WorldWideScience

Sample records for based neural network

  1. Neural Network based Consumption Forecasting

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2016-01-01

    This paper describe a Neural Network based method for consumption forecasting. This work has been financed by the The ENCOURAGE project. The aims of The ENCOURAGE project is to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable...

  2. Competition Based Neural Networks for Assignment Problems

    Institute of Scientific and Technical Information of China (English)

    李涛; LuyuanFang

    1991-01-01

    Competition based neural networks have been used to solve the generalized assignment problem and the quadratic assignment problem.Both problems are very difficult and are ε approximation complete.The neural network approach has yielded highly competitive performance and good performance for the quadratic assignment problem.These neural networks are guaranteed to produce feasible solutions.

  3. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  4. SAR ATR Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tian Zhuangzhuang

    2016-06-01

    Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.

  5. Analysis of Neural Networks through Base Functions

    NARCIS (Netherlands)

    Zwaag, van der B.J.; Slump, C.H.; Spaanenburg, L.

    2002-01-01

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  6. Network Traffic Prediction based on Particle Swarm BP Neural Network

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2013-11-01

    Full Text Available The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and strong robust. In this paper, a new BP neural network based on Artificial Bee Colony algorithm and particle swarm optimization algorithm is proposed to optimize the weight and threshold value of BP neural network. After network traffic prediction experiment, we can conclude that optimized BP network traffic prediction based on PSO-ABC has high prediction accuracy and has stable prediction performance.

  7. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  8. Convolutional Neural Network Based dem Super Resolution

    Science.gov (United States)

    Chen, Zixuan; Wang, Xuewen; Xu, Zekai; Hou, Wenguang

    2016-06-01

    DEM super resolution is proposed in our previous publication to improve the resolution for a DEM on basis of some learning examples. Meanwhile, the nonlocal algorithm is introduced to deal with it and lots of experiments show that the strategy is feasible. In our publication, the learning examples are defined as the partial original DEM and their related high measurements due to this way can avoid the incompatibility between the data to be processed and the learning examples. To further extent the applications of this new strategy, the learning examples should be diverse and easy to obtain. Yet, it may cause the problem of incompatibility and unrobustness. To overcome it, we intend to investigate a convolutional neural network based method. The input of the convolutional neural network is a low resolution DEM and the output is expected to be its high resolution one. A three layers model will be adopted. The first layer is used to detect some features from the input, the second integrates the detected features to some compressed ones and the final step transforms the compressed features as a new DEM. According to this designed structure, some learning DEMs will be taken to train it. Specifically, the designed network will be optimized by minimizing the error of the output and its expected high resolution DEM. In practical applications, a testing DEM will be input to the convolutional neural network and a super resolution will be obtained. Many experiments show that the CNN based method can obtain better reconstructions than many classic interpolation methods.

  9. Neural Network-Based Hyperspectral Algorithms

    Science.gov (United States)

    2016-06-07

    Neural Network-Based Hyperspectral Algorithms Walter F. Smith, Jr. and Juanita Sandidge Naval Research Laboratory Code 7340, Bldg 1105 Stennis Space...our effort is development of robust numerical inversion algorithms , which will retrieve inherent optical properties of the water column as well as...validate the resulting inversion algorithms with in-situ data and provide estimates of the error bounds associated with the inversion algorithm . APPROACH

  10. A Direct Feedback Control Based on Fuzzy Recurrent Neural Network

    Institute of Scientific and Technical Information of China (English)

    李明; 马小平

    2002-01-01

    A direct feedback control system based on fuzzy-recurrent neural network is proposed, and a method of training weights of fuzzy-recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simul ation results indicate that fuzzy-recurrent neural network controller has perfect dynamic and static performances .

  11. SOLVING INVERSE KINEMATICS OF REDUNDANT MANIPULATOR BASED ON NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    For the redundant manipulators, neural network is used to tackle the velocity inverse kinematics of robot manipulators. The neural networks utilized are multi-layered perceptions with a back-propagation training algorithm. The weight table is used to save the weights solving the inverse kinematics based on the different optimization performance criteria. Simulations verify the effectiveness of using neural network.

  12. Prediction based chaos control via a new neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Liqun [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: liqunshen@gmail.com; Wang Mao [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Liu Wanyu [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China); Sun Guanghui [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)

    2008-11-17

    In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network.

  13. Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.

  14. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  15. Distribution network planning algorithm based on Hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    GAO Wei-xin; LUO Xian-jue

    2005-01-01

    This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a directed graph-planning problem. The Hopfield neural network is designed to decide the in-degree of each node and is in combined application with an energy function. The new algorithm doesn't need to code city streets and normalize data, so the program is easier to be realized. A case study applying the method to a district of 29 street proved that an optimal solution for the planning of such a power system could be obtained by only 26 iterations. The energy function and algorithm developed in this work have the following advantages over many existing algorithms for electric distribution network planning: fast convergence and unnecessary to code all possible lines.

  16. Clustering in mobile ad hoc network based on neural network

    Institute of Scientific and Technical Information of China (English)

    CHEN Ai-bin; CAI Zi-xing; HU De-wen

    2006-01-01

    An on-demand distributed clustering algorithm based on neural network was proposed. The system parameters and the combined weight for each node were computed, and cluster-heads were chosen using the weighted clustering algorithm, then a training set was created and a neural network was trained. In this algorithm, several system parameters were taken into account, such as the ideal node-degree, the transmission power, the mobility and the battery power of the nodes. The algorithm can be used directly to test whether a node is a cluster-head or not. Moreover, the clusters recreation can be speeded up.

  17. Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents

    CERN Document Server

    Sher, Gene I

    2011-01-01

    Though machine learning has been applied to the foreign exchange market for quiet some time now, and neural networks have been shown to yield good results, in modern approaches neural network systems are optimized through the traditional methods, and their input signals are vectors containing prices and other indicator elements. The aim of this paper is twofold, the presentation and testing of the application of topology and weight evolving artificial neural network (TWEANN) systems to automated currency trading, and the use of chart images as input to a geometrical regularity aware indirectly encoded neural network systems. This paper presents the benchmark results of neural network based automated currency trading systems evolved using TWEANNs, and compares the generalization capabilities of these direct encoded neural networks which use the standard price vector inputs, and the indirect (substrate) encoded neural networks which use chart images as input. The TWEANN algorithm used to evolve these currency t...

  18. Hopfield neural network based on ant system

    Institute of Scientific and Technical Information of China (English)

    洪炳镕; 金飞虎; 郭琦

    2004-01-01

    Hopfield neural network is a single layer feedforward neural network. Hopfield network requires some control parameters to be carefully selected, else the network is apt to converge to local minimum. An ant system is a nature inspired meta heuristic algorithm. It has been applied to several combinatorial optimization problems such as Traveling Salesman Problem, Scheduling Problems, etc. This paper will show an ant system may be used in tuning the network control parameters by a group of cooperated ants. The major advantage of this network is to adjust the network parameters automatically, avoiding a blind search for the set of control parameters.This network was tested on two TSP problems, 5 cities and 10 cities. The results have shown an obvious improvement.

  19. Brain tumor grading based on Neural Networks and Convolutional Neural Networks.

    Science.gov (United States)

    Yuehao Pan; Weimin Huang; Zhiping Lin; Wanzheng Zhu; Jiayin Zhou; Wong, Jocelyn; Zhongxiang Ding

    2015-08-01

    This paper studies brain tumor grading using multiphase MRI images and compares the results with various configurations of deep learning structure and baseline Neural Networks. The MRI images are used directly into the learning machine, with some combination operations between multiphase MRIs. Compared to other researches, which involve additional effort to design and choose feature sets, the approach used in this paper leverages the learning capability of deep learning machine. We present the grading performance on the testing data measured by the sensitivity and specificity. The results show a maximum improvement of 18% on grading performance of Convolutional Neural Networks based on sensitivity and specificity compared to Neural Networks. We also visualize the kernels trained in different layers and display some self-learned features obtained from Convolutional Neural Networks.

  20. Nonlinear system identification and control based on modular neural networks.

    Science.gov (United States)

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  1. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  2. Multispectral thermometry based on neural network

    Institute of Scientific and Technical Information of China (English)

    孙晓刚; 戴景民

    2003-01-01

    In order to overcome the effect of the assumption between emissivity and wavelength on the measurement of true temperature and spectral emissivity for most engineering materials, a neural network based method is proposed for data processing while a blackbody furnace and three optical filters with known spectral transmittance curves were used to make up a true target. The experimental results show that the calculated temperatures are in good agreement with the temperature of the blackbody furnace, and the calculated spectral emissivity curves are in good agreement with the spectral transmittance curves of the filters. The method proposed has been proved to be an effective method for solving the problem of true temperature and emissivity measurement, and it can overcome the effect of the assumption between emissivity and wavelength on the measurement of true temperature and spectral emissivity for most engineering materials.

  3. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    -linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi...

  4. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  5. Contractor Prequalification Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-long; YANG Lan-rong

    2002-01-01

    Contractor Prequalification involves the screening of contractors by a project owner, according to a given set of criteria, in order to determine their competence to perform the work if awarded the construction contract. This paper introduces the capabilities of neural networks in solving problems related to contractor prequalification. The neural network systems for contractor prequalification has an input vector of 8 components and an output vector of 1 component. The output vector represents whether a contractor is qualified or not qualified to submit a bid on a project.

  6. Digital Watermarking Algorithm Based on Wavelet Transform and Neural Network

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenfei; ZHAI Guangqun; WANG Nengchao

    2006-01-01

    An effective blind digital watermarking algorithm based on neural networks in the wavelet domain is presented. Firstly, the host image is decomposed through wavelet transform. The significant coefficients of wavelet are selected according to the human visual system (HVS) characteristics. Watermark bits are added to them. And then effectively cooperates neural networks to learn the characteristics of the embedded watermark related to them. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results and comparisons with other techniques prove the effectiveness of the new algorithm.

  7. Neural Network Model Based Cluster Head Selection for Power Control

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2011-01-01

    Full Text Available Mobile ad-hoc network has challenge of the limited power to prolong the lifetime of the network, because power is a valuable resource in mobile ad-hoc network. The status of power consumption should be continuously monitored after network deployment. In this paper, we propose coverage aware neural network based power control routing with the objective of maximizing the network lifetime. Cluster head selection is proposed using adaptive learning in neural networks followed by coverage. The simulation results show that the proposed scheme can be used in wide area of applications in mobile ad-hoc network.

  8. INDUCTION OF DECISION TREES BASED ON A FUZZY NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Tang Bin; Hu Guangrui; Mao Xiaoquan

    2002-01-01

    Based on a fuzzy neural network, the letter presents an approach for the induction of decision trees. The approach makes use of the weights of fuzzy mappings in the fuzzy neural network which has been trained. It can realize the optimization of fuzzy decision trees by branch cutting, and improve the ratio of correctness and efficiency of the induction of decision trees.

  9. Fuzzy Neural Network Based Traffic Prediction and Congestion Control in High-Speed Networks

    Institute of Scientific and Technical Information of China (English)

    费翔; 何小燕; 罗军舟; 吴介一; 顾冠群

    2000-01-01

    Congestion control is one of the key problems in high-speed networks, such as ATM. In this paper, a kind of traffic prediction and preventive congestion control scheme is proposed using neural network approach. Traditional predictor using BP neural network has suffered from long convergence time and dissatisfying error. Fuzzy neural network developed in this paper can solve these problems satisfactorily. Simulations show the comparison among no-feedback control scheme,reactive control scheme and neural network based control scheme.

  10. MOVING TARGETS PATTERN RECOGNITION BASED ON THE WAVELET NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Ge Guangying; Chen Lili; Xu Jianjian

    2005-01-01

    Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.

  11. Decoupling Control Method Based on Neural Network for Missiles

    Institute of Scientific and Technical Information of China (English)

    ZHAN Li; LUO Xi-shuang; ZHANG Tian-qiao

    2005-01-01

    In order to make the static state feedback nonlinear decoupling control law for a kind of missile to be easy for implementation in practice, an improvement is discussed. The improvement method is to introduce a BP neural network to approximate the decoupling control laws which are designed for different aerodynamic characteristic points, so a new decoupling control law based on BP neural network is produced after the network training. The simulation results on an example illustrate the approach obtained feasible and effective.

  12. SOFM Neural Network Based Hierarchical Topology Control for Wireless Sensor Networks

    OpenAIRE

    2014-01-01

    Well-designed network topology provides vital support for routing, data fusion, and target tracking in wireless sensor networks (WSNs). Self-organization feature map (SOFM) neural network is a major branch of artificial neural networks, which has self-organizing and self-learning features. In this paper, we propose a cluster-based topology control algorithm for WSNs, named SOFMHTC, which uses SOFM neural network to form a hierarchical network structure, completes cluster head selection by the...

  13. Caption detection from video sequence based on fuzzy neural networks

    Science.gov (United States)

    Gao, Xinbo; Xin, Hong; Li, Jie

    2001-09-01

    Caption graphically superimposed in video frames can provide important indexing information. The automatic detection and recognition of video captions can be of great help in querying topics of interest in digital news library. To detect the caption from video sequence, we present algorithms based on fuzzy clustering neural networks. Since neural networks have the capabilities of learning and self-organizing and parallel computing mechanism, with the great increasing of digital images and video databases, neural networks based techniques become more efficient and popular tools for multimedia processing. Experimental results show that our caption detection scheme is effective and robust.

  14. Impulsive Neural Networks Algorithm Based on the Artificial Genome Model

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-05-01

    Full Text Available To describe gene regulatory networks, this article takes the framework of the artificial genome model and proposes impulsive neural networks algorithm based on the artificial genome model. Firstly, the gene expression and the cell division tree are applied to generate spiking neurons with specific attributes, neural network structure, connection weights and specific learning rules of each neuron. Next, the gene segment duplications and divergence model are applied to design the evolutionary algorithm of impulsive neural networks at the level of the artificial genome. The dynamic changes of developmental gene regulatory networks are controlled during the whole evolutionary process. Finally, the behavior of collecting food for autonomous intelligent agent is simulated, which is driven by nerves. Experimental results demonstrate that the algorithm in this article has the evolutionary ability on large-scale impulsive neural networks

  15. Architecture Analysis of an FPGA-Based Hopfield Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Angelo de Abreu de Sousa

    2014-01-01

    Full Text Available Interconnections between electronic circuits and neural computation have been a strongly researched topic in the machine learning field in order to approach several practical requirements, including decreasing training and operation times in high performance applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable gate array (FPGA hardware shows some inherent features typically associated with neural networks, such as, parallel processing, modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also, the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural model, is presented, in detail.

  16. Image watermarking capacity analysis based on Hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    Fan Zhang(张帆); Hongbin Zhang(张鸿宾)

    2004-01-01

    In watermarking schemes, watermarking can be viewed as a form of communication problems. Almost all of previous works on image watermarking capacity are based on information theory, using Shannon formula to calculate the capacity of watermarking. In this paper, we present a blind watermarking algorithm using Hopfield neural network, and analyze watermarking capacity based on neural network. In our watermarking algorithm, watermarking capacity is decided by attraction basin of associative memory.

  17. Colored Noise Prediction Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    Gao Fei; Zhang Xiaohui

    2003-01-01

    A method for predicting colored noise by introducing prediction of nonhnear time series is presented By adopting three kinds of neural networks prediction models, the colored noise prediction is studied through changing the filter bandwidth for stochastic noise and the sampling rate for colored noise The results show that colored noise can be predicted The prediction error decreases with the increasing of the sampling rate or the narrowing of the filter bandwidth. If the parameters are selected properly, the prediction precision can meet the requirement of engineering implementation. The results offer a new reference way for increasing the ability for detecting weak signal in signal processing system

  18. Image Restoration Technology Based on Discrete Neural network

    Directory of Open Access Journals (Sweden)

    Zhou Duoying

    2015-01-01

    Full Text Available With the development of computer science and technology, the development of artificial intelligence advances rapidly in the field of image restoration. Based on the MATLAB platform, this paper constructs a kind of image restoration technology of artificial intelligence based on the discrete neural network and feedforward network, and carries out simulation and contrast of the restoration process by the use of the bionic algorithm. Through the application of simulation restoration technology, this paper verifies that the discrete neural network has a good convergence and identification capability in the image restoration technology with a better effect than that of the feedforward network. The restoration technology based on the discrete neural network can provide a reliable mathematical model for this field.

  19. Numeral eddy current sensor modelling based on genetic neural network

    Institute of Scientific and Technical Information of China (English)

    Yu A-Long

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.

  20. NeuralNetwork Based 3D Surface Reconstruction

    CERN Document Server

    Joseph, Vincy

    2009-01-01

    This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  1. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  2. Neural network-based sensor signal accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  3. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    Science.gov (United States)

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  4. Data Process of Diagnose Expert System based on Neural Network

    Directory of Open Access Journals (Sweden)

    Shupeng Zhao

    2013-12-01

    Full Text Available Engine fault has a high rate in the car. Considering about the distinguishing feature of the engine, Engine Diagnosis Expert System was investigated based on Diagnosis Tree module, Fuzzy Neural Network module, and commix reasoning module. It was researched including Knowledge base and Reasoning machine, and so on. In Diagnosis Tree module, the origin problem was searched in right method. In which module distinguishing rate and low error and least cost was the aim. By means of synthesize judge and fuzzy relation reasoning to get fault origin from symptom, fuzzy synthesize reasoning diagnosis module was researched. Expert knowledge included failure symptom, engine system failure and engine part failure. In the system, Self-diagnosis method and general instruments method worked together, complex failure diagnosis became efficient. The system was intelligent, which was combined by fuzzy logic reasoning and the traditional neural network system. And it became more convenience for failure origin searching, because of utilizing the three methods. The system fuzzy neural networks were combined with fuzzy reasoning and traditional neural networks. Fuzzy neural network failure diagnosis module of system, as a important model was applied to engine diagnosis, with more advantages such as higher efficiency of searching and higher self-learning ability, which was compared with the traditional BP network

  5. Fuzzy neural network image filter based on GA

    Institute of Scientific and Technical Information of China (English)

    刘涵; 刘丁; 李琦

    2004-01-01

    A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following,fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters.

  6. Stability analysis of discrete-time BAM neural networks based on standard neural network models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.

  7. Techniques of Image Processing Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    LI Wei-qing; WANG Qun; WANG Cheng-biao

    2006-01-01

    This paper presented an online quality inspection system based on artificial neural networks. Chromatism classification and edge detection are two difficult problems in glass steel surface quality inspection. Two artificial neural networks were made and the two problems were solved. The one solved chromatism classification. Hue,saturation and their probability of three colors, whose appearing probabilities were maximum in color histogram,were selected as input parameters, and the number of output node could be adjusted with the change of requirement. The other solved edge detection. In this neutral network, edge detection of gray scale image was able to be tested with trained neural networks for a binary image. It prevent the difficulty that the number of needed training samples was too large if gray scale images were directly regarded as training samples. This system is able to be applied to not only glass steel fault inspection but also other product online quality inspection and classification.

  8. Neural Network-Based Active Control for Offshore Platforms

    Institute of Scientific and Technical Information of China (English)

    周亚军; 赵德有

    2003-01-01

    A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.

  9. Generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  10. Forest Fire Image Intelligent Recognition based on the Neural Network

    OpenAIRE

    Yan Qiang; Bo Pei; Juanjuan Zhao

    2014-01-01

    To avoid the drawbacks caused by the long-distance and large-area features of the outdoor forest fires in the traditional fire detection methods. A new forest fire recognition method based on the neural network is proposed, which recognizes the fire based on the static and dynamic features of the fire. The method combines the multiple parameters of the flames and the shapes of the fire to distinguish fire image. Then the extracted features were tested by the Back Propagation Neural Network. T...

  11. A Robust Digital Watermark Extracting Method Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    GUOLihua; YANGShutang; LIJianhua

    2003-01-01

    Since watermark removal software, such as StirMark, has succeeded in washing watermarks away for most of the known watermarking systems, it is necessary to improve the robustness of watermarking systems. A watermark extracting method based on the error Back propagation (BP) neural network is presented in this paper, which can efficiently improve the robustness of watermarking systems. Experiments show that even if the watermarking systems are attacked by the StirMark software, the extracting method based on neural network can still efficiently extract the whole watermark information.

  12. Speech Recognition Method Based on Multilayer Chaotic Neural Network

    Institute of Scientific and Technical Information of China (English)

    REN Xiaolin; HU Guangrui

    2001-01-01

    In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.

  13. Wavelet Neural Network Based Traffic Prediction for Next Generation Network

    Institute of Scientific and Technical Information of China (English)

    Zhao Qigang; Li Qunzhan; He Zhengyou

    2005-01-01

    By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is replaced with the wavelet in NN. Then the wavelet multiresolution analysis method is used to decompose the traffic signal, and the decomposed component sequences are employed to train the NN. By using the methods, an NGN traffic prediction model is built to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN is more accurate than that without using wavelet in the NGN traffic forecasting.

  14. Rolling Bearing Diagnosis Based on LMD and Neural Network

    Directory of Open Access Journals (Sweden)

    Baoshan Huang

    2013-01-01

    Full Text Available Inner ring pitting, the outer indentation and rolling element wear are typical faults of rolling bearing. In order to diagnose these faults rapidly and accurately, the paper proposes a novel diagnosis method of rolling bearing based on the energy characteristics of PF component and neural network by the vibration signal of local mean decomposition(Local mean decomposition, LMD. The vibration signal is decomposed into several PF components by the local mean decomposition, the calculated energy characteristics of the PF component are inputted to the neural network to identify the type of rolling bearing faults. At the same time, the genetic algorithm is introduced to optimize the structure parameters of neural network, which improves diagnostic rate and accuracy of faults. The results show that this method has a higher diagnosis and recognition rate for the typical faults of rolling bearing.

  15. Hazardous Odor Recognition by CMAC Based Neural Networks

    Directory of Open Access Journals (Sweden)

    Bekir Karlık

    2009-09-01

    Full Text Available Electronic noses are being developed as systems for the automated detection and classification of odors, vapors, and gases. Artificial neural networks (ANNs have been used to analyze complex data and to recognize patterns, and have shown promising results in recognition of volatile compounds and odors in electronic nose applications. When an ANN is combined with a sensor array, the number of detectable chemicals is generally greater than the number of unique sensor types. The odor sensing system should be extended to new areas since its standard style where the output pattern from multiple sensors with partially overlapped specificity is recognized by a neural network or multivariate analysis. This paper describes the design, implementation and performance evaluations of the application developed for hazardous odor recognition using Cerebellar Model Articulation Controller (CMAC based neural networks.

  16. Hazardous Odor Recognition by CMAC Based Neural Networks.

    Science.gov (United States)

    Bucak, Ihsan Ömür; Karlık, Bekir

    2009-01-01

    Electronic noses are being developed as systems for the automated detection and classification of odors, vapors, and gases. Artificial neural networks (ANNs) have been used to analyze complex data and to recognize patterns, and have shown promising results in recognition of volatile compounds and odors in electronic nose applications. When an ANN is combined with a sensor array, the number of detectable chemicals is generally greater than the number of unique sensor types. The odor sensing system should be extended to new areas since its standard style where the output pattern from multiple sensors with partially overlapped specificity is recognized by a neural network or multivariate analysis. This paper describes the design, implementation and performance evaluations of the application developed for hazardous odor recognition using Cerebellar Model Articulation Controller (CMAC) based neural networks.

  17. Electronic implementation of associative memory based on neural network models

    Science.gov (United States)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  18. UNMANNED AIR VEHICLE STABILIZATION BASED ON NEURAL NETWORK REGULATOR

    Directory of Open Access Journals (Sweden)

    S. S. Andropov

    2016-09-01

    Full Text Available A problem of stabilizing for the multirotor unmanned aerial vehicle in an environment with external disturbances is researched. A classic proportional-integral-derivative controller is analyzed, its flaws are outlined: inability to respond to changing of external conditions and the need for manual adjustment of coefficients. The paper presents an adaptive adjustment method for coefficients of the proportional-integral-derivative controller based on neural networks. A neural network structure, its input and output data are described. Neural networks with three layers are used to create an adaptive stabilization system for the multirotor unmanned aerial vehicle. Training of the networks is done with the back propagation method. Each neural network produces regulator coefficients for each angle of stabilization as its output. A method for network training is explained. Several graphs of transition process on different stages of learning, including processes with external disturbances, are presented. It is shown that the system meets stabilization requirements with sufficient number of iterations. Described adjustment method for coefficients can be used in remote control of unmanned aerial vehicles, operating in the changing environment.

  19. Artificial Neural Network Based State Estimators Integrated into Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation...

  20. Detecting danger labels with RAM-based neural networks

    DEFF Research Database (Denmark)

    Jørgensen, T.M.; Christensen, S.S.; Andersen, A.W.

    1996-01-01

    An image processing system for the automatic location of danger labels on the back of containers is presented. The system uses RAM-based neural networks to locate and classify labels after a pre-processing step involving specially designed non-linear edge filters and RGB-to-HSV conversion. Results...

  1. Neural network-based retrieval from software reuse repositories

    Science.gov (United States)

    Eichmann, David A.; Srinivas, Kankanahalli

    1992-01-01

    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline an approach to this problem based upon neural networks which avoids requiring the repository administrators to define a conceptual closeness graph for the classification vocabulary.

  2. VoIP attacks detection engine based on neural network

    Science.gov (United States)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  3. Hand Gesture and Neural Network Based Human Computer Interface

    Directory of Open Access Journals (Sweden)

    Aekta Patel

    2014-06-01

    Full Text Available Computer is used by every people either at their work or at home. Our aim is to make computers that can understand human language and can develop a user friendly human computer interfaces (HCI. Human gestures are perceived by vision. The research is for determining human gestures to create an HCI. Coding of these gestures into machine language demands a complex programming algorithm. In this project, We have first detected, recognized and pre-processing the hand gestures by using General Method of recognition. Then We have found the recognized image’s properties and using this, mouse movement, click and VLC Media player controlling are done. After that we have done all these functions thing using neural network technique and compared with General recognition method. From this we can conclude that neural network technique is better than General Method of recognition. In this, I have shown the results based on neural network technique and comparison between neural network method & general method.

  4. Recursive Neural Networks Based on PSO for Image Parsing

    OpenAIRE

    2013-01-01

    This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO) and Recursive Neural Networks (RNNs). State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental res...

  5. Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The three-layer forward neural networks are used to establish the inverse kinem a tics models of robot manipulators. The fuzzy genetic algorithm based on the line ar scaling of the fitness value is presented to update the weights of neural net works. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the propo sed method improves considerably the precision of the inverse kinematics solutio ns for robot manipulators and guarantees a rapid global convergence and overcome s the drawbacks of SGA and the BP algorithm.

  6. Nonlinear system identification based on internal recurrent neural networks.

    Science.gov (United States)

    Puscasu, Gheorghe; Codres, Bogdan; Stancu, Alexandru; Murariu, Gabriel

    2009-04-01

    A novel approach for nonlinear complex system identification based on internal recurrent neural networks (IRNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This approach employs internal state estimation when no measurements coming from the sensors are available for the system states. A modified backpropagation algorithm is introduced in order to train the IRNN for nonlinear system identification. The performance of the proposed design approach is proven on a car simulator case study.

  7. XDANNG: XML based Distributed Artificial Neural Network with Globus Toolkit

    CERN Document Server

    Mahini, Hamidreza; Ghofrani, Javad

    2009-01-01

    Artificial Neural Network is one of the most common AI application fields. This field has direct and indirect usages most sciences. The main goal of ANN is to imitate biological neural networks for solving scientific problems. But the level of parallelism is the main problem of ANN systems in comparison with biological systems. To solve this problem, we have offered a XML-based framework for implementing ANN on the Globus Toolkit Platform. Globus Toolkit is well known management software for multipurpose Grids. Using the Grid for simulating the neuron network will lead to a high degree of parallelism in the implementation of ANN. We have used the XML for improving flexibility and scalability in our framework.

  8. Neural Network Predictive Control Based Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Ali Mohamed Yousef

    2012-04-01

    Full Text Available The present study investigates the power system stabilizer based on neural predictive control for improving power system dynamic performance over a wide range of operating conditions. In this study a design and application of the Neural Network Model Predictive Controller (NN-MPC on a simple power system composed of a synchronous generator connected to an infinite bus through a transmission line is proposed. The synchronous machine is represented in detail, taking into account the effect of the machine saliency and the damper winding. Neural network model predictive control combines reliable prediction of neural network model with excellent performance of model predictive control using nonlinear Levenberg-Marquardt optimization. This control system is used the rotor speed deviation as a feedback signal. Furthermore, the using performance system of the proposed controller is compared with the system performance using conventional one (PID controller through simulation studies. Digital simulation has been carried out in order to validate the effectiveness proposed NN-MPC power system stabilizer for achieving excellent performance. The results demonstrate that the effectiveness and superiority of the proposed controller in terms of fast response and small settling time.

  9. Neural Networks for Model-Based Recognition

    Science.gov (United States)

    1991-06-12

    network. November 23, 1990 -21:52 IDRAFT 17 where X P is the pseudo inverse of Xo. The coefficients of Rpt can also be obtained using three ADALINEs ...the pseudo inverse or an ADALINE . 5 Convergence and Comparison of the Two Mean Field Approaches In the 2-D problem, both mean field approaches MFAI...Also small time steps have to be taken to avoid oscillations November 23, 1990 - 21:52 DRAFT 18 Figure 12: ADALINE for calculation of R. and

  10. ADAPTATIVE IMAGE WATERMARKING SCHEME BASED ON NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    BASSEL SOLAIMANE

    2011-01-01

    Full Text Available Digital image watermarking has been proposed as a method to enhance medical data security, confidentiality and integrity. Medical image watermarking requires extreme care when embedding additional data, given their importance to clinical diagnosis, treatment, and research. In this paper, a novel image watermarking approach based on the human visual system (HVS model and neural network technique is proposed. The watermark was inserted into the middle frequency coefficients of the cover image’s blocked DCT based transform domain. In order to make the watermark stronger and less susceptible to different types of attacks, it is essential to find the maximum amount of interested watermark before the watermark becomes visible. In this paper, neural networks are used to implement an automated system of creating maximum-strength watermarks. The experimental results show that such method can survive of common image processing operations and has good adaptability for automated watermark embedding.

