WorldWideScience

Sample records for based neural network

  1. Neural Network based Consumption Forecasting

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2016-01-01

    This paper describe a Neural Network based method for consumption forecasting. This work has been financed by the The ENCOURAGE project. The aims of The ENCOURAGE project is to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable...

  2. Neural network based temporal video segmentation.

    Science.gov (United States)

    Cao, X; Suganthan, P N

    2002-01-01

    The organization of video information in video databases requires automatic temporal segmentation with minimal user interaction. As neural networks are capable of learning the characteristics of various video segments and clustering them accordingly, in this paper, a neural network based technique is developed to segment the video sequence into shots automatically and with a minimum number of user-defined parameters. We propose to employ growing neural gas (GNG) networks and integrate multiple frame difference features to efficiently detect shot boundaries in the video. Experimental results are presented to illustrate the good performance of the proposed scheme on real video sequences. PMID:12370954

  3. SAR ATR Based on Convolutional Neural Network

    OpenAIRE

    Tian Zhuangzhuang; Zhan Ronghui; Hu Jiemin; Zhang Jun

    2016-01-01

    This study presents a new method of Synthetic Aperture Radar (SAR) image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recogni...

  4. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  5. Autonomous robot behavior based on neural networks

    Science.gov (United States)

    Grolinger, Katarina; Jerbic, Bojan; Vranjes, Bozo

    1997-04-01

    The purpose of autonomous robot is to solve various tasks while adapting its behavior to the variable environment, expecting it is able to navigate much like a human would, including handling uncertain and unexpected obstacles. To achieve this the robot has to be able to find solution to unknown situations, to learn experienced knowledge, that means action procedure together with corresponding knowledge on the work space structure, and to recognize working environment. The planning of the intelligent robot behavior presented in this paper implements the reinforcement learning based on strategic and random attempts for finding solution and neural network approach for memorizing and recognizing work space structure (structural assignment problem). Some of the well known neural networks based on unsupervised learning are considered with regard to the structural assignment problem. The adaptive fuzzy shadowed neural network is developed. It has the additional shadowed hidden layer, specific learning rule and initialization phase. The developed neural network combines advantages of networks based on the Adaptive Resonance Theory and using shadowed hidden layer provides ability to recognize lightly translated or rotated obstacles in any direction.

  6. SAR ATR Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tian Zhuangzhuang

    2016-06-01

    Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.

  7. Analysis of Neural Networks through Base Functions

    NARCIS (Netherlands)

    Zwaag, van der B.J.; Slump, C.H.; Spaanenburg, L.

    2002-01-01

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  8. Network Traffic Prediction based on Particle Swarm BP Neural Network

    OpenAIRE

    Yan Zhu; Guanghua Zhang; Jing Qiu

    2013-01-01

    The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and strong robust. In this paper, a new BP neural network based on Artificial Bee Colony algorithm and part...

  9. Network Traffic Prediction based on Particle Swarm BP Neural Network

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2013-11-01

    Full Text Available The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and strong robust. In this paper, a new BP neural network based on Artificial Bee Colony algorithm and particle swarm optimization algorithm is proposed to optimize the weight and threshold value of BP neural network. After network traffic prediction experiment, we can conclude that optimized BP network traffic prediction based on PSO-ABC has high prediction accuracy and has stable prediction performance.

  10. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  11. Convolutional Neural Network Based dem Super Resolution

    Science.gov (United States)

    Chen, Zixuan; Wang, Xuewen; Xu, Zekai; Hou, Wenguang

    2016-06-01

    DEM super resolution is proposed in our previous publication to improve the resolution for a DEM on basis of some learning examples. Meanwhile, the nonlocal algorithm is introduced to deal with it and lots of experiments show that the strategy is feasible. In our publication, the learning examples are defined as the partial original DEM and their related high measurements due to this way can avoid the incompatibility between the data to be processed and the learning examples. To further extent the applications of this new strategy, the learning examples should be diverse and easy to obtain. Yet, it may cause the problem of incompatibility and unrobustness. To overcome it, we intend to investigate a convolutional neural network based method. The input of the convolutional neural network is a low resolution DEM and the output is expected to be its high resolution one. A three layers model will be adopted. The first layer is used to detect some features from the input, the second integrates the detected features to some compressed ones and the final step transforms the compressed features as a new DEM. According to this designed structure, some learning DEMs will be taken to train it. Specifically, the designed network will be optimized by minimizing the error of the output and its expected high resolution DEM. In practical applications, a testing DEM will be input to the convolutional neural network and a super resolution will be obtained. Many experiments show that the CNN based method can obtain better reconstructions than many classic interpolation methods.

  12. SOLVING INVERSE KINEMATICS OF REDUNDANT MANIPULATOR BASED ON NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    For the redundant manipulators, neural network is used to tackle the velocity inverse kinematics of robot manipulators. The neural networks utilized are multi-layered perceptions with a back-propagation training algorithm. The weight table is used to save the weights solving the inverse kinematics based on the different optimization performance criteria. Simulations verify the effectiveness of using neural network.

  13. A Direct Feedback Control Based on Fuzzy Recurrent Neural Network

    Institute of Scientific and Technical Information of China (English)

    李明; 马小平

    2002-01-01

    A direct feedback control system based on fuzzy-recurrent neural network is proposed, and a method of training weights of fuzzy-recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simul ation results indicate that fuzzy-recurrent neural network controller has perfect dynamic and static performances .

  14. Clustering-based selective neural network ensemble

    Institute of Scientific and Technical Information of China (English)

    FU Qiang; HU Shang-xu; ZHAO Sheng-ying

    2005-01-01

    An effective ensemble should consist of a set of networks that are both accurate and diverse. We propose a novel clustering-based selective algorithm for constructing neural network ensemble, where clustering technology is used to classify trained networks according to similarity and optimally select the most accurate individual network from each cluster to make up the ensemble. Empirical studies on regression of four typical datasets showed that this approach yields significantly smaller en semble achieving better performance than other traditional ones such as Bagging and Boosting. The bias variance decomposition of the predictive error shows that the success of the proposed approach may lie in its properly tuning the bias/variance trade-offto reduce the prediction error (the sum of bias2 and variance).

  15. Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.

  16. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  17. Clustering in mobile ad hoc network based on neural network

    Institute of Scientific and Technical Information of China (English)

    CHEN Ai-bin; CAI Zi-xing; HU De-wen

    2006-01-01

    An on-demand distributed clustering algorithm based on neural network was proposed. The system parameters and the combined weight for each node were computed, and cluster-heads were chosen using the weighted clustering algorithm, then a training set was created and a neural network was trained. In this algorithm, several system parameters were taken into account, such as the ideal node-degree, the transmission power, the mobility and the battery power of the nodes. The algorithm can be used directly to test whether a node is a cluster-head or not. Moreover, the clusters recreation can be speeded up.

  18. Distribution network planning algorithm based on Hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    GAO Wei-xin; LUO Xian-jue

    2005-01-01

    This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a directed graph-planning problem. The Hopfield neural network is designed to decide the in-degree of each node and is in combined application with an energy function. The new algorithm doesn't need to code city streets and normalize data, so the program is easier to be realized. A case study applying the method to a district of 29 street proved that an optimal solution for the planning of such a power system could be obtained by only 26 iterations. The energy function and algorithm developed in this work have the following advantages over many existing algorithms for electric distribution network planning: fast convergence and unnecessary to code all possible lines.

  19. Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents

    CERN Document Server

    Sher, Gene I

    2011-01-01

    Though machine learning has been applied to the foreign exchange market for quiet some time now, and neural networks have been shown to yield good results, in modern approaches neural network systems are optimized through the traditional methods, and their input signals are vectors containing prices and other indicator elements. The aim of this paper is twofold, the presentation and testing of the application of topology and weight evolving artificial neural network (TWEANN) systems to automated currency trading, and the use of chart images as input to a geometrical regularity aware indirectly encoded neural network systems. This paper presents the benchmark results of neural network based automated currency trading systems evolved using TWEANNs, and compares the generalization capabilities of these direct encoded neural networks which use the standard price vector inputs, and the indirect (substrate) encoded neural networks which use chart images as input. The TWEANN algorithm used to evolve these currency t...

  20. Hopfield neural network based on ant system

    Institute of Scientific and Technical Information of China (English)

    洪炳镕; 金飞虎; 郭琦

    2004-01-01

    Hopfield neural network is a single layer feedforward neural network. Hopfield network requires some control parameters to be carefully selected, else the network is apt to converge to local minimum. An ant system is a nature inspired meta heuristic algorithm. It has been applied to several combinatorial optimization problems such as Traveling Salesman Problem, Scheduling Problems, etc. This paper will show an ant system may be used in tuning the network control parameters by a group of cooperated ants. The major advantage of this network is to adjust the network parameters automatically, avoiding a blind search for the set of control parameters.This network was tested on two TSP problems, 5 cities and 10 cities. The results have shown an obvious improvement.

  1. Mesh deformation based on artificial neural networks

    Science.gov (United States)

    Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej

    2011-09-01

    In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.

  2. Brain tumor grading based on Neural Networks and Convolutional Neural Networks.

    Science.gov (United States)

    Yuehao Pan; Weimin Huang; Zhiping Lin; Wanzheng Zhu; Jiayin Zhou; Wong, Jocelyn; Zhongxiang Ding

    2015-08-01

    This paper studies brain tumor grading using multiphase MRI images and compares the results with various configurations of deep learning structure and baseline Neural Networks. The MRI images are used directly into the learning machine, with some combination operations between multiphase MRIs. Compared to other researches, which involve additional effort to design and choose feature sets, the approach used in this paper leverages the learning capability of deep learning machine. We present the grading performance on the testing data measured by the sensitivity and specificity. The results show a maximum improvement of 18% on grading performance of Convolutional Neural Networks based on sensitivity and specificity compared to Neural Networks. We also visualize the kernels trained in different layers and display some self-learned features obtained from Convolutional Neural Networks. PMID:26736358

  3. Brain tumor grading based on Neural Networks and Convolutional Neural Networks.

    Science.gov (United States)

    Yuehao Pan; Weimin Huang; Zhiping Lin; Wanzheng Zhu; Jiayin Zhou; Wong, Jocelyn; Zhongxiang Ding

    2015-08-01

    This paper studies brain tumor grading using multiphase MRI images and compares the results with various configurations of deep learning structure and baseline Neural Networks. The MRI images are used directly into the learning machine, with some combination operations between multiphase MRIs. Compared to other researches, which involve additional effort to design and choose feature sets, the approach used in this paper leverages the learning capability of deep learning machine. We present the grading performance on the testing data measured by the sensitivity and specificity. The results show a maximum improvement of 18% on grading performance of Convolutional Neural Networks based on sensitivity and specificity compared to Neural Networks. We also visualize the kernels trained in different layers and display some self-learned features obtained from Convolutional Neural Networks.

  4. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  5. Multispectral thermometry based on neural network

    Institute of Scientific and Technical Information of China (English)

    孙晓刚; 戴景民

    2003-01-01

    In order to overcome the effect of the assumption between emissivity and wavelength on the measurement of true temperature and spectral emissivity for most engineering materials, a neural network based method is proposed for data processing while a blackbody furnace and three optical filters with known spectral transmittance curves were used to make up a true target. The experimental results show that the calculated temperatures are in good agreement with the temperature of the blackbody furnace, and the calculated spectral emissivity curves are in good agreement with the spectral transmittance curves of the filters. The method proposed has been proved to be an effective method for solving the problem of true temperature and emissivity measurement, and it can overcome the effect of the assumption between emissivity and wavelength on the measurement of true temperature and spectral emissivity for most engineering materials.

  6. Contractor Prequalification Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-long; YANG Lan-rong

    2002-01-01

    Contractor Prequalification involves the screening of contractors by a project owner, according to a given set of criteria, in order to determine their competence to perform the work if awarded the construction contract. This paper introduces the capabilities of neural networks in solving problems related to contractor prequalification. The neural network systems for contractor prequalification has an input vector of 8 components and an output vector of 1 component. The output vector represents whether a contractor is qualified or not qualified to submit a bid on a project.

  7. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  8. Digital Watermarking Algorithm Based on Wavelet Transform and Neural Network

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenfei; ZHAI Guangqun; WANG Nengchao

    2006-01-01

    An effective blind digital watermarking algorithm based on neural networks in the wavelet domain is presented. Firstly, the host image is decomposed through wavelet transform. The significant coefficients of wavelet are selected according to the human visual system (HVS) characteristics. Watermark bits are added to them. And then effectively cooperates neural networks to learn the characteristics of the embedded watermark related to them. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results and comparisons with other techniques prove the effectiveness of the new algorithm.

  9. Neural Network Model Based Cluster Head Selection for Power Control

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2011-01-01

    Full Text Available Mobile ad-hoc network has challenge of the limited power to prolong the lifetime of the network, because power is a valuable resource in mobile ad-hoc network. The status of power consumption should be continuously monitored after network deployment. In this paper, we propose coverage aware neural network based power control routing with the objective of maximizing the network lifetime. Cluster head selection is proposed using adaptive learning in neural networks followed by coverage. The simulation results show that the proposed scheme can be used in wide area of applications in mobile ad-hoc network.

  10. DEM interpolation based on artificial neural networks

    Science.gov (United States)

    Jiao, Limin; Liu, Yaolin

    2005-10-01

    This paper proposed a systemic resolution scheme of Digital Elevation model (DEM) interpolation based on Artificial Neural Networks (ANNs). In this paper, we employ BP network to fit terrain surface, and then detect and eliminate the samples with gross errors. This paper uses Self-organizing Feature Map (SOFM) to cluster elevation samples. The study area is divided into many more homogenous tiles after clustering. BP model is employed to interpolate DEM in each cluster. Because error samples are eliminated and clusters are built, interpolation result is better. The case study indicates that ANN interpolation scheme is feasible. It also shows that ANN can get a more accurate result by comparing ANN with polynomial and spline interpolation. ANN interpolation doesn't need to determine the interpolation function beforehand, so manmade influence is lessened. The ANN interpolation is more automatic and intelligent. At the end of the paper, we propose the idea of constructing ANN surface model. This model can be used in multi-scale DEM visualization, and DEM generalization, etc.

  11. INDUCTION OF DECISION TREES BASED ON A FUZZY NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Tang Bin; Hu Guangrui; Mao Xiaoquan

    2002-01-01

    Based on a fuzzy neural network, the letter presents an approach for the induction of decision trees. The approach makes use of the weights of fuzzy mappings in the fuzzy neural network which has been trained. It can realize the optimization of fuzzy decision trees by branch cutting, and improve the ratio of correctness and efficiency of the induction of decision trees.

  12. Island Model based Differential Evolution Algorithm for Neural Network Training

    Directory of Open Access Journals (Sweden)

    Htet Thazin Tike Thein

    Full Text Available There exist many approaches to training neural network. In this system, training for feed forward neural network is introduced by using island model based differential evolution. Differential Evolution (DE has been used to determine optimal value for ANN ...

  13. Fuzzy Neural Network Based Traffic Prediction and Congestion Control in High-Speed Networks

    Institute of Scientific and Technical Information of China (English)

    费翔; 何小燕; 罗军舟; 吴介一; 顾冠群

    2000-01-01

    Congestion control is one of the key problems in high-speed networks, such as ATM. In this paper, a kind of traffic prediction and preventive congestion control scheme is proposed using neural network approach. Traditional predictor using BP neural network has suffered from long convergence time and dissatisfying error. Fuzzy neural network developed in this paper can solve these problems satisfactorily. Simulations show the comparison among no-feedback control scheme,reactive control scheme and neural network based control scheme.

  14. Neural Network Based Intelligent Sootblowing System

    Energy Technology Data Exchange (ETDEWEB)

    Mark Rhode

    2005-04-01

    . Due to the composition of coal, particulate matter is also a by-product of coal combustion. Modern day utility boilers are usually fitted with electrostatic precipitators to aid in the collection of particulate matter. Although extremely efficient, these devices are sensitive to rapid changes in inlet mass concentration as well as total mass loading. Traditionally, utility boilers are equipped with devices known as sootblowers, which use, steam, water or air to dislodge and clean the surfaces within the boiler and are operated based upon established rule or operator's judgment. Poor sootblowing regimes can influence particulate mass loading to the electrostatic precipitators. The project applied a neural network intelligent sootblowing system in conjunction with state-of-the-art controls and instruments to optimize the operation of a utility boiler and systematically control boiler slagging/fouling. This optimization process targeted reduction of NOx of 30%, improved efficiency of 2% and a reduction in opacity of 5%. The neural network system proved to be a non-invasive system which can readily be adapted to virtually any utility boiler. Specific conclusions from this neural network application are listed below. These conclusions should be used in conjunction with the specific details provided in the technical discussions of this report to develop a thorough understanding of the process.

  15. Decoupling Control Method Based on Neural Network for Missiles

    Institute of Scientific and Technical Information of China (English)

    ZHAN Li; LUO Xi-shuang; ZHANG Tian-qiao

    2005-01-01

    In order to make the static state feedback nonlinear decoupling control law for a kind of missile to be easy for implementation in practice, an improvement is discussed. The improvement method is to introduce a BP neural network to approximate the decoupling control laws which are designed for different aerodynamic characteristic points, so a new decoupling control law based on BP neural network is produced after the network training. The simulation results on an example illustrate the approach obtained feasible and effective.

  16. Neural network based speech synthesizer: A preliminary report

    Science.gov (United States)

    Villarreal, James A.; Mcintire, Gary

    1987-01-01

    A neural net based speech synthesis project is discussed. The novelty is that the reproduced speech was extracted from actual voice recordings. In essence, the neural network learns the timing, pitch fluctuations, connectivity between individual sounds, and speaking habits unique to that individual person. The parallel distributed processing network used for this project is the generalized backward propagation network which has been modified to also learn sequences of actions or states given in a particular plan.

  17. MOVING TARGETS PATTERN RECOGNITION BASED ON THE WAVELET NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Ge Guangying; Chen Lili; Xu Jianjian

    2005-01-01

    Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.

  18. ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN)

    OpenAIRE

    LAHEEB MOHAMMAD IBRAHIM

    2010-01-01

    In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack) detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network) can achieve a high detection rate, where the overall accuracy classification rate ...

  19. Caption detection from video sequence based on fuzzy neural networks

    Science.gov (United States)

    Gao, Xinbo; Xin, Hong; Li, Jie

    2001-09-01

    Caption graphically superimposed in video frames can provide important indexing information. The automatic detection and recognition of video captions can be of great help in querying topics of interest in digital news library. To detect the caption from video sequence, we present algorithms based on fuzzy clustering neural networks. Since neural networks have the capabilities of learning and self-organizing and parallel computing mechanism, with the great increasing of digital images and video databases, neural networks based techniques become more efficient and popular tools for multimedia processing. Experimental results show that our caption detection scheme is effective and robust.

  20. Impulsive Neural Networks Algorithm Based on the Artificial Genome Model

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-05-01

    Full Text Available To describe gene regulatory networks, this article takes the framework of the artificial genome model and proposes impulsive neural networks algorithm based on the artificial genome model. Firstly, the gene expression and the cell division tree are applied to generate spiking neurons with specific attributes, neural network structure, connection weights and specific learning rules of each neuron. Next, the gene segment duplications and divergence model are applied to design the evolutionary algorithm of impulsive neural networks at the level of the artificial genome. The dynamic changes of developmental gene regulatory networks are controlled during the whole evolutionary process. Finally, the behavior of collecting food for autonomous intelligent agent is simulated, which is driven by nerves. Experimental results demonstrate that the algorithm in this article has the evolutionary ability on large-scale impulsive neural networks

  1. Architecture Analysis of an FPGA-Based Hopfield Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Angelo de Abreu de Sousa

    2014-01-01

    Full Text Available Interconnections between electronic circuits and neural computation have been a strongly researched topic in the machine learning field in order to approach several practical requirements, including decreasing training and operation times in high performance applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable gate array (FPGA hardware shows some inherent features typically associated with neural networks, such as, parallel processing, modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also, the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural model, is presented, in detail.

  2. Image watermarking capacity analysis based on Hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    Fan Zhang(张帆); Hongbin Zhang(张鸿宾)

    2004-01-01

    In watermarking schemes, watermarking can be viewed as a form of communication problems. Almost all of previous works on image watermarking capacity are based on information theory, using Shannon formula to calculate the capacity of watermarking. In this paper, we present a blind watermarking algorithm using Hopfield neural network, and analyze watermarking capacity based on neural network. In our watermarking algorithm, watermarking capacity is decided by attraction basin of associative memory.

  3. Colored Noise Prediction Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    Gao Fei; Zhang Xiaohui

    2003-01-01

    A method for predicting colored noise by introducing prediction of nonhnear time series is presented By adopting three kinds of neural networks prediction models, the colored noise prediction is studied through changing the filter bandwidth for stochastic noise and the sampling rate for colored noise The results show that colored noise can be predicted The prediction error decreases with the increasing of the sampling rate or the narrowing of the filter bandwidth. If the parameters are selected properly, the prediction precision can meet the requirement of engineering implementation. The results offer a new reference way for increasing the ability for detecting weak signal in signal processing system

  4. Rough Set Based Fuzzy Neural Network for Pattern Classification

    Institute of Scientific and Technical Information of China (English)

    李侃; 刘玉树

    2003-01-01

    A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performance of global convergence. In addition, the numbers of rules and the initial weights and structure of fuzzy neural networks are difficult to determine. Here rough sets are introduced to decide the numbers of rules and original weights. Finally, experiment results show the algorithm may get better effect than the BP algorithm.

  5. Dependency-based Convolutional Neural Networks for Sentence Embedding

    OpenAIRE

    Ma, Mingbo; Huang, Liang; Xiang, Bing; Zhou, Bowen

    2015-01-01

    In sentence modeling and classification, convolutional neural network approaches have recently achieved state-of-the-art results, but all such efforts process word vectors sequentially and neglect long-distance dependencies. To exploit both deep learning and linguistic structures, we propose a tree-based convolutional neural network model which exploit various long-distance relationships between words. Our model improves the sequential baselines on all three sentiment and question classificat...

  6. Artificial neural network based modelling of internal combustion engine performance

    OpenAIRE

    Boruah, Dibakor; Thakur, Pintu Kumar; Baruah, Dipal

    2016-01-01

    The present study aims to quantify the applicability of artificial neural network as a black-box model for internal combustion engine performance. In consequence, an artificial neural network (ANN) based model for a four cylinder, four stroke internal combustion diesel engine has been developed on the basis of specific input and output factors, which have been taken from experimental readings for different load and engine speed circumstances. The input parameters that have been used to create...

  7. Image Restoration Technology Based on Discrete Neural network

    Directory of Open Access Journals (Sweden)

    Zhou Duoying

    2015-01-01

    Full Text Available With the development of computer science and technology, the development of artificial intelligence advances rapidly in the field of image restoration. Based on the MATLAB platform, this paper constructs a kind of image restoration technology of artificial intelligence based on the discrete neural network and feedforward network, and carries out simulation and contrast of the restoration process by the use of the bionic algorithm. Through the application of simulation restoration technology, this paper verifies that the discrete neural network has a good convergence and identification capability in the image restoration technology with a better effect than that of the feedforward network. The restoration technology based on the discrete neural network can provide a reliable mathematical model for this field.

  8. Numeral eddy current sensor modelling based on genetic neural network

    Institute of Scientific and Technical Information of China (English)

    Yu A-Long

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.

  9. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  10. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    Science.gov (United States)

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  11. Data Process of Diagnose Expert System based on Neural Network

    Directory of Open Access Journals (Sweden)

    Shupeng Zhao

    2013-12-01

    Full Text Available Engine fault has a high rate in the car. Considering about the distinguishing feature of the engine, Engine Diagnosis Expert System was investigated based on Diagnosis Tree module, Fuzzy Neural Network module, and commix reasoning module. It was researched including Knowledge base and Reasoning machine, and so on. In Diagnosis Tree module, the origin problem was searched in right method. In which module distinguishing rate and low error and least cost was the aim. By means of synthesize judge and fuzzy relation reasoning to get fault origin from symptom, fuzzy synthesize reasoning diagnosis module was researched. Expert knowledge included failure symptom, engine system failure and engine part failure. In the system, Self-diagnosis method and general instruments method worked together, complex failure diagnosis became efficient. The system was intelligent, which was combined by fuzzy logic reasoning and the traditional neural network system. And it became more convenience for failure origin searching, because of utilizing the three methods. The system fuzzy neural networks were combined with fuzzy reasoning and traditional neural networks. Fuzzy neural network failure diagnosis module of system, as a important model was applied to engine diagnosis, with more advantages such as higher efficiency of searching and higher self-learning ability, which was compared with the traditional BP network

  12. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non-linear...... systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  13. Fuzzy neural network image filter based on GA

    Institute of Scientific and Technical Information of China (English)

    刘涵; 刘丁; 李琦

    2004-01-01

    A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following,fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters.

  14. Stability analysis of discrete-time BAM neural networks based on standard neural network models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.

  15. Techniques of Image Processing Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    LI Wei-qing; WANG Qun; WANG Cheng-biao

    2006-01-01

    This paper presented an online quality inspection system based on artificial neural networks. Chromatism classification and edge detection are two difficult problems in glass steel surface quality inspection. Two artificial neural networks were made and the two problems were solved. The one solved chromatism classification. Hue,saturation and their probability of three colors, whose appearing probabilities were maximum in color histogram,were selected as input parameters, and the number of output node could be adjusted with the change of requirement. The other solved edge detection. In this neutral network, edge detection of gray scale image was able to be tested with trained neural networks for a binary image. It prevent the difficulty that the number of needed training samples was too large if gray scale images were directly regarded as training samples. This system is able to be applied to not only glass steel fault inspection but also other product online quality inspection and classification.

  16. Neural Network-Based Active Control for Offshore Platforms

    Institute of Scientific and Technical Information of China (English)

    周亚军; 赵德有

    2003-01-01

    A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.

  17. A Robust Digital Watermark Extracting Method Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    GUOLihua; YANGShutang; LIJianhua

    2003-01-01

    Since watermark removal software, such as StirMark, has succeeded in washing watermarks away for most of the known watermarking systems, it is necessary to improve the robustness of watermarking systems. A watermark extracting method based on the error Back propagation (BP) neural network is presented in this paper, which can efficiently improve the robustness of watermarking systems. Experiments show that even if the watermarking systems are attacked by the StirMark software, the extracting method based on neural network can still efficiently extract the whole watermark information.

  18. Speech Recognition Method Based on Multilayer Chaotic Neural Network

    Institute of Scientific and Technical Information of China (English)

    REN Xiaolin; HU Guangrui

    2001-01-01

    In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.

  19. Wavelet Neural Network Based Traffic Prediction for Next Generation Network

    Institute of Scientific and Technical Information of China (English)

    Zhao Qigang; Li Qunzhan; He Zhengyou

    2005-01-01

    By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is replaced with the wavelet in NN. Then the wavelet multiresolution analysis method is used to decompose the traffic signal, and the decomposed component sequences are employed to train the NN. By using the methods, an NGN traffic prediction model is built to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN is more accurate than that without using wavelet in the NGN traffic forecasting.

  20. Image Restoration Technology Based on Discrete Neural network

    OpenAIRE

    Zhou Duoying

    2015-01-01

    With the development of computer science and technology, the development of artificial intelligence advances rapidly in the field of image restoration. Based on the MATLAB platform, this paper constructs a kind of image restoration technology of artificial intelligence based on the discrete neural network and feedforward network, and carries out simulation and contrast of the restoration process by the use of the bionic algorithm. Through the application of simulation restoration technology, ...

  1. Hazardous Odor Recognition by CMAC Based Neural Networks

    Directory of Open Access Journals (Sweden)

    Bekir Karlık

    2009-09-01

    Full Text Available Electronic noses are being developed as systems for the automated detection and classification of odors, vapors, and gases. Artificial neural networks (ANNs have been used to analyze complex data and to recognize patterns, and have shown promising results in recognition of volatile compounds and odors in electronic nose applications. When an ANN is combined with a sensor array, the number of detectable chemicals is generally greater than the number of unique sensor types. The odor sensing system should be extended to new areas since its standard style where the output pattern from multiple sensors with partially overlapped specificity is recognized by a neural network or multivariate analysis. This paper describes the design, implementation and performance evaluations of the application developed for hazardous odor recognition using Cerebellar Model Articulation Controller (CMAC based neural networks.

  2. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  3. Electronic implementation of associative memory based on neural network models

    Science.gov (United States)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  4. Detecting danger labels with RAM-based neural networks

    DEFF Research Database (Denmark)

    Jørgensen, T.M.; Christensen, S.S.; Andersen, A.W.

    1996-01-01

    An image processing system for the automatic location of danger labels on the back of containers is presented. The system uses RAM-based neural networks to locate and classify labels after a pre-processing step involving specially designed non-linear edge filters and RGB-to-HSV conversion. Results...

  5. Artificial Neural Network Based State Estimators Integrated into Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation...

  6. A Neural Network-based ARX Model of Virgo Noise

    OpenAIRE

    Barone, F.; Rosa, R; Eleuteri, A.; Garufi, F.; Milano, L; Tagliaferri, R.

    1999-01-01

    In this paper a Neural Network based approach is presented to identify the noise in the VIRGO context. VIRGO is an experiment to detect Gravitational Waves by means of a Laser Interferometer. Preliminary results appear to be very promising for data analysis of realistic Interferometer outputs.

  7. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2004-01-01

    This paper presents results from an experimentally based research on Gas Metal Arc Welding (GMAW), controlled by the artificial neural network (ANN) technology. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a high degree of quality...

  8. Hand Gesture and Neural Network Based Human Computer Interface

    Directory of Open Access Journals (Sweden)

    Aekta Patel

    2014-06-01

    Full Text Available Computer is used by every people either at their work or at home. Our aim is to make computers that can understand human language and can develop a user friendly human computer interfaces (HCI. Human gestures are perceived by vision. The research is for determining human gestures to create an HCI. Coding of these gestures into machine language demands a complex programming algorithm. In this project, We have first detected, recognized and pre-processing the hand gestures by using General Method of recognition. Then We have found the recognized image’s properties and using this, mouse movement, click and VLC Media player controlling are done. After that we have done all these functions thing using neural network technique and compared with General recognition method. From this we can conclude that neural network technique is better than General Method of recognition. In this, I have shown the results based on neural network technique and comparison between neural network method & general method.

  9. Computing by Means of Physics-Based Optical Neural Networks

    Directory of Open Access Journals (Sweden)

    Emmett Redd

    2010-06-01

    Full Text Available We report recent research on computing with biology-based neural network models by means of physics-based opto-electronic hardware. New technology provides opportunities for very-high-speed computation and uncovers problems obstructing the wide-spread use of this new capability. The Computation Modeling community may be able to offer solutions to these cross-boundary research problems.

  10. Robust face recognition using posterior union model based neural networks

    OpenAIRE

    Lin, J.; J., Ming; Crookes, D.

