be taken into account in the models reproducing the pulse profiles.

  1. Thermal neutron detectors based on complex oxide crystals

    CERN Document Server

    Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O

    2002-01-01

    The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.

  2. List of publications resulting from the Neutron Beam Scattering Programme supported by the Science and Engineering Research Council for 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The paper lists the references of publications resulting from the Neutron Beam Scattering Programme supported by the Science and Engineering Research Council, covering the year 1984, but also including publications from 1983 not given in the previous issue of this listing. (author)

  3. The Proton Beams for the New Time-of-Flight Neutron Facility at the CERN-PS

    CERN Document Server

    Cappi, R; Métral, G

    2000-01-01

    The experimental determination of neutron cross sections in fission and capture reactions as a function of the neutron energy is of primary importance in nuclear physics. Recent developments at CERN and elsewhere have shown that many fields of research and development, such as the design of Accelerator-Driven Systems (ADS) for nuclear waste incineration, nuclear astrophysics, fundamental nuclear physics, dosimetry for radiological protection and therapy, would benefit from a better knowledge of neutron cross sections. A neutron facility at the CERN-PS has been proposed with the aim of carrying out a systematic and high resolution study of neutron cross sections through Time-Of-Flight (n-TOF) measurement. The facility requires a high intensity proton beam (about 0.7x1013 particles/bunch) distributed in a short bunch (about 25 ns total length) to produce the neutrons by means of a spallation process in a lead target. To achieve these characteristics, a number of complex beam gymnastics have to be performed. All...

  4. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). EL4 tumour-bearing C57BL/J mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a (10)B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Following γ-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a (10)B-carrier, especially L-para-boronophenylalanine-(10)B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the (10)B-carrier used in the BNCR. The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control.

  5. Neutronics shielding analysis of the last mirror-beam duct system for a laser fusion power reactor

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Klein, A.C.

    1981-01-01

    A Monte Carlo three-dimensional neutronics analysis for the last mirror-beam duct system for the SOLASE conceptual laser-driven fusion power reactor design is presented. Detailed geometric configurations including the reactor cavity, the two last mirrors, and the three-section two-right-angle bends duct are modeled. Measurements are given of the dimensions and compositions of the reactor components, and of neutron scalar fluxes, spatial dependencies and neutron volumetric heating rates for the cases of aluminum or Boral as laser beam duct liners, and ordinary concrete or lead mortar as shield material. A three-dimensional modeling of laser-driven reactor penetrations is employed. The particle leakage is found to be excessively high for the configuration of the conceptual design considered and the advantages and disadvantages of various solutions, such as the use of Boral as a duct liner and the use of lead mortar instead of ordinary concrete as a shield material, are considered

  6. Improved Neutron Scintillators Based on Nanomaterials

    International Nuclear Information System (INIS)

    Friesel, Dennis

    2008-01-01

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd 2 O 3 foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved 6 LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  7. Improved Neutron Scintillators Based on Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Friesel, PhD

    2008-06-30

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd{sub 2}O{sub 3} foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved {sup 6}LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  8. Neutron production in a thick target by means of a high energy proton beam; Production de neutrons en cible epaisse par un faisceau de protons de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Menard, S

    1998-01-06

    The energy and angular distributions of neutrons produced by bombarding thick targets with protons from 0.8 GeV up to 1.6 GeV have been measured at the Saturne synchrotron facility using time-of-flight technique. Measurements using targets of various lengths (40, 65 and 105 cm), various diameters (10 and 20 cm (lead, iron), 15 cm (tungsten)) and several compositions (iron, lead, tungsten) are discussed. These experimental data are compared with theoretical simulations carried out using the TIERCE code. The neutron spectra calculated by using TIERCE systematically underestimate the measured distributions. A simple model has been developed to calculate energy distributions and multiplicities of the neutrons emitted in the interaction of a high-energy proton beam with a thick target. The predictions of this model are compared with experimental data. (author) 72 refs.

  9. Scientific opportunities for research using neutron beams at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Robinson, R.

    2003-01-01

    The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has 'space' for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in January 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 6 out of 8 instruments have been specified and costed. At present the instrumentation project carries ∼15% contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments. In December 2002, ANSTO formed the Bragg Institute, with the intent of nurturing strong external partnerships, and covering all aspects of neutron and X-ray scattering, including research using synchrotron radiation. I will discuss the present status and predicted performance of the neutron-beam facilities at the Replacement Reactor, synergies with the synchrotron in Victoria, in-house x-ray facilities that we intend to install in the Bragg Institute

  10. Water accumulation in the vicinity of a soybean root imbedded in soil revealed by neutron beam

    International Nuclear Information System (INIS)

    Okuni, Yoko; Furukawa, Jun; Nakanishi, Tomoko; Matsubayashi, Masahito

    2002-01-01

    We present nondestructive water movement near the root of a soybean plant imbedded in soil by neutron beam analysis. A soybean plant was grown in an aluminum container (35mm φ x 200mm) and was periodically irradiated with thermal neutrons. While irradiation the sample was rotated to get 180 projection images, through a cooled CCD camera, to construct CT images. Then a spatial image was prepared for the analysis by piling up CT images. The whiteness in the image was calibrated well to the water amount. Water holding capacity near the root was shifted downward with the root development, suggesting the movement of the active site in the root. Though there was a minimum in the water gradient near the root, about 1.0mm far from the root surface. Then from this point, the water amount was sharply increased toward the surface. The root surface was highly wet, more than 0.5mg/mm 3 of water. When Al (10 mM) was applied to soil, root development as well as water holding activity of a root was decreased. This is the first study to perform the direct measurement of water within 1.0mm from the root surface. (author)

  11. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  12. Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Dioszegi I.; Vanier P.E.; Salwen C.; Chichester D.L.; Watson S.M.