  11. Congestion Control for ATM Networks Based on Diagonal Recurrent Neural Networks

    Institute of Scientific and Technical Information of China (English)

    HuangYunxian; YanWei

    1997-01-01

    An adaptive control model and its algorithms based on simple diagonal recurrent neural networks are presented for the dynamic congestion control in broadband ATM networks.Two simple dynamic queuing models of real networks are used to test the performance of the suggested control scheme.

  12. CONTROL SCHEMES FOR CMAC NEURAL NETWORK-BASED VISUAL SERVOING

    Institute of Scientific and Technical Information of China (English)

    Wang Huaming; Xi Wenming; Zhu Jianying

    2003-01-01

    In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.

  13. Term Structure of Interest Rates Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation (BP) neural networks models. The prediction performance is measured with US interest rate data. Then, RBF and BP models are compared with Vasicek's model and Cox-Ingersoll-Ross (CIR) model. The comparison reveals that neural network models outperform Vasicek's model and CIR model,which are more precise and closer to the real market situation.

  14. Neural Network Inverse Adaptive Controller Based on Davidon Least Square

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    General neural network inverse adaptive controller haa two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system.These defects limit the scope in which the neural network inverse adaptive controller is used.We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence,and then through constructing the pseudo-plant,a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system.The simulation results show the validity of this scheme.

  15. Pseudo Random Number Generator Based on Back Propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    WANG Bang-ju; WANG Yu-hua; NIU Li-ping; ZHANG Huan-guo

    2007-01-01

    Random numbers play an increasingly important role in secure wire and wireless communication.Thus the design quality of random number generator(RNG) is significant in information security.A novel pseudo RNG is proposed for improving the security of network communication.The back propagation neural network(BPNN) is nonlinear,which can be used to improve the traditional RNG.The novel pseudo RNG is based on BPNN techniques.The result of test suites standardized by the U.S shows that the RNG can satisfy the security of communication.

  16. Research on Transformer Fault Based on Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Li Yingshun

    2015-01-01

    Full Text Available With the development of computer science and technology, and increasingly intelligent industrial production, the application of big data in industry also advances rapidly, and the development of artificial intelligence in the aspect of fault diagnosis is particularly prominent. On the basis of MATLAB platform, this paper constructs a fault diagnosis expert system of artificial intelligence machine based on the probabilistic neural network, and it also carries out a simulation of production process by the use of bionic algorithm. This paper makes a diagnosis of transformer fault by the use of an expert system developed by this paper, and verifies that the probabilistic neural network has a good convergence, fault-tolerant ability and big data handling capability in the fault diagnosis. It is suitable for industrial production, which can provide a reliable mathematical model for the construction of fault diagnosis expert system in the industrial production.

  17. Parametric Jominy profiles predictor based on neural networks

    Directory of Open Access Journals (Sweden)

    Valentini, R.

    2005-12-01

    Full Text Available The paper presents a method for the prediction of the Jominy hardness profiles of steels for microalloyed Boron steel which is based on neural networks. The Jominy profile has been parameterized and the parameters, which are a sort of "compact representation" of the profile itself, are linked to the steel chemical composition through a neural network. Numerical results are presented and discussed.

    El trabajo presenta un método de estimación de perfiles de dureza Jominy para aceros microaleados al boro basado en redes neuronales. Los parámetros de perfil Jominy, que constituyen una especie de "representación compacta" del perfil mismo, son determinados y puestos en relación con la composición química del acero mediante una red neuronal. Los resultados numéricos son expuestos y discutidos.

  18. Neural network based dynamic controllers for industrial robots.

    Science.gov (United States)

    Oh, S Y; Shin, W C; Kim, H G

    1995-09-01

    The industrial robot's dynamic performance is frequently measured by positioning accuracy at high speeds and a good dynamic controller is essential that can accurately compute robot dynamics at a servo rate high enough to ensure system stability. A real-time dynamic controller for an industrial robot is developed here using neural networks. First, an efficient time-selectable hidden layer architecture has been developed based on system dynamics localized in time, which lends itself to real-time learning and control along with enhanced mapping accuracy. Second, the neural network architecture has also been specially tuned to accommodate servo dynamics. This not only facilitates the system design through reduced sensing requirements for the controller but also enhances the control performance over the control architecture neglecting servo dynamics. Experimental results demonstrate the controller's excellent learning and control performances compared with a conventional controller and thus has good potential for practical use in industrial robots.

  19. Neighborhood based Levenberg-Marquardt algorithm for neural network training.

    Science.gov (United States)

    Lera, G; Pinzolas, M

    2002-01-01

    Although the Levenberg-Marquardt (LM) algorithm has been extensively applied as a neural-network training method, it suffers from being very expensive, both in memory and number of operations required, when the network to be trained has a significant number of adaptive weights. In this paper, the behavior of a recently proposed variation of this algorithm is studied. This new method is based on the application of the concept of neural neighborhoods to the LM algorithm. It is shown that, by performing an LM step on a single neighborhood at each training iteration, not only significant savings in memory occupation and computing effort are obtained, but also, the overall performance of the LM method can be increased.

  20. Chinese word sense disambiguation based on neural networks

    Institute of Scientific and Technical Information of China (English)

    LIU Ting; LU Zhi-mao; LANG Jun; LI Sheng

    2005-01-01

    The input of a network is the key problem for Chinese word sense disambiguation utilizing the neural network. This paper presents an input model of the neural network that calculates the mutual information between contextual words and the ambiguous word by using statistical methodology and taking the contextual words of a certain number beside the ambiguous word according to ( - M, + N). The experiment adopts triple-layer BP Neural Network model and proves how the size of a training set and the value of M and N affect the performance of the Neural Network Model. The experimental objects are six pseudowords owning three word-senses constructed according to certain principles. The tested accuracy of our approach on a closed-corpus reaches 90. 31% ,and 89. 62% on an open-corpus. The experiment proves that the Neural Network Model has a good performance on Word Sense Disambiguation.

  1. Recursive Neural Networks Based on PSO for Image Parsing

    Directory of Open Access Journals (Sweden)

    Guo-Rong Cai

    2013-01-01

    Full Text Available This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO and Recursive Neural Networks (RNNs. State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel CRF, region-based energy, simultaneous MRF, and superpixel MRF.

  2. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  3. Layered learning of soccer robot based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental results that the model is effective.

  4. Expert System Based on Data Mining and Neural Networks

    Institute of Scientific and Technical Information of China (English)

    NI Zhi-wei; JIA Rui-yu

    2001-01-01

    On the basis of data mining and neural network, this paper proposes a general framework of the neural network expert system and discusses the key techniques in this kind of system. We apply these ideas on agricultural expert system to find some unknown useful knowledge and get some satisfactory results.

  5. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  6. Neural Network Based Popularity Prediction For IPTV System

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-12-01

    Full Text Available Internet protocol television (IPTV, being an emerging Internet application, plays an important and indispensable role in our daily life. In order to maximize user experience and on the same time to minimize service cost, we must take into pay attention to how to reduce the storage and transport costs. A lot of previous work has been done before to do this. There is a challenging problem in this: how to predict the popularities of videos as accurate as possible. To solve the problem, this paper presents a Neural Network model for the popularity prediction of the programs in the IPTV system. And we use the actual historical logs to validate our method. The historical logs are divided to two parts, one is used to train the neural network by extract input/output vectors, and the other part is used to verify the model. The experimental results from our validation show the Neural Network based method can gain better accuracy than the comparative method.

  7. Feature Selection for Neural Network Based Stock Prediction

    Science.gov (United States)

    Sugunnasil, Prompong; Somhom, Samerkae

    We propose a new methodology of feature selection for stock movement prediction. The methodology is based upon finding those features which minimize the correlation relation function. We first produce all the combination of feature and evaluate each of them by using our evaluate function. We search through the generated set with hill climbing approach. The self-organizing map based stock prediction model is utilized as the prediction method. We conduct the experiment on data sets of the Microsoft Corporation, General Electric Co. and Ford Motor Co. The results show that our feature selection method can improve the efficiency of the neural network based stock prediction.

  8. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  9. Simulation Model of Magnetic Levitation Based on NARX Neural Networks

    Directory of Open Access Journals (Sweden)

    Dragan Antić

    2013-04-01

    Full Text Available In this paper, we present analysis of different training types for nonlinear autoregressive neural network, used for simulation of magnetic levitation system. First, the model of this highly nonlinear system is described and after that the Nonlinear Auto Regressive eXogenous (NARX of neural network model is given. Also, numerical optimization techniques for improved network training are described. It is verified that NARX neural network can be successfully used to simulate real magnetic levitation system if suitable training procedure is chosen, and the best two training types, obtained from experimental results, are described in details.

  10. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  11. Wavelet neural network based fault diagnosis in nonlinear analog circuits

    Institute of Scientific and Technical Information of China (English)

    Yin Shirong; Chen Guangju; Xie Yongle

    2006-01-01

    The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studied. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.

  12. Optimization Design based on BP Neural Network and GA Method

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2013-12-01

    Full Text Available This study puts forward one kind optimization controlling solution method on complicated system. At first modeling using neural network then adopt the real data to structure the neural network model of pertinence, make the parameter to seek to the neural network model excellently by mixing GA finally, thus got intelligence to the complicated system to optimize and control. The method can identify network configuration and network training methods. By adopting the number coding and effectively reducing the network size and the network convergence time, increase the network training speed. The study provides this and optimizes relevant MATLAB procedure which controls the method, so long as adjust a little to the concrete problem, can believe this procedure well the optimization of the complicated system controls the problem in the reality of solving.

  13. Classification data mining method based on dynamic RBF neural networks

    Science.gov (United States)

    Zhou, Lijuan; Xu, Min; Zhang, Zhang; Duan, Luping

    2009-04-01

    With the widely application of databases and sharp development of Internet, The capacity of utilizing information technology to manufacture and collect data has improved greatly. It is an urgent problem to mine useful information or knowledge from large databases or data warehouses. Therefore, data mining technology is developed rapidly to meet the need. But DM (data mining) often faces so much data which is noisy, disorder and nonlinear. Fortunately, ANN (Artificial Neural Network) is suitable to solve the before-mentioned problems of DM because ANN has such merits as good robustness, adaptability, parallel-disposal, distributing-memory and high tolerating-error. This paper gives a detailed discussion about the application of ANN method used in DM based on the analysis of all kinds of data mining technology, and especially lays stress on the classification Data Mining based on RBF neural networks. Pattern classification is an important part of the RBF neural network application. Under on-line environment, the training dataset is variable, so the batch learning algorithm (e.g. OLS) which will generate plenty of unnecessary retraining has a lower efficiency. This paper deduces an incremental learning algorithm (ILA) from the gradient descend algorithm to improve the bottleneck. ILA can adaptively adjust parameters of RBF networks driven by minimizing the error cost, without any redundant retraining. Using the method proposed in this paper, an on-line classification system was constructed to resolve the IRIS classification problem. Experiment results show the algorithm has fast convergence rate and excellent on-line classification performance.

  14. Sub-pixel mapping method based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    LI Jiao; WANG Li-guo; ZHANG Ye; GU Yan-feng

    2009-01-01

    A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel. The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information. Then the sub-pixel scaled target could be predicted by the trained model. In order to improve the performance of BP network, BP learning algorithm with momentum was employed. The experiments were conducted both on synthetic images and on hyperspectral imagery (HSI). The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.

  15. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  16. Convolutional Neural Network Based Fault Detection for Rotating Machinery

    Science.gov (United States)

    Janssens, Olivier; Slavkovikj, Viktor; Vervisch, Bram; Stockman, Kurt; Loccufier, Mia; Verstockt, Steven; Van de Walle, Rik; Van Hoecke, Sofie

    2016-09-01

    Vibration analysis is a well-established technique for condition monitoring of rotating machines as the vibration patterns differ depending on the fault or machine condition. Currently, mainly manually-engineered features, such as the ball pass frequencies of the raceway, RMS, kurtosis an crest, are used for automatic fault detection. Unfortunately, engineering and interpreting such features requires a significant level of human expertise. To enable non-experts in vibration analysis to perform condition monitoring, the overhead of feature engineering for specific faults needs to be reduced as much as possible. Therefore, in this article we propose a feature learning model for condition monitoring based on convolutional neural networks. The goal of this approach is to autonomously learn useful features for bearing fault detection from the data itself. Several types of bearing faults such as outer-raceway faults and lubrication degradation are considered, but also healthy bearings and rotor imbalance are included. For each condition, several bearings are tested to ensure generalization of the fault-detection system. Furthermore, the feature-learning based approach is compared to a feature-engineering based approach using the same data to objectively quantify their performance. The results indicate that the feature-learning system, based on convolutional neural networks, significantly outperforms the classical feature-engineering based approach which uses manually engineered features and a random forest classifier. The former achieves an accuracy of 93.61 percent and the latter an accuracy of 87.25 percent.

  17. Neural Network Based Montioring and Control of Fluidized Bed.

    Energy Technology Data Exchange (ETDEWEB)

    Bodruzzaman, M.; Essawy, M.A.

    1996-04-01

    The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to

  18. Implementation of pattern recognition algorithm based on RBF neural network

    Science.gov (United States)

    Bouchoux, Sophie; Brost, Vincent; Yang, Fan; Grapin, Jean Claude; Paindavoine, Michel

    2002-12-01

    In this paper, we present implementations of a pattern recognition algorithm which uses a RBF (Radial Basis Function) neural network. Our aim is to elaborate a quite efficient system which realizes real time faces tracking and identity verification in natural video sequences. Hardware implementations have been realized on an embedded system developed by our laboratory. This system is based on a DSP (Digital Signal Processor) TMS320C6x. The optimization of implementations allow us to obtain a processing speed of 4.8 images (240x320 pixels) per second with a correct rate of 95% of faces tracking and identity verification.

  19. SEGMENTATION OF RANGE IMAGE BASED ON KOHONEN NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Zou Ning; Liu Jian; Zhou Manli; Li Qing

    2001-01-01

    This paper presents an unsupervised range image segmentation based on Kohonen neural network. At first, the derivative and partial derivative of each point are calculated and the normal in each points is gotten. With the character vectors including normal and range value, self-organization map is introduced to cluster. The normal analysis is used to eliminate over-segmentation and the last result is gotten. This method avoid selecting original seeds and uses fewer samples, moreover computes rapidly. The experiment shows the better performance.

  20. An Improved Minimum Distance Method Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MDM (minimum distance method) is a very popular algorithm in state recognition. But it has a presupposition, that is, the distance within one class must be shorter enough than the distance between classes. When this presupposition is not satisfied, the method is no longer valid. In order to overcome the shortcomings of MDM, an improved mi nimum distance method (IMDM) based on ANN (artificial neural networks) is presented. The simulation results demonstrate that IMDM has two advantages, that is, the rate of recognition is faster and the accuracy of recognition is higher compared with MDM.

  1. Pulse frequency classification based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; WANG Xu; YANG Dan; FU Rong

    2006-01-01

    In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.

  2. Fuzzy neural network based on a Sigmoid chaotic neuron

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Wang Xing-Yuan

    2012-01-01

    The theories of intelligent information processing are urgently needed for the rapid development of modem science.In this paper,a novel fuzzy chaotic neural network,which is the combination of fuzzy logic system,artificial neuralnetwork system,and chaotic system,is proposed.We design its model structure which is based on the Sigmoid map,derive its mathematical model,and analyse its chaotic characteristics.Finally the relationship between the accuracy of map and the membership function is illustrated by simulation.

  3. Star pattern recognition method based on neural network

    Institute of Scientific and Technical Information of China (English)

    LI Chunyan; LI Ke; ZHANG Longyun; JIN Shengzhen; ZU Jifeng

    2003-01-01

    Star sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft by utilizing star observations. The key function is to recognize the observed stars by comparing them with the reference catalogue. Autonomous star pattern recognition requires that similar patterns can be distinguished from each other with a small training set. Therefore, a new method based on neural network technology is proposed and a recognition system containing parallel backpropagation (BP) multi-subnets is designed. The simulation results show that the method performs much better than traditional algorithms and the proposed system can achieve both higher recognition accuracy and faster recognition speed.

  4. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  5. Structural Health Monitoring Using Neural Network Based Vibrational System Identification

    CERN Document Server

    Sofge, Donald A

    2007-01-01

    Composite fabrication technologies now provide the means for producing high-strength, low-weight panels, plates, spars and other structural components which use embedded fiber optic sensors and piezoelectric transducers. These materials, often referred to as smart structures, make it possible to sense internal characteristics, such as delaminations or structural degradation. In this effort we use neural network based techniques for modeling and analyzing dynamic structural information for recognizing structural defects. This yields an adaptable system which gives a measure of structural integrity for composite structures.

  6. Neural Network approach for image retrieval based on preference elicitation

    Directory of Open Access Journals (Sweden)

    B.Veera Jyothi,

    2010-07-01

    Full Text Available Multimedia technologies have been developing rapidly over the last few years and have yielded a large number of databases containing graphical documents. Tools for content-based search of graphical objects have been the subject of intensive research, but their performance is still unsatisfactory for many applications, opening up afield for further research and technology development. Up till now, all popular Internet search engines have been only text-based, including those that search for images. In this paper We propose an image retrieval system based on neural networks. The advantage of using the neural network is that the amount of semantic gap can be reduced when compared to other techniques which may be based onclustering. The methodology proposed below is designed for a specific class of objects, which can be broken down into subobjects in such a way that the main object can be classified by shape, color distribution and texture of the sub objects and the spatial spatial relations between the sub-objects in a 2- dimensional image. We also assume that translation, scaling and 2D rotation do not change the class of the object, but we do not consider 3Dtransformation.Therefore, photos of the same 3D object from different positions for example are considered to be objects belonging to different class.

  7. Neural Network Based Parking via Google Map Guidance

    Directory of Open Access Journals (Sweden)

    A.Saranya

    2015-02-01

    Full Text Available Intelligent transportation systems (ITS focus to generate and spread creative services related to different transport modes for traffic management and hence enables the passenger informed about the traffic and to use the transport networks in a better way. Intelligent Trip Modeling System (ITMS uses machine learning to forecast the traveling speed profile for a selected route based on the traffic information available at the trip starting time. The intelligent Parking Information Guidance System provides an eminent Neural Network based intelligence system which provides automatic allocate ion of parking's through the Global Information system across the path of the users travel. In this project using efficient lookup table searches and a Lagrange-multiplier bisection search, Computational Optimized Allocation Algorithm converges faster to the optimal solution than existing techniques. The purpose of this project is to simulate and implement a real parking environment that allocates vacant parking slots using Allocation algorithm.

  8. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  9. Comparison Of Power Quality Disturbances Classification Based On Neural Network

    Directory of Open Access Journals (Sweden)

    Nway Nway Kyaw Win

    2015-07-01

    Full Text Available Abstract Power quality disturbances PQDs result serious problems in the reliability safety and economy of power system network. In order to improve electric power quality events the detection and classification of PQDs must be made type of transient fault. Software analysis of wavelet transform with multiresolution analysis MRA algorithm and feed forward neural network probabilistic and multilayer feed forward neural network based methodology for automatic classification of eight types of PQ signals flicker harmonics sag swell impulse fluctuation notch and oscillatory will be presented. The wavelet family Db4 is chosen in this system to calculate the values of detailed energy distributions as input features for classification because it can perform well in detecting and localizing various types of PQ disturbances. This technique classifies the types of PQDs problem sevents.The classifiers classify and identify the disturbance type according to the energy distribution. The results show that the PNN can analyze different power disturbance types efficiently. Therefore it can be seen that PNN has better classification accuracy than MLFF.

  10. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-10-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  11. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-11-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  12. RMB Exchange Rate Forecast Approach Based on BP Neural Network

    Science.gov (United States)

    Ye, Sun

    RMB exchange rate system has reformed since July, 2005. This article chose RMB exchange rate data during a period from July, 2005 to September 2010 to establish BP neural network model to forecast RMB exchange rate in the future by using MATLAB software. The result showed that BP neural network is effective to forecast RMB exchange rate and also indicated that RMB exchange rate will continue to appreciate in the future.

  13. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  14. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  15. WLAN indoor location method based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    Zhou Mu; Sun Ying; Xu Yubin; Deng Zhian; Meng Weixiao

    2010-01-01

    WLAN indoor location method based on artificial neural network (ANN) is analyzed.A three layer feed-forward ANN model offers the benefits of reducing time cost of the layout of an indoor location system, saving storage cost of the radio map establishment and enhancing real-time capacity in the on-line phase.According to the analysis of SNR distributions of recorded beacon signal samples and discussion about the multi-mode phenomenon, the one map method is proposed for the purpose of simplifying ANN input values and increasing location performances.Based on the simulations and comparison analysis with other two typical indoor location methods, K-nearest neighbor (KNN) and probability, the feasibility and effectiveness of ANN-based indoor location method are verified with average location error of 2.37m and location accuracy of 78.6% in 3m.

  16. Wlan-Based Indoor Localization Using Neural Networks

    Science.gov (United States)

    Saleem, Fasiha; Wyne, Shurjeel

    2016-07-01

    Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.

  17. Deep Neural Network Based Demand Side Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Seunghyoung Ryu

    2016-12-01

    Full Text Available In the smart grid, one of the most important research areas is load forecasting; it spans from traditional time series analyses to recent machine learning approaches and mostly focuses on forecasting aggregated electricity consumption. However, the importance of demand side energy management, including individual load forecasting, is becoming critical. In this paper, we propose deep neural network (DNN-based load forecasting models and apply them to a demand side empirical load database. DNNs are trained in two different ways: a pre-training restricted Boltzmann machine and using the rectified linear unit without pre-training. DNN forecasting models are trained by individual customer’s electricity consumption data and regional meteorological elements. To verify the performance of DNNs, forecasting results are compared with a shallow neural network (SNN, a double seasonal Holt–Winters (DSHW model and the autoregressive integrated moving average (ARIMA. The mean absolute percentage error (MAPE and relative root mean square error (RRMSE are used for verification. Our results show that DNNs exhibit accurate and robust predictions compared to other forecasting models, e.g., MAPE and RRMSE are reduced by up to 17% and 22% compared to SNN and 9% and 29% compared to DSHW.

  18. Neural Network based Modeling and Simulation of Transformer Inrush Current

    Directory of Open Access Journals (Sweden)

    Puneet Kumar Singh

    2012-05-01

    Full Text Available Inrush current is a very important phenomenon which occurs during energization of transformer at no load due to temporary over fluxing. It depends on several factors like magnetization curve, resistant and inductance of primary winding, supply frequency, switching angle of circuit breaker etc. Magnetizing characteristics of core represents nonlinearity which requires improved nonlinearity solving technique to know the practical behavior of inrush current. Since several techniques still working on modeling of transformer inrush current but neural network ensures exact modeling with experimental data. Therefore, the objective of this study was to develop an Artificial Neural Network (ANN model based on data of switching angle and remanent flux for predicting peak of inrush current. Back Propagation with Levenberg-Marquardt (LM algorithm was used to train the ANN architecture and same was tested for the various data sets. This research work demonstrates that the developed ANN model exhibits good performance in prediction of inrush current’s peak with an average of percentage error of -0.00168 and for modeling of inrush current with an average of percentage error of -0.52913.

  19. Neural Network Based Model for Predicting Housing Market Performance

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khalafallah

    2008-01-01

    The United States real estate market is currently facing its worst hit in two decades due to the slowdown of housing sales. The most affected by this decline are real estate investors and home develop-ers who are currently struggling to break-even financially on their investments. For these investors, it is of utmost importance to evaluate the current status of the market and predict its performance over the short-term in order to make appropriate financial decisions. This paper presents the development of artificial neu-ral network based models to support real estate investors and home developers in this critical task. The pa-per describes the decision variables, design methodology, and the implementation of these models. The models utilize historical market performance data sets to train the artificial neural networks in order to pre-dict unforeseen future performances. An application example is analyzed to demonstrate the model capabili-ties in analyzing and predicting the market performance. The model testing and validation showed that the error in prediction is in the range between -2% and +2%.

  20. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances.

  1. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Science.gov (United States)

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  2. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    Science.gov (United States)

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  3. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Nenad Kojić

    2012-06-01

    Full Text Available The networking infrastructure of wireless mesh networks (WMNs is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs. This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission. The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  4. A neural networks-based hybrid routing protocol for wireless mesh networks.

    Science.gov (United States)

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  5. Study on optimization control method based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    FU Hua; SUN Shao-guang; XU Zhen-Iiang

    2005-01-01

    In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limitations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advantages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With optimization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.

  6. Quantum-based algorithm for optimizing artificial neural networks.

    Science.gov (United States)

    Tzyy-Chyang Lu; Gwo-Ruey Yu; Jyh-Ching Juang

    2013-08-01

    This paper presents a quantum-based algorithm for evolving artificial neural networks (ANNs). The aim is to design an ANN with few connections and high classification performance by simultaneously optimizing the network structure and the connection weights. Unlike most previous studies, the proposed algorithm uses quantum bit representation to codify the network. As a result, the connectivity bits do not indicate the actual links but the probability of the existence of the connections, thus alleviating mapping problems and reducing the risk of throwing away a potential candidate. In addition, in the proposed model, each weight space is decomposed into subspaces in terms of quantum bits. Thus, the algorithm performs a region by region exploration, and evolves gradually to find promising subspaces for further exploitation. This is helpful to provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness evaluation problem. The proposed model is tested on four benchmark problems, namely breast cancer and iris, heart, and diabetes problems. The experimental results show that the proposed algorithm can produce compact ANN structures with good generalization ability compared to other algorithms.

  7. Manganese oxide microswitch for electronic memory based on neural networks

    Science.gov (United States)

    Ramesham, R.; Daud, T.; Moopenn, A.; Thakoor, A. P.; Khanna, S. K.

    1989-01-01

    A solid-state, resistance tailorable, programmable-once, binary, nonvolatile memory switch based on manganese oxide thin films is reported. MnO(x) exhibits irreversible memory switching from conducting (on) to insulating (off) state, with the off and on resistance ratio of greater than 10,000. The switching mechanism is current-triggered chemical transformation of a conductive MnO(2-Delta) to an insulating Mn2O3 state. The energy required for switching is of the order of 4-20 nJ/sq micron. The low switching energy, stability of the on and off states, and tailorability of the on state resistance make these microswitches well suited as programmable binary synapses in electronic associative memories based on neural network models.

  8. OPTIMAL PWM BASED ON REAL—TIME SOLUTION WITH NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    ShenZhongting; YanYangguang

    2002-01-01

    A novel concept of neural network based control in pulse-width modulation(PWM)voltage source inverters is presented.On the one hand,the optimal switching an-gles are obtained in real time by the neural network based controller;on the other hand,the output voltage is ad-justed to fit the expected value by neural network when input voltage or loads change.The structure of neural network is simple and easy to be realized by DSP hard-ware system.No large memory used for the existing opti-mal PWM schemes is required in the system.Theoreticalanlysis of the proposed so-called sparse neural network is provided,and the stability of the system is proved.Un-der the control of neural network the error of output volt-age descends sharply,and the system outputs ac voltage with high precision.

  9. Can artificial neural networks provide an "expert's" view of medical students performances on computer based simulations?

    OpenAIRE

    Stevens, R. H.; K. Najafi

    1992-01-01

    Artificial neural networks were trained to recognize the test selection patterns of students' successful solutions to seven immunology computer based simulations. When new student's test selections were presented to the trained neural network, their problem solutions were correctly classified as successful or non-successful > 90% of the time. Examination of the neural networks output weights after each test selection revealed a progressive increase for the relevant problem suggesting that a s...

  10. Technique of information hiding based on neural network

    Science.gov (United States)

    Xu, Li; Tao, Gu

    2007-04-01

    A neural network algorithm is proposed which can conceal different files effectively such as *.exe, *.com, *.doc, *.txt and self-defined file formats. First, the important contents of the file are coded into a binary array. The total number of 0s and 1s is N. Second, to make the neural network learn the sample space, N pixel values and their closely relevant pixel values are randomly chosen from a color BMP format image and used to train the neural network, thus we get a group of network parameters and its outputs Y1. Each element of Y1 is increased by 0 or 1 according to the zeros and ones from the array, the increased Y1is called Y2. Third, using the transmitted parameters, a receiver can restore the neural network. Network outputs Y3(Y1) can also be obtained by simulating the restored neural network with the seed pixel values. Finally, the encrypted information can be decoded by Y2 and Y3. The acquisition of parameters and Y1 is different when the neural network is trained each time, so the algorithm has the characteristic of a one-time pad, which can enhance the correspondence security. Because the network colligates the chosen pixel values and their closely relevant pixel values, a cryptanalyst can not restore the network parameters and Y3 easily. Without the seed picture and the password, he does not know the encrypted data even if he knows the network parameters and Y2. If he only has the seed picture, he does not know the encrypted contents either, because there is no other information in the picture, which just is used to train the network. Using the same algorithm, the fragile watermark can be embedded into Y1 simultaneously. Besides telling you whether Y2 or network parameters have been tampered with, the fragile watermark could as well, reflecting the distortion status in the spatial domain of the tampered image. Therefore, the proposed method is of significance in practice.

  11. Query Based Approach Towards Spam Attacks Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar Tak

    2010-10-01

    Full Text Available Currently, spam and scams are passive attack over the inbox which can initiated to steal someconfidential information, to spread Worms, Viruses, Trojans, cookies and Sometimes they are used forphishing attacks. Spam mails are the major issue over mail boxes as well as over the internet. Spam mailscan be the cause of phishing attack, hacking of banking accounts, attacks on confidential data. Spammingis growing at a rapid rate since sending a flood of mails is easy and very cheap. Spam mails disturb themind-peace, waste time and consume various resources e.g., memory space and network bandwidth, sofiltering of spam mails is a big issue in cyber security.This paper presents an novel approach of spam filtering which is based on some query generatedapproach on the knowledge base and also use some artificial neural network methods to detect the spammails based on their behavior. analysis of the mail header, cross validation. Proposed methodologyincludes the 7 several steps which are well defined and achieve the higher accuracy. It works well with allkinds of spam mails (text based spam as well as image spam. Our tested data and experiments resultsshows promising results, and spam’s are detected out at least 98.17 % with 0.12% false positive.