    2009-01-01

    Face recognition with unknown, partial distortion and occlusion is a practical problem, and has a wide range of applications, including security and multimedia information retrieval. The authors present a new approach to face recognition subject to unknown, partial distortion and occlusion. The new approach is based on a probabilistic decision-based neural network, enhanced by a statistical method called the posterior union model (PUM). PUM is an approach for ignoring severely mismatched loca...

  11. Reliability analysis of house keeping system based on neural network

    Institute of Scientific and Technical Information of China (English)

    MA Xiu-juan; ZHAO Guo-liang

    2005-01-01

    House keeping systems must hold such advantages as light weight,, mall volume and low power consumption to meet the demand of micro-satellites. This paper, based on the specific characteristics of Stereo Mapping Micro-satellite (SMMS) , describes the house keeping system with its advantage of having a centralized and distributed control in one system and analyzes the reliability based on Neural network model.

  12. Data Process of Diagnose Expert System based on Neural Network

    OpenAIRE

    Shupeng Zhao; Miao Tian; Shifang Zhang; Jiuxi Li; Lijuan Du; Ye Wang

    2013-01-01

    Engine fault has a high rate in the car. Considering about the distinguishing feature of the engine, Engine Diagnosis Expert System was investigated based on Diagnosis Tree module, Fuzzy Neural Network module, and commix reasoning module. It was researched including Knowledge base and Reasoning machine, and so on. In Diagnosis Tree module, the origin problem was searched in right method. In which module distinguishing rate and low error and least cost was the aim. By means of synthesize judge...

  13. XDANNG: XML based Distributed Artificial Neural Network with Globus Toolkit

    CERN Document Server

    Mahini, Hamidreza; Ghofrani, Javad

    2009-01-01

    Artificial Neural Network is one of the most common AI application fields. This field has direct and indirect usages most sciences. The main goal of ANN is to imitate biological neural networks for solving scientific problems. But the level of parallelism is the main problem of ANN systems in comparison with biological systems. To solve this problem, we have offered a XML-based framework for implementing ANN on the Globus Toolkit Platform. Globus Toolkit is well known management software for multipurpose Grids. Using the Grid for simulating the neuron network will lead to a high degree of parallelism in the implementation of ANN. We have used the XML for improving flexibility and scalability in our framework.

  14. Image Compression of Neural Network Based on Corner Block

    Directory of Open Access Journals (Sweden)

    Wenjing Zhang

    2014-01-01

    Full Text Available Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not compressed, high transmission rate for digital image transmission and tremendous capacity for digital image storage can hinder the development of digital image. For example, for a color image whose resolution rate is 1280×1024, each pixel needs 24B for storage, and the total data amount is about 3.75MB. If the earth satellite transmits the acquired image to the earth at 30 frames per second, the transmitting data size in 1 second is about 112.5MB. Under the condition of the existing communication capacity, if the image is not compressed, the real-time transmission of most multimedia information can’t be completed. High-speed transmission and storage of digital image has become the biggest obstacle of promoting digital image communication. So it is necessary to compress image. Data compression not only can rapidly transmit various information sources, improve the utilization rage of information channel and reduce transmitted power, but also can save energy and reduce storage capacity. More and more attentions of people have been paid to the application of artificial neural network to image compression, the reason for which is that artificial neural network has good fault tolerance, self-organization and adaptivity compared with traditional compression methods. So the predetermined data coding algorithm is not needed in the process of image compression. Neural network can independently complete the image coding and compression according to the characteristics of image. The paper combines corner detection technology with artificial neural network image compression, and designs a new neural network image compression encoding based on corner block with reasonable structure, high compression rate and rapid convergence rate

  15. Neural Network Predictive Control Based Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Ali Mohamed Yousef

    2012-04-01

    Full Text Available The present study investigates the power system stabilizer based on neural predictive control for improving power system dynamic performance over a wide range of operating conditions. In this study a design and application of the Neural Network Model Predictive Controller (NN-MPC on a simple power system composed of a synchronous generator connected to an infinite bus through a transmission line is proposed. The synchronous machine is represented in detail, taking into account the effect of the machine saliency and the damper winding. Neural network model predictive control combines reliable prediction of neural network model with excellent performance of model predictive control using nonlinear Levenberg-Marquardt optimization. This control system is used the rotor speed deviation as a feedback signal. Furthermore, the using performance system of the proposed controller is compared with the system performance using conventional one (PID controller through simulation studies. Digital simulation has been carried out in order to validate the effectiveness proposed NN-MPC power system stabilizer for achieving excellent performance. The results demonstrate that the effectiveness and superiority of the proposed controller in terms of fast response and small settling time.

  16. Automated neural network-based instrument validation system

    Science.gov (United States)

    Xu, Xiao

    2000-10-01

    In a complex control process, instrument calibration is periodically performed to maintain the instruments within the calibration range, which assures proper control and minimizes down time. Instruments are usually calibrated under out-of-service conditions using manual calibration methods, which may cause incorrect calibration or equipment damage. Continuous in-service calibration monitoring of sensors and instruments will reduce unnecessary instrument calibrations, give operators more confidence in instrument measurements, increase plant efficiency or product quality, and minimize the possibility of equipment damage during unnecessary manual calibrations. In this dissertation, an artificial neural network (ANN)-based instrument calibration verification system is designed to achieve the on-line monitoring and verification goal for scheduling maintenance. Since an ANN is a data-driven model, it can learn the relationships among signals without prior knowledge of the physical model or process, which is usually difficult to establish for the complex non-linear systems. Furthermore, the ANNs provide a noise-reduced estimate of the signal measurement. More importantly, since a neural network learns the relationships among signals, it can give an unfaulted estimate of a faulty signal based on information provided by other unfaulted signals; that is, provide a correct estimate of a faulty signal. This ANN-based instrument verification system is capable of detecting small degradations or drifts occurring in instrumentation, and preclude false control actions or system damage caused by instrument degradation. In this dissertation, an automated scheme of neural network construction is developed. Previously, the neural network structure design required extensive knowledge of neural networks. An automated design methodology was developed so that a network structure can be created without expert interaction. This validation system was designed to monitor process sensors plant

  17. Sensor Temperature Compensation Technique Simulation Based on BP Neural Network

    OpenAIRE

    Xiangwu Wei

    2013-01-01

    Innovatively, neural network function programming in the BPNN (BP neural network) tool boxes from MATLAB are applied, and data processing is done about CYJ-101 pressure sensor, and the problem of the sensor temperature compensation is solved. The paper has made the pressure sensors major sensors and temperature sensor assistant sensors, input the voltage signal from the two sensors into the established BP neural network model, and done the simulation under the NN Toolbox environment of MATLAB...

  18. Artificial Neural Network Based Approach for short load forecasting

    Directory of Open Access Journals (Sweden)

    Mr. Rajesh Deshmukh

    2011-12-01

    Full Text Available Accurate models for electric power load forecasting are essential to the operation and planning of a power utility company. Load forecasting helps electric utility to make important decisions on trading of power, load switching, and infrastructure development. Load forecasts are extremely important for power utilizes ISOs, financial institutions, and other stakeholder of power sector. Short term load forecasting is a essential part of electric power system planning and operation forecasting made for unit commitment and security assessment, which have a direct impact on operational casts and system security. Conventional ANN based load forecasting method deal with 24 hour ahead load forecasting by using forecasted temp. This can lead to high forecasting errors in case of rapid temperature changes. This paper present a neural network based approach for short term load forecasting considering data for training, validation and testing of neural network.

  19. Neural Networks in Data Mining

    OpenAIRE

    Priyanka Gaur

    2012-01-01

    The application of neural networks in the data mining is very wide. Although neural networks may have complex structure, long training time, and uneasily understandable representation of results, neural networks have high acceptance ability for noisy data and high accuracy and are preferable in data mining. In this paper the data mining based on neural networks is researched in detail, and the key technology and ways to achieve the data mining based on neural networks are also researched.

  20. Adaptive Route Selection Policy Based on Back Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Fang Jing

    2008-03-01

    Full Text Available One of the key issues in the study of multiple route protocols in mobile ad hoc networks (MANETs is how to select routes to the packet transmission destination. There are currently two route selection methods: primary routing policy and load-balancing policy. Many ad hoc routing protocols are based on primary (fastest or shortest but busiest routing policy from the self-standpoint of traffic transmission optimization of each node. Load-balancing protocols equalize transmission load among multiple routes in the network. However, the lack of global perspective can cause congestion in primary policy and prolong delay time in load-balancing policy. So, although they are sometimes efficient, these two types of policies cannot adapt to intricately changing network conditions. We propose a new multiple route protocol with an Adaptive route selection Policy based on a Back propagation Neural network (APBN to optimize selection policy. In our study, we used a gradient ascent algorithm to determine the relationship between different optimum route selection polices and varying conditions in the communication network and to make a neural network that learns this relationship using the Back Propagation (BP algorithm to predict the next optimum route selection policy. We evaluated our protocol using Omnet simulator. The results show that the proposed scheme performs better than current protocols.

  1. Term Structure of Interest Rates Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation (BP) neural networks models. The prediction performance is measured with US interest rate data. Then, RBF and BP models are compared with Vasicek's model and Cox-Ingersoll-Ross (CIR) model. The comparison reveals that neural network models outperform Vasicek's model and CIR model,which are more precise and closer to the real market situation.

  2. Neural Network Inverse Adaptive Controller Based on Davidon Least Square

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    General neural network inverse adaptive controller haa two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system.These defects limit the scope in which the neural network inverse adaptive controller is used.We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence,and then through constructing the pseudo-plant,a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system.The simulation results show the validity of this scheme.

  3. Research on Transformer Fault Based on Probabilistic Neural Network

    OpenAIRE

    Li Yingshun; Li Jingjing; Han Junfeng

    2015-01-01

    With the development of computer science and technology, and increasingly intelligent industrial production, the application of big data in industry also advances rapidly, and the development of artificial intelligence in the aspect of fault diagnosis is particularly prominent. On the basis of MATLAB platform, this paper constructs a fault diagnosis expert system of artificial intelligence machine based on the probabilistic neural network, and it also carries out a simulation of production pr...

  4. ADAPTATIVE IMAGE WATERMARKING SCHEME BASED ON NEURAL NETWORK

    OpenAIRE

    BASSEL SOLAIMANE; ADNENE CHERIF; SAMEH OUESLATI,

    2011-01-01

    Digital image watermarking has been proposed as a method to enhance medical data security, confidentiality and integrity. Medical image watermarking requires extreme care when embedding additional data, given their importance to clinical diagnosis, treatment, and research. In this paper, a novel image watermarking approach based on the human visual system (HVS) model and neural network technique is proposed. The watermark was inserted into the middle frequency coefficients of the cover image’...

  5. Consensus Attention-based Neural Networks for Chinese Reading Comprehension

    OpenAIRE

    Cui, Yiming; Liu, Ting; Chen, Zhipeng; Wang, Shijin; Hu, Guoping

    2016-01-01

    Reading comprehension has embraced a booming in recent NLP research. Several institutes have released the Cloze-style reading comprehension data, and these have greatly accelerated the research of machine comprehension. In this work, we firstly present Chinese reading comprehension datasets, which consist of People Daily news dataset and Children's Fairy Tale (CFT) dataset. Also, we propose a consensus attention-based neural network architecture to tackle the Cloze-style reading comprehension...

  6. Congestion Control for ATM Networks Based on Diagonal Recurrent Neural Networks

    Institute of Scientific and Technical Information of China (English)

    HuangYunxian; YanWei

    1997-01-01

    An adaptive control model and its algorithms based on simple diagonal recurrent neural networks are presented for the dynamic congestion control in broadband ATM networks.Two simple dynamic queuing models of real networks are used to test the performance of the suggested control scheme.

  7. Pseudo Random Number Generator Based on Back Propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    WANG Bang-ju; WANG Yu-hua; NIU Li-ping; ZHANG Huan-guo

    2007-01-01

    Random numbers play an increasingly important role in secure wire and wireless communication.Thus the design quality of random number generator(RNG) is significant in information security.A novel pseudo RNG is proposed for improving the security of network communication.The back propagation neural network(BPNN) is nonlinear,which can be used to improve the traditional RNG.The novel pseudo RNG is based on BPNN techniques.The result of test suites standardized by the U.S shows that the RNG can satisfy the security of communication.

  8. Research on Transformer Fault Based on Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Li Yingshun

    2015-01-01

    Full Text Available With the development of computer science and technology, and increasingly intelligent industrial production, the application of big data in industry also advances rapidly, and the development of artificial intelligence in the aspect of fault diagnosis is particularly prominent. On the basis of MATLAB platform, this paper constructs a fault diagnosis expert system of artificial intelligence machine based on the probabilistic neural network, and it also carries out a simulation of production process by the use of bionic algorithm. This paper makes a diagnosis of transformer fault by the use of an expert system developed by this paper, and verifies that the probabilistic neural network has a good convergence, fault-tolerant ability and big data handling capability in the fault diagnosis. It is suitable for industrial production, which can provide a reliable mathematical model for the construction of fault diagnosis expert system in the industrial production.

  9. Chinese word sense disambiguation based on neural networks

    Institute of Scientific and Technical Information of China (English)

    LIU Ting; LU Zhi-mao; LANG Jun; LI Sheng

    2005-01-01

    The input of a network is the key problem for Chinese word sense disambiguation utilizing the neural network. This paper presents an input model of the neural network that calculates the mutual information between contextual words and the ambiguous word by using statistical methodology and taking the contextual words of a certain number beside the ambiguous word according to ( - M, + N). The experiment adopts triple-layer BP Neural Network model and proves how the size of a training set and the value of M and N affect the performance of the Neural Network Model. The experimental objects are six pseudowords owning three word-senses constructed according to certain principles. The tested accuracy of our approach on a closed-corpus reaches 90. 31% ,and 89. 62% on an open-corpus. The experiment proves that the Neural Network Model has a good performance on Word Sense Disambiguation.

  10. Layered learning of soccer robot based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental results that the model is effective.

  11. Rainfall Prediction using Data-Core Based Fuzzy Min-Max Neural Network for Classification

    OpenAIRE

    Rajendra Palange,; Nishikant Pachpute

    2015-01-01

    This paper proposes the Rainfall Prediction System by using classification technique. The advanced and modified neural network called Data Core Based Fuzzy Min Max Neural Network (DCFMNN) is used for pattern classification. This classification method is applied to predict Rainfall. The neural network called fuzzy min max neural network (FMNN) that creates hyperboxes for classification and predication, has a problem of overlapping neurons that resoled in DCFMNN to give greater accu...

  12. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  13. Neutron spectrometry and dosimetry based on a new approach called Genetic Artificial Neural Networks

    International Nuclear Information System (INIS)

    Artificial Neural Networks and Genetic Algorithms are two relatively young research areas that were subject to a steadily growing interest during the past years. The structure of a neural network is a significant contributing factor to its performance and the structure is generally heuristically chosen. The use of evolutionary algorithms as search techniques has allowed different properties of neural networks to be evolved. This paper focuses on the intersection on neural networks and evolutionary computation, namely on how evolutionary algorithms can be used to assist neural network design and training, as a novel approach. In this research, a new evolvable artificial neural network modelling approach is presented, which utilizes an optimization process based on the combination of genetic algorithms and artificial neural networks, and is applied in the design of a neural network, oriented to solve the neutron spectrometry and simultaneous dosimetry problems, using only the count rates measured with a Bonner spheres spectrometer system as entrance data. (author)

  14. Expert System Based on Data Mining and Neural Networks

    Institute of Scientific and Technical Information of China (English)

    NI Zhi-wei; JIA Rui-yu

    2001-01-01

    On the basis of data mining and neural network, this paper proposes a general framework of the neural network expert system and discusses the key techniques in this kind of system. We apply these ideas on agricultural expert system to find some unknown useful knowledge and get some satisfactory results.

  15. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  16. Feature Selection for Neural Network Based Stock Prediction

    Science.gov (United States)

    Sugunnasil, Prompong; Somhom, Samerkae

    We propose a new methodology of feature selection for stock movement prediction. The methodology is based upon finding those features which minimize the correlation relation function. We first produce all the combination of feature and evaluate each of them by using our evaluate function. We search through the generated set with hill climbing approach. The self-organizing map based stock prediction model is utilized as the prediction method. We conduct the experiment on data sets of the Microsoft Corporation, General Electric Co. and Ford Motor Co. The results show that our feature selection method can improve the efficiency of the neural network based stock prediction.

  17. Artificial neural network based approach to transmission lines protection

    International Nuclear Information System (INIS)

    The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection

  18. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  19. Implementation of neural networks using quantum well based excitonic devices

    International Nuclear Information System (INIS)

    Implementation is a key bottleneck for tapping the vast potential of neural networks. In this paper the authors examine experimentally and theoretically two devices based on III-V technology, which are critical in the implementation of the Hopfield model as well as other neural type networks for associative memories. The devices are based on Stark effect of excitonic transitions. P-1 (multiquantum wells)-n structures using GaAs/AlGaAs provide a controller-modulator device which has integrating-thresholding properties required of neurons. The p-i-n structures also provide programmable modulators which can serve as a synaptic mask. Using Monte Carlo techniques they examine an all-optical architecture to implement the Hopfield network. No external feedback-thresholding circuitry is required in this implementation due to special design of the controller-modulator device. Speed and stability issues of this architecture are also addressed. The computer simulation results provide valuable insight into how the controller-modulator device should be improved for better network implementation. It is also important to note that the basic technology now exists for such an implementation

  20. Simulation Model of Magnetic Levitation Based on NARX Neural Networks

    Directory of Open Access Journals (Sweden)

    Dragan Antić

    2013-04-01

    Full Text Available In this paper, we present analysis of different training types for nonlinear autoregressive neural network, used for simulation of magnetic levitation system. First, the model of this highly nonlinear system is described and after that the Nonlinear Auto Regressive eXogenous (NARX of neural network model is given. Also, numerical optimization techniques for improved network training are described. It is verified that NARX neural network can be successfully used to simulate real magnetic levitation system if suitable training procedure is chosen, and the best two training types, obtained from experimental results, are described in details.

  1. Spacecraft power system controller based on neural network

    Science.gov (United States)

    El-madany, Hanaa T.; Fahmy, Faten H.; El-Rahman, Ninet M. A.; Dorrah, Hassen T.

    2011-09-01

    Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This work presents the spacecraft orbit determination, dimensioning of the renewable power system, and mathematical modeling of spacecraft power system which are required for simulating the system. The complete system is simulated using MATLAB-SIMULINK. The NN controller outperform PID in the extreme range of non-linearity. Well trained neural controller can operate at different conditions of load current at different orbital periods without any tuning such in case of PID controller. So an artificial neural network (ANN) based model has been developed for the optimum operation of spacecraft power system. An ANN is trained using a back propagation with Levenberg-Marquardt algorithm. The best validation performance is obtained for mean square error is equal to 9.9962×10 -11 at epoch 637. The regression between the network output and the corresponding target is equal to 100% which means a high accuracy. NNC architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the spacecraft power system in low earth orbit (LEO). Therefore, this technique is going to be a very useful tool for the interested designers in space field.

  2. Wavelet neural network based fault diagnosis in nonlinear analog circuits

    Institute of Scientific and Technical Information of China (English)

    Yin Shirong; Chen Guangju; Xie Yongle

    2006-01-01

    The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studied. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.

  3. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  4. Optimization Design based on BP Neural Network and GA Method

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2013-12-01

    Full Text Available This study puts forward one kind optimization controlling solution method on complicated system. At first modeling using neural network then adopt the real data to structure the neural network model of pertinence, make the parameter to seek to the neural network model excellently by mixing GA finally, thus got intelligence to the complicated system to optimize and control. The method can identify network configuration and network training methods. By adopting the number coding and effectively reducing the network size and the network convergence time, increase the network training speed. The study provides this and optimizes relevant MATLAB procedure which controls the method, so long as adjust a little to the concrete problem, can believe this procedure well the optimization of the complicated system controls the problem in the reality of solving.

  5. Classification data mining method based on dynamic RBF neural networks

    Science.gov (United States)

    Zhou, Lijuan; Xu, Min; Zhang, Zhang; Duan, Luping

    2009-04-01

    With the widely application of databases and sharp development of Internet, The capacity of utilizing information technology to manufacture and collect data has improved greatly. It is an urgent problem to mine useful information or knowledge from large databases or data warehouses. Therefore, data mining technology is developed rapidly to meet the need. But DM (data mining) often faces so much data which is noisy, disorder and nonlinear. Fortunately, ANN (Artificial Neural Network) is suitable to solve the before-mentioned problems of DM because ANN has such merits as good robustness, adaptability, parallel-disposal, distributing-memory and high tolerating-error. This paper gives a detailed discussion about the application of ANN method used in DM based on the analysis of all kinds of data mining technology, and especially lays stress on the classification Data Mining based on RBF neural networks. Pattern classification is an important part of the RBF neural network application. Under on-line environment, the training dataset is variable, so the batch learning algorithm (e.g. OLS) which will generate plenty of unnecessary retraining has a lower efficiency. This paper deduces an incremental learning algorithm (ILA) from the gradient descend algorithm to improve the bottleneck. ILA can adaptively adjust parameters of RBF networks driven by minimizing the error cost, without any redundant retraining. Using the method proposed in this paper, an on-line classification system was constructed to resolve the IRIS classification problem. Experiment results show the algorithm has fast convergence rate and excellent on-line classification performance.

  6. Sub-pixel mapping method based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    LI Jiao; WANG Li-guo; ZHANG Ye; GU Yan-feng

    2009-01-01

    A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel. The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information. Then the sub-pixel scaled target could be predicted by the trained model. In order to improve the performance of BP network, BP learning algorithm with momentum was employed. The experiments were conducted both on synthetic images and on hyperspectral imagery (HSI). The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.

  7. Stochastic Synchronization of Neutral-Type Neural Networks with Multidelays Based on M-Matrix

    OpenAIRE

    Wuneng Zhou; Xueqing Yang; Jun Yang; Jun Zhou

    2015-01-01

    The problem of stochastic synchronization of neutral-type neural networks with multidelays based on M-matrix is researched. Firstly, we designed a control law of stochastic synchronization of the neural-type and multiple time-delays neural network. Secondly, by making use of Lyapunov functional and M-matrix method, we obtained a criterion under which the drive and response neutral-type multiple time-delays neural networks with stochastic disturbance and Markovian switc...

  8. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  9. Convolutional Neural Network Based Fault Detection for Rotating Machinery

    Science.gov (United States)

    Janssens, Olivier; Slavkovikj, Viktor; Vervisch, Bram; Stockman, Kurt; Loccufier, Mia; Verstockt, Steven; Van de Walle, Rik; Van Hoecke, Sofie

    2016-09-01

    Vibration analysis is a well-established technique for condition monitoring of rotating machines as the vibration patterns differ depending on the fault or machine condition. Currently, mainly manually-engineered features, such as the ball pass frequencies of the raceway, RMS, kurtosis an crest, are used for automatic fault detection. Unfortunately, engineering and interpreting such features requires a significant level of human expertise. To enable non-experts in vibration analysis to perform condition monitoring, the overhead of feature engineering for specific faults needs to be reduced as much as possible. Therefore, in this article we propose a feature learning model for condition monitoring based on convolutional neural networks. The goal of this approach is to autonomously learn useful features for bearing fault detection from the data itself. Several types of bearing faults such as outer-raceway faults and lubrication degradation are considered, but also healthy bearings and rotor imbalance are included. For each condition, several bearings are tested to ensure generalization of the fault-detection system. Furthermore, the feature-learning based approach is compared to a feature-engineering based approach using the same data to objectively quantify their performance. The results indicate that the feature-learning system, based on convolutional neural networks, significantly outperforms the classical feature-engineering based approach which uses manually engineered features and a random forest classifier. The former achieves an accuracy of 93.61 percent and the latter an accuracy of 87.25 percent.

  10. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  11. Pulse frequency classification based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; WANG Xu; YANG Dan; FU Rong

    2006-01-01

    In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.

  12. Star pattern recognition method based on neural network

    Institute of Scientific and Technical Information of China (English)

    LI Chunyan; LI Ke; ZHANG Longyun; JIN Shengzhen; ZU Jifeng

    2003-01-01

    Star sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft by utilizing star observations. The key function is to recognize the observed stars by comparing them with the reference catalogue. Autonomous star pattern recognition requires that similar patterns can be distinguished from each other with a small training set. Therefore, a new method based on neural network technology is proposed and a recognition system containing parallel backpropagation (BP) multi-subnets is designed. The simulation results show that the method performs much better than traditional algorithms and the proposed system can achieve both higher recognition accuracy and faster recognition speed.

  13. Fuzzy neural network based on a Sigmoid chaotic neuron

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Wang Xing-Yuan

    2012-01-01

    The theories of intelligent information processing are urgently needed for the rapid development of modem science.In this paper,a novel fuzzy chaotic neural network,which is the combination of fuzzy logic system,artificial neuralnetwork system,and chaotic system,is proposed.We design its model structure which is based on the Sigmoid map,derive its mathematical model,and analyse its chaotic characteristics.Finally the relationship between the accuracy of map and the membership function is illustrated by simulation.

  14. Neural Network Based Parking via Google Map Guidance

    Directory of Open Access Journals (Sweden)

    A.Saranya

    2015-02-01

    Full Text Available Intelligent transportation systems (ITS focus to generate and spread creative services related to different transport modes for traffic management and hence enables the passenger informed about the traffic and to use the transport networks in a better way. Intelligent Trip Modeling System (ITMS uses machine learning to forecast the traveling speed profile for a selected route based on the traffic information available at the trip starting time. The intelligent Parking Information Guidance System provides an eminent Neural Network based intelligence system which provides automatic allocate ion of parking's through the Global Information system across the path of the users travel. In this project using efficient lookup table searches and a Lagrange-multiplier bisection search, Computational Optimized Allocation Algorithm converges faster to the optimal solution than existing techniques. The purpose of this project is to simulate and implement a real parking environment that allocates vacant parking slots using Allocation algorithm.

  15. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  16. BRAIN TUMOR CLASSIFICATION USING NEURAL NETWORK BASED METHODS

    OpenAIRE

    Kalyani A. Bhawar*, Prof. Nitin K. Bhil

    2016-01-01

    MRI (Magnetic resonance Imaging) brain neoplasm pictures Classification may be a troublesome tasks due to the variance and complexity of tumors. This paper presents two Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of 3 stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the options connected with tomography pictures victimization d...

  17. Recognition of a Life Distribution Based on a Neural Network

    Institute of Scientific and Technical Information of China (English)

    GAO Shang

    2004-01-01

    In general, we describe three different methods to select an appropriate distribution form:bistogram, probability plots, and hypothesis test. The life distribution is recognized by a neural network method. The relationship among life distribution with life data is described through threshold and weight of neural networks. The method is convenient to use. An example is presented to validate this method, and the results are satisfactory.

  18. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-10-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  19. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-11-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  20. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  1. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  2. Wlan-Based Indoor Localization Using Neural Networks

    Science.gov (United States)

    Saleem, Fasiha; Wyne, Shurjeel

    2016-07-01

    Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.

  3. Neural Network Based Model for Predicting Housing Market Performance

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khalafallah

    2008-01-01

    The United States real estate market is currently facing its worst hit in two decades due to the slowdown of housing sales. The most affected by this decline are real estate investors and home develop-ers who are currently struggling to break-even financially on their investments. For these investors, it is of utmost importance to evaluate the current status of the market and predict its performance over the short-term in order to make appropriate financial decisions. This paper presents the development of artificial neu-ral network based models to support real estate investors and home developers in this critical task. The pa-per describes the decision variables, design methodology, and the implementation of these models. The models utilize historical market performance data sets to train the artificial neural networks in order to pre-dict unforeseen future performances. An application example is analyzed to demonstrate the model capabili-ties in analyzing and predicting the market performance. The model testing and validation showed that the error in prediction is in the range between -2% and +2%.

  4. Neural Network based Vehicle Classification for Intelligent Traffic Control

    Directory of Open Access Journals (Sweden)

    Saeid Fazli

    2012-06-01

    Full Text Available Nowadays, number of vehicles has been increased and traditional systems of traffic controlling couldn’t be able to meet the needs that cause to emergence of Intelligent Traffic Controlling Systems. They improve controlling and urban management and increase confidence index in roads and highways. The goal of thisarticle is vehicles classification base on neural networks. In this research, it has been used a immovable camera which is located in nearly close height of the road surface to detect and classify the vehicles. The algorithm that used is included two general phases; at first, we are obtaining mobile vehicles in the traffic situations by using some techniques included image processing and remove background of the images and performing edge detection and morphology operations. In the second phase, vehicles near the camera areselected and the specific features are processed and extracted. These features apply to the neural networks as a vector so the outputs determine type of vehicle. This presented model is able to classify the vehicles in three classes; heavy vehicles, light vehicles and motorcycles. Results demonstrate accuracy of the algorithm and its highly functional level.

  5. Neural Network based Modeling and Simulation of Transformer Inrush Current

    Directory of Open Access Journals (Sweden)

    Puneet Kumar Singh

    2012-05-01

    Full Text Available Inrush current is a very important phenomenon which occurs during energization of transformer at no load due to temporary over fluxing. It depends on several factors like magnetization curve, resistant and inductance of primary winding, supply frequency, switching angle of circuit breaker etc. Magnetizing characteristics of core represents nonlinearity which requires improved nonlinearity solving technique to know the practical behavior of inrush current. Since several techniques still working on modeling of transformer inrush current but neural network ensures exact modeling with experimental data. Therefore, the objective of this study was to develop an Artificial Neural Network (ANN model based on data of switching angle and remanent flux for predicting peak of inrush current. Back Propagation with Levenberg-Marquardt (LM algorithm was used to train the ANN architecture and same was tested for the various data sets. This research work demonstrates that the developed ANN model exhibits good performance in prediction of inrush current’s peak with an average of percentage error of -0.00168 and for modeling of inrush current with an average of percentage error of -0.52913.

  6. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Nenad Kojić

    2012-06-01

    Full Text Available The networking infrastructure of wireless mesh networks (WMNs is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs. This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission. The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  7. A neural networks-based hybrid routing protocol for wireless mesh networks.

    Science.gov (United States)

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  8. Study on optimization control method based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    FU Hua; SUN Shao-guang; XU Zhen-Iiang

    2005-01-01

    In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limitations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advantages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With optimization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.

  9. CYLINDIRICAL SPUR GEARS DESIGN BASED ON ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    İhsan TOKTAŞ

    2007-03-01

    Full Text Available In this study, testing and training data sets of Artificial Neural Networks(ANNs models have been produced by employing analytical design calculations of cylindrical spur gears. In the input layer, the constraints and requirement values of cylindrical spur gears are used while at the output layer the modules (e.g. the bending and contact stress and the number of tooths are used. These data have been presented to train a multi layered, single directed, hierarchically connected ANNs using Scaled Conjugate Gradient (SCG and Levenberg-Marquardt (LM Back Propagation algorithms with the logistic sigmoid transfer function. The outcomes demonstrated that, the ANN based model have been very successful and the testing data produced very low level of errors. It has been shown that, the ANN based mechanism may be used in the design of cylindrical spur gears instead of analytical calculations.