    2016-10-29

    Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of the individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.

  13. New experimental set up for the determination of the ratio gA/gV from a cold neutron beam

    International Nuclear Information System (INIS)

    Avenier, Michel.

    1976-01-01

    A new experimental set up is being developed for an improved measurement of the electron momentum-neutron spin angular correlation coefficient A, in polarized free neutron beta decay, in order to determine with a greater accuracy the ratio gA/gV of the coupling constants of the weak interaction. With the institut Laue-Langevin high flux beam facilities it seems unnecessary to register the electrons in coincidence with the recoil protons as in previous experiments. Two beta counters will be symetrically placed about the beam and, by flipping periodically the beam polarization and defining the geometry of the experiment such as to minimize the backscattering, the accuracy of the measurement could be better than 5% which would correspond to an accuracy of [fr

  14. Beam based measurement of beam position monitor electrode gains

    OpenAIRE

    D. L. Rubin; M. Billing; R. Meller; M. Palmer; M. Rendina; N. Rider; D. Sagan; J. Shanks; C. Strohman

    2010-01-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple ...

  15. Industrial applications of neutron beam and outline of J-PARC (1). Industrial application technologies of neutron diffraction

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2008-01-01

    Neutron diffraction method is used to be applied to measure micro-structure for material physics and chemicals. Recently neutron diffraction has been used for non-destructive testing, such as radiography, prompt gamma analysis and residual stress. In the industrial applications residual stresses and textures in the engineering materials are measured using neutron diffraction. In this paper the present techniques for measurements of residual stress and texture are mainly reviewed. (author)

  16. Polycapillary neutron lenses

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1997-01-01

    The principle of multiple mirror reflection from smooth surfaces at small grazing angles enables the transport and guiding of high intensity slow neutron beams to locations of low background for neutron scattering and absorption experiments and to provide facilities for multiple instruments. Curved guides have been widely used at cold neutron facilities to remove the unwanted radiation (fast neutrons and gamma rays) from the beam without the use of filters. A typical guide has transverse dimensions of 50 mm and, with a radius of curvature of 1 km, transmits wavelengths longer than 5 A. Much tighter curves requires narrower transverse dimensions, otherwise there is little transmission. Typical neutron benders have a number of slots with transverse dimensions of ∼5 mm. Based on the same principle but using a different technology, recent developments in glass polycapillary fibers have produced miniature versions of neutron guides. Fibers with many thousands of channels having sizes of ∼ 10 μm enable beams of long wavelength neutrons (λ > 4 A) to be transmitted efficiently in a radius of curvature as small as a fraction of 1 m. A large collection of these miniature versions of neutron guides can be used to bend the neutron trajectories such that the incident beam can be focused. (author)

  17. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bentoumi, G. [Canadian Nuclear Labs., Chalk River, ON (Canada); Corcoran, E. C. [Royal Military College of Canada, Kingston, ON (United States); Dimayuga, I. [Canadian Nuclear Labs., Chalk River, ON (Canada); Kelly, D. G. [Royal Military College of Canada, Kingston, ON (United States); Li, L. [Canadian Nuclear Labs., Chalk River, ON (Canada); Sur, B. [Canadian Nuclear Labs., Chalk River, ON (Canada); Rogge, R. B. [Canadian Nuclear Labs., Chalk River, ON (Canada)

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  18. Exciting Science being done on the CG-2 Small Angle Neutron Scattering beam line at HFIR

    Science.gov (United States)

    Debeer-Schmitt, Lisa; Bailey, Kathy; Melnichenko, Yuri; Wignall, George; Littrell, Ken

    2010-03-01

    The small-angle neutron scattering (SANS) beam line, CG-2, has been in operation since 2007. CG-2 has been optimized so that structures from 0.5 to 200 nm can be thoroughly investigated. HFIR's cold source places the flux at CG-2 among the best in the world. Along with high flux, many varied sample environments can easily be integrated into the beam line which gives the user a versatile temperature range from 1.5 K to 1000K. In addition there are two cryomagents (horizontal 4.5 T and vertical 7 T), pressure cells and load frames available to users allowing for the availability of multiple configurations of experimental setups. Due to all the above equipment and the flux at CG-2, there have been many diverse and intriguing scientific developments. One such outcome is the study of flux- line lattices found in Type-II superconductors including the highly touted iron pnictides. Besides superconductors, other science studied on CG2 ranges from molecular self-assembly and interactions in complex fluids to phase separation, grain growth and orientation in metallurgical alloys.

  19. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  20. Neutron capture therapies

    Science.gov (United States)

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  1. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    Science.gov (United States)

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5  n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13  Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13  Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to

  2. The research of the characteristics of fields of fast neutrons on a beam B-3 of reactor BR-10 and the results of neutron therapy on the affected by cancer tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lityaev, V.M.; Korobeinikov, V.V.; Soloviev, N.A.; Lityaev, M.V.; Mamaev, L.I. [A.I. Leipunsky Institute of Physics and Power Engineering (IPPE), Obninsk (Russian Federation); Mardynsky, Yu.S.; Sysoev, A.S.; Gulidov, I.A. [Medical Radiological Research Center (MRRC), Obninsk (Russian Federation)

    2000-10-01

    Researches on characteristic of a neutron B-3 beam of the reactor BR-10 and clinical experience in external beam radiation therapy (EBRT) on the cancer tumors are represented. One from the most actual problems in the medical radiology is to improve therapy enhancement factor (TEF). For this purpose various techniques are used: non-standard fractionation of a dose of neutrons, methods of its supply, modifiers of ray effect etc. To the present time 350 patients with various localizations of cancer tumors have been processed by EBRT. A horizontal B-3 beam has a rather wide spectrum with a mean energy of 0.49 MeV and neutron beam density on the patient chair of approximately 3 x 10{sup 8} n/cm{sup 2}s at the distance of 10 m from the reactor surface, neutron component being 70 % in the energy region between 0.1 MeV and 4 MeV. The available clinical experience in EBRT allows to change B-3 neutron beam characteristic to improve TEF. Moreover, extensive studies in possible application of a B-3 beam for neutron-capture therapy (NCT) are being conducted now. So it is necessary to perform calculation substantiation of both EBRT and NCT or according to neutron energy. (J.P.N.)