  12. Query Based Approach Towards Spam Attacks Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar Tak

    2010-10-01

    Full Text Available Currently, spam and scams are passive attack over the inbox which can initiated to steal some confidential information, to spread Worms, Viruses, Trojans, cookies and Sometimes they are used for phishing attacks. Spam mails are the major issue over mail boxes as well as over the internet. Spam mails can be the cause of phishing attack, hacking of banking accounts, attacks on confidential data. Spamming is growing at a rapid rate since sending a flood of mails is easy and very cheap. Spam mails disturb the mind-peace, waste time and consume various resources e.g., memory space and network bandwidth, so filtering of spam mails is a big issue in cyber security. This paper presents an novel approach of spam filtering which is based on some query generated approach on the knowledge base and also use some artificial neural network methods to detect the spam mails based on their behavior. analysis of the mail header, cross validation. Proposed methodology includes the 7 several steps which are well defined and achieve the higher accuracy. It works well with all kinds of spam mails (text based spam as well as image spam. Our tested data and experiments results shows promising results, and spam’s are detected out at least 98.17 % with 0.12% false positive.

  13. Neural Network Based Forecasting of Foreign Currency Exchange Rates

    Directory of Open Access Journals (Sweden)

    S. Kumar Chandar

    2014-06-01

    Full Text Available The foreign currency exchange market is the highest and most liquid of the financial markets, with an estimated $1 trillion traded every day. Foreign exchange rates are the most important economic indices in the international financial markets. The prediction of them poses many theoretical and experimental challenges. This paper reports empirical proof that a neural network model is applicable to the prediction of foreign exchange rates. The exchange rates between Indian Rupee and four other major currencies, Pound Sterling, US Dollar, Euro and Japanese Yen are forecast by the trained neural networks. The neural network was trained by three different learning algorithms using historical data to find the suitable algorithm for prediction. The forecasting performance of the proposed system is evaluated using three statistical metrics and compared. The results presented here demonstrate that significantly close prediction can be made without extensive knowledge of market data.

  14. Artificial neural network based on SQUIDs: demonstration of network training and operation

    Science.gov (United States)

    Chiarello, F.; Carelli, P.; Castellano, M. G.; Torrioli, G.

    2013-12-01

    We propose a scheme for the realization of artificial neural networks based on superconducting quantum interference devices (SQUIDs). In order to demonstrate the operation of this scheme we designed and successfully tested a small network that implements an XOR gate and is trained by means of examples. The proposed scheme can be particularly convenient as support for superconducting applications such as detectors for astrophysics, high energy experiments, medicine imaging and so on.

  15. Neural Network Based Color Recognition for Bobbin Sorting Machine

    Directory of Open Access Journals (Sweden)

    Mu Zhang

    2013-07-01

    Full Text Available Winding is a key process in the manufacturing process of textile industry. The normal and effective operation of winding process plays a very important role on the textiles’ quality and economic effects. At present, a large proportion of bobbins which collected from winder still have yarn left over. The bobbin recycling is severely limited and quick running of winder is seriously restricted, the invention of the the automatic bobbin sorting machine has solved this problem. The ability to distinguish bobbin which has yarn left over from the rest and the classification accuracy of color are the two important performance indicators for bobbin sorting machine. According to the development and application of the color recognition technology and the artificial intelligence method, this study proposes a novel color recognition method that based on BP neural networks. The result shows that the accuracy of color recognition reaches 98%.  

  16. Image restoration techniques based on fuzzy neural networks

    Institute of Scientific and Technical Information of China (English)

    刘普寅; 李洪兴

    2002-01-01

    By establishing some suitable partitions of input and output spaces, a novel fuzzy neuralnetwork (FNN) which is called selection type FNN is developed. Such a system is a multilayerfeedforward neural network, which can be a universal approximator with maximum norm. Based ona family of fuzzy inference rules that are of real senses, a simple and useful inference type FNN isconstructed. As a result, the fusion of selection type FNN and inference type FNN results in a novelfilter-FNN filter. It is simple in structure. And also it is convenient to design the learning algorithmfor structural parameters. Further, FNN filter can efficiently suppress impulse noise superimposed onimage and preserve fine image structure, simultaneously. Some examples are simulated to confirmthe advantages of FNN filter over other filters, such as median filter and adaptive weighted fuzzymean (AWFM) filter and so on, in suppression of noises and preservation of image structure.

  17. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    Science.gov (United States)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  18. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  19. Can artificial neural networks provide an "expert's" view of medical students performances on computer based simulations?

    Science.gov (United States)

    Stevens, R H; Najafi, K

    1992-01-01

    Artificial neural networks were trained to recognize the test selection patterns of students' successful solutions to seven immunology computer based simulations. When new student's test selections were presented to the trained neural network, their problem solutions were correctly classified as successful or non-successful > 90% of the time. Examination of the neural networks output weights after each test selection revealed a progressive increase for the relevant problem suggesting that a successful solution was represented by the neural network as the accumulation of relevant tests. Unsuccessful problem solutions revealed two patterns of students performances. The first pattern was characterized by low neural network output weights for all seven problems reflecting extensive searching and lack of recognition of relevant information. In the second pattern, the output weights from the neural network were biased towards one of the remaining six incorrect problems suggesting that the student mis-represented the current problem as an instance of a previous problem.

  20. Continuous speech recognition based on convolutional neural network

    Science.gov (United States)

    Zhang, Qing-qing; Liu, Yong; Pan, Jie-lin; Yan, Yong-hong

    2015-07-01

    Convolutional Neural Networks (CNNs), which showed success in achieving translation invariance for many image processing tasks, are investigated for continuous speech recognitions in the paper. Compared to Deep Neural Networks (DNNs), which have been proven to be successful in many speech recognition tasks nowadays, CNNs can reduce the NN model sizes significantly, and at the same time achieve even better recognition accuracies. Experiments on standard speech corpus TIMIT showed that CNNs outperformed DNNs in the term of the accuracy when CNNs had even smaller model size.

  1. Study on the Robot Robust Adaptive Control Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    温淑焕; 王洪瑞; 吴丽艳

    2003-01-01

    Force control based on neural networks is presented. Under the framework of hybrid control, an RBF neural network is used to compensate for all the uncertainties from robot dynamics and unknown environment first. The technique will improve the adaptability to environment stiffness when the end-effector is in contact with the environment, and does not require any a priori knowledge on the upper bound of syste uncertainties. Moreover, it need not compute the inverse of inertia matrix. Learning algorithms for neural networks to minimize the force error directly are designed. Simulation results have shown a better force/position tracking when neural network is used.

  2. Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.

  3. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  4. License Plate Recognition Based on Transform Coding and Neural Network

    Institute of Scientific and Technical Information of China (English)

    李小平; 胡海生; 宋瀚涛; 朱建学; 丁俨

    2003-01-01

    A method of vehicle license plate recognition utilizing Karhunen-Loeve(K-L) transform is provided. The transform is used to extract features from a mass of image templates, to describe high-dimensional images with low-dimensional ones, and moreover, to implement data compression and play down complexity of the neural network. With the character to reduce eigenspace dimensionality of K-L transform and the ability to map data of BP network, the method does effectively in recognizing license plates.

  5. Active Control of Sound based on Diagonal Recurrent Neural Network

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing

    2002-01-01

    Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The fe

  6. Neural network based satellite tracking for deep space applications

    Science.gov (United States)

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  7. A neural network based seafloor classification using acoustic backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    This paper presents a study results of the Artificial Neural Network (ANN) architectures [Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP)] using single beam echosounding data. The single beam echosounder, operable at 12 kHz, has been used...

  8. Neural network-based control using Lyapunov functions

    Science.gov (United States)

    Luxemburg, Leon A.

    1993-01-01

    We have successfully demonstrated how the problem of stabilization of plants can be reduced to a problem of approximation of functions. Neural networks have been shown to have approximating and interpolating properties. This approach is good for linear and nonlinear plants. Software has been generated to demonstrate this approach.

  9. Optimization of Component Based Software Engineering Model Using Neural Network

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    2014-10-01

    Full Text Available The goal of Component Based Software Engineering (CBSE is to deliver high quality, more reliable and more maintainable software systems in a shorter time and within limited budget by reusing and combining existing quality components. A high quality system can be achieved by using quality components, framework and integration process that plays a significant role. So, techniques and methods used for quality assurance and assessment of a component based system is different from those of the traditional software engineering methodology. In this paper, we are presenting a model for optimizing Chidamber and Kemerer (CK metric values of component-based software. A deep analysis of a series of CK metrics of the software components design patterns is done and metric values are drawn from them. By using unsupervised neural network- Self Organizing Map, we have proposed a model that provides an optimized model for Software Component engineering model based on reusability that depends on CK metric values. Average, standard deviated and optimized values for the CK metric are compared and evaluated to show the optimized reusability of component based model.

  10. A novel compensation-based recurrent fuzzy neural network and its learning algorithm

    Institute of Scientific and Technical Information of China (English)

    WU Bo; WU Ke; LU JianHong

    2009-01-01

    Based on detailed atudy on aeveral kinds of fuzzy neural networks, we propose a novel compensation. based recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure Identification of the CRFNN In order to confirm the fuzzy rules and their correlaUve parameters effectively. Furthermore, we Improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability.

  11. Synthetical Control of AGC/LPC System Based on Neural Networks Internal Model Control

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.

  12. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  13. Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-guang; SHI Zhong-kun

    2006-01-01

    The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.

  14. Research on Feasibilityof Top-Coal Caving Based on Neural Network Technique

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the neural network technique, this paper proposes a BP neural network model which integratesgeological factors which affect top-coal caving in a comprehensive index. The index of top-coal caving may be usedto forecast the mining cost of working faces, which shows the model's potential prospect of applications.

  15. Batch Process Modelling and Optimal Control Based on Neural Network Models

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang

    2005-01-01

    This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.

  16. STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Zhang Cuiping; Yang Qingfo

    2003-01-01

    According to advantages of neural network and characteristics of operating procedures of engine, a new strategy is represented on the control of fuel injection and ignition timing of gasoline engine based on improved BP network algorithm. The optimum ignition advance angle and fuel injection pulse band of engine under different speed and load are tested for the samples training network, focusing on the study of the design method and procedure of BP neural network in engine injection and ignition control. The results show that artificial neural network technique can meet the requirement of engine injection and ignition control. The method is feasible for improving power performance, economy and emission performances of gasoline engine.

  17. Layer Winner-Take-All neural networks based on existing competitive structures.

    Science.gov (United States)

    Chen, C M; Yang, J F

    2000-01-01

    In this paper, we propose generalized layer winner-take-all (WTA) neural networks based on the suggested full WTA networks, which can be extended from any existing WTA structure with a simple weighted-and-sum neuron. With modular regularity and local connection, the layer WTA network in either hierarchical or recursive structure is suitable for a large number of competitors. The complexity and convergence performances of layer and direct WTA neural networks are analyzed. Simulation results and theoretical analyzes verify that the layer WTA neural networks with extendibility outperform their original direct WTA structures in aspects of low complexity and fast convergence.

  18. Model and Algorithm of BP Neural Network Based on Expanded Multichain Quantum Optimization

    Directory of Open Access Journals (Sweden)

    Baoyu Xu

    2015-01-01

    Full Text Available The model and algorithm of BP neural network optimized by expanded multichain quantum optimization algorithm with super parallel and ultra-high speed are proposed based on the analysis of the research status quo and defects of BP neural network to overcome the defects of overfitting, the random initial weights, and the oscillation of the fitting and generalization ability along with subtle changes of the network parameters. The method optimizes the structure of the neural network effectively and can overcome a series of problems existing in the BP neural network optimized by basic genetic algorithm such as slow convergence speed, premature convergence, and bad computational stability. The performance of the BP neural network controller is further improved. The simulation experimental results show that the model is with good stability, high precision of the extracted parameters, and good real-time performance and adaptability in the actual parameter extraction.

  19. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. EMP response modeling of TVS based on the recurrent neural network

    Directory of Open Access Journals (Sweden)

    Zhiqiang JI

    2015-04-01

    Full Text Available Due to the larger workload in the implementation process and the poor consistence between the test results and actual situation problems when using the transmission line pulse (TLP testing methods, a modeling method based on the recurrent neural network is proposed for EMP response forecast. Based on the TLP testing system, two categories of EMP are increased, which are the machine model ESD EMP and human metal model ESD EMP. Elman neural network, Jordan neural network and their combination namely Elman-Jordan neural network are established for response modeling of NUP2105L transient voltage suppressor (TVS forecasting the response under different EMP. The simulation results show that the recurrent neural network has satisfying modeling effects and high computation efficiency.

  1. Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian - River basin. The results by calculating show that the solution based on BP algorithms are consis tent with those based multiple-variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.

  2. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Yong Tao; Jiaqi Zheng; Yuanchang Lin

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  3. An attractor-based complexity measurement for Boolean recurrent neural networks.

    Directory of Open Access Journals (Sweden)

    Jérémie Cabessa

    Full Text Available We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of ω-automata, and then translating the most refined classification of ω-automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.

  4. An attractor-based complexity measurement for Boolean recurrent neural networks.

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E P

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of ω-automata, and then translating the most refined classification of ω-automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.

  5. The Chebyshev-polynomials-based unified model neural networks for function approximation.

    Science.gov (United States)

    Lee, T T; Jeng, J T

    1998-01-01

    In this paper, we propose the approximate transformable technique, which includes the direct transformation and indirect transformation, to obtain a Chebyshev-Polynomials-Based (CPB) unified model neural networks for feedforward/recurrent neural networks via Chebyshev polynomials approximation. Based on this approximate transformable technique, we have derived the relationship between the single-layer neural networks and multilayer perceptron neural networks. It is shown that the CPB unified model neural networks can be represented as a functional link networks that are based on Chebyshev polynomials, and those networks use the recursive least square method with forgetting factor as learning algorithm. It turns out that the CPB unified model neural networks not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural networks. Furthermore, we have also derived the condition such that the unified model generating by Chebyshev polynomials is optimal in the sense of error least square approximation in the single variable ease. Computer simulations show that the proposed method does have the capability of universal approximator in some functional approximation with considerable reduction in learning time.

  6. APPROACH TO FAULT ON-LINE DETECTION AND DIAGNOSIS BASED ON NEURAL NETWORKS FOR ROBOT IN FMS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on radial basis function (RBF) neural networks, the healthy working model of each sub-system of robot in FMS is established. A new approach to fault on-line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi-layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS.

  7. Intelligent Flow Control Technique of ABR Service in ATM Networks Based on Fuzzy Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZhangLiangjie; LiYanda; 等

    1997-01-01

    The ATM Forum voted to implement the rate-based flow control(RBFC)scheme to manage traffic in asynchronous transfer mode(ATM)networks.RBFC will be used specifically to manage available bit rate(ABR)service.Through the study of the transmission rate adjusting of the ABR traffic source,we propose and enhanced bit rate feedback(EBRF)scheme,which is the dynamic bit rate adjusting scheme based on fuzzy neural network(FNN).Simulation results show that it can enhance the switch buffer utilization on the premise of a full link utilization.

  8. Electromyogram-based neural network control of transhumeral prostheses

    Directory of Open Access Journals (Sweden)

    Christopher L. Pulliam, MS

    2011-07-01

    Full Text Available Upper-limb amputation can cause a great deal of functional impairment for patients, particularly for those with amputation at or above the elbow. Our long-term objective is to improve functional outcomes for patients with amputation by integrating a fully implanted electromyographic (EMG recording system with a wireless telemetry system that communicates with the patient's prosthesis. We believe that this should generate a scheme that will allow patients to robustly control multiple degrees of freedom simultaneously. The goal of this study is to evaluate the feasibility of predicting dynamic arm movements (both flexion/extension and pronation/supination based on EMG signals from a set of muscles that would likely be intact in patients with transhumeral amputation. We recorded movement kinematics and EMG signals from seven muscles during a variety of movements with different complexities. Time-delayed artificial neural networks were then trained offline to predict the measured arm trajectories based on features extracted from the measured EMG signals. We evaluated the relative effectiveness of various muscle subsets. Predicted movement trajectories had average root-mean-square errors of approximately 15.7° and 24.9° and average R2 values of approximately 0.81 and 0.46 for elbow flexion/extension and forearm pronation/supination, respectively.

  9. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction.

  10. Risk Assessment Algorithms Based On Recursive Neural Networks

    CERN Document Server

    De Lara, Alejandro Chinea Manrique

    2007-01-01

    The assessment of highly-risky situations at road intersections have been recently revealed as an important research topic within the context of the automotive industry. In this paper we shall introduce a novel approach to compute risk functions by using a combination of a highly non-linear processing model in conjunction with a powerful information encoding procedure. Specifically, the elements of information either static or dynamic that appear in a road intersection scene are encoded by using directed positional acyclic labeled graphs. The risk assessment problem is then reformulated in terms of an inductive learning task carried out by a recursive neural network. Recursive neural networks are connectionist models capable of solving supervised and non-supervised learning problems represented by directed ordered acyclic graphs. The potential of this novel approach is demonstrated through well predefined scenarios. The major difference of our approach compared to others is expressed by the fact of learning t...

  11. Glaucoma detection based on deep convolutional neural network.

    Science.gov (United States)

    Xiangyu Chen; Yanwu Xu; Damon Wing Kee Wong; Tien Yin Wong; Jiang Liu

    2015-08-01

    Glaucoma is a chronic and irreversible eye disease, which leads to deterioration in vision and quality of life. In this paper, we develop a deep learning (DL) architecture with convolutional neural network for automated glaucoma diagnosis. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images to discriminate between glaucoma and non-glaucoma patterns for diagnostic decisions. The proposed DL architecture contains six learned layers: four convolutional layers and two fully-connected layers. Dropout and data augmentation strategies are adopted to further boost the performance of glaucoma diagnosis. Extensive experiments are performed on the ORIGA and SCES datasets. The results show area under curve (AUC) of the receiver operating characteristic curve in glaucoma detection at 0.831 and 0.887 in the two databases, much better than state-of-the-art algorithms. The method could be used for glaucoma detection.

  12. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    KAUST Repository

    Naous, Rawan

    2016-11-02

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.

  13. Neural network based PWM AC chopper fed induction motor drive

    Directory of Open Access Journals (Sweden)

    Venkatesan Jamuna

    2009-01-01

    Full Text Available In this paper, a new Simulink model for a neural network controlled PWM AC chopper fed single phase induction motor is proposed. Closed loop speed control is achieved using a neural network controller. To maintain a constant fluid flow with a variation in pressure head, drives like fan and pump are operated with closed loop speed control. The need to improve the quality and reliability of the drive circuit has increased because of the growing demand for improving the performance of motor drives. With the increased availability of MOSFET's and IGBT's, PWM converters can be used efficiently in low and medium power applications. From the simulation studies, it is seen that the PWM AC chopper has a better harmonic spectrum and lesser copper loss than the Phase controlled AC chopper. It is observed that the drive system with the proposed model produces better dynamic performance, reduced overshoot and fast transient response. .

  14. Activated sludge process based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    张文艺; 蔡建安

    2002-01-01

    Considering the difficulty of creating water quality model for activated sludge system, a typical BP artificial neural network model has been established to simulate the operation of a waste water treatment facilities. The comparison of prediction results with the on-spot measurements shows the model, the model is accurate and this model can also be used to realize intelligentized on-line control of the wastewater processing process.

  15. A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion

    Institute of Scientific and Technical Information of China (English)

    ANG Xue-ye

    2007-01-01

    The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given . It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.

  16. Risk assessment of logistics outsourcing based on BP neural network

    Science.gov (United States)

    Liu, Xiaofeng; Tian, Zi-you

    The purpose of this article is to evaluate the risk of the enterprises logistics outsourcing. To get this goal, the paper first analysed he main risks existing in the logistics outsourcing, and then set up a risk evaluation index system of the logistics outsourcing; second applied BP neural network into the logistics outsourcing risk evaluation and used MATLAB to the simulation. It proved that the network error is small and has strong practicability. And this method can be used by enterprises to evaluate the risks of logistics outsourcing.

  17. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  18. Stability and synchronization of memristor-based fractional-order delayed neural networks.

    Science.gov (United States)

    Chen, Liping; Wu, Ranchao; Cao, Jinde; Liu, Jia-Bao

    2015-11-01

    Global asymptotic stability and synchronization of a class of fractional-order memristor-based delayed neural networks are investigated. For such problems in integer-order systems, Lyapunov-Krasovskii functional is usually constructed, whereas similar method has not been well developed for fractional-order nonlinear delayed systems. By employing a comparison theorem for a class of fractional-order linear systems with time delay, sufficient condition for global asymptotic stability of fractional memristor-based delayed neural networks is derived. Then, based on linear error feedback control, the synchronization criterion for such neural networks is also presented. Numerical simulations are given to demonstrate the effectiveness of the theoretical results.

  19. Neural network-based H∞ filtering for nonlinear systems with time-delays

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed.Firstly,neural networks are employed to approximate the nonlinearities.Next,the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI).Finally,based on the LDI model,a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints.Compared with the existing nonlinear filters,NNBNF is time-invariant and numerically tractable.The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.

  20. Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control.

    Science.gov (United States)

    Zhang, Guodong; Shen, Yi

    2014-07-01

    This paper investigates the exponential synchronization of coupled memristor-based chaotic neural networks with both time-varying delays and general activation functions. And here, we adopt nonsmooth analysis and control theory to handle memristor-based chaotic neural networks with discontinuous right-hand side. In particular, several new criteria ensuring exponential synchronization of two memristor-based chaotic neural networks are obtained via periodically intermittent control. In addition, the new proposed results here are very easy to verify and also complement, extend the earlier publications. Numerical simulations on the chaotic systems are presented to illustrate the effectiveness of the theoretical results.

  1. Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill

    Science.gov (United States)

    Moussaoui, A. K.; Abbassi, H. A.; Bouazza, S.

    2008-06-01

    The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved.

  2. Research on a Neural Network Approach Based Diagnosis Expert System of Crack Control in Massive Concrete

    Institute of Scientific and Technical Information of China (English)

    HAN Liu-xin; WANG Huan-chen; ZHANG Xian-hui

    2001-01-01

    A detailed study of the capabilities of artificial neural networks to diagnoses cracks in massive concrete structures is presented. This paper includes the components of the expert system such as design thought, basic structure, building of knowledge base and the implementation of neural network applied model. The realizing method of neural network based clustering algorithm in the knowledge base and selfstudy is analyzed emphatically and stimulated by means of the computer. From the above study, some important conclusions have been drawn and some new viewpoints have been suggested.

  3. Synchronization of Memristor-Based Coupling Recurrent Neural Networks With Time-Varying Delays and Impulses.

    Science.gov (United States)

    Zhang, Wei; Li, Chuandong; Huang, Tingwen; He, Xing

    2015-12-01

    Synchronization of an array of linearly coupled memristor-based recurrent neural networks with impulses and time-varying delays is investigated in this brief. Based on the Lyapunov function method, an extended Halanay differential inequality and a new delay impulsive differential inequality, some sufficient conditions are derived, which depend on impulsive and coupling delays to guarantee the exponential synchronization of the memristor-based recurrent neural networks. Impulses with and without delay and time-varying delay are considered for modeling the coupled neural networks simultaneously, which renders more practical significance of our current research. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.

  4. Neural Network-Based Resistance Spot Welding Control and Quality Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.

  5. Traffic control based on dahlin algorithm and neural network prediction in TAM networks

    Institute of Scientific and Technical Information of China (English)

    沈伟; 冯瑞; 邵惠鹤

    2004-01-01

    The propagation delay in networks has a great adverse effect on rate-based traffic control. This paper proposes the composite control based on Dab lin algorithm feedback control and neural network feedforward predictive compensation online for ABR (available bit rate) communication in ATM (asynchronous transfer mode) networks, which can overcome the adverse effect caused by the delay on the control rapidity and stability better. The theoretical analysis and simulation research show that the scheme can make sources respond to the changes of network status rapidly, avoid the congestion effectively and utilize the bandwidth sufficiently. Compared with PID (proportional-integral-derivative) control, cell loss rate is much lower, link utilization rate is much higher, and required buffer capacity is much smaller.

  6. Illicit material detector based on gas sensors and neural networks

    Science.gov (United States)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  7. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  8. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  9. Pattern recognition for electroencephalographic signals based on continuous neural networks.

    Science.gov (United States)

    Alfaro-Ponce, M; Argüelles, A; Chairez, I

    2016-07-01

    This study reports the design and implementation of a pattern recognition algorithm to classify electroencephalographic (EEG) signals based on artificial neural networks (NN) described by ordinary differential equations (ODEs). The training method for this kind of continuous NN (CNN) was developed according to the Lyapunov theory stability analysis. A parallel structure with fixed weights was proposed to perform the classification stage. The pattern recognition efficiency was validated by two methods, a generalization-regularization and a k-fold cross validation (k=5). The classifier was applied on two different databases. The first one was made up by signals collected from patients suffering of epilepsy and it is divided in five different classes. The second database was made up by 90 single EEG trials, divided in three classes. Each class corresponds to a different visual evoked potential. The pattern recognition algorithm achieved a maximum correct classification percentage of 97.2% using the information of the entire database. This value was similar to some results previously reported when this database was used for testing pattern classification. However, these results were obtained when only two classes were considered for the testing. The result reported in this study used the whole set of signals (five different classes). In comparison with similar pattern recognition methods that even considered less number of classes, the proposed CNN proved to achieve the same or even better correct classification results.

  10. Neural bases of recommendations differ according to social network structure.

    Science.gov (United States)

    Brook O'Donnell, Matthew; Bayer, Joseph B; Cascio, Christopher N; Falk, Emily B

    2017-01-18

    Ideas spread across social networks, but not everyone is equally positioned to be a successful recommender. Do individuals with more opportunities to connect otherwise unconnected others-high information brokers-use their brains differently than low information brokers when making recommendations? We test the hypothesis that those with more opportunities for information brokerage may use brain systems implicated in considering the thoughts, perspectives, and mental states of others (i.e., 'mentalizing') more when spreading ideas. We used social network analysis to quantify individuals' opportunities for information brokerage. This served as a predictor of activity within meta-analytically defined neural regions associated with mentalizing (DMPFC, TPJ, MPFC, PCC, MTG) as participants received feedback about peer opinions of mobile game apps. Higher information brokers exhibited more activity in this mentalizing network when receiving divergent peer feedback and updating their recommendation. These data support the idea that those in different network positions may use their brains differently to perform social tasks. Different social network positions might provide more opportunities to engage specific psychological processes. Or those who tend to engage such processes more may place themselves in systematically different network positions. These data highlight the value of integrating levels of analysis, from brain networks to social networks.

  11. Enhancing Wireless Sensor Network Security using Artificial Neural Network based Trust Model

    Directory of Open Access Journals (Sweden)

    Adwan Yasin

    2016-09-01

    Full Text Available Wireless sensor network (WSN is widely used in environmental conditions where the systems depend on sensing and monitoring approach. Water pollution monitoring system depends on a network of wireless sensing nodes which communicate together depending on a specific topological order. The nodes distributed in a harsh environment to detect the polluted zones within the WSN range based on the sensed data. WSN exposes several malicious attacks as a consequence of its presence in such open environment, so additional techniques are needed alongside with the existing cryptography approach. In this paper an enhanced trust model based on the use of radial base artificial neural network (RBANN is presented to predict the future behavior of each node based on its weighted direct and indirect behaviors, in order to provide a comprehensive trust model that helps to detect and eliminate malicious nodes within the WSN. The proposed model considered the limited power, storage and processing capabilities of the system.

  12. Application of functional-link neural network in evaluation of sublayer suspension based on FWD test

    Institute of Scientific and Technical Information of China (English)

    陈瑜; 张起森

    2004-01-01

    Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.0001, while the optimum chosen 4-8-1 BP needs over 10000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be adopted to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.

  13. Data Mining and Neural Network Techniques in Case Based System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper first puts forward a case-based system framework basedon data mining techniques. Then the paper examines the possibility of using neural n etworks as a method of retrieval in such a case-based system. In this system we propose data mining algorithms to discover case knowledge and other algorithms.

  14. Fuzzy Multiresolution Neural Networks

    Science.gov (United States)

    Ying, Li; Qigang, Shang; Na, Lei

    A fuzzy multi-resolution neural network (FMRANN) based on particle swarm algorithm is proposed to approximate arbitrary nonlinear function. The active function of the FMRANN consists of not only the wavelet functions, but also the scaling functions, whose translation parameters and dilation parameters are adjustable. A set of fuzzy rules are involved in the FMRANN. Each rule either corresponding to a subset consists of scaling functions, or corresponding to a sub-wavelet neural network consists of wavelets with same dilation parameters. Incorporating the time-frequency localization and multi-resolution properties of wavelets with the ability of self-learning of fuzzy neural network, the approximation ability of FMRANN can be remarkable improved. A particle swarm algorithm is adopted to learn the translation and dilation parameters of the wavelets and adjusting the shape of membership functions. Simulation examples are presented to validate the effectiveness of FMRANN.

  15. REAL-TIME MOTION PLANNING METHOD BASED ON NEURAL NETWORKS FOR MULTIPLE MOBILE ROBOTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The motion planning of multiple mobile robots undertaking individual tasks in the same environment is studied. A motion planning method based on neural networks is proposed. By storing fuzzy rules in neural networks the method can fully make use of the association ability and high processing speed of neural networks to make robots avoid collisions with other objects in real time.Compared with rules method,the method can not only avoid building a large and complex rules base but also make robots avoid collisions and conflicts at higher speed and with higher intelligence.

  16. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  17. Feature evaluation and extraction based on neural network in analog circuit fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    Yuan Haiying; Chen Guangju; Xie Yongle

    2007-01-01

    Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit.The feature evaluation and extraction methods based on neural network are presented.Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently.The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency.A fault diagnosis illustration validated this method.