  10. Manganese oxide microswitch for electronic memory based on neural networks

    Science.gov (United States)

    Ramesham, R.; Daud, T.; Moopenn, A.; Thakoor, A. P.; Khanna, S. K.

    1989-01-01

    A solid-state, resistance tailorable, programmable-once, binary, nonvolatile memory switch based on manganese oxide thin films is reported. MnO(x) exhibits irreversible memory switching from conducting (on) to insulating (off) state, with the off and on resistance ratio of greater than 10,000. The switching mechanism is current-triggered chemical transformation of a conductive MnO(2-Delta) to an insulating Mn2O3 state. The energy required for switching is of the order of 4-20 nJ/sq micron. The low switching energy, stability of the on and off states, and tailorability of the on state resistance make these microswitches well suited as programmable binary synapses in electronic associative memories based on neural network models.

  11. Neural network based feed-forward high density associative memory

    Science.gov (United States)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  12. OPTIMAL PWM BASED ON REAL—TIME SOLUTION WITH NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    ShenZhongting; YanYangguang

    2002-01-01

    A novel concept of neural network based control in pulse-width modulation(PWM)voltage source inverters is presented.On the one hand,the optimal switching an-gles are obtained in real time by the neural network based controller;on the other hand,the output voltage is ad-justed to fit the expected value by neural network when input voltage or loads change.The structure of neural network is simple and easy to be realized by DSP hard-ware system.No large memory used for the existing opti-mal PWM schemes is required in the system.Theoreticalanlysis of the proposed so-called sparse neural network is provided,and the stability of the system is proved.Un-der the control of neural network the error of output volt-age descends sharply,and the system outputs ac voltage with high precision.

  13. Can artificial neural networks provide an "expert's" view of medical students performances on computer based simulations?

    OpenAIRE

    Stevens, R. H.; K. Najafi

    1992-01-01

    Artificial neural networks were trained to recognize the test selection patterns of students' successful solutions to seven immunology computer based simulations. When new student's test selections were presented to the trained neural network, their problem solutions were correctly classified as successful or non-successful > 90% of the time. Examination of the neural networks output weights after each test selection revealed a progressive increase for the relevant problem suggesting that a s...

  14. Neural Network Based Forecasting of Foreign Currency Exchange Rates

    Directory of Open Access Journals (Sweden)

    S. Kumar Chandar

    2014-06-01

    Full Text Available The foreign currency exchange market is the highest and most liquid of the financial markets, with an estimated $1 trillion traded every day. Foreign exchange rates are the most important economic indices in the international financial markets. The prediction of them poses many theoretical and experimental challenges. This paper reports empirical proof that a neural network model is applicable to the prediction of foreign exchange rates. The exchange rates between Indian Rupee and four other major currencies, Pound Sterling, US Dollar, Euro and Japanese Yen are forecast by the trained neural networks. The neural network was trained by three different learning algorithms using historical data to find the suitable algorithm for prediction. The forecasting performance of the proposed system is evaluated using three statistical metrics and compared. The results presented here demonstrate that significantly close prediction can be made without extensive knowledge of market data.

  15. Query Based Approach Towards Spam Attacks Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar Tak

    2010-10-01

    Full Text Available Currently, spam and scams are passive attack over the inbox which can initiated to steal someconfidential information, to spread Worms, Viruses, Trojans, cookies and Sometimes they are used forphishing attacks. Spam mails are the major issue over mail boxes as well as over the internet. Spam mailscan be the cause of phishing attack, hacking of banking accounts, attacks on confidential data. Spammingis growing at a rapid rate since sending a flood of mails is easy and very cheap. Spam mails disturb themind-peace, waste time and consume various resources e.g., memory space and network bandwidth, sofiltering of spam mails is a big issue in cyber security.This paper presents an novel approach of spam filtering which is based on some query generatedapproach on the knowledge base and also use some artificial neural network methods to detect the spammails based on their behavior. analysis of the mail header, cross validation. Proposed methodologyincludes the 7 several steps which are well defined and achieve the higher accuracy. It works well with allkinds of spam mails (text based spam as well as image spam. Our tested data and experiments resultsshows promising results, and spam’s are detected out at least 98.17 % with 0.12% false positive.

  16. Fault Localization Analysis Based on Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-01-01

    Full Text Available With software’s increasing scale and complexity, software failure is inevitable. To date, although many kinds of software fault localization methods have been proposed and have had respective achievements, they also have limitations. In particular, for fault localization techniques based on machine learning, the models available in literatures are all shallow architecture algorithms. Having shortcomings like the restricted ability to express complex functions under limited amount of sample data and restricted generalization ability for intricate problems, the faults cannot be analyzed accurately via those methods. To that end, we propose a fault localization method based on deep neural network (DNN. This approach is capable of achieving the complex function approximation and attaining distributed representation for input data by learning a deep nonlinear network structure. It also shows a strong capability of learning representation from a small sized training dataset. Our DNN-based model is trained utilizing the coverage data and the results of test cases as input and we further locate the faults by testing the trained model using the virtual test suite. This paper conducts experiments on the Siemens suite and Space program. The results demonstrate that our DNN-based fault localization technique outperforms other fault localization methods like BPNN, Tarantula, and so forth.

  17. Query Based Approach Towards Spam Attacks Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar Tak

    2010-10-01

    Full Text Available Currently, spam and scams are passive attack over the inbox which can initiated to steal some confidential information, to spread Worms, Viruses, Trojans, cookies and Sometimes they are used for phishing attacks. Spam mails are the major issue over mail boxes as well as over the internet. Spam mails can be the cause of phishing attack, hacking of banking accounts, attacks on confidential data. Spamming is growing at a rapid rate since sending a flood of mails is easy and very cheap. Spam mails disturb the mind-peace, waste time and consume various resources e.g., memory space and network bandwidth, so filtering of spam mails is a big issue in cyber security. This paper presents an novel approach of spam filtering which is based on some query generated approach on the knowledge base and also use some artificial neural network methods to detect the spam mails based on their behavior. analysis of the mail header, cross validation. Proposed methodology includes the 7 several steps which are well defined and achieve the higher accuracy. It works well with all kinds of spam mails (text based spam as well as image spam. Our tested data and experiments results shows promising results, and spam’s are detected out at least 98.17 % with 0.12% false positive.

  18. Generalized profile function model based on neural networks

    Directory of Open Access Journals (Sweden)

    Radonja Pero

    2009-01-01

    Full Text Available Generalized profile function model (GPFM provides approximations of the individual models (individual stem profile models of the objects using only two basic measurements. In this paper it is shown that this GPFM can be successfully derived by using artificial computational intelligence, that is, neural networks. GPFM is obtained as a mean value of all the available normalized individual models. Generation of GPFM is performed by using the basic dataset, and verification is done by using the validation data set. Statistical properties of the original, measured data and estimated data based on the generalized model are presented and compared. Testing of the obtained GPFM is performed also by the regression analysis. The obtained correlation coefficients between the real data and the estimated data are very high, 0.9946 for the basic data set, and 0.9933 for the validation dataset. .

  19. Neural Network Based Color Recognition for Bobbin Sorting Machine

    Directory of Open Access Journals (Sweden)

    Mu Zhang

    2013-07-01

    Full Text Available Winding is a key process in the manufacturing process of textile industry. The normal and effective operation of winding process plays a very important role on the textiles’ quality and economic effects. At present, a large proportion of bobbins which collected from winder still have yarn left over. The bobbin recycling is severely limited and quick running of winder is seriously restricted, the invention of the the automatic bobbin sorting machine has solved this problem. The ability to distinguish bobbin which has yarn left over from the rest and the classification accuracy of color are the two important performance indicators for bobbin sorting machine. According to the development and application of the color recognition technology and the artificial intelligence method, this study proposes a novel color recognition method that based on BP neural networks. The result shows that the accuracy of color recognition reaches 98%.  

  20. Image restoration techniques based on fuzzy neural networks

    Institute of Scientific and Technical Information of China (English)

    刘普寅; 李洪兴

    2002-01-01

    By establishing some suitable partitions of input and output spaces, a novel fuzzy neuralnetwork (FNN) which is called selection type FNN is developed. Such a system is a multilayerfeedforward neural network, which can be a universal approximator with maximum norm. Based ona family of fuzzy inference rules that are of real senses, a simple and useful inference type FNN isconstructed. As a result, the fusion of selection type FNN and inference type FNN results in a novelfilter-FNN filter. It is simple in structure. And also it is convenient to design the learning algorithmfor structural parameters. Further, FNN filter can efficiently suppress impulse noise superimposed onimage and preserve fine image structure, simultaneously. Some examples are simulated to confirmthe advantages of FNN filter over other filters, such as median filter and adaptive weighted fuzzymean (AWFM) filter and so on, in suppression of noises and preservation of image structure.

  1. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  2. Can artificial neural networks provide an "expert's" view of medical students performances on computer based simulations?

    Science.gov (United States)

    Stevens, R H; Najafi, K

    1992-01-01

    Artificial neural networks were trained to recognize the test selection patterns of students' successful solutions to seven immunology computer based simulations. When new student's test selections were presented to the trained neural network, their problem solutions were correctly classified as successful or non-successful > 90% of the time. Examination of the neural networks output weights after each test selection revealed a progressive increase for the relevant problem suggesting that a successful solution was represented by the neural network as the accumulation of relevant tests. Unsuccessful problem solutions revealed two patterns of students performances. The first pattern was characterized by low neural network output weights for all seven problems reflecting extensive searching and lack of recognition of relevant information. In the second pattern, the output weights from the neural network were biased towards one of the remaining six incorrect problems suggesting that the student mis-represented the current problem as an instance of a previous problem.

  3. A nonlinear PCA algorithm based on RBF neural networks

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; ZHU Zhong-ying

    2005-01-01

    Traditional PCA is a linear method, but most engineering problems are nonlinear. Using the linear PCA in nonlinear problems may bring distorted and misleading results. Therefore, an approach of nonlinear principal component analysis (NLPCA) using radial basis function (RBF) neural network is developed in this paper. The orthogonal least squares (OLS) algorithm is used to train the RBF neural network. This method improves the training speed and prevents it from being trapped in local optimization. Results of two experiments show that this NLPCA method can effectively capture nonlinear correlation of nonlinear complex data, and improve the precision of the classification and the prediction.

  4. Study on the Robot Robust Adaptive Control Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    温淑焕; 王洪瑞; 吴丽艳

    2003-01-01

    Force control based on neural networks is presented. Under the framework of hybrid control, an RBF neural network is used to compensate for all the uncertainties from robot dynamics and unknown environment first. The technique will improve the adaptability to environment stiffness when the end-effector is in contact with the environment, and does not require any a priori knowledge on the upper bound of syste uncertainties. Moreover, it need not compute the inverse of inertia matrix. Learning algorithms for neural networks to minimize the force error directly are designed. Simulation results have shown a better force/position tracking when neural network is used.

  5. Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.

  6. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  7. Identification-based chaos control via backstepping design using self-organizing fuzzy neural networks

    International Nuclear Information System (INIS)

    This paper proposes an identification-based adaptive backstepping control (IABC) for the chaotic systems. The IABC system is comprised of a neural backstepping controller and a robust compensation controller. The neural backstepping controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller, and the robust compensation controller is designed to dispel the effect of minimum approximation error introduced by the SOFNN identifier. The SOFNN identifier is used to online estimate the chaotic dynamic function with structure and parameter learning phases of fuzzy neural network. The structure learning phase consists of the growing and pruning of fuzzy rules; thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the neural structure of fuzzy neural network. The parameter learning phase adjusts the interconnection weights of neural network to achieve favorable approximation performance. Finally, simulation results verify that the proposed IABC can achieve favorable tracking performance.

  8. Apple Grade Judgment Based on the Neural Network

    Institute of Scientific and Technical Information of China (English)

    BAO Xiao-an; LUO Zhuo-lin; ZHANG Rui-lin

    2004-01-01

    A processing method on the basis of the technology of computer visual and digital image was introduced. The improved LVQ (learning vector quantization) neural network algorithm applied in the process to identify the grade of apples was proved effective in experiment.

  9. Active Control of Sound based on Diagonal Recurrent Neural Network

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing

    2002-01-01

    Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The fe

  10. A neural network based seafloor classification using acoustic backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    This paper presents a study results of the Artificial Neural Network (ANN) architectures [Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP)] using single beam echosounding data. The single beam echosounder, operable at 12 kHz, has been used...

  11. Optimization of Component Based Software Engineering Model Using Neural Network

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    2014-10-01

    Full Text Available The goal of Component Based Software Engineering (CBSE is to deliver high quality, more reliable and more maintainable software systems in a shorter time and within limited budget by reusing and combining existing quality components. A high quality system can be achieved by using quality components, framework and integration process that plays a significant role. So, techniques and methods used for quality assurance and assessment of a component based system is different from those of the traditional software engineering methodology. In this paper, we are presenting a model for optimizing Chidamber and Kemerer (CK metric values of component-based software. A deep analysis of a series of CK metrics of the software components design patterns is done and metric values are drawn from them. By using unsupervised neural network- Self Organizing Map, we have proposed a model that provides an optimized model for Software Component engineering model based on reusability that depends on CK metric values. Average, standard deviated and optimized values for the CK metric are compared and evaluated to show the optimized reusability of component based model.

  12. A novel compensation-based recurrent fuzzy neural network and its learning algorithm

    Institute of Scientific and Technical Information of China (English)

    WU Bo; WU Ke; LU JianHong

    2009-01-01

    Based on detailed atudy on aeveral kinds of fuzzy neural networks, we propose a novel compensation. based recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure Identification of the CRFNN In order to confirm the fuzzy rules and their correlaUve parameters effectively. Furthermore, we Improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability.

  13. Synthetical Control of AGC/LPC System Based on Neural Networks Internal Model Control

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.

  14. Research on Feasibilityof Top-Coal Caving Based on Neural Network Technique

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the neural network technique, this paper proposes a BP neural network model which integratesgeological factors which affect top-coal caving in a comprehensive index. The index of top-coal caving may be usedto forecast the mining cost of working faces, which shows the model's potential prospect of applications.

  15. Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-guang; SHI Zhong-kun

    2006-01-01

    The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.

  16. Batch Process Modelling and Optimal Control Based on Neural Network Models

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang

    2005-01-01

    This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.

  17. STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Zhang Cuiping; Yang Qingfo

    2003-01-01

    According to advantages of neural network and characteristics of operating procedures of engine, a new strategy is represented on the control of fuel injection and ignition timing of gasoline engine based on improved BP network algorithm. The optimum ignition advance angle and fuel injection pulse band of engine under different speed and load are tested for the samples training network, focusing on the study of the design method and procedure of BP neural network in engine injection and ignition control. The results show that artificial neural network technique can meet the requirement of engine injection and ignition control. The method is feasible for improving power performance, economy and emission performances of gasoline engine.

  18. Introduction to neural networks

    International Nuclear Information System (INIS)

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  19. EMP response modeling of TVS based on the recurrent neural network

    Directory of Open Access Journals (Sweden)

    Zhiqiang JI

    2015-04-01

    Full Text Available Due to the larger workload in the implementation process and the poor consistence between the test results and actual situation problems when using the transmission line pulse (TLP testing methods, a modeling method based on the recurrent neural network is proposed for EMP response forecast. Based on the TLP testing system, two categories of EMP are increased, which are the machine model ESD EMP and human metal model ESD EMP. Elman neural network, Jordan neural network and their combination namely Elman-Jordan neural network are established for response modeling of NUP2105L transient voltage suppressor (TVS forecasting the response under different EMP. The simulation results show that the recurrent neural network has satisfying modeling effects and high computation efficiency.

  20. Complete Periodic Synchronization of Memristor-Based Neural Networks with Time-Varying Delays

    OpenAIRE

    Huaiqin Wu; Luying Zhang; Sanbo Ding; Xueqing Guo; Lingling Wang

    2013-01-01

    This paper investigates the complete periodic synchronization of memristor-based neural networks with time-varying delays. Firstly, under the framework of Filippov solutions, by using M-matrix theory and the Mawhin-like coincidence theorem in set-valued analysis, the existence of the periodic solution for the network system is proved. Secondly, complete periodic synchronization is considered for memristor-based neural networks. According to the state-dependent switching feature of the memrist...

  1. Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian - River basin. The results by calculating show that the solution based on BP algorithms are consis tent with those based multiple-variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.

  2. An attractor-based complexity measurement for Boolean recurrent neural networks.

    Directory of Open Access Journals (Sweden)

    Jérémie Cabessa

    Full Text Available We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of ω-automata, and then translating the most refined classification of ω-automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.

  3. An attractor-based complexity measurement for Boolean recurrent neural networks.

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E P

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of ω-automata, and then translating the most refined classification of ω-automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.

  4. Non-fragile H∞ synchronization of memristor-based neural networks using passivity theory.

    Science.gov (United States)

    Mathiyalagan, K; Anbuvithya, R; Sakthivel, R; Park, Ju H; Prakash, P

    2016-02-01

    In this paper, we formulate and investigate the mixed H∞ and passivity based synchronization criteria for memristor-based recurrent neural networks with time-varying delays. Some sufficient conditions are obtained to guarantee the synchronization of the considered neural network based on the master-slave concept, differential inclusions theory and Lyapunov-Krasovskii stability theory. Also, the memristive neural network is considered with two different types of memductance functions and two types of gain variations. The results for non-fragile observer-based synchronization are derived in terms of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed criterion is demonstrated through numerical examples. PMID:26655373

  5. Electromyogram-based neural network control of transhumeral prostheses

    Directory of Open Access Journals (Sweden)

    Christopher L. Pulliam, MS

    2011-07-01

    Full Text Available Upper-limb amputation can cause a great deal of functional impairment for patients, particularly for those with amputation at or above the elbow. Our long-term objective is to improve functional outcomes for patients with amputation by integrating a fully implanted electromyographic (EMG recording system with a wireless telemetry system that communicates with the patient's prosthesis. We believe that this should generate a scheme that will allow patients to robustly control multiple degrees of freedom simultaneously. The goal of this study is to evaluate the feasibility of predicting dynamic arm movements (both flexion/extension and pronation/supination based on EMG signals from a set of muscles that would likely be intact in patients with transhumeral amputation. We recorded movement kinematics and EMG signals from seven muscles during a variety of movements with different complexities. Time-delayed artificial neural networks were then trained offline to predict the measured arm trajectories based on features extracted from the measured EMG signals. We evaluated the relative effectiveness of various muscle subsets. Predicted movement trajectories had average root-mean-square errors of approximately 15.7° and 24.9° and average R2 values of approximately 0.81 and 0.46 for elbow flexion/extension and forearm pronation/supination, respectively.

  6. APPROACH TO FAULT ON-LINE DETECTION AND DIAGNOSIS BASED ON NEURAL NETWORKS FOR ROBOT IN FMS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on radial basis function (RBF) neural networks, the healthy working model of each sub-system of robot in FMS is established. A new approach to fault on-line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi-layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS.

  7. Holographic neural networks

    OpenAIRE

    Manger, R

    1998-01-01

    Holographic neural networks are a new and promising type of artificial neural networks. This article gives an overview of the holographic neural technology and its possibilities. The theoretical principles of holographic networks are first reviewed. Then, some other papers are presented, where holographic networks have been applied or experimentally evaluated. A case study dealing with currency exchange rate prediction is described in more detail.

  8. Neural network based PWM AC chopper fed induction motor drive

    Directory of Open Access Journals (Sweden)

    Venkatesan Jamuna

    2009-01-01

    Full Text Available In this paper, a new Simulink model for a neural network controlled PWM AC chopper fed single phase induction motor is proposed. Closed loop speed control is achieved using a neural network controller. To maintain a constant fluid flow with a variation in pressure head, drives like fan and pump are operated with closed loop speed control. The need to improve the quality and reliability of the drive circuit has increased because of the growing demand for improving the performance of motor drives. With the increased availability of MOSFET's and IGBT's, PWM converters can be used efficiently in low and medium power applications. From the simulation studies, it is seen that the PWM AC chopper has a better harmonic spectrum and lesser copper loss than the Phase controlled AC chopper. It is observed that the drive system with the proposed model produces better dynamic performance, reduced overshoot and fast transient response. .

  9. Glaucoma detection based on deep convolutional neural network.

    Science.gov (United States)

    Xiangyu Chen; Yanwu Xu; Damon Wing Kee Wong; Tien Yin Wong; Jiang Liu

    2015-08-01

    Glaucoma is a chronic and irreversible eye disease, which leads to deterioration in vision and quality of life. In this paper, we develop a deep learning (DL) architecture with convolutional neural network for automated glaucoma diagnosis. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images to discriminate between glaucoma and non-glaucoma patterns for diagnostic decisions. The proposed DL architecture contains six learned layers: four convolutional layers and two fully-connected layers. Dropout and data augmentation strategies are adopted to further boost the performance of glaucoma diagnosis. Extensive experiments are performed on the ORIGA and SCES datasets. The results show area under curve (AUC) of the receiver operating characteristic curve in glaucoma detection at 0.831 and 0.887 in the two databases, much better than state-of-the-art algorithms. The method could be used for glaucoma detection. PMID:26736362

  10. Glaucoma detection based on deep convolutional neural network.

    Science.gov (United States)

    Xiangyu Chen; Yanwu Xu; Damon Wing Kee Wong; Tien Yin Wong; Jiang Liu

    2015-08-01

    Glaucoma is a chronic and irreversible eye disease, which leads to deterioration in vision and quality of life. In this paper, we develop a deep learning (DL) architecture with convolutional neural network for automated glaucoma diagnosis. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images to discriminate between glaucoma and non-glaucoma patterns for diagnostic decisions. The proposed DL architecture contains six learned layers: four convolutional layers and two fully-connected layers. Dropout and data augmentation strategies are adopted to further boost the performance of glaucoma diagnosis. Extensive experiments are performed on the ORIGA and SCES datasets. The results show area under curve (AUC) of the receiver operating characteristic curve in glaucoma detection at 0.831 and 0.887 in the two databases, much better than state-of-the-art algorithms. The method could be used for glaucoma detection.

  11. Risk Assessment Algorithms Based On Recursive Neural Networks

    CERN Document Server

    De Lara, Alejandro Chinea Manrique

    2007-01-01

    The assessment of highly-risky situations at road intersections have been recently revealed as an important research topic within the context of the automotive industry. In this paper we shall introduce a novel approach to compute risk functions by using a combination of a highly non-linear processing model in conjunction with a powerful information encoding procedure. Specifically, the elements of information either static or dynamic that appear in a road intersection scene are encoded by using directed positional acyclic labeled graphs. The risk assessment problem is then reformulated in terms of an inductive learning task carried out by a recursive neural network. Recursive neural networks are connectionist models capable of solving supervised and non-supervised learning problems represented by directed ordered acyclic graphs. The potential of this novel approach is demonstrated through well predefined scenarios. The major difference of our approach compared to others is expressed by the fact of learning t...

  12. Performance evaluation of a routing algorithm based on Hopfield Neural Network for network-on-chip

    Science.gov (United States)

    Esmaelpoor, Jamal; Ghafouri, Abdollah

    2015-12-01

    Network on chip (NoC) has emerged as a solution to overcome the system on chip growing complexity and design challenges. A proper routing algorithm is a key issue of an NoC design. An appropriate routing method balances load across the network channels and keeps path length as short as possible. This survey investigates the performance of a routing algorithm based on Hopfield Neural Network. It is a dynamic programming to provide optimal path and network monitoring in real time. The aim of this article is to analyse the possibility of using a neural network as a router. The algorithm takes into account the path with the lowest delay (cost) form source to destination. In other words, the path a message takes from source to destination depends on network traffic situation at the time and it is the fastest one. The simulation results show that the proposed approach improves average delay, throughput and network congestion efficiently. At the same time, the increase in power consumption is almost negligible.

  13. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. PMID:25913233

  14. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction.

  15. Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents

    OpenAIRE

    Sher, Gene I.

    2011-01-01

    Though machine learning has been applied to the foreign exchange market for algorithmic trading for quiet some time now, and neural networks(NN) have been shown to yield positive results, in most modern approaches the NN systems are optimized through traditional methods like the backpropagation algorithm for example, and their input signals are price lists, and lists composed of other technical indicator elements. The aim of this paper is twofold: the presentation and testing of the applicati...

  16. Activated sludge process based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    张文艺; 蔡建安

    2002-01-01

    Considering the difficulty of creating water quality model for activated sludge system, a typical BP artificial neural network model has been established to simulate the operation of a waste water treatment facilities. The comparison of prediction results with the on-spot measurements shows the model, the model is accurate and this model can also be used to realize intelligentized on-line control of the wastewater processing process.

  17. Risk assessment of logistics outsourcing based on BP neural network

    Science.gov (United States)

    Liu, Xiaofeng; Tian, Zi-you

    The purpose of this article is to evaluate the risk of the enterprises logistics outsourcing. To get this goal, the paper first analysed he main risks existing in the logistics outsourcing, and then set up a risk evaluation index system of the logistics outsourcing; second applied BP neural network into the logistics outsourcing risk evaluation and used MATLAB to the simulation. It proved that the network error is small and has strong practicability. And this method can be used by enterprises to evaluate the risks of logistics outsourcing.

  18. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    OpenAIRE

    Kang Xie; Yixian Yang; Yang Xin; Guangsheng Xia

    2015-01-01

    According to the problems of current distributed architecture intrusion detection systems (DIDS), a new online distributed intrusion detection model based on cellular neural network (CNN) was proposed, in which discrete-time CNN (DTCNN) was used as weak classifier in each local node and state-controlled CNN (SCCNN) was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental resul...

  19. A case study to estimate costs using Neural Networks and regression based models

    Directory of Open Access Journals (Sweden)

    Nadia Bhuiyan

    2012-07-01

    Full Text Available Bombardier Aerospace’s high performance aircrafts and services set the utmost standard for the Aerospace industry. A case study in collaboration with Bombardier Aerospace is conducted in order to estimate the target cost of a landing gear. More precisely, the study uses both parametric model and neural network models to estimate the cost of main landing gears, a major aircraft commodity. A comparative analysis between the parametric based model and those upon neural networks model will be considered in order to determine the most accurate method to predict the cost of a main landing gear. Several trials are presented for the design and use of the neural network model. The analysis for the case under study shows the flexibility in the design of the neural network model. Furthermore, the performance of the neural network model is deemed superior to the parametric models for this case study.

  20. PID Neural Network Based Speed Control of Asynchronous Motor Using Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    MARABA, V. A.

    2011-11-01

    Full Text Available This paper deals with the structure and characteristics of PID Neural Network controller for single input and single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural networks and classic PID controller. Functioning of this controller is based on the update of controller parameters according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model of the asynchronous motor exhibiting second order linear behavior were used in the real time speed control of the motor. Programmable logic controller (PLC was used as real time controller. The real time control results show that reference speed successfully maintained under various load conditions.

  1. A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion

    Institute of Scientific and Technical Information of China (English)

    ANG Xue-ye

    2007-01-01

    The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given . It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.

  2. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  3. Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control.

    Science.gov (United States)

    Zhang, Guodong; Shen, Yi

    2014-07-01

    This paper investigates the exponential synchronization of coupled memristor-based chaotic neural networks with both time-varying delays and general activation functions. And here, we adopt nonsmooth analysis and control theory to handle memristor-based chaotic neural networks with discontinuous right-hand side. In particular, several new criteria ensuring exponential synchronization of two memristor-based chaotic neural networks are obtained via periodically intermittent control. In addition, the new proposed results here are very easy to verify and also complement, extend the earlier publications. Numerical simulations on the chaotic systems are presented to illustrate the effectiveness of the theoretical results.

  4. Synchronization of Memristor-Based Coupling Recurrent Neural Networks With Time-Varying Delays and Impulses.

    Science.gov (United States)

    Zhang, Wei; Li, Chuandong; Huang, Tingwen; He, Xing

    2015-12-01

    Synchronization of an array of linearly coupled memristor-based recurrent neural networks with impulses and time-varying delays is investigated in this brief. Based on the Lyapunov function method, an extended Halanay differential inequality and a new delay impulsive differential inequality, some sufficient conditions are derived, which depend on impulsive and coupling delays to guarantee the exponential synchronization of the memristor-based recurrent neural networks. Impulses with and without delay and time-varying delay are considered for modeling the coupled neural networks simultaneously, which renders more practical significance of our current research. Finally, numerical simulations are given to verify the effectiveness of the theoretical results. PMID:26054076

  5. Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill

    International Nuclear Information System (INIS)

    The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved

  6. Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill

    Science.gov (United States)

    Moussaoui, A. K.; Abbassi, H. A.; Bouazza, S.

    2008-06-01

    The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved.

  7. Research on a Neural Network Approach Based Diagnosis Expert System of Crack Control in Massive Concrete

    Institute of Scientific and Technical Information of China (English)

    HAN Liu-xin; WANG Huan-chen; ZHANG Xian-hui

    2001-01-01

    A detailed study of the capabilities of artificial neural networks to diagnoses cracks in massive concrete structures is presented. This paper includes the components of the expert system such as design thought, basic structure, building of knowledge base and the implementation of neural network applied model. The realizing method of neural network based clustering algorithm in the knowledge base and selfstudy is analyzed emphatically and stimulated by means of the computer. From the above study, some important conclusions have been drawn and some new viewpoints have been suggested.

  8. Stability and synchronization of memristor-based fractional-order delayed neural networks.

    Science.gov (United States)

    Chen, Liping; Wu, Ranchao; Cao, Jinde; Liu, Jia-Bao

    2015-11-01

    Global asymptotic stability and synchronization of a class of fractional-order memristor-based delayed neural networks are investigated. For such problems in integer-order systems, Lyapunov-Krasovskii functional is usually constructed, whereas similar method has not been well developed for fractional-order nonlinear delayed systems. By employing a comparison theorem for a class of fractional-order linear systems with time delay, sufficient condition for global asymptotic stability of fractional memristor-based delayed neural networks is derived. Then, based on linear error feedback control, the synchronization criterion for such neural networks is also presented. Numerical simulations are given to demonstrate the effectiveness of the theoretical results.

  9. Neural network-based H∞ filtering for nonlinear systems with time-delays

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed.Firstly,neural networks are employed to approximate the nonlinearities.Next,the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI).Finally,based on the LDI model,a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints.Compared with the existing nonlinear filters,NNBNF is time-invariant and numerically tractable.The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.

  10. Synchronization of Memristor-Based Coupling Recurrent Neural Networks With Time-Varying Delays and Impulses.

    Science.gov (United States)

    Zhang, Wei; Li, Chuandong; Huang, Tingwen; He, Xing

    2015-12-01

    Synchronization of an array of linearly coupled memristor-based recurrent neural networks with impulses and time-varying delays is investigated in this brief. Based on the Lyapunov function method, an extended Halanay differential inequality and a new delay impulsive differential inequality, some sufficient conditions are derived, which depend on impulsive and coupling delays to guarantee the exponential synchronization of the memristor-based recurrent neural networks. Impulses with and without delay and time-varying delay are considered for modeling the coupled neural networks simultaneously, which renders more practical significance of our current research. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.