  3. On the impact of neutron beam divergence and scattering on the quality of transmission acquired tomographic images

    Science.gov (United States)

    Silvani, Maria Ines; Lopes, Ricardo T.; de Almeida, Gevaldo L.; Gonçalves, Marcelo José; Furieri, Rosanne C. A. A.

    2007-10-01

    The impact of the divergence of a thermal neutron beam and the scattered neutrons on the quality of tomographic images acquired by transmission have been evaluated by using a third generation tomographic system incorporating neutron collimators under several different arrangements. The system equipped with a gaseous position sensitive detector has been placed at the main channel outlet of the Argonauta Research Reactor in Instituto de Engenharia Nuclear (CNEN-Brazil) which furnishes a thermal neutron flux of 2.3 × 105 n cm-2 s-1. Experiments have then been conducted using test-objects with well-known inner structure and composition to assess the influence of the collimators arrangement on the quality of the acquired images. Both, beam divergence and scattering - expected to spoil the image quality - have been reduced by using properly positioned collimators between the neutron source and the object, and in the gap between the object and the detector, respectively. The shadow cast by this last collimator on the projections used to reconstruct the tomographic images has been eliminated by a proper software specifically written for this purpose. Improvement of the tomographic images has been observed, demonstrating the effectiveness of the proposed approach to improve their quality by using properly positioned collimators.

  4. Measurement channel of neutron flow based on software

    International Nuclear Information System (INIS)

    Rivero G, T.; Benitez R, J. S.

    2008-01-01

    The measurement of the thermal power in nuclear reactors is based mainly on the measurement of the neutron flow. The presence of these in the reactor core is associated to neutrons released by the fission reaction of the uranium-235. Once moderate, these neutrons are precursors of new fissions. This process it is known like chain reaction. Thus, the power to which works a nuclear reactor, he is proportional to the number of produced fissions and as these depend on released neutrons, also the power is proportional to the number of present neutrons. The measurement of the thermal power in a reactor is realized with called instruments nuclear channels. To low power (level source), these channels measure the individual counts of detected neutrons, whereas to a medium and high power, they measure the electrical current or fluctuation of the same one that generate the fission neutrons in ionization chambers especially designed to detect neutrons. For the case of TRIGA reactors, the measurement channels of neutron flow use discreet digital electronic technology makes some decades already. Recently new technological tools have arisen that allow developing new versions of nuclear channels of simple form and compacts. The present work consists of the development of a nuclear channel for TRIGA reactors based on the use of the correlated signal of a fission chamber for ample interval. This new measurement channel uses a data acquisition card of high speed and the data processing by software that to the being installed in a computer is created a virtual instrument, with what spreads in real time, in graphic and understandable form for the operator, the power indication to which it operates the nuclear reactor. This system when being based on software, offers a major versatility to realize changes in the signal processing and power monitoring algorithms. The experimental tests of neutronic power measurement show a reliable performance through seven decades of power, with a

  5. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Gomez-Ros, J.M. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Perez, L. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Angelone, M. [ENEA C.R. Frascati, C.P. 65, 00044 Frascati (Italy); Tana, L. [A.O. Universitaria Pisana-Ospedale S. Chiara, Via Bonanno Pisano, Pisa (Italy)

    2012-08-21

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  7. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    International Nuclear Information System (INIS)

    Bedogni, R.; Gómez-Ros, J.M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-01-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  8. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  9. Development of a neutron imager based on superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Shigeyuki, E-mail: miyajima@nict.go.jp [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology (Japan); Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi [J-PARC Center, Japan Atomic Energy Agency (Japan); Ishida, Takekazu [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan)

    2016-11-15

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a {sup 10}B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a {sup 10}B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with {sup 10}B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  10. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Technische Universitaet, Darmstadt (Germany)

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  11. AB-BNCT beam shaping assembly based on {sup 7}Li(p,n){sup 7}Be reaction optimization

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)

    2011-12-15

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction {sup 7}Li(p,n){sup 7}Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  12. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. New neutron-based isotopic analytical methods; An explorative study of resonance capture and incoherent scattering

    NARCIS (Netherlands)

    Perego, R.C.

    2004-01-01

    Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the

  14. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    DEFF Research Database (Denmark)

    Muhrer, G.; Schonfeldt, T.; Iverson, E. B.

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, ......-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering. (C) 2016 Elsevier B.V. All rights reserved.......The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired...... the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector...