  18. A Tool for Fast Development of Modular and Hierarchic Neural Network-based Systems

    Directory of Open Access Journals (Sweden)

    Francisco Reinaldo

    2006-08-01

    Full Text Available This paper presents PyramidNet tool as a fast and easy way to develop Modular and Hierarchic Neural Network-based Systems. This tool facilitates the fast emergence of autonomous behaviors in agents because it uses a hierarchic and modular control methodology of heterogeneous learning modules: the pyramid. Using the graphical resources of PyramidNet the user is able to specify a behavior system even having little understanding of artificial neural networks. Experimental tests have shown that a very significant speedup is attained in the development of modular and hierarchic neural network-based systems by using this tool.

  19. Lag Synchronization of Memristor-Based Coupled Neural Networks via ω-Measure.

    Science.gov (United States)

    Li, Ning; Cao, Jinde

    2016-03-01

    This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω-measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.

  20. Neural Network Based Lna Design for Mobile Satellite Receiver

    Directory of Open Access Journals (Sweden)

    Abhijeet Upadhya

    2014-08-01

    Full Text Available Paper presents a Neural Network Modelling approach to microwave LNA design. To acknowledge the specifications of the amplifier, Mobile Satellite Systems are analyzed. Scattering parameters of the LNA in the frequency range 0.5 to 18 GHz are calculated using a Multilayer Perceptron Artificial Neural Network model and corresponding smith charts and polar charts are plotted as output to the model. From these plots, the microwave scattering parameter description of the LNA are obtained. Model is efficiently trained using Agilent ATF 331M4 InGaAs/InP Low Noise pHEMT amplifier datasheet and the neural model’s output seem to follow the various device characteristic curves with high regression. Next, Maximum Allowable Gain and Noise figure of the device are modelled and plotted for the same frequency range. Finally, the optimized model is utilized as an interpolator and the resolution of the amplifying capability with noise characteristics are obtained for the L Band of MSS operation.

  1. Instantaneous Gradient Based Dual Mode Feed-Forward Neural Network Blind Equalization Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2013-01-01

    Full Text Available To further improve the performance of feed-forward neural network blind equalization based on Constant Modulus Algorithm (CMA cost function, an instantaneous gradient based dual mode between Modified Constant Modulus Algorithm (MCMA and Decision Directed (DD algorithm was proposed. The neural network weights change quantity of the adjacent iterative process is defined as instantaneous gradient. After the network converges, the weights of neural network to achieve a stable energy state and the instantaneous gradient would be zero. Therefore dual mode algorithm can be realized by criterion which set according to the instantaneous gradient. Computer simulation results show that the dual mode feed-forward neural network blind equalization algorithm proposed in this study improves the convergence rate and convergence precision effectively, at the same time, has good restart and tracking ability under channel burst interference condition.

  2. The optimum design of the pressure control spring of the relief valve based on neural networks

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-jin

    2006-01-01

    Based on the traditional optimization methods about the pressure control spring of the relief valve and combined with the advantages of neural network, this paper put forward the optimization method with many parameters and a lot of constraints based on neural network. The object function of optimization is transformed into the energy function of the neural network and the mathematical model of neural network optimization about the pressure control spring of the relief valve is set up in this method which also puts forward its own algorithm. An example of application shows that network convergence gets stable state of minimization object function E, and object function converges to the utmost minimum point with steady function, then best solution is gained, which makes the design plan better. The algorithm of solution for the problem is effective about the optimum design of the pressure control spring and improves the performance target.

  3. Multiscale approach for bone remodeling simulation based on finite element and neural network computation

    CERN Document Server

    Hambli, Ridha

    2011-01-01

    The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...

  4. Effects of Some Neurobiological Factors in a Self-organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Ming; ZHANG Ying-Yue; CHEN Tian-Lun

    2005-01-01

    Based on an integrate-and-fire mechanism, we investigate the effect of changing the efficacy of the synapse,the transmitting time-delayed, and the relative refractoryperiod on the self-organized criticality in our neural network model.

  5. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  6. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  7. A NOVEL INTRUSION DETECTION MODE BASED ON UNDERSTANDABLE NEURAL NETWORK TREES

    Institute of Scientific and Technical Information of China (English)

    Xu Qinzhen; Yang Luxi; Zhao Qiangfu; He Zhenya

    2006-01-01

    Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network,statistical techniques and expert systems are used to model network packets in the field of intrusion detection.In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is presented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN's capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually "gray boxes" as they can be interpreted easily ifthe number of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset.We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.

  8. Stereo Matching Based on Immune Neural Network in Abdomen Reconstruction

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2015-01-01

    Full Text Available Stereo feature matching is a technique that finds an optimal match in two images from the same entity in the three-dimensional world. The stereo correspondence problem is formulated as an optimization task where an energy function, which represents the constraints on the solution, is to be minimized. A novel intelligent biological network (Bio-Net, which involves the human B-T cells immune system into neural network, is proposed in this study in order to learn the robust relationship between the input feature points and the output matched points. A model from input-output data (left reference point-right target point is established. In the experiments, the abdomen reconstructions for different-shape mannequins are then performed by means of the proposed method. The final results are compared and analyzed, which demonstrate that the proposed approach greatly outperforms the single neural network and the conventional matching algorithm in precise. Particularly, as far as time cost and efficiency, the proposed method exhibits its significant promising and potential for improvement. Hence, it is entirely considered as an effective and feasible alternative option for stereo matching.

  9. Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZhangLiangjie; LiYanda; 等

    1997-01-01

    In this paper,a dynamic bandwidth allocation technique based on fuzz neural networks(FNNs) and genetic algorithm(GA)is proposed for preventive congestion control in ATM network.The traffic model based on FNN does not need the descriptive traffic parameters in detail,which greatly depend on the user's terminal.Genetic algorithm is used to predict the equivalent bandwidth of the accepted traffic in real-time.Thus,the proposed scheme can estimate the dynamic bandwidth of the network in the time scale from the call arrival to the call admission/rejection due to the fuzzy-tech and GA hardware implementation.Simulation results show that the scheme can perform accurate dynamic bandwidth allocation to DN/OFF bursty traffic in accordance with the required quality of service(QOS),and the bandwidth utilization is improved from the overall point of view.

  10. Network-based H∞ synchronization control of time-delay neural networks with communication constraints

    Science.gov (United States)

    Dong, Hui; Ling, Rongyao; Zhang, Dan

    2016-03-01

    This paper is concerned with the network-based H∞ synchronization control for a class of discrete time-delay neural networks, and attention is focused on how to reduce the communication rate since the communication resource is limited. Techniques such as the measurement size reduction, signal quantization and stochastic signal transmission are introduced to achieve the above goal. An uncertain switched system model is first proposed to capture the above-networked uncertainties. Based on the switched system theory and Lyapunov stability approach, a sufficient condition is obtained such that the closed-loop synchronization system is exponentially stable in the mean-square sense with a prescribed H∞ performance level. The controller gains are determined by solving a set of linear matrix inequalities (LMIs). A numerical example is finally presented to show the effectiveness of the proposed design method.

  11. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  12. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  13. Automatic event detection based on artificial neural networks

    Science.gov (United States)

    Doubravová, Jana; Wiszniowski, Jan; Horálek, Josef

    2015-04-01

    The proposed algorithm was developed to be used for Webnet, a local seismic network in West Bohemia. The Webnet network was built to monitor West Bohemia/Vogtland swarm area. During the earthquake swarms there is a large number of events which must be evaluated automatically to get a quick estimate of the current earthquake activity. Our focus is to get good automatic results prior to precise manual processing. With automatic data processing we may also reach a lower completeness magnitude. The first step of automatic seismic data processing is the detection of events. To get a good detection performance we require low number of false detections as well as high number of correctly detected events. We used a single layer recurrent neural network (SLRNN) trained by manual detections from swarms in West Bohemia in the past years. As inputs of the SLRNN we use STA/LTA of half-octave filter bank fed by vertical and horizontal components of seismograms. All stations were trained together to obtain the same network with the same neuron weights. We tried several architectures - different number of neurons - and different starting points for training. Networks giving the best results for training set must not be the optimal ones for unknown waveforms. Therefore we test each network on test set from different swarm (but still with similar characteristics, i.e. location, focal mechanisms, magnitude range). We also apply a coincidence verification for each event. It means that we can lower the number of false detections by rejecting events on one station only and force to declare an event on all stations in the network by coincidence on two or more stations. In further work we would like to retrain the network for each station individually so each station will have its own coefficients (neural weights) set. We would also like to apply this method to data from Reykjanet network located in Reykjanes peninsula, Iceland. As soon as we have a reliable detection, we can proceed to

  14. A DATA MINING METHOD BASED ON CONSTRUCTIVE NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Wang Lunwen; Zhang Ling

    2007-01-01

    In this letter, Constructive Neural Networks (CNN) is used in large-scale data mining. By introducing the principle and characteristics of CNN and pointing out its deficiencies, fuzzy theory is adopted to improve the covering algorithms. The threshold of covering algorithms is redefined. "Extended area" for test samples is built. The inference of the outlier is eliminated. Furthermore, "Sphere Neighborhood (SN)" are constructed. The membership functions of test samples are given and all of the test samples are determined accordingly. The method is used to mine large wireless monitor data (about 3 × 107 data points), and knowledge is found effectively.

  15. Hardware Prototyping of Neural Network based Fetal Electrocardiogram Extraction

    Science.gov (United States)

    Hasan, M. A.; Reaz, M. B. I.

    2012-01-01

    The aim of this paper is to model the algorithm for Fetal ECG (FECG) extraction from composite abdominal ECG (AECG) using VHDL (Very High Speed Integrated Circuit Hardware Description Language) for FPGA (Field Programmable Gate Array) implementation. Artificial Neural Network that provides efficient and effective ways of separating FECG signal from composite AECG signal has been designed. The proposed method gives an accuracy of 93.7% for R-peak detection in FHR monitoring. The designed VHDL model is synthesized and fitted into Altera's Stratix II EP2S15F484C3 using the Quartus II version 8.0 Web Edition for FPGA implementation.

  16. Human -Computer Interface using Gestures based on Neural Network

    Directory of Open Access Journals (Sweden)

    Aarti Malik

    2014-10-01

    Full Text Available - Gestures are powerful tools for non-verbal communication. Human computer interface (HCI is a growing field which reduces the complexity of interaction between human and machine in which gestures are used for conveying information or controlling the machine. In the present paper, static hand gestures are utilized for this purpose. The paper presents a novel technique of recognizing hand gestures i.e. A-Z alphabets, 0-9 numbers and 6 additional control signals (for keyboard and mouse control by extracting various features of hand ,creating a feature vector table and training a neural network. The proposed work has a recognition rate of 99%. .

  17. Product Assembly Cost Estimation Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper proposes a method for assembly cost estimation in actual manufacture during the design phase using artificial neural networks (ANN). It can support the de signers in cost effectiveness, then help to control the total cost. The method was used in the assembly cost estimation of the crucial parts of some railway stock products. As a compari son, we use the linear regression (LR) model in the same field. The result shows that ANN model performs better than the LR model in assembly cost estimation.

  18. Research on the controller of an arc welding process based on a PID neural network

    Institute of Scientific and Technical Information of China (English)

    Kuanfang HE; Shisheng HUANG

    2008-01-01

    A controller based on a PID neural network(PIDNN)is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process.The new method syncretizes the PID control strategy and neural network to control the welding process intelligently,so it has the merit of PID control rules and the trait of better information disposal ability of the neural network.The results of simulation show that the controller has the properties of quick response,low overshoot quick convergence and good stable accuracy,which meet the requirements for control of the welding process.

  19. Synchronization control of memristor-based recurrent neural networks with perturbations.

    Science.gov (United States)

    Wang, Weiping; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian

    2014-05-01

    In this paper, the synchronization control of memristor-based recurrent neural networks with impulsive perturbations or boundary perturbations is studied. We find that the memristive connection weights have a certain relationship with the stability of the system. Some criteria are obtained to guarantee that memristive neural networks have strong noise tolerance capability. Two kinds of controllers are designed so that the memristive neural networks with perturbations can converge to the equilibrium points, which evoke human's memory patterns. The analysis in this paper employs the differential inclusions theory and the Lyapunov functional method. Numerical examples are given to show the effectiveness of our results.

  20. Neural Network Based on Rough Sets and Its Application to Remote Sensing Image Classification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi-spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.

  1. Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models.

  2. The Monitoring of Red Tides Based on Modular Neural Networks Using Airborne Hyperspectral Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    JI Guangrong; SUN Jie; ZHAO Wencang; ZHANG Hande

    2006-01-01

    This paper proposes a red tide monitoring method based on clustering and modular neural networks. To obtain the features of red tide from a mass of aerial remote sensing hyperspectral data, first the Log Residual Correction (LRC) is used to normalize the data, and then clustering analysis is adopted to select and form the training samples for the neural networks. For rapid monitoring, the discriminator is composed of modular neural networks, whose structure and learning parameters are determined by an Adaptive Genetic Algorithm (AGA). The experiments showed that this method can monitor red tide rapidly and effectively.

  3. Exponential Stability of Almost Periodic Solutions for Memristor-Based Neural Networks with Distributed Leakage Delays.

    Science.gov (United States)

    Xu, Changjin; Li, Peiluan; Pang, Yicheng

    2016-12-01

    In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).

  4. Building a Tax Predictive Model Based on the Cloud Neural Network

    Institute of Scientific and Technical Information of China (English)

    田永青; 李志; 朱仲英

    2003-01-01

    Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.

  5. Finite-time synchronization control of a class of memristor-based recurrent neural networks.

    Science.gov (United States)

    Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun

    2015-03-01

    This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method.

  6. Passivity of memristor-based BAM neural networks with different memductance and uncertain delays.

    Science.gov (United States)

    Anbuvithya, R; Mathiyalagan, K; Sakthivel, R; Prakash, P

    2016-08-01

    This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov-Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for the considered neural networks. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results.

  7. Photovoltaic Power Prediction Based on Scene Simulation Knowledge Mining and Adaptive Neural Network

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2013-01-01

    Full Text Available Influenced by light, temperature, atmospheric pressure, and some other random factors, photovoltaic power has characteristics of volatility and intermittent. Accurately forecasting photovoltaic power can effectively improve security and stability of power grid system. The paper comprehensively analyzes influence of light intensity, day type, temperature, and season on photovoltaic power. According to the proposed scene simulation knowledge mining (SSKM technique, the influencing factors are clustered and fused into prediction model. Combining adaptive algorithm with neural network, adaptive neural network prediction model is established. Actual numerical example verifies the effectiveness and applicability of the proposed photovoltaic power prediction model based on scene simulation knowledge mining and adaptive neural network.

  8. Global exponential almost periodicity of a delayed memristor-based neural networks.

    Science.gov (United States)

    Chen, Jiejie; Zeng, Zhigang; Jiang, Ping

    2014-12-01

    In this paper, the existence, uniqueness and stability of almost periodic solution for a class of delayed memristor-based neural networks are studied. By using a new Lyapunov function method, the neural network that has a unique almost periodic solution, which is globally exponentially stable is proved. Moreover, the obtained conclusion on the almost periodic solution is applied to prove the existence and stability of periodic solution (or equilibrium point) for delayed memristor-based neural networks with periodic coefficients (or constant coefficients). The obtained results are helpful to design the global exponential stability of almost periodic oscillatory memristor-based neural networks. Three numerical examples and simulations are also given to show the feasibility of our results.

  9. Prediction Model of Weekly Retail Price for Eggs Based on Chaotic Neural Network

    Institute of Scientific and Technical Information of China (English)

    LI Zhe-min; CUI Li-guo; XU Shi-wei; WENG Ling-yun; DONG Xiao-xia; LI Gan-qiong; YU Hai-peng

    2013-01-01

    This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China. In the process of determining the structure of the chaotic neural network, the number of input layer nodes of the network is calculated by reconstructing phase space and computing its saturated embedding dimension, and then the number of hidden layer nodes is estimated by trial and error. Finally, this model is applied to predict the retail prices of eggs and compared with ARIMA. The result shows that the chaotic neural network has better nonlinear iftting ability and higher precision in the prediction of weekly retail price of eggs. The empirical result also shows that the chaotic neural network can be widely used in the ifeld of short-term prediction of agricultural prices.

  10. Dissolved oxygen prediction using a possibility theory based fuzzy neural network

    Science.gov (United States)

    Khan, Usman T.; Valeo, Caterina

    2016-06-01

    A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic factors (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predicting low DO events in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, as well as with a traditional neural network. Model output and a defuzzification technique are used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.

  11. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available An electrocardiogram (ECG beat classification scheme based on multiple signal classification (MUSIC algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP neural network and a probabilistic neural network (PNN, are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  12. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    Science.gov (United States)

    Naghsh-Nilchi, Ahmad R.; Kadkhodamohammadi, A. Rahim

    2009-12-01

    An electrocardiogram (ECG) beat classification scheme based on multiple signal classification (MUSIC) algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP) neural network and a probabilistic neural network (PNN), are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  13. NOISE IDENTIFICATION FOR HYDRAULIC AXIAL PISTON PUMP BASED ON ARTIFICIAL NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The noise identification model of the neural networks is established for the 63SCY14-1B hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully carried out for hydraulic axial piston pump based on experiments with the MATLAB and the toolbox of neural networks. The operating pressure, the flow rate of hydraulic axial piston pump, the temperature of hydraulic oil, and bulk modulus of hydraulic oil are the main parameters having influences on the noise of hydraulic axial piston pump. These four parameters are used as inputs of neural networks, and experimental data of the noise are used as outputs of neural networks. Error of noise identification is less than 1% after the neural networks have been trained. The results show that the noise identification of hydraulic axial piston pump is feasible and reliable by using artificial neural networks. The method of noise identification with neural networks is also creative one of noise theoretical research for hydraulic axial piston pump.

  14. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    Science.gov (United States)

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  15. Battery Performance Modelling ad Simulation: a Neural Network Based Approach

    Science.gov (United States)

    Ottavianelli, Giuseppe; Donati, Alessandro

    2002-01-01

    This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg

  16. Electronic Nose Based on an Optimized Competition Neural Network

    Directory of Open Access Journals (Sweden)

    Haiping Zhang

    2011-05-01

    Full Text Available In view of the fact that there are disadvantages in that the class number must be determined in advance, the value of learning rates are hard to fix, etc., when using traditional competitive neural networks (CNNs in electronic noses (E-noses, an optimized CNN method was presented. The optimized CNN was established on the basis of the optimum class number of samples according to the changes of the Davies and Bouldin (DB value and it could increase, divide, or delete neurons in order to adjust the number of neurons automatically. Moreover, the learning rate changes according to the variety of training times of each sample. The traditional CNN and the optimized CNN were applied to five kinds of sorted vinegars with an E-nose. The results showed that optimized network structures could adjust the number of clusters dynamically and resulted in good classifications.

  17. Quantum Neural Network Based Machine Translator for Hindi to English

    OpenAIRE

    Ravi Narayan; Singh, V. P.; S. Chakraverty

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze t...

  18. Recognition algorithm of seabed pipeline defect inspection based on dynamic WBF neural networks

    Institute of Scientific and Technical Information of China (English)

    Jin Tao; Que Peiwen; Tao Zhengshu

    2005-01-01

    This paper describes a magnetic flux leak (MFL) model of pipeline defect inspection, and presents a recognition algorithm based on dynamic wavelet basis function (WBF) neural network. The dynamic network utilizes multiscale and multiresolution orthogonal wavelet, through signals backwards propagation, has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, high-speed convergence possessing and well approaching feature. The performance applying the algorithm based on the network to predict defect profile from experimental MFL signals is presented.

  19. Artificial neural network based inverse design method for circular sliding slopes

    Institute of Scientific and Technical Information of China (English)

    丁德馨; 张志军

    2004-01-01

    Current design method for circular sliding slopes is not so reasonable that it often results in slope sliding. As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.

  20. Neural network based daily precipitation generator (NNGEN-P)

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Paris (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Penalba, Olga [University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2007-02-15

    Daily weather generators are used in many applications and risk analyses. The present paper explores the potential of neural network architectures to design daily weather generator models. Focusing this first paper on precipitation, we design a collection of neural networks (multi-layer perceptrons in the present case), which are trained so as to approximate the empirical cumulative distribution (CDF) function for the occurrence of wet and dry spells and for the precipitation amounts. This approach contributes to correct some of the biases of the usual two-step weather generator models. As compared to a rainfall occurrence Markov model, NNGEN-P represents fairly well the mean and standard deviation of the number of wet days per month, and it significantly improves the simulation of the longest dry and wet periods. Then, we compared NNGEN-P to three parametric distribution functions usually applied to fit rainfall cumulative distribution functions (Gamma, Weibull and double-exponential). A data set of 19 Argentine stations was used. Also, data corresponding to stations in the United States, in Europe and in the Tropics were included to confirm the results. One of the advantages of NNGEN-P is that it is non-parametric. Unlike other parametric function, which adapt to certain types of climate regimes, NNGEN-P is fully adaptive to the observed cumulative distribution functions, which, on some occasions, may present complex shapes. On-going works will soon produce an extended version of NNGEN to temperature and radiation. (orig.)

  1. Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2015-01-01

    This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...

  2. FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    LI Ru-qiang; CHEN Jin; WU Xing

    2006-01-01

    A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery.Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.

  3. A NEURAL NETWORK BASED TRAFFIC-AWARE FORWARDING STRATEGY IN NAMED DATA NETWORKING

    Directory of Open Access Journals (Sweden)

    Parisa Bazmi

    2016-11-01

    Full Text Available Named Data Networking (NDN is a new Internet architecture which has been proposed to eliminate TCP/IP Internet architecture restrictions. This architecture is abstracting away the notion of host and working based on naming datagrams. However, one of the major challenges of NDN is supporting QoS-aware forwarding strategy so as to forward Interest packets intelligently over multiple paths based on the current network condition. In this paper, Neural Network (NN Based Traffic-aware Forwarding strategy (NNTF is introduced in order to determine an optimal path for Interest forwarding. NN is embedded in NDN routers to select next hop dynamically based on the path overload probability achieved from the NN. This solution is characterized by load balancing and QoS-awareness via monitoring the available path and forwarding data on the traffic-aware shortest path. The performance of NNTF is evaluated using ndnSIM which shows the efficiency of this scheme in terms of network QoS improvementof17.5% and 72% reduction in network delay and packet drop respectively.

  4. MINUTIAE EXTRACTION BASED ON ARTIFICIAL NEURAL NETWORKS FOR AUTOMATIC FINGERPRINT RECOGNITION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Necla ÖZKAYA

    2007-01-01

    Full Text Available Automatic fingerprint recognition systems are utilised for personal identification with the use of comparisons of local ridge characteristics and their relationships. Critical stages in personal identification are to extract features automatically, fast and reliably from the input fingerprint images. In this study, a new approach based on artificial neural networks to extract minutiae from fingerprint images is developed and introduced. The results have shown that artificial neural networks achieve the minutiae extraction from fingerprint images with high accuracy.

  5. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik Department E15, Technische Universitaet Muenchen, 85748 Garching (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  6. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  7. Neural network predicts sequence of TP53 gene based on DNA chip

    DEFF Research Database (Denmark)

    Spicker, J.S.; Wikman, F.; Lu, M.L.;

    2002-01-01

    We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...... and four errors in the predicted 1300 bp sequence when tested on wild-type TP53 sequence....

  8. Adaptive control of chaotic systems based on a single layer neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Liqun [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: liqunshen@gmail.com; Wang Mao [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)

    2007-08-27

    This Letter presents an adaptive neural network control method for the chaos control problem. Based on a single layer neural network, the dynamic about the unstable fixed period point of the chaotic system can be adaptively identified without detailed information about the chaotic system. And the controlled chaotic system can be stabilized on the unstable fixed period orbit. Simulation results of Henon map and Lorenz system verify the effectiveness of the proposed control method.

  9. Projective synchronization of fractional-order memristor-based neural networks.

    Science.gov (United States)

    Bao, Hai-Bo; Cao, Jin-De

    2015-03-01

    This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo's fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.

  10. Neural Network-Based Control of Networked Trilateral Teleoperation With Geometrically Unknown Constraints.

    Science.gov (United States)

    Li, Zhijun; Xia, Yuanqing; Wang, Dehong; Zhai, Di-Hua; Su, Chun-Yi; Zhao, Xingang

    2016-05-01

    Most studies on bilateral teleoperation assume known system kinematics and only consider dynamical uncertainties. However, many practical applications involve tasks with both kinematics and dynamics uncertainties. In this paper, trilateral teleoperation systems with dual-master-single-slave framework are investigated, where a single robotic manipulator constrained by an unknown geometrical environment is controlled by dual masters. The network delay in the teleoperation system is modeled as Markov chain-based stochastic delay, then asymmetric stochastic time-varying delays, kinematics and dynamics uncertainties are all considered in the force-motion control design. First, a unified dynamical model is introduced by incorporating unknown environmental constraints. Then, by exact identification of constraint Jacobian matrix, adaptive neural network approximation method is employed, and the motion/force synchronization with time delays are achieved without persistency of excitation condition. The neural networks and parameter adaptive mechanism are combined to deal with the system uncertainties and unknown kinematics. It is shown that the system is stable with the strict linear matrix inequality-based controllers. Finally, the extensive simulation experiment studies are provided to demonstrate the performance of the proposed approach.

  11. Hardware implementation of a neural vision system based on a neural network using integrated and fire neurons

    Science.gov (United States)

    González, M.; Lamela, H.; Jiménez, M.; Gimeno, J.; Ruiz-Llata, M.

    2007-04-01

    In this paper we present the scheme for a control circuit used in an image processing system which is to be implemented in a neural network which has a high level of connectivity and reconfiguration of neurons for integration and trigger based on the Address-Event Representation. This scheme will be employed as a pre-processing stage for a vision system which employs as its core processing an Optical Broadcast Neural Network (OBNN). [Optical Engineering letters 42 (9), 2488(2003)]. The proposed vision system allows the possibility to introduce patterns from any acquisition system of images, for posterior processing.

  12. Entropy-based generation of supervised neural networks for classification of structured patterns.

    Science.gov (United States)

    Tsai, Hsien-Leing; Lee, Shie-Jue

    2004-03-01

    Sperduti and Starita proposed a new type of neural network which consists of generalized recursive neurons for classification of structures. In this paper, we propose an entropy-based approach for constructing such neural networks for classification of acyclic structured patterns. Given a classification problem, the architecture, i.e., the number of hidden layers and the number of neurons in each hidden layer, and all the values of the link weights associated with the corresponding neural network are automatically determined. Experimental results have shown that the networks constructed by our method can have a better performance, with respect to network size, learning speed, or recognition accuracy, than the networks obtained by other methods.

  13. A Predictive Neural Network-Based Cascade Control for pH Reactors

    Directory of Open Access Journals (Sweden)

    Mujahed AlDhaifallah

    2016-01-01

    Full Text Available This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral and a slave one (predictive neural network. The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab.

  14. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  15. Short-Term Wind Speed Forecast Based on B-Spline Neural Network Optimized by PSO

    Directory of Open Access Journals (Sweden)

    Zhongqiang Wu

    2015-01-01

    Full Text Available Considering the randomness and volatility of wind, a method based on B-spline neural network optimized by particle swarm optimization is proposed to predict the short-term wind speed. The B-spline neural network can change the division of input space and the definition of basis function flexibly. For any input, only a few outputs of hidden layers are nonzero, the outputs are simple, and the convergence speed is fast, but it is easy to fall into local minimum. The traditional method to divide the input space is thoughtless and it will influence the final prediction accuracy. Particle swarm optimization is adopted to solve the problem by optimizing the nodes. Simulated results show that it has higher prediction accuracy than traditional B-spline neural network and BP neural network.

  16. A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor

    Institute of Scientific and Technical Information of China (English)

    Along Yu; Zheng Li

    2006-01-01

    In this paper, we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method,the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line scaling and high precision. The maximum nonlinearity error can be reduced to 0.037% using GNN. However, the maximum nonlinearity error is 0.075% using least square method (LMS).

  17. A study of interceptor attitude control based on adaptive wavelet neural networks

    Science.gov (United States)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  18. Seabed Classification Using BP Neural Network Based on GA

    Institute of Scientific and Technical Information of China (English)

    Yang Fanlin; Liu Jingnan

    2003-01-01

    Side scan sonar imaging is one of the advanced methods for seabed study. In order to be utilized in other projects, such as ocean engineering, the image needs to be classified according to the distributions of different classes of seabed materials. In this paper, seabed image is classified according to BP neural network, and Genetic Algorithm is adopted in train network in this paper. The feature vectors are average intensity, six statistics of texture and two dimensions of fractal. It considers not only the spatial correlation between different pixels, but also the terrain coarseness. The texture is denoted by the statistics of the co-occurrence matrix. Double Blanket algorithm is used to calculate dimension. Because a uniform fractal may not be sufficient to describe a seafloor, two dimensions are calculated respectively by the upper blanket and the lower blanket. However, in sonar image, fractal has directivity, i. e.there are different dimensions in different direction. Dimensions are different in acrosstrack and alongtrack, so the average of four directions is used to solve this problem. Finally, the real data verify the algorithm. In this paper, one hidden layer including six nodes is adopted. The BP network is rapidly and accurately convergent through GA. Correct classification rate is 92.5% in the result.

  19. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning.

  20. Artificial Neural Networks

    OpenAIRE

    Chung-Ming Kuan

    2006-01-01

    Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.

  1. Standard Cell-Based Implementation of a Digital Optoelectronic Neural-Network Hardware

    Science.gov (United States)

    Maier, Klaus D.; Beckstein, Clemens; Blickhan, Reinhard; Erhard, Werner

    2001-03-01

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  2. Recurrent neural networks-based multivariable system PID predictive control

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; WANG Fanzhen; SONG Ying; CHEN Zengqiang; YUAN Zhuzhi

    2007-01-01

    A nonlinear proportion integration differentiation (PID) controller is proposed on the basis of recurrent neural networks,due to the difficulty of tuning the parameters of conventional PID controller.In the control process of nonlinear multivariable system,a decoupling controller was constructed,which took advantage of multi-nonlinear PID controllers in parallel.With the idea of predictive control,two multivariable predictive control strategies were established.One strategy involved the use of the general minimum variance control function on the basis of recursive multi-step predictive method.The other involved the adoption of multistep predictive cost energy to train the weights of the decoupling controller.Simulation studies have shown the efficiency of these strategies.