  11. Didactic Strategy Discussion Based on Artificial Neural Networks Results.

    Science.gov (United States)

    Andina, D.; Bermúdez-Valbuena, R.

    2009-04-01

    Artificial Neural Networks (ANNs) are a mathematical model of the main known characteristics of biological brian dynamics. ANNs inspired in biological reality have been useful to design machines that show some human-like behaviours. Based on them, many experimentes have been succesfully developed emulating several biologial neurons characteristics, as learning how to solve a given problem. Sometimes, experimentes on ANNs feedback to biology and allow advances in understanding the biological brian behaviour, allowing the proposal of new therapies for medical problems involving neurons performing. Following this line, the author present results on artificial learning on ANN, and interpret them aiming to reinforce one of this two didactic estrategies to learn how to solve a given difficult task: a) To train with clear, simple, representative examples and feel confidence in brian generalization capabilities to achieve succes in more complicated cases. b) To teach with a set of difficult cases of the problem feeling confidence that the brian will efficiently solve the rest of cases if it is able to solve the difficult ones. Results may contribute in the discussion of how to orientate the design innovative succesful teaching strategies in the education field.

  12. Illicit material detector based on gas sensors and neural networks

    Science.gov (United States)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  13. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  14. Pattern recognition for electroencephalographic signals based on continuous neural networks.

    Science.gov (United States)

    Alfaro-Ponce, M; Argüelles, A; Chairez, I

    2016-07-01

    This study reports the design and implementation of a pattern recognition algorithm to classify electroencephalographic (EEG) signals based on artificial neural networks (NN) described by ordinary differential equations (ODEs). The training method for this kind of continuous NN (CNN) was developed according to the Lyapunov theory stability analysis. A parallel structure with fixed weights was proposed to perform the classification stage. The pattern recognition efficiency was validated by two methods, a generalization-regularization and a k-fold cross validation (k=5). The classifier was applied on two different databases. The first one was made up by signals collected from patients suffering of epilepsy and it is divided in five different classes. The second database was made up by 90 single EEG trials, divided in three classes. Each class corresponds to a different visual evoked potential. The pattern recognition algorithm achieved a maximum correct classification percentage of 97.2% using the information of the entire database. This value was similar to some results previously reported when this database was used for testing pattern classification. However, these results were obtained when only two classes were considered for the testing. The result reported in this study used the whole set of signals (five different classes). In comparison with similar pattern recognition methods that even considered less number of classes, the proposed CNN proved to achieve the same or even better correct classification results.

  15. Traffic control based on dahlin algorithm and neural network prediction in TAM networks

    Institute of Scientific and Technical Information of China (English)

    沈伟; 冯瑞; 邵惠鹤

    2004-01-01

    The propagation delay in networks has a great adverse effect on rate-based traffic control. This paper proposes the composite control based on Dab lin algorithm feedback control and neural network feedforward predictive compensation online for ABR (available bit rate) communication in ATM (asynchronous transfer mode) networks, which can overcome the adverse effect caused by the delay on the control rapidity and stability better. The theoretical analysis and simulation research show that the scheme can make sources respond to the changes of network status rapidly, avoid the congestion effectively and utilize the bandwidth sufficiently. Compared with PID (proportional-integral-derivative) control, cell loss rate is much lower, link utilization rate is much higher, and required buffer capacity is much smaller.

  16. Application of functional-link neural network in evaluation of sublayer suspension based on FWD test

    Institute of Scientific and Technical Information of China (English)

    陈瑜; 张起森

    2004-01-01

    Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.0001, while the optimum chosen 4-8-1 BP needs over 10000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be adopted to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.

  17. Data Mining and Neural Network Techniques in Case Based System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper first puts forward a case-based system framework basedon data mining techniques. Then the paper examines the possibility of using neural n etworks as a method of retrieval in such a case-based system. In this system we propose data mining algorithms to discover case knowledge and other algorithms.

  18. Research on Spatial Estimation of Soil Property Based on Improved RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Jianbo Xu

    2013-01-01

    Full Text Available To seek optimal network parameters of Radial Basis Function (RBF Neural Network and improve the accuracy of this method on estimation of soil property space, this study utilizes genetic algorithm to optimize three network parameters of RBF Neural Network including the number of hidden layer nodes, expansion speed and root-mean-square error. Then, based on optimized RBF Neural Network, spatial interpolation is conducted for arable soil property under different sampling scales in the study area. The estimation result is superior to RBF Neural Network method without optimization and geostatistical method in terms of the fitting capacity and interpolation accuracy. Compared with the result of space estimation by RBF Neural Network method without optimization, among the 5 schemes, the forecast errors of RBF Neural Network optimized by genetic algorithm reduce greatly. Mean absolute error (MAE reduces 0.4868 on the average and root-mean-square error (RMSE reduces 1.492 on the average. Therefore, RBF Neural Network method optimized by genetic algorithm can gain the information about regional soil property spatial variation more accurately and provides technical support for arable land quality evaluation, accurate farmland management and rational application of fertilizer.

  19. Feature evaluation and extraction based on neural network in analog circuit fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    Yuan Haiying; Chen Guangju; Xie Yongle

    2007-01-01

    Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit.The feature evaluation and extraction methods based on neural network are presented.Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently.The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency.A fault diagnosis illustration validated this method.

  20. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  1. REAL-TIME MOTION PLANNING METHOD BASED ON NEURAL NETWORKS FOR MULTIPLE MOBILE ROBOTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The motion planning of multiple mobile robots undertaking individual tasks in the same environment is studied. A motion planning method based on neural networks is proposed. By storing fuzzy rules in neural networks the method can fully make use of the association ability and high processing speed of neural networks to make robots avoid collisions with other objects in real time.Compared with rules method,the method can not only avoid building a large and complex rules base but also make robots avoid collisions and conflicts at higher speed and with higher intelligence.

  2. Lag Synchronization of Memristor-Based Coupled Neural Networks via ω-Measure.

    Science.gov (United States)

    Li, Ning; Cao, Jinde

    2016-03-01

    This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω-measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results. PMID:26462246

  3. Lag Synchronization of Memristor-Based Coupled Neural Networks via ω-Measure.

    Science.gov (United States)

    Li, Ning; Cao, Jinde

    2016-03-01

    This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω-measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.

  4. Instantaneous Gradient Based Dual Mode Feed-Forward Neural Network Blind Equalization Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2013-01-01

    Full Text Available To further improve the performance of feed-forward neural network blind equalization based on Constant Modulus Algorithm (CMA cost function, an instantaneous gradient based dual mode between Modified Constant Modulus Algorithm (MCMA and Decision Directed (DD algorithm was proposed. The neural network weights change quantity of the adjacent iterative process is defined as instantaneous gradient. After the network converges, the weights of neural network to achieve a stable energy state and the instantaneous gradient would be zero. Therefore dual mode algorithm can be realized by criterion which set according to the instantaneous gradient. Computer simulation results show that the dual mode feed-forward neural network blind equalization algorithm proposed in this study improves the convergence rate and convergence precision effectively, at the same time, has good restart and tracking ability under channel burst interference condition.

  5. The optimum design of the pressure control spring of the relief valve based on neural networks

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-jin

    2006-01-01

    Based on the traditional optimization methods about the pressure control spring of the relief valve and combined with the advantages of neural network, this paper put forward the optimization method with many parameters and a lot of constraints based on neural network. The object function of optimization is transformed into the energy function of the neural network and the mathematical model of neural network optimization about the pressure control spring of the relief valve is set up in this method which also puts forward its own algorithm. An example of application shows that network convergence gets stable state of minimization object function E, and object function converges to the utmost minimum point with steady function, then best solution is gained, which makes the design plan better. The algorithm of solution for the problem is effective about the optimum design of the pressure control spring and improves the performance target.

  6. Multiscale approach for bone remodeling simulation based on finite element and neural network computation

    CERN Document Server

    Hambli, Ridha

    2011-01-01

    The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...

  7. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  8. Effects of Some Neurobiological Factors in a Self-organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Ming; ZHANG Ying-Yue; CHEN Tian-Lun

    2005-01-01

    Based on an integrate-and-fire mechanism, we investigate the effect of changing the efficacy of the synapse,the transmitting time-delayed, and the relative refractoryperiod on the self-organized criticality in our neural network model.

  9. A NOVEL INTRUSION DETECTION MODE BASED ON UNDERSTANDABLE NEURAL NETWORK TREES

    Institute of Scientific and Technical Information of China (English)

    Xu Qinzhen; Yang Luxi; Zhao Qiangfu; He Zhenya

    2006-01-01

    Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network,statistical techniques and expert systems are used to model network packets in the field of intrusion detection.In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is presented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN's capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually "gray boxes" as they can be interpreted easily ifthe number of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset.We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.

  10. Electronic Neural Networks

    Science.gov (United States)

    Lambe, John; Moopen, Alexander; Thakoor, Anilkumar P.

    1988-01-01

    Memory based on neural network models content-addressable and fault-tolerant. System includes electronic equivalent of synaptic network; particular, matrix of programmable binary switching elements over which data distributed. Switches programmed in parallel by outputs of serial-input/parallel-output shift registers. Input and output terminals of bank of high-gain nonlinear amplifiers connected in nonlinear-feedback configuration by switches and by memory-prompting shift registers.

  11. Automatic event detection based on artificial neural networks

    Science.gov (United States)

    Doubravová, Jana; Wiszniowski, Jan; Horálek, Josef

    2015-04-01

    The proposed algorithm was developed to be used for Webnet, a local seismic network in West Bohemia. The Webnet network was built to monitor West Bohemia/Vogtland swarm area. During the earthquake swarms there is a large number of events which must be evaluated automatically to get a quick estimate of the current earthquake activity. Our focus is to get good automatic results prior to precise manual processing. With automatic data processing we may also reach a lower completeness magnitude. The first step of automatic seismic data processing is the detection of events. To get a good detection performance we require low number of false detections as well as high number of correctly detected events. We used a single layer recurrent neural network (SLRNN) trained by manual detections from swarms in West Bohemia in the past years. As inputs of the SLRNN we use STA/LTA of half-octave filter bank fed by vertical and horizontal components of seismograms. All stations were trained together to obtain the same network with the same neuron weights. We tried several architectures - different number of neurons - and different starting points for training. Networks giving the best results for training set must not be the optimal ones for unknown waveforms. Therefore we test each network on test set from different swarm (but still with similar characteristics, i.e. location, focal mechanisms, magnitude range). We also apply a coincidence verification for each event. It means that we can lower the number of false detections by rejecting events on one station only and force to declare an event on all stations in the network by coincidence on two or more stations. In further work we would like to retrain the network for each station individually so each station will have its own coefficients (neural weights) set. We would also like to apply this method to data from Reykjanet network located in Reykjanes peninsula, Iceland. As soon as we have a reliable detection, we can proceed to

  12. Dynamical analysis of memristor-based fractional-order neural networks with time delay

    Science.gov (United States)

    Cui, Xueli; Yu, Yongguang; Wang, Hu; Hu, Wei

    2016-06-01

    In this paper, the memristor-based fractional-order neural networks with time delay are analyzed. Based on the theories of set-value maps, differential inclusions and Filippov’s solution, some sufficient conditions for asymptotic stability of this neural network model are obtained when the external inputs are constants. Besides, uniform stability condition is derived when the external inputs are time-varying, and its attractive interval is estimated. Finally, numerical examples are given to verify our results.

  13. Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZhangLiangjie; LiYanda; 等

    1997-01-01

    In this paper,a dynamic bandwidth allocation technique based on fuzz neural networks(FNNs) and genetic algorithm(GA)is proposed for preventive congestion control in ATM network.The traffic model based on FNN does not need the descriptive traffic parameters in detail,which greatly depend on the user's terminal.Genetic algorithm is used to predict the equivalent bandwidth of the accepted traffic in real-time.Thus,the proposed scheme can estimate the dynamic bandwidth of the network in the time scale from the call arrival to the call admission/rejection due to the fuzzy-tech and GA hardware implementation.Simulation results show that the scheme can perform accurate dynamic bandwidth allocation to DN/OFF bursty traffic in accordance with the required quality of service(QOS),and the bandwidth utilization is improved from the overall point of view.

  14. Network-based H∞ synchronization control of time-delay neural networks with communication constraints

    Science.gov (United States)

    Dong, Hui; Ling, Rongyao; Zhang, Dan

    2016-03-01

    This paper is concerned with the network-based H∞ synchronization control for a class of discrete time-delay neural networks, and attention is focused on how to reduce the communication rate since the communication resource is limited. Techniques such as the measurement size reduction, signal quantization and stochastic signal transmission are introduced to achieve the above goal. An uncertain switched system model is first proposed to capture the above-networked uncertainties. Based on the switched system theory and Lyapunov stability approach, a sufficient condition is obtained such that the closed-loop synchronization system is exponentially stable in the mean-square sense with a prescribed H∞ performance level. The controller gains are determined by solving a set of linear matrix inequalities (LMIs). A numerical example is finally presented to show the effectiveness of the proposed design method.

  15. A DATA MINING METHOD BASED ON CONSTRUCTIVE NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Wang Lunwen; Zhang Ling

    2007-01-01

    In this letter, Constructive Neural Networks (CNN) is used in large-scale data mining. By introducing the principle and characteristics of CNN and pointing out its deficiencies, fuzzy theory is adopted to improve the covering algorithms. The threshold of covering algorithms is redefined. "Extended area" for test samples is built. The inference of the outlier is eliminated. Furthermore, "Sphere Neighborhood (SN)" are constructed. The membership functions of test samples are given and all of the test samples are determined accordingly. The method is used to mine large wireless monitor data (about 3 × 107 data points), and knowledge is found effectively.

  16. Product Assembly Cost Estimation Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper proposes a method for assembly cost estimation in actual manufacture during the design phase using artificial neural networks (ANN). It can support the de signers in cost effectiveness, then help to control the total cost. The method was used in the assembly cost estimation of the crucial parts of some railway stock products. As a compari son, we use the linear regression (LR) model in the same field. The result shows that ANN model performs better than the LR model in assembly cost estimation.

  17. Human -Computer Interface using Gestures based on Neural Network

    Directory of Open Access Journals (Sweden)

    Aarti Malik

    2014-10-01

    Full Text Available - Gestures are powerful tools for non-verbal communication. Human computer interface (HCI is a growing field which reduces the complexity of interaction between human and machine in which gestures are used for conveying information or controlling the machine. In the present paper, static hand gestures are utilized for this purpose. The paper presents a novel technique of recognizing hand gestures i.e. A-Z alphabets, 0-9 numbers and 6 additional control signals (for keyboard and mouse control by extracting various features of hand ,creating a feature vector table and training a neural network. The proposed work has a recognition rate of 99%. .

  18. Hardware Prototyping of Neural Network based Fetal Electrocardiogram Extraction

    Science.gov (United States)

    Hasan, M. A.; Reaz, M. B. I.

    2012-01-01

    The aim of this paper is to model the algorithm for Fetal ECG (FECG) extraction from composite abdominal ECG (AECG) using VHDL (Very High Speed Integrated Circuit Hardware Description Language) for FPGA (Field Programmable Gate Array) implementation. Artificial Neural Network that provides efficient and effective ways of separating FECG signal from composite AECG signal has been designed. The proposed method gives an accuracy of 93.7% for R-peak detection in FHR monitoring. The designed VHDL model is synthesized and fitted into Altera's Stratix II EP2S15F484C3 using the Quartus II version 8.0 Web Edition for FPGA implementation.

  19. The Monitoring of Red Tides Based on Modular Neural Networks Using Airborne Hyperspectral Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    JI Guangrong; SUN Jie; ZHAO Wencang; ZHANG Hande

    2006-01-01

    This paper proposes a red tide monitoring method based on clustering and modular neural networks. To obtain the features of red tide from a mass of aerial remote sensing hyperspectral data, first the Log Residual Correction (LRC) is used to normalize the data, and then clustering analysis is adopted to select and form the training samples for the neural networks. For rapid monitoring, the discriminator is composed of modular neural networks, whose structure and learning parameters are determined by an Adaptive Genetic Algorithm (AGA). The experiments showed that this method can monitor red tide rapidly and effectively.

  20. Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models.

  1. Passivity of memristor-based BAM neural networks with different memductance and uncertain delays.

    Science.gov (United States)

    Anbuvithya, R; Mathiyalagan, K; Sakthivel, R; Prakash, P

    2016-08-01

    This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov-Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for the considered neural networks. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results. PMID:27468321

  2. Finite-time synchronization control of a class of memristor-based recurrent neural networks.

    Science.gov (United States)

    Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun

    2015-03-01

    This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method. PMID:25536233

  3. Building a Tax Predictive Model Based on the Cloud Neural Network

    Institute of Scientific and Technical Information of China (English)

    田永青; 李志; 朱仲英

    2003-01-01

    Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.

  4. Neural Network Based on Rough Sets and Its Application to Remote Sensing Image Classification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi-spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.

  5. Finite-time synchronization control of a class of memristor-based recurrent neural networks.

    Science.gov (United States)

    Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun

    2015-03-01

    This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method.

  6. Passivity of memristor-based BAM neural networks with different memductance and uncertain delays.

    Science.gov (United States)

    Anbuvithya, R; Mathiyalagan, K; Sakthivel, R; Prakash, P

    2016-08-01

    This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov-Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for the considered neural networks. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results.

  7. Synchronization control of memristor-based recurrent neural networks with perturbations.

    Science.gov (United States)

    Wang, Weiping; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian

    2014-05-01

    In this paper, the synchronization control of memristor-based recurrent neural networks with impulsive perturbations or boundary perturbations is studied. We find that the memristive connection weights have a certain relationship with the stability of the system. Some criteria are obtained to guarantee that memristive neural networks have strong noise tolerance capability. Two kinds of controllers are designed so that the memristive neural networks with perturbations can converge to the equilibrium points, which evoke human's memory patterns. The analysis in this paper employs the differential inclusions theory and the Lyapunov functional method. Numerical examples are given to show the effectiveness of our results.

  8. Global exponential almost periodicity of a delayed memristor-based neural networks.

    Science.gov (United States)

    Chen, Jiejie; Zeng, Zhigang; Jiang, Ping

    2014-12-01

    In this paper, the existence, uniqueness and stability of almost periodic solution for a class of delayed memristor-based neural networks are studied. By using a new Lyapunov function method, the neural network that has a unique almost periodic solution, which is globally exponentially stable is proved. Moreover, the obtained conclusion on the almost periodic solution is applied to prove the existence and stability of periodic solution (or equilibrium point) for delayed memristor-based neural networks with periodic coefficients (or constant coefficients). The obtained results are helpful to design the global exponential stability of almost periodic oscillatory memristor-based neural networks. Three numerical examples and simulations are also given to show the feasibility of our results.

  9. Dissolved oxygen prediction using a possibility theory based fuzzy neural network

    Science.gov (United States)

    Khan, Usman T.; Valeo, Caterina

    2016-06-01

    A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic factors (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predicting low DO events in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, as well as with a traditional neural network. Model output and a defuzzification technique are used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.

  10. Prediction Model of Weekly Retail Price for Eggs Based on Chaotic Neural Network

    Institute of Scientific and Technical Information of China (English)

    LI Zhe-min; CUI Li-guo; XU Shi-wei; WENG Ling-yun; DONG Xiao-xia; LI Gan-qiong; YU Hai-peng

    2013-01-01

    This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China. In the process of determining the structure of the chaotic neural network, the number of input layer nodes of the network is calculated by reconstructing phase space and computing its saturated embedding dimension, and then the number of hidden layer nodes is estimated by trial and error. Finally, this model is applied to predict the retail prices of eggs and compared with ARIMA. The result shows that the chaotic neural network has better nonlinear iftting ability and higher precision in the prediction of weekly retail price of eggs. The empirical result also shows that the chaotic neural network can be widely used in the ifeld of short-term prediction of agricultural prices.

  11. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available An electrocardiogram (ECG beat classification scheme based on multiple signal classification (MUSIC algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP neural network and a probabilistic neural network (PNN, are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  12. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    Science.gov (United States)

    Naghsh-Nilchi, Ahmad R.; Kadkhodamohammadi, A. Rahim

    2009-12-01

    An electrocardiogram (ECG) beat classification scheme based on multiple signal classification (MUSIC) algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP) neural network and a probabilistic neural network (PNN), are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  13. NOISE IDENTIFICATION FOR HYDRAULIC AXIAL PISTON PUMP BASED ON ARTIFICIAL NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The noise identification model of the neural networks is established for the 63SCY14-1B hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully carried out for hydraulic axial piston pump based on experiments with the MATLAB and the toolbox of neural networks. The operating pressure, the flow rate of hydraulic axial piston pump, the temperature of hydraulic oil, and bulk modulus of hydraulic oil are the main parameters having influences on the noise of hydraulic axial piston pump. These four parameters are used as inputs of neural networks, and experimental data of the noise are used as outputs of neural networks. Error of noise identification is less than 1% after the neural networks have been trained. The results show that the noise identification of hydraulic axial piston pump is feasible and reliable by using artificial neural networks. The method of noise identification with neural networks is also creative one of noise theoretical research for hydraulic axial piston pump.

  14. Neural-network-based satellite tracking for deep space applications

    Science.gov (United States)

    Amoozegar, Farid; Ruggier, Charles

    2003-09-01

    NASA has been considering the use of Ka-band for deep space missions primarily for downlink telemetry applications. At such high frequencies, although the link will be expected to improve by a factor of four, the current Deep Space Network (DSN) antennas and transmitters would become less efficient due to higher equipment noise figures and antenna surface errors. Furthermore, the weather effect at Ka-band frequencies will dominate the degradations in link performance and tracking accuracy. At the lower frequencies, such as X-band, conventional CONSCAN or Monopulse tracking techniques can be used without much complexity, however, when utilizing Ka-band frequencies, the tracking of a spacecraft in deep space presents additional challenges. The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions, and examine the trade-off between tracking accuracy and communication link performance.

  15. Electronic Nose Based on an Optimized Competition Neural Network

    Directory of Open Access Journals (Sweden)

    Haiping Zhang

    2011-05-01

    Full Text Available In view of the fact that there are disadvantages in that the class number must be determined in advance, the value of learning rates are hard to fix, etc., when using traditional competitive neural networks (CNNs in electronic noses (E-noses, an optimized CNN method was presented. The optimized CNN was established on the basis of the optimum class number of samples according to the changes of the Davies and Bouldin (DB value and it could increase, divide, or delete neurons in order to adjust the number of neurons automatically. Moreover, the learning rate changes according to the variety of training times of each sample. The traditional CNN and the optimized CNN were applied to five kinds of sorted vinegars with an E-nose. The results showed that optimized network structures could adjust the number of clusters dynamically and resulted in good classifications.

  16. Quantum Neural Network Based Machine Translator for Hindi to English

    OpenAIRE

    Ravi Narayan; Singh, V.P.; Chakraverty, S.

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze t...

  17. Neural network based daily precipitation generator (NNGEN-P)

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Paris (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Penalba, Olga [University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2007-02-15

    Daily weather generators are used in many applications and risk analyses. The present paper explores the potential of neural network architectures to design daily weather generator models. Focusing this first paper on precipitation, we design a collection of neural networks (multi-layer perceptrons in the present case), which are trained so as to approximate the empirical cumulative distribution (CDF) function for the occurrence of wet and dry spells and for the precipitation amounts. This approach contributes to correct some of the biases of the usual two-step weather generator models. As compared to a rainfall occurrence Markov model, NNGEN-P represents fairly well the mean and standard deviation of the number of wet days per month, and it significantly improves the simulation of the longest dry and wet periods. Then, we compared NNGEN-P to three parametric distribution functions usually applied to fit rainfall cumulative distribution functions (Gamma, Weibull and double-exponential). A data set of 19 Argentine stations was used. Also, data corresponding to stations in the United States, in Europe and in the Tropics were included to confirm the results. One of the advantages of NNGEN-P is that it is non-parametric. Unlike other parametric function, which adapt to certain types of climate regimes, NNGEN-P is fully adaptive to the observed cumulative distribution functions, which, on some occasions, may present complex shapes. On-going works will soon produce an extended version of NNGEN to temperature and radiation. (orig.)

  18. Artificial neural network based inverse design method for circular sliding slopes

    Institute of Scientific and Technical Information of China (English)

    丁德馨; 张志军

    2004-01-01

    Current design method for circular sliding slopes is not so reasonable that it often results in slope sliding. As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.

  19. Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2015-01-01

    This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...

  20. MODEL OF CASE-BASED NEURAL NETWORK%基于范例的神经网络模型

    Institute of Scientific and Technical Information of China (English)

    艾景军; 李俊生

    2004-01-01

    In order to improve generalization capability of neural networks, a model structure of Case-Based neural networks has been presented. The model blended Case-Based Reasoning method into neural networks and has the ability of incrementally learning. The results demonstrated that the model could observably improve the generalization capability of supervised neural networks. Firstly, paper summarized the advancing front of researching on generalization capability of neural networks.Secondly, the structure of CBNN and its process of working were introduced. Finally, the results of experiments were compared and discussed.

  1. A case study to estimate costs using Neural Networks and regression based models

    OpenAIRE

    Nadia Bhuiyan; Adil Salam; Fantahun M. Defersha

    2012-01-01

    Bombardier Aerospace’s high performance aircrafts and services set the utmost standard for the Aerospace industry. A case study in collaboration with Bombardier Aerospace is conducted in order to estimate the target cost of a landing gear. More precisely, the study uses both parametric model and neural network models to estimate the cost of main landing gears, a major aircraft commodity. A comparative analysis between the parametric based model and those upon neural networks model will be con...

  2. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    International Nuclear Information System (INIS)

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  3. Audio Watermarking Based on HAS and Neural Networks in DCT Domain

    OpenAIRE

    Cheng Ji-Shiung; Yu Pao-Ta; Tsai Hung-Hsu

    2003-01-01

    We propose a new intelligent audio watermarking method based on the characteristics of the HAS and the techniques of neural networks in the DCT domain. The method makes the watermark imperceptible by using the audio masking characteristics of the HAS. Moreover, the method exploits a neural network for memorizing the relationships between the original audio signals and the watermarked audio signals. Therefore, the method is capable of extracting watermarks without original audio signals. Fina...

  4. Projective synchronization of fractional-order memristor-based neural networks.

    Science.gov (United States)

    Bao, Hai-Bo; Cao, Jin-De

    2015-03-01

    This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo's fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks. PMID:25463390

  5. Neural network predicts sequence of TP53 gene based on DNA chip

    DEFF Research Database (Denmark)

    Spicker, J.S.; Wikman, F.; Lu, M.L.;

    2002-01-01

    We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...... and four errors in the predicted 1300 bp sequence when tested on wild-type TP53 sequence....

  6. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster

    OpenAIRE

    Eva Volna; Martin Kotyrba; Hashim Habiballa

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experim...

  7. Configuration space control of a parallel delta robot with a neural network based inverse kinematics

    OpenAIRE

    Uzunovic, Tarik; Golubovic, Edin; Baran, Eray Abdurrahman; Şabanoviç, Asif; SABANOVIC, Asif

    2013-01-01

    This paper describes configuration space control of a Delta robot with a neural network based kinematics. Mathematical model of the kinematics for parallel Delta robot used for manipulation purposes in microfactory was validated, and experiments showed that this model is not describing “real” kinematics properly. Therefore a new solution for kinematics mapping had to be investigated. Solution was found in neural network utilization, and it was used to model robot's inverse kinematics. It show...

  8. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik Department E15, Technische Universitaet Muenchen, 85748 Garching (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  9. Projective synchronization of fractional-order memristor-based neural networks.

    Science.gov (United States)

    Bao, Hai-Bo; Cao, Jin-De

    2015-03-01

    This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo's fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.

  10. Computer interpretation of thallium SPECT studies based on neural network analysis

    International Nuclear Information System (INIS)

    This paper reports that a class of artificial intelligence (AI) programs known as neural-networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from expert system AI programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The bullseye images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of the trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging

  11. A study of interceptor attitude control based on adaptive wavelet neural networks

    Science.gov (United States)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  12. A Predictive Neural Network-Based Cascade Control for pH Reactors

    Directory of Open Access Journals (Sweden)

    Mujahed AlDhaifallah

    2016-01-01

    Full Text Available This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral and a slave one (predictive neural network. The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab.

  13. A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor

    Institute of Scientific and Technical Information of China (English)

    Along Yu; Zheng Li

    2006-01-01

    In this paper, we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method,the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line scaling and high precision. The maximum nonlinearity error can be reduced to 0.037% using GNN. However, the maximum nonlinearity error is 0.075% using least square method (LMS).

  14. Seabed Classification Using BP Neural Network Based on GA

    Institute of Scientific and Technical Information of China (English)

    Yang Fanlin; Liu Jingnan

    2003-01-01

    Side scan sonar imaging is one of the advanced methods for seabed study. In order to be utilized in other projects, such as ocean engineering, the image needs to be classified according to the distributions of different classes of seabed materials. In this paper, seabed image is classified according to BP neural network, and Genetic Algorithm is adopted in train network in this paper. The feature vectors are average intensity, six statistics of texture and two dimensions of fractal. It considers not only the spatial correlation between different pixels, but also the terrain coarseness. The texture is denoted by the statistics of the co-occurrence matrix. Double Blanket algorithm is used to calculate dimension. Because a uniform fractal may not be sufficient to describe a seafloor, two dimensions are calculated respectively by the upper blanket and the lower blanket. However, in sonar image, fractal has directivity, i. e.there are different dimensions in different direction. Dimensions are different in acrosstrack and alongtrack, so the average of four directions is used to solve this problem. Finally, the real data verify the algorithm. In this paper, one hidden layer including six nodes is adopted. The BP network is rapidly and accurately convergent through GA. Correct classification rate is 92.5% in the result.

  15. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    Science.gov (United States)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  16. High power fuel cell simulator based on artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, Abraham U.; Munoz-Guerrero, Roberto [Departamento de Ingenieria Electrica, CINVESTAV-IPN. Av. Instituto Politecnico Nacional No. 2508, D.F. CP 07360 (Mexico); Duron-Torres, S.M. [Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Campus Siglo XXI, Edif. 6 (Mexico); Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5-98126 Messina (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, Queretaro (Mexico)

    2010-11-15

    Artificial Neural Network (ANN) has become a powerful modeling tool for predicting the performance of complex systems with no well-known variable relationships due to the inherent properties. A commercial Polymeric Electrolyte Membrane fuel cell (PEMFC) stack (5 kW) was modeled successfully using this tool, increasing the number of test into the 7 inputs - 2 outputs-dimensional spaces in the shortest time, acquiring only a small amount of experimental data. Some parameters could not be measured easily on the real system in experimental tests; however, by receiving the data from PEMFC, the ANN could be trained to learn the internal relationships that govern this system, and predict its behavior without any physical equations. Confident accuracy was achieved in this work making possible to import this tool to complex systems and applications. (author)

  17. Recurrent neural networks-based multivariable system PID predictive control

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; WANG Fanzhen; SONG Ying; CHEN Zengqiang; YUAN Zhuzhi

    2007-01-01

    A nonlinear proportion integration differentiation (PID) controller is proposed on the basis of recurrent neural networks,due to the difficulty of tuning the parameters of conventional PID controller.In the control process of nonlinear multivariable system,a decoupling controller was constructed,which took advantage of multi-nonlinear PID controllers in parallel.With the idea of predictive control,two multivariable predictive control strategies were established.One strategy involved the use of the general minimum variance control function on the basis of recursive multi-step predictive method.The other involved the adoption of multistep predictive cost energy to train the weights of the decoupling controller.Simulation studies have shown the efficiency of these strategies.

  18. Medical image segmentation based on cellular neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The application of cellular neural network (CNN) has made great progress in image processing. When the selected objects extraction (SOE) CNN is applied to gray scale images, its effects depend on the choice of initial points. In this paper, we take medical images as an example to analyze this limitation. Then an improved algorithm is proposed in which we can segment any gray level objects regardless of the limitation stated above. We also use the gradient information and contour detection CNN to determine the contour and ensure the veracity of segmentation effectively. Finally, we apply the improved algorithm to tumor segmentation of the human brain MR image. The experimental results show that the algorithm is practical and effective.

  19. Standard Cell-Based Implementation of a Digital Optoelectronic Neural-Network Hardware

    Science.gov (United States)

    Maier, Klaus D.; Beckstein, Clemens; Blickhan, Reinhard; Erhard, Werner

    2001-03-01

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  20. EM-based optimization of microwave circuits using artificial neural networks: the state of the art

    OpenAIRE

    Rayas-Sánchez, José E.

    2004-01-01

    This paper reviews the current state-of-the-art in electromagnetic (EM)-based design and optimization of microwave circuits using artificial neural networks (ANNs). Measurement-based design of microwave circuits using ANNs is also reviewed. The conventional microwave neural optimization approach is surveyed, along with typical enhancing techniques, such as segmentation, decomposition, hierarchy, design of experiments and clusterization. Innovative strategies for ANN-based design exploiting...

  1. Tea classification based on artificial olfaction using bionic olfactory neural network

    OpenAIRE

    X. L. Yang; Fu, J.; Lou, Z G; L. Y. Wang; Li, G.; Freeman, Walter J III

    2006-01-01

    Based on the research on mechanism of biological olfactory system, we constructed a K-set, which is a novel bionic neural network. Founded on the groundwork of K0, KI and KII sets, the KIII set in the K-set hierarchy simulates the whole olfactory neural system. In contrast to the conventional artificial neural networks, the KIII set operates in nonconvergent 'chaotic' dynamical modes similar to the biological olfactory system. In this paper, an application of electronic nose-brain for tea cla...

  2. AN INTELLIGENT CONTROL SYSTEM BASED ON RECURRENT NEURAL FUZZY NETWORK AND ITS APPLICATION TO CSTR

    Institute of Scientific and Technical Information of China (English)

    JIA Li; YU Jinshou

    2005-01-01

    In this paper, an intelligent control system based on recurrent neural fuzzy network is presented for complex, uncertain and nonlinear processes, in which a recurrent neural fuzzy network is used as controller (RNFNC) to control a process adaptively and a recurrent neural network based on recursive predictive error algorithm (RNNM) is utilized to estimate the gradient information (ey)/(e)u for optimizing the parameters of controller.Compared with many neural fuzzy control systems, it uses recurrent neural network to realize the fuzzy controller. Moreover, recursive predictive error algorithm (RPE) is implemented to construct RNNM on line. Lastly, in order to evaluate the performance of theproposed control system, the presented control system is applied to continuously stirred tank reactor (CSTR). Simulation comparisons, based on control effect and output error,with general fuzzy controller and feed-forward neural fuzzy network controller (FNFNC),are conducted. In addition, the rates of convergence of RNNM respectively using RPE algorithm and gradient learning algorithm are also compared. The results show that the proposed control system is better for controlling uncertain and nonlinear processes.

  3. Classifying Algorithm Based on a Fuzzy Neural network for the control of a Network Attached Optical Jukebox

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan; JIA Hui-bo; CHENG Ming

    2006-01-01

    A new analytical method for improving the performance of a network attached optical jukebox is presented by means of artificial neural networks. Through analyzing operation (request) process in this system,the mathematics model and algorithm are built for this storage system,and then a classified method based on artificial neural networks for this system is proposed. Simulation results testified the feasibility and validity of the proposed method that it could overcome the drawbacks of the frequent I/O operation and provide an effective way for using the Network Attached Optical Jukebox.

  4. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  5. Neural network-based finite horizon stochastic optimal control design for nonlinear networked control systems.

    Science.gov (United States)

    Xu, Hao; Jagannathan, Sarangapani

    2015-03-01

    The stochastic optimal control of nonlinear networked control systems (NNCSs) using neuro-dynamic programming (NDP) over a finite time horizon is a challenging problem due to terminal constraints, system uncertainties, and unknown network imperfections, such as network-induced delays and packet losses. Since the traditional iteration or time-based infinite horizon NDP schemes are unsuitable for NNCS with terminal constraints, a novel time-based NDP scheme is developed to solve finite horizon optimal control of NNCS by mitigating the above-mentioned challenges. First, an online neural network (NN) identifier is introduced to approximate the control coefficient matrix that is subsequently utilized in conjunction with the critic and actor NNs to determine a time-based stochastic optimal control input over finite horizon in a forward-in-time and online manner. Eventually, Lyapunov theory is used to show that all closed-loop signals and NN weights are uniformly ultimately bounded with ultimate bounds being a function of initial conditions and final time. Moreover, the approximated control input converges close to optimal value within finite time. The simulation results are included to show the effectiveness of the proposed scheme. PMID:25720004

  6. Application of Global Dynamic Reconfiguration in Artificial Neural Network System based on Field Programmable Gate Array

    Institute of Scientific and Technical Information of China (English)

    LI Wei; WANG Wei; MA Yi-mei; WANG Jin-hai

    2008-01-01

    Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global dynamic reconfiguration scheme using Xilinx FPGA and platform flash. Using the revision capabilities of Xilinx XCF32P platform flash, an artificial neural network based on Xilinx XC2V30P Virtex-Ⅱ can be reconfigured dynamically from back propagation(BP) learning algorithms to BP network testing algorithms. The experimental results indicate that the scheme is feasible, and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably.

  7. Using Artificial Neural Networks for Energy Regulation Based Variable-speed Electrohydraulic Drive

    Institute of Scientific and Technical Information of China (English)

    XU Ming; JIN Bo; YU Yaxin; SHEN Haikuo; LI Wei

    2010-01-01

    In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obtained via conventional methods for some reasons. This paper tries to a new route: the definitive numerical values of the supply energy and the demanded energy are not required, except for their relationship which is called energy state. A three-layer back propagation(BP) neural network was built up to act as an energy analysis unit to deduce the energy state. The neural network has three inputs: the reference displacement, the actual displacement of cylinder rod and the system flowrate supply. The output of the neural network is energy state. A Chebyshev type II filter was designed to calculate the cylinder speed for the estimation of system flowrate supply. The training and testing samples of neural network were collected by the system accurate simulation model. After off-line training, the neural network was tested by the testing data. And the testing result demonstrates that the designed neural network was successful. Then, the neural network acts as the energy analysis unit in real-time experiments of cylinder position control, where it works efficiently under square-wave and sine-wave reference displacement. The experimental results validate its feasibility and adaptability. Only a position sensor and some pressure sensors, which are cheap and have quick dynamic response, are necessary for the system control. And the neural network plays the role of identifying the energy state.

  8. A QoS Provisioning Recurrent Neural Network based Call Admission Control for beyond 3G Networks

    Directory of Open Access Journals (Sweden)

    Ramesh Babu H. S.

    2010-03-01

    Full Text Available The Call admission control (CAC is one of the Radio Resource Management (RRM techniques that plays influential role in ensuring the desired Quality of Service (QoS to the users and applications in next generation networks. This paper proposes a fuzzy neural approach for making the call admission control decision in multi class traffic based Next Generation Wireless Networks (NGWN. The proposed Fuzzy Neural call admission control (FNCAC scheme is an integrated CAC module that combines the linguistic control capabilities of the fuzzy logic controller and the learning capabilities of the neural networks. The model is based on recurrent radial basis function networks which have better learning and adaptability that can be used to develop intelligent system to handle the incoming traffic in an heterogeneous network environment. The simulation results are optimistic and indicates that the proposed FNCAC algorithm performs better than the other two methods and the call blocking probability is minimal when compared to other two methods.

  9. A QoS Provisioning Recurrent Neural Network based Call Admission Control for beyond 3G Networks

    CERN Document Server

    S., Ramesh Babu H; S, Satyanarayana P

    2010-01-01

    The Call admission control (CAC) is one of the Radio Resource Management (RRM) techniques that plays influential role in ensuring the desired Quality of Service (QoS) to the users and applications in next generation networks. This paper proposes a fuzzy neural approach for making the call admission control decision in multi class traffic based Next Generation Wireless Networks (NGWN). The proposed Fuzzy Neural call admission control (FNCAC) scheme is an integrated CAC module that combines the linguistic control capabilities of the fuzzy logic controller and the learning capabilities of the neural networks. The model is based on recurrent radial basis function networks which have better learning and adaptability that can be used to develop intelligent system to handle the incoming traffic in an heterogeneous network environment. The simulation results are optimistic and indicates that the proposed FNCAC algorithm performs better than the other two methods and the call blocking probability is minimal when compa...

  10. Predicting Model forComplex Production Process Based on Dynamic Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the comparison of several methods of time series predicting, this paper points out that it is nec-essary to use dynamic neural network in modeling of complex production process. Because self-feedback and mutu-al-feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic ap-proximation, and can describe any non-linear dynamic system. After the structure and mathematical description be-ing given, dynamic back-propagation (BP) algorithm of training weights of Elman neural network is deduced. Atlast, the network is used to predict ash content of black amber in jigging production process. The results show thatthis neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex pro-duction process.

  11. Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Saumil G. Merchant

    2010-01-01

    Full Text Available Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a design of block-based neural networks (BbNNs on FPGAs capable of dynamic adaptation and online training. Specifically the network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The potential and functionality of the platform are demonstrated using several case studies.

  12. Fuzzy logic systems are equivalent to feedforward neural networks

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    2000-01-01

    Fuzzy logic systems and feedforward neural networks are equivalent in essence. First, interpolation representations of fuzzy logic systems are introduced and several important conclusions are given. Then three important kinds of neural networks are defined, i.e. linear neural networks, rectangle wave neural networks and nonlinear neural networks. Then it is proved that nonlinear neural networks can be represented by rectangle wave neural networks. Based on the results mentioned above, the equivalence between fuzzy logic systems and feedforward neural networks is proved, which will be very useful for theoretical research or applications on fuzzy logic systems or neural networks by means of combining fuzzy logic systems with neural networks.

  13. Employing Neocognitron Neural Network Base Ensemble Classifiers To Enhance Efficiency Of Classification In Handwritten Digit Datasets

    Directory of Open Access Journals (Sweden)

    Neera Saxena

    2011-07-01

    Full Text Available This paper presents an ensemble of neo-cognitron neural network base classifiers to enhance the accuracy of the system, along the experimental results. The method offers lesser computational preprocessing in comparison to other ensemble techniques as it ex-preempts feature extraction process before feeding the data into base classifiers. This is achieved by the basic nature of neo-cognitron, it is a multilayer feed-forward neural network. Ensemble of such base classifiers gives class labels for each pattern that in turn is combined to give the final class label for that pattern. The purpose of this paper is not only to exemplify learning behaviour of neo-cognitron as base classifiers, but also to purport better fashion to combine neural network based ensemble classifiers.

  14. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear......-displacement trajectories. The proposed neural network controller is therefore trained based on data derived from these desired forcedisplacement curves, where the optimal relation between friction force level and response amplitude is determined explicitly by simply maximizing the damping ratio of the targeted vibration...... to determine the damper current based on the derived optimal damper force. For that reason an inverse MR damper model is also designed based on the neural network identification of the particular rotary MR damper. The performance of the proposed controller is compared to that of an optimal pure viscous damper...

  15. Relations Between Wavelet Network and Feedforward Neural Network

    Institute of Scientific and Technical Information of China (English)

    刘志刚; 何正友; 钱清泉

    2002-01-01

    A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.

  16. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  17. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. PMID:26506019

  18. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method.

  19. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  20. RRAM-based hardware implementations of artificial neural networks: progress update and challenges ahead

    Science.gov (United States)

    Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.

    2016-02-01

    Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.

  1. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network

    International Nuclear Information System (INIS)

    Coal ash fusion temperature is important to boiler designers and operators of power plants. Fusion temperature is determined by the chemical composition of coal ash, however, their relationships are not precisely known. A novel neural network, ACO-BP neural network, is used to model coal ash fusion temperature based on its chemical composition. Ant colony optimization (ACO) is an ecological system algorithm, which draws its inspiration from the foraging behavior of real ants. A three-layer network is designed with 10 hidden nodes. The oxide contents consist of the inputs of the network and the fusion temperature is the output. Data on 80 typical Chinese coal ash samples were used for training and testing. Results show that ACO-BP neural network can obtain better performance compared with empirical formulas and BP neural network. The well-trained neural network can be used as a useful tool to predict coal ash fusion temperature according to the oxide contents of the coal ash

  2. Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-hong; XIE An-guo; SHEN Feng-man

    2007-01-01

    A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.

  3. Quantum neural network based machine translator for Hindi to English.

    Science.gov (United States)

    Narayan, Ravi; Singh, V P; Chakraverty, S

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation. PMID:24977198

  4. Neural Network Based Augmented Reality for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    P.Mithun

    2013-04-01

    Full Text Available The development in technology opened the door of fiction and reached reality. Major medical applications deals on robot-assisted surgery and image guided surgery. Because of this, substantial research is going on to implement Augmented Reality (AR in instruments which incorporate the surgeon’s intuitive capabilities. Augmented reality is the grouping of virtual entity or 3D stuffs which are overlapped on live camera feed information. The decisive aim of augmented reality is to enhancing the virtual video and a 3D object onto a real world on which it will raise the person’s conceptual understanding of the subject. In this paper we described a solution for initial prediction of tumour cells in MRI images of human brain using image processing technique the output of which will be the 3D slicedimage of the human brain. The sliced image is then virtually embedded on the top of human head during the time of surgery so that the surgeon can exactly locate the spot to be operated. Before augmenting the 3D sliced image Artificial neural network is used to select the appropriate image that contains tumor automatically in order to make the system more efficient.

  5. Nonlinear modeling of PEMFC based on neural networks identification

    Institute of Scientific and Technical Information of China (English)

    SUN Tao; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Levenberg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.

  6. A neural network based reputation bootstrapping approach for service selection

    Science.gov (United States)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  7. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  8. Rule Extraction from Trained Artificial Neural Network Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jian; ZHANG Li-xia

    2002-01-01

    This paper discusses how to extract symbolic rules from trained artificial neural network (ANN) in domains involving classification using genetic algorithms (GA). Previous methods based on an exhaustive analysis of network connections and output values have already been demonstrated to be intractable in that the scale-up factor increases with the number of nodes and connections in the network.Some experiments explaining effectiveness of the presented method are given as well.

  9. RBF neural network and active circles based algorithm for contours extraction

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhiheng; Zeng Delu; Xie Shengli

    2007-01-01

    For the contours extraction from the images, active contour model and self-organizing map based approach are popular nowadays. But they are still confronted with the problems that the optimization of energy function will trap in local minimums and the contour evolutions greatly depend on the initial contour selection. Addressing to these problems, a contours extraction algorithm based on RBF neural network is proposed here. A series of circles with adaptive radius and center is firstly used to search image feature points that are scattered enough. After the feature points are clustered, a group of radial basis functions are constructed. Using the pixels' intensities and gradients as the input vector, the final object contour can be obtained by the predicting ability of the neural network. The RBF neural network based algorithm is tested on three kinds of images, such as changing topology, complicated background, and blurring or noisy boundary. Simulation results show that the proposed algorithm performs contours extraction greatly.

  10. Stability and synchronization of memristor-based fractional-order delayed neural networks.

    Science.gov (United States)

    Chen, Liping; Wu, Ranchao; Cao, Jinde; Liu, Jia-Bao

    2015-11-01

    Global asymptotic stability and synchronization of a class of fractional-order memristor-based delayed neural networks are investigated. For such problems in integer-order systems, Lyapunov-Krasovskii functional is usually constructed, whereas similar method has not been well developed for fractional-order nonlinear delayed systems. By employing a comparison theorem for a class of fractional-order linear systems with time delay, sufficient condition for global asymptotic stability of fractional memristor-based delayed neural networks is derived. Then, based on linear error feedback control, the synchronization criterion for such neural networks is also presented. Numerical simulations are given to demonstrate the effectiveness of the theoretical results. PMID:26282374

  11. Elevator Group-Control Policy Based on Neural Network Optimized by Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong; WAN Jianru; ZHANG Zhichao; LIU Yingpei; LI Guangye

    2009-01-01

    Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algo-rithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.

  12. Neural Networks: Implementations and Applications

    OpenAIRE

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  13. LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is advanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs' stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).

  14. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  15. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.

    Science.gov (United States)

    Velmurugan, G; Rakkiyappan, R; Cao, Jinde

    2016-01-01

    In this paper, we consider the problem of finite-time synchronization of a class of fractional-order memristor-based neural networks (FMNNs) with time delays and investigated it potentially. By using Laplace transform, the generalized Gronwall's inequality, Mittag-Leffler functions and linear feedback control technique, some new sufficient conditions are derived to ensure the finite-time synchronization of addressing FMNNs with fractional order α:1memristor-based neural networks. Finally, three numerical examples are presented to show the effectiveness of our proposed theoretical results. PMID:26547242

  16. Fuzzy System for Prognosis of Tank Failure Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    Li Guan

    2005-01-01

    A system for prognosis of tank failures was set up based on the results of analysis on fault phenomena. An algorithm incorporating fuzzy mathematics with the BP neural network was used to solve this prognosis model, and the availability of this model was also analyzed. This neural network-based fuzzy system for prognosis of tank failures has been put into operation at Huangdao oil terminal. The application results have shown that this system is effective for real-time prognosis of various potential tank failures and timely adoption of mitigative measures to avoid major tank accidents, which would have great significance for safeguarding the safe operation of the oil terminal.

  17. Optimization of a neural network based direct inverse control for controlling a quadrotor unmanned aerial vehicle

    OpenAIRE

    Heryanto M Ary; Wahab Wahidin; Kusumoputro Benyamin

    2015-01-01

    UAVs are mostly used for surveillance, inspection and data acquisition. We have developed a Quadrotor UAV that is constructed based on a four motors with a lift-generating propeller at each motors. In this paper, we discuss the development of a quadrotor and its neural networks direct inverse control model using the actual flight data. To obtain a better performance of the control system of the UAV, we proposed an Optimized Direct Inverse controller based on re-training the neural networks wi...

  18. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  19. Evaluation of Beef Marbling Grade Based on Advanced Watershed Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Xiangyan Meng

    2014-02-01

    Full Text Available As to the problem of inaccurate in traditional grade method of beef marbling, a automatic grading system based on computer vision had been founded and was used to predict the beef quality grade of Chinese yellow cattle. Image processing was used to automatically evaluate the beef marbling grade. Segmentation methods used in rib-eye image of beef carcass was improved watershed algorithm. All grading indicators were obtained by image processing automatically. Four grading indicators, which characterize the size, number and distribution of marbling particles, were proposed for the inputs of neural network prediction model. The experimental results indicated that the image processing methods were effective. The grading system based on computer vision and neural network model can better predict the beef quality grading. The prediction accuracy of beef marbling grade was 86.84%. Algorithm proposed in this study proved the image processing and neural network modeling is an effective method for beef marbling grading.

  20. ARTIFICIAL NEURAL NETWORK BASED DISCRIMINATION OF MINELIKE OBJECTS IN INFRARED IMAGES

    Directory of Open Access Journals (Sweden)

    G.Suganthi

    2014-09-01

    Full Text Available An artificial neural network (ANN model with a simple architecture containing a single hidden layer is presented to discriminate the landmine objects from the acquired infrared images. The proposed method consists of preprocessing, segmentation, feature extraction and ANN based classification. Texture features based on gray level co-occurrence matrix (GLCM are considered as inputs to the neural network classifier. The proposed method is tested on the infrared images acquired from two different soil types namely black cotton soil and Maharashtra sand. The ability of the back propagation neural network in discriminating the landmines from the clutters in the infrared images acquired from inhomogeneous soil is discussed. The results of the field experiments carried out at the outdoor land mine detection test facility, DRDO, Pune are presented. The results are encouraging.

  1. Optimization with artificial neural network systems - A mapping principle and a comparison to gradient based methods

    Science.gov (United States)

    Leong, Harrison Monfook

    1988-01-01

    General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.

  2. Multi-AUV Hunting Algorithm Based on Bio-inspired Neural Network in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2015-11-01

    Full Text Available The multi-AUV hunting problem is one of the key issues in multi-robot system research. In order to hunt the target efficiently, a new hunting algorithm based on a bio-inspired neural network has been proposed in this paper. Firstly, the AUV’s working environment can be represented, based on the biological-inspired neural network model. There is one-to-one correspondence between each neuron in the neural network and the position of the grid map in the underwater environment. The activity values of biological neurons then guide the AUV’s sailing path and finally the target is surrounded by AUVs. In addition, a method called negotiation is used to solve the AUV’s allocation of hunting points. The simulation results show that the algorithm used in the paper can provide rapid and highly efficient path planning in the unknown environment with obstacles and non-obstacles.

  3. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods.

  4. Reinforcement-Based Fuzzy Neural Network ontrol with Automatic Rule Generation

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A reinforcemen-based fuzzy neural network control with automatic rule generation RBFNNC) is pro-posed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based onthe state variables of object system. RBFNNC was applied to a cart-pole balancing system and simulation resultshows significant improvements on the rule generation.

  5. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions

    International Nuclear Information System (INIS)

    Highlights: • Four hybrid algorithms are proposed for the wind speed decomposition. • Adaboost algorithm is adopted to provide a hybrid training framework. • MLP neural networks are built to do the forecasting computation. • Four important network training algorithms are included in the MLP networks. • All the proposed hybrid algorithms are suitable for the wind speed predictions. - Abstract: The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS

  6. 4-CBA Soft Sensor Based on Fuzzy CMAC Neural Networks

    Institute of Scientific and Technical Information of China (English)

    杜文莉; 钱锋; 刘漫丹; 张凯

    2005-01-01

    Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.

  7. A neutron spectrum unfolding computer code based on artificial neural networks

    International Nuclear Information System (INIS)

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in

  8. Correlation methods of base-level cycle based on wavelet neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The authors discussed the method of wavelet neural network (WNN) for correlation of base-level cycle. A new vectored method of well log data was proposed. Through the training with the known data set, the WNN can remenber the cycle pattern characteristic of the well log curves. By the trained WNN to identify the cycle pattern in the vectored log data, the ocrrelation process among the well cycles was completed. The application indicates that it is highly efficient and reliable in base-level cycle correlation.

  9. Parallel Neural Network-Based Motion Controller for Autonomous Underwater Vehicles

    Institute of Scientific and Technical Information of China (English)

    GAN Yong; WANG Li-rong; WAN Lei; XU Yu-ru

    2005-01-01

    A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV "IUV-IV" and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller's performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.

  10. NEURAL NETWORK APPROACH TO SURFACE BLENDING BASED ON DI GITIZED POINTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A neural network approach is employed to deal with blending problem with surface construction based on digitized points, and some r elated computational cases are presented. Compared with the NURBS method, this n eural network based approach doesn't need the complex formula derivation as long as a limited number of offset points are got, and its accuracy can meet the gen eral engineering needs.

  11. Analysis on evaluation ability of nonlinear safety assessment model of coal mines based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-liang; LIU Hai-bo; LIU Ai-hua

    2004-01-01

    Based on the integration analysis of goods and shortcomings of various methods used in safety assessment of coal mines, combining nonlinear feature of mine safety sub-system, this paper establishes the neural network assessment model of mine safety, analyzes the ability of artificial neural network to evaluate mine safety state, and lays the theoretical foundation of artificial neural network using in the systematic optimization of mine safety assessment and getting reasonable accurate safety assessment result.

  12. Safety Prediction Analysis of the Agricultural Products Processing Based on the BP Neural Network

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-09-01

    Full Text Available By using BP neural network algorithm, this study aims at prompting the accuracy of safety prediction of the agriculture products processing. The science prediction of the deep-frozen dumplings' shelf-life has an important guiding significance for human health and the safety of quick-frozen food. Artificial Neural Network (ANN is a kind of information processing system which is established by simulating the human nervous system. Based on these, by using the effective theory of integrated temperature combined with BP neural network method to predict the shelf-life of the frozen dumplings in this study, we aim at providing a theory basis for monitoring and controlling the quality change in the storage process of deep-frozen dumplings’ temperature fluctuations. Finally, an example is given to show that it is very effective by using the method adopted in this study.

  13. RBF neural network based $\\mathcal{H}_{\\infty}$ synchronization for unknown chaotic systems

    Indian Academy of Sciences (India)

    Choon Ki Ahn

    2010-08-01

    In this paper, we propose a new $\\mathcal{H}_{\\infty}$ synchronization strategy, called a Radial Basis Function Neural Network $\\mathcal{H}_{\\infty}$ synchronization (RBFNNHS) strategy, for unknown chaotic systems in the presence of external disturbance. In the proposed framework, a radial basis function neural network (RBFNN) is constructed as an alternative to approximate the unknown nonlinear function of the chaotic system. Based on this neural network and linear matrix inequality (LMI) formulation, the RBFNNHS controller and the learning laws are presented to reduce the effect of disturbance to an $\\mathcal{H}_{\\infty}$ norm constraint. It is shown that finding the RBFNNHS controller and the learning laws can be transformed into the LMI problem and solved using the convex optimization method. A numerical example is presented to demonstrate the validity of the proposed RBFNNHS scheme.

  14. Artificial Neural Networks Based Modeling and Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    R. S.M.N. Malar

    2009-01-01

    Full Text Available Continuous Stirred Tank Reactor (CSTR is one of the common reactors in chemical plant. Problem statement: Developing a model incorporating the nonlinear dynamics of the system warrants lot of computation. An efficient control of the product concentration can be achieved only through accurate model. Approach: In this study, attempts were made to alleviate the above mentioned problem using “Artificial Intelligence” (AI techniques. One of the AI techniques namely Artificial Neural Networks (ANN was used to model the CSTR incorporating its non-linear characteristics. Two nonlinear models based control strategies namely internal model control and direct inverse control were designed using the neural networks and applied to the control of isothermal CSTR. Results: The simulation results for the above control schemes with set point tracking were presented. Conclusion: Results indicated that neural networks can learn accurate models and give good non-linear control when model equations are not known.

  15. A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks

    Institute of Scientific and Technical Information of China (English)

    Chun-hua LI; Xin-jian ZHU; Guang-yi CAO; Wan-qi HU; Sheng SUI; Ming-ruo HU

    2009-01-01

    To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP for traditional control strategies. We propose a fuzzy neural network controller (FNNC), which combines the reasoning capability of fuzzy logical systems and the learning capability of neural networks, to track the MPP. With a derived learning algorithm, the parameters of the FNNC are updated adaptively. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the FNNC. Simulation results show that the proposed control algorithm provides much better tracking performance compared with the fuzzy logic control algorithm.

  16. Intelligent predicting approach of peritoneal fluid absorption rate based-on neural network

    Institute of Scientific and Technical Information of China (English)

    Mei ZHANG; Yueming HU; Tao WANG

    2003-01-01

    This paper addresses the important intelligent predicting problem of peritoneal absorption rate in the peritoneal dialysis treament process of renal failure. As the index of dialysis adequacy, KT/V and Ccr are widely used and accepted. However,growing evidence suggests that the fluid balance may play a critical role in dialysis adequacy and patient outcome. Peritoneal fluid absorption decreases the peritoneal fluid removal. Understanding the peritoneal fluid absorption rate will help clinicians to opthnize the dialysis dwell time. The neural network approach is applied to the prediction of peritoneal absorption rate. Compared with multivariable regression method, the experimental results showed that neural network method has an advantage over multivariable regression. The application of this predicting method based-on neural network in clinic is instructive.

  17. Nonlinear adaptive control systems design of BTT missile based on fully tuned RBF neural networks

    Science.gov (United States)

    Hu, Yunan; Jin, Yuqiang; Li, Jing

    2003-09-01

    Based on fully tuned RBF neural networks and backstepping control techniques, a novel nonlinear adaptive control scheme is proposed for missile control systems with a general set of uncertainties. The effect of the uncertainties is synthesized one term in the design procedure. Then RBF neural networks are used to eliminate its effect. The nonlinear adaptive controller is designed using backstepping control techniques. The control problem is resolved while the control coefficient matrix is unknown. The adaptive tuning rules for updating all of the parameters of the fully tuned RBF neural networks are firstly derived by the Lyapunov stability theorem. Finally, nonlinear 6-DOF numerical simulation results for a BTT missile model are presented to demonstrate the effectiveness of the proposed method.

  18. Diagnostics of Nuclear Reactor Accidents Based on Particle Swarm Optimization Trained Neural Networks

    International Nuclear Information System (INIS)

    Automation in large, complex systems such as chemical plants, electrical power generation, aerospace and nuclear plants has been steadily increasing in the recent past. automated diagnosis and control forms a necessary part of these systems,this contains thousands of alarms processing in every component, subsystem and system. so the accurate and speed of diagnosis of faults is an important factors in operation and maintaining their health and continued operation and in reducing of repair and recovery time. using of artificial intelligence facilitates the alarm classifications and faults diagnosis to control any abnormal events during the operation cycle of the plant. thesis work uses the artificial neural network as a powerful classification tool. the work basically is has two components, the first is to effectively train the neural network using particle swarm optimization, which non-derivative based technique. to achieve proper training of the neural network to fault classification problem and comparing this technique to already existing techniques

  19. Research on safety assessment of gas explosion hazard in heading face based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    TIAN Shui-cheng; ZHU Li-jun; CHEN Yong-gang; WANG Li

    2005-01-01

    According to hazard theory and the principle of selecting assessment index,combining the causes and mechanism of gas explosion, established assessment index system of gas explosion in heading face. Based on the method of gray clustering, principle of BP neural network and characters of gas explosion in heading face, safety assessment procedural diagram of BP neural network on gas explosion hazard in heading face is designed. Meanwhile, concrete heading face of the gas explosion hazard is assessed by safety assessment method of BP neural network and grades of comprehensive safety assessment are got. The static and dynamic safety assessment can be achieved by this method. It is practical to improve safety management and to develop safety assessment technology in coalmine.

  20. A Prediction Model of Peasants’ Income in China Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to the related data affecting the peasants’ income in China in the years 1978-2008,a total of 13 indices are selected,such as agricultural population,output value of primary industry,and rural employees.Based on the standardized method and BP neural network method,the peasants’ income and the artificial neural network model are established and analyzed.Results show that the simulation value agrees well with the real value;the neural network model with improved BP algorithm has high prediction accuracy,rapid convergence rate and good generalization ability.Finally,suggestions are put forward to increase the peasants’ income,such as promoting the process of urbanization,developing small and medium-sized enterprises in rural areas,encouraging intensive operation,and strengthening the rural infrastructure and agricultural science and technology input.

  1. FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dailin; CHEN Youping; AI Wu; ZHOU Zude; KONG Ching Tom

    2008-01-01

    Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.

  2. Research on fault location technology based on BP neural network in DWDM optical network

    Institute of Scientific and Technical Information of China (English)

    LIAO Xiao-min; ZHANG Yin-fa; YANG Shi-ping; LIN Chu-shan

    2008-01-01

    BP neural network is introduced to the fault location field of DWDM optical network in this paper. The alarm characteris-tics of the optical network equipments are discussed, and alarm vector and fault vector diagrams are generated by analyzingsome typical instances. A 17×14×18 BP neural network structure is constructed and trained by using MATLAB. Bycomparing the training performances, the best training algorithm of fault location among the three training algorithms ischosen. Numerical simulation results indicate that the sum squared error (SSE) of fault location is less than 0.01, and theprocessing time is less than 100 ms. This method not only well deals with the missing alarms or false alarms, but alsoimproves the fault location accuracy and real-time ability.

  3. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a {sup 6}LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  4. One-way hash function based on hyper-chaotic cellular neural network

    Institute of Scientific and Technical Information of China (English)

    Yang Qun-Ting; Gao Tie-Gang

    2008-01-01

    The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge-Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corresponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability.

  5. Neural-network-based speed controller for induction motors using inverse dynamics model

    Science.gov (United States)

    Ahmed, Hassanein S.; Mohamed, Kamel

    2016-08-01

    Artificial Neural Networks (ANNs) are excellent tools for controller design. ANNs have many advantages compared to traditional control methods. These advantages include simple architecture, training and generalization and distortion insensitivity to nonlinear approximations and nonexact input data. Induction motors have many excellent features, such as simple and rugged construction, high reliability, high robustness, low cost, minimum maintenance, high efficiency, and good self-starting capabilities. In this paper, we propose a neural-network-based inverse model for speed controllers for induction motors. Simulation results show that the ANNs have a high tracing capability.

  6. Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle

    Institute of Scientific and Technical Information of China (English)

    Dan Necsulescu; Yi-Wu Jiang; Bumsoo Kim

    2007-01-01

    This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is nonminimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.

  7. Audio Watermarking Based on HAS and Neural Networks in DCT Domain

    Directory of Open Access Journals (Sweden)

    Cheng Ji-Shiung

    2003-01-01

    Full Text Available We propose a new intelligent audio watermarking method based on the characteristics of the HAS and the techniques of neural networks in the DCT domain. The method makes the watermark imperceptible by using the audio masking characteristics of the HAS. Moreover, the method exploits a neural network for memorizing the relationships between the original audio signals and the watermarked audio signals. Therefore, the method is capable of extracting watermarks without original audio signals. Finally, the experimental results are also included to illustrate that the method significantly possesses robustness to be immune against common attacks for the copyright protection of digital audio.

  8. Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System using Neural Network

    CERN Document Server

    Pradeep, J; Himavathi, S; 10.5121/ijcsit.2011.3103

    2011-01-01

    An off-line handwritten alphabetical character recognition system using multilayer feed forward neural network is described in the paper. A new method, called, diagonal based feature extraction is introduced for extracting the features of the handwritten alphabets. Fifty data sets, each containing 26 alphabets written by various people, are used for training the neural network and 570 different handwritten alphabetical characters are used for testing. The proposed recognition system performs quite well yielding higher levels of recognition accuracy compared to the systems employing the conventional horizontal and vertical methods of feature extraction. This system will be suitable for converting handwritten documents into structural text form and recognizing handwritten names.

  9. Discrimination of neutrons and {\\gamma}-rays in liquid scintillator based on Elman neural network

    CERN Document Server

    Zhang, Cai-Xun; Zhao, Jian-Ling; Wang, Li; Yu, Xun-Zhen; Zhu, Jing-Jun; Xing, Hao-Yang

    2015-01-01

    A new neutron and {\\gamma} (n/{\\gamma}) discrimination method based on Elman Neural Network (ENN) was put forward to improve the n/{\\gamma} discrimination performance of liquid scintillator (LS). In this study, neutron and {\\gamma} data acquired from EJ-335 which was exposed in Am-Be radiation field was discriminated using ENN. The difference of n/{\\gamma} discrimination performance between using ENN and Back Propagation Neural Network (BPNN) is that ENN gave a improvement over BPNN in n/{\\gamma} discrimination with the increasing increasing of the Figure of Merit (FOM) from 0.907 to 0.953.

  10. Identification Simulation for Dynamical System Based on Genetic Algorithm and Recurrent Multilayer Neural Network

    Institute of Scientific and Technical Information of China (English)

    鄢田云; 张翠芳; 靳蕃

    2003-01-01

    Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).

  11. Fuzzy neural network control of underwater vehicles based on desired state programming

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao; LI Ye; XU Yu-ru; WAN Lei; QIN Zai-bai

    2006-01-01

    Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn't been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle.The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model's uncertainty and external disturbance, which has theoretical and practical value.

  12. Neural Network Based Algorithm and Simulation of Information Fusion in the Coal Mine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The concepts of information fusion and the basic principles of neural networks are introduced.Neural networks were introduced as a way of building an information fusion model in a coal mine monitoring system.This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems.The information fusion mode was analyzed.An algorithm was designed based on this analysis and some simulation results were given.Finally, conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.

  13. Neural network and genetic algorithm based global path planning in a static environment

    Institute of Scientific and Technical Information of China (English)

    DU Xin; CHEN Hua-hua; GU Wei-kang

    2005-01-01

    Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective.

  14. A Study of Maneuvering Control for an Air Cushion Vehicle Based on Back Propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Guo-liang; LI Shu-zhi

    2009-01-01

    A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online.

  15. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.

    Science.gov (United States)

    Velmurugan, G; Rakkiyappan, R; Cao, Jinde

    2016-01-01

    In this paper, we consider the problem of finite-time synchronization of a class of fractional-order memristor-based neural networks (FMNNs) with time delays and investigated it potentially. By using Laplace transform, the generalized Gronwall's inequality, Mittag-Leffler functions and linear feedback control technique, some new sufficient conditions are derived to ensure the finite-time synchronization of addressing FMNNs with fractional order α:1neural networks. Finally, three numerical examples are presented to show the effectiveness of our proposed theoretical results.

  16. A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above.

  17. CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL

    Directory of Open Access Journals (Sweden)

    Dr.A.TRIVEDI

    2011-04-01

    Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.

  18. Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment

    Directory of Open Access Journals (Sweden)

    Garima Singh

    2011-01-01

    Full Text Available With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN has been proposed for voltage stability margin estimation which is an indication of the power system's proximity to voltage collapse. The proposed approach utilizes a hybrid algorithm that integrates genetic algorithm and the back propagation neural network. The proposed algorithm aims to combine the capacity of GAs in avoiding local minima and at the same time fast execution of the BP algorithm. Input features for GABPNN are selected on the basis of angular distance-based clustering technique. The performance of the proposed GABPNN approach has been compared with the most commonly used gradient based BP neural network by estimating the voltage stability margin at different loading conditions in 6-bus and IEEE 30-bus system. GA based neural network learns faster, at the same time it provides more accurate voltage stability margin estimation as compared to that based on BP algorithm. It is found to be suitable for online applications in energy management systems.

  19. Artificial Neural Network-Based Fault Distance Locator for Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Anamika Jain

    2013-01-01

    Full Text Available This paper analyses two different approaches of fault distance location in a double circuit transmission lines, using artificial neural networks. The single and modular artificial neural networks were developed for determining the fault distance location under varying types of faults in both the circuits. The proposed method uses the voltages and currents signals available at only the local end of the line. The model of the example power system is developed using Matlab/Simulink software. Effects of variations in power system parameters, for example, fault inception angle, CT saturation, source strength, its X/R ratios, fault resistance, fault type and distance to fault have been investigated extensively on the performance of the neural network based protection scheme (for all ten faults in both the circuits. Additionally, the effects of network changes: namely, double circuit operation and single circuit operation, have also been considered. Thus, the present work considers the entire range of possible operating conditions, which has not been reported earlier. The comparative results of single and modular neural network indicate that the modular approach gives correct fault location with better accuracy. It is adaptive to variation in power system parameters, network changes and works successfully under a variety of operating conditions.

  20. A new grey forecasting model based on BP neural network and Markov chain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1,1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(1,1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).

  1. Fault Diagnosis and Classification in Urban Rail Vehicle Auxiliary Inverter Based on Wavelet Packet and Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Dechen Yao

    2013-01-01

    Full Text Available In this paper we present a novel method in fault recognition and classification in urban rail vehicle auxiliary inverter based on wavelet packet and Elman neural network. First, the original fault voltage signals are decomposed by wavelet packet. Next, an automatic feature extraction algorithm is constructed. Finally, those wavelet packet energy eigenvectors are used as Elman neural network input parameters to realize intelligent fault diagnosis. The result shows that the Elman neural network is better than BP neural network, it is effective to distinguish the state of the urban rail vehicle auxiliary inverter.

  2. Neural Networks for Fingerprint Recognition

    OpenAIRE

    Baldi, Pierre; Chauvin, Yves

    1993-01-01

    After collecting a data base of fingerprint images, we design a neural network algorithm for fingerprint recognition. When presented with a pair of fingerprint images, the algorithm outputs an estimate of the probability that the two images originate from the same finger. In one experiment, the neural network is trained using a few hundred pairs of images and its performance is subsequently tested using several thousand pairs of images originated from a subset of the database corresponding to...

  3. Neural Networks and Photometric Redshifts

    OpenAIRE

    Tagliaferri, Roberto; Longo, Giuseppe; Andreon, Stefano; Capozziello, Salvatore; Donalek, Ciro; Giordano, Gerardo

    2002-01-01

    We present a neural network based approach to the determination of photometric redshift. The method was tested on the Sloan Digital Sky Survey Early Data Release (SDSS-EDR) reaching an accuracy comparable and, in some cases, better than SED template fitting techniques. Different neural networks architecture have been tested and the combination of a Multi Layer Perceptron with 1 hidden layer (22 neurons) operated in a Bayesian framework, with a Self Organizing Map used to estimate the accuracy...

  4. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  5. Image Classification System Based on Cortical Representations and Unsupervised Neural Network Learning

    NARCIS (Netherlands)

    Petkov, Nikolay

    1995-01-01

    A preprocessor based on a computational model of simple cells in the mammalian primary visual cortex is combined with a self-organising artificial neural network classifier. After learning with a sequence of input images, the output units of the system turn out to correspond to classes of input imag

  6. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  7. Direction-of-change forecasting using a volatility-based recurrent neural network

    NARCIS (Netherlands)

    S.D. Bekiros; D.A. Georgoutsos

    2008-01-01

    This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction-of-change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub-period 8 Ap

  8. Condition Monitoring for DC-link Capacitors Based on Artificial Neural Network Algorithm

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim;

    2015-01-01

    hardware will reduce the cost, and therefore could be more promising for industry applications. A condition monitoring method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implementation of the ANN to the DC-link capacitor condition monitoring in a back...

  9. Wind Turbine Fault Detection based on Artificial Neural Network Analysis of SCADA Data

    DEFF Research Database (Denmark)

    Herp, Jürgen; S. Nadimi, Esmaeil

    2015-01-01

    Slowly developing faults in wind turbine can, when not detected and fixed on time, cause severe damage and downtime. We are proposing a fault detection method based on Artificial Neural Networks (ANN) and the recordings from Supervisory Control and Data Acquisition (SCADA) systems installed in wind...

  10. Artificial Neural Network Algorithm for Condition Monitoring of DC-link Capacitors Based on Capacitance Estimation

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim;

    2015-01-01

    challenges. A capacitance estimation method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implemented ANN estimated the capacitance of the DC-link capacitor in a back-toback converter. Analysis of the error of the capacitance estimation is also given...

  11. A New Method for Studying the Periodic System Based on a Kohonen Neural Network

    Science.gov (United States)

    Chen, David Zhekai

    2010-01-01

    A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…

  12. Identification of children's activity type with accelerometer-based neural networks

    NARCIS (Netherlands)

    Vries, S.I. de; Engels, M.; Garre, F.G.

    2011-01-01

    Purpose: The study's purpose was to identify children's physical activity type using artificial neural network (ANN) models based on uniaxial or triaxial accelerometer data from the hip or the ankle. Methods: Fifty-eight children (31 boys and 27 girls, age range = 9-12 yr) performed the following ac

  13. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  14. Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.

    Science.gov (United States)

    Qu, Hong; Yi, Zhang; Yang, Simon X

    2013-06-01

    Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach. PMID:23144039

  15. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  16. Modelling of the Relaxation Least Squares-Based Neural Networks and Its Application

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A relaxation least squares-based learning algorithm for neural networks is proposed. Not only does it have a fast convergence rate, but it involves less computation quantity. Therefore, it is suitable to deal with the case when a network has a large scale but the number of training data is very limited. It has been used in converting furnace process modelling, and impressive result has been obtained.

  17. Neural network-based software sensor: Data set design and application to a continuous pulp digester

    OpenAIRE

    Dufour, Pascal; Bhartiya, Sharad; Dhurjati, Prasad S.; Doyle Iii, Francis J.

    2005-01-01

    The authors acknowledge the Control Engineering Practice journal for his copyright policies & self-archiving. More open archives publications of Pascal Dufour are available on: http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008 International audience A neural network based strategy for detection of feedstock variations in a continuous pulp digester is presented. A feedforward two-layer perceptron network is trained to detect and isolate unmeasured variations in the feedstock. Tra...

  18. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. PMID:26363960

  19. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  20. Adaptive control of machining process based on extended entropy square error and wavelet neural network

    Institute of Scientific and Technical Information of China (English)

    LAI Xing-yu; YE Bang-yan; LI Wei-guang; YAN Chun-yan

    2007-01-01

    Combining information entropy and wavelet analysis with neural network, an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error (EESE) and wavelet neural network (WNN). Extended entropy square error function is defined and its availability is proved theoretically. Replacing the mean square error criterion of BP algorithm with the EESE criterion, the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter, translating parameter of the wavelet and neural network weights. Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network. The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions, thus improving the machining efficiency and protecting the tool.

  1. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  2. Model of Information Security Risk Assessment based on Improved Wavelet Neural Network

    OpenAIRE

    Gang Chen; Dawei Zhao

    2013-01-01

    This paper concentrates on the information security risk assessment model utilizing the improved wavelet neural network. The structure of wavelet neural network is similar to the multi-layer neural network, which is a feed-forward neural network with one or more inputs. Afterwards, we point out that the training process of wavelet neural networks is made up of four steps until the value of error function can satisfy a pre-defined error criteria. In order to enhance the quality of information ...

  3. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  4. Finite-time synchronization for memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Abdurahman, Abdujelil; Jiang, Haijun; Teng, Zhidong

    2015-09-01

    Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results. PMID:26024807

  5. Filtering and Estimation of Vehicular Dead Reckoning System Based on Hopfield Neural Network

    Institute of Scientific and Technical Information of China (English)

    毕军; 付梦印; 张启鸿

    2003-01-01

    The algorithm of Hopfield neural network filtering and estimation is studied. The model of vehicular dead reckoning system fitting for the algorithm is constructed, and the design scheme of system filtering and estimation based on Hopfield network is proposed. Compared with Kalman filter, the algorithm does not require very precise system model and the prior knowledge of noise statistics and does not diverge easily. The simulation results show that the vehicular dead reckoning system based on Hopfield network filtering and estimation has the good position precision, and needn't require the inertial sensors with high precision. Therefore, the algorithm has the good practicability.

  6. Neural network-based method for intrathoracic airway detection from three-dimensional CT images

    International Nuclear Information System (INIS)

    This paper presents a neural network-based method for intrathoracic airway detection and segmentation from three-dimensional HRCT images. Two feed-forward neural networks are independently trained to identify various airway appearances in 3-dimensional CT images. While the first network identifies potential airways located adjacent to vessels, the second network identifies potential airways by assessing the existence of walls surrounding airways. The two networks are combined to construct a dual-network classifier taking its inputs from a 21 x 21 moving subimage window: (1) raw gray-level subimage and (2) 4 directional profiles. By design, each network provides a superset of airways that are present in the CT images and only the airways identified by both networks are considered reliable. After the networks are trained by the generalized delta rule with momentum using a limited number of airway/non-airway samples apart from the validation data sets, the generalization performance of the networks is assessed with two independent standards consisting of 282 and 167 observer traced airways. The performance of the current method is compared with that of the conventional seeded region growing method. The validation results indicate that the presented method indeed provide enhanced detection of peripheral airways compared to the conventional region growing method

  7. [Hyperspectral remote sensing image classification based on radical basis function neural network].

    Science.gov (United States)

    Tan, Kun; Du, Pei-jun

    2008-09-01

    Based on the radial basis function neural network (RBFNN) theory and the specialty of hyperspectral remote sensing data, the effective feature extraction model was designed, and those extracted features were connected to the input layer of RBFNN, finally the classifier based on radial basis function neural network was constructed. The hyperspectral image with 64 bands of OMIS II made by Chinese was experimented, and the case study area was zhongguancun in Beijing. Minimum noise fraction (MNF) was conducted, and the former 20 components were extracted for further processing. The original data (20 dimension) of extraction by MNF, the texture transformation data (20 dimension) extracted from the former 20 components after MNF, and the principal component analysis data (20 dimension) of extraction were combined to 60 dimension. For classification by RBFNN, the sizes of training samples were less than 6.13% of the whole image. That classifier has a simple structure and fast convergence capacity, and can be easily trained. The classification precision of radial basis function neural network classifier is up to 69.27% in contrast with the 51.20% of back propagation neural network (BPNN) and 40. 88% of traditional minimum distance classification (MDC), so RBFNN classifier performs better than the other three classifiers. It proves that RBFNN is of validity in hyperspectral remote sensing classification.

  8. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  9. Research on motion compensation method based on neural network of radial basis function

    Institute of Scientific and Technical Information of China (English)

    Zuo Yunbo

    2014-01-01

    The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function (RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper.

  10. Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation

    Directory of Open Access Journals (Sweden)

    Yuzheng Yang

    2014-01-01

    Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.

  11. Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks

    Institute of Scientific and Technical Information of China (English)

    WANG Yongji; WANG Hong

    2004-01-01

    A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.

  12. Enhanced Password Based Security System Based on User Behavior using Neural Networks

    Directory of Open Access Journals (Sweden)

    Gour Sundar Mitra Thakur

    2012-04-01

    Full Text Available There are multiple numbers of security systems are available to protect your computer/resources. Among them, password based systems are the most commonly used system due to its simplicity, applicability and cost effectiveness But these types of systems have higher sensitivity to cyber-attack. Most of the advanced methods for authentication based on password security encrypt the contents of password before storing or transmitting in the physical domain. But all conventional encryption methods are having its own limitations, generally either in terms of complexity or in terms of efficiency.In this paper an enhanced password based security system has been proposed based on user typing behavior, which will attempt to identify authenticity of any user failing to login in first few attempts by analyzing the basic user behaviors/activities and finally training them through neural network and classifying them as genuine or intruder

  13. The Future of Neural Networks

    OpenAIRE

    Lakra, Sachin; T. V. Prasad; G. Ramakrishna

    2012-01-01

    The paper describes some recent developments in neural networks and discusses the applicability of neural networks in the development of a machine that mimics the human brain. The paper mentions a new architecture, the pulsed neural network that is being considered as the next generation of neural networks. The paper also explores the use of memristors in the development of a brain-like computer called the MoNETA. A new model, multi/infinite dimensional neural networks, are a recent developme...

  14. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  15. Stability analysis of memristor-based fractional-order neural networks with different memductance functions.

    Science.gov (United States)

    Rakkiyappan, R; Velmurugan, G; Cao, Jinde

    2015-04-01

    In this paper, the problem of the existence, uniqueness and uniform stability of memristor-based fractional-order neural networks (MFNNs) with two different types of memductance functions is extensively investigated. Moreover, we formulate the complex-valued memristor-based fractional-order neural networks (CVMFNNs) with two different types of memductance functions and analyze the existence, uniqueness and uniform stability of such networks. By using Banach contraction principle and analysis technique, some sufficient conditions are obtained to ensure the existence, uniqueness and uniform stability of the considered MFNNs and CVMFNNs with two different types of memductance functions. The analysis results establish from the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, four numerical examples are presented to show the effectiveness of our theoretical results. PMID:25861402

  16. Complete Periodic Synchronization of Memristor-Based Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2013-01-01

    Full Text Available This paper investigates the complete periodic synchronization of memristor-based neural networks with time-varying delays. Firstly, under the framework of Filippov solutions, by using M-matrix theory and the Mawhin-like coincidence theorem in set-valued analysis, the existence of the periodic solution for the network system is proved. Secondly, complete periodic synchronization is considered for memristor-based neural networks. According to the state-dependent switching feature of the memristor, the error system is divided into four cases. Adaptive controller is designed such that the considered model can realize global asymptotical synchronization. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  17. Hardware-based artificial neural networks for size, weight, and power constrained platforms

    Science.gov (United States)

    Wysocki, B. T.; McDonald, N. R.; Thiem, C. D.

    2014-05-01

    A fully parallel, silicon-based artificial neural network (CM1K) built on zero instruction set computer (ZISC) technology was used for change detection and object identification in video data. Fundamental pattern recognition capabilities were demonstrated with reduced neuron numbers utilizing only a few, or in some cases one, neuron per category. This simplified approach was used to validate the utility of few neuron networks for use in applications that necessitate severe size, weight, and power (SWaP) restrictions. The limited resource requirements and massively parallel nature of hardware-based artificial neural networks (ANNs) make them superior to many software approaches in resource limited systems, such as micro-UAVs, mobile sensor platforms, and pocket-sized robots.

  18. Artificial neural network based fault identification scheme implementation for a three-phase induction motor.

    Science.gov (United States)

    Kolla, Sri R; Altman, Shawn D

    2007-04-01

    This paper presents results from the implementation and testing of a PC based monitoring and fault identification scheme for a three-phase induction motor using artificial neural networks (ANNs). To accomplish the task, a hardware system is designed and built to acquire three-phase voltages and currents from a 1/3 HP squirrel-cage, three-phase induction motor. A software program is written to read the voltages and currents, which are first used to train a feed-forward neural network structure using the JavaNNS program. The trained network is placed in a LabVIEW based program formula node that monitors the voltages and currents online and displays the fault conditions and turns the motor off. The complete system is successfully tested in real time by creating different faults on the motor.

  19. The risk early-warning of gas hazard in coal mine based on Rough Set-neural network

    Institute of Scientific and Technical Information of China (English)

    TIAN Shui-cheng; WANG Li

    2007-01-01

    This article proposed the risk early-warning model of gas hazard based on Rough Set and neural network. The attribute quantity was reduced by Rough Set, the main characteristic attributes were withdrawn, the complexity of neural network system and the computing time was reduced, as well. Because of fault-tolerant ability, parallel processing ability, anti-jamming ability and processing non-linear problem ability of neural network system, the methods of Rough Set and neural network were combined. The examples research indicate: applying Rough Set and BP neural network to the gas hazard risk early-warning coal mines in coal mine, the BPNN structure is greatly simplified, the network computation quantity is reduced and the convergence rate is speed up.

  20. Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Nyholm Jørgensen, Rasmus; Blanes-Vidal, Victoria;

    2012-01-01

    perceptron (MLP)-based artificial neural network (ANN). The best performance of the ANN in terms of the mean squared error (MSE) and the convergence speed was achieved when it was initialized and trained using the Nguyen–Widrow and Levenberg–Marquardt back-propagation algorithms, respectively. The success...... into their corresponding behavioral modes. However, network unreliability and high-energy consumption have limited the applicability of those systems. In this study, a 2.4-GHz ZigBee-based mobile ad hoc wireless sensor network (MANET) that is able to overcome those problems is presented. The designed MANET showed high...

  1. Handwritten Pattern Recognition Using Kohonen Neural Network Based on Pixel Character

    Directory of Open Access Journals (Sweden)

    Lulu C. Munggaran

    2014-11-01

    Full Text Available Handwriting is the human way in communicating each other using written media. By the advancement in technology and development of science, there are a lot of changes of technology in terms of communication with computer through handwriting. Therefore, it is needed computer able to receive input in the form of handwriting data and able to recognize the handwriting input. Therefore, this research focuses on handwritten character recognition using Kohonen neural network. The purpose of this research is to find handwriting recognition algorithm which can receive handwriting input and recognize handwritten character directly inputted in computer using Kohonen neural network. This method studies the distribution of a set of patterns without any class information. The basic idea of this technique is understood from how human brain stores images/patterns that have been recognized through eyes, and then able to reveal the images/patterns back. This research has been successful in developing an application to recognize handwritten characters using Kohonen neural network method, and it has been tested. The application is personal computer based and using a canvas as input media. The recognition process consist of 3 stages layer: Input layer, Training Layer and Hidden Layer. The Kohonen neural network method on handwritten character recognition application has good similarity level of character patterns in character mapping process.

  2. Convolutional neural network based sensor fusion for forward looking ground penetrating radar

    Science.gov (United States)

    Sakaguchi, Rayn; Crosskey, Miles; Chen, David; Walenz, Brett; Morton, Kenneth

    2016-05-01

    Forward looking ground penetrating radar (FLGPR) is an alternative buried threat sensing technology designed to offer additional standoff compared to downward looking GPR systems. Due to additional flexibility in antenna configurations, FLGPR systems can accommodate multiple sensor modalities on the same platform that can provide complimentary information. The different sensor modalities present challenges in both developing informative feature extraction methods, and fusing sensor information in order to obtain the best discrimination performance. This work uses convolutional neural networks in order to jointly learn features across two sensor modalities and fuse the information in order to distinguish between target and non-target regions. This joint optimization is possible by modifying the traditional image-based convolutional neural network configuration to extract data from multiple sources. The filters generated by this process create a learned feature extraction method that is optimized to provide the best discrimination performance when fused. This paper presents the results of applying convolutional neural networks and compares these results to the use of fusion performed with a linear classifier. This paper also compares performance between convolutional neural networks architectures to show the benefit of fusing the sensor information in different ways.

  3. Automatic layout feature extraction for lithography hotspot detection based on deep neural network

    Science.gov (United States)

    Matsunawa, Tetsuaki; Nojima, Shigeki; Kotani, Toshiya

    2016-03-01

    Lithography hotspot detection in the physical verification phase is one of the most important techniques in today's optical lithography based manufacturing process. Although lithography simulation based hotspot detection is widely used, it is also known to be time-consuming. To detect hotspots in a short runtime, several machine learning based methods have been proposed. However, it is difficult to realize highly accurate detection without an increase in false alarms because an appropriate layout feature is undefined. This paper proposes a new method to automatically extract a proper layout feature from a given layout for improvement in detection performance of machine learning based methods. Experimental results show that using a deep neural network can achieve better performance than other frameworks using manually selected layout features and detection algorithms, such as conventional logistic regression or artificial neural network.

  4. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  5. Power Transformer Differential Protection Based on Neural Network Principal Component Analysis, Harmonic Restraint and Park's Plots

    OpenAIRE

    Manoj Tripathy

    2012-01-01

    This paper describes a new approach for power transformer differential protection which is based on the wave-shape recognition technique. An algorithm based on neural network principal component analysis (NNPCA) with back-propagation learning is proposed for digital differential protection of power transformer. The principal component analysis is used to preprocess the data from power system in order to eliminate redundant information and enhance hidden pattern of differential current to disc...

  6. Multilingual Deep Neural Network based Acoustic Modeling For Rapid Language Adaptation

    OpenAIRE

    Vu, Ngoc Thang; Imseng, David; Povey, Daniel; Motlicek, Petr; Schultz, Tanja; Bourlard, Hervé

    2014-01-01

    This paper presents a study on multilingual deep neural network (DNN) based acoustic modeling and its application to new languages. We investigate the effect of phone merging on multilingual DNN in context of rapid language adaptation. Moreover, the combination of multilingual DNNs with Kullback--Leibler divergence based acoustic modeling (KL-HMM) is explored. Using ten different languages from the Globalphone database, our studies reveal that crosslingual acoustic model transfer through mul...

  7. Navigation Behaviors Based on Fuzzy ArtMap Neural Networks for Intelligent Autonomous Vehicles

    OpenAIRE

    Amine Chohra; Ouahiba Azouaoui

    2011-01-01

    The use of hybrid intelligent systems (HISs) is necessary to bring the behavior of intelligent autonomous vehicles (IAVs) near the human one in recognition, learning, adaptation, generalization, decision making, and action. First, the necessity of HIS and some navigation approaches based on fuzzy ArtMap neural networks (FAMNNs) are discussed. Indeed, such approaches can provide IAV with more autonomy, intelligence, and real-time processing capabilities. Second, an FAMNN-based navigation appro...

  8. Artificial Neural Network based Diagnostic Model For Causes of Success and Failures

    OpenAIRE

    Kaur, Bikrampal; Aggarwal, Himanshu

    2010-01-01

    In this paper an attempt has been made to identify most important human resource factors and propose a diagnostic model based on the back-propagation and connectionist model approaches of artificial neural network (ANN). The focus of the study is on the mobile -communication industry of India. The ANN based approach is particularly important because conventional approaches (such as algorithmic) to the problem solving have their inherent disadvantages. The algorithmic approach is well-suited t...

  9. Identification of information tonality based on Bayesian approach and neural networks

    OpenAIRE

    Lande, D. V.

    2008-01-01

    A model of the identification of information tonality, based on Bayesian approach and neural networks was described. In the context of this paper tonality means positive or negative tone of both the whole information and its parts which are related to particular concepts. The method, its application is presented in the paper, is based on statistic regularities connected with the presence of definite lexemes in the texts. A distinctive feature of the method is its simplicity and versatility. A...

  10. Different Avalanche Behaviors in Different Specific Areas of a System Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAOXiao-Wei; CHENTian-Lun

    2003-01-01

    Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, we find there are different avalanche distribution behaviors in different specific areas of our system, which are formed by the topological learning process of the SOM net.