  15. A neutron spectrum unfolding code based on iterative procedures

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    In this work, the version 3.0 of the neutron spectrum unfolding code called Neutron Spectrometry and Dosimetry from Universidad Autonoma de Zacatecas (NSDUAZ), is presented. This code was designed in a graphical interface under the LabVIEW programming environment and it is based on the iterative SPUNIT iterative algorithm, using as entrance data, only the rate counts obtained with 7 Bonner spheres based on a 6 Lil(Eu) neutron detector. The main features of the code are: it is intuitive and friendly to the user; it has a programming routine which automatically selects the initial guess spectrum by using a set of neutron spectra compiled by the International Atomic Energy Agency. Besides the neutron spectrum, this code calculates the total flux, the mean energy, H(10), h(10), 15 dosimetric quantities for radiation protection porpoises and 7 survey meter responses, in four energy grids, based on the International Atomic Energy Agency compilation. This code generates a full report in html format with all relevant information. In this work, the neutron spectrum of a 241 AmBe neutron source on air, located at 150 cm from detector, is unfolded. (Author)

  16. Implementation of EPICS based Control System for Radioisotope Beam line

    International Nuclear Information System (INIS)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2015-01-01

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac

  17. Basic to industrial research on neutron platform in Japan

    Indian Academy of Sciences (India)

    The co-location of reactor- and accelerator-based neutron sources offers a great opportunity for complementary use of steady and pulsed neutron beams in a wide variety of neutron science and technology areas ranging from basic research to industrial applications. In Japan, such a balance of two kinds of neutron sources ...

  18. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  19. Monte Carlo based treatment planning systems for Boron Neutron Capture Therapy in Petten, The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Nievaart, V A; Daquino, G G; Moss, R L [JRC European Commission, PO Box 2, 1755ZG Petten (Netherlands)

    2007-06-15

    Boron Neutron Capture Therapy (BNCT) is a bimodal form of radiotherapy for the treatment of tumour lesions. Since the cancer cells in the treatment volume are targeted with {sup 10}B, a higher dose is given to these cancer cells due to the {sup 10}B(n,{alpha}){sup 7}Li reaction, in comparison with the surrounding healthy cells. In Petten (The Netherlands), at the High Flux Reactor, a specially tailored neutron beam has been designed and installed. Over 30 patients have been treated with BNCT in 2 clinical protocols: a phase I study for the treatment of glioblastoma multiforme and a phase II study on the treatment of malignant melanoma. Furthermore, activities concerning the extra-corporal treatment of metastasis in the liver (from colorectal cancer) are in progress. The irradiation beam at the HFR contains both neutrons and gammas that, together with the complex geometries of both patient and beam set-up, demands for very detailed treatment planning calculations. A well designed Treatment Planning System (TPS) should obey the following general scheme: (1) a pre-processing phase (CT and/or MRI scans to create the geometric solid model, cross-section files for neutrons and/or gammas); (2) calculations (3D radiation transport, estimation of neutron and gamma fluences, macroscopic and microscopic dose); (3) post-processing phase (displaying of the results, iso-doses and -fluences). Treatment planning in BNCT is performed making use of Monte Carlo codes incorporated in a framework, which includes also the pre- and post-processing phases. In particular, the glioblastoma multiforme protocol used BNCT{sub r}tpe, while the melanoma metastases protocol uses NCTPlan. In addition, an ad hoc Positron Emission Tomography (PET) based treatment planning system (BDTPS) has been implemented in order to integrate the real macroscopic boron distribution obtained from PET scanning. BDTPS is patented and uses MCNP as the calculation engine. The precision obtained by the Monte Carlo

  20. Fusion reactivities and neutron source characteristics of beam-driven toroidal reactors with both D and T injection

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.

    1976-01-01

    The reactor performance is considered for intensely beam-driven tokamak plasmas with 50:50 D-T composition maintained by neutral-beam injection of both D and T, together with plasma recycling. The D and T are injected with equal intensity and velocity. This mode of operation is most appropriate for high-duty-factor, high-power-density operation, in the absence of pellet injection. The isotropic velocity distributions of energetic D and T ions (for multi-angle injection) are calculated from a simple slowing-down model, but include a tail above the injection velocity. The neutron source characteristics are determined from fusion reactivities calculated for beam-target, hot-ion, and thermonuclear reactions. For conditions where Q approximates 1, beam-target reactions are dominant, although reactions among the hot ions contribute substantially to P/sub fusion/ when n/sub hot//n /sub e/ greater than or equal to 0.2

  1. Pillar-structured neutron detector based multiplicity system

    Science.gov (United States)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  2. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  3. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  4. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    International Nuclear Information System (INIS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-01-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography

  5. Options for a next generation neutron source for neutron scattering based on the projected linac facility at JAERI

    International Nuclear Information System (INIS)

    Mezei, F.; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Aizawa, Kazuya; Suzuki, Jun-ichi.

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has a project to construct a high intensity proton accelerator to promote wide basic science using neutrons and nuclear power technologies such as radioactive nuclide transmutation. One of the most important field for utilization of neutron beam is neutron scattering. The energy and the averaged current obtained by the proton accelerator are 1.5 GeV and 4-5.3 mA, respectively and these provide 6-8 MW power. The repetition frequency is 50-60 Hz. Evaluation of options for the use of accelerators for neutron production for neutron scattering research and investigation of the neutron research opportunities offered by sharing the superconducting linac planned at JAERI were discussed. There are two ways of the utilization of proton beams for neutron scattering experiment. One is for long pulse spallation source (LPSS) and the other is for short pulse spallation source (SPSS). Quantitative evaluation of instrument performance with LPSS and SPSS was examined in the intensive discussion, calculations, workshop on this topics with Prof. F. Mezei who stayed at JAERI from October 24 to November 6, 1996. A report of the collaborative workshop will be also published separately. (author)

  6. The local distribution of radiation quality of a collimated fast neutron beam from 15 MeV deuterons on beryllium

    International Nuclear Information System (INIS)

    Fidorra, J.; Booz, J.