  3. Medical image segmentation based on cellular neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The application of cellular neural network (CNN) has made great progress in image processing. When the selected objects extraction (SOE) CNN is applied to gray scale images, its effects depend on the choice of initial points. In this paper, we take medical images as an example to analyze this limitation. Then an improved algorithm is proposed in which we can segment any gray level objects regardless of the limitation stated above. We also use the gradient information and contour detection CNN to determine the contour and ensure the veracity of segmentation effectively. Finally, we apply the improved algorithm to tumor segmentation of the human brain MR image. The experimental results show that the algorithm is practical and effective.

  4. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  5. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    Science.gov (United States)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  6. Neural Network-Based Multimode Fiber-Optic Information Transmission

    Science.gov (United States)

    Marusarz, Ronald K.; Sayeh, Mohammad R.

    2001-01-01

    A new technique for transmitting information through multimode fiber-optic cables is presented. This technique sends parallel channels through the fiber-optic cable, thereby greatly improving the data transmission rate compared with that of the current technology, which uses serial data transmission through single-mode fiber. An artificial neural network is employed to decipher the transmitted information from the received speckle pattern. Several different preprocessing algorithms are developed, tested, and evaluated. These algorithms employ average region intensity, distributed individual pixel intensity, and maximum mean-square-difference optimal group selection methods. The effect of modal dispersion on the data rate is analyzed. An increased data transmission rate by a factor of 37 over that of single-mode fibers is realized. When implementing our technique, we can increase the channel capacity of a typical multimode fiber by a factor of 6.

  7. High power fuel cell simulator based on artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, Abraham U.; Munoz-Guerrero, Roberto [Departamento de Ingenieria Electrica, CINVESTAV-IPN. Av. Instituto Politecnico Nacional No. 2508, D.F. CP 07360 (Mexico); Duron-Torres, S.M. [Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Campus Siglo XXI, Edif. 6 (Mexico); Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5-98126 Messina (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, Queretaro (Mexico)

    2010-11-15

    Artificial Neural Network (ANN) has become a powerful modeling tool for predicting the performance of complex systems with no well-known variable relationships due to the inherent properties. A commercial Polymeric Electrolyte Membrane fuel cell (PEMFC) stack (5 kW) was modeled successfully using this tool, increasing the number of test into the 7 inputs - 2 outputs-dimensional spaces in the shortest time, acquiring only a small amount of experimental data. Some parameters could not be measured easily on the real system in experimental tests; however, by receiving the data from PEMFC, the ANN could be trained to learn the internal relationships that govern this system, and predict its behavior without any physical equations. Confident accuracy was achieved in this work making possible to import this tool to complex systems and applications. (author)

  8. Optical implementation of a feature-based neural network with application to automatic target recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1993-01-01

    An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

  9. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    Science.gov (United States)

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.

  10. Classifying Algorithm Based on a Fuzzy Neural network for the control of a Network Attached Optical Jukebox

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan; JIA Hui-bo; CHENG Ming

    2006-01-01

    A new analytical method for improving the performance of a network attached optical jukebox is presented by means of artificial neural networks. Through analyzing operation (request) process in this system,the mathematics model and algorithm are built for this storage system,and then a classified method based on artificial neural networks for this system is proposed. Simulation results testified the feasibility and validity of the proposed method that it could overcome the drawbacks of the frequent I/O operation and provide an effective way for using the Network Attached Optical Jukebox.

  11. AN INTELLIGENT CONTROL SYSTEM BASED ON RECURRENT NEURAL FUZZY NETWORK AND ITS APPLICATION TO CSTR

    Institute of Scientific and Technical Information of China (English)

    JIA Li; YU Jinshou

    2005-01-01

    In this paper, an intelligent control system based on recurrent neural fuzzy network is presented for complex, uncertain and nonlinear processes, in which a recurrent neural fuzzy network is used as controller (RNFNC) to control a process adaptively and a recurrent neural network based on recursive predictive error algorithm (RNNM) is utilized to estimate the gradient information (ey)/(e)u for optimizing the parameters of controller.Compared with many neural fuzzy control systems, it uses recurrent neural network to realize the fuzzy controller. Moreover, recursive predictive error algorithm (RPE) is implemented to construct RNNM on line. Lastly, in order to evaluate the performance of theproposed control system, the presented control system is applied to continuously stirred tank reactor (CSTR). Simulation comparisons, based on control effect and output error,with general fuzzy controller and feed-forward neural fuzzy network controller (FNFNC),are conducted. In addition, the rates of convergence of RNNM respectively using RPE algorithm and gradient learning algorithm are also compared. The results show that the proposed control system is better for controlling uncertain and nonlinear processes.

  12. A QoS Provisioning Recurrent Neural Network based Call Admission Control for beyond 3G Networks

    Directory of Open Access Journals (Sweden)

    Ramesh Babu H. S.

    2010-03-01

    Full Text Available The Call admission control (CAC is one of the Radio Resource Management (RRM techniques that plays influential role in ensuring the desired Quality of Service (QoS to the users and applications in next generation networks. This paper proposes a fuzzy neural approach for making the call admission control decision in multi class traffic based Next Generation Wireless Networks (NGWN. The proposed Fuzzy Neural call admission control (FNCAC scheme is an integrated CAC module that combines the linguistic control capabilities of the fuzzy logic controller and the learning capabilities of the neural networks. The model is based on recurrent radial basis function networks which have better learning and adaptability that can be used to develop intelligent system to handle the incoming traffic in an heterogeneous network environment. The simulation results are optimistic and indicates that the proposed FNCAC algorithm performs better than the other two methods and the call blocking probability is minimal when compared to other two methods.

  13. A QoS Provisioning Recurrent Neural Network based Call Admission Control for beyond 3G Networks

    CERN Document Server

    S., Ramesh Babu H; S, Satyanarayana P

    2010-01-01

    The Call admission control (CAC) is one of the Radio Resource Management (RRM) techniques that plays influential role in ensuring the desired Quality of Service (QoS) to the users and applications in next generation networks. This paper proposes a fuzzy neural approach for making the call admission control decision in multi class traffic based Next Generation Wireless Networks (NGWN). The proposed Fuzzy Neural call admission control (FNCAC) scheme is an integrated CAC module that combines the linguistic control capabilities of the fuzzy logic controller and the learning capabilities of the neural networks. The model is based on recurrent radial basis function networks which have better learning and adaptability that can be used to develop intelligent system to handle the incoming traffic in an heterogeneous network environment. The simulation results are optimistic and indicates that the proposed FNCAC algorithm performs better than the other two methods and the call blocking probability is minimal when compa...

  14. Improvements of Analog Neural Networks Based on Kalman Filter

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2002-04-01

    Full Text Available In the paper, original improvements of recurrent analog neuralnetworks, which are based on Kalman filter, are presented. Theseimprovements eliminate some disadvantages of the classical Kalmanneural network and enable a real time processing of quickly changingsignals, which appear in adaptive antennas and similar applications.This goal is reached using such circuit elements, which increase theconvergence rate of the network and decrease the dependence ofconvergence rate on the ratio of eigenvalues of the correlation matrixof input signals.

  15. Application of Global Dynamic Reconfiguration in Artificial Neural Network System based on Field Programmable Gate Array

    Institute of Scientific and Technical Information of China (English)

    LI Wei; WANG Wei; MA Yi-mei; WANG Jin-hai

    2008-01-01

    Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global dynamic reconfiguration scheme using Xilinx FPGA and platform flash. Using the revision capabilities of Xilinx XCF32P platform flash, an artificial neural network based on Xilinx XC2V30P Virtex-Ⅱ can be reconfigured dynamically from back propagation(BP) learning algorithms to BP network testing algorithms. The experimental results indicate that the scheme is feasible, and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably.

  16. Habituation-based mechanism for encoding temporal information in artificial neural networks

    Science.gov (United States)

    Stiles, Bryan W.; Ghosh, Joydeep

    1995-04-01

    A novel neural network is proposed for the dynamic classification of spatio-temporal signals. The network is designed to classify signals of different durations, taking into account correlations among different signal segments. Such a network is applicable to SONAR and speech signal classification problems, among others. Network parameters are adapted based on the biologically observed habituation mechanism. This allows the storage of contextual information, without a substantial increase in network complexity. Experiments on classification of high dimensional feature vectors obtained from Banzhaf sonograms, demonstrate that the proposed network performs better than time delay neural networks while using a less complex structure. A mathematical justification of the capabilities of the habituation based mechanism is also provided.

  17. Using Artificial Neural Networks for Energy Regulation Based Variable-speed Electrohydraulic Drive

    Institute of Scientific and Technical Information of China (English)

    XU Ming; JIN Bo; YU Yaxin; SHEN Haikuo; LI Wei

    2010-01-01

    In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obtained via conventional methods for some reasons. This paper tries to a new route: the definitive numerical values of the supply energy and the demanded energy are not required, except for their relationship which is called energy state. A three-layer back propagation(BP) neural network was built up to act as an energy analysis unit to deduce the energy state. The neural network has three inputs: the reference displacement, the actual displacement of cylinder rod and the system flowrate supply. The output of the neural network is energy state. A Chebyshev type II filter was designed to calculate the cylinder speed for the estimation of system flowrate supply. The training and testing samples of neural network were collected by the system accurate simulation model. After off-line training, the neural network was tested by the testing data. And the testing result demonstrates that the designed neural network was successful. Then, the neural network acts as the energy analysis unit in real-time experiments of cylinder position control, where it works efficiently under square-wave and sine-wave reference displacement. The experimental results validate its feasibility and adaptability. Only a position sensor and some pressure sensors, which are cheap and have quick dynamic response, are necessary for the system control. And the neural network plays the role of identifying the energy state.

  18. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  19. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks.

    Science.gov (United States)

    Lin, Lan; Jin, Cong; Fu, Zhenrong; Zhang, Baiwen; Bin, Guangyu; Wu, Shuicai

    2016-03-01

    Brain ageing is followed by changes of the connectivity of white matter (WM) and changes of the grey matter (GM) concentration. Neurodegenerative disease is more vulnerable to an accelerated brain ageing, which is associated with prospective cognitive decline and disease severity. Accurate detection of accelerated ageing based on brain network analysis has a great potential for early interventions designed to hinder atypical brain changes. To capture the brain ageing, we proposed a novel computational approach for modeling the 112 normal older subjects (aged 50-79 years) brain age by connectivity analyses of networks of the brain. Our proposed method applied principal component analysis (PCA) to reduce the redundancy in network topological parameters. Back propagation artificial neural network (BPANN) improved by hybrid genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm is established to model the relation among principal components (PCs) and brain age. The predicted brain age is strongly correlated with chronological age (r=0.8). The model has mean absolute error (MAE) of 4.29 years. Therefore, we believe the method can provide a possible way to quantitatively describe the typical and atypical network organization of human brain and serve as a biomarker for presymptomatic detection of neurodegenerative diseases in the future.

  20. Fuzzy logic systems are equivalent to feedforward neural networks

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    2000-01-01

    Fuzzy logic systems and feedforward neural networks are equivalent in essence. First, interpolation representations of fuzzy logic systems are introduced and several important conclusions are given. Then three important kinds of neural networks are defined, i.e. linear neural networks, rectangle wave neural networks and nonlinear neural networks. Then it is proved that nonlinear neural networks can be represented by rectangle wave neural networks. Based on the results mentioned above, the equivalence between fuzzy logic systems and feedforward neural networks is proved, which will be very useful for theoretical research or applications on fuzzy logic systems or neural networks by means of combining fuzzy logic systems with neural networks.

  1. Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Saumil G. Merchant

    2010-01-01

    Full Text Available Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a design of block-based neural networks (BbNNs on FPGAs capable of dynamic adaptation and online training. Specifically the network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The potential and functionality of the platform are demonstrated using several case studies.

  2. Predicting Model forComplex Production Process Based on Dynamic Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the comparison of several methods of time series predicting, this paper points out that it is nec-essary to use dynamic neural network in modeling of complex production process. Because self-feedback and mutu-al-feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic ap-proximation, and can describe any non-linear dynamic system. After the structure and mathematical description be-ing given, dynamic back-propagation (BP) algorithm of training weights of Elman neural network is deduced. Atlast, the network is used to predict ash content of black amber in jigging production process. The results show thatthis neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex pro-duction process.

  3. Relations Between Wavelet Network and Feedforward Neural Network

    Institute of Scientific and Technical Information of China (English)

    刘志刚; 何正友; 钱清泉

    2002-01-01

    A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.

  4. Employing Neocognitron Neural Network Base Ensemble Classifiers To Enhance Efficiency Of Classification In Handwritten Digit Datasets

    Directory of Open Access Journals (Sweden)

    Neera Saxena

    2011-07-01

    Full Text Available This paper presents an ensemble of neo-cognitron neural network base classifiers to enhance the accuracy of the system, along the experimental results. The method offers lesser computational preprocessing in comparison to other ensemble techniques as it ex-preempts feature extraction process before feeding the data into base classifiers. This is achieved by the basic nature of neo-cognitron, it is a multilayer feed-forward neural network. Ensemble of such base classifiers gives class labels for each pattern that in turn is combined to give the final class label for that pattern. The purpose of this paper is not only to exemplify learning behaviour of neo-cognitron as base classifiers, but also to purport better fashion to combine neural network based ensemble classifiers.

  5. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  6. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method.

  7. RRAM-based hardware implementations of artificial neural networks: progress update and challenges ahead

    Science.gov (United States)

    Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.

    2016-02-01

    Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.

  8. Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-hong; XIE An-guo; SHEN Feng-man

    2007-01-01

    A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.

  9. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2004-01-01

    variations from 0.5 mm to 2.3 mm - scanned 10 mm in front of the electrode location. In this research, the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a static multi-layer feed-forward network. The Levenberg-Marquardt algorithm, for non...

  10. Quantum Neural Network Based Machine Translator for Hindi to English

    Directory of Open Access Journals (Sweden)

    Ravi Narayan

    2014-01-01

    Full Text Available This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation.

  11. Quantum neural network based machine translator for Hindi to English.

    Science.gov (United States)

    Narayan, Ravi; Singh, V P; Chakraverty, S

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation.

  12. Modulation of grasping force in prosthetic hands using neural network-based predictive control.

    Science.gov (United States)

    Pasluosta, Cristian F; Chiu, Alan W L

    2015-01-01

    This chapter describes the implementation of a neural network-based predictive control system for driving a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices present great challenges for precise control of this type of device. Model-based controllers may overcome this issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based modeling arises as a good fit for modeling the fingers' dynamics. The results of simulations mimicking potential situations encountered during activities of daily living demonstrate the feasibility of this technique.

  13. Rule Extraction from Trained Artificial Neural Network Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jian; ZHANG Li-xia

    2002-01-01

    This paper discusses how to extract symbolic rules from trained artificial neural network (ANN) in domains involving classification using genetic algorithms (GA). Previous methods based on an exhaustive analysis of network connections and output values have already been demonstrated to be intractable in that the scale-up factor increases with the number of nodes and connections in the network.Some experiments explaining effectiveness of the presented method are given as well.

  14. Nonlinear modeling of PEMFC based on neural networks identification

    Institute of Scientific and Technical Information of China (English)

    SUN Tao; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Levenberg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.

  15. A neural network based reputation bootstrapping approach for service selection

    Science.gov (United States)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  16. RBF neural network and active circles based algorithm for contours extraction

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhiheng; Zeng Delu; Xie Shengli

    2007-01-01

    For the contours extraction from the images, active contour model and self-organizing map based approach are popular nowadays. But they are still confronted with the problems that the optimization of energy function will trap in local minimums and the contour evolutions greatly depend on the initial contour selection. Addressing to these problems, a contours extraction algorithm based on RBF neural network is proposed here. A series of circles with adaptive radius and center is firstly used to search image feature points that are scattered enough. After the feature points are clustered, a group of radial basis functions are constructed. Using the pixels' intensities and gradients as the input vector, the final object contour can be obtained by the predicting ability of the neural network. The RBF neural network based algorithm is tested on three kinds of images, such as changing topology, complicated background, and blurring or noisy boundary. Simulation results show that the proposed algorithm performs contours extraction greatly.

  17. Elevator Group-Control Policy Based on Neural Network Optimized by Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong; WAN Jianru; ZHANG Zhichao; LIU Yingpei; LI Guangye

    2009-01-01

    Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algo-rithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.

  18. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  19. Simulation of Neurocomputing Based on Photophobic Reactions of Euglena: Toward Microbe-Based Neural Network Computing

    Science.gov (United States)

    Ozasa, Kazunari; Aono, Masashi; Maeda, Mizuo; Hara, Masahiko

    In order to develop an adaptive computing system, we investigate microscopic optical feedback to a group of microbes (Euglena gracilis in this study) with a neural network algorithm, expecting that the unique characteristics of microbes, especially their strategies to survive/adapt against unfavorable environmental stimuli, will explicitly determine the temporal evolution of the microbe-based feedback system. The photophobic reactions of Euglena are extracted from experiments, and built in the Monte-Carlo simulation of a microbe-based neurocomputing. The simulation revealed a good performance of Euglena-based neurocomputing. Dynamic transition among the solutions is discussed from the viewpoint of feedback instability.

  20. LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is advanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs' stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).

  1. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    Science.gov (United States)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  2. Fuzzy Control Based on Neural Networks for Armored Vehicle Electric Drive System

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-jun; LI Hua; ZHANG Jian; ZHANG Yu-nan

    2006-01-01

    In order to meet rigorous demands of control of electric motors in armored vehicle electric drive system and make the system of strong robustness and antijamming capability, a fuzzy control method based on neural networks is put forward. The simulation model of the armored vehicle electric drive system is built up to test the validity of the control. Simulation experiments show that when load is increased or decreased suddenly, the system adopting fuzzy control based on neural networks is insensitive to parameter change and has little overshooting and oscillation compared with PID control.

  3. Nuclide identification algorithm based on K-L transform and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Department of Engineering Physics, Tsinghua University, Ministry of Education (China)], E-mail: cliang00@mails.tsinghua.edu.cn; Wei Yixiang [Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Department of Engineering Physics, Tsinghua University, Ministry of Education (China)

    2009-01-11

    Traditional spectrum analysis algorithm based on peak search is hard to deal with complex overlapped peaks, especially in bad resolution and high background conditions. This paper described a new nuclide identification method based on the Karhunen-Loeve transform (K-L transform) and artificial neural networks. By the K-L transform and feature extraction, the nuclide gamma spectrum was compacted. The K-L transform coefficients were used as the neural network's input. The linear associative memory and ADALINE were discussed. Lots of experiments and tests showed that the method was credible and practical, especially suitable for fast nuclide identification.

  4. Nuclide identification algorithm based on K-L transform and neural networks

    Science.gov (United States)

    Chen, Liang; Wei, Yi-Xiang

    2009-01-01

    Traditional spectrum analysis algorithm based on peak search is hard to deal with complex overlapped peaks, especially in bad resolution and high background conditions. This paper described a new nuclide identification method based on the Karhunen-Loeve transform (K-L transform) and artificial neural networks. By the K-L transform and feature extraction, the nuclide gamma spectrum was compacted. The K-L transform coefficients were used as the neural network's input. The linear associative memory and ADALINE were discussed. Lots of experiments and tests showed that the method was credible and practical, especially suitable for fast nuclide identification.

  5. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  6. Fuzzy System for Prognosis of Tank Failure Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    Li Guan

    2005-01-01

    A system for prognosis of tank failures was set up based on the results of analysis on fault phenomena. An algorithm incorporating fuzzy mathematics with the BP neural network was used to solve this prognosis model, and the availability of this model was also analyzed. This neural network-based fuzzy system for prognosis of tank failures has been put into operation at Huangdao oil terminal. The application results have shown that this system is effective for real-time prognosis of various potential tank failures and timely adoption of mitigative measures to avoid major tank accidents, which would have great significance for safeguarding the safe operation of the oil terminal.

  7. Macrobenthos habitat potential mapping using GIS-based artificial neural network models.

    Science.gov (United States)

    Lee, Saro; Park, Inhye; Koo, Bon Joo; Ryu, Joo-Hyung; Choi, Jong-Kuk; Woo, Han Jun

    2013-02-15

    This paper proposes and tests a method of producing macrobenthos habitat potential maps in Hwangdo tidal flat, Korea based on an artificial neural network. Samples of macrobenthos were collected during field work, and eight control factors were compiled as a spatial database from remotely sensed data and GIS analysis. The macrobenthos habitat potential maps were produced using an artificial neural network model. Macrobenthos habitat potential maps were made for Macrophthalmus dilatatus, Cerithideopsilla cingulata, and Armandia lanceolata. The maps were validated by compared with the surveyed habitat locations. A strong correlation between the potential maps and species locations was revealed. The validation result showed average accuracies of 74.9%, 78.32%, and 73.27% for M. dilatatus, C. cingulata, and A. lanceolata, respectively. A GIS-based artificial neural network model combined with remote sensing techniques is an effective tool for mapping the areas of macrobenthos habitat potential in tidal flats.

  8. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  9. Multi-AUV Hunting Algorithm Based on Bio-inspired Neural Network in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2015-11-01

    Full Text Available The multi-AUV hunting problem is one of the key issues in multi-robot system research. In order to hunt the target efficiently, a new hunting algorithm based on a bio-inspired neural network has been proposed in this paper. Firstly, the AUV’s working environment can be represented, based on the biological-inspired neural network model. There is one-to-one correspondence between each neuron in the neural network and the position of the grid map in the underwater environment. The activity values of biological neurons then guide the AUV’s sailing path and finally the target is surrounded by AUVs. In addition, a method called negotiation is used to solve the AUV’s allocation of hunting points. The simulation results show that the algorithm used in the paper can provide rapid and highly efficient path planning in the unknown environment with obstacles and non-obstacles.

  10. Optimization with artificial neural network systems - A mapping principle and a comparison to gradient based methods

    Science.gov (United States)

    Leong, Harrison Monfook

    1988-01-01

    General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.

  11. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods.

  12. Reinforcement-Based Fuzzy Neural Network ontrol with Automatic Rule Generation

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A reinforcemen-based fuzzy neural network control with automatic rule generation RBFNNC) is pro-posed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based onthe state variables of object system. RBFNNC was applied to a cart-pole balancing system and simulation resultshows significant improvements on the rule generation.

  13. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.

    Science.gov (United States)

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.

  14. Correlation methods of base-level cycle based on wavelet neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The authors discussed the method of wavelet neural network (WNN) for correlation of base-level cycle. A new vectored method of well log data was proposed. Through the training with the known data set, the WNN can remenber the cycle pattern characteristic of the well log curves. By the trained WNN to identify the cycle pattern in the vectored log data, the ocrrelation process among the well cycles was completed. The application indicates that it is highly efficient and reliable in base-level cycle correlation.

  15. 4-CBA Soft Sensor Based on Fuzzy CMAC Neural Networks

    Institute of Scientific and Technical Information of China (English)

    杜文莉; 钱锋; 刘漫丹; 张凯

    2005-01-01

    Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.

  16. NEURAL NETWORK APPROACH TO SURFACE BLENDING BASED ON DI GITIZED POINTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A neural network approach is employed to deal with blending problem with surface construction based on digitized points, and some r elated computational cases are presented. Compared with the NURBS method, this n eural network based approach doesn't need the complex formula derivation as long as a limited number of offset points are got, and its accuracy can meet the gen eral engineering needs.

  17. Parallel Neural Network-Based Motion Controller for Autonomous Underwater Vehicles

    Institute of Scientific and Technical Information of China (English)

    GAN Yong; WANG Li-rong; WAN Lei; XU Yu-ru

    2005-01-01

    A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV "IUV-IV" and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller's performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.

  18. Analysis on evaluation ability of nonlinear safety assessment model of coal mines based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-liang; LIU Hai-bo; LIU Ai-hua

    2004-01-01

    Based on the integration analysis of goods and shortcomings of various methods used in safety assessment of coal mines, combining nonlinear feature of mine safety sub-system, this paper establishes the neural network assessment model of mine safety, analyzes the ability of artificial neural network to evaluate mine safety state, and lays the theoretical foundation of artificial neural network using in the systematic optimization of mine safety assessment and getting reasonable accurate safety assessment result.

  19. SINR Prediction in Mobile CDMA Systems by Linear and Nonlinear Artificial Neural-Network-Based Predictors

    Directory of Open Access Journals (Sweden)

    Nahid Ardalani

    2011-07-01

    Full Text Available This article describes linear and nonlinear Artificial Neural Network(ANN-based predictors as Autoregressive Moving Average models with Auxiliary input (ARMAX process for Signal to Interference plus Noise Ratio (SINR prediction in Direct Sequence Code Division Multiple Access (DS/CDMA systems. The Multi Layer Perceptron (MLP neural network with nonlinear function is used as nonlinear neural network and Adaptive Linear (Adaline predictor is used as linear predictor. The problem of complexity of the MLP and Adaline structures is solved by using the Minimum Mean Squared Error (MMSE principle to select the optimal numbers of input and hidden nodes by try and error role. Simulation results show that both of MLP and Adaline optimal neural networks can track the effect of deep fading due to using a 1.8 GHZ carrier frequency at the urban mobile speeds of 10 km/h, 50 km/h and 120 km/h with tolerable estimation errors. Therefore, the neural networkbased predictor is well suitable SINR-based predictor in closedloop power control to combat multi path fading in CDMA systems.

  20. Intelligent predicting approach of peritoneal fluid absorption rate based-on neural network

    Institute of Scientific and Technical Information of China (English)

    Mei ZHANG; Yueming HU; Tao WANG

    2003-01-01

    This paper addresses the important intelligent predicting problem of peritoneal absorption rate in the peritoneal dialysis treament process of renal failure. As the index of dialysis adequacy, KT/V and Ccr are widely used and accepted. However,growing evidence suggests that the fluid balance may play a critical role in dialysis adequacy and patient outcome. Peritoneal fluid absorption decreases the peritoneal fluid removal. Understanding the peritoneal fluid absorption rate will help clinicians to opthnize the dialysis dwell time. The neural network approach is applied to the prediction of peritoneal absorption rate. Compared with multivariable regression method, the experimental results showed that neural network method has an advantage over multivariable regression. The application of this predicting method based-on neural network in clinic is instructive.

  1. RBF neural network based $\\mathcal{H}_{\\infty}$ synchronization for unknown chaotic systems

    Indian Academy of Sciences (India)

    Choon Ki Ahn

    2010-08-01

    In this paper, we propose a new $\\mathcal{H}_{\\infty}$ synchronization strategy, called a Radial Basis Function Neural Network $\\mathcal{H}_{\\infty}$ synchronization (RBFNNHS) strategy, for unknown chaotic systems in the presence of external disturbance. In the proposed framework, a radial basis function neural network (RBFNN) is constructed as an alternative to approximate the unknown nonlinear function of the chaotic system. Based on this neural network and linear matrix inequality (LMI) formulation, the RBFNNHS controller and the learning laws are presented to reduce the effect of disturbance to an $\\mathcal{H}_{\\infty}$ norm constraint. It is shown that finding the RBFNNHS controller and the learning laws can be transformed into the LMI problem and solved using the convex optimization method. A numerical example is presented to demonstrate the validity of the proposed RBFNNHS scheme.

  2. Fabric Defect Detection Technique Based on Two-double Neural Network

    Institute of Scientific and Technical Information of China (English)

    XIE Chun-ping; XU Bo-jun; CHEN Jun-jie

    2008-01-01

    This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimensional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection.

  3. A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks

    Institute of Scientific and Technical Information of China (English)

    Chun-hua LI; Xin-jian ZHU; Guang-yi CAO; Wan-qi HU; Sheng SUI; Ming-ruo HU

    2009-01-01

    To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP for traditional control strategies. We propose a fuzzy neural network controller (FNNC), which combines the reasoning capability of fuzzy logical systems and the learning capability of neural networks, to track the MPP. With a derived learning algorithm, the parameters of the FNNC are updated adaptively. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the FNNC. Simulation results show that the proposed control algorithm provides much better tracking performance compared with the fuzzy logic control algorithm.

  4. A Prediction Model of Peasants’ Income in China Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to the related data affecting the peasants’ income in China in the years 1978-2008,a total of 13 indices are selected,such as agricultural population,output value of primary industry,and rural employees.Based on the standardized method and BP neural network method,the peasants’ income and the artificial neural network model are established and analyzed.Results show that the simulation value agrees well with the real value;the neural network model with improved BP algorithm has high prediction accuracy,rapid convergence rate and good generalization ability.Finally,suggestions are put forward to increase the peasants’ income,such as promoting the process of urbanization,developing small and medium-sized enterprises in rural areas,encouraging intensive operation,and strengthening the rural infrastructure and agricultural science and technology input.

  5. Research on safety assessment of gas explosion hazard in heading face based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    TIAN Shui-cheng; ZHU Li-jun; CHEN Yong-gang; WANG Li

    2005-01-01

    According to hazard theory and the principle of selecting assessment index,combining the causes and mechanism of gas explosion, established assessment index system of gas explosion in heading face. Based on the method of gray clustering, principle of BP neural network and characters of gas explosion in heading face, safety assessment procedural diagram of BP neural network on gas explosion hazard in heading face is designed. Meanwhile, concrete heading face of the gas explosion hazard is assessed by safety assessment method of BP neural network and grades of comprehensive safety assessment are got. The static and dynamic safety assessment can be achieved by this method. It is practical to improve safety management and to develop safety assessment technology in coalmine.

  6. Prediction of Concrete Strength Using Microwave Based Accelerated Curing Parameters by Neural Network

    Directory of Open Access Journals (Sweden)

    S. Ramasundaram

    2013-02-01

    Full Text Available Prediction of compressive strength of concrete is very useful for economic constructions. The compressive strength can be estimated after 28 days of casting the specimen cubes or may be predictedbased on the quantum and quality of ingredients used in making the concrete. When the first one requires a 28-day time, the second one does have problem of accuracy. Hence, a hybrid model is proposed in which the concrete cube is cured using the microwave based accelerated curing procedure and the early strength is used to predict the 28-day strength. Feed-forward neural network model was used to predict compressive strength of the concrete after the microwave curing to ascertain the predictability of neural network models. The results indicate that the neural network models have a good scope for further study and implementations.