  11. Self-organized Criticality in a Model Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; CHEN Tian-Lun

    2001-01-01

    Based on the LISSOM neural network model, we introduce a model to investigate self-organized criticality in the activity of neural populations. The influence of connection (synapse) between neurons has been adequately considered in this model. It is found to exhibit self-organized criticality (SOC) behavior under appropriate conditions.``We also find that the learning process has promotive influence on emergence of SOC behavior. In addition, we analyze the influence of various factors of the model on the SOC behavior, which is characterized by the power-law behavior of the avalanche size distribution.``

  12. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  13. Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Xinyu Wei

    2016-01-01

    Full Text Available Pellet-clad interaction (PCI is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN. The neural network is built through the analysis of the existing experimental data. It is concluded that it is a suitable way to reduce the calculation complexity. A self-organized RBFNN is used in our study, which can vary its structure dynamically in order to maintain the prediction accuracy. For the purpose of the appropriate network complexity and overall computational efficiency, the hidden neurons in the RBFNN can be changed online based on the neuron activity and mutual information. The presented method is tested by the experimental data from the reference, and the results demonstrate its effectiveness.

  14. A PSO based Artificial Neural Network approach for short term unit commitment problem

    Directory of Open Access Journals (Sweden)

    AFTAB AHMAD

    2010-10-01

    Full Text Available Unit commitment (UC is a non-linear, large scale, complex, mixed-integer combinatorial constrained optimization problem. This paper proposes, a new hybrid approach for generating unit commitment schedules using swarm intelligence learning rule based neural network. The training data has been generated using dynamic programming for machines without valve point effects and using genetic algorithm for machines with valve point effects. A set of load patterns as inputs and the corresponding unit generation schedules as outputs are used to train the network. The neural network fine tunes the best results to the desired targets. The proposed approach has been validated for three thermal machines with valve point effects and without valve point effects. The results are compared with the approaches available in the literature. The PSO-ANN trained model gives better results which show the promise of the proposed methodology.

  15. RECURRENT NEURAL NETWORK MODEL BASED ON PROJECTIVE OPERATOR AND ITS APPLICATION TO OPTIMIZATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The recurrent neural network (RNN) model based on projective operator was studied. Different from the former study, the value region of projective operator in the neural network in this paper is a general closed convex subset of n-dimensional Euclidean space and it is not a compact convex set in general, that is, the value region of projective operator is probably unbounded. It was proved that the network has a global solution and its solution trajectory converges to some equilibrium set whenever objective function satisfies some conditions. After that, the model was applied to continuously differentiable optimization and nonlinear or implicit complementarity problems. In addition, simulation experiments confirm the efficiency of the RNN.

  16. Neural network based system for script identification in Indian documents

    Indian Academy of Sciences (India)

    S Basavaraj Patil; N V Subbareddy

    2002-02-01

    The paper describes a neural network-based script identification system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identification is a basic requirement in automation of document processing, in multi-script, multi-lingual environments. The system developed includes a feature extractor and a modular neural network. The feature extractor consists of two stages. In the first stage the document image is dilated using 3 × 3 masks in horizontal, vertical, right diagonal, and left diagonal directions. In the next stage, average pixel distribution is found in these resulting images. The modular network is a combination of separately trained feedforward neural network classifiers for each script. The system recognizes 64 × 64 pixel document images. In the next level, the system is modified to perform on single word-document images in the same three scripts. Modified system includes a pre-processor, modified feature extractor and probabilistic neural network classifier. Pre-processor segments the multi-script multi-lingual document into individual words. The feature extractor receives these word-document images of variable size and still produces the discriminative features employed by the probabilistic neural classifier. Experiments are conducted on a manually developed database of document images of size 64 × 64 pixels and on a database of individual words in the three scripts. The results are very encouraging and prove the effectiveness of the approach.

  17. Stocks selected using SOM and Genetic Algorithm based Backpropagation Neural Network gives better returns

    Directory of Open Access Journals (Sweden)

    Asif Ullah Khan

    2011-03-01

    Full Text Available Investment in stock market is one of the most popular type of investment. There are many conventional techniques being used and these include technical and fundamental analysis. The main aim of every investor is to earn maximum possible return on investments. The main issue with any approach is the proper weighting of criteria to obtain a list of stocks that are suitable for investments. This paper proposes an improved method for stock picking using self-organizing maps and genetic algorithm based backpropagation neural networks. The stock selected using self-organizing maps and genetic algorithm based backpropagation neural networks outperformed the BSE-30 Index by about 30.17% based on one and half month of stock data.

  18. Artificial neural networks as adjuncts for assessing medical students' problem solving performances on computer-based simulations.

    Science.gov (United States)

    Stevens, R H; Najafi, K

    1993-04-01

    Artificial neural networks were trained by supervised learning to recognize the test selection patterns associated with students' successful solutions to seven immunology computer-based simulations. New test selection patterns evaluated by the trained neural network were correctly classified as successful or unsuccessful solutions to the problem > 90% of the time. The examination of the neural networks output weights after each test selection revealed a progressive and selective increase for the relevant problem suggesting that a successful solution is represented by the neural network as the accumulation of relevant tests. Unsuccessful problem solutions were classified by the neural network software into two patterns of students performance. The first pattern was characterized by low neural network output weights for all seven problems reflecting extensive searching and lack of recognition of relevant information. In the second pattern, the output weights from the neural network were biased toward one of the remaining six incorrect problems suggesting that the student misrepresented the current problem as an instance of a previous problem. Finally, neural network analysis could detect cases where the students switched hypotheses during the problem solving exercises.

  19. Exponential Stabilization of Memristor-based Chaotic Neural Networks with Time-Varying Delays via Intermittent Control.

    Science.gov (United States)

    Zhang, Guodong; Shen, Yi

    2015-07-01

    This paper is concerned with the global exponential stabilization of memristor-based chaotic neural networks with both time-varying delays and general activation functions. Here, we adopt nonsmooth analysis and control theory to handle memristor-based chaotic neural networks with discontinuous right-hand side. In particular, several new sufficient conditions ensuring exponential stabilization of memristor-based chaotic neural networks are obtained via periodically intermittent control. In addition, the proposed results here are easy to verify and they also extend the earlier publications. Finally, numerical simulations illustrate the effectiveness of the obtained results. PMID:25148672

  20. Neural Network Control Optimization based on Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhaoyin Zhang

    2013-08-01

    Full Text Available To clearly find the effect of factors in network classification, the classification process of PNN is analyzed in detail. The XOR problem is described by PNN and the elements in PNN are also studied. Through simulations and combined with genetic algorithm, a novel PNN supervised learning algorithm is proposed. This algorithm introduces the classification accuracy of training samples to the network parameter learning. It adopts genetic algorithm to train the PNN smoothing parameter and hidden centric vector. Then the effects of hidden neuron number, hidden centric vector and smoothing parameter in PNN are verified in the experiments. It is shown that this algorithm is superior to other PNN learning algorithms on classification effect.

  1. A Dynamic Effective Fault Tolerance System in Robotic Manipulator using a Hybrid Neural Network based Controller

    Directory of Open Access Journals (Sweden)

    G. Jiji

    2014-04-01

    Full Text Available Robot manipulator play important role in the field of automobile industry, mainly it is used in gas welding application and manufacturing and assembling of motor parts. In complex trajectory, on each joint the speed of the robot manipulator is affected. For that reason, it is necessary to analyze the noise and vibration of robot's joints for predicting faults also improve the control precision of robotic manipulator. In this study we will propose a new fault detection system for Robot manipulator. The proposed hybrid fault detection system is designed based on fuzzy support vector machine and Artificial Neural Networks (ANNs. In this system the decouple joints are identified and corrected using fuzzy SVM, here non-linear signal are used for complete process and treatment, the Artificial Neural Networks (ANNs are used to detect the free-swinging and locked joint of the robot, two types of neural predictors are also employed in the proposed adaptive neural network structure. The simulation results of a hybrid controller demonstrate the feasibility and performance of the methodology.

  2. A Study on Turbo-rotor Multi-fault Diagnosis Based on a Neural Network

    Institute of Scientific and Technical Information of China (English)

    SUN Shou-qun; ZHAO San-xing; ZHANG Wei; CHANG Xin-long

    2003-01-01

    The multi-fault phenomena are common in the turbo-rotor system of a liquid rocket engine. As it has many excellent qualities, the neural network might be used to solve the problems of multi-fault diagnosis of a turbo-rotor system. First, the feature expression of a common turbo-rotor fault was studied in order to build up the standard fault pattern and satisfy the need of neural network studying and diagnosing. Then, the turbo-rotor fault identification and diagnosis problems were investigated by using a BP(back-propagation) neural network. According to the BP neural network problems, the parallel BP neural network method of multi-fault diagnosis and classification was presented and investigated. The results indicated that the parallel BP neural network method could solve the turbo-rotor multi-fault diagnosis problems.

  3. Proton exchange membrane fuel cells modeling based on artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    Yudong Tian; Xinjian Zhu; Guangyi Cao

    2005-01-01

    To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.

  4. Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method

    Institute of Scientific and Technical Information of China (English)

    HUANG Deshuang; CHI Zheru

    2004-01-01

    This paper proposes a novel recursive partitioning method based on constrained learning neural networks to find an arbitrary number (less than the order of the polynomial) of (real or complex) roots of arbitrary polynomials. Moreover, this paper also gives a BP network constrained learning algorithm (CLA) used in root-finders based on the constrained relations between the roots and the coefficients of polynomials. At the same time, an adaptive selection method for the parameter δPwith the CLA is also given.The experimental results demonstrate that this method can more rapidly and effectively obtain the roots of arbitrary high order polynomials with higher precision than traditional root-finding approaches.

  5. Determination of type and concentration of DNA nitrogenous bases by Raman spectroscopy using artificial neural networks

    Science.gov (United States)

    Laptinskiy, Kirill A.; Burikov, Sergey A.; Sarmanova, Olga E.; Dolenko, Sergey A.; Dolenko, Tatiana A.

    2016-04-01

    In this article the results of solution of two-parametrical inverse problems of laser Raman spectroscopy of identification and determination of concentration of DNA nitrogenous bases in two-component solutions are presented. Elaboration of methods of control of reactions with DNA strands in remote real-time mode is necessary for solution of one of the basic problems of creation of biocomputers - increase of reliability of molecular DNA-computations. The comparative analysis of two used methods of solution of stated problems has demonstrated convincing advantages of technique of artificial neural networks. Use of artificial neural networks allowed to reach the accuracy of determination of concentration of each base in two-component solutions 0.2-0.3 g/l.

  6. Video-based convolutional neural networks for activity recognition from robot-centric videos

    Science.gov (United States)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  7. Training a Feed-Forward Neural Network with Artificial Bee Colony based Backpropagation Method

    Directory of Open Access Journals (Sweden)

    Sudarshan Nandy

    2012-09-01

    Full Text Available Back-propagation algorithm is one of the most widely used and popular techniques to optimize the feedforward neural network training. Nature inspired meta-heuristic algorithms also provide derivative-freesolution to optimize complex problem. Artificial bee colony algorithm is a nature inspired meta-heuristicalgorithm, mimicking the foraging or food source searching behaviour of bees in a bee colony and thisalgorithm is implemented in several applications for an improved optimized outcome. The proposedmethod in this paper includes an improved artificial bee colony algorithm based back-propagation neuralnetwork training method for fast and improved convergence rate of the hybrid neural network learningmethod. The result is analysed with the genetic algorithm based back-propagation method, and it isanother hybridized procedure of its kind. Analysis is performed over standard data sets, reflecting the lightof efficiency of proposed method in terms of convergence speed and rate.

  8. Improved ultrasonic differentiation model for structural coal types based on neural network

    Institute of Scientific and Technical Information of China (English)

    TIAN Zi-jian; WANG Fu-zhong; LI Tao; BAI Shan-shan

    2009-01-01

    In order to solve the difficulty of detailed recognition of subdivisions of structural coal types, a differentiation model that combines BP neural network with an ultrasonic reflection method is proposed. Structural coal types are recognized based on a suit-able consideration of ultrasonic speed, an ultrasonic attenuation coefficient, characteristics of ultrasonic transmission and other parameters relating to structural coal types. We have focused on a computational model of ultrasonic speed, attenuation coefficient in coal and differentiation algorithm of structural coal types based on a BP neural network. Experiments demonstrate that the model can distinguish structural coal types effectively. It is important for the improved ultrasonic differentiation model to predict coal and gas outbursts.

  9. Establishment of constitutive relationship model for 2519 aluminum alloy based on BP artificial neural network

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-quan; PENG Da-shu; ZHU Yuan-zhi

    2005-01-01

    An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.

  10. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  11. A General Rate K/N Convolutional Decoder Based on Neural Networks with Stopping Criterion

    Directory of Open Access Journals (Sweden)

    Johnny W. H. Kao

    2009-01-01

    Full Text Available A novel algorithm for decoding a general rate K/N convolutional code based on recurrent neural network (RNN is described and analysed. The algorithm is introduced by outlining the mathematical models of the encoder and decoder. A number of strategies for optimising the iterative decoding process are proposed, and a simulator was also designed in order to compare the Bit Error Rate (BER performance of the RNN decoder with the conventional decoder that is based on Viterbi Algorithm (VA. The simulation results show that this novel algorithm can achieve the same bit error rate and has a lower decoding complexity. Most importantly this algorithm allows parallel signal processing, which increases the decoding speed and accommodates higher data rate transmission. These characteristics are inherited from a neural network structure of the decoder and the iterative nature of the algorithm, that outperform the conventional VA algorithm.

  12. Optimization of a neural network based direct inverse control for controlling a quadrotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Heryanto M Ary

    2015-01-01

    Full Text Available UAVs are mostly used for surveillance, inspection and data acquisition. We have developed a Quadrotor UAV that is constructed based on a four motors with a lift-generating propeller at each motors. In this paper, we discuss the development of a quadrotor and its neural networks direct inverse control model using the actual flight data. To obtain a better performance of the control system of the UAV, we proposed an Optimized Direct Inverse controller based on re-training the neural networks with the new data generated from optimal maneuvers of the quadrotor. Through simulation of the quadrotor using the developed DIC and Optimized DIC model, results show that both models have the ability to stabilize the quadrotor with a good tracking performance. The optimized DIC model, however, has shown a better performance, especially in the settling time parameter.

  13. Assembly Quality Prediction Based on Back-propagation Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    He Yong-yi

    2013-07-01

    Full Text Available Because of the severe geometrical distortion induced by the optical system and the limited kinetic accuracy of mechanical system in the vision-based mobile-phone lens’s assembly system, the nonlinear, perspective distortion errors and the kinematics errors generally exist in the assembly process of the mobile-phone lens. It is necessary to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system so as to eliminate the immediate effect on the assembling process before extracting quantitative assembling. Comparison with current research methods, the back-propagation artificial neural network is applied to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system. Firstly, the mobile-phone lens’s assembly quality characteristics are defined and sampled; Secondly, a back-propagation artificial neural network of the mobile-phone lens’s assembly quality prediction is presented; Finally apply some training samples obtained from the experiments to train and test this back-propagation artificial neural network. The results show that the proposed method is effective to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system with high accuracy and high reliability.  

  14. The development of a knowledge base in an expert system based on the four-layer perceptron neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Owing to continuous production lines with large amount of consecutive controls, various control signals and huge logistic relations, this paper introduced the methods and principles of the development of knowledge base in a fault diagnosis expert system that was based on machine learning by the four-layer perceptron neural network. An example was presented. By combining differential function with not differentia function and back propagation of error with back propagation of expectation, the four-layer perceptron neural network was established. And it was good for solving such a bottleneck problem in knowledge acquisition in expert system and enhancing real-time on-line diagnosis. A method of synthetic back propagation was designed, which broke the limit to non-differentiable function in BP neural network.

  15. HL-2A tokamak disruption forecasting based on an artificial neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Hao; Wang Ai-Ke; Yang Qing-Wei; Ding Xuan-Tong; Dong Jia-Qi; Sanuki H; Itoh K

    2007-01-01

    Artificial neural networks are trained to forecast the plasma disruption in HL-2A tokamak. Optimized network architecture is obtained. Saliency analysis is made to assess the relative importance of different diagnostic signals as network input. The trained networks can successfully detect the disruptive pulses of HL-2A tokamak. The results obtained show the possibiliry of developing a neural network predictor that intervenes well in edvance for avoiding plasma disruption or mitigating its effects.

  16. Design And Analysis Of Artificial Neural Network Based Controller For Speed Control Of Induction Motor Using D T C

    Directory of Open Access Journals (Sweden)

    Kusuma Gottapu

    2014-04-01

    Full Text Available This paper presents an improved version of direct torque control (DTC based on Artificial Neural Network technique used for flux position estimation and sector selection. This controller mainly reduces the torque and flux ripples. Direct torque control of induction motor drive has quick torque response without complex orientation transformation and inner loop current control. The major problem associated with DTC drive is the high torque ripples. The important point in ANN based DTC is the right selection of voltage vector. This project presents simple structured neural network for flux position estimation and sector selection for induction motor. The Levenberg-Marquardt back propagation technique has been used to train the neural networks. The simple structure network facilitates a short training and processing times. The neural network based controller is found to be a very useful technique to obtain high performance speed control.

  17. The study of fuzzy chaotic neural network based on chaotic method

    Institute of Scientific and Technical Information of China (English)

    WANG Ke-jun; TANG Mo; ZHANG Yan

    2006-01-01

    This paper proposes a type of Fuzzy Chaotic Neural Network (FCNN). Firstly, the model of recurrent fuzzy neural network (RFNN) is considered, which adds a feedback in the second layer to realize dynamic map. Then, the Logistic map is introduced into the recurrent fuzzy neural network, so as to build a Fuzzy Chaotic Neural Network (FCNN). Its chaotic character is analyzed, and then the training algorithm and associate memory ability are studied subsequently. And then, a chaotic system is approximated using FCNN; the simulation results indicate that FCNN could approach dynamic system preferably. And owing to the introducing of chaotic map, the chaotic recollect capacity of FCNN is increased.

  18. Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias; Lee, In-Beum

    2016-06-25

    This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.

  19. Flux-measuring approach of high temperature metal liquid based on BP neural networks

    Institute of Scientific and Technical Information of China (English)

    胡燕瑜; 桂卫华; 李勇刚

    2003-01-01

    A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof liquid zinc is acquired indirectly, the measuring on line and flux control are realized. Simulation results and indus-trial practice demonstrate that the relative error between the estimated flux value and practical measured flux value islower than 1.5%, meeting the need of industrial process.

  20. 3D Keypoint Detection Based on Deep Neural Network with Sparse Autoencoder

    OpenAIRE

    Lin, Xinyu; Zhu, Ce; Zhang, Qian; Liu, Yipeng

    2016-01-01

    Researchers have proposed various methods to extract 3D keypoints from the surface of 3D mesh models over the last decades, but most of them are based on geometric methods, which lack enough flexibility to meet the requirements for various applications. In this paper, we propose a new method on the basis of deep learning by formulating the 3D keypoint detection as a regression problem using deep neural network (DNN) with sparse autoencoder (SAE) as our regression model. Both local information...

  1. Tongue contour extraction from ultrasound images based on deep neural network

    OpenAIRE

    Jaumard-Hakoun, Aurore; Xu, Kele; Roussel-Ragot, Pierre; Dreyfus, Gérard; Denby, Bruce

    2016-01-01

    Studying tongue motion during speech using ultrasound is a standard procedure, but automatic ultrasound image labelling remains a challenge, as standard tongue shape extraction methods typically require human intervention. This article presents a method based on deep neural networks to automatically extract tongue contour from ultrasound images on a speech dataset. We use a deep autoencoder trained to learn the relationship between an image and its related contour, so that the model is able t...

  2. An Index for Measuring Functional Diversity in Plant Communities Based on Neural Network Theory

    OpenAIRE

    Naiqi Song; Jin-Tun Zhang

    2013-01-01

    Functional diversity in plant communities is a key driver of ecosystem processes. The effective methods for measuring functional diversity are important in ecological studies. A new method based on neural network, self-organizing feature map (SOFM index), was put forward and described. A case application to the study of functional diversity of Phellodendron amurense communities in Xiaolongmen Forest Park of Beijing was carried out in this paper. The results showed that SOFM index was an effec...

  3. Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks

    Institute of Scientific and Technical Information of China (English)

    张燕; 陈增强; 袁著祉

    2003-01-01

    After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent PID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.

  4. Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network

    OpenAIRE

    Lenan Wu; Nabil Neggaz; Shuihua Wang; Geng Wei; Yudong Zhang

    2009-01-01

    This paper proposes a hybrid classifier for polarimetric SAR images. The feature sets consist of span image, the H/A/α decomposition, and the GLCM-based texture features. Then, a probabilistic neural network (PNN) was adopted for classification, and a novel algorithm proposed to enhance its performance. Principle component analysis (PCA) was chosen to reduce feature dimensions, random division to reduce the number of neurons, and Brent’s search (BS) to find the optimal bias values. The result...

  5. Different Avalanche Behaviors in Different Specific Areas of a System Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; CHEN Tian-Lun

    2003-01-01

    Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of modelneural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, wefind there are different avalanche distribution behaviors in different specific areas of our system, which are formed by thetopological learning process of the SOM net.

  6. A Power Market Forward Curve with Hydrology Dependence - An Approach based on Artificial Neural Networks

    OpenAIRE

    Green, Rikard

    2014-01-01

    This paper develops an hourly forward curve for power markets where the intra-day and intra-week shapes (profiles) depend on the level of the hydrological balance. The shaping model is based on a feed-forward Artificial Neural Network (ANN), which is trained on a historical data set of hourly electricity spot prices from the Nord Pool market and weekly measurements of the Nordic hydrological balance. The yearly seasonal cycle is estimated with historical electricity forward prices from the...

  7. Dynamic Coordination of Uncalibrated Hand/Eye Robotic System Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.``

  8. ECG Signals Classification Based on Wavelet Transform and Probabilistic Neural Networks

    OpenAIRE

    Iman Moazen; Mohamadreza Ahmadzadeh

    2009-01-01

    In this paper a very intelligent tool with low computational complexity is presented for Electroencephalogram (ECG) signal classification. The proposed classifier is based on Discrete Wavelet Transform (DWT) and Probabilistic Neural Network (PNN). The novelty of this approach is that signal statistics, morphological analysis and DWT of the histogram of signal (density estimation) altogether have been used to achieve a higher recognition rate. ECG signals and their density estimation are decom...

  9. Taste Identification of Tea Through a Fuzzy Neural Network Based on Fuzzy C-means Clustering

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; ZHOU Chun-guang

    2003-01-01

    In this paper, we present a fuzzy neural network model based on Fuzzy C-Means (FCM) clustering algorithm to realize the taste identification of tea. The proposed method can acquire the fuzzy subset and its membership function in an automatic way with the aid of FCM clustering algorithm. Moreover, we improve the fuzzy weighted inference approach. The proposed model is illustrated with the simulation of taste identification of tea.

  10. Particle Swarm Optimization Recurrent Neural Network Based Z-source Inverter Fed Induction Motor Drive

    OpenAIRE

    R. Selva Santhose Kumar; S.M. Girirajkumar

    2014-01-01

    In this study, the proposal is made for Particle Swarm Optimization (PSO) Recurrent Neural Network (RNN) based Z-Source Inverter Fed Induction Motor Drive. The proposed method is used to enhance the performance of the induction motor while reducing the Total Harmonic Distortion (THD), eliminating the oscillation period of the stator current, torque and speed. Here, the PSO technique uses the induction motor speed and reference speed as the input parameters. From the input parameters, it optim...

  11. Neural network based load and price forecasting and confidence interval estimation in deregulated power markets

    Science.gov (United States)

    Zhang, Li

    With the deregulation of the electric power market in New England, an independent system operator (ISO) has been separated from the New England Power Pool (NEPOOL). The ISO provides a regional spot market, with bids on various electricity-related products and services submitted by utilities and independent power producers. A utility can bid on the spot market and buy or sell electricity via bilateral transactions. Good estimation of market clearing prices (MCP) will help utilities and independent power producers determine bidding and transaction strategies with low risks, and this is crucial for utilities to compete in the deregulated environment. MCP prediction, however, is difficult since bidding strategies used by participants are complicated and MCP is a non-stationary process. The main objective of this research is to provide efficient short-term load and MCP forecasting and corresponding confidence interval estimation methodologies. In this research, the complexity of load and MCP with other factors is investigated, and neural networks are used to model the complex relationship between input and output. With improved learning algorithm and on-line update features for load forecasting, a neural network based load forecaster was developed, and has been in daily industry use since summer 1998 with good performance. MCP is volatile because of the complexity of market behaviors. In practice, neural network based MCP predictors usually have a cascaded structure, as several key input factors need to be estimated first. In this research, the uncertainties involved in a cascaded neural network structure for MCP prediction are analyzed, and prediction distribution under the Bayesian framework is developed. A fast algorithm to evaluate the confidence intervals by using the memoryless Quasi-Newton method is also developed. The traditional back-propagation algorithm for neural network learning needs to be improved since MCP is a non-stationary process. The extended Kalman

  12. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  13. Sequential optimizing investing strategy with neural networks

    OpenAIRE

    Ryo Adachi; Akimichi Takemura

    2010-01-01

    In this paper we propose an investing strategy based on neural network models combined with ideas from game-theoretic probability of Shafer and Vovk. Our proposed strategy uses parameter values of a neural network with the best performance until the previous round (trading day) for deciding the investment in the current round. We compare performance of our proposed strategy with various strategies including a strategy based on supervised neural network models and show that our procedure is co...

  14. Transient Stability Enhancement of Power Systems by Lyapunov-Based Recurrent Neural Networks UPFC Controllers

    Science.gov (United States)

    Chu, Chia-Chi; Tsai, Hung-Chi; Chang, Wei-Neng

    A Lyapunov-based recurrent neural networks unified power flow controller (UPFC) is developed for improving transient stability of power systems. First, a simple UPFC dynamical model, composed of a controllable shunt susceptance on the shunt side and an ideal complex transformer on the series side, is utilized to analyze UPFC dynamical characteristics. Secondly, we study the control configuration of the UPFC with two major blocks: the primary control, and the supplementary control. The primary control is implemented by standard PI techniques when the power system is operated in a normal condition. The supplementary control will be effective only when the power system is subjected by large disturbances. We propose a new Lyapunov-based UPFC controller of the classical single-machine-infinite-bus system for damping enhancement. In order to consider more complicated detailed generator models, we also propose a Lyapunov-based adaptive recurrent neural network controller to deal with such model uncertainties. This controller can be treated as neural network approximations of Lyapunov control actions. In addition, this controller also provides online learning ability to adjust the corresponding weights with the back propagation algorithm built in the hidden layer. The proposed control scheme has been tested on two simple power systems. Simulation results demonstrate that the proposed control strategy is very effective for suppressing power swing even under severe system conditions.

  15. Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability

    Energy Technology Data Exchange (ETDEWEB)

    Banaei, M.R., E-mail: m.banaei@azaruniv.ed [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of); Kami, A. [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} A method is presented to improve power system stability using IPFC. {yields} Recurrent neural network controllers damp oscillations in a power system. {yields} Training is based on back propagation with adaptive training parameters. {yields} Selection of effectiveness damping control signal carried out using SVD method. -- Abstract: This paper presents a method to improve power system stability using IPFC based damping online learning recurrent neural network controllers for damping oscillations in a power system. Parameters of equipped controllers for enhancing dynamical stability at the IPFC are tuned using mathematical methods. Therefore these control parameters are often fixed and are set for particular system configurations or operating points. Multilayer recurrent neural network, which can be tuned for changing system conditions, is used in this paper for effectively damp the oscillations. Training is based on back propagation with adaptive training parameters. This controller is tested to variations in system loading and fault in the power system and its performance is compared with performance of a controller that the phase compensation method is used to set its parameters. Selection of effectiveness damping control signal for the design of robust IPFC damping controller carried out through singular value decomposition (SVD) method. Simulation studies show the superior robustness and stabilizing effect of the proposed controller in comparison with phase compensation method.

  16. Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability

    International Nuclear Information System (INIS)

    Highlights: → A method is presented to improve power system stability using IPFC. → Recurrent neural network controllers damp oscillations in a power system. → Training is based on back propagation with adaptive training parameters. → Selection of effectiveness damping control signal carried out using SVD method. -- Abstract: This paper presents a method to improve power system stability using IPFC based damping online learning recurrent neural network controllers for damping oscillations in a power system. Parameters of equipped controllers for enhancing dynamical stability at the IPFC are tuned using mathematical methods. Therefore these control parameters are often fixed and are set for particular system configurations or operating points. Multilayer recurrent neural network, which can be tuned for changing system conditions, is used in this paper for effectively damp the oscillations. Training is based on back propagation with adaptive training parameters. This controller is tested to variations in system loading and fault in the power system and its performance is compared with performance of a controller that the phase compensation method is used to set its parameters. Selection of effectiveness damping control signal for the design of robust IPFC damping controller carried out through singular value decomposition (SVD) method. Simulation studies show the superior robustness and stabilizing effect of the proposed controller in comparison with phase compensation method.

  17. Gene Expression Based Leukemia Sub‑Classification Using Committee Neural Networks

    Directory of Open Access Journals (Sweden)

    Mihir S. Sewak

    2009-09-01

    Full Text Available Analysis of gene expression data provides an objective and efficient technique for sub‑classification of leukemia. The purpose of the present study was to design a committee neural networks based classification systems to subcategorize leukemia gene expression data. In the study, a binary classification system was considered to differentiate acute lymphoblastic leukemia from acute myeloid leukemia. A ternary classification system which classifies leukemia expression data into three subclasses including B‑cell acute lymphoblastic leukemia, T‑cell acute lymphoblastic leukemia and acute myeloid leukemia was also developed. In each classification system gene expression profiles of leukemia patients were first subjected to a sequence of simple preprocessing steps. This resulted in filtering out approximately 95 percent of the non‑informative genes. The remaining 5 percent of the informative genes were used to train a set of artificial neural networks with different parameters and architectures. The networks that gave the best results during initial testing were recruited into a committee. The committee decision was by majority voting. The committee neural network system was later evaluated using data not used in training. The binary classification system classified microarray gene expression profiles into two categories with 100 percent accuracy and the ternary system correctly predicted the three subclasses of leukemia in over 97 percent of the cases.

  18. Model for a flexible motor memory based on a self-active recurrent neural network.

    Science.gov (United States)

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement.

  19. Rotor Resistance Online Identification of Vector Controlled Induction Motor Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2014-01-01

    Full Text Available Rotor resistance identification has been well recognized as one of the most critical factors affecting the theoretical study and applications of AC motor’s control for high performance variable frequency speed adjustment. This paper proposes a novel model for rotor resistance parameters identification based on Elman neural networks. Elman recurrent neural network is capable of performing nonlinear function approximation and possesses the ability of time-variable characteristic adaptation. Those influencing factors of specified parameter are analyzed, respectively, and various work states are covered to ensure the completeness of the training samples. Through signal preprocessing on samples and training dataset, different input parameters identifications with one network are compared and analyzed. The trained Elman neural network, applied in the identification model, is able to efficiently predict the rotor resistance in high accuracy. The simulation and experimental results show that the proposed method owns extensive adaptability and performs very well in its application to vector controlled induction motor. This identification method is able to enhance the performance of induction motor’s variable-frequency speed regulation.

  20. Radial Basis Function Neural Network Based Super-Resolution Restoration for an Underspled Image

    Institute of Scientific and Technical Information of China (English)

    苏秉华; 金伟其; 牛丽红

    2004-01-01

    To achieve restoration of high frequency information for an underspled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an underspled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an underspled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.

  1. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  2. A new adaptive nonuniformity correction algorithm for infrared line scanner based on neural networks

    Institute of Scientific and Technical Information of China (English)

    Jing Sui; Liquan Dong; Weiqi Jin; Yayuan Zhang

    2007-01-01

    The striping pattern nonuniformity of the infrared line scanner (IRLS) severely limits the system performance. An adaptive nonuniformity correction (NUC) algorithm for IRLS using neural network is proposed.It uses a one-dimensional median filter to generate ideal output of network and can complete NUC by a single frame with a high correction level. Applications to both simulated and real infrared images show that the algorithm can obtain a satisfactory result with low complexity, no need of scene diversity or global motion between consecutive frames. It has the potential to realize real-time hardware-based applications.

  3. Electricity price forecasting using generalized regression neural network based on principal components analysis

    Institute of Scientific and Technical Information of China (English)

    牛东晓; 刘达; 邢棉

    2008-01-01

    A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.

  4. Scene Classification of Remote Sensing Image Based on Multi-scale Feature and Deep Neural Network

    Directory of Open Access Journals (Sweden)

    XU Suhui

    2016-07-01

    Full Text Available Aiming at low precision of remote sensing image scene classification owing to small sample sizes, a new classification approach is proposed based on multi-scale deep convolutional neural network (MS-DCNN, which is composed of nonsubsampled Contourlet transform (NSCT, deep convolutional neural network (DCNN, and multiple-kernel support vector machine (MKSVM. Firstly, remote sensing image multi-scale decomposition is conducted via NSCT. Secondly, the decomposing high frequency and low frequency subbands are trained by DCNN to obtain image features in different scales. Finally, MKSVM is adopted to integrate multi-scale image features and implement remote sensing image scene classification. The experiment results in the standard image classification data sets indicate that the proposed approach obtains great classification effect due to combining the recognition superiority to different scenes of low frequency and high frequency subbands.

  5. Image Fusion Based on the Self-Organizing Feature Map Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaoli; SUN Shenghe

    2001-01-01

    This paper presents a new image datafusion scheme based on the self-organizing featuremap (SOFM) neural networks.The scheme consists ofthree steps:(1) pre-processing of the images,whereweighted median filtering removes part of the noisecomponents corrupting the image,(2) pixel clusteringfor each image using two-dimensional self-organizingfeature map neural networks,and (3) fusion of the im-ages obtained in Step (2) utilizing fuzzy logic,whichsuppresses the residual noise components and thusfurther improves the image quality.It proves thatsuch a three-step combination offers an impressive ef-fectiveness and performance improvement,which isconfirmed by simulations involving three image sen-sors (each of which has a different noise structure).

  6. Effective Multifocus Image Fusion Based on HVS and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2014-01-01

    Full Text Available The aim of multifocus image fusion is to fuse the images taken from the same scene with different focuses to obtain a resultant image with all objects in focus. In this paper, a novel multifocus image fusion method based on human visual system (HVS and back propagation (BP neural network is presented. Three features which reflect the clarity of a pixel are firstly extracted and used to train a BP neural network to determine which pixel is clearer. The clearer pixels are then used to construct the initial fused image. Thirdly, the focused regions are detected by measuring the similarity between the source images and the initial fused image followed by morphological opening and closing operations. Finally, the final fused image is obtained by a fusion rule for those focused regions. Experimental results show that the proposed method can provide better performance and outperform several existing popular fusion methods in terms of both objective and subjective evaluations.

  7. SEQUENTIAL DIAGNOSIS FOR A CENTRIFUGAL PUMP BASED ON FUZZY NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiong; WANG Huaqing; CHEN Peng; TANG Yike

    2008-01-01

    A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.

  8. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2014-01-01

    Full Text Available The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  9. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuo-Nan Yu

    2014-01-01

    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  10. Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network

    Science.gov (United States)

    Ekkachai, Kittipong; Tungpimolrut, Kanokvate; Nilkhamhang, Itthisek

    2013-11-01

    An inverse controller is proposed for a magnetorheological (MR) damper that consists of a hysteresis model and a voltage controller. The force characteristics of the MR damper caused by excitation signals are represented by a feedforward neural network (FNN) with an elementary hysteresis model (EHM). The voltage controller is constructed using another FNN to calculate a suitable input signal that will allow the MR damper to produce the desired damping force. The performance of the proposed EHM-based FNN controller is experimentally compared to existing control methodologies, such as clipped-optimal control, signum function control, conventional FNN, and recurrent neural network with displacement or velocity inputs. The results show that the proposed controller, which does not require force feedback to implement, provides excellent accuracy, fast response time, and lower energy consumption.

  11. 2D spiral pattern recognition based on neural network covering algorithm

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-hong; XIONG Zhi-hua; SHAO Hui-he

    2007-01-01

    The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x - y plane. This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications. Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks. This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition. The results show that it is possible to solve the spiral problem instantaneously (up to 100% correct classification on the test set).

  12. A special hierarchical fuzzy neural-networks based reinforcement learning for multi-variables system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-zhi; LU Tian-sheng

    2005-01-01

    Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN) for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer in the HFNN is no longer used as if-part of the next layer, but used only in then-part. Thus it can deal with the difficulty when the output of the previous layer is meaningless or its meaning is uncertain. The proposed HFNN has a minimal number of fuzzy rules and can successfully solve the problem of rules combination explosion and decrease the quantity of computation and memory requirement. In the learning process, two HFNN with the same structure perform fuzzy action composition and evaluation function approximation simultaneously where the parameters of neural-networks are tuned and updated on line by using gradient descent algorithm. The reinforcement learning method is proved to be correct and feasible by simulation of a double inverted pendulum system.

  13. Estimation on the Reliability of Farm Vehicle Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    WANG Jinwu

    2008-01-01

    As a peculiar product in China today, farm vehicles play an important role in economic construction and development of the countryside, but its work reliability remains low. In this paper truncated tracking was used to solve the low reliability of farm vehicles. Relevant reliability data were obtained by tracking a certain model vehicle and conducting reliability experiments. Data analysis revealed the weakest part of the vehicle system was the engine assembly. The theory of Artificial Neural Network was employed to estimate a parameter of the reliability model based on self-adaptive linear neural network, and the reliability function educed by the estimation could provide important theory references for reliability reassignment, manufacture and management of farm transport vehicles.

  14. Online particle detection with Neural Networks based on topological calorimetry information

    International Nuclear Information System (INIS)

    This paper presents the latest results from the Ringer algorithm, which is based on artificial neural networks for the electron identification at the online filtering system of the ATLAS particle detector, in the context of the LHC experiment at CERN. The algorithm performs topological feature extraction using the ATLAS calorimetry information (energy measurements). The extracted information is presented to a neural network classifier. Studies showed that the Ringer algorithm achieves high detection efficiency, while keeping the false alarm rate low. Optimizations, guided by detailed analysis, reduced the algorithm execution time by 59%. Also, the total memory necessary to store the Ringer algorithm information represents less than 6.2 percent of the total filtering system amount.

  15. A Lateral Control Method of Intelligent Vehicle Based on Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2015-01-01

    Full Text Available A lateral control method is proposed for intelligent vehicle to track the desired trajectory. Firstly, a lateral control model is established based on the visual preview and dynamic characteristics of intelligent vehicle. Then, the lateral error and orientation error are melded into an integrated error. Considering the system parameter perturbation and the external interference, a sliding model control is introduced in this paper. In order to design a sliding surface, the integrated error is chosen as the parameter of the sliding mode switching function. The sliding mode switching function and its derivative are selected as two inputs of the controller, and the front wheel angle is selected as the output. Next, a fuzzy neural network is established, and the self-learning functions of neural network is utilized to construct the fuzzy rules. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed method.

  16. Path Planning and Tracking for Vehicle Parallel Parking Based on Preview BP Neural Network PID Controller

    Institute of Scientific and Technical Information of China (English)

    季学武; 王健; 赵又群; 刘亚辉; 臧利国; 李波

    2015-01-01

    In order to diminish the impacts of external disturbance such as parking speed fluctuation and model un-certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre-view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po-sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.

  17. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    Science.gov (United States)

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. PMID:26752438

  18. A FEASIBILITY STUDY ON USING PHYSICS-BASED MODELER OUTPUTS TO TRAIN PROBABILISTIC NEURAL NETWORKS FOR UXO CLASSIFICATION

    Science.gov (United States)

    A probabilistic neural network (PNN) has been applied to the detection and classification of unexploded ordnance (UXO) measured using magnetometry data collected using the Multi-sensor Towed Array Detection System (MTADS). Physical parameters obtained from a physics based modeler...

  19. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    Science.gov (United States)

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results.

  20. Optimization of Recipe Based Batch Control Systems Using Neural Networks

    OpenAIRE

    Šoštarec, A.; Gosak, D.; Hlupić, N.

    2012-01-01

    In the modern pharmaceutical industry many flexible batch plants operate under an integrated business and production system, using ISA S95 and ISA S88 standards for models and terminology, and implementing flexible recipe-based production. In the environment of constantly changing market conditions, adjustment to surroundings is a business necessity. To support necessary production improvement, regulatory authorities have introduced the risk based approach for the control of process dev...

  1. Content Based Image Retrieval : Classification Using Neural Networks

    OpenAIRE

    Shereena V.B; Julie M.David

    2014-01-01

    In a content-based image retrieval system (CBIR), the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color corr...

  2. Correlational Neural Networks.

    Science.gov (United States)

    Chandar, Sarath; Khapra, Mitesh M; Larochelle, Hugo; Ravindran, Balaraman

    2016-02-01

    Common representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace. AE-based methods learn a common representation by minimizing the error of reconstructing the two views. Each of these approaches has its own advantages and disadvantages. For example, while CCA-based approaches outperform AE-based approaches for the task of transfer learning, they are not as scalable as the latter. In this work, we propose an AE-based approach, correlational neural network (CorrNet), that explicitly maximizes correlation among the views when projected to the common subspace. Through a series of experiments, we demonstrate that the proposed CorrNet is better than AE and CCA with respect to its ability to learn correlated common representations. We employ CorrNet for several cross-language tasks and show that the representations learned using it perform better than the ones learned using other state-of-the-art approaches. PMID:26654210

  3. Sensitivity analysis of groundwater level in Jinci Spring Basin (China) based on artificial neural network modeling

    Science.gov (United States)

    Li, Xian; Shu, Longcang; Liu, Lihong; Yin, Dan; Wen, Jinmei

    2012-06-01

    Jinci Spring in Shanxi, north China, is a major local water source. It dried up in April 1994 due to groundwater overexploitation. The groundwater system is complex, involving many nonlinear and uncertain factors. Artificial neural network (ANN) models are statistical techniques to study parameter nonlinear relationships of groundwater systems. However, ANN models offer little explanatory insight into the mechanisms of prediction models. Sensitivity analysis can overcome this shortcoming. In this study, a back-propagation neural network model was built based on the relationship between groundwater level and its sensitivity factors in Jinci Spring Basin; these sensitivity factors included precipitation, river seepage, mining drainage, groundwater withdrawals and lateral discharge to the associated Quaternary aquifer. All the sensitivity factors were analyzed with Garson's algorithm based on the connection weights of the neural network model. The concept of "sensitivity range" was proposed to describe the value range of the input variables to which the output variables are most sensitive. The sensitivity ranges were analyzed by a local sensitivity approach. The results showed that coal mining drainage is the most sensitive anthropogenic factor, having a large effect on groundwater level of the Jinci Spring Basin.

  4. Seismic Design Value Evaluation Based on Checking Records and Site Geological Conditions Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tienfuan Kerh

    2013-01-01

    Full Text Available This study proposes an improved computational neural network model that uses three seismic parameters (i.e., local magnitude, epicentral distance, and epicenter depth and two geological conditions (i.e., shear wave velocity and standard penetration test value as the inputs for predicting peak ground acceleration—the key element for evaluating earthquake response. Initial comparison results show that a neural network model with three neurons in the hidden layer can achieve relatively better performance based on the evaluation index of correlation coefficient or mean square error. This study further develops a new weight-based neural network model for estimating peak ground acceleration at unchecked sites. Four locations identified to have higher estimated peak ground accelerations than that of the seismic design value in the 24 subdivision zones are investigated in Taiwan. Finally, this study develops a new equation for the relationship of horizontal peak ground acceleration and focal distance by the curve fitting method. This equation represents seismic characteristics in Taiwan region more reliably and reasonably. The results of this study provide an insight into this type of nonlinear problem, and the proposed method may be applicable to other areas of interest around the world.

  5. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    J. C. Ochoa-Rivera

    2002-01-01

    Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..

  6. Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments

    OpenAIRE

    Tahat, Amani; Martí Rabassa, Jordi; Khwaldeh, Ali; Tahat, Kaher

    2014-01-01

    In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing to classify the proton motion into two categories: transfer‘occurred’and transfer‘not occurred’. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In t...

  7. Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction

    Institute of Scientific and Technical Information of China (English)

    YANG Yang; LI Kai-yang

    2006-01-01

    The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication-the highest prediction rate 75.65%, the average prediction rate 65.04%.

  8. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  9. Almost periodic solutions for a memristor-based neural networks with leakage, time-varying and distributed delays.

    Science.gov (United States)

    Jiang, Ping; Zeng, Zhigang; Chen, Jiejie

    2015-08-01

    In this paper, we study the existence and global exponential stability of almost periodic solution for memristor-based neural networks with leakage, time-varying and distributed delays. Using a new Lyapunov function method, we prove that this delayed neural network has a unique almost periodic solution, which is globally exponentially stable. Moreover, the obtained conclusion on the almost periodic solution is applied to prove the existence and stability of periodic solution (or equilibrium point) for this delayed neural network with periodic coefficients (or constant coefficients). PMID:25978771

  10. Back propagation neural network based control for the heating system of a polysilicon reduction furnace

    Science.gov (United States)

    Cheng, Yuhua; Chen, Kai; Bai, Libing; Dai, Meizhi

    2013-12-01

    In this paper, the Back Propagation (BP) neural network based control strategy is proposed for the heating system of a polysilicon reduction furnace. It is applied to obtain the control signal Id, which is used to adjust the heating power through operations of the silicon core temperature, furnace temperature, silicon core voltage, and resistance of the current control cycle. With the control signal Id the polycrystalline silicon can be heated from room temperature to the required temperature smoothly and steadily. The proposed BP network applied in this paper can obtain the accurate control signal Id and achieve the precise control purpose. This paper presents the principle of the BP network and demonstrates the effectiveness of the BP network in the heating system of a polysilicon reduction furnace by combining the simulation analysis with experimental results.

  11. Clustering analysis of ancient celadon based on SOM neural network

    Institute of Scientific and Technical Information of China (English)

    ZHOU ShaoHuai; FU Lue; LIANG BaoLiu

    2008-01-01

    In the study,chemical compositions of 48 fragments of ancient ceramics excavated in 4 archaeological kiln sites which were located in 3 cities (Hangzhou,Cixi and Longquan in Zhejiang Province,China) have been examined by energy-dispersive X-ray fluorescence (EDXRF) technique.Then the method of SOM was introduced into the clustering analysis based on the major and minor element compositions of the bodies,the results manifested that 48 samples could be perfectly distributed into 3 locations,Hangzhou,Cixi and Longquan.Because the major and minor ele-ment compositions of two Royal Kilns were similar to each other,the classification accuracy over them was merely 76.92%.In view of this,the authors have made a SOM clustering analysis again based on the trace element compositions of the bodies,the classification accuracy rose to 84.61%.These results indicated that discrepancies in the trace element compositions of the bodies of the ancient ce-ramics excavated in two Royal Kiln sites were more distinct than those in the major and minor element compositions,which was in accordance with the fact.We ar-gued that SOM could be employed in the clustering analysis of ancient ceramics.

  12. Clustering analysis of ancient celadon based on SOM neural network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the study, chemical compositions of 48 fragments of ancient ceramics excavated in 4 archaeological kiln sites which were located in 3 cities (Hangzhou, Cixi and Longquan in Zhejiang Province, China) have been examined by energy-dispersive X-ray fluorescence (EDXRF) technique. Then the method of SOM was introduced into the clustering analysis based on the major and minor element compositions of the bodies, the results manifested that 48 samples could be perfectly distributed into 3 locations, Hangzhou, Cixi and Longquan. Because the major and minor element compositions of two Royal Kilns were similar to each other, the classification accuracy over them was merely 76.92%. In view of this, the authors have made a SOM clustering analysis again based on the trace element compositions of the bodies, the classification accuracy rose to 84.61%. These results indicated that discrepancies in the trace element compositions of the bodies of the ancient ceramics excavated in two Royal Kiln sites were more distinct than those in the major and minor element compositions, which was in accordance with the fact. We argued that SOM could be employed in the clustering analysis of ancient ceramics.

  13. Rule Based Ensembles Using Pair Wise Neural Network Classifiers

    Directory of Open Access Journals (Sweden)

    Moslem Mohammadi Jenghara

    2015-03-01

    Full Text Available In value estimation, the inexperienced people's estimation average is good approximation to true value, provided that the answer of these individual are independent. Classifier ensemble is the implementation of mentioned principle in classification tasks that are investigated in two aspects. In the first aspect, feature space is divided into several local regions and each region is assigned with a highly competent classifier and in the second, the base classifiers are applied in parallel and equally experienced in some ways to achieve a group consensus. In this paper combination of two methods are used. An important consideration in classifier combination is that much better results can be achieved if diverse classifiers, rather than similar classifiers, are combined. To achieve diversity in classifiers output, the symmetric pairwise weighted feature space is used and the outputs of trained classifiers over the weighted feature space are combined to inference final result. In this paper MLP classifiers are used as the base classifiers. The Experimental results show that the applied method is promising.

  14. An Aircraft Navigation System Fault Diagnosis Method Based on Optimized Neural Network Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jean-dedieu Weyepe

    2014-01-01

    Air data and inertial reference system (ADIRS) is one of the complex sub-system in the aircraft navigation system and it plays an important role into the flight safety of the aircraft. This paper propose an optimize neural network algorithm which is a combination of neural network and ant colony algorithm to improve efficiency of maintenance engineer job task.

  15. Recurrent Neural Network Approach Based on the Integral Representation of the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Živković, Ivan S; Wei, Yimin

    2015-10-01

    In this letter, we present the dynamical equation and corresponding artificial recurrent neural network for computing the Drazin inverse for arbitrary square real matrix, without any restriction on its eigenvalues. Conditions that ensure the stability of the defined recurrent neural network as well as its convergence toward the Drazin inverse are considered. Several illustrative examples present the results of computer simulations.

  16. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  17. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  18. Fast Algorithms for Convolutional Neural Networks

    OpenAIRE

    Lavin, Andrew; Gray, Scott

    2015-01-01

    Deep convolutional neural networks take GPU days of compute time to train on large data sets. Pedestrian detection for self driving cars requires very low latency. Image recognition for mobile phones is constrained by limited processing resources. The success of convolutional neural networks in these situations is limited by how fast we can compute them. Conventional FFT based convolution is fast for large filters, but state of the art convolutional neural networks use small, 3x3 filters. We ...

  19. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  20. Generalized in vitro-in vivo relationship (IVIVR model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mendyk A

    2013-03-01

    Full Text Available Aleksander Mendyk,1 Pawel Tuszynski,1 Sebastian Polak,2 Renata Jachowicz1 1Department of Pharmaceutical Technology and Biopharmaceutics, 2Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland Background: The aim of this study was to develop a generalized in vitro-in vivo relationship (IVIVR model based on in vitro dissolution profiles together with quantitative and qualitative composition of dosage formulations as covariates. Such a model would be of substantial aid in the early stages of development of a pharmaceutical formulation, when no in vivo results are yet available and it is impossible to create a classical in vitro-in vivo correlation (IVIVC/IVIVR. Methods: Chemoinformatics software was used to compute the molecular descriptors of drug substances (ie, active pharmaceutical ingredients and excipients. The data were collected from the literature. Artificial neural networks were used as the modeling tool. The training process was carried out using the 10-fold cross-validation technique. Results: The database contained 93 formulations with 307 inputs initially, and was later limited to 28 in a course of sensitivity analysis. The four best models were introduced into the artificial neural network ensemble. Complete in vivo profiles were predicted accurately for 37.6% of the formulations. Conclusion: It has been shown that artificial neural networks can be an effective predictive tool for constructing IVIVR in an integrated generalized model for various formulations. Because IVIVC/IVIVR is classically conducted for 2–4 formulations and with a single active pharmaceutical ingredient, the approach described here is unique in that it incorporates various active pharmaceutical ingredients and dosage forms into a single model. Thus, preliminary IVIVC/IVIVR can be available without in vivo data, which is impossible using current IVIVC/IVIVR procedures. Keywords: artificial neural networks

  1. GENERALIZED REGRESSION NEURAL NETWORK BASED EXPERT SYSTEM FOR HEPATITIS B DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    C. Mahesh

    2014-01-01

    Full Text Available Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus. The virus interferes with the function of the liver while replicating in hepatocytes. It is a major global health problem and the most serious type of viral hepatitis. Chronic liver disease is caused by viral hepatitis and putting people at high risk of death from cirrhosis of the liver and liver cancer. Medical information available is extensive and which is utilized by the clinical specialists. The ranging of information is from details of clinical symptoms to various types of biochemical data. Information provided by each data is evaluated and assigned to a particular pathology during the diagnostic process. Artificial intelligence methods especially computer aided diagnosis and artificial neural networks can be employed to streamline the diagnostic process. These adaptive learning algorithms can handle diverse types of medical data and integrate them into categorized outputs. Artificial neural networks are finding many uses in the medical diagnosis application. In this study we have proposed a Generalized Regression Neural Network (GRNN based expert system for the diagnosis of the hepatitis B virus disease. The system classifies each patient into infected and non-infected. If infected then how severe it is in terms of intensity rate.

  2. Particle Swarm Optimization Recurrent Neural Network Based Z-source Inverter Fed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    R. Selva Santhose Kumar

    2014-06-01

    Full Text Available In this study, the proposal is made for Particle Swarm Optimization (PSO Recurrent Neural Network (RNN based Z-Source Inverter Fed Induction Motor Drive. The proposed method is used to enhance the performance of the induction motor while reducing the Total Harmonic Distortion (THD, eliminating the oscillation period of the stator current, torque and speed. Here, the PSO technique uses the induction motor speed and reference speed as the input parameters. From the input parameters, it optimizes the gain of the PI controller and generates the reference quadrature axis current. By using the RNN, the reference three phase current for accurate control pulses of the voltage source inverter is predicted. The RNN is trained by the input motor actual quadrature axis current and the reference quadrature axis current with the corresponding target reference three phase current. The training process utilized the supervised learning process. Then the proposed technique is implemented in the MATLAB/SIMULINK platform and the effectiveness is analyzed by comparing with the other techniques such as PSO-Radial Biased Neural Network (RBNN and PSO-Artificial Neural Network (ANN. The comparison results demonstrate the superiority of the proposed approach and confirm its potential to solve the problem.

  3. Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.

    Science.gov (United States)

    Zhang, Xian-Ming; Han, Qing-Long

    2014-06-01

    This paper is concerned with global asymptotic stability for a class of generalized neural networks with interval time-varying delays by constructing a new Lyapunov-Krasovskii functional which includes some integral terms in the form of ∫(t-h)(t)(h-t-s)(j)ẋ(T)(s)Rjẋ(s)ds(j=1,2,3). Some useful integral inequalities are established for the derivatives of those integral terms introduced in the Lyapunov-Krasovskii functional. A matrix-based quadratic convex approach is introduced to prove not only the negative definiteness of the derivative of the Lyapunov-Krasovskii functional, but also the positive definiteness of the Lyapunov-Krasovskii functional. Some novel stability criteria are formulated in two cases, respectively, where the time-varying delay is continuous uniformly bounded and where the time-varying delay is differentiable uniformly bounded with its time-derivative bounded by constant lower and upper bounds. These criteria are applicable to both static neural networks and local field neural networks. The effectiveness of the proposed method is demonstrated by two numerical examples.

  4. An Evaluating Model for Enterprise's Innovation Capability Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    HU Wei-qiang; WANG Li-xin

    2007-01-01

    To meet the challenge of knowledge-based economy in the 21st century, scientifically evaluating the innovation capability is important to strengthen the international competence and acquire long-term competitive advantage for Chinese enterprises. In the article, based on the description of concept and structure of enterprise's innovation capability, the evaluation index system of innovation capability is established according to Analytic Hierarchy Process (AHP). In succession, evaluation model based on Back Propagation (BP) neural network is put forward, which provides some theoretic guidance to scientifically evaluating the innovation capability of Chinese enterprises.

  5. Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays.

    Science.gov (United States)

    Guodong Zhang; Yi Shen; Quan Yin; Junwei Sun

    2015-01-01

    In this paper, based on the knowledge of memristor and recurrent neural networks (RNNs), the model of the memristor-based RNNs with discrete and distributed delays is established. By constructing proper Lyapunov functionals and using inequality technique, several sufficient conditions are given to ensure the passivity of the memristor-based RNNs with discrete and distributed delays in the sense of Filippov solutions. The passivity conditions here are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. In addition, the results of this paper complement and extend the earlier publications. Finally, numerical simulations are employed to illustrate the effectiveness of the obtained results. PMID:25462633

  6. Aphasia Classification Using Neural Networks

    DEFF Research Database (Denmark)

    Axer, H.; Jantzen, Jan; Berks, G.;

    2000-01-01

    A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...

  7. Quantum Neural Networks

    CERN Document Server

    Gupta, S; Gupta, Sanjay

    2002-01-01

    This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...

  8. Evaluation on Stability of Stope Structure Based on Nonlinear Dynamics of Coupling Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-computing is a practical and advanced tool for solving large-scale underground rock engineering problems.

  9. Research on confirmation of basic technological parameters of tension levellers based on neural network and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any established rule to follow. For better quality of strip, a valid method is needed to decide technological parameters precisely and reasonably. In this paper, a method is used based on neural network and genetic algorithm. Neural network has a good ability to extract rules from work process of tensio...

  10. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    OpenAIRE

    Fei Chen; Fei Liu; Hamid Reza Karimi

    2013-01-01

    This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedne...

  11. Periodicity and dissipativity for memristor-based mixed time-varying delayed neural networks via differential inclusions.

    Science.gov (United States)

    Duan, Lian; Huang, Lihong

    2014-09-01

    In this paper, we investigate a class of memristor-based neural networks with general mixed delays involving both time-varying delays and distributed delays. By using the Mawhin-like coincidence theorem, together with the differential inclusion theory, M-matrix properties and differential inequality techniques, some novel criteria are established for ensuring the periodicity and dissipativity for the addressed neural networks. Finally, two numerical examples with simulations are presented to demonstrate the effectiveness of the theoretical results.

  12. Quantitative Interpretation for the Magnetic Flux Leakage Testing Data Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    SONG Xiaochun; HUANG Songling; ZHAO Wei

    2006-01-01

    In order to interpret the magnetic flux leakage (MFL) testing data quantitatively and size the defects accurately, some defect profiles inversion methods from the MFL signals are studied on the basis of the neural network. Because the wavelet basis function neural network (WBFNN) has good accuracy in the forward calculation and the radial basis function neural network (RBFNN) has reliable precision in the inversion modeling respectively, a new neural network scheme combining WBFNN and RBFNN is presented to solve the nonlinear inversion problem for the MFL data and reconstruct the defect shapes. And such details as the choice of wavelet basis function, the initialization of the weight value and the input normalization are analyzed, the training and testing algorithm for the network are also studied. The inversion results demonstrate that the proposed network scheme has good reliability to interpret the MFL data for some defects.

  13. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  14. Optimizing the Mixing Proportion with Neural Networks Based on Genetic Algorithms for Recycled Aggregate Concrete

    OpenAIRE

    Sangyong Kim; Hee-Bok Choi; Yoonseok Shin; Gwang-Hee Kim; Deok-Seok Seo

    2013-01-01

    This research aims to optimize the mixing proportion of recycled aggregate concrete (RAC) using neural networks (NNs) based on genetic algorithms (GAs) for increasing the use of recycled aggregate (RA). NN and GA were used to predict the compressive strength of the concrete at 28 days. And sensitivity analysis of the NN based on GA was used to find the mixing ratio of RAC. The mixing criteria for RAC were determined and the replacement ratio of RAs was identified. This research reveal that th...

  15. Registration algorithm for sensor alignment based on stochastic fuzzy neural network

    Institute of Scientific and Technical Information of China (English)

    Li Jiao; Jing Zhongliang; He Jiaona; Wang An

    2005-01-01

    Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.

  16. Information Fusing Recognition of Traditional Chinese Medicine (TCM) Pulse State Based on Stochastic Fuzzy Neural Network

    Institute of Scientific and Technical Information of China (English)

    QIN Jian; LIU Hong-jian; DENG Wei; WU Guo-zhen; CHEN Shu-qing; JING Ming-hua

    2005-01-01

    Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan,and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.

  17. Identification of information tonality based on Bayesian approach and neural networks

    CERN Document Server

    Lande, D V

    2008-01-01

    A model of the identification of information tonality, based on Bayesian approach and neural networks was described. In the context of this paper tonality means positive or negative tone of both the whole information and its parts which are related to particular concepts. The method, its application is presented in the paper, is based on statistic regularities connected with the presence of definite lexemes in the texts. A distinctive feature of the method is its simplicity and versatility. At present ideologically similar approaches are widely used to control spam.

  18. Wear Fault Diagnosis of Machinery Based on Neural Networks and Gray Relationships

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the regular characteristic of wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typi-cal wear particles spectrum is established according to the equipment structure, friction and wear rule and the characteristic of wear particles; The identification technology of wear particles is proposed based on neural networks and a gray relationship; an intelligent wear particles identification system is designed. The diagnosis example shows that this system can promote the accuracy and the speed of wear particles identification.

  19. Damage Identification of Bridge Based on Modal Flexibility and Neural Network Improved by Particle Swarm Optimization

    OpenAIRE

    Hanbing Liu; Gang Song; Yubo Jiao; Peng Zhang; Xianqiang Wang

    2014-01-01

    An approach to identify damage of bridge utilizing modal flexibility and neural network optimized by particle swarm optimization (PSO) is presented. The method consists of two stages; modal flexibility indices are applied to damage localizing and neural network optimized by PSO is used to identify the damage severity. Numerical simulation of simply supported bridge is presented to demonstrate feasibility of the proposed method, while comparative analysis with traditional BP network is for its...

  20. Application of Smith Predictor Based on Single Neural Network in Cold Rolling Shape Control

    Institute of Scientific and Technical Information of China (English)

    WANG Yiqun; SUN Fu; LIU Jian; SUN Menghui; XIE Yihan

    2009-01-01

    Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to comte the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the