    1978-01-01

    The local distribution of radiation quality (ysub(F), ysub(D)) of a collimated fast neutron beam from 14 MeV deuterons on Beryllium was studied with a spherical 1/2 inch EG and G proportional counter simulating a diameter of 2μm. The deuterons were accelerated by the compact cyclotron CV-28 of the Kernforschungsanlage Juelich. The collimator was constructed by the Cyclotron Corporation. The mean neutron energy was 6 MeV. The measurements were performed in air and in a water phantom at a target skin distance of 125 cm. The energy deposition spectra of fast neutrons obtained at various positions were separated into three components of different radiation quality: the gamma component, the recoil proton component, and the heavy ion component

  7. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  8. The beam-beam limit in asymmetric colliders: Optimization of the B-factory parameter base

    International Nuclear Information System (INIS)

    Tennyson, J.L.

    1990-01-01

    This paper presents a general theory of the beam-beam limit in symmetric and asymmetric lepton ring colliders. It shows how the beam-beam limit in these accelerators affects the maximum attainable luminosity and presents a specific algorithm for parameter base optimization. It is shown that the special problems inherent in asymmetric colliders derive not from the asymmetry, but from the fact that the two beams must be in different rings. Computer simulation experiments are used to demonstrate the various phenomena discussed in the theory

  9. Neutron based evaluation in support of NEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian Simon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    The primary objective of the Advanced Non-Destructive fuel Examination (ANDE) work package is to develop capability that has the potential to accelerate insight and development of ceramic and metallic fuels. Establishing unique validation opportunities for new models is a key component of this effort. To explore opportunities a series of interactions were held with NEAMS modelers at LANL. The focus was to identify experiments that draw on the unique capabilities of neutron scattering and imaging for studies of nuclear fuel particularly in areas where experimental data can be valuable for of models validation. The neutron characterization techniques applied in the ANDE program span length scales from millimeter to micrometer to angstroms. Spatial heterogeneities of interest include cracks, pores and inclusions, crystal structure, phase composition, stoichiometry texture, chemistry and atomic thermal motion. Neutrons offer characterization opportunities that are distinct from other probes such as X-rays, electrons or protons. This report describes a variety of opportunities whereby neutron data can be related to models and lists some opportunities.

  10. Neutron detection with water Cerenkov based detectors

    International Nuclear Information System (INIS)

    Dazeley, S.; Bernstein, A.; Bowden, N.; Carr, D.; Ouedraogo, S.; Svoboda, R.; Sweany, M.; Tripathi, M.

    2009-01-01

    Legitimate cross border trade involves the transport of an enormous number of cargo containers. Especially following the September 11 attacks, it has become an international priority to verify that these containers are not transporting Special Nuclear Material (SNM) without impeding legitimate trade. Fission events from SNM produce a number of neutrons and MeV-scale gammas correlated in time. The observation of consistent time correlations between neutrons and gammas emitted from a cargo container could, therefore, constitute a robust signature for SNM, since this time coincident signature stands out strongly against the higher rate of uncorrelated gamma-ray backgrounds from the local environment. We are developing a cost effective way to build very large neutron detectors for this purpose. We have recently completed the construction of two new water Cherenkov detectors, a 250 liter prototype and a new 4-ton detector. The 250-liter prototype uses an ultra-pure water detection medium doped with a small amount of gadolinium tri-chloride (0.2%). A 55 μCi 252 Cf neutron source was placed at a distance of 1 meter from the detector behind a 2 inch thick wall of lead. The presence of the source is easily discernible from the background in both the uncorrelated count rate and the correlated one. The 4-ton detector will shortly undergo filling and testing

  11. ANTARES: Cold neutron radiography and tomography facility

    Directory of Open Access Journals (Sweden)

    Michael Schulz

    2015-08-01

    Full Text Available The neutron imaging facility ANTARES, operated by the Technische Universität München, is located at the cold neutron beam port SR-4a. Based on a pinhole camera principle with a variable collimator located close to the beam port, the facility provides the possibility for flexible use in high resolution and high flux imaging.

  12. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  13. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    International Nuclear Information System (INIS)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2011-01-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources 241 AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to 137 Cs gamma rays at 137 Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after 137 Cs and 241 AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  14. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  15. Boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM), using the epithermal neutron beam at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chadha, Manjeet; Capala, Jacek; Coderre, Jeffrey A.; Elowitz, Eric H.; Joel, Darrel D.; Hungyuan, B. Liu; Slatkin, Daniel N.; Chanana, Arjun D.

    1996-01-01

    Objective: BNCT is a binary treatment modality based on the nuclear reactions that occur when boron ( 10 B) is exposed to thermal neutrons. Preclinical studies have demonstrated the therapeutic efficacy of p-boronophenylalanine (BPA)-based BNCT. The objective of the Phase I/II trial was to evaluate BPA-fructose (BPA-F) as a boron delivery agent for GBM and to study the feasibility and safety of a single-fraction of BNCT. Materials and Methods: The trial design required i) a BPA-F biodistribution study performed at the time of craniotomy; and ii) BNCT within 4 weeks of the craniotomy. From September 94 to July 95, 10 patients with biopsy proven GBM were treated. All but 1 patient underwent a biodistribution study receiving IV BPA-F at the time of craniotomy. Multiple tissue samples and concurrent blood and urine samples were collected for evaluation of the boron concentration and clearance kinetics. For BNCT all patients received 250 mg/kgm of BPA-F (IV infusion over 2 hrs) followed by neutron irradiation. The blood 10 B concentration during irradiation was used to calculate the time of neutron exposure. The 3D treatment planning was done using the BNCT treatment planning software developed at the Idaho National Engineering Laboratory. The BNCT dose is expressed as the sum of the physical dose components corrected for both the RBE and the 10 B localization factor with the unit Gy-Eq. The photon-equivalent dose, where the thermal neutron fluence reaches a maximum, is the peak-dose equivalent. A single-fraction of BNCT was delivered prescribing 10.5 Gy-Eq (9 patients) and 13.8 Gy-Eq (1 patient) as the peak dose-equivalent to the normal brain. The peak dose rate was kept below 27 cGy-Eq/min. Results: Biodistribution data: The maximum blood 10 B concentration was observed at the end of the infusion and scaled as a linear function of the administered dose. The 10 B concentration in the scalp and in the GBM tissue was higher than in blood by 1.5 x and at least 3.5 x