  7. Artificial Neural Networks Based Modeling and Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    R. S.M.N. Malar

    2009-01-01

    Full Text Available Continuous Stirred Tank Reactor (CSTR is one of the common reactors in chemical plant. Problem statement: Developing a model incorporating the nonlinear dynamics of the system warrants lot of computation. An efficient control of the product concentration can be achieved only through accurate model. Approach: In this study, attempts were made to alleviate the above mentioned problem using “Artificial Intelligence” (AI techniques. One of the AI techniques namely Artificial Neural Networks (ANN was used to model the CSTR incorporating its non-linear characteristics. Two nonlinear models based control strategies namely internal model control and direct inverse control were designed using the neural networks and applied to the control of isothermal CSTR. Results: The simulation results for the above control schemes with set point tracking were presented. Conclusion: Results indicated that neural networks can learn accurate models and give good non-linear control when model equations are not known.

  8. FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dailin; CHEN Youping; AI Wu; ZHOU Zude; KONG Ching Tom

    2008-01-01

    Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.

  9. Research on fault location technology based on BP neural network in DWDM optical network

    Institute of Scientific and Technical Information of China (English)

    LIAO Xiao-min; ZHANG Yin-fa; YANG Shi-ping; LIN Chu-shan

    2008-01-01

    BP neural network is introduced to the fault location field of DWDM optical network in this paper. The alarm characteris-tics of the optical network equipments are discussed, and alarm vector and fault vector diagrams are generated by analyzingsome typical instances. A 17×14×18 BP neural network structure is constructed and trained by using MATLAB. Bycomparing the training performances, the best training algorithm of fault location among the three training algorithms ischosen. Numerical simulation results indicate that the sum squared error (SSE) of fault location is less than 0.01, and theprocessing time is less than 100 ms. This method not only well deals with the missing alarms or false alarms, but alsoimproves the fault location accuracy and real-time ability.

  10. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a {sup 6}LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  11. Identification Simulation for Dynamical System Based on Genetic Algorithm and Recurrent Multilayer Neural Network

    Institute of Scientific and Technical Information of China (English)

    鄢田云; 张翠芳; 靳蕃

    2003-01-01

    Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).

  12. Audio Watermarking Based on HAS and Neural Networks in DCT Domain

    Directory of Open Access Journals (Sweden)

    Cheng Ji-Shiung

    2003-01-01

    Full Text Available We propose a new intelligent audio watermarking method based on the characteristics of the HAS and the techniques of neural networks in the DCT domain. The method makes the watermark imperceptible by using the audio masking characteristics of the HAS. Moreover, the method exploits a neural network for memorizing the relationships between the original audio signals and the watermarked audio signals. Therefore, the method is capable of extracting watermarks without original audio signals. Finally, the experimental results are also included to illustrate that the method significantly possesses robustness to be immune against common attacks for the copyright protection of digital audio.

  13. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

    Directory of Open Access Journals (Sweden)

    Valentin Potapov

    2016-12-01

    Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

  14. One-way hash function based on hyper-chaotic cellular neural network

    Institute of Scientific and Technical Information of China (English)

    Yang Qun-Ting; Gao Tie-Gang

    2008-01-01

    The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge-Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corresponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability.

  15. Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle

    Institute of Scientific and Technical Information of China (English)

    Dan Necsulescu; Yi-Wu Jiang; Bumsoo Kim

    2007-01-01

    This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is nonminimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.

  16. Short-term load forecasting study of wind power based on Elman neural network

    Science.gov (United States)

    Tian, Xinran; Yu, Jing; Long, Teng; Liu, Jicheng

    2017-01-01

    Since wind power has intermittent, irregular and volatility nature, improving load forecasting accuracy of wind power has significant influence on controlling wind system and guarantees stable operation of power grids. This paper constructed the wind farm loading forecasting in short-term based on Elman neural network, and made a numerical example analysis. . Examples show that, using input delayed of feedback Elman neural network, can reflect the inherent laws of wind load operation better, so as to present a new idea for short-term load forecasting of wind power.

  17. Neural-network-based speed controller for induction motors using inverse dynamics model

    Science.gov (United States)

    Ahmed, Hassanein S.; Mohamed, Kamel

    2016-08-01

    Artificial Neural Networks (ANNs) are excellent tools for controller design. ANNs have many advantages compared to traditional control methods. These advantages include simple architecture, training and generalization and distortion insensitivity to nonlinear approximations and nonexact input data. Induction motors have many excellent features, such as simple and rugged construction, high reliability, high robustness, low cost, minimum maintenance, high efficiency, and good self-starting capabilities. In this paper, we propose a neural-network-based inverse model for speed controllers for induction motors. Simulation results show that the ANNs have a high tracing capability.

  18. Fuzzy neural network control of underwater vehicles based on desired state programming

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao; LI Ye; XU Yu-ru; WAN Lei; QIN Zai-bai

    2006-01-01

    Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn't been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle.The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model's uncertainty and external disturbance, which has theoretical and practical value.

  19. Underground object characterization based on neural networks for ground penetrating radar data

    Science.gov (United States)

    Zhang, Yu; Huston, Dryver; Xia, Tian

    2016-04-01

    In this paper, an object characterization method based on neural networks is developed for GPR subsurface imaging. Currently, most existing studies demonstrate detecting and imaging objects of cylindrical shapes. While in this paper, no restriction is imposed on the object shape. Three neural network algorithms are exploited to characterize different types of object signatures, including object shape, object material, object size, object depth and subsurface medium's dielectric constant. Feature extraction is performed to characterize the instantaneous amplitude and time delay of the reflection signal from the object. The characterization method is evaluated utilizing the data synthesized with the finite-difference timedomain (FDTD) simulator.

  20. A Study of Maneuvering Control for an Air Cushion Vehicle Based on Back Propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Guo-liang; LI Shu-zhi

    2009-01-01

    A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online.

  1. Discrimination of neutrons and {\\gamma}-rays in liquid scintillator based on Elman neural network

    CERN Document Server

    Zhang, Cai-Xun; Zhao, Jian-Ling; Wang, Li; Yu, Xun-Zhen; Zhu, Jing-Jun; Xing, Hao-Yang

    2015-01-01

    A new neutron and {\\gamma} (n/{\\gamma}) discrimination method based on Elman Neural Network (ENN) was put forward to improve the n/{\\gamma} discrimination performance of liquid scintillator (LS). In this study, neutron and {\\gamma} data acquired from EJ-335 which was exposed in Am-Be radiation field was discriminated using ENN. The difference of n/{\\gamma} discrimination performance between using ENN and Back Propagation Neural Network (BPNN) is that ENN gave a improvement over BPNN in n/{\\gamma} discrimination with the increasing increasing of the Figure of Merit (FOM) from 0.907 to 0.953.

  2. Neural Network Based Algorithm and Simulation of Information Fusion in the Coal Mine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The concepts of information fusion and the basic principles of neural networks are introduced.Neural networks were introduced as a way of building an information fusion model in a coal mine monitoring system.This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems.The information fusion mode was analyzed.An algorithm was designed based on this analysis and some simulation results were given.Finally, conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.

  3. Neural network and genetic algorithm based global path planning in a static environment

    Institute of Scientific and Technical Information of China (English)

    DU Xin; CHEN Hua-hua; GU Wei-kang

    2005-01-01

    Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective.

  4. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.

    Science.gov (United States)

    Velmurugan, G; Rakkiyappan, R; Cao, Jinde

    2016-01-01

    In this paper, we consider the problem of finite-time synchronization of a class of fractional-order memristor-based neural networks (FMNNs) with time delays and investigated it potentially. By using Laplace transform, the generalized Gronwall's inequality, Mittag-Leffler functions and linear feedback control technique, some new sufficient conditions are derived to ensure the finite-time synchronization of addressing FMNNs with fractional order α:1neural networks. Finally, three numerical examples are presented to show the effectiveness of our proposed theoretical results.

  5. A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above.

  6. CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL

    Directory of Open Access Journals (Sweden)

    Dr.A.TRIVEDI

    2011-04-01

    Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.

  7. Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment

    Directory of Open Access Journals (Sweden)

    Garima Singh

    2011-01-01

    Full Text Available With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN has been proposed for voltage stability margin estimation which is an indication of the power system's proximity to voltage collapse. The proposed approach utilizes a hybrid algorithm that integrates genetic algorithm and the back propagation neural network. The proposed algorithm aims to combine the capacity of GAs in avoiding local minima and at the same time fast execution of the BP algorithm. Input features for GABPNN are selected on the basis of angular distance-based clustering technique. The performance of the proposed GABPNN approach has been compared with the most commonly used gradient based BP neural network by estimating the voltage stability margin at different loading conditions in 6-bus and IEEE 30-bus system. GA based neural network learns faster, at the same time it provides more accurate voltage stability margin estimation as compared to that based on BP algorithm. It is found to be suitable for online applications in energy management systems.

  8. Artificial Neural Network-Based Fault Distance Locator for Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Anamika Jain

    2013-01-01

    Full Text Available This paper analyses two different approaches of fault distance location in a double circuit transmission lines, using artificial neural networks. The single and modular artificial neural networks were developed for determining the fault distance location under varying types of faults in both the circuits. The proposed method uses the voltages and currents signals available at only the local end of the line. The model of the example power system is developed using Matlab/Simulink software. Effects of variations in power system parameters, for example, fault inception angle, CT saturation, source strength, its X/R ratios, fault resistance, fault type and distance to fault have been investigated extensively on the performance of the neural network based protection scheme (for all ten faults in both the circuits. Additionally, the effects of network changes: namely, double circuit operation and single circuit operation, have also been considered. Thus, the present work considers the entire range of possible operating conditions, which has not been reported earlier. The comparative results of single and modular neural network indicate that the modular approach gives correct fault location with better accuracy. It is adaptive to variation in power system parameters, network changes and works successfully under a variety of operating conditions.

  9. A new grey forecasting model based on BP neural network and Markov chain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1,1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(1,1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).

  10. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  11. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  12. Identification of children's activity type with accelerometer-based neural networks

    NARCIS (Netherlands)

    Vries, S.I. de; Engels, M.; Garre, F.G.

    2011-01-01

    Purpose: The study's purpose was to identify children's physical activity type using artificial neural network (ANN) models based on uniaxial or triaxial accelerometer data from the hip or the ankle. Methods: Fifty-eight children (31 boys and 27 girls, age range = 9-12 yr) performed the following ac

  13. Image Classification System Based on Cortical Representations and Unsupervised Neural Network Learning

    NARCIS (Netherlands)

    Petkov, Nikolay

    1995-01-01

    A preprocessor based on a computational model of simple cells in the mammalian primary visual cortex is combined with a self-organising artificial neural network classifier. After learning with a sequence of input images, the output units of the system turn out to correspond to classes of input imag

  14. A New Method for Studying the Periodic System Based on a Kohonen Neural Network

    Science.gov (United States)

    Chen, David Zhekai

    2010-01-01

    A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…

  15. Genetic Algorithms, Neural Networks, and Time Effectiveness Algorithm Based Air Combat Intelligence Simulation System

    Institute of Scientific and Technical Information of China (English)

    曾宪钊; 成冀; 安欣; 方礼明

    2002-01-01

    This paper introduces a new Air Combat Intelligence Simulation System (ACISS) in a 32 versus 32 air combat, describes three methods: Genetic Algorithms (GA) in the multi-targeting decision and Evading Missile Rule Base learning, Neural Networks (NN) in the maneuvering decision, and Time Effectiveness Algorithm (TEA) in the adjudicating an air combat and the evaluating evading missile effectiveness.

  16. Direction-of-change forecasting using a volatility-based recurrent neural network

    NARCIS (Netherlands)

    Bekiros, S.D.; Georgoutsos, D.A.

    2008-01-01

    This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction-of-change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub-period 8 Ap

  17. Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.

    Science.gov (United States)

    Qu, Hong; Yi, Zhang; Yang, Simon X

    2013-06-01

    Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach.

  18. Modelling of the Relaxation Least Squares-Based Neural Networks and Its Application

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A relaxation least squares-based learning algorithm for neural networks is proposed. Not only does it have a fast convergence rate, but it involves less computation quantity. Therefore, it is suitable to deal with the case when a network has a large scale but the number of training data is very limited. It has been used in converting furnace process modelling, and impressive result has been obtained.

  19. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  20. Current-mode implementation of processing modules in ART-based neural networks

    Science.gov (United States)

    Lopez-Alcantud, Jose-Alejandro; Hauer, Hans; Diaz-Madrid, Jose-Angel; Ruiz-Merino, Ramon

    2003-04-01

    This paper describes implementation of neural network processing layers using basic current-mode operating modules. The research work has been focused on the implementation of neural networks based on the Adaptive Resonance Theory, developed by S. Grossberg and G.A. Carpenter. The ART-based neural network whose operating modules have been choosen for development is the one called MART, proposed by F. Delgado, because of its complex architecture, auto--adaptive self-learning process, able to discard unmeaningful cathegories. Our presentation starts introducing the behaviour of MART with an analysis of its structure. The development described by this research work is focused on the monochannel block included in the main signal processing part of the MART neural network. The description of the computing algorithm of the layers inside a monochannel block are also provided in order to show what operational current-mode modules are needed (multiplier, divider, square-rooter, adder, substractor, absolute value, maximum and minimum evaluator...). Descriptions at schematic and layout levels of all the processing layers are given. All of them have been designed using AMS 0.35 micron technology with a supply voltage of 3.3 volts. The modules are designed to deal with input currents in the range of 20 to 50 microamps, showing a lineal behaviour and an output error of less than 10%, which is good enough for neural signal processing systems. The maximum frecuency of operation is around 200 kHz. Simulation results are included to show that the operation performed by the hardware designed matches the behaviour described by the MART neural network. For testing purposes we show the design of a monochannel block hardware implementation restricted to five inputs and three cathegories.

  1. Real-time camera-based face detection using a modified LAMSTAR neural network system

    Science.gov (United States)

    Girado, Javier I.; Sandin, Daniel J.; DeFanti, Thomas A.; Wolf, Laura K.

    2003-03-01

    This paper describes a cost-effective, real-time (640x480 at 30Hz) upright frontal face detector as part of an ongoing project to develop a video-based, tetherless 3D head position and orientation tracking system. The work is specifically targeted for auto-stereoscopic displays and projection-based virtual reality systems. The proposed face detector is based on a modified LAMSTAR neural network system. At the input stage, after achieving image normalization and equalization, a sub-window analyzes facial features using a neural network. The sub-window is segmented, and each part is fed to a neural network layer consisting of a Kohonen Self-Organizing Map (SOM). The output of the SOM neural networks are interconnected and related by correlation-links, and can hence determine the presence of a face with enough redundancy to provide a high detection rate. To avoid tracking multiple faces simultaneously, the system is initially trained to track only the face centered in a box superimposed on the display. The system is also rotationally and size invariant to a certain degree.

  2. Adaptive control of machining process based on extended entropy square error and wavelet neural network

    Institute of Scientific and Technical Information of China (English)

    LAI Xing-yu; YE Bang-yan; LI Wei-guang; YAN Chun-yan

    2007-01-01

    Combining information entropy and wavelet analysis with neural network, an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error (EESE) and wavelet neural network (WNN). Extended entropy square error function is defined and its availability is proved theoretically. Replacing the mean square error criterion of BP algorithm with the EESE criterion, the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter, translating parameter of the wavelet and neural network weights. Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network. The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions, thus improving the machining efficiency and protecting the tool.

  3. Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Nyholm Jørgensen, Rasmus; Blanes-Vidal, Victoria;

    2012-01-01

    perceptron (MLP)-based artificial neural network (ANN). The best performance of the ANN in terms of the mean squared error (MSE) and the convergence speed was achieved when it was initialized and trained using the Nguyen–Widrow and Levenberg–Marquardt back-propagation algorithms, respectively. The success...

  4. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    Science.gov (United States)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  5. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  6. A new gradient-based neural network for solving linear and quadratic programming problems.

    Science.gov (United States)

    Leung, Y; Chen, K Z; Jiao, Y C; Gao, X B; Leung, K S

    2001-01-01

    A new gradient-based neural network is constructed on the basis of the duality theory, optimization theory, convex analysis theory, Lyapunov stability theory, and LaSalle invariance principle to solve linear and quadratic programming problems. In particular, a new function F(x, y) is introduced into the energy function E(x, y) such that the function E(x, y) is convex and differentiable, and the resulting network is more efficient. This network involves all the relevant necessary and sufficient optimality conditions for convex quadratic programming problems. For linear programming and quadratic programming (QP) problems with unique and infinite number of solutions, we have proven strictly that for any initial point, every trajectory of the neural network converges to an optimal solution of the QP and its dual problem. The proposed network is different from the existing networks which use the penalty method or Lagrange method, and the inequality constraints are properly handled. The simulation results show that the proposed neural network is feasible and efficient.

  7. Filtering and Estimation of Vehicular Dead Reckoning System Based on Hopfield Neural Network

    Institute of Scientific and Technical Information of China (English)

    毕军; 付梦印; 张启鸿

    2003-01-01

    The algorithm of Hopfield neural network filtering and estimation is studied. The model of vehicular dead reckoning system fitting for the algorithm is constructed, and the design scheme of system filtering and estimation based on Hopfield network is proposed. Compared with Kalman filter, the algorithm does not require very precise system model and the prior knowledge of noise statistics and does not diverge easily. The simulation results show that the vehicular dead reckoning system based on Hopfield network filtering and estimation has the good position precision, and needn't require the inertial sensors with high precision. Therefore, the algorithm has the good practicability.

  8. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    Science.gov (United States)

    2007-11-02

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  9. [Hyperspectral remote sensing image classification based on radical basis function neural network].

    Science.gov (United States)

    Tan, Kun; Du, Pei-jun

    2008-09-01

    Based on the radial basis function neural network (RBFNN) theory and the specialty of hyperspectral remote sensing data, the effective feature extraction model was designed, and those extracted features were connected to the input layer of RBFNN, finally the classifier based on radial basis function neural network was constructed. The hyperspectral image with 64 bands of OMIS II made by Chinese was experimented, and the case study area was zhongguancun in Beijing. Minimum noise fraction (MNF) was conducted, and the former 20 components were extracted for further processing. The original data (20 dimension) of extraction by MNF, the texture transformation data (20 dimension) extracted from the former 20 components after MNF, and the principal component analysis data (20 dimension) of extraction were combined to 60 dimension. For classification by RBFNN, the sizes of training samples were less than 6.13% of the whole image. That classifier has a simple structure and fast convergence capacity, and can be easily trained. The classification precision of radial basis function neural network classifier is up to 69.27% in contrast with the 51.20% of back propagation neural network (BPNN) and 40. 88% of traditional minimum distance classification (MDC), so RBFNN classifier performs better than the other three classifiers. It proves that RBFNN is of validity in hyperspectral remote sensing classification.

  10. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  11. Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation

    Directory of Open Access Journals (Sweden)

    Yuzheng Yang

    2014-01-01

    Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.

  12. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  13. Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks

    Institute of Scientific and Technical Information of China (English)

    WANG Yongji; WANG Hong

    2004-01-01

    A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.

  14. Enhanced Password Based Security System Based on User Behavior using Neural Networks

    Directory of Open Access Journals (Sweden)

    Gour Sundar Mitra Thakur

    2012-04-01

    Full Text Available There are multiple numbers of security systems are available to protect your computer/resources. Among them, password based systems are the most commonly used system due to its simplicity, applicability and cost effectiveness But these types of systems have higher sensitivity to cyber-attack. Most of the advanced methods for authentication based on password security encrypt the contents of password before storing or transmitting in the physical domain. But all conventional encryption methods are having its own limitations, generally either in terms of complexity or in terms of efficiency.In this paper an enhanced password based security system has been proposed based on user typing behavior, which will attempt to identify authenticity of any user failing to login in first few attempts by analyzing the basic user behaviors/activities and finally training them through neural network and classifying them as genuine or intruder

  15. Complete Periodic Synchronization of Memristor-Based Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2013-01-01

    Full Text Available This paper investigates the complete periodic synchronization of memristor-based neural networks with time-varying delays. Firstly, under the framework of Filippov solutions, by using M-matrix theory and the Mawhin-like coincidence theorem in set-valued analysis, the existence of the periodic solution for the network system is proved. Secondly, complete periodic synchronization is considered for memristor-based neural networks. According to the state-dependent switching feature of the memristor, the error system is divided into four cases. Adaptive controller is designed such that the considered model can realize global asymptotical synchronization. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  16. Stability analysis of memristor-based fractional-order neural networks with different memductance functions.

    Science.gov (United States)

    Rakkiyappan, R; Velmurugan, G; Cao, Jinde

    2015-04-01

    In this paper, the problem of the existence, uniqueness and uniform stability of memristor-based fractional-order neural networks (MFNNs) with two different types of memductance functions is extensively investigated. Moreover, we formulate the complex-valued memristor-based fractional-order neural networks (CVMFNNs) with two different types of memductance functions and analyze the existence, uniqueness and uniform stability of such networks. By using Banach contraction principle and analysis technique, some sufficient conditions are obtained to ensure the existence, uniqueness and uniform stability of the considered MFNNs and CVMFNNs with two different types of memductance functions. The analysis results establish from the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, four numerical examples are presented to show the effectiveness of our theoretical results.

  17. Artificial neural network based fault identification scheme implementation for a three-phase induction motor.

    Science.gov (United States)

    Kolla, Sri R; Altman, Shawn D

    2007-04-01

    This paper presents results from the implementation and testing of a PC based monitoring and fault identification scheme for a three-phase induction motor using artificial neural networks (ANNs). To accomplish the task, a hardware system is designed and built to acquire three-phase voltages and currents from a 1/3 HP squirrel-cage, three-phase induction motor. A software program is written to read the voltages and currents, which are first used to train a feed-forward neural network structure using the JavaNNS program. The trained network is placed in a LabVIEW based program formula node that monitors the voltages and currents online and displays the fault conditions and turns the motor off. The complete system is successfully tested in real time by creating different faults on the motor.

  18. The risk early-warning of gas hazard in coal mine based on Rough Set-neural network

    Institute of Scientific and Technical Information of China (English)

    TIAN Shui-cheng; WANG Li

    2007-01-01

    This article proposed the risk early-warning model of gas hazard based on Rough Set and neural network. The attribute quantity was reduced by Rough Set, the main characteristic attributes were withdrawn, the complexity of neural network system and the computing time was reduced, as well. Because of fault-tolerant ability, parallel processing ability, anti-jamming ability and processing non-linear problem ability of neural network system, the methods of Rough Set and neural network were combined. The examples research indicate: applying Rough Set and BP neural network to the gas hazard risk early-warning coal mines in coal mine, the BPNN structure is greatly simplified, the network computation quantity is reduced and the convergence rate is speed up.

  19. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2016-10-24

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  20. Convolutional neural network based sensor fusion for forward looking ground penetrating radar

    Science.gov (United States)

    Sakaguchi, Rayn; Crosskey, Miles; Chen, David; Walenz, Brett; Morton, Kenneth

    2016-05-01

    Forward looking ground penetrating radar (FLGPR) is an alternative buried threat sensing technology designed to offer additional standoff compared to downward looking GPR systems. Due to additional flexibility in antenna configurations, FLGPR systems can accommodate multiple sensor modalities on the same platform that can provide complimentary information. The different sensor modalities present challenges in both developing informative feature extraction methods, and fusing sensor information in order to obtain the best discrimination performance. This work uses convolutional neural networks in order to jointly learn features across two sensor modalities and fuse the information in order to distinguish between target and non-target regions. This joint optimization is possible by modifying the traditional image-based convolutional neural network configuration to extract data from multiple sources. The filters generated by this process create a learned feature extraction method that is optimized to provide the best discrimination performance when fused. This paper presents the results of applying convolutional neural networks and compares these results to the use of fusion performed with a linear classifier. This paper also compares performance between convolutional neural networks architectures to show the benefit of fusing the sensor information in different ways.

  1. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    to determine the damper current based on the derived optimal damper force. For that reason an inverse MR damper model is also designed based on the neural network identification of the particular rotary MR damper. The performance of the proposed controller is compared to that of an optimal pure viscous damper......-displacement trajectories. The proposed neural network controller is therefore trained based on data derived from these desired forcedisplacement curves, where the optimal relation between friction force level and response amplitude is determined explicitly by simply maximizing the damping ratio of the targeted vibration....... The top floor displacement and acceleration of the base excited shear frame structure are selected as the performance parameters of this comparison. It is found by the simulations that the proposed control design yields a reduction in the structural response compared to the viscous case....

  2. Automatic layout feature extraction for lithography hotspot detection based on deep neural network

    Science.gov (United States)

    Matsunawa, Tetsuaki; Nojima, Shigeki; Kotani, Toshiya

    2016-03-01

    Lithography hotspot detection in the physical verification phase is one of the most important techniques in today's optical lithography based manufacturing process. Although lithography simulation based hotspot detection is widely used, it is also known to be time-consuming. To detect hotspots in a short runtime, several machine learning based methods have been proposed. However, it is difficult to realize highly accurate detection without an increase in false alarms because an appropriate layout feature is undefined. This paper proposes a new method to automatically extract a proper layout feature from a given layout for improvement in detection performance of machine learning based methods. Experimental results show that using a deep neural network can achieve better performance than other frameworks using manually selected layout features and detection algorithms, such as conventional logistic regression or artificial neural network.

  3. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  4. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  5. Wind Turbine Fault Detection based on Artificial Neural Network Analysis of SCADA Data

    DEFF Research Database (Denmark)

    Herp, Jürgen; S. Nadimi, Esmaeil

    2015-01-01

    Slowly developing faults in wind turbine can, when not detected and fixed on time, cause severe damage and downtime. We are proposing a fault detection method based on Artificial Neural Networks (ANN) and the recordings from Supervisory Control and Data Acquisition (SCADA) systems installed in wi...... detection upon a generalized-likelihood-test. An upper and a lower control bounds are established for x and y respectively, given a minimum false alarm probability η based on the statistical characteristics of the data....

  6. A Shortest Dependency Path Based Convolutional Neural Network for Protein-Protein Relation Extraction

    OpenAIRE

    2016-01-01

    The state-of-the-art methods for protein-protein interaction (PPI) extraction are primarily based on kernel methods, and their performances strongly depend on the handcraft features. In this paper, we tackle PPI extraction by using convolutional neural networks (CNN) and propose a shortest dependency path based CNN (sdpCNN) model. The proposed method (1) only takes the sdp and word embedding as input and (2) could avoid bias from feature selection by using CNN. We performed experiments on sta...

  7. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...

  8. Fuzzy Control System of Hydraulic Roll Bending Based on Genetic Neural Network

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yu; LIU Hong-min; ZHOU Hui-feng

    2005-01-01

    For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully,and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy.

  9. Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; ZHOU Li-Ming; CHEN Tian-Lun

    2003-01-01

    Based on the standard self-organizing map neural network model and an integrate-and-fire mechanism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We let the parameter β, which together with α represents the interactive strength between neurons, have different function forms, and we find the function forms and their parameters are very important to our model's avalanche dynamical behaviors, especially to the emergence of different avalanche behaviors in different areas of our system.

  10. Different Avalanche Behaviors in Different Specific Areas of a System Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAOXiao-Wei; CHENTian-Lun

    2003-01-01

    Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, we find there are different avalanche distribution behaviors in different specific areas of our system, which are formed by the topological learning process of the SOM net.

  11. Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAOXiao-Wei; ZHOULi-Ming; CHENTian-Lun

    2003-01-01

    Based on the standard self-organizing map neural network model and an integrate-and-fire mechanism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We let the parameter β, which together with α represents the interactive strength between neurons, have different function forms, and we find the function forms and their parameters are very important to our model''s avalanche dynamical behaviors, especially to the emergence of different avalanche behaviors in different areas of our system.

  12. Self-organized Criticality in a Model Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; CHEN Tian-Lun

    2001-01-01

    Based on the LISSOM neural network model, we introduce a model to investigate self-organized criticality in the activity of neural populations. The influence of connection (synapse) between neurons has been adequately considered in this model. It is found to exhibit self-organized criticality (SOC) behavior under appropriate conditions.``We also find that the learning process has promotive influence on emergence of SOC behavior. In addition, we analyze the influence of various factors of the model on the SOC behavior, which is characterized by the power-law behavior of the avalanche size distribution.``

  13. RECURRENT NEURAL NETWORK MODEL BASED ON PROJECTIVE OPERATOR AND ITS APPLICATION TO OPTIMIZATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The recurrent neural network (RNN) model based on projective operator was studied. Different from the former study, the value region of projective operator in the neural network in this paper is a general closed convex subset of n-dimensional Euclidean space and it is not a compact convex set in general, that is, the value region of projective operator is probably unbounded. It was proved that the network has a global solution and its solution trajectory converges to some equilibrium set whenever objective function satisfies some conditions. After that, the model was applied to continuously differentiable optimization and nonlinear or implicit complementarity problems. In addition, simulation experiments confirm the efficiency of the RNN.

  14. Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Xinyu Wei

    2016-01-01

    Full Text Available Pellet-clad interaction (PCI is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN. The neural network is built through the analysis of the existing experimental data. It is concluded that it is a suitable way to reduce the calculation complexity. A self-organized RBFNN is used in our study, which can vary its structure dynamically in order to maintain the prediction accuracy. For the purpose of the appropriate network complexity and overall computational efficiency, the hidden neurons in the RBFNN can be changed online based on the neuron activity and mutual information. The presented method is tested by the experimental data from the reference, and the results demonstrate its effectiveness.

  15. Neural network based system for script identification in Indian documents

    Indian Academy of Sciences (India)

    S Basavaraj Patil; N V Subbareddy

    2002-02-01

    The paper describes a neural network-based script identification system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identification is a basic requirement in automation of document processing, in multi-script, multi-lingual environments. The system developed includes a feature extractor and a modular neural network. The feature extractor consists of two stages. In the first stage the document image is dilated using 3 × 3 masks in horizontal, vertical, right diagonal, and left diagonal directions. In the next stage, average pixel distribution is found in these resulting images. The modular network is a combination of separately trained feedforward neural network classifiers for each script. The system recognizes 64 × 64 pixel document images. In the next level, the system is modified to perform on single word-document images in the same three scripts. Modified system includes a pre-processor, modified feature extractor and probabilistic neural network classifier. Pre-processor segments the multi-script multi-lingual document into individual words. The feature extractor receives these word-document images of variable size and still produces the discriminative features employed by the probabilistic neural classifier. Experiments are conducted on a manually developed database of document images of size 64 × 64 pixels and on a database of individual words in the three scripts. The results are very encouraging and prove the effectiveness of the approach.

  16. Theoretical Investigation of Optical Computing Based on Neural Network Models.

    Science.gov (United States)

    1987-09-29

    associated output vectors ym. Alternatively, error driven algorithms such as the perceptron or adaline can be used to iteratively train the memory by...from which the state of the entire network can be calculated). The perceptron [21] and adaline [221 algorithms are examples of error driven learning

  17. Artificial neural networks as adjuncts for assessing medical students' problem solving performances on computer-based simulations.

    Science.gov (United States)

    Stevens, R H; Najafi, K

    1993-04-01

    Artificial neural networks were trained by supervised learning to recognize the test selection patterns associated with students' successful solutions to seven immunology computer-based simulations. New test selection patterns evaluated by the trained neural network were correctly classified as successful or unsuccessful solutions to the problem > 90% of the time. The examination of the neural networks output weights after each test selection revealed a progressive and selective increase for the relevant problem suggesting that a successful solution is represented by the neural network as the accumulation of relevant tests. Unsuccessful problem solutions were classified by the neural network software into two patterns of students performance. The first pattern was characterized by low neural network output weights for all seven problems reflecting extensive searching and lack of recognition of relevant information. In the second pattern, the output weights from the neural network were biased toward one of the remaining six incorrect problems suggesting that the student misrepresented the current problem as an instance of a previous problem. Finally, neural network analysis could detect cases where the students switched hypotheses during the problem solving exercises.

  18. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    Science.gov (United States)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  19. A neutron spectrum unfolding code based on generalized regression artificial neural networks.

    Science.gov (United States)

    Del Rosario Martinez-Blanco, Ma; Ornelas-Vargas, Gerardo; Castañeda-Miranda, Celina Lizeth; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, Jose M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel

    2016-11-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a (6)LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation.

  20. A Dynamic Effective Fault Tolerance System in Robotic Manipulator using a Hybrid Neural Network based Controller

    Directory of Open Access Journals (Sweden)

    G. Jiji

    2014-04-01

    Full Text Available Robot manipulator play important role in the field of automobile industry, mainly it is used in gas welding application and manufacturing and assembling of motor parts. In complex trajectory, on each joint the speed of the robot manipulator is affected. For that reason, it is necessary to analyze the noise and vibration of robot's joints for predicting faults also improve the control precision of robotic manipulator. In this study we will propose a new fault detection system for Robot manipulator. The proposed hybrid fault detection system is designed based on fuzzy support vector machine and Artificial Neural Networks (ANNs. In this system the decouple joints are identified and corrected using fuzzy SVM, here non-linear signal are used for complete process and treatment, the Artificial Neural Networks (ANNs are used to detect the free-swinging and locked joint of the robot, two types of neural predictors are also employed in the proposed adaptive neural network structure. The simulation results of a hybrid controller demonstrate the feasibility and performance of the methodology.

  1. A Study on Turbo-rotor Multi-fault Diagnosis Based on a Neural Network

    Institute of Scientific and Technical Information of China (English)

    SUN Shou-qun; ZHAO San-xing; ZHANG Wei; CHANG Xin-long

    2003-01-01

    The multi-fault phenomena are common in the turbo-rotor system of a liquid rocket engine. As it has many excellent qualities, the neural network might be used to solve the problems of multi-fault diagnosis of a turbo-rotor system. First, the feature expression of a common turbo-rotor fault was studied in order to build up the standard fault pattern and satisfy the need of neural network studying and diagnosing. Then, the turbo-rotor fault identification and diagnosis problems were investigated by using a BP(back-propagation) neural network. According to the BP neural network problems, the parallel BP neural network method of multi-fault diagnosis and classification was presented and investigated. The results indicated that the parallel BP neural network method could solve the turbo-rotor multi-fault diagnosis problems.

  2. Proton exchange membrane fuel cells modeling based on artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    Yudong Tian; Xinjian Zhu; Guangyi Cao

    2005-01-01

    To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.

  3. Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method

    Institute of Scientific and Technical Information of China (English)

    HUANG Deshuang; CHI Zheru

    2004-01-01

    This paper proposes a novel recursive partitioning method based on constrained learning neural networks to find an arbitrary number (less than the order of the polynomial) of (real or complex) roots of arbitrary polynomials. Moreover, this paper also gives a BP network constrained learning algorithm (CLA) used in root-finders based on the constrained relations between the roots and the coefficients of polynomials. At the same time, an adaptive selection method for the parameter δPwith the CLA is also given.The experimental results demonstrate that this method can more rapidly and effectively obtain the roots of arbitrary high order polynomials with higher precision than traditional root-finding approaches.

  4. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

    Science.gov (United States)

    Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo

    2017-01-01

    We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.

  5. Neural Network Control Optimization based on Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhaoyin Zhang

    2013-08-01

    Full Text Available To clearly find the effect of factors in network classification, the classification process of PNN is analyzed in detail. The XOR problem is described by PNN and the elements in PNN are also studied. Through simulations and combined with genetic algorithm, a novel PNN supervised learning algorithm is proposed. This algorithm introduces the classification accuracy of training samples to the network parameter learning. It adopts genetic algorithm to train the PNN smoothing parameter and hidden centric vector. Then the effects of hidden neuron number, hidden centric vector and smoothing parameter in PNN are verified in the experiments. It is shown that this algorithm is superior to other PNN learning algorithms on classification effect.

  6. Modeling the cooling performance of vortex tube using a genetic algorithm-based artificial neural network

    Directory of Open Access Journals (Sweden)

    Pouraria Hassan

    2016-01-01

    Full Text Available In this study, artificial neural networks (ANNs have been used to model the effects of four important parameters consist of the ratio of the length to diameter(L/D, the ratio of the cold outlet diameter to the tube diameter(d/D, inlet pressure(P, and cold mass fraction (Y on the cooling performance of counter flow vortex tube. In this approach, experimental data have been used to train and validate the neural network model with MATLAB software. Also, genetic algorithm (GA has been used to find the optimal network architecture. In this model, temperature drop at the cold outlet has been considered as the cooling performance of the vortex tube. Based on experimental data, cooling performance of the vortex tube has been predicted by four inlet parameters (L/D, d/D, P, Y. The results of this study indicate that the genetic algorithm-based artificial neural network model is capable of predicting the cooling performance of vortex tube in a wide operating range and with satisfactory precision.

  7. Improved ultrasonic differentiation model for structural coal types based on neural network

    Institute of Scientific and Technical Information of China (English)

    TIAN Zi-jian; WANG Fu-zhong; LI Tao; BAI Shan-shan

    2009-01-01

    In order to solve the difficulty of detailed recognition of subdivisions of structural coal types, a differentiation model that combines BP neural network with an ultrasonic reflection method is proposed. Structural coal types are recognized based on a suit-able consideration of ultrasonic speed, an ultrasonic attenuation coefficient, characteristics of ultrasonic transmission and other parameters relating to structural coal types. We have focused on a computational model of ultrasonic speed, attenuation coefficient in coal and differentiation algorithm of structural coal types based on a BP neural network. Experiments demonstrate that the model can distinguish structural coal types effectively. It is important for the improved ultrasonic differentiation model to predict coal and gas outbursts.

  8. A General Rate K/N Convolutional Decoder Based on Neural Networks with Stopping Criterion

    Directory of Open Access Journals (Sweden)

    Johnny W. H. Kao

    2009-01-01

    Full Text Available A novel algorithm for decoding a general rate K/N convolutional code based on recurrent neural network (RNN is described and analysed. The algorithm is introduced by outlining the mathematical models of the encoder and decoder. A number of strategies for optimising the iterative decoding process are proposed, and a simulator was also designed in order to compare the Bit Error Rate (BER performance of the RNN decoder with the conventional decoder that is based on Viterbi Algorithm (VA. The simulation results show that this novel algorithm can achieve the same bit error rate and has a lower decoding complexity. Most importantly this algorithm allows parallel signal processing, which increases the decoding speed and accommodates higher data rate transmission. These characteristics are inherited from a neural network structure of the decoder and the iterative nature of the algorithm, that outperform the conventional VA algorithm.

  9. Establishment of constitutive relationship model for 2519 aluminum alloy based on BP artificial neural network

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-quan; PENG Da-shu; ZHU Yuan-zhi

    2005-01-01

    An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.

  10. A State Recognition Approach for Complex Equipment Based on a Fuzzy Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2016-05-01

    Full Text Available Due to the traditional state recognition approaches for complex electromechanical equipment having had the disadvantages of excessive reliance on complete expert knowledge and insufficient training sets, real-time state identification system was always difficult to be established. The running efficiency cannot be guaranteed and the fault rate cannot be reduced fundamentally especially in some extreme working conditions. To solve these problems, an online state recognition method for complex equipment based on a fuzzy probabilistic neural network (FPNN was proposed in this paper. The fuzzy rule base for complex equipment was established and a multi-level state space model was constructed. Moreover, a probabilistic neural network (PNN was applied in state recognition, and the fuzzy functions and quantification matrix were presented. The flowchart of proposed approach was designed. Finally, a simulation example of shearer state recognition and the industrial application with an accuracy of 90.91% were provided and the proposed approach was feasible and efficient.

  11. Determination of type and concentration of DNA nitrogenous bases by Raman spectroscopy using artificial neural networks

    Science.gov (United States)

    Laptinskiy, Kirill A.; Burikov, Sergey A.; Sarmanova, Olga E.; Dolenko, Sergey A.; Dolenko, Tatiana A.

    2016-04-01

    In this article the results of solution of two-parametrical inverse problems of laser Raman spectroscopy of identification and determination of concentration of DNA nitrogenous bases in two-component solutions are presented. Elaboration of methods of control of reactions with DNA strands in remote real-time mode is necessary for solution of one of the basic problems of creation of biocomputers - increase of reliability of molecular DNA-computations. The comparative analysis of two used methods of solution of stated problems has demonstrated convincing advantages of technique of artificial neural networks. Use of artificial neural networks allowed to reach the accuracy of determination of concentration of each base in two-component solutions 0.2-0.3 g/l.

  12. Video-based convolutional neural networks for activity recognition from robot-centric videos

    Science.gov (United States)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  13. Training a Feed-Forward Neural Network with Artificial Bee Colony based Backpropagation Method

    Directory of Open Access Journals (Sweden)

    Sudarshan Nandy

    2012-09-01

    Full Text Available Back-propagation algorithm is one of the most widely used and popular techniques to optimize the feedforward neural network training. Nature inspired meta-heuristic algorithms also provide derivative-freesolution to optimize complex problem. Artificial bee colony algorithm is a nature inspired meta-heuristicalgorithm, mimicking the foraging or food source searching behaviour of bees in a bee colony and thisalgorithm is implemented in several applications for an improved optimized outcome. The proposedmethod in this paper includes an improved artificial bee colony algorithm based back-propagation neuralnetwork training method for fast and improved convergence rate of the hybrid neural network learningmethod. The result is analysed with the genetic algorithm based back-propagation method, and it isanother hybridized procedure of its kind. Analysis is performed over standard data sets, reflecting the lightof efficiency of proposed method in terms of convergence speed and rate.

  14. Fuzzy Neural Network based RFID Positioning and Navigation Method for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Bo-Wen Hong

    2013-07-01

    Full Text Available This study proposes the Radio Frequency Identification (RFID indoor positioning and navigation method based on fuzzy neural network. The proposed method is applied to a wheelchair home health care robot with wireless communication. One reader and four tags are used. Based on the Received Signal Strength Indication (RSSI data, the position of the robot can be determined. Further, to overcome the measurement error problem due to environmental parameter variation, a Fuzzy Neural Network (FNN is proposed to compensate the measurement data. The FNN automatically adjust the weight, the variance and the mean value to overcome effectively the environmental parameter variation. A back-propagation algorithm is developed to achieve self-learning. The successful experiment results show that the proposed system architecture and positioning system provide satisfactory accuracy and make home health care wheelchair robot positioning system available for navigation and guidance.

  15. Multilayered feed forward neural network based on particle swarm optimizer algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    BP is a commonly used neural network training method, which has some disadvantages, such as local minima,sensitivity of initial value of weights, total dependence on gradient information. This paper presents some methods to train a neural network, including standard particle swarm optimizer (PSO), guaranteed convergence particle swarm optimizer (GCPSO), an improved PSO algorithm, and GCPSO-BP, an algorithm combined GCPSO with BP. The simulation results demonstrate the effectiveness of the three algorithms for neural network training.

  16. Assembly Quality Prediction Based on Back-propagation Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    He Yong-yi

    2013-07-01

    Full Text Available Because of the severe geometrical distortion induced by the optical system and the limited kinetic accuracy of mechanical system in the vision-based mobile-phone lens’s assembly system, the nonlinear, perspective distortion errors and the kinematics errors generally exist in the assembly process of the mobile-phone lens. It is necessary to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system so as to eliminate the immediate effect on the assembling process before extracting quantitative assembling. Comparison with current research methods, the back-propagation artificial neural network is applied to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system. Firstly, the mobile-phone lens’s assembly quality characteristics are defined and sampled; Secondly, a back-propagation artificial neural network of the mobile-phone lens’s assembly quality prediction is presented; Finally apply some training samples obtained from the experiments to train and test this back-propagation artificial neural network. The results show that the proposed method is effective to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system with high accuracy and high reliability.  

  17. The development of a knowledge base in an expert system based on the four-layer perceptron neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Owing to continuous production lines with large amount of consecutive controls, various control signals and huge logistic relations, this paper introduced the methods and principles of the development of knowledge base in a fault diagnosis expert system that was based on machine learning by the four-layer perceptron neural network. An example was presented. By combining differential function with not differentia function and back propagation of error with back propagation of expectation, the four-layer perceptron neural network was established. And it was good for solving such a bottleneck problem in knowledge acquisition in expert system and enhancing real-time on-line diagnosis. A method of synthetic back propagation was designed, which broke the limit to non-differentiable function in BP neural network.

  18. Design And Analysis Of Artificial Neural Network Based Controller For Speed Control Of Induction Motor Using D T C

    Directory of Open Access Journals (Sweden)

    Kusuma Gottapu

    2014-04-01

    Full Text Available This paper presents an improved version of direct torque control (DTC based on Artificial Neural Network technique used for flux position estimation and sector selection. This controller mainly reduces the torque and flux ripples. Direct torque control of induction motor drive has quick torque response without complex orientation transformation and inner loop current control. The major problem associated with DTC drive is the high torque ripples. The important point in ANN based DTC is the right selection of voltage vector. This project presents simple structured neural network for flux position estimation and sector selection for induction motor. The Levenberg-Marquardt back propagation technique has been used to train the neural networks. The simple structure network facilitates a short training and processing times. The neural network based controller is found to be a very useful technique to obtain high performance speed control.

  19. HL-2A tokamak disruption forecasting based on an artificial neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Hao; Wang Ai-Ke; Yang Qing-Wei; Ding Xuan-Tong; Dong Jia-Qi; Sanuki H; Itoh K

    2007-01-01

    Artificial neural networks are trained to forecast the plasma disruption in HL-2A tokamak. Optimized network architecture is obtained. Saliency analysis is made to assess the relative importance of different diagnostic signals as network input. The trained networks can successfully detect the disruptive pulses of HL-2A tokamak. The results obtained show the possibiliry of developing a neural network predictor that intervenes well in edvance for avoiding plasma disruption or mitigating its effects.

  20. Evaluation model for the implementation results of mine law based on neural network

    Science.gov (United States)

    Gu, Tao; Li, Xu

    2010-04-01

    To evaluate the implementation results of mine safety production law, the evaluation model based on neural network is presented. In this model, 63 indicators which can describe the mine law effectively are proposed. The evaluation system is developed by using the model and the 63 indicators. The evaluation results show that the proposed method has high accuracy. We can effectively estimate the score of one mine for its carrying out the safety law. The estimate results are of scientific credibility and impartiality.

  1. Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition

    OpenAIRE

    Li, Xiangang; Wu, Xihong

    2014-01-01

    Long short-term memory (LSTM) based acoustic modeling methods have recently been shown to give state-of-the-art performance on some speech recognition tasks. To achieve a further performance improvement, in this research, deep extensions on LSTM are investigated considering that deep hierarchical model has turned out to be more efficient than a shallow one. Motivated by previous research on constructing deep recurrent neural networks (RNNs), alternative deep LSTM architectures are proposed an...

  2. Hardware-based Artificial Neural Networks for Size, Weight, and Power Constrained Platforms (Preprint)

    Science.gov (United States)

    2012-11-01

    and power (SWaP); radial basis function; zero instruction set computing (ZISC); pattern recognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...perception and classification problems historically difficult for traditional, von Neumann-based computers. The neuromorphic community was...Manhattan method or the Lsup method. In the Manhattan method, , 1 ∑ = −= n i iiMan PVD (1) Figure 1: Neural Network Diagram. Each input node

  3. Image Fusion Based on Nonsubsampled Contourlet Transform and Saliency-Motivated Pulse Coupled Neural Networks

    OpenAIRE

    Liang Xu; Junping Du; Qingping Li

    2013-01-01

    In the nonsubsampled contourlet transform (NSCT) domain, a novel image fusion algorithm based on the visual attention model and pulse coupled neural networks (PCNNs) is proposed. For the fusion of high-pass subbands in NSCT domain, a saliency-motivated PCNN model is proposed. The main idea is that high-pass subband coefficients are combined with their visual saliency maps as input to motivate PCNN. Coefficients with large firing times are employed as the fused high-pass subband coefficients. ...

  4. Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias; Lee, In-Beum

    2016-06-25

    This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.

  5. Different Avalanche Behaviors in Different Specific Areas of a System Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; CHEN Tian-Lun

    2003-01-01

    Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of modelneural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, wefind there are different avalanche distribution behaviors in different specific areas of our system, which are formed by thetopological learning process of the SOM net.

  6. Generalized cost-criterion-based learning algorithm for diagonal recurrent neural networks

    Science.gov (United States)

    Wang, Yongji; Wang, Hong

    2000-05-01

    A new generalized cost criterion based learning algorithm for diagonal recurrent neural networks is presented, which is with form of recursive prediction error (RPE) and has second convergent order. A guideline for the choice of the optimal learning rate is derived from convergence analysis. The application of this method to dynamic modeling of typical chemical processes shows that the generalized cost criterion RPE (QRPE) has higher modeling precision than BP trained MLP and quadratic cost criterion trained RPE (QRPE).

  7. Flux-measuring approach of high temperature metal liquid based on BP neural networks

    Institute of Scientific and Technical Information of China (English)

    胡燕瑜; 桂卫华; 李勇刚

    2003-01-01

    A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof liquid zinc is acquired indirectly, the measuring on line and flux control are realized. Simulation results and indus-trial practice demonstrate that the relative error between the estimated flux value and practical measured flux value islower than 1.5%, meeting the need of industrial process.

  8. Taste Identification of Tea Through a Fuzzy Neural Network Based on Fuzzy C-means Clustering

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; ZHOU Chun-guang

    2003-01-01

    In this paper, we present a fuzzy neural network model based on Fuzzy C-Means (FCM) clustering algorithm to realize the taste identification of tea. The proposed method can acquire the fuzzy subset and its membership function in an automatic way with the aid of FCM clustering algorithm. Moreover, we improve the fuzzy weighted inference approach. The proposed model is illustrated with the simulation of taste identification of tea.

  9. Review of Data Preprocessing Methods for Sign Language Recognition Systems based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zorins Aleksejs

    2016-12-01

    Full Text Available The article presents an introductory analysis of relevant research topic for Latvian deaf society, which is the development of the Latvian Sign Language Recognition System. More specifically the data preprocessing methods are discussed in the paper and several approaches are shown with a focus on systems based on artificial neural networks, which are one of the most successful solutions for sign language recognition task.

  10. Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks

    Institute of Scientific and Technical Information of China (English)

    张燕; 陈增强; 袁著祉

    2003-01-01

    After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent PID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.

  11. Dynamic Coordination of Uncalibrated Hand/Eye Robotic System Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.``

  12. Particle Swarm Optimization Recurrent Neural Network Based Z-source Inverter Fed Induction Motor Drive

    OpenAIRE

    R. Selva Santhose Kumar; S.M. Girirajkumar

    2014-01-01

    In this study, the proposal is made for Particle Swarm Optimization (PSO) Recurrent Neural Network (RNN) based Z-Source Inverter Fed Induction Motor Drive. The proposed method is used to enhance the performance of the induction motor while reducing the Total Harmonic Distortion (THD), eliminating the oscillation period of the stator current, torque and speed. Here, the PSO technique uses the induction motor speed and reference speed as the input parameters. From the input parameters, it optim...

  13. Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment

    OpenAIRE

    Garima Singh; Laxmi Srivastava

    2011-01-01

    With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN...

  14. The study of fuzzy chaotic neural network based on chaotic method

    Institute of Scientific and Technical Information of China (English)

    WANG Ke-jun; TANG Mo; ZHANG Yan

    2006-01-01

    This paper proposes a type of Fuzzy Chaotic Neural Network (FCNN). Firstly, the model of recurrent fuzzy neural network (RFNN) is considered, which adds a feedback in the second layer to realize dynamic map. Then, the Logistic map is introduced into the recurrent fuzzy neural network, so as to build a Fuzzy Chaotic Neural Network (FCNN). Its chaotic character is analyzed, and then the training algorithm and associate memory ability are studied subsequently. And then, a chaotic system is approximated using FCNN; the simulation results indicate that FCNN could approach dynamic system preferably. And owing to the introducing of chaotic map, the chaotic recollect capacity of FCNN is increased.

  15. Dynamic recurrent Elman neural network based on immune clonal selection algorithm

    Science.gov (United States)

    Wang, Limin; Han, Xuming; Li, Ming; Sun, Haibo; Li, Qingzhao

    2012-04-01

    Owing to the immune clonal selection algorithm introduced into dynamic threshold strategy has better advantage on optimizing multi-parameters, therefore a novel approach that the immune clonal selection algorithm introduced into dynamic threshold strategy, is used to optimize the dynamic recursion Elman neural network is proposed in the paper. The concrete structure of the recursion neural network, the connect weight and the initial values of the contact units etc. are done by evolving training and learning automatically. Thus it could realize to construct and design for dynamic recursion Elman neural networks. It could provide a new effective approach for immune clonal selection algorithm optimizing dynamic recursion neural networks.

  16. Further results for global exponential stability of stochastic memristor-based neural networks with time-varying delays

    Science.gov (United States)

    Zhong, Kai; Zhu, Song; Yang, Qiqi

    2016-11-01

    In recent years, the stability problems of memristor-based neural networks have been studied extensively. This paper not only takes the unavoidable noise into consideration but also investigates the global exponential stability of stochastic memristor-based neural networks with time-varying delays. The obtained criteria are essentially new and complement previously known ones, which can be easily validated with the parameters of system itself. In addition, the study of the nonlinear dynamics for the addressed neural networks may be helpful in qualitative analysis for general stochastic systems. Finally, two numerical examples are provided to substantiate our results.

  17. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  18. Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability

    Energy Technology Data Exchange (ETDEWEB)

    Banaei, M.R., E-mail: m.banaei@azaruniv.ed [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of); Kami, A. [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} A method is presented to improve power system stability using IPFC. {yields} Recurrent neural network controllers damp oscillations in a power system. {yields} Training is based on back propagation with adaptive training parameters. {yields} Selection of effectiveness damping control signal carried out using SVD method. -- Abstract: This paper presents a method to improve power system stability using IPFC based damping online learning recurrent neural network controllers for damping oscillations in a power system. Parameters of equipped controllers for enhancing dynamical stability at the IPFC are tuned using mathematical methods. Therefore these control parameters are often fixed and are set for particular system configurations or operating points. Multilayer recurrent neural network, which can be tuned for changing system conditions, is used in this paper for effectively damp the oscillations. Training is based on back propagation with adaptive training parameters. This controller is tested to variations in system loading and fault in the power system and its performance is compared with performance of a controller that the phase compensation method is used to set its parameters. Selection of effectiveness damping control signal for the design of robust IPFC damping controller carried out through singular value decomposition (SVD) method. Simulation studies show the superior robustness and stabilizing effect of the proposed controller in comparison with phase compensation method.

  19. Radial Basis Function Neural Network Based Super-Resolution Restoration for an Underspled Image

    Institute of Scientific and Technical Information of China (English)

    苏秉华; 金伟其; 牛丽红

    2004-01-01

    To achieve restoration of high frequency information for an underspled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an underspled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an underspled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.

  20. Model for a flexible motor memory based on a self-active recurrent neural network.

    Science.gov (United States)

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement.

  1. Rotor Resistance Online Identification of Vector Controlled Induction Motor Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2014-01-01

    Full Text Available Rotor resistance identification has been well recognized as one of the most critical factors affecting the theoretical study and applications of AC motor’s control for high performance variable frequency speed adjustment. This paper proposes a novel model for rotor resistance parameters identification based on Elman neural networks. Elman recurrent neural network is capable of performing nonlinear function approximation and possesses the ability of time-variable characteristic adaptation. Those influencing factors of specified parameter are analyzed, respectively, and various work states are covered to ensure the completeness of the training samples. Through signal preprocessing on samples and training dataset, different input parameters identifications with one network are compared and analyzed. The trained Elman neural network, applied in the identification model, is able to efficiently predict the rotor resistance in high accuracy. The simulation and experimental results show that the proposed method owns extensive adaptability and performs very well in its application to vector controlled induction motor. This identification method is able to enhance the performance of induction motor’s variable-frequency speed regulation.

  2. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  3. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    Science.gov (United States)

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results.

  4. A new adaptive nonuniformity correction algorithm for infrared line scanner based on neural networks

    Institute of Scientific and Technical Information of China (English)

    Jing Sui; Liquan Dong; Weiqi Jin; Yayuan Zhang

    2007-01-01

    The striping pattern nonuniformity of the infrared line scanner (IRLS) severely limits the system performance. An adaptive nonuniformity correction (NUC) algorithm for IRLS using neural network is proposed.It uses a one-dimensional median filter to generate ideal output of network and can complete NUC by a single frame with a high correction level. Applications to both simulated and real infrared images show that the algorithm can obtain a satisfactory result with low complexity, no need of scene diversity or global motion between consecutive frames. It has the potential to realize real-time hardware-based applications.

  5. Development and comparison of neural network based soft sensors for online estimation of cement clinker quality.

    Science.gov (United States)

    Pani, Ajaya Kumar; Vadlamudi, Vamsi Krishna; Mohanta, Hare Krishna

    2013-01-01

    The online estimation of process outputs mostly related to quality, as opposed to their belated measurement by means of hardware measuring devices and laboratory analysis, represents the most valuable feature of soft sensors. As of now there have been very few attempts for soft sensing of cement clinker quality which is mostly done by offline laboratory analysis resulting at times in low quality clinker. In the present work three different neural network based soft sensors have been developed for online estimation of cement clinker properties. Different input and output data for a rotary cement kiln were collected from a cement plant producing 10,000 tons of clinker per day. The raw data were pre-processed to remove the outliers and the resulting missing data were imputed. The processed data were then used to develop a back propagation neural network model, a radial basis network model and a regression network model to estimate the clinker quality online. A comparison of the estimation capabilities of the three models has been done by simulation of the developed models. It was observed that radial basis network model produced better estimation capabilities than the back propagation and regression network models.

  6. Soft Sensor of Vehicle State Estimation Based on the Kernel Principal Component and Improved Neural Network

    Directory of Open Access Journals (Sweden)

    Haorui Liu

    2016-01-01

    Full Text Available In the car control systems, it is hard to measure some key vehicle states directly and accurately when running on the road and the cost of the measurement is high as well. To address these problems, a vehicle state estimation method based on the kernel principal component analysis and the improved Elman neural network is proposed. Combining with nonlinear vehicle model of three degrees of freedom (3 DOF, longitudinal, lateral, and yaw motion, this paper applies the method to the soft sensor of the vehicle states. The simulation results of the double lane change tested by Matlab/SIMULINK cosimulation prove the KPCA-IENN algorithm (kernel principal component algorithm and improved Elman neural network to be quick and precise when tracking the vehicle states within the nonlinear area. This algorithm method can meet the software performance requirements of the vehicle states estimation in precision, tracking speed, noise suppression, and other aspects.

  7. Image Fusion Based on the Self-Organizing Feature Map Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaoli; SUN Shenghe

    2001-01-01

    This paper presents a new image datafusion scheme based on the self-organizing featuremap (SOFM) neural networks.The scheme consists ofthree steps:(1) pre-processing of the images,whereweighted median filtering removes part of the noisecomponents corrupting the image,(2) pixel clusteringfor each image using two-dimensional self-organizingfeature map neural networks,and (3) fusion of the im-ages obtained in Step (2) utilizing fuzzy logic,whichsuppresses the residual noise components and thusfurther improves the image quality.It proves thatsuch a three-step combination offers an impressive ef-fectiveness and performance improvement,which isconfirmed by simulations involving three image sen-sors (each of which has a different noise structure).

  8. SEQUENTIAL DIAGNOSIS FOR A CENTRIFUGAL PUMP BASED ON FUZZY NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiong; WANG Huaqing; CHEN Peng; TANG Yike

    2008-01-01

    A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.

  9. Neural Network Control-Based Drive Design of Servomotor and Its Application to Automatic Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2015-01-01

    Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.

  10. A novel Chemical Reaction Optimization based Higher order Neural Network (CRO-HONN for nonlinear classification

    Directory of Open Access Journals (Sweden)

    Janmenjoy Nayak

    2015-09-01

    Full Text Available In this paper, a Chemical Reaction Optimization (CRO based higher order neural network with a single hidden layer called Pi–Sigma Neural Network (PSNN has been proposed for data classification which maintains fast learning capability and avoids the exponential increase of number of weights and processing units. CRO is a recent metaheuristic optimization algorithm inspired by chemical reactions, free from intricate operator and parameter settings such as other algorithms and loosely couples chemical reactions with optimization. The performance of the proposed CRO-PSNN has been tested with various benchmark datasets from UCI machine learning repository and compared with the resulting performance of PSNN, GA-PSNN, PSO-PSNN. The methods have been implemented in MATLAB and the accuracy measures have been tested by using the ANOVA statistical tool. Experimental results show that the proposed method is fast, steady and reliable and provides better classification accuracy than others.

  11. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  12. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2014-01-01

    Full Text Available The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  13. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuo-Nan Yu

    2014-01-01

    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  14. Modeling and computing of stock index forecasting based on neural network and Markov chain.

    Science.gov (United States)

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  15. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  16. Path Planning and Tracking for Vehicle Parallel Parking Based on Preview BP Neural Network PID Controller

    Institute of Scientific and Technical Information of China (English)

    季学武; 王健; 赵又群; 刘亚辉; 臧利国; 李波

    2015-01-01

    In order to diminish the impacts of external disturbance such as parking speed fluctuation and model un-certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre-view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po-sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.

  17. Electricity price forecasting using generalized regression neural network based on principal components analysis

    Institute of Scientific and Technical Information of China (English)

    牛东晓; 刘达; 邢棉

    2008-01-01

    A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.

  18. Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism.

    Science.gov (United States)

    Li, Lulu; Ho, Daniel W C; Cao, Jinde; Lu, Jianquan

    2016-04-01

    Cluster synchronization is a typical collective behavior in coupled dynamical systems, where the synchronization occurs within one group, while there is no synchronization among different groups. In this paper, under event-based mechanism, pinning cluster synchronization in an array of coupled neural networks is studied. A new event-triggered sampled-data transmission strategy, where only local and event-triggering states are utilized to update the broadcasting state of each agent, is proposed to realize cluster synchronization of the coupled neural networks. Furthermore, a self-triggered pinning cluster synchronization algorithm is proposed, and a set of iterative procedures is given to compute the event-triggered time instants. Hence, this will reduce the computational load significantly. Finally, an example is given to demonstrate the effectiveness of the theoretical results.

  19. Simulation and stability analysis of neural network based control scheme for switched linear systems.

    Science.gov (United States)

    Singh, H P; Sukavanam, N

    2012-01-01

    This paper proposes a new adaptive neural network based control scheme for switched linear systems with parametric uncertainty and external disturbance. A key feature of this scheme is that the prior information of the possible upper bound of the uncertainty is not required. A feedforward neural network is employed to learn this upper bound. The adaptive learning algorithm is derived from Lyapunov stability analysis so that the system response under arbitrary switching laws is guaranteed uniformly ultimately bounded. A comparative simulation study with robust controller given in [Zhang L, Lu Y, Chen Y, Mastorakis NE. Robust uniformly ultimate boundedness control for uncertain switched linear systems. Computers and Mathematics with Applications 2008; 56: 1709-14] is presented.

  20. Scene Classification of Remote Sensing Image Based on Multi-scale Feature and Deep Neural Network

    Directory of Open Access Journals (Sweden)

    XU Suhui

    2016-07-01

    Full Text Available Aiming at low precision of remote sensing image scene classification owing to small sample sizes, a new classification approach is proposed based on multi-scale deep convolutional neural network (MS-DCNN, which is composed of nonsubsampled Contourlet transform (NSCT, deep convolutional neural network (DCNN, and multiple-kernel support vector machine (MKSVM. Firstly, remote sensing image multi-scale decomposition is conducted via NSCT. Secondly, the decomposing high frequency and low frequency subbands are trained by DCNN to obtain image features in different scales. Finally, MKSVM is adopted to integrate multi-scale image features and implement remote sensing image scene classification. The experiment results in the standard image classification data sets indicate that the proposed approach obtains great classification effect due to combining the recognition superiority to different scenes of low frequency and high frequency subbands.

  1. A Lateral Control Method of Intelligent Vehicle Based on Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2015-01-01

    Full Text Available A lateral control method is proposed for intelligent vehicle to track the desired trajectory. Firstly, a lateral control model is established based on the visual preview and dynamic characteristics of intelligent vehicle. Then, the lateral error and orientation error are melded into an integrated error. Considering the system parameter perturbation and the external interference, a sliding model control is introduced in this paper. In order to design a sliding surface, the integrated error is chosen as the parameter of the sliding mode switching function. The sliding mode switching function and its derivative are selected as two inputs of the controller, and the front wheel angle is selected as the output. Next, a fuzzy neural network is established, and the self-learning functions of neural network is utilized to construct the fuzzy rules. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed method.

  2. A special hierarchical fuzzy neural-networks based reinforcement learning for multi-variables system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-zhi; LU Tian-sheng

    2005-01-01

    Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN) for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer in the HFNN is no longer used as if-part of the next layer, but used only in then-part. Thus it can deal with the difficulty when the output of the previous layer is meaningless or its meaning is uncertain. The proposed HFNN has a minimal number of fuzzy rules and can successfully solve the problem of rules combination explosion and decrease the quantity of computation and memory requirement. In the learning process, two HFNN with the same structure perform fuzzy action composition and evaluation function approximation simultaneously where the parameters of neural-networks are tuned and updated on line by using gradient descent algorithm. The reinforcement learning method is proved to be correct and feasible by simulation of a double inverted pendulum system.

  3. Effective Multifocus Image Fusion Based on HVS and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2014-01-01

    Full Text Available The aim of multifocus image fusion is to fuse the images taken from the same scene with different focuses to obtain a resultant image with all objects in focus. In this paper, a novel multifocus image fusion method based on human visual system (HVS and back propagation (BP neural network is presented. Three features which reflect the clarity of a pixel are firstly extracted and used to train a BP neural network to determine which pixel is clearer. The clearer pixels are then used to construct the initial fused image. Thirdly, the focused regions are detected by measuring the similarity between the source images and the initial fused image followed by morphological opening and closing operations. Finally, the final fused image is obtained by a fusion rule for those focused regions. Experimental results show that the proposed method can provide better performance and outperform several existing popular fusion methods in terms of both objective and subjective evaluations.

  4. Estimation on the Reliability of Farm Vehicle Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    WANG Jinwu

    2008-01-01

    As a peculiar product in China today, farm vehicles play an important role in economic construction and development of the countryside, but its work reliability remains low. In this paper truncated tracking was used to solve the low reliability of farm vehicles. Relevant reliability data were obtained by tracking a certain model vehicle and conducting reliability experiments. Data analysis revealed the weakest part of the vehicle system was the engine assembly. The theory of Artificial Neural Network was employed to estimate a parameter of the reliability model based on self-adaptive linear neural network, and the reliability function educed by the estimation could provide important theory references for reliability reassignment, manufacture and management of farm transport vehicles.

  5. 2D spiral pattern recognition based on neural network covering algorithm

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-hong; XIONG Zhi-hua; SHAO Hui-he

    2007-01-01

    The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x - y plane. This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications. Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks. This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition. The results show that it is possible to solve the spiral problem instantaneously (up to 100% correct classification on the test set).

  6. Stability Analysis of Distributed Delay Neural Networks Based on Relaxed Lyapunov-Krasovskii Functionals.

    Science.gov (United States)

    Zhang, Baoyong; Lam, James; Xu, Shengyuan

    2015-07-01

    This paper revisits the problem of asymptotic stability analysis for neural networks with distributed delays. The distributed delays are assumed to be constant and prescribed. Since a positive-definite quadratic functional does not necessarily require all the involved symmetric matrices to be positive definite, it is important for constructing relaxed Lyapunov-Krasovskii functionals, which generally lead to less conservative stability criteria. Based on this fact and using two kinds of integral inequalities, a new delay-dependent condition is obtained, which ensures that the distributed delay neural network under consideration is globally asymptotically stable. This stability criterion is then improved by applying the delay partitioning technique. Two numerical examples are provided to demonstrate the advantage of the presented stability criteria.

  7. Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network

    Science.gov (United States)

    Zhang, Cai-Xun; Lin, Shin-Ted; Zhao, Jian-Ling; Yu, Xun-Zhen; Wang, Li; Zhu, Jing-Jun; Xing, Hao-Yang

    2016-08-01

    In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 ± 0.034 to 0.953 ± 0.037 by using the new method of the ENN. The proposed n/γ discrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection. Supported by National Natural Science Foundation of China (11275134,11475117)

  8. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    J. C. Ochoa-Rivera

    2002-01-01

    Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..

  9. Wavelet-based neural network analysis of internal carotid arterial Doppler signals.

    Science.gov (United States)

    Ubeyli, Elif Derya; Güler, Inan

    2006-06-01

    In this study, internal carotid arterial Doppler signals recorded from 130 subjects, where 45 of them suffered from internal carotid artery stenosis, 44 of them suffered from internal carotid artery occlusion and the rest of them were healthy subjects, were classified using wavelet-based neural network. Wavelet-based neural network model, employing the multilayer perceptron, was used for analysis of the internal carotid arterial Doppler signals. Multi-layer perceptron neural network (MLPNN) trained with the Levenberg-Marquardt algorithm was used to detect stenosis and occlusion in internal carotid arteries. In order to determine the MLPNN inputs, spectral analysis of the internal carotid arterial Doppler signals was performed using wavelet transform (WT). The MLPNN was trained, cross validated, and tested with training, cross validation, and testing sets, respectively. All these data sets were obtained from internal carotid arteries of healthy subjects, subjects suffering from internal carotid artery stenosis and occlusion. The correct classification rate was 96% for healthy subjects, 96.15% for subjects having internal carotid artery stenosis and 96.30% for subjects having internal carotid artery occlusion. The classification results showed that the MLPNN trained with the Levenberg-Marquardt algorithm was effective to detect internal carotid artery stenosis and occlusion.

  10. Wavelet-based neural network analysis of ophthalmic artery Doppler signals.

    Science.gov (United States)

    Güler, Nihal Fatma; Ubeyli, Elif Derya

    2004-10-01

    In this study, ophthalmic artery Doppler signals were recorded from 115 subjects, 52 of whom had ophthalmic artery stenosis while the rest were healthy controls. Results were classified using a wavelet-based neural network. The wavelet-based neural network model, employing the multilayer perceptron, was used for analysis of ophthalmic artery Doppler signals. A multilayer perceptron neural network (MLPNN) trained with the Levenberg-Marquardt algorithm was used to detect stenosis in ophthalmic arteries. In order to determine the MLPNN inputs, spectral analysis of ophthalmic artery Doppler signals was performed using wavelet transform. The MLPNN was trained, cross validated, and tested with training, cross validation, and testing sets, respectively. All data sets were obtained from ophthalmic arteries of healthy subjects and subjects suffering from ophthalmic artery stenosis. The correct classification rate was 97.22% for healthy subjects, and 96.77% for subjects having ophthalmic artery stenosis. The classification results showed that the MLPNN trained with the Levenberg-Marquardt algorithm was effective to detect ophthalmic artery stenosis.

  11. Seismic Design Value Evaluation Based on Checking Records and Site Geological Conditions Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tienfuan Kerh

    2013-01-01

    Full Text Available This study proposes an improved computational neural network model that uses three seismic parameters (i.e., local magnitude, epicentral distance, and epicenter depth and two geological conditions (i.e., shear wave velocity and standard penetration test value as the inputs for predicting peak ground acceleration—the key element for evaluating earthquake response. Initial comparison results show that a neural network model with three neurons in the hidden layer can achieve relatively better performance based on the evaluation index of correlation coefficient or mean square error. This study further develops a new weight-based neural network model for estimating peak ground acceleration at unchecked sites. Four locations identified to have higher estimated peak ground accelerations than that of the seismic design value in the 24 subdivision zones are investigated in Taiwan. Finally, this study develops a new equation for the relationship of horizontal peak ground acceleration and focal distance by the curve fitting method. This equation represents seismic characteristics in Taiwan region more reliably and reasonably. The results of this study provide an insight into this type of nonlinear problem, and the proposed method may be applicable to other areas of interest around the world.

  12. Study on recognition algorithm for paper currency numbers based on neural network

    Science.gov (United States)

    Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao

    2008-12-01

    Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.

  13. Temperature prediction and analysis based on BP and Elman neural network for cement rotary kiln

    Science.gov (United States)

    Yang, Baosheng; Ma, Xiushui

    2011-05-01

    In order to reduce energy consumption and improve the stability of cement burning system production, it is necessary to conduct in-depth analysis of the cement burning system, control the operation state and law of the system. In view of the rotary kiln consumes most of the fuel, we establish the simulation model of the cement kiln used to find effective control methods. It is difficult to construct mathematical model for the rotary cement kiln as the complex parameters, so we expressed directly using neural network method to establish the simulation model for the kiln. Choosing reasonable state and control variables and collecting actual operation data to train neural network weights. We first in-depth analyze mechanism and working parameters correlation to determine factors of the yield and quality as the model input variables; then constructed cement kiln model based on BP and Elman network, both achieved good fitting results. Elman network model has a faster convergence speed, high precision and good generalization ability. So the Elman network based model can be used as simulation model of the cement rotary kiln for exploring new control method.

  14. Global stabilization of memristor-based fractional-order neural networks with delay via output-feedback control

    Science.gov (United States)

    Chen, Jiyang; Li, Chuandong; Huang, Tingwen; Yang, Xujun

    2017-02-01

    In this paper, the memristor-based fractional-order neural networks (MFNN) with delay and with two types of stabilizing control are described in detail. Based on the Lyapunov direct method, the theories of set-value maps, differential inclusions and comparison principle, some sufficient conditions and assumptions for global stabilization of this neural network model are established. Finally, two numerical examples are presented to demonstrate the effectiveness and practicability of the obtained results.

  15. Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction

    Institute of Scientific and Technical Information of China (English)

    YANG Yang; LI Kai-yang

    2006-01-01

    The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication-the highest prediction rate 75.65%, the average prediction rate 65.04%.

  16. Adaptive neural network consensus based control of robot formations

    Science.gov (United States)

    Guzey, H. M.; Sarangapani, Jagannathan

    2013-05-01

    In this paper, adaptive consensus based formation control scheme is derived for mobile robots in a pre-defined formation when full dynamics of the robots which include inertia, Corolis, and friction vector are considered. It is shown that dynamic uncertainties of robots can make overall formation unstable when traditional consensus scheme is utilized. In order to estimate the affine nonlinear robot dynamics, a NN based adaptive scheme is utilized. In addition to this adaptive feedback control input, an additional control input is introduced based on the consensus approach to make the robots keep their desired formation. Subsequently, the outer consensus loop is redesigned for reduced communication. Lyapunov theory is used to show the stability of overall system. Simulation results are included at the end.

  17. Critical branching neural networks.

    Science.gov (United States)

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  18. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  19. Compressing Convolutional Neural Networks

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected laye...

  20. Design of FPGA Based Neural Network Controller for Earth Station Power System

    OpenAIRE

    Dorrah, Hassen T.; Ninet M. A. El-Rahman; Faten H. Fahmy; Hanaa T. El-madany

    2012-01-01

    Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point a...

  1. Neural Networks Based Physical Cell Identity Assignment for Self Organized 3GPP Long Term Evolution

    Directory of Open Access Journals (Sweden)

    Muhammad Basit Shahab

    2013-10-01

    Full Text Available This paper proposes neural networks based graph coloring technique to assign Physical Cell Identities throughout the self-organized 3GPP Long Term Evolution Networks. PCIs are allocated such that no two cells in the vicinity of each other or with a common neighbor get the same identity. Efficiency of proposed methodology resides in the fact that minimum number of identities is utilized in the network wise assignment. Simulations are performed on a very large scale network, where initially all the cells are without any PCIs assigned. Results of simulations are demonstrated to analyze the performance of the proposed technique. Discussions about the presence of femto cells and PCI assignment in them are also presented at the end.

  2. Generalized Adaptive Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  3. Fast Algorithms for Convolutional Neural Networks

    OpenAIRE

    Lavin, Andrew; Gray, Scott

    2015-01-01

    Deep convolutional neural networks take GPU days of compute time to train on large data sets. Pedestrian detection for self driving cars requires very low latency. Image recognition for mobile phones is constrained by limited processing resources. The success of convolutional neural networks in these situations is limited by how fast we can compute them. Conventional FFT based convolution is fast for large filters, but state of the art convolutional neural networks use small, 3x3 filters. We ...

  4. Forecasting Exchange Rate Using Neural Networks

    OpenAIRE

    Raksaseree, Sukhita

    2009-01-01

    The artificial neural network models become increasingly popular among researchers and investors since many studies have shown that it has superior performance over the traditional statistical model. This paper aims to investigate the neural network performance in forecasting foreign exchange rates based on backpropagation algorithm. The forecast of Thai Baht against seven currencies are conducted to observe the performance of the neural network models using the performance criteria for both ...

  5. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  6. Recurrent Neural Network Approach Based on the Integral Representation of the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Živković, Ivan S; Wei, Yimin

    2015-10-01

    In this letter, we present the dynamical equation and corresponding artificial recurrent neural network for computing the Drazin inverse for arbitrary square real matrix, without any restriction on its eigenvalues. Conditions that ensure the stability of the defined recurrent neural network as well as its convergence toward the Drazin inverse are considered. Several illustrative examples present the results of computer simulations.

  7. An Aircraft Navigation System Fault Diagnosis Method Based on Optimized Neural Network Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jean-dedieu Weyepe

    2014-01-01

    Air data and inertial reference system (ADIRS) is one of the complex sub-system in the aircraft navigation system and it plays an important role into the flight safety of the aircraft. This paper propose an optimize neural network algorithm which is a combination of neural network and ant colony algorithm to improve efficiency of maintenance engineer job task.

  8. Structure Data Processing and Damage Identification Based on Wavelet and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Zhanfeng Gao

    2011-10-01

    Full Text Available Structural health monitoring is a multi-disciplinary integrated technology, mainly including signal processing and structural damage detection. The aim of the data processing is to obtain the useful information from large volumes of raw data containing noises. In order to obtain the useful information concerned, denoising method and feature extraction technique based on Wavelet analysis is studied. An improved wavelet thresholding algorithm to eliminate the noise for vibration signals is proposed. The results of analysis show that the method based on Wavelet is not only feasible to signal de-noising, but also valuable and effective to detect the health status of bridge structure. In order to detect the damage status of the structure, a multi-layer neural network models based on the BP algorithm is designed. The model is trained with the data from an engineering beam to filter different transfer function, train function and the unit number of hidden layer by contrast to determine the best network model for damage detection. At last, the model is used to detect the damage of cable-stayed bridge with an improved method of data pre-processing using the square rate of change in frequency as input date of network. The structural damage identification results show that the BP neural network model is easy to identify the damage by the changing of vibration modal frequency and effective to reflect the injury status of the existing structure.

  9. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  10. Resting State EEG-based biometrics for individual identification using convolutional neural networks.

    Science.gov (United States)

    Lan Ma; Minett, James W; Blu, Thierry; Wang, William S-Y

    2015-08-01

    Biometrics is a growing field, which permits identification of individuals by means of unique physical features. Electroencephalography (EEG)-based biometrics utilizes the small intra-personal differences and large inter-personal differences between individuals' brainwave patterns. In the past, such methods have used features derived from manually-designed procedures for this purpose. Another possibility is to use convolutional neural networks (CNN) to automatically extract an individual's best and most unique neural features and conduct classification, using EEG data derived from both Resting State with Open Eyes (REO) and Resting State with Closed Eyes (REC). Results indicate that this CNN-based joint-optimized EEG-based Biometric System yields a high degree of accuracy of identification (88%) for 10-class classification. Furthermore, rich inter-personal difference can be found using a very low frequency band (0-2Hz). Additionally, results suggest that the temporal portions over which subjects can be individualized is less than 200 ms.

  11. Rule Based Ensembles Using Pair Wise Neural Network Classifiers

    Directory of Open Access Journals (Sweden)

    Moslem Mohammadi Jenghara

    2015-03-01

    Full Text Available In value estimation, the inexperienced people's estimation average is good approximation to true value, provided that the answer of these individual are independent. Classifier ensemble is the implementation of mentioned principle in classification tasks that are investigated in two aspects. In the first aspect, feature space is divided into several local regions and each region is assigned with a highly competent classifier and in the second, the base classifiers are applied in parallel and equally experienced in some ways to achieve a group consensus. In this paper combination of two methods are used. An important consideration in classifier combination is that much better results can be achieved if diverse classifiers, rather than similar classifiers, are combined. To achieve diversity in classifiers output, the symmetric pairwise weighted feature space is used and the outputs of trained classifiers over the weighted feature space are combined to inference final result. In this paper MLP classifiers are used as the base classifiers. The Experimental results show that the applied method is promising.

  12. Classifying content-based Images using Self Organizing Map Neural Networks Based on Nonlinear Features

    Directory of Open Access Journals (Sweden)

    Ebrahim Parcham

    2014-07-01

    Full Text Available Classifying similar images is one of the most interesting and essential image processing operations. Presented methods have some disadvantages like: low accuracy in analysis step and low speed in feature extraction process. In this paper, a new method for image classification is proposed in which similarity weight is revised by means of information in related and unrelated images. Based on researchers’ idea, most of real world similarity measurement systems are nonlinear. Thus, traditional linear methods are not capable of recognizing nonlinear relationship and correlation in such systems. Undoubtedly, Self Organizing Map neural networks are strongest networks for data mining and nonlinear analysis of sophisticated spaces purposes. In our proposed method, we obtain images with the most similarity measure by extracting features of our target image and comparing them with the features of other images. We took advantage of NLPCA algorithm for feature extraction which is a nonlinear algorithm that has the ability to recognize the smallest variations even in noisy images. Finally, we compare the run time and efficiency of our proposed method with previous proposed methods.

  13. Generalized in vitro-in vivo relationship (IVIVR model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mendyk A

    2013-03-01

    Full Text Available Aleksander Mendyk,1 Pawel Tuszynski,1 Sebastian Polak,2 Renata Jachowicz1 1Department of Pharmaceutical Technology and Biopharmaceutics, 2Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland Background: The aim of this study was to develop a generalized in vitro-in vivo relationship (IVIVR model based on in vitro dissolution profiles together with quantitative and qualitative composition of dosage formulations as covariates. Such a model would be of substantial aid in the early stages of development of a pharmaceutical formulation, when no in vivo results are yet available and it is impossible to create a classical in vitro-in vivo correlation (IVIVC/IVIVR. Methods: Chemoinformatics software was used to compute the molecular descriptors of drug substances (ie, active pharmaceutical ingredients and excipients. The data were collected from the literature. Artificial neural networks were used as the modeling tool. The training process was carried out using the 10-fold cross-validation technique. Results: The database contained 93 formulations with 307 inputs initially, and was later limited to 28 in a course of sensitivity analysis. The four best models were introduced into the artificial neural network ensemble. Complete in vivo profiles were predicted accurately for 37.6% of the formulations. Conclusion: It has been shown that artificial neural networks can be an effective predictive tool for constructing IVIVR in an integrated generalized model for various formulations. Because IVIVC/IVIVR is classically conducted for 2–4 formulations and with a single active pharmaceutical ingredient, the approach described here is unique in that it incorporates various active pharmaceutical ingredients and dosage forms into a single model. Thus, preliminary IVIVC/IVIVR can be available without in vivo data, which is impossible using current IVIVC/IVIVR procedures. Keywords: artificial neural networks

  14. An Automatic System of Vehicle Number-Plate Recognition Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents an automatic system of vehicle number-plate recognition based on neural networks. In this system, location of number-plate and recognition of characters in number-plate can be automatically completed. Pixel colors of Number-plate area are classified using neural network, then color features are extracted by analyzing scanning lines of the cross-section of number-plate. It takes full use of number-plate color features to locate number plate. Characters in number-plate can be effectively recognized using the neural networks. Experimental results show that the correct rate of number-plate location is close to 100%, and the time of number-plate location is less than 1 second. Moreover, recognition rate of characters is improved due to the known number-plate type. It is also observed that this system is not sensitive to variations of weather, illumination and vehicle speed. In addition, and also the size of number-plate need not to be known in prior. This system is of crucial significance to apply and spread the automatic system of vehicle number-plate recognition.

  15. Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassanlourad

    2014-12-01

    Full Text Available In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty and three relative densities (%30, %50, and %90 were injected with the sodium silicate grout with three different concentrations (water to sodium silicate ratio of 0.33, 1, and 2. A multi-layer Perceptron type of the artificial neural network was trained and tested using the results of 138 experimental tests. The multi-layer Perceptron included one input layer, two hidden layers and one output layer. The input parameters consisted of initial relative densities of grouted samples, the average size of particles (D50, the ratio of the grout water to sodium silicate and the grout pressure. The output parameter was the grout injection radius. The results of the experimental tests showed that the radius of grout injection is a complicated function of the mentioned parameters. In addition, the results of the trained artificial neural network showed to be reasonably consistent with the experimental results.

  16. Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.

    Science.gov (United States)

    Zhang, Xian-Ming; Han, Qing-Long

    2014-06-01

    This paper is concerned with global asymptotic stability for a class of generalized neural networks with interval time-varying delays by constructing a new Lyapunov-Krasovskii functional which includes some integral terms in the form of ∫(t-h)(t)(h-t-s)(j)ẋ(T)(s)Rjẋ(s)ds(j=1,2,3). Some useful integral inequalities are established for the derivatives of those integral terms introduced in the Lyapunov-Krasovskii functional. A matrix-based quadratic convex approach is introduced to prove not only the negative definiteness of the derivative of the Lyapunov-Krasovskii functional, but also the positive definiteness of the Lyapunov-Krasovskii functional. Some novel stability criteria are formulated in two cases, respectively, where the time-varying delay is continuous uniformly bounded and where the time-varying delay is differentiable uniformly bounded with its time-derivative bounded by constant lower and upper bounds. These criteria are applicable to both static neural networks and local field neural networks. The effectiveness of the proposed method is demonstrated by two numerical examples.

  17. GENERALIZED REGRESSION NEURAL NETWORK BASED EXPERT SYSTEM FOR HEPATITIS B DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    C. Mahesh

    2014-01-01

    Full Text Available Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus. The virus interferes with the function of the liver while replicating in hepatocytes. It is a major global health problem and the most serious type of viral hepatitis. Chronic liver disease is caused by viral hepatitis and putting people at high risk of death from cirrhosis of the liver and liver cancer. Medical information available is extensive and which is utilized by the clinical specialists. The ranging of information is from details of clinical symptoms to various types of biochemical data. Information provided by each data is evaluated and assigned to a particular pathology during the diagnostic process. Artificial intelligence methods especially computer aided diagnosis and artificial neural networks can be employed to streamline the diagnostic process. These adaptive learning algorithms can handle diverse types of medical data and integrate them into categorized outputs. Artificial neural networks are finding many uses in the medical diagnosis application. In this study we have proposed a Generalized Regression Neural Network (GRNN based expert system for the diagnosis of the hepatitis B virus disease. The system classifies each patient into infected and non-infected. If infected then how severe it is in terms of intensity rate.

  18. OPTIMIZATION OF OPERATING PARAMETERS FOR EDM PROCESS BASED ON THE TAGUCHI METHOD AND ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    A.Thillaivanan,

    2010-12-01

    Full Text Available In this paper the complexity of electrical discharge machining process which is very difficult to determine optimal cutting parameters for improving cutting performance has been reported. Optimization of operating parameters is an important step in machining, particularly for operating unconventional machiningprocedure like EDM. A suitable selection of machining parameters for the electrical discharge machining process relies heavily on the operators’ technologies and experience because of their numerous and diverse range. Machining parameters tables provided by the machine tool builder can not meet the operators’ requirements, since for anarbitrary desired machining time for a particular job, they do not provide the optimal machining conditions. An approach to determine parameters setting is proposed. Based on the Taguchi parameter design method and the analysis of variance, the significant factors affecting the machining performance such as total machining time, oversize and taper for a hole machined by EDM process, are determined.Artificial neural networks are highly flexible modeling tools with an ability to learn the mapping between input variables and output feature spaces. The superiority of using artificial neural networks inmodeling machining processes make easier to model the EDM process with dimensional input and output spaces. On the basis of the developed neural network model, for a required total machining time, oversize and taper the corresponding process parameters to be set in EDM by using the developed and trained ANN are determined.

  19. Adaptive statistic tracking control based on two-step neural networks with time delays.

    Science.gov (United States)

    Yi, Yang; Guo, Lei; Wang, Hong

    2009-03-01

    This paper presents a new type of control framework for dynamical stochastic systems, called statistic tracking control (STC). The system considered is general and non-Gaussian and the tracking objective is the statistical information of a given target probability density function (pdf), rather than a deterministic signal. The control aims at making the statistical information of the output pdfs to follow those of a target pdf. For such a control framework, a variable structure adaptive tracking control strategy is first established using two-step neural network models. Following the B-spline neural network approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. The dynamic neural network (DNN) is employed to identify the unknown nonlinear dynamics between the control input and the weights related to the integrated function. To achieve the required control objective, an adaptive controller based on the proposed DNN is developed so as to track a reference trajectory. Stability analysis for both the identification and tracking errors is developed via the use of Lyapunov stability criterion. Simulations are given to demonstrate the efficiency of the proposed approach.

  20. Optimal design study of high order FIR digital filters based on neural network algorithm

    Institute of Scientific and Technical Information of China (English)

    王小华; 何怡刚

    2004-01-01

    An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amplitude response of the desired FIR filter and that of the designed by training the weights of neural networks, then obtains the impulse response of FIR digital filter . The convergence theorem of the neural networks algorithm is presented and proved,and the optimal design method is introduced by designing four kinds of FIR digital filters , i.e., low-pass, high-pass,bandpass , and band-stop FIR digital filter. The results of the amplitude responses show that attenuation in stop-bands is more than 60 dB with no ripple and pulse existing in pass-bands, and cutoff frequency of passband and stop-band is easily controlled precisely . The presented optimal design approach of high order FIR digital filter is significantly effective.