  16. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  17. A high-pressure device for in-situ measurements in a neutron beam

    International Nuclear Information System (INIS)

    Heinitz, J.; Isakov, N.N.; Nikitin, A.N.; Sukhoparov, W.A.; Ullemeyer, K.; Walther, K.

    1994-01-01

    In increasing temperature and/or pressure many materials not only change their ductile properties, but also undergo phase transitions connected with a change of crystal symmetry. More realistic models for the texture development of quartz must consider its β-α-phase transition. Experimental investigations of the ductile behaviour and texture development of quartz near the phase transition point are necessary for a more reliable interpretation of preferred orientations. Two high-pressure chambers are under construction for investigations at high pressure and high temperature. The first device can apply an uniaxial load of up to 150.000 N at temperatures up to 1100 K. The second allows, in addition to the uniaxial load, a hydrostatic pressure of about 1500 MPa at temperatures up to 600 K. Owing to the special TiZr-alloy used as the material for the chamber vessels, phase composition and crystallographic texture can be observed in-situ in the neutron beam. These measurements are provided at the HQAT diffractometer, which allows one to obtain full pole figures by rotating the sample only around the chamber axis. (orig.)

  18. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  19. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  20. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Directory of Open Access Journals (Sweden)

    Tsinganis A.

    2017-01-01

    Full Text Available Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on ‘microbulk’ Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014. The 235U fission cross-section was used as reference. The (quasi-monoenergetic neutron beams were produced via the 7Li(p,n and the 2H(d,n reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the ‘Demokritos’ National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  1. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  2. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  3. The LUPIN detector: supporting least intrusive beam monitoring technique through neutron detection

    OpenAIRE

    Manessi, G P; Silari, M; Welsch, C; Caresana, M; Ferrarini, M

    2013-01-01

    The Long interval, Ultra-wide dynamic Pile-up free Neutron rem counter (LUPIN) is a novel detector initially developed for radiation protection purposes, specifically conceived for applications in pulsed neutron fields. The detector has a measurement capability varying over many orders of neutron burst intensity, from a single neutron up to thousands of interactions for each burst, without showing any saturation effect. Whilst LUPIN has been developed for applications in the radiation protect...

  4. Experimental characterization of semiconductor-based thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Bortot, D.; Pola, A.; Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN—Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Sacco, D. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); INAIL—DIT, Via di Fontana Candida 1, 00040 Monteporzio Catone (Italy); Esposito, A.; Gentile, A.; Buonomo, B. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Palomba, M.; Grossi, A. [ENEA Triga RC-1C.R. Casaccia, via Anguillarese 301, 00060 S. Maria di Galeria, Roma (Italy)

    2015-04-21

    In the framework of NESCOFI@BTF and NEURAPID projects, active thermal neutron detectors were manufactured by depositing appropriate thickness of {sup 6}LiF on commercially available windowless p–i–n diodes. Detectors with different radiator thickness, ranging from 5 to 62 μm, were manufactured by evaporation-based deposition technique and exposed to known values of thermal neutron fluence in two thermal neutron facilities exhibiting different irradiation geometries. The following properties of the detector response were investigated and presented in this work: thickness dependence, impact of parasitic effects (photons and epithermal neutrons), linearity, isotropy, and radiation damage following exposure to large fluence (in the order of 10{sup 12} cm{sup −2})

  5. Gaussian beam shooting algorithm based on iterative frame decomposition

    OpenAIRE

    Ghannoum, Ihssan; Letrou, Christine; Beauquet, Gilles

    2010-01-01

    International audience; Adaptive beam re-shooting is proposed as a solution to overcome essential limitations of the Gaussian Beam Shooting technique. The proposed algorithm is based on iterative frame decompositions of beam fields in situations where usual paraxial formulas fail to give accurate enough results, such as interactions with finite obstacle edges. Collimated beam fields are successively re-expanded on narrow and wide window frames, allowing for re-shooting and further propagation...

  6. Monte Carlo simulation of neutron irradiation facility developed for accelerator based in vivo neutron activation measurements in human hand bones

    International Nuclear Information System (INIS)

    Aslam; Prestwich, W.V.; McNeill, F.E.; Waker, A.J.

    2006-01-01

    The neutron irradiation facility developed at the McMaster University 3 MV Van de Graaff accelerator was employed to assess in vivo elemental content of aluminum and manganese in human hands. These measurements were carried out to monitor the long-term exposure of these potentially toxic trace elements through hand bone levels. The dose equivalent delivered to a patient during irradiation procedure is the limiting factor for IVNAA measurements. This article describes a method to estimate the average radiation dose equivalent delivered to the patient's hand during irradiation. The computational method described in this work augments the dose measurements carried out earlier [Arnold et al., 2002. Med. Phys. 29(11), 2718-2724]. This method employs the Monte Carlo simulation of hand irradiation facility using MCNP4B. Based on the estimated dose equivalents received by the patient hand, the proposed irradiation procedure for the IVNAA measurement of manganese in human hands [Arnold et al., 2002. Med. Phys. 29(11), 2718-2724] with normal (1 ppm) and elevated manganese content can be carried out with a reasonably low dose of 31 mSv to the hand. Sixty-three percent of the total dose equivalent is delivered by non-useful fast group (>10 keV); the filtration of this neutron group from the beam will further decrease the dose equivalent to the patient's hand

  7. Neutron Detection Using Gadolinium-Based Diodes

    Science.gov (United States)

    2011-03-01

    placed in a thermal neutron flux of approximately 600 n cm-2 s -1 bear a strong resemblance to a pulse height spectrum predicted by a Monte Carlo N...pressed with a handheld roller . The excess tack tape was trimmed off and the frame removed from the mounting station. The frame was then placed tack...would not bond. Those contacts applied with recipe 3 did bond with the wire; however, it is believed that the bonding needle punched through the

  8. Accelerator-based neutron generator (addendum)

    International Nuclear Information System (INIS)

    Grand, P.

    1976-01-01

    A proposal to design, construct, and operate a D--Li intense neutron source for CTR materials research is discussed. Information pertaining to the following areas is given: (1) radiation damage effectiveness, (2) Linac design and performance, (3) target design and performance, (4) experimental area design, (5) construction schedule, (6) construction costs, (7) preliminary design and development program, (8) facility operation and operating costs, and (9) financial appropriation plan

  9. Neutron Detection with Water Cerenkov Based Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dazeley, S; Bernstein, A; Bowden, N; Carr, D; Ouedraogo, S; Svoboda, R; Sweany, M; Tripathi, M

    2009-05-13

    Legitimate cross border trade involves the transport of an enormous number of cargo containers. Especially following the September 11 attacks, it has become an international priority to verify that these containers are not transporting Special Nuclear Material (SNM) without impeding legitimate trade. Fission events from SNM produce a number of neutrons and MeV-scale gammas correlated in time. The observation of consistent time correlations between neutrons and gammas emitted from a cargo container could, therefore, constitute a robust signature for SNM, since this time coincident signature stands out strongly against the higher rate of uncorrelated gamma-ray backgrounds from the local environment. We are developing a cost effective way to build very large neutron detectors for this purpose. We have recently completed the construction of two new water Cherenkov detectors, a 250 liter prototype and a new 4 ton detector. We present both the results from our prototype detector and an update on the newly commissioned large detector. We will also present pictures from the construction and outline our future detector development plans.

  10. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  11. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  12. Optimization of a neutron production target based on the 7Li (p,n)7Be reaction with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Kreiner, Andres J.; Minsky, Daniel; Valda, Alejandro A.; Somacal, Hector R.

    2003-01-01

    In order to optimize a neutron production target for accelerator-based boron neutron capture therapy (AB-BNCT) a Monte Carlo Neutron and Photon (MCNP) investigation has been performed. Neutron fields from a LiF thick target (with both a D 2 O-graphite and a Al/AlF 3 -graphite moderator/reflector assembly) were evaluated along the centerline in a head phantom. The target neutron beam was simulated from the 7 Li(p,n) 7 Be nuclear reaction for 1.89, 2.0 and 2.3 MeV protons. The results show that it is more advantageous to irradiate the target with near resonance energy protons (2.3 MeV) because of the high neutron yield at this energy. On the other hand, the Al/AlF 3 -graphite exhibits a more efficient performance than D 2 O. (author)

  13. The IAEA collaborating centre for neutron activation based methodologies of research reactors

    International Nuclear Information System (INIS)

    Bode, P.

    2010-01-01

    The Reactor Institute Delft of the Delft University of Technology houses the Netherlands' only academic nuclear research reactor, with associated instrumentation and laboratories, for scientific education and research with ionizing radiation. The Institute's swimming pool type research reactor reached first criticality in 1963 and is currently operated at 2MW thermal powers on a 100 h/week basis. The reactor is equipped with neutron mirror guides serving ultra modern neutron beam physics instruments and with a very bright positron facility. Fully automated gamma-ray spectrometry systems are used by the laboratory for neutron activation analysis, providing large scale services under an ISO/IEC 17025:2005 compliant management system, being (since 1993) the first accredited laboratory of its kind in the world. Already for several years, this laboratory is sustainable by rendering these services to both the public and the private sector. The prime user of the Institute's fac ilities is the scientific Research Department of Radiation, Radionuclide and Reactors of the Faculty of Applied Sciences, housed inside the building. All reactor facilities are also made available for use by or for services to, external clients (industry, government, private sector, other (international research institutes and universities). The Reactor Institute Delft was inaugurated in May 2009 as a new lAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (I) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (II) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques and as a cross-cutting activity, (IIl) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. This c ollaboration will

  14. Measurement of the spectrum of neutrons produced in pd collisions at an angle of θ = 0° at a proton-beam energy of 1 GeV

    Science.gov (United States)

    Medvedev, V. I.; Vasiliev, A. A.; Ermakov, K. N.; Koptev, V. P.; Kochenda, L. M.; Poromov, V. I.; Rogachevsky, O. V.; Sarantsev, V. V.; Trofimov, V. A.; Sherman, S. G.

    2009-09-01

    The energy spectrum of a neutron beam produced in a thin-wall liquid-deuterium target by a proton beam of energy 1 GeV was measured in a hydrogen bubble chamber by detecting events of the reaction np → ppπ -.

  15. Neutron beam applications - Development of single crystal structure analysis technique using the HANARO neutron four circle diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Il Hwan; Kim, Moon Jib; Kim, Jin Gyu [Chungnam National University, Taejon (Korea)

    2000-04-01

    As the four circle diffractometer (FCD) has been set up in HANARO, it has become possible to study the single crystal structures by means of the neutron diffraction. Taking account of the geometry of the FCD, a program for the control of te FCD and neutron data acquisition operating under Windows' circumstance has been accomplished. Also, a computer program which can automatically measure the diffraction intensity data has been developed. All data obtained from the FCD are processed automatically for further work and a software for the single crystal structure analyses has been prepared. A KC1 single crystal was selected as first test sample for a structure analysis had been successfully performed on the FCD using in-house developed program and accordingly their functionings with precision were confirmed. For regular single crystal diffraction experiments, the structure analyses of chrysoberyl and Zr(Y)0{sub 1.87} single crystals were performed using both neutron and X-ray diffraction methods, and the result showed that the neutron diffraction work is superior to the X-ray one from the viewpoint of certain crystallographic information obtainable only from the former one. 24 refs., 15 figs., 15 tabs. (Author)

  16. [External beam radiotherapy cone beam-computed tomography-based dose calculation].

    Science.gov (United States)

    Barateau, A; Céleste, M; Lafond, C; Henry, O; Couespel, S; Simon, A; Acosta, O; de Crevoisier, R; Périchon, N

    2018-02-01

    In external beam radiotherapy, the dose planning is currently based on computed tomography (CT) images. A relation between Hounsfield numbers and electron densities (or mass densities) is necessary for dose calculation taking heterogeneities into account. In image-guided radiotherapy process, the cone beam CT is classically used for tissue visualization and registration. Cone beam CT for dose calculation is also attractive in dose reporting/monitoring perspectives and particularly in a context of dose-guided adaptive radiotherapy. The accuracy of cone beam CT-based dose calculation is limited by image characteristics such as quality, Hounsfield numbers consistency and restrictive sizes of volume acquisition. The analysis of the literature identifies three kinds of strategies for cone beam CT-based dose calculation: establishment of Hounsfield numbers versus densities curves, density override to regions of interest, and deformable registration between CT and cone beam CT images. Literature results show that discrepancies between the reference CT-based dose calculation and the cone beam CT-based dose calculation are often lower than 3%, regardless of the method. However, they can also reach 10% with unsuitable method. Even if the accuracy of the cone beam CT-based dose calculation is independent of the method, some strategies are promising but need improvements in the automating process for a routine implementation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. Low-level X-radiation dosimetry based on neutron activation analysis of film badge

    International Nuclear Information System (INIS)

    Morikawa, Kaoru; Kariya, Komyo; Sato, Takashi.

    1988-01-01

    We intended to estimate low level X-radiation doses which were not detected by ordinary photographic densitometry. After development, badge films retain silver molecules in proportion to the amount of X-radiation doses in low level. The amount of silver molecules was quantified based on neutron activation analysis. In this paper, possibilities were discussed about application of the neutron activation analysis to minor radiation dosimetry of X-ray beams with energies between 40 and 150 kV in medical diagnostic use. Following results were obtained: 1) the energy response of film badge was almost flat in an energy range of X-ray from 40 to 150 kV, 2) the exposure vs 110 Ag activity curve was linear, 3) the minimum detectable amount of dose was less than 2.58 x 10 -7 C/kg (lmR). (author)

  18. Neutronics assessment of thorium-based fuel assembly in SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    Highlights: • A novel thorium-based fuel assembly for SCWR has been introduced and investigated. • Neutronic properties of three thorium fuels have been studied, compared with UO 2 fuel. • The thorium-based fuel has advantages on fuel utilization and lower MAs generation. -- Abstract: Aiming to take advantage of neutron spectrum of SCWR, a novel thorium-based fuel assembly for SCWR is introduced in this paper. The neutronic characteristics of the introduced fuel assembly with three different thorium fuel types have been investigated using the “dragon” codes. The parameters in different working conditions, such as infinite multiplication factors, radial power peaking factor, temperature coefficient of reactivity and their relation with the operation period have been assessed by comparing with conventional uranium assembly. Moreover, the moderator-to-fuel ratio (MFR) was changed in order to investigate its influence on the neutronic characteristics of fuel assembly. Results show that the thorium-based fuel has advantages on both efficient fuel utilization and lower minor actinide generation, with some similar neutronic properties to the uranium fuel

  19. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  20. Neutron and X-ray irradiation of silicon based Mach-Zehnder modulators

    Science.gov (United States)

    El Nasr-Storey, S. S.; Détraz, S.; Olanterä, L.; Sigaud, C.; Soós, C.; Pezzullo, G.; Troska, J.; Vasey, F.; Zeiler, Marcel

    2015-03-01

    We report on our recent investigation into the potential for using silicon-based Mach-Zehnder modulators in the harshest radiation environments of the High-Luminosity LHC. The effect of ionizing and non-ionizing radiation on the performance of the devices have been investigated using the 20 MeV neutron beam line at the Cyclotron Resource Centre in Louvain-La-Neuve and the X-ray irradiation facility in the CERN PH department. The devices were exposed to a total fluence and ionizing dose of 1.2×1015 n cm-2 and 1.3 MGy respectively.

  1. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Muhrer, G. [European Spallation Source, Lund (Sweden); Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Schönfeldt, T. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden); Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mocko, M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN (United States); Hügle, Th.; Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Klinkby, E.B. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden)

    2016-09-11

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  2. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  3. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the R obust Design of Artificial Neural Networks Methodology . The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  4. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform