WorldWideScience

Sample records for based neural interface

  1. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    Science.gov (United States)

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  2. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics.

    Science.gov (United States)

    Szostak, Katarzyna M; Grand, Laszlo; Constandinou, Timothy G

    2017-01-01

    Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes-microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges.

  3. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics

    Directory of Open Access Journals (Sweden)

    Katarzyna M. Szostak

    2017-12-01

    Full Text Available Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes—microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges.

  4. Implantable Neural Interfaces for Sharks

    Science.gov (United States)

    2007-05-01

    technology for recording and stimulating from the auditory and olfactory sensory nervous systems of the awake, swimming nurse shark , G. cirratum (Figures...overlay of the central nervous system of the nurse shark on a horizontal MR image. Implantable Neural Interfaces for Sharks ...Neural Interfaces for Characterizing Population Responses to Odorants and Electrical Stimuli in the Nurse Shark , Ginglymostoma cirratum.” AChemS Abs

  5. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  6. Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method

    Science.gov (United States)

    Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng

    2018-05-01

    This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.

  7. A review of organic and inorganic biomaterials for neural interfaces.

    Science.gov (United States)

    Fattahi, Pouria; Yang, Guang; Kim, Gloria; Abidian, Mohammad Reza

    2014-03-26

    Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.

  8. Time to address the problems at the neural interface

    Science.gov (United States)

    Durand, Dominique M.; Ghovanloo, Maysam; Krames, Elliot

    2014-04-01

    Neural engineers have made significant, if not remarkable, progress in interfacing with the nervous system in the last ten years. In particular, neuromodulation of the brain has generated significant therapeutic benefits [1-5]. EEG electrodes can be used to communicate with patients with locked-in syndrome [6]. In the central nervous system (CNS), electrode arrays placed directly over or within the cortex can record neural signals related to the intent of the subject or patient [7, 8]. A similar technology has allowed paralyzed patients to control an otherwise normal skeletal system with brain signals [9, 10]. This technology has significant potential to restore function in these and other patients with neural disorders such as stroke [11]. Although there are several multichannel arrays described in the literature, the workhorse for these cortical interfaces has been the Utah array [12]. This 100-channel electrode array has been used in most studies on animals and humans since the 1990s and is commercially available. This array and other similar microelectrode arrays can record neural signals with high quality (high signal-to-noise ratio), but these signals fade and disappear after a few months and therefore the current technology is not reliable for extended periods of time. Therefore, despite these major advances in communicating with the brain, clinical translation cannot be implemented. The reasons for this failure are not known but clearly involve the interface between the electrode and the neural tissue. The Defense Advanced Research Project Agency (DARPA) as well as other federal funding agencies such as the National Science Foundation (NSF) and the National Institutes of Health have provided significant financial support to investigate this problem without much success. A recent funding program from DARPA was designed to establish the failure modes in order to generate a reliable neural interface technology and again was unsuccessful at producing a robust

  9. EDITORIAL: Special issue containing contributions from the 39th Neural Interfaces Conference Special issue containing contributions from the 39th Neural Interfaces Conference

    Science.gov (United States)

    Weiland, James D.

    2011-07-01

    Implantable neural interfaces provide substantial benefits to individuals with neurological disorders. That was the unequivocal message delivered by speaker after speaker from the podium of the 39th Neural Interfaces Conference (NIC2010) held in Long Beach, California, in June 2010. Giving benefit to patients is the most important measure for any biomedical technology, and myriad presentations at NIC2010 made clear that implantable neurostimulation technology has achieved this goal. Cochlear implants allow deaf people to communicate through speech. Deep brain stimulators give back mobility and dexterity necessary for so many daily tasks that are often taken for granted. Chronic pain can be alleviated through spinal cord stimulation. Motor prosthesis systems have been demonstrated in humans, through both reanimation of paralyzed limbs and neural control of robotic arms. Earlier this year, a retinal prosthesis was approved for sale in Europe, providing some hope for the blind. In sum, current clinical implants have been tremendously beneficial for today's patients and experimental systems that will be translated to the clinic promise to expand the number of people helped through bioelectronic therapies. Yet there are significant opportunities for improvement. For sensory prostheses, patients report an artificial sensation, clearly different from the natural sensation they remember. Neuromodulation systems, such as deep brain stimulation and pain stimulators, often have side effects that are tolerated as long as the side effects are less impactful than the disease. The papers published in the special issue from NIC2010 reflect the maturing and expanding field of neural interfaces. Our field has moved past proof-of-principle demonstrations and is now focusing on proving the longevity required for clinical implementation of new devices, extending existing approaches to new diseases and improving current devices for better outcomes. Closed-loop neuromodulation is a

  10. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    Science.gov (United States)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  11. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    Science.gov (United States)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  12. Neural growth into a microchannel network: towards a regenerative neural interface

    NARCIS (Netherlands)

    Wieringa, P.A.; Wiertz, Remy; le Feber, Jakob; Rutten, Wim

    2009-01-01

    We propose and validated a design for a highly selective 'endcap' regenerative neural interface towards a neuroprosthesis. In vitro studies using rat cortical neurons determine if a branching microchannel structure can counter fasciculated growth and cause neurites to separte from one another,

  13. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.

    Science.gov (United States)

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan

    2017-12-21

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  14. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    Directory of Open Access Journals (Sweden)

    Ahnsei Shon

    2017-12-01

    Full Text Available Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC-compliant power transmission circuit, a medical implant communication service (MICS-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  15. Incorporating an optical waveguide into a neural interface

    Energy Technology Data Exchange (ETDEWEB)

    Tolosa, Vanessa; Delima, Terri L.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tooker, Angela C.

    2016-11-08

    An optical waveguide integrated into a multielectrode array (MEA) neural interface includes a device body, at least one electrode in the device body, at least one electrically conducting lead coupled to the at least one electrode, at least one optical channel in the device body, and waveguide material in the at least one optical channel. The fabrication of a neural interface device includes the steps of providing a device body, providing at least one electrode in the device body, providing at least one electrically conducting lead coupled to the at least one electrode, providing at least one optical channel in the device body, and providing a waveguide material in the at least one optical channel.

  16. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.

    Directory of Open Access Journals (Sweden)

    Yujuan Zhao

    Full Text Available Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.

  17. Modification of surface/neuron interfaces for neural cell-type specific responses: a review

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Lee, In-Seop

    2016-01-01

    Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair. (paper)

  18. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    Science.gov (United States)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a

  19. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    Science.gov (United States)

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  20. Fractal Interfaces for Stimulating and Recording Neural Implants

    Science.gov (United States)

    Watterson, William James

    From investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in the cochlear implant restoring hearing due to the relatively simple anatomy of the auditory nerves, but are failing to restore vision to the blind due to poor signal fidelity and transmission in stimulating the more complex anatomy of the visual nerves. The critically important research needed to improve the resolution of these implants is to optimize the neuron-electrode interface. This thesis explores geometrical and material modifications to both stimulating and recording electrodes which can improve the neuron-electrode interface. First, we introduce a fractal electrode geometry which radically improves the restored visual acuity achieved by retinal implants and leads to safe, long-term operation of the implant. Next, we demonstrate excellent neuron survival and neurite outgrowth on carbon nanotube electrodes, thus providing a safe biomaterial which forms a strong connection between the electrode and neurons. Additional preliminary evidence suggests carbon nanotubes patterned into a fractal geometry will provide further benefits in improving the electrode-neuron interface. Finally, we propose a novel implant based off field effect transistor technology which utilizes an interconnecting fractal network of semiconducting carbon nanotubes to record from thousands of neurons simutaneously at an individual neuron resolution. Taken together, these improvements have the potential to

  1. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    Directory of Open Access Journals (Sweden)

    Markus A Wenzel

    Full Text Available Brain-computer interfaces (BCIs that are based on event-related potentials (ERPs can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG. Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI, because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli.Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions.Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG.The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  2. Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications

    Science.gov (United States)

    Schendel, Amelia Ann

    Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided

  3. Poly(3,4-ethylene dioxythiophene (PEDOT as a micro-neural interface material for electrostimulation

    Directory of Open Access Journals (Sweden)

    Seth J Wilks

    2009-06-01

    Full Text Available Chronic microstimulation-based devices are being investigated to treat conditions such as blindness, deafness, pain, paralysis and epilepsy. Small area electrodes are desired to achieve high selectivity. However, a major trade-off with electrode miniaturization is an increase in impedance and charge density requirements. Thus, the development of novel materials with lower interfacial impedance and enhanced charge storage capacity is essential for the development of micro-neural interface-based neuroprostheses. In this report, we study the use of conducting polymer poly(3,4-ethylene dioxythiophene (PEDOT as a neural interface material for microstimulation of small area iridium electrodes on silicon-substrate arrays. Characterized by electrochemical impedance spectroscopy, electrodeposition of PEDOT results in lower interfacial impedance at physiologically-relevant frequencies, with the 1kHz impedance magnitude being 23.3 ± 0.7 kΩ compared to 113.6 ± 3.5 kΩ for iridium oxide (IrOx on 177μm2 sites. Further, PEDOT exhibits enhanced charge storage capacity at 75.6 ± 5.4 mC/cm2 compared to 28.8 ± 0.3 mC/cm2 for IrOx, characterized by cyclic voltammetry (50 mV/s. These improvements at the electrode interface were corroborated by observation of the voltage excursions that result from constant current pulsing. The PEDOT coatings provide both a lower amplitude voltage and a more ohmic representation of the applied current compared to IrOx. During repetitive pulsing, PEDOT-coated electrodes show stable performance and little change in electrical properties, even at relatively high current densities which cause IrOx instability. These findings support the potential of PEDOT coatings as a micro-neural interface material for electrostimulation.

  4. ORGANIC ELECTRODE COATINGS FOR NEXT-GENERATION NEURAL INTERFACES

    Directory of Open Access Journals (Sweden)

    Ulises A Aregueta-Robles

    2014-05-01

    Full Text Available Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.

  5. Flexible neural interfaces with integrated stiffening shank

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2017-10-17

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  6. Flexible neural interfaces with integrated stiffening shank

    Science.gov (United States)

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2016-07-26

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  7. The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective.

    Science.gov (United States)

    Guo, Liang

    2016-01-01

    Brain-computer interfaces represent one of the most astonishing technologies in our era. However, the grand challenge of chronic instability and limited throughput of the electrode-tissue interface has significantly hindered the further development and ultimate deployment of such exciting technologies. A multidisciplinary research workforce has been called upon to respond to this engineering need. In this paper, I briefly review this multidisciplinary pursuit of chronically reliable neural interfaces from a materials perspective by analyzing the problem, abstracting the engineering principles, and summarizing the corresponding engineering strategies. I further draw my future perspectives by extending the proposed engineering principles.

  8. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  9. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.

    Science.gov (United States)

    Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

  10. iSpike: a spiking neural interface for the iCub robot

    International Nuclear Information System (INIS)

    Gamez, D; Fidjeland, A K; Lazdins, E

    2012-01-01

    This paper presents iSpike: a C++ library that interfaces between spiking neural network simulators and the iCub humanoid robot. It uses a biologically inspired approach to convert the robot’s sensory information into spikes that are passed to the neural network simulator, and it decodes output spikes from the network into motor signals that are sent to control the robot. Applications of iSpike range from embodied models of the brain to the development of intelligent robots using biologically inspired spiking neural networks. iSpike is an open source library that is available for free download under the terms of the GPL. (paper)

  11. High speed digital interfacing for a neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Bahr Andreas

    2016-09-01

    Full Text Available Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC was developed that is optimized for the recording from neonatal mice [Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. 16 Channel Neural Recording Integrated Circuit with SPI Interface and Error Correction Coding. Proc. 9th BIOSTEC 2016. Biodevices: Rome, Italy, 2016; 1: 263; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. Development of a neural recording mixed signal integrated circuit for biomedical signal acquisition. Biomed Eng Biomed Tech Abstracts 2015; 60(S1: 298–299; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider WH. 16 Channel Neural Recording Mixed Signal ASIC. CDNLive EMEA 2015 Conference Proceedings, 2015.]. To enable the live display of the neural signals a multichannel neural data acquisition system with live display functionality is presented. It implements a high speed data transmission from the ASIC to a computer with a live display functionality. The system has been successfully implemented and was used in a neural recording of a head-fixed mouse.

  12. Flexible microelectrode array for interfacing with the surface of neural ganglia

    Science.gov (United States)

    Sperry, Zachariah J.; Na, Kyounghwan; Parizi, Saman S.; Chiel, Hillel J.; Seymour, John; Yoon, Euisik; Bruns, Tim M.

    2018-06-01

    Objective. The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach. Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA’s capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results. We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline’s DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance. Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.

  13. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  14. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  15. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  16. Sensory System for Implementing a Human—Computer Interface Based on Electrooculography

    Directory of Open Access Journals (Sweden)

    Sergio Ortega

    2010-12-01

    Full Text Available This paper describes a sensory system for implementing a human–computer interface based on electrooculography. An acquisition system captures electrooculograms and transmits them via the ZigBee protocol. The data acquired are analysed in real time using a microcontroller-based platform running the Linux operating system. The continuous wavelet transform and neural network are used to process and analyse the signals to obtain highly reliable results in real time. To enhance system usability, the graphical interface is projected onto special eyewear, which is also used to position the signal-capturing electrodes.

  17. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.

    Science.gov (United States)

    Chang, Sun-Il; Park, Sung-Yun; Yoon, Euisik

    2018-01-17

    This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm² and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µV rms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.

  18. The 128-channel fully differential digital integrated neural recording and stimulation interface.

    Science.gov (United States)

    Shahrokhi, Farzaneh; Abdelhalim, Karim; Serletis, Demitre; Carlen, Peter L; Genov, Roman

    2010-06-01

    We present a fully differential 128-channel integrated neural interface. It consists of an array of 8 X 16 low-power low-noise signal-recording and generation circuits for electrical neural activity monitoring and stimulation, respectively. The recording channel has two stages of signal amplification and conditioning with and a fully differential 8-b column-parallel successive approximation (SAR) analog-to-digital converter (ADC). The total measured power consumption of each recording channel, including the SAR ADC, is 15.5 ¿W. The measured input-referred noise is 6.08 ¿ Vrms over a 5-kHz bandwidth, resulting in a noise efficiency factor of 5.6. The stimulation channel performs monophasic or biphasic voltage-mode stimulation, with a maximum stimulation current of 5 mA and a quiescent power dissipation of 51.5 ¿W. The design is implemented in 0.35-¿m complementary metal-oxide semiconductor technology with the channel pitch of 200 ¿m for a total die size of 3.4 mm × 2.5 mm and a total power consumption of 9.33 mW. The neural interface was validated in in vitro recording of a low-Mg(2+)/high-K(+) epileptic seizure model in an intact hippocampus of a mouse.

  19. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    Science.gov (United States)

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  20. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems

    Directory of Open Access Journals (Sweden)

    Sun-Il Chang

    2018-01-01

    Full Text Available This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM module. The core integrated circuit (IC consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm2 and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µVrms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.

  1. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.

    Science.gov (United States)

    Huang, Wei-Chen; Lo, Yu-Chih; Chu, Chao-Yi; Lai, Hsin-Yi; Chen, You-Yin; Chen, San-Yuan

    2017-04-01

    Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl 2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn 2+ . In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn 2+ ions, so that the system can release Mn 2+ ions rather than MnCl 2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional

  2. Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation

    Czech Academy of Sciences Publication Activity Database

    Alcaide, M.; Taylor, Andrew; Fjorback, M.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 10, Mar (2016), 1-9, č. článku 87. ISSN 1662-453X Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * neuroprosthetic interfaces * neural electrodes * boron-doped diamond * titanium nitride * foreign body reaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.566, year: 2016

  3. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  4. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  5. Optimal design method for a digital human–computer interface based on human reliability in a nuclear power plant. Part 3: Optimization method for interface task layout

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Wang, Yiqun; Zhang, Li; Xie, Tian; Li, Min; Peng, Yuyuan; Wu, Daqing; Li, Peiyao; Ma, Congmin; Shen, Mengxu; Wu, Xing; Weng, Mengyun; Wang, Shiwei; Xie, Cen

    2016-01-01

    Highlights: • The authors present an optimization algorithm for interface task layout. • The performing process of the proposed algorithm was depicted. • The performance evaluation method adopted neural network method. • The optimization layouts of an event interface tasks were obtained by experiments. - Abstract: This is the last in a series of papers describing the optimal design for a digital human–computer interface of a nuclear power plant (NPP) from three different points based on human reliability. The purpose of this series is to propose different optimization methods from varying perspectives to decrease human factor events that arise from the defects of a human–computer interface. The present paper mainly solves the optimization method as to how to effectively layout interface tasks into different screens. The purpose of this paper is to decrease human errors by reducing the distance that an operator moves among different screens in each operation. In order to resolve the problem, the authors propose an optimization process of interface task layout for digital human–computer interface of a NPP. As to how to automatically layout each interface task into one of screens in each operation, the paper presents a shortest moving path optimization algorithm with dynamic flag based on human reliability. To test the algorithm performance, the evaluation method uses neural network based on human reliability. The less the human error probabilities are, the better the interface task layouts among different screens are. Thus, by analyzing the performance of each interface task layout, the optimization result is obtained. Finally, the optimization layouts of spurious safety injection event interface tasks of the NPP are obtained by an experiment, the proposed methods has a good accuracy and stabilization.

  6. Programmable neural processing on a smartdust for brain-computer interfaces.

    Science.gov (United States)

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  7. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the R obust Design of Artificial Neural Networks Methodology . The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  8. A Chronically Implantable Bidirectional Neural Interface for Non-human Primates

    Directory of Open Access Journals (Sweden)

    Misako Komatsu

    2017-09-01

    Full Text Available Optogenetics has potential applications in the study of epilepsy and neuroprostheses, and for studies on neural circuit dynamics. However, to achieve translation to clinical usage, optogenetic interfaces that are capable of chronic stimulation and monitoring with minimal brain trauma are required. We aimed to develop a chronically implantable device for photostimulation of the brain of non-human primates. We used a micro-light-emitting diode (LED array with a flexible polyimide film. The array was combined with a whole-cortex electrocorticographic (ECoG electrode array for simultaneous photostimulation and recording. Channelrhodopsin-2 (ChR2 was virally transduced into the cerebral cortex of common marmosets, and then the device was epidurally implanted into their brains. We recorded the neural activity during photostimulation of the awake monkeys for 4 months. The neural responses gradually increased after the virus injection for ~8 weeks and remained constant for another 8 weeks. The micro-LED and ECoG arrays allowed semi-invasive simultaneous stimulation and recording during long-term implantation in the brains of non-human primates. The development of this device represents substantial progress in the field of optogenetic applications.

  9. An ovine model of cerebral catheter venography for implantation of an endovascular neural interface.

    Science.gov (United States)

    Oxley, Thomas James; Opie, Nicholas Lachlan; Rind, Gil Simon; Liyanage, Kishan; John, Sam Emmanuel; Ronayne, Stephen; McDonald, Alan James; Dornom, Anthony; Lovell, Timothy John Haynes; Mitchell, Peter John; Bennett, Iwan; Bauquier, Sebastien; Warne, Leon Norris; Steward, Chris; Grayden, David Bruce; Desmond, Patricia; Davis, Stephen M; O'Brien, Terence John; May, Clive N

    2018-04-01

    OBJECTIVE Neural interface technology may enable the development of novel therapies to treat neurological conditions, including motor prostheses for spinal cord injury. Intracranial neural interfaces currently require a craniotomy to achieve implantation and may result in chronic tissue inflammation. Novel approaches are required that achieve less invasive implantation methods while maintaining high spatial resolution. An endovascular stent electrode array avoids direct brain trauma and is able to record electrocorticography in local cortical tissue from within the venous vasculature. The motor area in sheep runs in a parasagittal plane immediately adjacent to the superior sagittal sinus (SSS). The authors aimed to develop a sheep model of cerebral venography that would enable validation of an endovascular neural interface. METHODS Cerebral catheter venography was performed in 39 consecutive sheep. Contrast-enhanced MRI of the brain was performed on 13 animals. Multiple telescoping coaxial catheter systems were assessed to determine the largest wide-bore delivery catheter that could be delivered into the anterior SSS. Measurements of SSS diameter and distance from the motor area were taken. The location of the motor area was determined in relation to lateral and superior projections of digital subtraction venography images and confirmed on MRI. RESULTS The venous pathway from the common jugular vein (7.4 mm) to the anterior SSS (1.2 mm) was technically challenging to selectively catheterize. The SSS coursed immediately adjacent to the motor cortex (SSS. Attempted access with 5-Fr and 6-Fr delivery catheters was associated with longer procedure times and higher complication rates. A 4-Fr catheter (internal lumen diameter 1.1 mm) was successful in accessing the SSS in 100% of cases with no associated complications. Complications included procedure-related venous dissection in two major areas: the torcular herophili, and the anterior formation of the SSS. The

  10. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  11. Neural-net based real-time economic dispatch for thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Milosevic, B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-12-01

    This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal units. The approach can take into account the operational requirements and network losses. The proposed economic dispatch uses an artificial neural network (ANN) for generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from the Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal systems, based on the neural-net theory for simplified solution algorithms and improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories, by applying neural-net forecasts of system load patterns.

  12. NEVESIM: event-driven neural simulation framework with a Python interface.

    Science.gov (United States)

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.

  13. Man-system interface based on automatic speech recognition: integration to a virtual control desk

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Carlos Alexandre F.; Mol, Antonio Carlos A.; Pereira, Claudio M.N.A.; Aghina, Mauricio Alves C., E-mail: calexandre@ien.gov.b, E-mail: mol@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: mag@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Nomiya, Diogo V., E-mail: diogonomiya@gmail.co [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2009-07-01

    This work reports the implementation of a man-system interface based on automatic speech recognition, and its integration to a virtual nuclear power plant control desk. The later is aimed to reproduce a real control desk using virtual reality technology, for operator training and ergonomic evaluation purpose. An automatic speech recognition system was developed to serve as a new interface with users, substituting computer keyboard and mouse. They can operate this virtual control desk in front of a computer monitor or a projection screen through spoken commands. The automatic speech recognition interface developed is based on a well-known signal processing technique named cepstral analysis, and on artificial neural networks. The speech recognition interface is described, along with its integration with the virtual control desk, and results are presented. (author)

  14. Man-system interface based on automatic speech recognition: integration to a virtual control desk

    International Nuclear Information System (INIS)

    Jorge, Carlos Alexandre F.; Mol, Antonio Carlos A.; Pereira, Claudio M.N.A.; Aghina, Mauricio Alves C.; Nomiya, Diogo V.

    2009-01-01

    This work reports the implementation of a man-system interface based on automatic speech recognition, and its integration to a virtual nuclear power plant control desk. The later is aimed to reproduce a real control desk using virtual reality technology, for operator training and ergonomic evaluation purpose. An automatic speech recognition system was developed to serve as a new interface with users, substituting computer keyboard and mouse. They can operate this virtual control desk in front of a computer monitor or a projection screen through spoken commands. The automatic speech recognition interface developed is based on a well-known signal processing technique named cepstral analysis, and on artificial neural networks. The speech recognition interface is described, along with its integration with the virtual control desk, and results are presented. (author)

  15. Unfolding code for neutron spectrometry based on neural nets technology

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the {sup R}obust Design of Artificial Neural Networks Methodology{sup .} The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a {sup 6}Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  16. EEG signal classification based on artificial neural networks and amplitude spectra features

    Science.gov (United States)

    Chojnowski, K.; FrÄ czek, J.

    BCI (called Brain-Computer Interface) is an interface that allows direct communication between human brain and an external device. It bases on EEG signal collection, processing and classification. In this paper a complete BCI system is presented which classifies EEG signal using artificial neural networks. For this purpose we used a multi-layered perceptron architecture trained with the RProp algorithm. Furthermore a simple multi-threaded method for automatic network structure optimizing was shown. We presented the results of our system in the opening and closing eyes recognition task. We also showed how our system could be used for controlling devices basing on imaginary hand movements.

  17. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  18. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-12-01

    To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  19. Man machine interface based on speech recognition

    International Nuclear Information System (INIS)

    Jorge, Carlos A.F.; Aghina, Mauricio A.C.; Mol, Antonio C.A.; Pereira, Claudio M.N.A.

    2007-01-01

    This work reports the development of a Man Machine Interface based on speech recognition. The system must recognize spoken commands, and execute the desired tasks, without manual interventions of operators. The range of applications goes from the execution of commands in an industrial plant's control room, to navigation and interaction in virtual environments. Results are reported for isolated word recognition, the isolated words corresponding to the spoken commands. For the pre-processing stage, relevant parameters are extracted from the speech signals, using the cepstral analysis technique, that are used for isolated word recognition, and corresponds to the inputs of an artificial neural network, that performs recognition tasks. (author)

  20. Neural interface methods and apparatus to provide artificial sensory capabilities to a subject

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, Stephen P.; Olsson, III, Roy H.; Wojciechowski, Kenneth E.; Novick, David K.; Kholwadwala, Deepesh K.

    2017-01-24

    Embodiments of neural interfaces according to the present invention comprise sensor modules for sensing environmental attributes beyond the natural sensory capability of a subject, and communicating the attributes wirelessly to an external (ex-vivo) portable module attached to the subject. The ex-vivo module encodes and communicates the attributes via a transcutaneous inductively coupled link to an internal (in-vivo) module implanted within the subject. The in-vivo module converts the attribute information into electrical neural stimuli that are delivered to a peripheral nerve bundle within the subject, via an implanted electrode. Methods and apparatus according to the invention incorporate implantable batteries to power the in-vivo module allowing for transcutaneous bidirectional communication of low voltage (e.g. on the order of 5 volts) encoded signals as stimuli commands and neural responses, in a robust, low-error rate, communication channel with minimal effects to the subjects' skin.

  1. Control Strategies for the DAB Based PV Interface System.

    Directory of Open Access Journals (Sweden)

    Hadi M El-Helw

    Full Text Available This paper presents an interface system based on the Dual Active Bridge (DAB converter for Photovoltaic (PV arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O Maximum Power Point Tracking (MPPT technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system.

  2. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    Science.gov (United States)

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  3. Neural Based Orthogonal Data Fitting The EXIN Neural Networks

    CERN Document Server

    Cirrincione, Giansalvo

    2008-01-01

    Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh

  4. CMOS On-Chip Optoelectronic Neural Interface Device with Integrated Light Source for Optogenetics

    International Nuclear Information System (INIS)

    Sawadsaringkarn, Y; Kimura, H; Maezawa, Y; Nakajima, A; Kobayashi, T; Sasagawa, K; Noda, T; Tokuda, T; Ohta, J

    2012-01-01

    A novel optoelectronic neural interface device is proposed for target applications in optogenetics for neural science. The device consists of a light emitting diode (LED) array implemented on a CMOS image sensor for on-chip local light stimulation. In this study, we designed a suitable CMOS image sensor equipped with on-chip electrodes to drive the LEDs, and developed a device structure and packaging process for LED integration. The prototype device produced an illumination intensity of approximately 1 mW with a driving current of 2.0 mA, which is expected to be sufficient to activate channelrhodopsin (ChR2). We also demonstrated the functions of light stimulation and on-chip imaging using a brain slice from a mouse as a target sample.

  5. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface

    Science.gov (United States)

    Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.

    2018-06-01

    Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.

  6. A Neural Networks Based Operation Guidance System for Procedure Presentation and Validation

    International Nuclear Information System (INIS)

    Seung, Kun Mo; Lee, Seung Jun; Seong, Poong Hyun

    2006-01-01

    In this paper, a neural network based operator support system is proposed to reduce operator's errors in abnormal situations in nuclear power plants (NPPs). There are many complicated situations, in which regular and suitable operations should be done by operators accordingly. In order to regulate and validate operators' operations, it is necessary to develop an operator support system which includes computer based procedures with the functions for operation validation. Many computerized procedures systems (CPS) have been recently developed. Focusing on the human machine interface (HMI) design and procedures' computerization, most of CPSs used various methodologies to enhance system's convenience, reliability and accessibility. Other than only showing procedures, the proposed system integrates a simple CPS and an operation validation system (OVS) by using artificial neural network (ANN) for operational permission and quantitative evaluation

  7. A Symbiotic Brain-Machine Interface through Value-Based Decision Making

    Science.gov (United States)

    Mahmoudi, Babak; Sanchez, Justin C.

    2011-01-01

    Background In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). Methodology The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. Conclusions Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward

  8. A symbiotic brain-machine interface through value-based decision making.

    Directory of Open Access Journals (Sweden)

    Babak Mahmoudi

    Full Text Available BACKGROUND: In the development of Brain Machine Interfaces (BMIs, there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC. METHODOLOGY: The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1 and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. CONCLUSIONS: Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and

  9. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@cea.fr [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Warnking, Jan; Depaulis, Antoine [INSERM, U836, Grenoble Institut des Neurosciences, Grenoble (France); Garçon, Laurie Amandine [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); CEA/INAC/SPrAM/CREAB, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Mermoux, Michel [Université Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Eon, David [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Mailley, Pascal [CEA-LETI-DTBS Minatec, 17 rue des Martyres, 38054 Grenoble (France); Omnès, Franck [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. - Highlights: • Microfabrication of all-diamond microelectrode array • Evaluation of as-grown nanocrystalline boron-doped diamond for electrical neural interfacing • MRI compatibility of nanocrystalline boron-doped diamond.

  10. SSVEP and ANN based optimal speller design for Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Irshad Ahmad Ansari

    2015-07-01

    Full Text Available This work put forwards an optimal BCI (Brain Computer Interface speller design based on Steady State Visual Evoked Potentials (SSVEP and Artificial Neural Network (ANN in order to help the people with severe motor impairments. This work is carried out to enhance the accuracy and communication rate of  BCI system. To optimize the BCI system, the work has been divided into two steps: First, designing of an encoding technique to choose characters from the speller interface and the second is the development and implementation of feature extraction algorithm to acquire optimal features, which is used to train the BCI system for classification using neural network. Optimization of speller interface is focused on representation of character matrix and its designing parameters. Then again, a lot of deliberations made in order to optimize selection of features and user’s time window. Optimized system works nearly the same with the new user and gives character per minute (CPM of 13 ± 2 with an average accuracy of 94.5% by choosing first two harmonics of power spectral density as the feature vectors and using the 2 second time window for each selection. Optimized BCI performs better with experienced users with an average accuracy of 95.1%. Such a good accuracy has not been reported before in account of fair enough CPM.DOI: 10.15181/csat.v2i2.1059

  11. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation.

    Science.gov (United States)

    Paluch-Siegler, Shir; Mayblum, Tom; Dana, Hod; Brosh, Inbar; Gefen, Inna; Shoham, Shy

    2015-07-01

    Our understanding of neural information processing could potentially be advanced by combining flexible three-dimensional (3-D) neuroimaging and stimulation. Recent developments in optogenetics suggest that neurophotonic approaches are in principle highly suited for noncontact stimulation of network activity patterns. In particular, two-photon holographic optical neural stimulation (2P-HONS) has emerged as a leading approach for multisite 3-D excitation, and combining it with temporal focusing (TF) further enables axially confined yet spatially extended light patterns. Here, we study key steps toward bidirectional cell-targeted 3-D interfacing by introducing and testing a hybrid new 2P-TF-HONS stimulation path for accurate parallel optogenetic excitation into a recently developed hybrid multiphoton 3-D imaging system. The system is shown to allow targeted all-optical probing of in vitro cortical networks expressing channelrhodopsin-2 using a regeneratively amplified femtosecond laser source tuned to 905 nm. These developments further advance a prospective new tool for studying and achieving distributed control over 3-D neuronal circuits both in vitro and in vivo.

  12. A neutron spectrum unfolding computer code based on artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J.M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J.M.; Vega-Carrillo, H.R.

    2014-01-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding

  13. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    Science.gov (United States)

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS

    Directory of Open Access Journals (Sweden)

    Christopher Bergmeir

    2012-01-01

    Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.

  15. A wireless transmission neural interface system for unconstrained non-human primates.

    Science.gov (United States)

    Fernandez-Leon, Jose A; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J; Hansen, Bryan J; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  16. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  17. Transport and metabolism at blood-brain interfaces and in neural cells: relevance to bilirubin-induced encephalopathy

    Directory of Open Access Journals (Sweden)

    Silvia eGazzin

    2012-05-01

    Full Text Available Bilirubin, the end-product of heme catabolism, circulates in non pathological plasma mostly as a protein-bound species. When bilirubin concentration builds up, the free fraction of the molecule increases. Unbound bilirubin then diffuses across blood-brain interfaces into the brain, where it accumulates and exerts neurotoxic effects. In this classical view of bilirubin neurotoxicity, blood-brain interfaces act merely as structural barriers impeding the penetration of the pigment-bound carrier protein, and neural cells are considered as passive targets of its toxicity. Yet, the role of blood-brain interfaces in the occurrence of bilirubin encephalopathy appears more complex than being simple barriers to the diffusion of bilirubin, and neural cells such as astrocytes and neurons can play an active role in controlling the balance between the neuroprotective and neurotoxic effects of bilirubin. This article reviews the emerging in vivo and in vitro data showing that transport and metabolic detoxification mechanisms at the blood-brain and blood-CSF barriers may modulate bilirubin flux across both cellular interfaces, and that these protective functions can be affected in chronic hyperbilirubinemia. Then the in vivo and in vitro arguments in favor of the physiological antioxidant function of intracerebral bilirubin are presented, as well as with the potential role of transporters such as ABCC-1 and metabolizing enzymes such as cytochromes P-450 in setting the cerebral cell- and structure-specific toxicity of bilirubin following hyperbilirubinemia. The relevance of these data to the pathophysiology of bilirubin-induced neurological diseases is discussed.

  18. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.

    Science.gov (United States)

    Werner, Thilo; Vianello, Elisa; Bichler, Olivier; Garbin, Daniele; Cattaert, Daniel; Yvert, Blaise; De Salvo, Barbara; Perniola, Luca

    2016-01-01

    In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN). The proposed architecture is suitable for hardware implementation by using resistive random access memory (RRAM) technology for the implementation of synapses whose low latency (spike sorting. This offers promising advantages to conventional spike sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications. Moreover, the ultra-low power consumption of the RRAM synapses of the spiking neural network (nW range) may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM) as easy to program and low energy (Spike Timing Dependent Plasticity. Real spiking data have been recorded both intra- and extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

  19. Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin

    Directory of Open Access Journals (Sweden)

    William Taube Navaraj

    2017-09-01

    Full Text Available This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs based hardware-implementable neural network (HNN approach for tactile data processing in electronic skin (e-skin. The viability of Si nanowires (NWs as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals.

  20. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  1. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  2. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    Science.gov (United States)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the

  3. Addition of visual noise boosts evoked potential-based brain-computer interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  4. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    Science.gov (United States)

    Novellino, A.; D'Angelo, P.; Cozzi, L.; Chiappalone, M.; Sanguineti, V.; Martinoia, S.

    2007-01-01

    One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses. PMID:18350128

  5. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces

    Science.gov (United States)

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.; Boahen, Kwabena

    2013-06-01

    Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system’s robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. Significance. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  6. An adaptive interface (KNOWBOT) for nuclear power industry data bases

    International Nuclear Information System (INIS)

    Heger, A.S.

    1989-01-01

    An adaptive interface, KNOWBOT, has been designed to solve some of the problems that face the users of large centralized databases. The interface applies the neural network approach to information retrieval from a database. The database is a subset of the Nuclear Plant Reliability Data System (NPRDS). KNOWBOT preempts an existing database interface and works in conjunction with it. By design, KNOWBOT starts as a tabula rasa but acquires knowledge through its interactions with the user and the database. The interface uses its gained knowledge to personalize the database retrieval process and to induce new queries. In addition, the interface forgets the information that is no longer needed by the user. These self-organizing features of the interface reduce the scope of the database to the subsets that are highly relevant to the user needs. A proof-of-principle version of this interface has been implemented in Common LISP on a Texas Instruments Explorer I workstation. Experiments with KNOWBOT have successfully demonstrated the robustness of the model especially with induction and self-organization

  7. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    Science.gov (United States)

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Controlling selective stimulations below a spinal cord hemisection using brain recordings with a neural interface system approach

    Science.gov (United States)

    Panetsos, Fivos; Sanchez-Jimenez, Abel; Torets, Carlos; Largo, Carla; Micera, Silvestro

    2011-08-01

    In this work we address the use of realtime cortical recordings for the generation of coherent, reliable and robust motor activity in spinal-lesioned animals through selective intraspinal microstimulation (ISMS). The spinal cord of adult rats was hemisectioned and groups of multielectrodes were implanted in both the central nervous system (CNS) and the spinal cord below the lesion level to establish a neural system interface (NSI). To test the reliability of this new NSI connection, highly repeatable neural responses recorded from the CNS were used as a pattern generator of an open-loop control strategy for selective ISMS of the spinal motoneurons. Our experimental procedure avoided the spontaneous non-controlled and non-repeatable neural activity that could have generated spurious ISMS and the consequent undesired muscle contractions. Combinations of complex CNS patterns generated precisely coordinated, reliable and robust motor actions.

  9. Fabrication and Microassembly of a mm-Sized Floating Probe for a Distributed Wireless Neural Interface

    Directory of Open Access Journals (Sweden)

    Pyungwoo Yeon

    2016-09-01

    Full Text Available A new class of wireless neural interfaces is under development in the form of tens to hundreds of mm-sized untethered implants, distributed across the target brain region(s. Unlike traditional interfaces that are tethered to a centralized control unit and suffer from micromotions that may damage the surrounding neural tissue, the new free-floating wireless implantable neural recording (FF-WINeR probes will be stand-alone, directly communicating with an external interrogator. Towards development of the FF-WINeR, in this paper we describe the micromachining, microassembly, and hermetic packaging of 1-mm3 passive probes, each of which consists of a thinned micromachined silicon die with a centered Ø(diameter 130 μm through-hole, an Ø81 μm sharpened tungsten electrode, a 7-turn gold wire-wound coil wrapped around the die, two 0201 surface mount capacitors on the die, and parylene-C/Polydimethylsiloxane (PDMS coating. The fabricated passive probe is tested under a 3-coil inductive link to evaluate power transfer efficiency (PTE and power delivered to a load (PDL for feasibility assessment. The minimum PTE/PDL at 137 MHz were 0.76%/240 μW and 0.6%/191 μW in the air and lamb head medium, respectively, with coil separation of 2.8 cm and 9 kΩ receiver (Rx loading. Six hermetically sealed probes went through wireless hermeticity testing, using a 2-coil inductive link under accelerated lifetime testing condition of 85 °C, 1 atm, and 100%RH. The mean-time-to-failure (MTTF of the probes at 37 °C is extrapolated to be 28.7 years, which is over their lifetime.

  10. Invasive Intraneural Interfaces: Foreign Body Reaction Issues

    Science.gov (United States)

    Lotti, Fiorenza; Ranieri, Federico; Vadalà, Gianluca; Zollo, Loredana; Di Pino, Giovanni

    2017-01-01

    Intraneural interfaces are stimulation/registration devices designed to couple the peripheral nervous system (PNS) with the environment. Over the last years, their use has increased in a wide range of applications, such as the control of a new generation of neural-interfaced prostheses. At present, the success of this technology is limited by an electrical impedance increase, due to an inflammatory response called foreign body reaction (FBR), which leads to the formation of a fibrotic tissue around the interface, eventually causing an inefficient transduction of the electrical signal. Based on recent developments in biomaterials and inflammatory/fibrotic pathologies, we explore and select the biological solutions that might be adopted in the neural interfaces FBR context: modifications of the interface surface, such as organic and synthetic coatings; the use of specific drugs or molecular biology tools to target the microenvironment around the interface; the development of bio-engineered-scaffold to reduce immune response and promote interface-tissue integration. By linking what we believe are the major crucial steps of the FBR process with related solutions, we point out the main issues that future research has to focus on: biocompatibility without losing signal conduction properties, good reproducible in vitro/in vivo models, drugs exhaustion and undesired side effects. The underlined pros and cons of proposed solutions show clearly the importance of a better understanding of all the molecular and cellular pathways involved and the need of a multi-target action based on a bio-engineered combination approach. PMID:28932181

  11. Research on Fault Diagnosis Method Based on Rule Base Neural Network

    Directory of Open Access Journals (Sweden)

    Zheng Ni

    2017-01-01

    Full Text Available The relationship between fault phenomenon and fault cause is always nonlinear, which influences the accuracy of fault location. And neural network is effective in dealing with nonlinear problem. In order to improve the efficiency of uncertain fault diagnosis based on neural network, a neural network fault diagnosis method based on rule base is put forward. At first, the structure of BP neural network is built and the learning rule is given. Then, the rule base is built by fuzzy theory. An improved fuzzy neural construction model is designed, in which the calculated methods of node function and membership function are also given. Simulation results confirm the effectiveness of this method.

  12. Automatic Speech Recognition from Neural Signals: A Focused Review

    Directory of Open Access Journals (Sweden)

    Christian Herff

    2016-09-01

    Full Text Available Speech interfaces have become widely accepted and are nowadays integrated in various real-life applications and devices. They have become a part of our daily life. However, speech interfaces presume the ability to produce intelligible speech, which might be impossible due to either loud environments, bothering bystanders or incapabilities to produce speech (i.e.~patients suffering from locked-in syndrome. For these reasons it would be highly desirable to not speak but to simply envision oneself to say words or sentences. Interfaces based on imagined speech would enable fast and natural communication without the need for audible speech and would give a voice to otherwise mute people.This focused review analyzes the potential of different brain imaging techniques to recognize speech from neural signals by applying Automatic Speech Recognition technology. We argue that modalities based on metabolic processes, such as functional Near Infrared Spectroscopy and functional Magnetic Resonance Imaging, are less suited for Automatic Speech Recognition from neural signals due to low temporal resolution but are very useful for the investigation of the underlying neural mechanisms involved in speech processes. In contrast, electrophysiologic activity is fast enough to capture speech processes and is therefor better suited for ASR. Our experimental results indicate the potential of these signals for speech recognition from neural data with a focus on invasively measured brain activity (electrocorticography. As a first example of Automatic Speech Recognition techniques used from neural signals, we discuss the emph{Brain-to-text} system.

  13. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    Directory of Open Access Journals (Sweden)

    A. Novellino

    2007-01-01

    Full Text Available One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason x201C;embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA, to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses.

  14. A neural-based remote eye gaze tracker under natural head motion.

    Science.gov (United States)

    Torricelli, Diego; Conforto, Silvia; Schmid, Maurizio; D'Alessio, Tommaso

    2008-10-01

    A novel approach to view-based eye gaze tracking for human computer interface (HCI) is presented. The proposed method combines different techniques to address the problems of head motion, illumination and usability in the framework of low cost applications. Feature detection and tracking algorithms have been designed to obtain an automatic setup and strengthen the robustness to light conditions. An extensive analysis of neural solutions has been performed to deal with the non-linearity associated with gaze mapping under free-head conditions. No specific hardware, such as infrared illumination or high-resolution cameras, is needed, rather a simple commercial webcam working in visible light spectrum suffices. The system is able to classify the gaze direction of the user over a 15-zone graphical interface, with a success rate of 95% and a global accuracy of around 2 degrees , comparable with the vast majority of existing remote gaze trackers.

  15. A neutron spectrum unfolding computer code based on artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in

  16. Neural network-based sensor signal accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  17. Neural control of finger movement via intracortical brain-machine interface

    Science.gov (United States)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe

  18. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman; Ostrem, Jill L; Galifianakis, Nicholas B; Luciano, Marta San; Wang, Sarah S; Ziman, Nathan; Taylor, Robin; Starr, Philip A

    2018-02-01

    OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation

  19. Optimizing the performance of neural interface devices with hybrid poly(3,4-ethylene dioxythiophene) (PEDOT)

    Science.gov (United States)

    Kuo, Chin-chen

    This thesis describes methods for improving the performance of poly(3,4-ethylenedioxythiophene) (PEDOT) as a direct neural interfacing material. The chronic foreign body response is always a challenge for implanted bionic devices. After long-term implantation (typically 2-4 weeks), insulating glial scars form around the devices, inhibiting signal transmission, which ultimately leads to device failure. The mechanical mismatch at the device-tissue interface is one of the issues that has been associated with chronic foreign body response. Another challenge for using PEDOT as a neural interface material is its mechanical failure after implantation. We observed cracking and delamination of PEDOT coatings on devices after extended implantations. In the first part of this thesis, we present a novel method for directly measuring the mechanical properties of a PEDOT thin film. Before investigating methods to improve the mechanical behavior of PEDOT, a comprehensive understanding of the mechanical properties of PEDOT thin film is required. A PEDOT thin film was machined into a dog-bone shape specimen with a dual beam FIB-SEM. With an OmniProbe, this PEDOT specimen could be attached onto a force sensor, while the other side was attached to OmniProbe. By moving the OmniProbe, the specimen could be deformed in tension, and a force sensor recorded the applied load on the sample simultaneously. Mechanical tensile tests were conducted in the FIB-SEM chamber along with in situ observation. With precise force measurement from the force sensor and the corresponding high resolution SEM images, we were able to convert the data to a stress-strain curve for further analysis. By analyzing these stress-strain curves, we were able to obtain information about PEDOT including the Young's modulus, strength of failure, strain to failure, and toughness (energy to failure). This information should be useful for future material selection and molecular design for specific applications. The second

  20. Neurophysiology and neural engineering: a review.

    Science.gov (United States)

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  1. Kernel Temporal Differences for Neural Decoding

    Science.gov (United States)

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  2. Optimized Neural Network for Fault Diagnosis and Classification

    International Nuclear Information System (INIS)

    Elaraby, S.M.

    2005-01-01

    This paper presents a developed and implemented toolbox for optimizing neural network structure of fault diagnosis and classification. Evolutionary algorithm based on hierarchical genetic algorithm structure is used for optimization. The simplest feed-forward neural network architecture is selected. Developed toolbox has friendly user interface. Multiple solutions are generated. The performance and applicability of the proposed toolbox is verified with benchmark data patterns and accident diagnosis of Egyptian Second research reactor (ETRR-2)

  3. Integration of active devices on smart polymers for neural interfaces

    Science.gov (United States)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  4. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.

  5. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

    Science.gov (United States)

    Tam, Wing-Kin; Yang, Zhi

    2018-05-01

    Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. In vitro verification of a 3-D regenerative neural interface design: examination of neurite growth and electrical properties within a bifurcating microchannel structure

    NARCIS (Netherlands)

    Wieringa, P.A.; Wiertz, Remy; de Weerd, Eddy L; Rutten, Wim

    2010-01-01

    Toward the development of neuroprosthesis, we propose a 3-D regenerative neural interface design for connecting with the peripheral nervous system. This approach relies on bifurcating microstructures to achieve defasciculated ingrowth patterns and, consequently, high selectivity. In vitro studies

  7. Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization.

    Science.gov (United States)

    Minnikanti, Saugandhika; Diao, Guoqing; Pancrazio, Joseph J; Xie, Xianzong; Rieth, Loren; Solzbacher, Florian; Peixoto, Nathalia

    2014-02-01

    The lifetime and stability of insulation are critical features for the reliable operation of an implantable neural interface device. A critical factor for an implanted insulation's performance is its barrier properties that limit access of biological fluids to the underlying device or metal electrode. Parylene C is a material that has been used in FDA-approved implantable devices. Considered a biocompatible polymer with barrier properties, it has been used as a substrate, insulation or an encapsulation for neural implant technology. Recently, it has been suggested that a bilayer coating of Parylene C on top of atomic-layer-deposited Al2O3 would provide enhanced barrier properties. Here we report a comprehensive study to examine the mean time to failure of Parylene C and Al2O3-Parylene C coated devices using accelerated lifetime testing. Samples were tested at 60°C for up to 3 months while performing electrochemical measurements to characterize the integrity of the insulation. The mean time to failure for Al2O3-Parylene C was 4.6 times longer than Parylene C coated samples. In addition, based on modeling of the data using electrical circuit equivalents, we show here that there are two main modes of failure. Our results suggest that failure of the insulating layer is due to pore formation or blistering as well as thinning of the coating over time. The enhanced barrier properties of the bilayer Al2O3-Parylene C over Parylene C makes it a promising candidate as an encapsulating neural interface. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    Science.gov (United States)

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  9. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  10. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  11. An introduction to neural networks surgery, a field of neuromodulation which is based on advances in neural networks science and digitised brain imaging.

    Science.gov (United States)

    Sakas, D E; Panourias, I G; Simpson, B A

    2007-01-01

    Operative Neuromodulation is the field of altering electrically or chemically the signal transmission in the nervous system by implanted devices in order to excite, inhibit or tune the activities of neurons or neural networks and produce therapeutic effects. The present article reviews relevant literature on procedures or devices applied either in contact with the cerebral cortex or cranial nerves or in deep sites inside the brain in order to treat various refractory neurological conditions such as: a) chronic pain (facial, somatic, deafferentation, phantom limb), b) movement disorders (Parkinson's disease, dystonia, Tourette syndrome), c) epilepsy, d) psychiatric disease, e) hearing deficits, and f) visual loss. These data indicate that in operative neuromodulation, a new field emerges that is based on neural networks research and on advances in digitised stereometric brain imaging which allow precise localisation of cerebral neural networks and their relay stations; this field can be described as Neural networks surgery because it aims to act extrinsically or intrinsically on neural networks and to alter therapeutically the neural signal transmission with the use of implantable electrical or electronic devices. The authors also review neurotechnology literature relevant to neuroengineering, nanotechnologies, brain computer interfaces, hybrid cultured probes, neuromimetics, neuroinformatics, neurocomputation, and computational neuromodulation; the latter field is dedicated to the study of the biophysical and mathematical characteristics of electrochemical neuromodulation. The article also brings forward particularly interesting lines of research such as the carbon nanofibers electrode arrays for simultaneous electrochemical recording and stimulation, closed-loop systems for responsive neuromodulation, and the intracortical electrodes for restoring hearing or vision. The present review of cerebral neuromodulatory procedures highlights the transition from the

  12. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  13. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Science.gov (United States)

    Saito, Yoko; Ishii, Kenji; Sakuma, Naoko; Kawasaki, Keiichi; Oda, Keiichi; Mizusawa, Hidehiro

    2012-01-01

    Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET). We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song), sung lyrics on a single pitch (lyrics), and the sung syllable 'la' on original pitches (melody). The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control) that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control) showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  14. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    Science.gov (United States)

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  15. Knowledge-based control of an adaptive interface

    Science.gov (United States)

    Lachman, Roy

    1989-01-01

    The analysis, development strategy, and preliminary design for an intelligent, adaptive interface is reported. The design philosophy couples knowledge-based system technology with standard human factors approaches to interface development for computer workstations. An expert system has been designed to drive the interface for application software. The intelligent interface will be linked to application packages, one at a time, that are planned for multiple-application workstations aboard Space Station Freedom. Current requirements call for most Space Station activities to be conducted at the workstation consoles. One set of activities will consist of standard data management services (DMS). DMS software includes text processing, spreadsheets, data base management, etc. Text processing was selected for the first intelligent interface prototype because text-processing software can be developed initially as fully functional but limited with a small set of commands. The program's complexity then can be increased incrementally. The intelligent interface includes the operator's behavior and three types of instructions to the underlying application software are included in the rule base. A conventional expert-system inference engine searches the data base for antecedents to rules and sends the consequents of fired rules as commands to the underlying software. Plans for putting the expert system on top of a second application, a database management system, will be carried out following behavioral research on the first application. The intelligent interface design is suitable for use with ground-based workstations now common in government, industrial, and educational organizations.

  16. Genetic learning in rule-based and neural systems

    Science.gov (United States)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  17. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Xiong, Tao; Richardson, Andrew G; Lucas, Timothy H; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D; Van der Spiegel, Jan

    2016-07-18

    Reliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account. This paper presents an optimized wireless compressed sensing neural signal recording system. The system takes advantages of both custom integrated circuits and universal compatible wireless solutions. The proposed system includes an implantable wireless system-on-chip (SoC) and an external wireless relay. The SoC integrates 16-channel low-noise neural amplifiers, programmable filters and gain stages, a SAR ADC, a real-time compressed sensing module, and a near field wireless power and data transmission link. The external relay integrates a 32 bit low-power microcontroller with Bluetooth 4.0 wireless module, a programming interface, and an inductive charging unit. The SoC achieves high signal recording quality with minimized power consumption, while reducing the risk of infection from through-skin connectors. The external relay maximizes the compatibility and programmability. The proposed compressed sensing module is highly configurable, featuring a SNDR of 9.78 dB with a compression ratio of 8×. The SoC has been fabricated in a 180 nm standard CMOS technology, occupying 2.1 mm × 0.6 mm silicon area. A pre-implantable system has been assembled to demonstrate the proposed paradigm. The developed system has been successfully used for long-term wireless neural recording in freely behaving rhesus monkey.

  19. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)

    2013-07-03

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.

  20. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-01-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252 Cf, 241 AmBe and 239 PuBe neutron sources measured with a Bonner spheres system

  1. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  2. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  3. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  4. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    Science.gov (United States)

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  5. SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.

    Science.gov (United States)

    Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J

    2017-01-01

    There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.

  6. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    , the correlation of ECoG activity to kinematic parameters of arm movement is context-dependent, an important constraint to consider in future development of BMI systems. The third chapter delves into a fundamental organizational principle of the primate motor system---cortical control of contralateral limb movements. However, ipsilateral motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in ipsilateral primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. We also recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface.

  7. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Directory of Open Access Journals (Sweden)

    Yoko Saito

    Full Text Available Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET. We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song, sung lyrics on a single pitch (lyrics, and the sung syllable 'la' on original pitches (melody. The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  8. Integrated low noise low power interface for neural bio-potentials recording and conditioning

    Science.gov (United States)

    Bottino, Emanuele; Martinoia, Sergio; Valle, Maurizio

    2005-06-01

    The recent progress in both neurobiology and microelectronics suggests the creation of new, powerful tools to investigate the basic mechanisms of brain functionality. In particular, a lot of efforts are spent by scientific community to define new frameworks devoted to the analysis of in-vitro cultured neurons. One possible approach is recording their spiking activity to monitor the coordinated cellular behaviour and get insights about neural plasticity. Due to the nature of neurons action-potentials, when considering the design of an integrated microelectronic-based recording system, a number of problems arise. First, one would desire to have a high number of recording sites (i.e. several hundreds): this poses constraints on silicon area and power consumption. In this regard, our aim is to integrate-through on-chip post-processing techniques-hundreds of bio-compatible microsensors together with CMOS standard-process low-power (i.e. some tenths of uW per channel) conditioning electronics. Each recording channel is provided with sampling electronics to insure synchronous recording so that, for example, cross-correlation between signals coming from different sites can be performed. Extra-cellular potentials are in the range of [50-150] uV, so a comparison in terms of noise-efficiency was carried out among different architectures and very low-noise pre-amplification electronics (i.e. less than 5 uVrms) was designed. As spikes measurements are made with respect to the voltage of a reference electrode, we opted for an AC-coupled differential-input preamplifier provided with band-pass filtering capability. To achieve this, we implemented large time-constant (up to seconds) integrated components in the preamp feedback path. Thus, we got rid also of random slow-drifting DC-offsets and common mode signals. The paper will present our achievements in the design and implementation of a fully integrated bio-abio interface to record neural spiking activity. In particular

  9. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2017-08-01

    This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.

  10. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  11. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  12. Natural language interface for nuclear data bases

    International Nuclear Information System (INIS)

    Heger, A.S.; Koen, B.V.

    1987-01-01

    A natural language interface has been developed for access to information from a data base, simulating a nuclear plant reliability data system (NPRDS), one of the several existing data bases serving the nuclear industry. In the last decade, the importance of information has been demonstrated by the impressive diffusion of data base management systems. The present methods that are employed to access data bases fall into two main categories of menu-driven systems and use of data base manipulation languages. Both of these methods are currently used by NPRDS. These methods have proven to be tedious, however, and require extensive training by the user for effective utilization of the data base. Artificial intelligence techniques have been used in the development of several intelligent front ends for data bases in nonnuclear domains. Lunar is a natural language program for interface to a data base describing moon rock samples brought back by Apollo. Intellect is one of the first data base question-answering systems that was commercially available in the financial area. Ladder is an intelligent data base interface that was developed as a management aid to Navy decision makers. A natural language interface for nuclear data bases that can be used by nonprogrammers with little or no training provides a means for achieving this goal for this industry

  13. Brain-computer interfaces increase whole-brain signal to noise.

    Science.gov (United States)

    Papageorgiou, T Dorina; Lisinski, Jonathan M; McHenry, Monica A; White, Jason P; LaConte, Stephen M

    2013-08-13

    Brain-computer interfaces (BCIs) can convert mental states into signals to drive real-world devices, but it is not known if a given covert task is the same when performed with and without BCI-based control. Using a BCI likely involves additional cognitive processes, such as multitasking, attention, and conflict monitoring. In addition, it is challenging to measure the quality of covert task performance. We used whole-brain classifier-based real-time functional MRI to address these issues, because the method provides both classifier-based maps to examine the neural requirements of BCI and classification accuracy to quantify the quality of task performance. Subjects performed a covert counting task at fast and slow rates to control a visual interface. Compared with the same task when viewing but not controlling the interface, we observed that being in control of a BCI improved task classification of fast and slow counting states. Additional BCI control increased subjects' whole-brain signal-to-noise ratio compared with the absence of control. The neural pattern for control consisted of a positive network comprised of dorsal parietal and frontal regions and the anterior insula of the right hemisphere as well as an expansive negative network of regions. These findings suggest that real-time functional MRI can serve as a platform for exploring information processing and frontoparietal and insula network-based regulation of whole-brain task signal-to-noise ratio.

  14. An interface energy density-based theory considering the coherent interface effect in nanomaterials

    Science.gov (United States)

    Yao, Yin; Chen, Shaohua; Fang, Daining

    2017-02-01

    To characterize the coherent interface effect conveniently and feasibly in nanomaterials, a continuum theory is proposed that is based on the concept of the interface free energy density, which is a dominant factor affecting the mechanical properties of the coherent interface in materials of all scales. The effect of the residual strain caused by self-relaxation and the lattice misfit of nanomaterials, as well as that due to the interface deformation induced by an external load on the interface free energy density is considered. In contrast to the existing theories, the stress discontinuity at the interface is characterized by the interface free energy density through an interface-induced traction. As a result, the interface elastic constant introduced in previous theories, which is not easy to determine precisely, is avoided in the present theory. Only the surface energy density of the bulk materials forming the interface, the relaxation parameter induced by surface relaxation, and the mismatch parameter for forming a coherent interface between the two surfaces are involved. All the related parameters are far easier to determine than the interface elastic constants. The effective bulk and shear moduli of a nanoparticle-reinforced nanocomposite are predicted using the proposed theory. Closed-form solutions are achieved, demonstrating the feasibility and convenience of the proposed model for predicting the interface effect in nanomaterials.

  15. An application of neural networks and artificial intelligence for in-core fuel management

    International Nuclear Information System (INIS)

    Miller, L.F.; Algutifan, F.; Uhrig, R.E.

    1992-01-01

    This paper reports the feasibility of using expert systems in combination with neural networks and neutronics calculations to improve the efficiency for obtaining optimal candidate reload core designs. The general objectives of this research are as follows: (1) generate a suitable data base and ancillary software for training neural networks that duplicate neutronics calculations. (2) develop a graphical interface with neutronics software and neural networks for manual shuffling of reload cores. (3) construct an expert system for shuffling reload cores with specified rules. (4) develp neural networks that capture the nonlinear behavior of fuel depletion. (5) integrate the neural networks and neutronics software with an expert system to specify reload cores that obtain appropriate figure of merit

  16. Internet-based interface for STRMDEPL08

    Science.gov (United States)

    Reeves, Howard W.; Asher, A. Jeremiah

    2010-01-01

    The core of the computer program STRMDEPL08 that estimates streamflow depletion by a pumping well with one of four analytical solutions was re-written in the Javascript software language and made available through an internet-based interface (web page). In the internet-based interface, the user enters data for one of the four analytical solutions, Glover and Balmer (1954), Hantush (1965), Hunt (1999), and Hunt (2003), and the solution is run for constant pumping for a desired number of simulation days. Results are returned in tabular form to the user. For intermittent pumping, the interface allows the user to request that the header information for an input file for the stand-alone executable STRMDEPL08 be created. The user would add the pumping information to this header information and run the STRMDEPL08 executable that is available for download through the U.S. Geological Survey. Results for the internet-based and stand-alone versions of STRMDEPL08 are shown to match.

  17. Microchannel neural interface manufacture by stacking silicone and metal foil laminae

    Science.gov (United States)

    Lancashire, Henry T.; Vanhoestenberghe, Anne; Pendegrass, Catherine J.; Ajam, Yazan Al; Magee, Elliot; Donaldson, Nick; Blunn, Gordon W.

    2016-06-01

    Objective. Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. Approach. This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone—metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. Main results. MNIs with 100 μm and 200 μm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. Significance. Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.

  18. Deep Neural Network-Based Chinese Semantic Role Labeling

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiaoqing; CHEN Jun; SHANG Guoqiang

    2017-01-01

    A recent trend in machine learning is to use deep architec-tures to discover multiple levels of features from data, which has achieved impressive results on various natural language processing (NLP) tasks. We propose a deep neural network-based solution to Chinese semantic role labeling (SRL) with its application on message analysis. The solution adopts a six-step strategy: text normalization, named entity recognition (NER), Chinese word segmentation and part-of-speech (POS) tagging, theme classification, SRL, and slot filling. For each step, a novel deep neural network - based model is designed and optimized, particularly for smart phone applications. Ex-periment results on all the NLP sub - tasks of the solution show that the proposed neural networks achieve state-of-the-art performance with the minimal computational cost. The speed advantage of deep neural networks makes them more competitive for large-scale applications or applications requir-ing real-time response, highlighting the potential of the pro-posed solution for practical NLP systems.

  19. Photosensitive-polyimide based method for fabricating various neural electrode architectures

    Directory of Open Access Journals (Sweden)

    Yasuhiro X Kato

    2012-06-01

    Full Text Available An extensive photosensitive polyimide (PSPI-based method for designing and fabricating various neural electrode architectures was developed. The method aims to broaden the design flexibility and expand the fabrication capability for neural electrodes to improve the quality of recorded signals and integrate other functions. After characterizing PSPI’s properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an insulation material and without the time-consuming dry etching processes. The fabricated neural electrodes were an electrocorticogram electrode, a mesh intracortical electrode with a unique lattice-like mesh structure to fixate neural tissue, and a guide cannula electrode with recording microelectrodes placed on the curved surface of a guide cannula as a microdialysis probe. In vivo neural recordings using anesthetized rats demonstrated that these electrodes can be used to record neural activities repeatedly without any breakage and mechanical failures, which potentially promises stable recordings for long periods of time. These successes make us believe that this PSPI-based fabrication is a powerful method, permitting flexible design and easy optimization of electrode architectures for a variety of electrophysiological experimental research with improved neural recording performance.

  20. water demand prediction using artificial neural network

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... Interface for activation and deactivation of valves. •. Interface demand ... process could be done and monitored at the computer terminal as expected of a .... [15] Arbib, M. A.The Handbook of Brain Theory and Neural. Networks.

  1. Prediction based chaos control via a new neural network

    International Nuclear Information System (INIS)

    Shen Liqun; Wang Mao; Liu Wanyu; Sun Guanghui

    2008-01-01

    In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network

  2. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces

    Science.gov (United States)

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different

  3. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101 \\xAF 0) interface from a high-dimensional neural network potential

    Science.gov (United States)

    Quaranta, Vanessa; Hellström, Matti; Behler, Jörg; Kullgren, Jolla; Mitev, Pavlin D.; Hermansson, Kersti

    2018-06-01

    Unraveling the atomistic details of solid/liquid interfaces, e.g., by means of vibrational spectroscopy, is of vital importance in numerous applications, from electrochemistry to heterogeneous catalysis. Water-oxide interfaces represent a formidable challenge because a large variety of molecular and dissociated water species are present at the surface. Here, we present a comprehensive theoretical analysis of the anharmonic OH stretching vibrations at the water/ZnO(101 ¯ 0) interface as a prototypical case. Molecular dynamics simulations employing a reactive high-dimensional neural network potential based on density functional theory calculations have been used to sample the interfacial structures. In the second step, one-dimensional potential energy curves have been generated for a large number of configurations to solve the nuclear Schrödinger equation. We find that (i) the ZnO surface gives rise to OH frequency shifts up to a distance of about 4 Å from the surface; (ii) the spectrum contains a number of overlapping signals arising from different chemical species, with the frequencies decreasing in the order ν(adsorbed hydroxide) > ν(non-adsorbed water) > ν(surface hydroxide) > ν(adsorbed water); (iii) stretching frequencies are strongly influenced by the hydrogen bond pattern of these interfacial species. Finally, we have been able to identify substantial correlations between the stretching frequencies and hydrogen bond lengths for all species.

  4. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-01-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  5. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  6. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in

  7. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases

    Science.gov (United States)

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-01-01

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907

  8. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.

    Science.gov (United States)

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-04-15

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  9. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  10. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    Science.gov (United States)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  11. Computer-Based Tools for Evaluating Graphical User Interfaces

    Science.gov (United States)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  12. Face recognition based on improved BP neural network

    Directory of Open Access Journals (Sweden)

    Yue Gaili

    2017-01-01

    Full Text Available In order to improve the recognition rate of face recognition, face recognition algorithm based on histogram equalization, PCA and BP neural network is proposed. First, the face image is preprocessed by histogram equalization. Then, the classical PCA algorithm is used to extract the features of the histogram equalization image, and extract the principal component of the image. And then train the BP neural network using the trained training samples. This improved BP neural network weight adjustment method is used to train the network because the conventional BP algorithm has the disadvantages of slow convergence, easy to fall into local minima and training process. Finally, the BP neural network with the test sample input is trained to classify and identify the face images, and the recognition rate is obtained. Through the use of ORL database face image simulation experiment, the analysis results show that the improved BP neural network face recognition method can effectively improve the recognition rate of face recognition.

  13. A recurrent neural network based on projection operator for extended general variational inequalities.

    Science.gov (United States)

    Liu, Qingshan; Cao, Jinde

    2010-06-01

    Based on the projection operator, a recurrent neural network is proposed for solving extended general variational inequalities (EGVIs). Sufficient conditions are provided to ensure the global convergence of the proposed neural network based on Lyapunov methods. Compared with the existing neural networks for variational inequalities, the proposed neural network is a modified version of the general projection neural network existing in the literature and capable of solving the EGVI problems. In addition, simulation results on numerical examples show the effectiveness and performance of the proposed neural network.

  14. A wirelessly powered microspectrometer for neural probe-pin device

    Science.gov (United States)

    Choi, Sang H.; Kim, Min H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn

    2015-12-01

    Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.

  15. Interface-based software integration

    Directory of Open Access Journals (Sweden)

    Aziz Ahmad Rais

    2016-07-01

    Full Text Available Enterprise architecture frameworks define the goals of enterprise architecture in order to make business processes and IT operations more effective, and to reduce the risk of future investments. These enterprise architecture frameworks offer different architecture development methods that help in building enterprise architecture. In practice, the larger organizations become, the larger their enterprise architecture and IT become. This leads to an increasingly complex system of enterprise architecture development and maintenance. Application software architecture is one type of architecture that, along with business architecture, data architecture and technology architecture, composes enterprise architecture. From the perspective of integration, enterprise architecture can be considered a system of interaction between multiple examples of application software. Therefore, effective software integration is a very important basis for the future success of the enterprise architecture in question. This article will provide interface-based integration practice in order to help simplify the process of building such a software integration system. The main goal of interface-based software integration is to solve problems that may arise with software integration requirements and developing software integration architecture.

  16. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    Science.gov (United States)

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  17. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.

    Science.gov (United States)

    Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra

    2017-10-23

    Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.

  18. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  19. Neural bases of congenital amusia in tonal language speakers.

    Science.gov (United States)

    Zhang, Caicai; Peng, Gang; Shao, Jing; Wang, William S-Y

    2017-03-01

    Congenital amusia is a lifelong neurodevelopmental disorder of fine-grained pitch processing. In this fMRI study, we examined the neural bases of congenial amusia in speakers of a tonal language - Cantonese. Previous studies on non-tonal language speakers suggest that the neural deficits of congenital amusia lie in the music-selective neural circuitry in the right inferior frontal gyrus (IFG). However, it is unclear whether this finding can generalize to congenital amusics in tonal languages. Tonal language experience has been reported to shape the neural processing of pitch, which raises the question of how tonal language experience affects the neural bases of congenital amusia. To investigate this question, we examined the neural circuitries sub-serving the processing of relative pitch interval in pitch-matched Cantonese level tone and musical stimuli in 11 Cantonese-speaking amusics and 11 musically intact controls. Cantonese-speaking amusics exhibited abnormal brain activities in a widely distributed neural network during the processing of lexical tone and musical stimuli. Whereas the controls exhibited significant activation in the right superior temporal gyrus (STG) in the lexical tone condition and in the cerebellum regardless of the lexical tone and music conditions, no activation was found in the amusics in those regions, which likely reflects a dysfunctional neural mechanism of relative pitch processing in the amusics. Furthermore, the amusics showed abnormally strong activation of the right middle frontal gyrus and precuneus when the pitch stimuli were repeated, which presumably reflect deficits of attending to repeated pitch stimuli or encoding them into working memory. No significant group difference was found in the right IFG in either the whole-brain analysis or region-of-interest analysis. These findings imply that the neural deficits in tonal language speakers might differ from those in non-tonal language speakers, and overlap partly with the

  20. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  1. DESIGN OF A VISUAL INTERFACE FOR ANN BASED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ramazan BAYINDIR

    2008-01-01

    Full Text Available Artificial intelligence application methods have been used for control of many systems with parallel of technological development besides conventional control techniques. Increasing of artificial intelligence applications have required to education in this area. In this paper, computer based an artificial neural network (ANN software has been presented to learning and understanding of artificial neural networks. By means of the developed software, the training of the artificial neural network according to the inputs provided and a test action can be performed by changing the components such as iteration number, momentum factor, learning ratio, and efficiency function of the artificial neural networks. As a result of the study a visual education set has been obtained that can easily be adapted to the real time application.

  2. Vision-Based Interfaces Applied to Assistive Robots

    Directory of Open Access Journals (Sweden)

    Elisa Perez

    2013-02-01

    Full Text Available This paper presents two vision-based interfaces for disabled people to command a mobile robot for personal assistance. The developed interfaces can be subdivided according to the algorithm of image processing implemented for the detection and tracking of two different body regions. The first interface detects and tracks movements of the user's head, and these movements are transformed into linear and angular velocities in order to command a mobile robot. The second interface detects and tracks movements of the user's hand, and these movements are similarly transformed. In addition, this paper also presents the control laws for the robot. The experimental results demonstrate good performance and balance between complexity and feasibility for real-time applications.

  3. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  4. Biomechatronics in medical rehabilitation biomodelling, interface, and control

    CERN Document Server

    Xie, Shane (S Q )

    2017-01-01

    This book focuses on the key technologies in developing biomechatronic systems for medical rehabilitation purposes. It includes a detailed analysis of biosignal processing, biomechanics modelling, neural and muscular interfaces, artificial actuators, robot-assisted training, clinical setup/implementation and rehabilitation robot control. Encompassing highly multidisciplinary themes in the engineering and medical fields, it presents researchers’ insights into the emerging technologies and developments that are being utilized in biomechatronics for medical purposes. Presenting a detailed analysis of five key areas in rehabilitation robotics: (i) biosignal processing; (ii) biomechanics modelling; (iii) neural and muscular interfaces; (iv) artificial actuators and devices; and (v) the use of neurological and muscular interfaces in rehabilitation robots control, the book describes the design of biomechatronic systems, the methods and control systems used and the implementation and testing in order to show how th...

  5. Larger bases and mixed analog/digital neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, and bounds on the size of threshold gate circuits. Based on an explicit numerical algorithm for Kolmogorov`s superpositions the authors show that minimum size neural networks--for implementing any Boolean function--have the identity function as the activation function. Conclusions and several comments on the required precision are ending the paper.

  6. Toward multi-area distributed network of implanted neural interrogators

    Science.gov (United States)

    Powell, Marc P.; Hou, Xiaoxiao; Galligan, Craig; Ashe, Jeffrey; Borton, David A.

    2017-08-01

    As we aim to improve our understanding of the brain, it is critical that researchers have simultaneous multi-area, large-scale access to the brain. Information processing in the brain occurs through close and distant coupling of functional sub-domains, as opposed to within isolated single neurons. However, commercially available neural interfaces capable of sensing electrophysiology of single neurons, currently allow access to only a small, mm3 volume of cortical cells, are not scalable to recording from orders of magnitude more neurons, and leverage bulky, skull mounted hardware and cabling sensitive to relative movements of the skull and brain. In this work, we propose a system capable of recording from many individual distributed neural interrogator nodes, untethered from any external electronics. Using an array of epidural inductive coils to wirelessly power the implanted electronics, the system is intended to be agnostic to the surgical placement of any individual node. Here, we demonstrate the ability to transmit nearly 15mW of power with greater than 50% power transfer efficiency, benchtop testing of individual subcircuit system components showing successful digitization of neural signals, and wireless transmission currently supporting a data rate of 3.84Mbps. We leverage a software defined radio based RF receiver to demodulate the data which can be stored in memory for later retrieval. Finally, we introduce a packaging technology capable of isolating active electronics from the surrounding tissue while providing capability for electrical feed-through assemblies for external neural interfacing. We expect, based on the presented preliminary findings, that the system can be integrated into a platform technology for the study of the intricate interactions between cortical domains.

  7. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  8. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    Science.gov (United States)

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  9. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  10. Mesh-based parallel code coupling interface

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, K.; Steckel, B. (eds.) [GMD - Forschungszentrum Informationstechnik GmbH, St. Augustin (DE). Inst. fuer Algorithmen und Wissenschaftliches Rechnen (SCAI)

    2001-04-01

    MpCCI (mesh-based parallel code coupling interface) is an interface for multidisciplinary simulations. It provides industrial end-users as well as commercial code-owners with the facility to combine different simulation tools in one environment. Thereby new solutions for multidisciplinary problems will be created. This opens new application dimensions for existent simulation tools. This Book of Abstracts gives a short overview about ongoing activities in industry and research - all presented at the 2{sup nd} MpCCI User Forum in February 2001 at GMD Sankt Augustin. (orig.) [German] MpCCI (mesh-based parallel code coupling interface) definiert eine Schnittstelle fuer multidisziplinaere Simulationsanwendungen. Sowohl industriellen Anwender als auch kommerziellen Softwarehersteller wird mit MpCCI die Moeglichkeit gegeben, Simulationswerkzeuge unterschiedlicher Disziplinen miteinander zu koppeln. Dadurch entstehen neue Loesungen fuer multidisziplinaere Problemstellungen und fuer etablierte Simulationswerkzeuge ergeben sich neue Anwendungsfelder. Dieses Book of Abstracts bietet einen Ueberblick ueber zur Zeit laufende Arbeiten in der Industrie und in der Forschung, praesentiert auf dem 2{sup nd} MpCCI User Forum im Februar 2001 an der GMD Sankt Augustin. (orig.)

  11. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    Science.gov (United States)

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.

  12. Improving Neural Recording Technology at the Nanoscale

    Science.gov (United States)

    Ferguson, John Eric

    Neural recording electrodes are widely used to study normal brain function (e.g., learning, memory, and sensation) and abnormal brain function (e.g., epilepsy, addiction, and depression) and to interface with the nervous system for neuroprosthetics. With a deep understanding of the electrode interface at the nanoscale and the use of novel nanofabrication processes, neural recording electrodes can be designed that surpass previous limits and enable new applications. In this thesis, I will discuss three projects. In the first project, we created an ultralow-impedance electrode coating by controlling the nanoscale texture of electrode surfaces. In the second project, we developed a novel nanowire electrode for long-term intracellular recordings. In the third project, we created a means of wirelessly communicating with ultra-miniature, implantable neural recording devices. The techniques developed for these projects offer significant improvements in the quality of neural recordings. They can also open the door to new types of experiments and medical devices, which can lead to a better understanding of the brain and can enable novel and improved tools for clinical applications.

  13. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  14. Wind power prediction based on genetic neural network

    Science.gov (United States)

    Zhang, Suhan

    2017-04-01

    The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.

  15. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    Science.gov (United States)

    Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E

    2017-02-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  16. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  17. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  18. Nonlinear control strategy based on using a shape-tunable neural controller

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Peng, S. [Feng Chia Univ, Taichung (Taiwan, Province of China). Department of chemical Engineering; Chang, W. [Feng Chia Univ, Taichung (Taiwan, Province of China). Department of Automatic Control

    1997-08-01

    In this paper, a nonlinear control strategy based on using a shape-tunable neural network is developed for adaptive control of nonlinear processes. Based on the steepest descent method, a learning algorithm that enables the neural controller to possess the ability of automatic controller output range adjustment is derived. The novel feature of automatic output range adjustment provides the neural controller more flexibility and capability, and therefore the scaling procedure, which is usually unavoidable for the conventional fixed-shape neural controllers, becomes unnecessary. The advantages and effectiveness of the proposed nonlinear control strategy are demonstrated through the challenge problem of controlling an open-loop unstable nonlinear continuous stirred tank reactor (CSTR). 14 refs., 11 figs.

  19. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  20. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Science.gov (United States)

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  1. DWI-based neural fingerprinting technology: a preliminary study on stroke analysis.

    Science.gov (United States)

    Ye, Chenfei; Ma, Heather Ting; Wu, Jun; Yang, Pengfei; Chen, Xuhui; Yang, Zhengyi; Ma, Jingbo

    2014-01-01

    Stroke is a common neural disorder in neurology clinics. Magnetic resonance imaging (MRI) has become an important tool to assess the neural physiological changes under stroke, such as diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI). Quantitative analysis of MRI images would help medical doctors to localize the stroke area in the diagnosis in terms of structural information and physiological characterization. However, current quantitative approaches can only provide localization of the disorder rather than measure physiological variation of subtypes of ischemic stroke. In the current study, we hypothesize that each kind of neural disorder would have its unique physiological characteristics, which could be reflected by DWI images on different gradients. Based on this hypothesis, a DWI-based neural fingerprinting technology was proposed to classify subtypes of ischemic stroke. The neural fingerprint was constructed by the signal intensity of the region of interest (ROI) on the DWI images under different gradients. The fingerprint derived from the manually drawn ROI could classify the subtypes with accuracy 100%. However, the classification accuracy was worse when using semiautomatic and automatic method in ROI segmentation. The preliminary results showed promising potential of DWI-based neural fingerprinting technology in stroke subtype classification. Further studies will be carried out for enhancing the fingerprinting accuracy and its application in other clinical practices.

  2. A Kinect-Based Gesture Recognition Approach for a Natural Human Robot Interface

    Directory of Open Access Journals (Sweden)

    Grazia Cicirelli

    2015-03-01

    Full Text Available In this paper, we present a gesture recognition system for the development of a human-robot interaction (HRI interface. Kinect cameras and the OpenNI framework are used to obtain real-time tracking of a human skeleton. Ten different gestures, performed by different persons, are defined. Quaternions of joint angles are first used as robust and significant features. Next, neural network (NN classifiers are trained to recognize the different gestures. This work deals with different challenging tasks, such as the real-time implementation of a gesture recognition system and the temporal resolution of gestures. The HRI interface developed in this work includes three Kinect cameras placed at different locations in an indoor environment and an autonomous mobile robot that can be remotely controlled by one operator standing in front of one of the Kinects. Moreover, the system is supplied with a people re-identification module which guarantees that only one person at a time has control of the robot. The system's performance is first validated offline, and then online experiments are carried out, proving the real-time operation of the system as required by a HRI interface.

  3. Neurally and ocularly informed graph-based models for searching 3D environments

    Science.gov (United States)

    Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.

  4. Neurally and ocularly informed graph-based models for searching 3D environments.

    Science.gov (United States)

    Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.

  5. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  6. Pinning synchronization of memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Yang, Zhanyu; Luo, Biao; Liu, Derong; Li, Yueheng

    2017-09-01

    In this paper, the synchronization of memristor-based neural networks with time-varying delays via pinning control is investigated. A novel pinning method is introduced to synchronize two memristor-based neural networks which denote drive system and response system, respectively. The dynamics are studied by theories of differential inclusions and nonsmooth analysis. In addition, some sufficient conditions are derived to guarantee asymptotic synchronization and exponential synchronization of memristor-based neural networks via the presented pinning control. Furthermore, some improvements about the proposed control method are also discussed in this paper. Finally, the effectiveness of the obtained results is demonstrated by numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  8. Effectiveness of firefly algorithm based neural network in time series ...

    African Journals Online (AJOL)

    Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

  9. Preparing for Future Learning with a Tangible User Interface: The Case of Neuroscience

    Science.gov (United States)

    Schneider, B.; Wallace, J.; Blikstein, P.; Pea, R.

    2013-01-01

    In this paper, we describe the development and evaluation of a microworld-based learning environment for neuroscience. Our system, BrainExplorer, allows students to discover the way neural pathways work by interacting with a tangible user interface. By severing and reconfiguring connections, users can observe how the visual field is impaired and,…

  10. Neural Network-Based Resistance Spot Welding Control and Quality Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.

  11. Augmenting intracortical brain-machine interface with neurally driven error detectors

    Science.gov (United States)

    Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2017-12-01

    Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.

  12. MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion

    Science.gov (United States)

    Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong

    This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.

  13. Eliciting user-sourced interaction mappings for body-based interfaces

    OpenAIRE

    May, Aaron

    2015-01-01

    Thanks to technological advancements, whole-body natural user interfaces are becoming increasingly common in modern homes and public spaces. However, because whole-body natural user interfaces lack obvious affordances, users can be unsure how to control the interface. In this thesis, I report the findings of a study of novice and expert users mock controlling a balance-based whole-body natural user interface during a Think Aloud task. I compare the strategies demonstrated by participants whi...

  14. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity.

    Science.gov (United States)

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-07-02

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)₄ ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  15. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Directory of Open Access Journals (Sweden)

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  16. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  17. Closed loop interactions between spiking neural network and robotic simulators based on MUSIC and ROS

    Directory of Open Access Journals (Sweden)

    Philipp Weidel

    2016-08-01

    Full Text Available In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS to the Multi-Simulator Coordinator (MUSIC. This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning.

  18. DWI-Based Neural Fingerprinting Technology: A Preliminary Study on Stroke Analysis

    Directory of Open Access Journals (Sweden)

    Chenfei Ye

    2014-01-01

    Full Text Available Stroke is a common neural disorder in neurology clinics. Magnetic resonance imaging (MRI has become an important tool to assess the neural physiological changes under stroke, such as diffusion weighted imaging (DWI and diffusion tensor imaging (DTI. Quantitative analysis of MRI images would help medical doctors to localize the stroke area in the diagnosis in terms of structural information and physiological characterization. However, current quantitative approaches can only provide localization of the disorder rather than measure physiological variation of subtypes of ischemic stroke. In the current study, we hypothesize that each kind of neural disorder would have its unique physiological characteristics, which could be reflected by DWI images on different gradients. Based on this hypothesis, a DWI-based neural fingerprinting technology was proposed to classify subtypes of ischemic stroke. The neural fingerprint was constructed by the signal intensity of the region of interest (ROI on the DWI images under different gradients. The fingerprint derived from the manually drawn ROI could classify the subtypes with accuracy 100%. However, the classification accuracy was worse when using semiautomatic and automatic method in ROI segmentation. The preliminary results showed promising potential of DWI-based neural fingerprinting technology in stroke subtype classification. Further studies will be carried out for enhancing the fingerprinting accuracy and its application in other clinical practices.

  19. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Neural network based electron identification in the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Abramowicz, H.; Caldwell, A.; Sinkus, R.

    1995-01-01

    We present an electron identification algorithm based on a neural network approach applied to the ZEUS uranium calorimeter. The study is motivated by the need to select deep inelastic, neutral current, electron proton interactions characterized by the presence of a scattered electron in the final state. The performance of the algorithm is compared to an electron identification method based on a classical probabilistic approach. By means of a principle component analysis the improvement in the performance is traced back to the number of variables used in the neural network approach. (orig.)

  1. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  2. Neural Point-and-Click Communication by a Person With Incomplete Locked-In Syndrome.

    Science.gov (United States)

    Bacher, Daniel; Jarosiewicz, Beata; Masse, Nicolas Y; Stavisky, Sergey D; Simeral, John D; Newell, Katherine; Oakley, Erin M; Cash, Sydney S; Friehs, Gerhard; Hochberg, Leigh R

    2015-06-01

    A goal of brain-computer interface research is to develop fast and reliable means of communication for individuals with paralysis and anarthria. We evaluated the ability of an individual with incomplete locked-in syndrome enrolled in the BrainGate Neural Interface System pilot clinical trial to communicate using neural point-and-click control. A general-purpose interface was developed to provide control of a computer cursor in tandem with one of two on-screen virtual keyboards. The novel BrainGate Radial Keyboard was compared to a standard QWERTY keyboard in a balanced copy-spelling task. The Radial Keyboard yielded a significant improvement in typing accuracy and speed-enabling typing rates over 10 correct characters per minute. The participant used this interface to communicate face-to-face with research staff by using text-to-speech conversion, and remotely using an internet chat application. This study demonstrates the first use of an intracortical brain-computer interface for neural point-and-click communication by an individual with incomplete locked-in syndrome. © The Author(s) 2014.

  3. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  4. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2015-04-01

    In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.

  5. Measures of Coupling between Neural Populations Based on Granger Causality Principle.

    Science.gov (United States)

    Kaminski, Maciej; Brzezicka, Aneta; Kaminski, Jan; Blinowska, Katarzyna J

    2016-01-01

    This paper shortly reviews the measures used to estimate neural synchronization in experimental settings. Our focus is on multivariate measures of dependence based on the Granger causality (G-causality) principle, their applications and performance in respect of robustness to noise, volume conduction, common driving, and presence of a "weak node." Application of G-causality measures to EEG, intracranial signals and fMRI time series is addressed. G-causality based measures defined in the frequency domain allow the synchronization between neural populations and the directed propagation of their electrical activity to be determined. The time-varying G-causality based measure Short-time Directed Transfer Function (SDTF) supplies information on the dynamics of synchronization and the organization of neural networks. Inspection of effective connectivity patterns indicates a modular structure of neural networks, with a stronger coupling within modules than between them. The hypothetical plausible mechanism of information processing, suggested by the identified synchronization patterns, is communication between tightly coupled modules intermitted by sparser interactions providing synchronization of distant structures.

  6. Chinese Sentence Classification Based on Convolutional Neural Network

    Science.gov (United States)

    Gu, Chengwei; Wu, Ming; Zhang, Chuang

    2017-10-01

    Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.

  7. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  8. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.

    Science.gov (United States)

    Hébert, Clément; Warnking, Jan; Depaulis, Antoine; Garçon, Laurie Amandine; Mermoux, Michel; Eon, David; Mailley, Pascal; Omnès, Franck

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    International Nuclear Information System (INIS)

    De Geeter, N; Crevecoeur, G; Dupré, L; Leemans, A

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values. (paper)

  10. The web based user interface of RODOS

    International Nuclear Information System (INIS)

    Raskob, W.; Mueller, A.; Munz, E.; Rafat, M.

    2003-01-01

    Full text: The interaction between the RODOS system and its users has three main objectives: (1) operation of the system in its automatic and interactive modes including the processing of meteorological and radiological on-line data, and the choice of module chains for performing the necessary calculations; (2) input of data defining the accident situation, such as source term information, intervention criteria and timing of emergency actions; (3) selection and presentation of results in the form of spatial and temporal distributions of activity concentrations, areas affected by emergency actions and countermeasures, and their radiological and economic consequences. Users of category A have direct access to the RODOS system via local or wide area networks through the client/server protocol Internet/X. Any internet connected X desktop machine, such as Unix workstations from different vendors, X- terminals, Linux PCs, and PCs with X-emulation can be used. A number of X-Windows based graphical user interfaces (GUIs) provide direct access to all functionalities of the RODOS system and allow for handling the various user interactions with the RODOS system described above. Among others, the user can trigger or interrupt the automatic processing mode, execute application programs simultaneously, modify and delete data, import data sets from databases, and change configuration files. As the user interacts directly with in-memory active processes, the system responses immediately after having performed the necessary calculations. For obtaining the requested results, the users must know, which chain of application software has to be selected, how to interact with their interfaces, which sort of initialization data have to be assigned, etc. This flexible interaction with RODOS implies that only experienced and well-trained users are able to operate the system and to obtain correct and sensible information. A new interface has been developed which is based an the commonly used

  11. Standard cell-based implementation of a digital optoelectronic neural-network hardware.

    Science.gov (United States)

    Maier, K D; Beckstein, C; Blickhan, R; Erhard, W

    2001-03-10

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  12. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

    OpenAIRE

    Hochberg, Leigh R.; Bacher, Daniel; Jarosiewicz, Beata; Masse, Nicolas Y.; Simeral, John D.; Vogel, Joern; Haddadin, Sami; Liu, Jie; Cash, Sydney S.; van der Smagt, Patrick; Donoghue, John P.

    2012-01-01

    Paralysis following spinal cord injury, brainstemstroke, amyotrophic lateral sclerosis and other disorders can disconnect the brain from the body, eliminating the ability to perform volitional movements. A neural interface system could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with long-standing tetraplegia can use a neural interface ...

  13. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    Directory of Open Access Journals (Sweden)

    Suck Won Hong

    2014-01-01

    Full Text Available Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs, that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay, intracellular oxidative stress (with ROS assay, and membrane integrity (with LDH assay. Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine.

  14. ANNarchy: a code generation approach to neural simulations on parallel hardware

    Science.gov (United States)

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  15. Emerging trends in neuro engineering and neural computation

    CERN Document Server

    Lee, Kendall; Garmestani, Hamid; Lim, Chee

    2017-01-01

    This book focuses on neuro-engineering and neural computing, a multi-disciplinary field of research attracting considerable attention from engineers, neuroscientists, microbiologists and material scientists. It explores a range of topics concerning the design and development of innovative neural and brain interfacing technologies, as well as novel information acquisition and processing algorithms to make sense of the acquired data. The book also highlights emerging trends and advances regarding the applications of neuro-engineering in real-world scenarios, such as neural prostheses, diagnosis of neural degenerative diseases, deep brain stimulation, biosensors, real neural network-inspired artificial neural networks (ANNs) and the predictive modeling of information flows in neuronal networks. The book is broadly divided into three main sections including: current trends in technological developments, neural computation techniques to make sense of the neural behavioral data, and application of these technologie...

  16. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    Science.gov (United States)

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  17. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Guillaume Lajoie

    2017-02-01

    Full Text Available Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI can artificially strengthen connections between separate neural sites in motor cortex (MC. When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  18. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  19. Design of Artificial Neural Network-Based pH Estimator

    Directory of Open Access Journals (Sweden)

    Shebel A. Alsabbah

    2010-10-01

    Full Text Available Taking into consideration the cost, size and drawbacks might be found with real hardware instrument for measuring pH values such that the complications of the wiring, installing, calibrating and troubleshooting the system, would make a person look for a cheaper, accurate, and alternative choice to perform the measuring operation, Where’s hereby, a feedforward artificial neural network-based pH estimator has to be proposed. The proposed estimator has been designed with multi- layer perceptrons. One input which is a measured base stream and two outputs represent pH values at strong base and strong/weak acids for a titration process. The created data base has been obtained with consideration of temperature variation. The final numerical results ensure the effectiveness and robustness of the design neural network-based pH estimator.

  20. Iris double recognition based on modified evolutionary neural network

    Science.gov (United States)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  1. Neural Representation. A Survey-Based Analysis of the Notion

    Directory of Open Access Journals (Sweden)

    Oscar Vilarroya

    2017-08-01

    Full Text Available The word representation (as in “neural representation”, and many of its related terms, such as to represent, representational and the like, play a central explanatory role in neuroscience literature. For instance, in “place cell” literature, place cells are extensively associated with their role in “the representation of space.” In spite of its extended use, we still lack a clear, universal and widely accepted view on what it means for a nervous system to represent something, on what makes a neural activity a representation, and on what is re-presented. The lack of a theoretical foundation and definition of the notion has not hindered actual research. My aim here is to identify how active scientists use the notion of neural representation, and eventually to list a set of criteria, based on actual use, that can help in distinguishing between genuine or non-genuine neural-representation candidates. In order to attain this objective, I present first the results of a survey of authors within two domains, place-cell and multivariate pattern analysis (MVPA research. Based on the authors’ replies, and on a review of neuroscientific research, I outline a set of common properties that an account of neural representation seems to require. I then apply these properties to assess the use of the notion in two domains of the survey, place-cell and MVPA studies. I conclude by exploring a shift in the notion of representation suggested by recent literature.

  2. Design of Wireless GPIB Interface Module Based on Bluetooth

    International Nuclear Information System (INIS)

    Fu, P; Ma, W J; Huang, C J

    2006-01-01

    GPIB interface is widely used in the testing and control field. In this paper a wireless GPIB interface module based on Bluetooth is developed. Programming with Verilog HDL language on the hardware of ROK 101 008 and a FPGA chip, the complicated logical design of GPIB interface and the Bluetooth data processing unit are implemented. On basis of Bluetooth specifications, the software for the control computer is developed. In order to provide a standard software interface for users, a VISA library that is compatible with the VPP specifications is also designed

  3. Design of Wireless GPIB Interface Module Based on Bluetooth

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P [Department of Automatic Testing and Control, Harbin Institute of Technology, Harbin 150001 (China); Ma, W J [Department of Automatic Testing and Control, Harbin Institute of Technology, Harbin 150001 (China); Huang, C J [Department of Automatic Testing and Control, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-15

    GPIB interface is widely used in the testing and control field. In this paper a wireless GPIB interface module based on Bluetooth is developed. Programming with Verilog HDL language on the hardware of ROK 101 008 and a FPGA chip, the complicated logical design of GPIB interface and the Bluetooth data processing unit are implemented. On basis of Bluetooth specifications, the software for the control computer is developed. In order to provide a standard software interface for users, a VISA library that is compatible with the VPP specifications is also designed.

  4. Research of Digital Interface Layout Design based on Eye-tracking

    Directory of Open Access Journals (Sweden)

    Shao Jiang

    2015-01-01

    Full Text Available The aim of this paper is to improve the low service efficiency and unsmooth human-computer interaction caused by currently irrational layouts of digital interfaces for complex systems. Also, three common layout structures for digital interfaces are to be presented and five layout types appropriate for multilevel digital interfaces are to be summarized. Based on the eye tracking technology, an assessment was conducted in advantages and disadvantages of different layout types through subjects’ search efficiency. Based on data and results, this study constructed a matching model which is appropriate for multilevel digital interface layout and verified the fact that the task element is a significant and important aspect of layout design. A scientific experimental model of research on digital interfaces for complex systems is provided. Both data and conclusions of the eye movement experiment provide a reference for layout designs of interfaces for complex systems with different task characteristics.

  5. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.

    Science.gov (United States)

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  6. A Markovian event-based framework for stochastic spiking neural networks.

    Science.gov (United States)

    Touboul, Jonathan D; Faugeras, Olivier D

    2011-11-01

    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

  7. Tracking Single Units in Chronic, Large Scale, Neural Recordings for Brain Machine Interface Applications

    Directory of Open Access Journals (Sweden)

    Ahmed eEleryan

    2014-07-01

    Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.

  8. Adaptive Synchronization of Memristor-based Chaotic Neural Systems

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2014-11-01

    Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.

  9. Measures of coupling between neural populations based on Granger causality principle

    Directory of Open Access Journals (Sweden)

    Maciej Kaminski

    2016-10-01

    Full Text Available This paper shortly reviews the measures used to estimate neural synchronization in experimental settings. Our focus is on multivariate measures of dependence based on the Granger causality (G-causality principle, their applications and performance in respect of robustness to noise, volume conduction, common driving, and presence of a weak node. Application of G-causality measures to EEG, intracranial signals and fMRI time series is addressed. G-causality based measures defined in the frequency domain allow the synchronization between neural populations and the directed propagation of their electrical activity to be determined. The time-varying G-causality based measure Short-time Directed Transfer Function (SDTF supplies information on the dynamics of synchronization and the organization of neural networks. Inspection of effective connectivity patterns indicates a modular structure of neural networks, with a stronger coupling within modules than between them. The hypothetical plausible mechanism of information processing, suggested by the identified synchronization patterns, is communication between tightly coupled modules intermitted by sparser interactions providing synchronization of distant structures.

  10. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  11. A damage mechanics based general purpose interface/contact element

    Science.gov (United States)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  12. The neural correlates of gist-based true and false recognition

    Science.gov (United States)

    Gutchess, Angela H.; Schacter, Daniel L.

    2012-01-01

    When information is thematically related to previously studied information, gist-based processes contribute to false recognition. Using functional MRI, we examined the neural correlates of gist-based recognition as a function of increasing numbers of studied exemplars. Sixteen participants incidentally encoded small, medium, and large sets of pictures, and we compared the neural response at recognition using parametric modulation analyses. For hits, regions in middle occipital, middle temporal, and posterior parietal cortex linearly modulated their activity according to the number of related encoded items. For false alarms, visual, parietal, and hippocampal regions were modulated as a function of the encoded set size. The present results are consistent with prior work in that the neural regions supporting veridical memory also contribute to false memory for related information. The results also reveal that these regions respond to the degree of relatedness among similar items, and implicate perceptual and constructive processes in gist-based false memory. PMID:22155331

  13. A novel word spotting method based on recurrent neural networks.

    Science.gov (United States)

    Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst

    2012-02-01

    Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.

  14. Reward-based training of recurrent neural networks for cognitive and value-based tasks.

    Science.gov (United States)

    Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing

    2017-01-13

    Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal's internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task.

  15. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm

    International Nuclear Information System (INIS)

    Yu, Lean; Wang, Shouyang; Lai, Kin Keung

    2008-01-01

    In this study, an empirical mode decomposition (EMD) based neural network ensemble learning paradigm is proposed for world crude oil spot price forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite, and often small, number of intrinsic mode functions (IMFs). Then a three-layer feed-forward neural network (FNN) model was used to model each of the extracted IMFs, so that the tendencies of these IMFs could be accurately predicted. Finally, the prediction results of all IMFs are combined with an adaptive linear neural network (ALNN), to formulate an ensemble output for the original crude oil price series. For verification and testing, two main crude oil price series, West Texas Intermediate (WTI) crude oil spot price and Brent crude oil spot price, are used to test the effectiveness of the proposed EMD-based neural network ensemble learning methodology. Empirical results obtained demonstrate attractiveness of the proposed EMD-based neural network ensemble learning paradigm. (author)

  17. Acid-base chemistry of frustrated water at protein interfaces.

    Science.gov (United States)

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. © 2015 Federation of European Biochemical Societies.

  18. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  19. Version II of the users manual for the Tuff Data Base Interface

    International Nuclear Information System (INIS)

    Welch, E.P.; Satter, B.J.; Langkopf, B.S.; Zeuch, D.H.

    1987-05-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project, managed by the Nevada Operations Office of the US Department of Energy, is investigating the feasibility of locating a repository at Yucca Mountain on and adjacent to the Nevada Test Site (NTS) in southern Nevada. A part of this investigation includes obtaining physical properties from laboratory tests on samples from Yucca Mountain and from field tests at Yucca Mountain. A computerized data base has been developed to store this data in a centralized location. The data base is stored on the Cyber 170/855 computer at Sandia using the System 2000 Data Base Management software. A user-friendly interface, the Tuff Data Base Interface (the Interface), allows NNWSI participants to retrieve data from the Tuff Data Base. The Interface gives users flexibility to retrieve portions of the Data Base related to their interests. This report gives basic instructions on accessing the Sandia computing system and explains how to use the Interface. 18 figs., 5 tabs

  20. NeuroMEMS: Neural Probe Microtechnologies

    Directory of Open Access Journals (Sweden)

    Sam Musallam

    2008-10-01

    Full Text Available Neural probe technologies have already had a significant positive effect on our understanding of the brain by revealing the functioning of networks of biological neurons. Probes are implanted in different areas of the brain to record and/or stimulate specific sites in the brain. Neural probes are currently used in many clinical settings for diagnosis of brain diseases such as seizers, epilepsy, migraine, Alzheimer’s, and dementia. We find these devices assisting paralyzed patients by allowing them to operate computers or robots using their neural activity. In recent years, probe technologies were assisted by rapid advancements in microfabrication and microelectronic technologies and thus are enabling highly functional and robust neural probes which are opening new and exciting avenues in neural sciences and brain machine interfaces. With a wide variety of probes that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the microfabrication techniques of neural probes. In addition, we aim to highlight the challenges faced in developing and implementing ultralong multi-site recording probes that are needed to monitor neural activity from deeper regions in the brain. Finally, we review techniques that can improve the biocompatibility of the neural probes to minimize the immune response and encourage neural growth around the electrodes for long term implantation studies.

  1. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  2. A Low Noise Amplifier for Neural Spike Recording Interfaces

    Directory of Open Access Journals (Sweden)

    Jesus Ruiz-Amaya

    2015-09-01

    Full Text Available This paper presents a Low Noise Amplifier (LNA for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.

  3. The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.

    Science.gov (United States)

    Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun

    2018-01-01

    Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

  4. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system

    Directory of Open Access Journals (Sweden)

    Daniel Brüderle

    2009-06-01

    Full Text Available Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  5. Radioactivity nuclide identification based on BP and LM algorithm neural network

    International Nuclear Information System (INIS)

    Wang Jihong; Sun Jian; Wang Lianghou

    2012-01-01

    The paper provides the method which can identify radioactive nuclide based on the BP and LM algorithm neural network. Then, this paper compares the above-mentioned method with FR algorithm. Through the result of the Matlab simulation, the method of radioactivity nuclide identification based on the BP and LM algorithm neural network is superior to the FR algorithm. With the better effect and the higher accuracy, it will be the best choice. (authors)

  6. The web-based user interface for EAST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.R., E-mail: rrzhang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Anhui (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Anhui (China); Yuan, Q.P. [Institute of Plasma Physics, Chinese Academy of Sciences, Anhui (China); Yang, F. [Institute of Plasma Physics, Chinese Academy of Sciences, Anhui (China); Department of Computer Science, Anhui Medical University, Anhui (China); Zhang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Anhui (China); Johnson, R.D.; Penaflor, B.G. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States)

    2014-05-15

    The plasma control system (PCS) plays a vital role at EAST for fusion science experiments. Its software application consists of two main parts: an IDL graphical user interface for setting a large number of plasma parameters to specify each discharge, several programs for performing the real-time feedback control and managing the whole control system. The PCS user interface can be used from any X11 Windows client with privileged access to the PCS computer system. However, remote access to the PCS system via the IDL user interface becomes an extreme inconvenience due to the high network latency to draw or operate the interfaces. In order to realize lower latency for remote access to the PCS system, a web-based system has been developed for EAST recently. The setup data are retrieved from the PCS system and client-side JavaScript draws the interfaces into the user's browser. The user settings are also sent back to the PCS system for controlling discharges. These technologies allow the web-based user interface to be viewed by authorized users with a web browser and have it communicate with PCS server processes directly. It works together with the IDL interface and provides a new way to aid remote participation.

  7. The web-based user interface for EAST plasma control system

    International Nuclear Information System (INIS)

    Zhang, R.R.; Xiao, B.J.; Yuan, Q.P.; Yang, F.; Zhang, Y.; Johnson, R.D.; Penaflor, B.G.

    2014-01-01

    The plasma control system (PCS) plays a vital role at EAST for fusion science experiments. Its software application consists of two main parts: an IDL graphical user interface for setting a large number of plasma parameters to specify each discharge, several programs for performing the real-time feedback control and managing the whole control system. The PCS user interface can be used from any X11 Windows client with privileged access to the PCS computer system. However, remote access to the PCS system via the IDL user interface becomes an extreme inconvenience due to the high network latency to draw or operate the interfaces. In order to realize lower latency for remote access to the PCS system, a web-based system has been developed for EAST recently. The setup data are retrieved from the PCS system and client-side JavaScript draws the interfaces into the user's browser. The user settings are also sent back to the PCS system for controlling discharges. These technologies allow the web-based user interface to be viewed by authorized users with a web browser and have it communicate with PCS server processes directly. It works together with the IDL interface and provides a new way to aid remote participation

  8. Adaptive Training and Collective Decision Support Based on Man-Machine Interface

    Science.gov (United States)

    2016-03-02

    Based on Man -machine Interface The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 adaptive training, EEG, man -machine interface...non peer-reviewed journals: Final Report: Adaptive Training and Collective Decision Support Based on Man -machine Interface Report Title The existence of

  9. The image recognition based on neural network and Bayesian decision

    Science.gov (United States)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  10. Navigation with a passive brain based interface

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.; Thurlings, M.E.; Brouwer, A.-M.

    2009-01-01

    In this paper, we describe a Brain Computer Interface (BCI) for navigation. The system is based on detecting brain signals that are elicited by tactile stimulation on the torso indicating the desired direction.

  11. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  12. Interface-based software testing

    Directory of Open Access Journals (Sweden)

    Aziz Ahmad Rais

    2016-10-01

    Full Text Available Software quality is determined by assessing the characteristics that specify how it should work, which are verified through testing. If it were possible to touch, see, or measure software, it would be easier to analyze and prove its quality. Unfortunately, software is an intangible asset, which makes testing complex. This is especially true when software quality is not a question of particular functions that can be tested through a graphical user interface. The primary objective of software architecture is to design quality of software through modeling and visualization. There are many methods and standards that define how to control and manage quality. However, many IT software development projects still fail due to the difficulties involved in measuring, controlling, and managing software quality. Software quality failure factors are numerous. Examples include beginning to test software too late in the development process, or failing properly to understand, or design, the software architecture and the software component structure. The goal of this article is to provide an interface-based software testing technique that better measures software quality, automates software quality testing, encourages early testing, and increases the software’s overall testability

  13. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    Science.gov (United States)

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  14. Knowledge synthesis with maps of neural connectivity.

    Science.gov (United States)

    Tallis, Marcelo; Thompson, Richard; Russ, Thomas A; Burns, Gully A P C

    2011-01-01

    This paper describes software for neuroanatomical knowledge synthesis based on neural connectivity data. This software supports a mature methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus, and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macro connections using the Swanson third edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the data mapping components within a unified web-application. As a step toward developing an accurate sub-regional account of neural connectivity, we provide navigational access between the data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called "Knowledge Engineering from Experimental Design" (KEfED) model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web-application that allows anatomical data sets to be described within a standard experimental context and thus indexed by non-spatial experimental design features.

  15. Knowledge synthesis with maps of neural connectivity

    Directory of Open Access Journals (Sweden)

    Marcelo eTallis

    2011-11-01

    Full Text Available This paper describes software for neuroanatomical knowledge synthesis based on high-quality neural connectivity data. This software supports a mature neuroanatomical methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macroconnections using the Swanson 3rd edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the neuroanatomical data mapping components within a unified web-application. As a step towards developing an accurate sub-regional account of neural connectivity, we provide navigational access between the neuroanatomical data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called ’Knowledge Engineering from Experimental Design’ (KEfED model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web application that allows anatomical data sets to be described within a standard experimental context and thus incorporated with non-spatial data sets.

  16. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  17. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    Science.gov (United States)

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Error Concealment using Neural Networks for Block-Based Image Coding

    Directory of Open Access Journals (Sweden)

    M. Mokos

    2006-06-01

    Full Text Available In this paper, a novel adaptive error concealment (EC algorithm, which lowers the requirements for channel coding, is proposed. It conceals errors in block-based image coding systems by using neural network. In this proposed algorithm, only the intra-frame information is used for reconstruction of the image with separated damaged blocks. The information of pixels surrounding a damaged block is used to recover the errors using the neural network models. Computer simulation results show that the visual quality and the MSE evaluation of a reconstructed image are significantly improved using the proposed EC algorithm. We propose also a simple non-neural approach for comparison.

  19. Automatic target recognition using a feature-based optical neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1992-01-01

    An optical neural network based upon the Neocognitron paradigm (K. Fukushima et al. 1983) is introduced. A novel aspect of the architectural design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator and updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intra-class fault tolerance and inter-class discrimination is achieved. A detailed system description is provided. Experimental demonstration of a two-layer neural network for space objects discrimination is also presented.

  20. Man-machine interfaces analysis system based on computer simulation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Gao Zuying; Zhou Zhiwei; Zhao Bingquan

    2004-01-01

    The paper depicts a software assessment system, Dynamic Interaction Analysis Support (DIAS), based on computer simulation technology for man-machine interfaces (MMI) of a control room. It employs a computer to simulate the operation procedures of operations on man-machine interfaces in a control room, provides quantified assessment, and at the same time carries out analysis on operational error rate of operators by means of techniques for human error rate prediction. The problems of placing man-machine interfaces in a control room and of arranging instruments can be detected from simulation results. DIAS system can provide good technical supports to the design and improvement of man-machine interfaces of the main control room of a nuclear power plant

  1. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  3. Version I of the users manual for the Tuff Data Base Interface

    International Nuclear Information System (INIS)

    Langkopf, B.S.; Satter, B.J.; Welch, E.P.

    1985-04-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project, managed by the Nevada Operations Office of the US Department of Energy, is investigating the feasibility of locating a repository at Yucca Mountain on and adjacent to the Nevada Test Site (NTS) in southern Nevada. A part of this investigation includes obtaining physical properties from laboratory tests on samples from Yucca Mountain and field tests of the in situ tuffs at Yucca Mountain. A computerized data base has been developed to store this data in a centralized location. The data base is stored on the Cyber 170/855 computer at Sandia using the System 2000 Data Base Management software. A user-friendly interface, the Tuff Data Base Interface, is being developed to allow NNWSI participants to retrieve information from the Tuff Data Base directly. The Interface gives NNWSI users a great deal of flexibility in retrieving portions of the Data Base. This report is an interim users manual for the Tuff Data Base Interface, as of August 1984. It gives basic instructions on accessing the Sandia computing system and explains the Interface on a question-by-question basis

  4. SU-8-based microneedles for in vitro neural applications

    International Nuclear Information System (INIS)

    Altuna, Ane; Tijero, María; Berganzo, Javier; Salido, Rafa; Fernández, Luis J; Gabriel, Gemma; Guimerá, Anton; Villa, Rosa; Menéndez de la Prida, Liset

    2010-01-01

    This paper presents novel design, fabrication, packaging and the first in vitro neural activity recordings of SU-8-based microneedles. The polymer SU-8 was chosen because it provides excellent features for the fabrication of flexible and thin probes. A microprobe was designed in order to allow a clean insertion and to minimize the damage caused to neural tissue during in vitro applications. In addition, a tetrode is patterned at the tip of the needle to obtain fine-scale measurements of small neuronal populations within a radius of 100 µm. Impedance characterization of the electrodes has been carried out to demonstrate their viability for neural recording. Finally, probes are inserted into 400 µm thick hippocampal slices, and simultaneous action potentials with peak-to-peak amplitudes of 200–250 µV are detected.

  5. UNMANNED AIR VEHICLE STABILIZATION BASED ON NEURAL NETWORK REGULATOR

    Directory of Open Access Journals (Sweden)

    S. S. Andropov

    2016-09-01

    Full Text Available A problem of stabilizing for the multirotor unmanned aerial vehicle in an environment with external disturbances is researched. A classic proportional-integral-derivative controller is analyzed, its flaws are outlined: inability to respond to changing of external conditions and the need for manual adjustment of coefficients. The paper presents an adaptive adjustment method for coefficients of the proportional-integral-derivative controller based on neural networks. A neural network structure, its input and output data are described. Neural networks with three layers are used to create an adaptive stabilization system for the multirotor unmanned aerial vehicle. Training of the networks is done with the back propagation method. Each neural network produces regulator coefficients for each angle of stabilization as its output. A method for network training is explained. Several graphs of transition process on different stages of learning, including processes with external disturbances, are presented. It is shown that the system meets stabilization requirements with sufficient number of iterations. Described adjustment method for coefficients can be used in remote control of unmanned aerial vehicles, operating in the changing environment.

  6. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  7. Battery-Free Love-Wave-Based Neural Probe and Its Wireless Characterizations

    Science.gov (United States)

    Jung, In Ki; Fu, Chen; Lee, Keekeun

    2013-06-01

    A wireless Love-wave-based neural probe that utilizes a one-port reflective delay line was developed for both reading and stimulating neurons in the brain. Poly(methyl methacrylate) (PMMA) as a waveguide layer and gold (Au) electrodes were structured on the top of a 41° YX LiNbO3 piezoelectric substrate, following the parameters extracted from coupling-of-mode (COM) modeling. For a one-port reflective delay line, single-phase unidirectional transducers (SPUDTs) and three shorted grating reflectors were employed, which made possible the implementation of a wireless and battery-free neural probe. The fabricated Love-wave-based neural probes were wirelessly measured using two antennas with a 440 MHz central frequency and a network analyzer. Sharp reflection peaks with a high signal-to-noise ratio were observed from the reflection peaks. The probe was immersed in 0.9% saline solution while applying input DC voltages. Good linearity, high sensitivity, and reproducibility were observed depending on DC applied voltage, in the range from 0 to 500 mV. The sensitivity obtained from the DC firings (artificial neural firings) was ˜0.04 µs/VDC, indicating that this prototype probe is very promising for the wireless reading and stimulation of neural firings in in vivo animal testing.

  8. A covert attention P300-based brain-computer interface: Geospell.

    Science.gov (United States)

    Aloise, Fabio; Aricò, Pietro; Schettini, Francesca; Riccio, Angela; Salinari, Serenella; Mattia, Donatella; Babiloni, Fabio; Cincotti, Febo

    2012-01-01

    The Farwell and Donchin P300 speller interface is one of the most widely used brain-computer interface (BCI) paradigms for writing text. Recent studies have shown that the recognition accuracy of the P300 speller decreases significantly when eye movement is impaired. This report introduces the GeoSpell interface (Geometric Speller), which implements a stimulation framework for a P300-based BCI that has been optimised for operation in covert visual attention. We compared the Geospell with the P300 speller interface under overt attention conditions with regard to effectiveness, efficiency and user satisfaction. Ten healthy subjects participated in the study. The performance of the GeoSpell interface in covert attention was comparable with that of the P300 speller in overt attention. As expected, the effectiveness of the spelling decreased with the new interface in covert attention. The NASA task load index (TLX) for workload assessment did not differ significantly between the two modalities. This study introduces and evaluates a gaze-independent, P300-based brain-computer interface, the efficacy and user satisfaction of which were comparable with those off the classical P300 speller. Despite a decrease in effectiveness due to the use of covert attention, the performance of the GeoSpell far exceeded the threshold of accuracy with regard to effective spelling.

  9. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  10. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury

    Science.gov (United States)

    Hormigo, Kristiina M.; Zholudeva, Lyandysha V.; Spruance, Victoria M.; Marchenko, Vitaliy; Cote, Marie-Pascale; Vinit, Stephane; Giszter, Simon; Bezdudnaya, Tatiana; Lane, Michael A.

    2016-01-01

    Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. PMID:27582085

  11. Towards building hybrid biological/in silico neural networks for motor neuroprosthetic control

    Directory of Open Access Journals (Sweden)

    Mehmet eKocaturk

    2015-08-01

    Full Text Available In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE as a practical platform for the development of novel brain machine interface (BMI controllers which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two target reaching task in one dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN simulations with powerful online data visualization tools and is a low-cost, PC-based and all-in-one solution for developing neurally-inspired BMI controllers. We believe the BNDE is the first implementation which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations.

  12. Learning in neural networks based on a generalized fluctuation theorem

    Science.gov (United States)

    Hayakawa, Takashi; Aoyagi, Toshio

    2015-11-01

    Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.

  13. Microcontroller based interface unit for Indus-2 beam scraper

    International Nuclear Information System (INIS)

    Puntambekar, T.A.; Holikatti, A.C.; Banerji, Anil; Kotaiah, S.

    2005-01-01

    In this paper we present the design and development of a microcontroller based interface unit for Indus-2 beam scraper, which is a destructive type of diagnostic device. The design of the interface unit has been aimed at a complete remote operation of the beam scraper from the control room. Safety interlock issues have also been presented. (author)

  14. Nuclear reactors project optimization based on neural network and genetic algorithm

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

  15. Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ahcene Farah

    2002-06-01

    Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles  with more autonomy and intelligence is discussed. Second, the system  for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.

  16. A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications

    Directory of Open Access Journals (Sweden)

    Justyna Burns

    2001-01-01

    Full Text Available Efficient delivery of relevant product information is increasingly becoming the central basis of competition between firms. The interface design represents the central component for successful information delivery to consumers. However, interface design for web-based information systems is probably more an art than a science at this point in time. Much research is needed to understand properties of an effective interface for electronic commerce. This paper develops a framework identifying the relationship between user factors, the role of the user interface and overall system success for web-based electronic commerce. The paper argues that web-based systems for electronic commerce have some similar properties to decision support systems (DSS and adapts an established DSS framework to the electronic commerce domain. Based on a limited amount of research studying web browser interface design, the framework identifies areas of research needed and outlines possible relationships between consumer characteristics, interface design attributes and measures of overall system success.

  17. Neural Network Based Real-time Correction of Transducer Dynamic Errors

    Science.gov (United States)

    Roj, J.

    2013-12-01

    In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equation with respect to the input quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and disadvantages, are discussed.

  18. Planning music-based amelioration and training in infancy and childhood based on neural evidence.

    Science.gov (United States)

    Huotilainen, Minna; Tervaniemi, Mari

    2018-05-04

    Music-based amelioration and training of the developing auditory system has a long tradition, and recent neuroscientific evidence supports using music in this manner. Here, we present the available evidence showing that various music-related activities result in positive changes in brain structure and function, becoming helpful for auditory cognitive processes in everyday life situations for individuals with typical neural development and especially for individuals with hearing, learning, attention, or other deficits that may compromise auditory processing. We also compare different types of music-based training and show how their effects have been investigated with neural methods. Finally, we take a critical position on the multitude of error sources found in amelioration and training studies and on publication bias in the field. We discuss some future improvements of these issues in the field of music-based training and their potential results at the neural and behavioral levels in infants and children for the advancement of the field and for a more complete understanding of the possibilities and significance of the training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  19. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  20. Research of Digital Interface Layout Design based on Eye-tracking

    OpenAIRE

    Shao Jiang; Xue Chengqi; Wang Fang; Wang Haiyan; Tang Wencheng; Chen Mo; Kang Mingwu

    2015-01-01

    The aim of this paper is to improve the low service efficiency and unsmooth human-computer interaction caused by currently irrational layouts of digital interfaces for complex systems. Also, three common layout structures for digital interfaces are to be presented and five layout types appropriate for multilevel digital interfaces are to be summarized. Based on the eye tracking technology, an assessment was conducted in advantages and disadvantages of different layout types through subjects’ ...

  1. Task-dependent neural bases of perceiving emotionally expressive targets

    Directory of Open Access Journals (Sweden)

    Jamil eZaki

    2012-08-01

    Full Text Available Social cognition is fundamentally interpersonal: individuals’ behavior and dispositions critically affect their interaction partners’ information processing. However, cognitive neuroscience studies, partially because of methodological constraints, have remained largely perceiver-centric: focusing on the abilities, motivations, and goals of social perceivers while largely ignoring interpersonal effects. Here, we address this knowledge gap by examining the neural bases of perceiving emotionally expressive and inexpressive social targets. Sixteen perceivers were scanned using fMRI while they watched targets discussing emotional autobiographical events. Perceivers continuously rated each target’s emotional state or eye-gaze direction. The effects of targets’ emotional expressivity on perceiver’s brain activity depended on task set: when perceivers explicitly attended to targets’ emotions, expressivity predicted activity in neural structures—including medial prefrontal and posterior cingulate cortex—associated with drawing inferences about mental states. When perceivers instead attended to targets’ eye-gaze, target expressivity predicted activity in regions—including somatosensory cortex, fusiform gyrus, and motor cortex—associated with monitoring sensorimotor states and biological motion. These findings suggest that expressive targets affect information processing in manner that depends on perceivers’ goals. More broadly, these data provide an early step towards understanding the neural bases of interpersonal social cognition.

  2. Neural Network Based Sensory Fusion for Landmark Detection

    Science.gov (United States)

    Kumbla, Kishan -K.; Akbarzadeh, Mohammad R.

    1997-01-01

    NASA is planning to send numerous unmanned planetary missions to explore the space. This requires autonomous robotic vehicles which can navigate in an unstructured, unknown, and uncertain environment. Landmark based navigation is a new area of research which differs from the traditional goal-oriented navigation, where a mobile robot starts from an initial point and reaches a destination in accordance with a pre-planned path. The landmark based navigation has the advantage of allowing the robot to find its way without communication with the mission control station and without exact knowledge of its coordinates. Current algorithms based on landmark navigation however pose several constraints. First, they require large memories to store the images. Second, the task of comparing the images using traditional methods is computationally intensive and consequently real-time implementation is difficult. The method proposed here consists of three stages, First stage utilizes a heuristic-based algorithm to identify significant objects. The second stage utilizes a neural network (NN) to efficiently classify images of the identified objects. The third stage combines distance information with the classification results of neural networks for efficient and intelligent navigation.

  3. Image object recognition based on the Zernike moment and neural networks

    Science.gov (United States)

    Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu

    1998-03-01

    This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.

  4. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  5. Arduino-Based embedded systems interfacing, simulation, and LabVIEW GUI

    CERN Document Server

    Singh, Rajesh; Singh, Bhupendra; Choudhury, Sushabhan

    2018-01-01

    Arduino is an open-source electronics platform based on easy-to-use hardware and software while LabVIEW is a graphical programming telling how to connect functions and work with a variety of datatypes when constructing applications.This book will help beginners to get started with Arduino-based embedded systems including essential know-how of the programming and interfacing of the devices. Book includes programming and simulation of Arduino-based projects and interfacing with LabVIEW, based on practical case studies. The book comprises of total twenty five chapters with description, working model of LabVIEW and programming with Arduino IDE.

  6. Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.

    Science.gov (United States)

    Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng

    2018-04-20

    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.

  7. Dynamic neural network-based methods for compensation of nonlinear effects in multimode communication lines

    Science.gov (United States)

    Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.

    2017-12-01

    We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.

  8. A Mediator-Based Approach to Resolving Interface Heterogeneity of Web Services

    Science.gov (United States)

    Leitner, Philipp; Rosenberg, Florian; Michlmayr, Anton; Huber, Andreas; Dustdar, Schahram

    In theory, service-oriented architectures are based on the idea of increasing flexibility in the selection of internal and external business partners using loosely-coupled services. However, in practice this flexibility is limited by the fact that partners need not only to provide the same service, but to do so via virtually the same interface in order to actually be interchangeable easily. Invocation-level mediation may be used to overcome this issue — by using mediation interface differences can be resolved transparently at runtime. In this chapter we discuss the basic ideas of mediation, with a focus on interface-level mediation. We show how interface mediation is integrated into our dynamic Web service invocation framework DAIOS, and present three different mediation strategies, one based on structural message similarity, one based on semantically annotated WSDL, and one which is embedded into the VRESCo SOA runtime, a larger research project with explicit support for service mediation.

  9. Autoregressive Integrated Adaptive Neural Networks Classifier for EEG-P300 Classification

    Directory of Open Access Journals (Sweden)

    Demi Soetraprawata

    2013-06-01

    Full Text Available Brain Computer Interface has a potency to be applied in mechatronics apparatus and vehicles in the future. Compared to the other techniques, EEG is the most preferred for BCI designs. In this paper, a new adaptive neural network classifier of different mental activities from EEG-based P300 signals is proposed. To overcome the over-training that is caused by noisy and non-stationary data, the EEG signals are filtered and extracted using autoregressive models before passed to the adaptive neural networks classifier. To test the improvement in the EEG classification performance with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis. The experiment results show that the all subjects achieve a classification accuracy of 100%.

  10. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  11. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    Science.gov (United States)

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  12. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  13. Design of graphic and animation in game interface based on cultural ...

    African Journals Online (AJOL)

    Design of graphic and animation in game interface based on cultural value: verification. ... Abstract. No Abstract. Keywords: game interface; cultural value; hofstede; prototype; eye tracker ... AJOL African Journals Online. HOW TO USE AJOL.

  14. Ultra low-power integrated circuit design for wireless neural interfaces

    CERN Document Server

    Holleman, Jeremy; Otis, Brian

    2014-01-01

    Presenting results from real prototype systems, this volume provides an overview of ultra low-power integrated circuits and systems for neural signal processing and wireless communication. Topics include analog, radio, and signal processing theory and design for ultra low-power circuits.

  15. KNOWBOT: a self-organizing interface for nuclear data bases

    International Nuclear Information System (INIS)

    Heger, A.S.; Koen, B.V.

    1988-01-01

    This paper describes the development of a practical intelligent associate, KNOWBOT, designed to act as a surrogate for engineers and scientists in accessing nuclear power industry data bases. The nuclear power industry has developed several safety and reliability data bases to facilitate the exchange of significant safety-related data for enhancement of its performance. The nuclear plant reliability data system and the licensee event reports are instances of such data bases. The creation of these data bases has, nevertheless, been paradoxical. They have provided rapid access to the needed data. Yet they have, at the same time, created their own impediments. Two of these problems that are addressed by the design of KNOWBOT are the interface and dimensionality. The interface problem falls in the broader category of man/machine interaction, which deals with the problems involved with this symbiosis. Dimensionality deals with the rapidly increasing sizes of the data bases and their ability to process queries in a timely fashion. Numerous programs have been developed to address the interface problem, but most have proven inadequate in real-time applications. The dimensionality problem has been approached through the development of faster processors and query optimizers. As these data bases continue to expand, the present solutions are reaching their performance limits, and a new approach such as that offered by KNOWBOT is needed

  16. Emulating conventional operator interfaces on window-based workstations

    International Nuclear Information System (INIS)

    Carr, G.P.

    1990-01-01

    This paper explores an approach to support the LAMPF and PSR control systems on VAX/VMS workstations using DECwindows and VI Corporation Data Views as the operator interface. The PSR control system was recently turned over to MP division and the two control-system staffs were merged into one group. One of the goals of this new group is to develop a common workstation-based operator console and interface which can be used in a single control room controlling both the linac and proton storage ring. The new console operator interface will need a high-level graphics toolkit for its implementation. During the conversion to the new consoles it will also probably be necessary to write a package to emulate the current operator interfaces at the software level. This paper describes a project to evaluate the appropriateness of VI Corporation's Data Views graphics package for use in the LAMPF control-system environment by using it to write an emulation of the LAMPF touch-panel interface to a large LAMPF control-system application program. A secondary objective of this project was to explore any productivity increases that might be realized by using an object-oriented graphics package and graphics editor. (orig.)

  17. Detecting danger labels with RAM-based neural networks

    DEFF Research Database (Denmark)

    Jørgensen, T.M.; Christensen, S.S.; Andersen, A.W.

    1996-01-01

    An image processing system for the automatic location of danger labels on the back of containers is presented. The system uses RAM-based neural networks to locate and classify labels after a pre-processing step involving specially designed non-linear edge filters and RGB-to-HSV conversion. Result...

  18. Identification-based chaos control via backstepping design using self-organizing fuzzy neural networks

    International Nuclear Information System (INIS)

    Peng Yafu; Hsu, C.-F.

    2009-01-01

    This paper proposes an identification-based adaptive backstepping control (IABC) for the chaotic systems. The IABC system is comprised of a neural backstepping controller and a robust compensation controller. The neural backstepping controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller, and the robust compensation controller is designed to dispel the effect of minimum approximation error introduced by the SOFNN identifier. The SOFNN identifier is used to online estimate the chaotic dynamic function with structure and parameter learning phases of fuzzy neural network. The structure learning phase consists of the growing and pruning of fuzzy rules; thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the neural structure of fuzzy neural network. The parameter learning phase adjusts the interconnection weights of neural network to achieve favorable approximation performance. Finally, simulation results verify that the proposed IABC can achieve favorable tracking performance.

  19. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total ..... Genetic algorithm-based self-learning fuzzy PI controller for shunt active filter, ... Verification of global optimality of the OFC active power filters by means of ...

  20. Enabling Accessibility Through Model-Based User Interface Development.

    Science.gov (United States)

    Ziegler, Daniel; Peissner, Matthias

    2017-01-01

    Adaptive user interfaces (AUIs) can increase the accessibility of interactive systems. They provide personalized display and interaction modes to fit individual user needs. Most AUI approaches rely on model-based development, which is considered relatively demanding. This paper explores strategies to make model-based development more attractive for mainstream developers.

  1. The development of a PZT-based microdrive for neural signal recording

    International Nuclear Information System (INIS)

    Park, Sangkyu; Yoon, Euisung; Park, Sukho; Lee, Sukchan; Shin, Hee-sup; Park, Hyunjun; Kim, Byungkyu; Kim, Daesoo; Park, Jongoh

    2008-01-01

    A hand-controlled microdrive has been used to obtain neural signals from rodents such as rats and mice. However, it places severe physical stress on the rodents during its manipulation, and this stress leads to alertness in the mice and low efficiency in obtaining neural signals from the mice. To overcome this issue, we developed a novel microdrive, which allows one to adjust the electrodes by a piezoelectric device (PZT) with high precision. Its mass is light enough to install on the mouse's head. The proposed microdrive has three H-type PZT actuators and their guiding structure. The operation principle of the microdrive is based on the well known inchworm mechanism. When the three PZT actuators are synchronized, linear motion of the electrode is produced along the guiding structure. The electrodes used for the recording of the neural signals from neuron cells were fixed at one of the PZT actuators. Our proposed microdrive has an accuracy of about 400 nm and a long stroke of about 5 mm. In response to formalin-induced pain, single unit activities are robustly measured at the thalamus with electrodes whose vertical depth is adjusted by the microdrive under urethane anesthesia. In addition, the microdrive was efficient in detecting neural signals from mice that were moving freely. Thus, the present study suggests that the PZT-based microdrive could be an alternative for the efficient detection of neural signals from mice during behavioral states without any stress to the mice. (technical note)

  2. Real-time camera-based face detection using a modified LAMSTAR neural network system

    Science.gov (United States)

    Girado, Javier I.; Sandin, Daniel J.; DeFanti, Thomas A.; Wolf, Laura K.

    2003-03-01

    This paper describes a cost-effective, real-time (640x480 at 30Hz) upright frontal face detector as part of an ongoing project to develop a video-based, tetherless 3D head position and orientation tracking system. The work is specifically targeted for auto-stereoscopic displays and projection-based virtual reality systems. The proposed face detector is based on a modified LAMSTAR neural network system. At the input stage, after achieving image normalization and equalization, a sub-window analyzes facial features using a neural network. The sub-window is segmented, and each part is fed to a neural network layer consisting of a Kohonen Self-Organizing Map (SOM). The output of the SOM neural networks are interconnected and related by correlation-links, and can hence determine the presence of a face with enough redundancy to provide a high detection rate. To avoid tracking multiple faces simultaneously, the system is initially trained to track only the face centered in a box superimposed on the display. The system is also rotationally and size invariant to a certain degree.

  3. Developing A Web-based User Interface for Semantic Information Retrieval

    Science.gov (United States)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  4. Neural circuitry and immunity

    Science.gov (United States)

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  5. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  6. Container-code recognition system based on computer vision and deep neural networks

    Science.gov (United States)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  7. Pen-based Interfaces for Engineering and Education

    Science.gov (United States)

    Stahovich, Thomas F.

    Sketches are an important problem-solving tool in many fields. This is particularly true of engineering design, where sketches facilitate creativity by providing an efficient medium for expressing ideas. However, despite the importance of sketches in engineering practice, current engineering software still relies on traditional mouse and keyboard interfaces, with little or no capabilities to handle free-form sketch input. With recent advances in machine-interpretation techniques, it is now becoming possible to create practical interpretation-based interfaces for such software. In this chapter, we report on our efforts to create interpretation techniques to enable pen-based engineering applications. We describe work on two fundamental sketch understanding problems. The first is sketch parsing, the task of clustering pen strokes or geometric primitives into individual symbols. The second is symbol recognition, the task of classifying symbols once they have been located by a parser. We have used the techniques that we have developed to construct several pen-based engineering analysis tools. These are used here as examples to illustrate our methods. We have also begun to use our techniques to create pen-based tutoring systems that scaffold students in solving problems in the same way they would ordinarily solve them with paper and pencil. The chapter concludes with a brief discussion of these systems.

  8. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control.

    Science.gov (United States)

    Li, Xiaofan; Fang, Jian-An; Li, Huiyuan

    2017-09-01

    This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    Science.gov (United States)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  10. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  11. A Gain-Scheduling PI Control Based on Neural Networks

    Directory of Open Access Journals (Sweden)

    Stefania Tronci

    2017-01-01

    Full Text Available This paper presents a gain-scheduling design technique that relies upon neural models to approximate plant behaviour. The controller design is based on generic model control (GMC formalisms and linearization of the neural model of the process. As a result, a PI controller action is obtained, where the gain depends on the state of the system and is adapted instantaneously on-line. The algorithm is tested on a nonisothermal continuous stirred tank reactor (CSTR, considering both single-input single-output (SISO and multi-input multi-output (MIMO control problems. Simulation results show that the proposed controller provides satisfactory performance during set-point changes and disturbance rejection.

  12. Real-Time Inverse Optimal Neural Control for Image Based Visual Servoing with Nonholonomic Mobile Robots

    Directory of Open Access Journals (Sweden)

    Carlos López-Franco

    2015-01-01

    Full Text Available We present an inverse optimal neural controller for a nonholonomic mobile robot with parameter uncertainties and unknown external disturbances. The neural controller is based on a discrete-time recurrent high order neural network (RHONN trained with an extended Kalman filter. The reference velocities for the neural controller are obtained with a visual sensor. The effectiveness of the proposed approach is tested by simulations and real-time experiments.

  13. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  14. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

    Science.gov (United States)

    Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando

    2008-01-01

    This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

  15. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

  16. Results from a MA16-based neural trigger in an experiment looking for beauty

    International Nuclear Information System (INIS)

    Baldanza, C.; Beichter, J.; Bisi, F.; Bruels, N.; Bruschini, C.; Cotta-Ramusino, A.; D'Antone, I.; Malferrari, L.; Mazzanti, P.; Musico, P.; Novelli, P.; Odorici, F.; Odorico, R.; Passaseo, M.; Zuffa, M.

    1996-01-01

    Results from a neural-network trigger based on the digital MA16 chip of Siemens are reported. The neural trigger has been applied to data from the WA92 experiment, looking for beauty particles, which have been collected during a run in which a neural trigger module based on Intel's analog neural chip ETANN operated, as already reported. The MA16 board hosting the chip has a 16-bit I/O precision and a 53-bit precision for internal calculations. It operated at 50 MHz, yielding a response time for a 16 input-variable net of 3 μs for a Fisher discriminant (1-layer net) and of 6 μs for a 2-layer net. Results are compared with those previously obtained with the ETANN trigger. (orig.)

  17. Results from a MA16-based neural trigger in an experiment looking for beauty

    Energy Technology Data Exchange (ETDEWEB)

    Baldanza, C. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Beichter, J. [Siemens AG, ZFE T ME2, 81730 Munich (Germany); Bisi, F. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Bruels, N. [Siemens AG, ZFE T ME2, 81730 Munich (Germany); Bruschini, C. [INFN/Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Cotta-Ramusino, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); D`Antone, I. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Malferrari, L. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Mazzanti, P. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Musico, P. [INFN/Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Novelli, P. [INFN/Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Odorici, F. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Odorico, R. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Passaseo, M. [CERN, 1211 Geneva 23 (Switzerland); Zuffa, M. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy)

    1996-07-11

    Results from a neural-network trigger based on the digital MA16 chip of Siemens are reported. The neural trigger has been applied to data from the WA92 experiment, looking for beauty particles, which have been collected during a run in which a neural trigger module based on Intel`s analog neural chip ETANN operated, as already reported. The MA16 board hosting the chip has a 16-bit I/O precision and a 53-bit precision for internal calculations. It operated at 50 MHz, yielding a response time for a 16 input-variable net of 3 {mu}s for a Fisher discriminant (1-layer net) and of 6 {mu}s for a 2-layer net. Results are compared with those previously obtained with the ETANN trigger. (orig.).

  18. Exploring Interaction Space as Abstraction Mechanism for Task-Based User Interface Design

    DEFF Research Database (Denmark)

    Nielsen, C. M.; Overgaard, M.; Pedersen, M. B.

    2007-01-01

    Designing a user interface is often a complex undertaking. Model-based user interface design is an approach where models and mappings between them form the basis for creating and specifying the design of a user interface. Such models usually include descriptions of the tasks of the prospective user......, but there is considerable variation in the other models that are employed. This paper explores the extent to which the notion of interaction space is useful as an abstraction mechanism to reduce the complexity of creating and specifying a user interface design. We present how we designed a specific user interface through...... mechanism that can help user interface designers exploit object-oriented analysis results and reduce the complexity of designing a user interface....

  19. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  20. ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation

    OpenAIRE

    Visin, Francesco; Ciccone, Marco; Romero, Adriana; Kastner, Kyle; Cho, Kyunghyun; Bengio, Yoshua; Matteucci, Matteo; Courville, Aaron

    2015-01-01

    We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, called ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Each ReNet layer is composed of four RNN that sweep the image horizontally ...

  1. Neural network-based retrieval from software reuse repositories

    Science.gov (United States)

    Eichmann, David A.; Srinivas, Kankanahalli

    1992-01-01

    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline an approach to this problem based upon neural networks which avoids requiring the repository administrators to define a conceptual closeness graph for the classification vocabulary.

  2. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    Science.gov (United States)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  3. Neural System Prediction and Identification Challenge

    Directory of Open Access Journals (Sweden)

    Ioannis eVlachos

    2013-12-01

    Full Text Available Can we infer the function of a biological neural network (BNN if we know the connectivity and activity of all its constituent neurons? This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC. We provide the connectivity and activity of all neurons and invite participants (i to infer the functions implemented (hard-wired in spiking neural networks (SNNs by stimulating and recording the activity of neurons and, (ii to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  4. Neural system prediction and identification challenge.

    Science.gov (United States)

    Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind

    2013-01-01

    Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  5. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  6. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  7. The Shape of Things to Come: The Military Benefits of the Brain-Computer Interface in 2040

    Science.gov (United States)

    2015-04-01

    capability. Bidirectional interfaces with the ability to influence specific neural groups will not only revolutionize health-care, but transform how the...both read and stimulate neural activity. Unidirectional BCIs are useful; however, it is the bidirectional device that opens the potential for the...connected intra-cranially distributed networks that communicate with thousands of ‘ neural reading & stimulating’ devices that could be safely inserted

  8. Fault diagnosis method for nuclear power plants based on neural networks and voting fusion

    International Nuclear Information System (INIS)

    Zhou Gang; Ge Shengqi; Yang Li

    2010-01-01

    A new fault diagnosis method based on multiple neural networks (ANNs) and voting fusion for nuclear power plants (NPPs) was proposed in view of the shortcoming of single neural network fault diagnosis method. In this method, multiple neural networks that the types of neural networks were different were trained for the fault diagnosis of NPP. The operation parameters of NPP, which have important affect on the safety of NPP, were selected as the input variable of neural networks. The output of neural networks is fault patterns of NPP. The last results of diagnosis for NPP were obtained by fusing the diagnosing results of different neural networks by voting fusion. The typical operation patterns of NPP were diagnosed to demonstrate the effect of the proposed method. The results show that employing the proposed diagnosing method can improve the precision and reliability of fault diagnosis results of NPPs. (authors)

  9. XML-based analysis interface for particle physics data analysis

    International Nuclear Information System (INIS)

    Hu Jifeng; Lu Xiaorui; Zhang Yangheng

    2011-01-01

    The letter emphasizes on an XML-based interface and its framework for particle physics data analysis. The interface uses a concise XML syntax to describe, in data analysis, the basic tasks: event-selection, kinematic fitting, particle identification, etc. and a basic processing logic: the next step goes on if and only if this step succeeds. The framework can perform an analysis without compiling by loading the XML-interface file, setting p in run-time and running dynamically. An analysis coding in XML instead of C++, easy-to-understood arid use, effectively reduces the work load, and enables users to carry out their analyses quickly. The framework has been developed on the BESⅢ offline software system (BOSS) with the object-oriented C++ programming. These functions, required by the regular tasks and the basic processing logic, are implemented with both standard modules or inherited from the modules in BOSS. The interface and its framework have been tested to perform physics analysis. (authors)

  10. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  11. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  12. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  13. A web-based system for neural network based classification in temporomandibular joint osteoarthritis.

    Science.gov (United States)

    de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos

    2018-07-01

    The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this

  14. Wettability and interface considerations in advanced heat-resistant Ni-base composites

    International Nuclear Information System (INIS)

    Asthana, R.; Mileiko, S.T.; Sobczak, N.

    2006-01-01

    Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990's due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al 2 O 3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-of the

  15. A patch-based convolutional neural network for remote sensing image classification.

    Science.gov (United States)

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cyclone track forecasting based on satellite images using artificial neural networks

    OpenAIRE

    Kovordanyi, Rita; Roy, Chandan

    2009-01-01

    Many places around the world are exposed to tropical cyclones and associated storm surges. In spite of massive efforts, a great number of people die each year as a result of cyclone events. To mitigate this damage, improved forecasting techniques must be developed. The technique presented here uses artificial neural networks to interpret NOAA-AVHRR satellite images. A multi-layer neural network, resembling the human visual system, was trained to forecast the movement of cyclones based on sate...

  17. Feature extraction using extrema sampling of discrete derivatives for spike sorting in implantable upper-limb neural prostheses.

    Science.gov (United States)

    Zamani, Majid; Demosthenous, Andreas

    2014-07-01

    Next generation neural interfaces for upper-limb (and other) prostheses aim to develop implantable interfaces for one or more nerves, each interface having many neural signal channels that work reliably in the stump without harming the nerves. To achieve real-time multi-channel processing it is important to integrate spike sorting on-chip to overcome limitations in transmission bandwidth. This requires computationally efficient algorithms for feature extraction and clustering suitable for low-power hardware implementation. This paper describes a new feature extraction method for real-time spike sorting based on extrema analysis (namely positive peaks and negative peaks) of spike shapes and their discrete derivatives at different frequency bands. Employing simulation across different datasets, the accuracy and computational complexity of the proposed method are assessed and compared with other methods. The average classification accuracy of the proposed method in conjunction with online sorting (O-Sort) is 91.6%, outperforming all the other methods tested with the O-Sort clustering algorithm. The proposed method offers a better tradeoff between classification error and computational complexity, making it a particularly strong choice for on-chip spike sorting.

  18. PID Neural Network Based Speed Control of Asynchronous Motor Using Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    MARABA, V. A.

    2011-11-01

    Full Text Available This paper deals with the structure and characteristics of PID Neural Network controller for single input and single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural networks and classic PID controller. Functioning of this controller is based on the update of controller parameters according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model of the asynchronous motor exhibiting second order linear behavior were used in the real time speed control of the motor. Programmable logic controller (PLC was used as real time controller. The real time control results show that reference speed successfully maintained under various load conditions.

  19. Neural bases of ingroup altruistic motivation in soccer fans.

    Science.gov (United States)

    Bortolini, Tiago; Bado, Patrícia; Hoefle, Sebastian; Engel, Annerose; Zahn, Roland; de Oliveira Souza, Ricardo; Dreher, Jean-Claude; Moll, Jorge

    2017-11-23

    Humans have a strong need to belong to social groups and a natural inclination to benefit ingroup members. Although the psychological mechanisms behind human prosociality have extensively been studied, the specific neural systems bridging group belongingness and altruistic motivation remain to be identified. Here, we used soccer fandom as an ecological framing of group membership to investigate the neural mechanisms underlying ingroup altruistic behaviour in male fans using event-related functional magnetic resonance. We designed an effort measure based on handgrip strength to assess the motivation to earn money (i) for oneself, (ii) for anonymous ingroup fans, or (iii) for a neutral group of anonymous non-fans. While overlapping valuation signals in the medial orbitofrontal cortex (mOFC) were observed for the three conditions, the subgenual cingulate cortex (SCC) exhibited increased functional connectivity with the mOFC as well as stronger hemodynamic responses for ingroup versus outgroup decisions. These findings indicate a key role for the SCC, a region previously implicated in altruistic decisions and group affiliation, in dovetailing altruistic motivations with neural valuation systems in real-life ingroup behaviour.

  20. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    Science.gov (United States)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  1. Adaptive Learning Rule for Hardware-based Deep Neural Networks Using Electronic Synapse Devices

    OpenAIRE

    Lim, Suhwan; Bae, Jong-Ho; Eum, Jai-Ho; Lee, Sungtae; Kim, Chul-Heung; Kwon, Dongseok; Park, Byung-Gook; Lee, Jong-Ho

    2017-01-01

    In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network (HW-DNN) using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron net...

  2. Adaptive online state-of-charge determination based on neuro-controller and neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yanqing, E-mail: network_hawk@126.co [Department of Automation, Chongqing Industry Polytechnic College, Jiulongpo District, Chongqing 400050 (China)

    2010-05-15

    This paper presents a novel approach using adaptive artificial neural network based model and neuro-controller for online cell State of Charge (SOC) determination. Taking cell SOC as model's predictive control input unit, radial basis function neural network, which can adjust its structure to prediction error with recursive least square algorithm, is used to simulate battery system. Besides that, neuro-controller based on Back-Propagation Neural Network (BPNN) and modified PID controller is used to decide the control input of battery system, i.e., cell SOC. Finally this algorithm is applied for the SOC determination of lead-acid batteries, and results of lab tests on physical cells, compared with model prediction, are presented. Results show that the ANN based battery system model adaptively simulates battery system with great accuracy, and the predicted SOC simultaneously converges to the real value quickly within the error of +-1 as time goes on.

  3. H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration.

    Science.gov (United States)

    Zhou, Xuan; Cui, Haitao; Nowicki, Margaret; Miao, Shida; Lee, Se-Jun; Masood, Fahed; Harris, Brent T; Zhang, Lijie Grace

    2018-03-14

    Central nerve repair and regeneration remain challenging problems worldwide, largely because of the extremely weak inherent regenerative capacity and accompanying fibrosis of native nerves. Inadequate solutions to the unmet needs for clinical therapeutics encourage the development of novel strategies to promote nerve regeneration. Recently, 3D bioprinting techniques, as one of a set of valuable tissue engineering technologies, have shown great promise toward fabricating complex and customizable artificial tissue scaffolds. Gelatin methacrylate (GelMA) possesses excellent biocompatible and biodegradable properties because it contains many arginine-glycine-aspartic acids (RGD) and matrix metalloproteinase sequences. Dopamine (DA), as an essential neurotransmitter, has proven effective in regulating neuronal development and enhancing neurite outgrowth. In this study, GelMA-DA neural scaffolds with hierarchical structures were 3D-fabricated using our custom-designed stereolithography-based printer. DA was functionalized on GelMA to synthesize a biocompatible printable ink (GelMA-DA) for improving neural differentiation. Additionally, neural stem cells (NSCs) were employed as the primary cell source for these scaffolds because of their ability to terminally differentiate into a variety of cell types including neurons, astrocytes, and oligodendrocytes. The resultant GelMA-DA scaffolds exhibited a highly porous and interconnected 3D environment, which is favorable for supporting NSC growth. Confocal microscopy analysis of neural differentiation demonstrated that a distinct neural network was formed on the GelMA-DA scaffolds. In particular, the most significant improvements were the enhanced neuron gene expression of TUJ1 and MAP2. Overall, our results demonstrated that 3D-printed customizable GelMA-DA scaffolds have a positive role in promoting neural differentiation, which is promising for advancing nerve repair and regeneration in the future.

  5. Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation

    Science.gov (United States)

    Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad

    2018-03-01

    This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.

  6. Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Alma Y. Alanis

    2013-01-01

    Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con…figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.

  7. Artificial Neural Network Based State Estimators Integrated into Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation as...

  8. Nonintrusive Method Based on Neural Networks for Video Quality of Experience Assessment

    Directory of Open Access Journals (Sweden)

    Diego José Luis Botia Valderrama

    2016-01-01

    Full Text Available The measurement and evaluation of the QoE (Quality of Experience have become one of the main focuses in the telecommunications to provide services with the expected quality for their users. However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks and the RNNs (Random Neural Networks is applied to evaluate the subjective quality metrics MOS (Mean Opinion Score and the PSNR (Peak Signal Noise Ratio, SSIM (Structural Similarity Index Metric, VQM (Video Quality Metric, and QIBF (Quality Index Based Frame. The proposed model allows establishing the QoS (Quality of Service based in the strategy Diffserv. The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error, and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.

  9. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  10. Parametric Jominy profiles predictor based on neural networks

    Directory of Open Access Journals (Sweden)

    Valentini, R.

    2005-12-01

    Full Text Available The paper presents a method for the prediction of the Jominy hardness profiles of steels for microalloyed Boron steel which is based on neural networks. The Jominy profile has been parameterized and the parameters, which are a sort of "compact representation" of the profile itself, are linked to the steel chemical composition through a neural network. Numerical results are presented and discussed.

    El trabajo presenta un método de estimación de perfiles de dureza Jominy para aceros microaleados al boro basado en redes neuronales. Los parámetros de perfil Jominy, que constituyen una especie de "representación compacta" del perfil mismo, son determinados y puestos en relación con la composición química del acero mediante una red neuronal. Los resultados numéricos son expuestos y discutidos.

  11. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L Collinger

    2014-02-01

    Full Text Available After spinal cord injury (SCI, motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation, in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, action observation can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG and functional magnetic resonance imaging (fMRI. Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz and the high-gamma band (65-115 Hz which contains significant movement-related information. We observed significant motor-related high-gamma band activity during action observation in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that action observation could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with

  12. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  13. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    Science.gov (United States)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  14. Dataglove-based interface for impedance control of manipulators in cooperative human–robot environments

    International Nuclear Information System (INIS)

    Paredes-Madrid, L; Gonzalez de Santos, P

    2013-01-01

    A dataglove-based interface is presented for tracking the forces applied by the hand during contact tasks with a 6-degree-of-freedom (DOF) manipulator. The interface uses 11 force sensors carefully placed on the palm-side fabric of a 16 DOF dataglove. The force sensors use piezoresistive technology to measure the individual force components from the hand. Based on the dataglove measurements, these components are transformed and summed to assemble the resultant force vector. Finally, this force vector is translated into the manipulator frame using orientation measurements from an inertial measurement unit placed on the dorsal side of the dataglove. Static tests show that the dataglove-based interface can effectively measure the applied hand force, but there are inaccuracies in orientation and magnitude when compared to the load cell measurements used as the reference for error calculation. Promising results were achieved when controlling the 6 DOF manipulator based on the force readings acquired from the dataglove interface; the decoupled dynamics of the dataglove interface with respect to the robot structure yielded smooth force readings of the human intention that could be effectively used in the impedance control of the manipulator. (paper)

  15. Classification of user interfaces for graph-based online analytical processing

    Science.gov (United States)

    Michaelis, James R.

    2016-05-01

    In the domain of business intelligence, user-oriented software for conducting multidimensional analysis via Online- Analytical Processing (OLAP) is now commonplace. In this setting, datasets commonly have well-defined sets of dimensions and measures around which analysis tasks can be conducted. However, many forms of data used in intelligence operations - deriving from social networks, online communications, and text corpora - will consist of graphs with varying forms of potential dimensional structure. Hence, enabling OLAP over such data collections requires explicit definition and extraction of supporting dimensions and measures. Further, as Graph OLAP remains an emerging technique, limited research has been done on its user interface requirements. Namely, on effective pairing of interface designs to different types of graph-derived dimensions and measures. This paper presents a novel technique for pairing of user interface designs to Graph OLAP datasets, rooted in Analytic Hierarchy Process (AHP) driven comparisons. Attributes of the classification strategy are encoded through an AHP ontology, developed in our alternate work and extended to support pairwise comparison of interfaces. Specifically, according to their ability, as perceived by Subject Matter Experts, to support dimensions and measures corresponding to Graph OLAP dataset attributes. To frame this discussion, a survey is provided both on existing variations of Graph OLAP, as well as existing interface designs previously applied in multidimensional analysis settings. Following this, a review of our AHP ontology is provided, along with a listing of corresponding dataset and interface attributes applicable toward SME recommendation structuring. A walkthrough of AHP-based recommendation encoding via the ontology-based approach is then provided. The paper concludes with a short summary of proposed future directions seen as essential for this research area.

  16. Interface characterization in B-based multilayer mirrors for next generation lithography

    International Nuclear Information System (INIS)

    Naujok, Philipp; Yulin, Sergiy; Müller, Robert; Kaiser, Norbert; Tünnermann, Andreas

    2016-01-01

    The interfaces in La/B_4C and LaN/B_4C multilayer mirrors designed for near normal incidence reflection of 6.x nm EUV light were investigated by grazing incidence X-ray reflectometry, high-resolution transmission electron microscopy and EUV reflectometry. The thickness and roughness asymmetries of the different interfaces in both studied systems have been identified. A development of interface roughness with an increasing number of bilayers was found by different investigation methods. For near normal incidence, R = 51.1% @ λ = 6.65 nm could be reached with our La/B_4C multilayer mirrors, whereas R = 58.1% was achieved with LaN/B_4C multilayers at the same wavelength. - Highlights: • Interface structure in B-based multilayer mirrors investigated. • Combining X-ray reflection, EUV reflection and transmission electron microscopy • Interface thickness and roughness asymmetry identified • Interface roughness increases with higher number of bilayers.

  17. A case study to estimate costs using Neural Networks and regression based models

    Directory of Open Access Journals (Sweden)

    Nadia Bhuiyan

    2012-07-01

    Full Text Available Bombardier Aerospace’s high performance aircrafts and services set the utmost standard for the Aerospace industry. A case study in collaboration with Bombardier Aerospace is conducted in order to estimate the target cost of a landing gear. More precisely, the study uses both parametric model and neural network models to estimate the cost of main landing gears, a major aircraft commodity. A comparative analysis between the parametric based model and those upon neural networks model will be considered in order to determine the most accurate method to predict the cost of a main landing gear. Several trials are presented for the design and use of the neural network model. The analysis for the case under study shows the flexibility in the design of the neural network model. Furthermore, the performance of the neural network model is deemed superior to the parametric models for this case study.

  18. Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.

    Science.gov (United States)

    Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve

    2011-11-01

    Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Selective interface transparency in graphene nanoribbon based molecular junctions.

    Science.gov (United States)

    Dou, K P; Kaun, C C; Zhang, R Q

    2018-03-08

    A clear understanding of electrode-molecule interfaces is a prerequisite for the rational engineering of future generations of nanodevices that will rely on single-molecule coupling between components. With a model system, we reveal a peculiar dependence on interfaces in all graphene nanoribbon-based carbon molecular junctions. The effect can be classified into two types depending on the intrinsic feature of the embedded core graphene nanoflake (GNF). For metallic GNFs with |N A - N B | = 1, good/poor contact transparency occurs when the core device aligns with the center/edge of the electrode. The situation is reversed when a semiconducting GNF is the device, where N A = N B . These results may shed light on the design of real connecting components in graphene-based nanocircuits.

  20. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  1. A plausible neural circuit for decision making and its formation based on reinforcement learning.

    Science.gov (United States)

    Wei, Hui; Dai, Dawei; Bu, Yijie

    2017-06-01

    A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control

  2. Synchronization stability of memristor-based complex-valued neural networks with time delays.

    Science.gov (United States)

    Liu, Dan; Zhu, Song; Ye, Er

    2017-12-01

    This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  4. A Storyboard-Based Interface for Mobile Video Browsing

    NARCIS (Netherlands)

    Hürst, Wolfgang|info:eu-repo/dai/nl/313710589; Hoet, Miklas; van de Werken, Rob

    2015-01-01

    We present an interface design for video browsing on mobile devices such as tablets that is based on storyboards and optimized with respect to content visualization and interaction design. In particular, we consider scientific results from our previous studies on mobile visualization (e.g., about

  5. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  6. Reliability analysis of a consecutive r-out-of-n: F system based on neural networks

    International Nuclear Information System (INIS)

    Habib, Aziz; Alsieidi, Ragab; Youssef, Ghada

    2009-01-01

    In this paper, we present a generalized Markov reliability and fault-tolerant model, which includes the effects of permanent fault and intermittent fault for reliability evaluations based on neural network techniques. The reliability of a consecutive r-out-of-n: F system was obtained with a three-layer connected neural network represents a discrete time state reliability Markov model of the system. Such that we fed the neural network with the desired reliability of the system under design. Then we extracted the parameters of the system from the neural weights at the convergence of the neural network to the desired reliability. Finally, we obtain simulation results.

  7. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.

    Science.gov (United States)

    Mastinu, Enzo; Doguet, Pascal; Botquin, Yohan; Hakansson, Bo; Ortiz-Catalan, Max

    2017-08-01

    Despite the technological progress in robotics achieved in the last decades, prosthetic limbs still lack functionality, reliability, and comfort. Recently, an implanted neuromusculoskeletal interface built upon osseointegration was developed and tested in humans, namely the Osseointegrated Human-Machine Gateway. Here, we present an embedded system to exploit the advantages of this technology. Our artificial limb controller allows for bioelectric signals acquisition, processing, decoding of motor intent, prosthetic control, and sensory feedback. It includes a neurostimulator to provide direct neural feedback based on sensory information. The system was validated using real-time tasks characterization, power consumption evaluation, and myoelectric pattern recognition performance. Functionality was proven in a first pilot patient from whom results of daily usage were obtained. The system was designed to be reliably used in activities of daily living, as well as a research platform to monitor prosthesis usage and training, machine-learning-based control algorithms, and neural stimulation paradigms.

  8. An Automatic Diagnosis Method of Facial Acne Vulgaris Based on Convolutional Neural Network.

    Science.gov (United States)

    Shen, Xiaolei; Zhang, Jiachi; Yan, Chenjun; Zhou, Hong

    2018-04-11

    In this paper, we present a new automatic diagnosis method for facial acne vulgaris which is based on convolutional neural networks (CNNs). To overcome the shortcomings of previous methods which were the inability to classify enough types of acne vulgaris. The core of our method is to extract features of images based on CNNs and achieve classification by classifier. A binary-classifier of skin-and-non-skin is used to detect skin area and a seven-classifier is used to achieve the classification task of facial acne vulgaris and healthy skin. In the experiments, we compare the effectiveness of our CNN and the VGG16 neural network which is pre-trained on the ImageNet data set. We use a ROC curve to evaluate the performance of binary-classifier and use a normalized confusion matrix to evaluate the performance of seven-classifier. The results of our experiments show that the pre-trained VGG16 neural network is effective in extracting features from facial acne vulgaris images. And the features are very useful for the follow-up classifiers. Finally, we try applying the classifiers both based on the pre-trained VGG16 neural network to assist doctors in facial acne vulgaris diagnosis.

  9. A graph-Laplacian-based feature extraction algorithm for neural spike sorting.

    Science.gov (United States)

    Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos

    2009-01-01

    Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.

  10. Volunteers Oriented Interface Design for the Remote Navigation of Rescue Robots at Large-Scale Disaster Sites

    Science.gov (United States)

    Yang, Zhixiao; Ito, Kazuyuki; Saijo, Kazuhiko; Hirotsune, Kazuyuki; Gofuku, Akio; Matsuno, Fumitoshi

    This paper aims at constructing an efficient interface being similar to those widely used in human daily life, to fulfill the need of many volunteer rescuers operating rescue robots at large-scale disaster sites. The developed system includes a force feedback steering wheel interface and an artificial neural network (ANN) based mouse-screen interface. The former consists of a force feedback steering control and a six monitors’ wall. It provides a manual operation like driving cars to navigate a rescue robot. The latter consists of a mouse and a camera’s view displayed in a monitor. It provides a semi-autonomous operation by mouse clicking to navigate a rescue robot. Results of experiments show that a novice volunteer can skillfully navigate a tank rescue robot through both interfaces after 20 to 30 minutes of learning their operation respectively. The steering wheel interface has high navigating speed in open areas, without restriction of terrains and surface conditions of a disaster site. The mouse-screen interface is good at exact navigation in complex structures, while bringing little tension to operators. The two interfaces are designed to switch into each other at any time to provide a combined efficient navigation method.

  11. Intention concepts and brain-machine interfacing

    Directory of Open Access Journals (Sweden)

    Franziska eThinnes-Elker

    2012-11-01

    Full Text Available Intentions, including their temporal properties and semantic content, are receiving increased attention, and neuroscientific studies in humans vary with respect to the topography of intention-related neural responses. This may reflect the fact that the kind of intentions investigated in one study may not be exactly the same kind investigated in the other. Fine-grained intention taxonomies developed in the philosophy of mind may be useful to identify the neural correlates of well-defined types of intentions, as well as to disentangle them from other related mental states, such as mere urges to perform an action. Intention-related neural signals may be exploited by brain-machine interfaces (BMIs that are currently being developed to restore speech and motor control in paralyzed subjects. Such BMI devices record the brain activity of the agent, interpret (‘decode’ the agent’s intended action, and send the corresponding execution command to an artificial effector system, e.g., a computer cursor or a robotic arm. In the present paper, we evaluate the potential of intention concepts from philosophy of mind to improve the performance and safety of BMIs based on higher-order, intention-related control signals. To this end, we address the distinction between future-, present-directed, and motor intentions, as well as the organization of intentions in time, specifically to what extent it is sequential or hierarchical. This has consequences as to whether these different types of intentions can be expected to occur simultaneously or not. We further illustrate how it may be useful or even necessary to distinguish types of intentions exposited in philosophy, including yes- vs. no-intentions and oblique vs. direct intentions, to accurately decode the agent’s intentions from neural signals in practical BMI applications.

  12. Intention concepts and brain-machine interfacing.

    Science.gov (United States)

    Thinnes-Elker, Franziska; Iljina, Olga; Apostolides, John Kyle; Kraemer, Felicitas; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2012-01-01

    Intentions, including their temporal properties and semantic content, are receiving increased attention, and neuroscientific studies in humans vary with respect to the topography of intention-related neural responses. This may reflect the fact that the kind of intentions investigated in one study may not be exactly the same kind investigated in the other. Fine-grained intention taxonomies developed in the philosophy of mind may be useful to identify the neural correlates of well-defined types of intentions, as well as to disentangle them from other related mental states, such as mere urges to perform an action. Intention-related neural signals may be exploited by brain-machine interfaces (BMIs) that are currently being developed to restore speech and motor control in paralyzed patients. Such BMI devices record the brain activity of the agent, interpret ("decode") the agent's intended action, and send the corresponding execution command to an artificial effector system, e.g., a computer cursor or a robotic arm. In the present paper, we evaluate the potential of intention concepts from philosophy of mind to improve the performance and safety of BMIs based on higher-order, intention-related control signals. To this end, we address the distinction between future-, present-directed, and motor intentions, as well as the organization of intentions in time, specifically to what extent it is sequential or hierarchical. This has consequences as to whether these different types of intentions can be expected to occur simultaneously or not. We further illustrate how it may be useful or even necessary to distinguish types of intentions exposited in philosophy, including yes- vs. no-intentions and oblique vs. direct intentions, to accurately decode the agent's intentions from neural signals in practical BMI applications.

  13. Plasmid-based generation of induced neural stem cells from adult human fibroblasts

    Directory of Open Access Journals (Sweden)

    Philipp Capetian

    2016-10-01

    Full Text Available Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72% and glial cells (9% astrocytes, 6% oligodendrocytes. Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts. Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside

  14. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  15. Comparison of Back propagation neural network and Back propagation neural network Based Particle Swarm intelligence in Diagnostic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Farahnaz SADOUGHI

    2014-03-01

    Full Text Available Breast cancer is the most commonly diagnosed cancer and the most common cause of death in women all over the world. Use of computer technology supporting breast cancer diagnosing is now widespread and pervasive across a broad range of medical areas. Early diagnosis of this disease can greatly enhance the chances of long-term survival of breast cancer victims. Artificial Neural Networks (ANN as mainly method play important role in early diagnoses breast cancer. This paper studies Levenberg Marquardet Backpropagation (LMBP neural network and Levenberg Marquardet Backpropagation based Particle Swarm Optimization(LMBP-PSO for the diagnosis of breast cancer. The obtained results show that LMBP and LMBP based PSO system provides higher classification efficiency. But LMBP based PSO needs minimum training and testing time. It helps in developing Medical Decision System (MDS for breast cancer diagnosing. It can also be used as secondary observer in clinical decision making.

  16. Invariant moments based convolutional neural networks for image analysis

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi G.V. Mahesh

    2017-01-01

    Full Text Available The paper proposes a method using convolutional neural network to effectively evaluate the discrimination between face and non face patterns, gender classification using facial images and facial expression recognition. The novelty of the method lies in the utilization of the initial trainable convolution kernels coefficients derived from the zernike moments by varying the moment order. The performance of the proposed method was compared with the convolutional neural network architecture that used random kernels as initial training parameters. The multilevel configuration of zernike moments was significant in extracting the shape information suitable for hierarchical feature learning to carry out image analysis and classification. Furthermore the results showed an outstanding performance of zernike moment based kernels in terms of the computation time and classification accuracy.

  17. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R.

    2015-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  18. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a {sup 6}LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  19. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The paper describes a neural network-based script identification system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identification is a basic requirement in automation of document processing, in multi-script, multi-lingual ...

  20. Near infrared spectroscopy based brain-computer interface

    Science.gov (United States)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  1. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Fangzhao Li

    2018-01-01

    Full Text Available Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment.

  2. A hybrid model based on neural networks for biomedical relation extraction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang

    2018-05-01

    Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  4. Brain-computer interface for alertness estimation and improving

    Science.gov (United States)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  5. Study on pattern recognition of Raman spectrum based on fuzzy neural network

    Science.gov (United States)

    Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing

    2017-10-01

    Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.

  6. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  7. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.

    Science.gov (United States)

    Nielsen, Thomas N; Sevcencu, Cristian; Struijk, Johannes J

    2014-01-01

    Previous studies have indicated that electrodes placed between fascicles can provide nerve recruitment with high topological selectivity if the areas of interest in the nerve are separated with passive elements. In this study, we investigated if this separation of fascicles also can provide topologically selective nerve recordings and compared the performance of mono-, bi-, and tripolar configurations for stimulation and recording with an intra-neural interface. The interface was implanted in the sciatic nerve of 10 rabbits and achieved a median selectivity of Ŝ=0.98-0.99 for all stimulation configurations, while recording selectivity configurations was in the range of Ŝ=0.70-0.80 with the monopolar configuration providing the lowest and the average reference configuration the highest recording selectivity. Interfascicular electrodes could provide an interesting addition to the bulk of peripheral nerve interfaces available for neural prosthetic devices. The separation of the nerve into chambers by the passive elements of the electrode could ensure a higher selectivity than comparable cuff electrodes and the intra-neural location could provide an option of targeting mainly central fascicles. Further studies are, however, still required to develop biocompatible electrodes and test their stability and safety in chronic experiments.

  8. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  9. A bidirectional brain-machine interface featuring a neuromorphic hardware decoder

    Directory of Open Access Journals (Sweden)

    Fabio Boi

    2016-12-01

    Full Text Available Bidirectional brain-machine interfaces (BMIs establish a two-way direct communication link4 between the brain and the external world. A decoder translates recorded neural activity into motor5 commands and an encoder delivers sensory information collected from the environment directly6 to the brain creating a closed-loop system. These two modules are typically integrated in bulky7 external devices. However, the clinical support of patients with severe motor and sensory deficits8 requires compact, low-power, and fully implantable systems that can decode neural signals to9 control external devices. As a first step toward this goal, we developed a modular bidirectional BMI10 setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented11 a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits.12 On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn13 to decode neural signals recorded from the brain into motor outputs controlling the movements14 of an external device. The modularity of the BMI allowed us to tune the individual components15 of the setup without modifying the whole system. In this paper we present the features of16 this modular BMI, and describe how we configured the network of spiking neuron circuits to17 implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm18 that connects bidirectionally the brain of an anesthetized rat with an external object. We show that19 the chip learned the decoding task correctly, allowing the interfaced brain to control the object’s20 trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is21 mature enough for the development of BMI modules that are sufficiently low-power and compact,22 while being highly computationally powerful and adaptive.

  10. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    Science.gov (United States)

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  11. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  12. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  13. RBF neural network based H∞ H∞ H∞ synchronization for ...

    Indian Academy of Sciences (India)

    Based on this neural network and linear matrix inequality (LMI) formulation, the RBFNNHS controller and the learning laws are presented to reduce the effect of disturbance to an H ∞ norm constraint. It is shown that finding the RBFNNHS controller and the learning laws can be transformed into the LMI problem and solved ...

  14. Region based Brain Computer Interface for a home control application.

    Science.gov (United States)

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  15. ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network.

    Science.gov (United States)

    Cao, Renzhi; Freitas, Colton; Chan, Leong; Sun, Miao; Jiang, Haiqing; Chen, Zhangxin

    2017-10-17

    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.

  16. Visual communication interface for severe physically disabled patients

    Science.gov (United States)

    Savino, M. J.; Fernández, E. A.

    2007-11-01

    During the last years several interfaces have been developed to allow communication to those patients suffering serious physical disabilities. In this work, a computer based communication interface is presented. It was designed to allow communication to those patients that cannot use neither their hands nor their voice but they can do it through their eyes. The system monitors the eyes movements by means of a webcam. Then, by means of an Artificial Neural Network, the system allows the identification of specified position on the screen through the identification of the eyes positions. This way the user can control a virtual keyboard on a screen that allows him to write and browse the system and enables him to send e-mails, SMS, activate video/music programs and control environmental devices. A patient was simulated to evaluate the versatility of the system. Its operation was satisfactory and it allowed the evaluation of the system potential. The development of this system requires low cost elements that are easily found in the market.

  17. Visual communication interface for severe physically disabled patients

    International Nuclear Information System (INIS)

    Savino, M J; Fernandez, E A

    2007-01-01

    During the last years several interfaces have been developed to allow communication to those patients suffering serious physical disabilities. In this work, a computer based communication interface is presented. It was designed to allow communication to those patients that cannot use neither their hands nor their voice but they can do it through their eyes. The system monitors the eyes movements by means of a webcam. Then, by means of an Artificial Neural Network, the system allows the identification of specified position on the screen through the identification of the eyes positions. This way the user can control a virtual keyboard on a screen that allows him to write and browse the system and enables him to send e-mails, SMS, activate video/music programs and control environmental devices. A patient was simulated to evaluate the versatility of the system. Its operation was satisfactory and it allowed the evaluation of the system potential. The development of this system requires low cost elements that are easily found in the market

  18. Visual communication interface for severe physically disabled patients

    Energy Technology Data Exchange (ETDEWEB)

    Savino, M J [Fac. de Ingenieria, Universidad Catolica de Cordoba, Camino a Alta Gracia km. 10 (5000) Cordoba, Cordoba (Argentina); Fernandez, E A [Fac. de Ingenieria, Universidad Catolica de Cordoba, Camino a Alta Gracia km. 10 (5000) Cordoba, Cordoba (Argentina)

    2007-11-15

    During the last years several interfaces have been developed to allow communication to those patients suffering serious physical disabilities. In this work, a computer based communication interface is presented. It was designed to allow communication to those patients that cannot use neither their hands nor their voice but they can do it through their eyes. The system monitors the eyes movements by means of a webcam. Then, by means of an Artificial Neural Network, the system allows the identification of specified position on the screen through the identification of the eyes positions. This way the user can control a virtual keyboard on a screen that allows him to write and browse the system and enables him to send e-mails, SMS, activate video/music programs and control environmental devices. A patient was simulated to evaluate the versatility of the system. Its operation was satisfactory and it allowed the evaluation of the system potential. The development of this system requires low cost elements that are easily found in the market.

  19. Neural Network based Minimization of BER in Multi-User Detection in SDMA

    OpenAIRE

    VENKATA REDDY METTU; KRISHAN KUMAR,; SRIKANTH PULLABHATLA

    2011-01-01

    In this paper we investigate the use of neural network based minimization of BER in MUD. Neural networks can be used for linear design, Adaptive prediction, Amplitude detection, Character Recognition and many other applications. Adaptive prediction is used in detecting the errors caused in AWGN channel. These errors are rectified by using Widrow-Hoff algorithm by updating their weights andAdaptive prediction methods. Both Widrow-Hoff and Adaptive prediction have been used for rectifying the e...

  20. Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits

    Science.gov (United States)

    Zhao, Liya; Liang, Junrui; Tang, Lihua; Yang, Yaowen; Liu, Haili

    2015-04-01

    Galloping phenomenon has attracted extensive research attention for small-scale wind energy harvesting. In the reported literature, the dynamics and harvested power of a galloping-based energy harvesting system are usually evaluated with a resistive AC load; these characteristics might shift when a practical harvesting interface circuit is connected for extracting useful DC power. In the family of piezoelectric energy harvesting interface circuits, synchronized switching harvesting on inductor (SSHI) has demonstrated its advantage for enhancing the harvested power from existing base vibrations. This paper investigates the harvesting capability of a galloping-based wind energy harvester using SSHI interfaces, with a focus on comparing the performances of Series SSHI (S-SSHI) and Parallel SSHI (P-SSHI) with that of a standard DC interface, in terms of power at various wind speeds. The prototyped galloping-based piezoelectric energy harvester (GPEH) comprises a piezoelectric cantilever attached with a square-sectioned bluff body made of foam. Equivalent circuit model (ECM) of the GPEH is established and system-level circuit simulations with SSHI and standard interfaces are performed and validated with wind tunnel tests. The benefits of SSHI compared to standard circuit become more significant when the wind speed gets higher; while SSHI circuits lose the benefits at small wind speeds. In both experiment and simulation, the superiority of P-SSHI is confirmed while S-SSHI demands further investigation. The power output is increased by 43.75% with P-SSHI compared to the standard circuit at a wind speed of 6m/s.

  1. Glotaran: A Java-Based Graphical User Interface for the R Package TIMP

    NARCIS (Netherlands)

    Snellenburg, J.J.; Laptenok, S.; Seger, R.; Mullen, K.M.; van Stokkum, I.H.M.

    2012-01-01

    In this work the software application called Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data. TIMP uses a command-line user interface for the interaction with data, the

  2. Nuclear reactors project optimization based on neural network and genetic algorithm; Otimizacao em projetos de reatores nucleares baseada em rede neural e algoritmo genetico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1997-12-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs.

  3. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    Science.gov (United States)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  4. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  5. Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation

    Directory of Open Access Journals (Sweden)

    Yuzheng Yang

    2014-01-01

    Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.

  6. pth moment exponential stability of stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays.

    Science.gov (United States)

    Wang, Fen; Chen, Yuanlong; Liu, Meichun

    2018-02-01

    Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Computational neuroanatomy: ontology-based representation of neural components and connectivity.

    Science.gov (United States)

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-02-05

    A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.

  8. The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network

    Science.gov (United States)

    Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.

    2017-05-01

    The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.

  9. Electric-field-controlled interface dipole modulation for Si-based memory devices.

    Science.gov (United States)

    Miyata, Noriyuki

    2018-05-31

    Various nonvolatile memory devices have been investigated to replace Si-based flash memories or emulate synaptic plasticity for next-generation neuromorphic computing. A crucial criterion to achieve low-cost high-density memory chips is material compatibility with conventional Si technologies. In this paper, we propose and demonstrate a new memory concept, interface dipole modulation (IDM) memory. IDM can be integrated as a Si field-effect transistor (FET) based memory device. The first demonstration of this concept employed a HfO 2 /Si MOS capacitor where the interface monolayer (ML) TiO 2 functions as a dipole modulator. However, this configuration is unsuitable for Si-FET-based devices due to its large interface state density (D it ). Consequently, we propose, a multi-stacked amorphous HfO 2 /1-ML TiO 2 /SiO 2 IDM structure to realize a low D it and a wide memory window. Herein we describe the quasi-static and pulse response characteristics of multi-stacked IDM MOS capacitors and demonstrate flash-type and analog memory operations of an IDM FET device.

  10. Recent Advances in Neural Recording Microsystems

    Directory of Open Access Journals (Sweden)

    Benoit Gosselin

    2011-04-01

    Full Text Available The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field.

  11. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    International Nuclear Information System (INIS)

    De Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu Huizhong; Pichevar, Ramin; Rouat, Jean

    2012-01-01

    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  12. Interface Assignment-Based AODV Routing Protocol to Improve Reliability in Multi-Interface Multichannel Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Won-Suk Kim

    2015-01-01

    Full Text Available The utilization of wireless mesh networks (WMNs has greatly increased, and the multi-interface multichannel (MIMC technic has been widely used for the backbone network. Unfortunately, the ad hoc on-demand distance vector (AODV routing protocol defined in the IEEE 802.11s standard was designed for WMNs using the single-interface single-channel technic. So, we define a problem that happens when the legacy AODV is used in MIMC WMNs and propose an interface assignment-based AODV (IA-AODV in order to resolve that problem. IA-AODV, which is based on multitarget path request, consists of the PREQ prediction scheme, the PREQ loss recovery scheme, and the PREQ sender assignment scheme. A detailed operation according to various network conditions and services is introduced, and the routing efficiency and network reliability of a network using IA-AODV are analyzed over the presented system model. Finally, after a real-world test-bed for MIMC WMNs using the IA-AODV routing protocol is implemented, the various indicators of the network are evaluated through experiments. When the proposed routing protocol is compared with the existing AODV routing protocol, it performs the path update using only 14.33% of the management frames, completely removes the routing malfunction, and reduces the UDP packet loss ratio by 0.0012%.

  13. A developmental perspective on the neural bases of human empathy.

    Science.gov (United States)

    Tousignant, Béatrice; Eugène, Fanny; Jackson, Philip L

    2017-08-01

    While empathy has been widely studied in philosophical and psychological literatures, recent advances in social neuroscience have shed light on the neural correlates of this complex interpersonal phenomenon. In this review, we provide an overview of brain imaging studies that have investigated the neural substrates of human empathy. Based on existing models of the functional architecture of empathy, we review evidence of the neural underpinnings of each main component, as well as their development from infancy. Although early precursors of affective sharing and self-other distinction appear to be present from birth, recent findings also suggest that even higher-order components of empathy such as perspective-taking and emotion regulation demonstrate signs of development during infancy. This merging of developmental and social neuroscience literature thus supports the view that ontogenic development of empathy is rooted in early infancy, well before the emergence of verbal abilities. With age, the refinement of top-down mechanisms may foster more appropriate empathic responses, thus promoting greater altruistic motivation and prosocial behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys: A first-principles study

    International Nuclear Information System (INIS)

    Sanyal, Suchismita; Waghmare, Umesh V.; Hanlon, Timothy; Hall, Ernest L.

    2011-01-01

    Highlights: ► Fracture strengths of Ni/boride interfaces through first-principles calculations. ► Fracture strengths of Ni/boride interfaces are higher than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► Ni/boride interfaces have higher resistance to O-embrittlement than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► CrMo-borides are more effective than Cr-borides in resisting O-embrittlement. ► Electronegativity differences between alloying elements correlate with fracture strengths. - Abstract: Motivated by the vital role played by boride precipitates in Ni-based superalloys in improving mechanical properties such as creep rupture strength, fatigue crack growth rates and improved resistance towards environmental embrittlement , we estimate fracture strength of Ni/boride interfaces through determination of their work of separation using first-principles simulations. We find that the fracture strength of Ni/boride interfaces is higher than that of other commonly occurring interfaces in Ni-alloys, such as Ni Σ-5 grain boundaries and coherent Ni/Ni 3 Al interfaces, and is less susceptible to oxygen-induced embrittlement. Our calculations show how the presence of Mo in Ni/M 5 B 3 (M = Cr, Mo) interfaces leads to additional reduction in oxygen-induced embrittlement. Through Electron-Localization-Function based analyses, we identify the electronic origins of effects of alloying elements on fracture strengths of these interfaces and observe that chemical interactions stemming from electronegativity differences between different atomic species are responsible for the trends in calculated strengths. Our findings should be useful towards designing Ni-based alloys with higher interfacial strengths and reduced oxygen-induced embrittlement.

  15. Particle self-assembly at ionic liquid-based interfaces.

    Science.gov (United States)

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  16. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  17. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  18. Reservoir-based Online Adaptive Forward Models with Neural Control for Complex Locomotion in a Hexapod Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Dasgupta, Sakyasingha; Goldschmidt, Dennis

    2014-01-01

    Walking animals show fascinating locomotor abilities and complex behaviors. Biological study has revealed that such complex behaviors is a result of a combination of biomechanics and neural mechanisms. While biomechanics allows for flexibility and a variety of movements, neural mechanisms generate...... locomotion, make predictions, and provide adaptation. Inspired by this finding, we present here an artificial bio-inspired walking system which combines biomechanics (in terms of its body and leg structures) and neural mechanisms. The neural mechanisms consist of 1) central pattern generator-based control...... for generating basic rhythmic patterns and coordinated movements, 2) reservoir-based adaptive forward models with efference copies for sensory prediction as well as state estimation, and 3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental...

  19. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  20. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  1. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Science.gov (United States)

    Wang, L.; Zhang, Y. Y.; Ding, L.

    2006-10-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  2. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    International Nuclear Information System (INIS)

    Wang, L; Zhang, Y Y; Ding, L

    2006-01-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module

  3. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  4. Fibrous dysplasia of the cranial vault: quantitative analysis based on neural networks

    International Nuclear Information System (INIS)

    Arana, E.; Marti-Bonmati, L.; Paredes, R.; Molla, E.

    1998-01-01

    To assess the utility of statistical analysis and neural networks in the quantitative analysis of fibrous dysplasia of the cranial vault. Ten patients with fibrous dysplasia (six women and four men with a mean age of 23.60±17.85 years) were selected from a series of 167 patients with lesions of the cranial vault evaluated by plain radiography and computed tomography (CT). Nineteen variables were taken from their medical records and radiological study. Their characterization was based on statistical analysis and neural network, and was validated by means of the leave-one-out method. The performance of the neural network was estimated by means of receiver operating characteristics (ROC) curves, using as a parameter the area under the curve A z . Bivariate analysis identified age, duration of symptoms, lytic and sclerotic patterns, sclerotic margin, ovoid shape, soft-tissue mas and periosteal reaction as significant variables. The area under the neural network curve was 0.9601±0.0435. The network selected the matrix and soft-tissue mass a variables that were indispensable for diagnosis. The neural network presents a high performance in the characterization of fibrous dysplasia of the cranial vault, disclosing occult interactions among the variables. (Author) 24 refs

  5. Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks

    Science.gov (United States)

    Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min

    2015-10-01

    Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.

  6. A wideband wireless neural stimulation platform for high-density microelectrode arrays.

    Science.gov (United States)

    Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam

    2006-01-01

    We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.

  7. Optimal Search Strategy of Robotic Assembly Based on Neural Vibration Learning

    Directory of Open Access Journals (Sweden)

    Lejla Banjanovic-Mehmedovic

    2011-01-01

    Full Text Available This paper presents implementation of optimal search strategy (OSS in verification of assembly process based on neural vibration learning. The application problem is the complex robot assembly of miniature parts in the example of mating the gears of one multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall assembly. The favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With the proposed neural-network-based learning algorithm, it is possible to find extended scope of vibration state parameter. Using optimal search strategy based on minimal distance path between vibration parameter stage sets (amplitude and frequencies of robots gripe vibration and recovery parameter algorithm, we can improve the robot assembly behaviour, that is, allow the fastest possible way of mating. We have verified by using simulation programs that search strategy is suitable for the situation of unexpected events due to uncertainties.

  8. Neural Network Classifier Based on Growing Hyperspheres

    Czech Academy of Sciences Publication Activity Database

    Jiřina Jr., Marcel; Jiřina, Marcel

    2000-01-01

    Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics

  9. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    Science.gov (United States)

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  10. Evaluation of the cranial base in amnion rupture sequence involving the anterior neural tube: implications regarding recurrence risk.

    Science.gov (United States)

    Jones, Kenneth Lyons; Robinson, Luther K; Benirschke, Kurt

    2006-09-01

    Amniotic bands can cause disruption of the cranial end of the developing fetus, leading in some cases to a neural tube closure defect. Although recurrence for unaffected parents of an affected child with a defect in which the neural tube closed normally but was subsequently disrupted by amniotic bands is negligible; for a primary defect in closure of the neural tube to which amnion has subsequently adhered, recurrence risk is 1.7%. In that primary defects of neural tube closure are characterized by typical abnormalities of the base of the skull, evaluation of the cranial base in such fetuses provides an approach for making a distinction between these 2 mechanisms. This distinction has implications regarding recurrence risk. The skull base of 2 fetuses with amnion rupture sequence involving the cranial end of the neural tube were compared to that of 1 fetus with anencephaly as well as that of a structurally normal fetus. The skulls were cleaned, fixed in 10% formalin, recleaned, and then exposed to 10% KOH solution. After washing and recleaning, the skulls were exposed to hydrogen peroxide for bleaching and photography. Despite involvement of the anterior neural tube in both fetuses with amnion rupture sequence, in Case 3 the cranial base was normal while in Case 4 the cranial base was similar to that seen in anencephaly. This technique provides a method for determining the developmental pathogenesis of anterior neural tube defects in cases of amnion rupture sequence. As such, it provides information that can be used to counsel parents of affected children with respect to recurrence risk.

  11. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique

    Directory of Open Access Journals (Sweden)

    Thanh-Canh Huynh

    2014-01-01

    Full Text Available In this paper, a portable PZT interface for tension force monitoring in the cable-anchorage subsystem is developed. Firstly, the theoretical background of the impedance-based method is presented. A few damage evaluation approaches are outlined to quantify the variation of impedance signatures. Secondly, a portable PZT interface is designed to monitor impedance signatures from the cable-anchorage subsystem. One degree-of-freedom analytical model of the PZT interface is established to explain how to represent the loss of cable force from the change in the electromechanical impedance of the PZT interface as well as reducing the sensitive frequency band by implementing the interface device. Finally, the applicability of the proposed PZT-interface technique is experimentally evaluated for cable force-loss monitoring in a lab-scaled test structure.

  12. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  13. Control of Three-Phase Grid-Connected Microgrids Using Artificial Neural Networks

    OpenAIRE

    Shuhui, L.; Fu, X.; Jaithwa, I.; Alonso, E.; Fairbank, M.; Wunsch, D. C.

    2015-01-01

    A microgrid consists of a variety of inverter-interfaced distributed energy resources (DERs). A key issue is how to control DERs within the microgrid and how to connect them to or disconnect them from the microgrid quickly. This paper presents a strategy for controlling inverter-interfaced DERs within a microgrid using an artificial neural network, which implements a dynamic programming algorithm and is trained with a new Levenberg-Marquardt backpropagation algorithm. Compared to conventional...

  14. Ads' click-through rates predicting based on gated recurrent unit neural networks

    Science.gov (United States)

    Chen, Qiaohong; Guo, Zixuan; Dong, Wen; Jin, Lingzi

    2018-05-01

    In order to improve the effect of online advertising and to increase the revenue of advertising, the gated recurrent unit neural networks(GRU) model is used as the ads' click through rates(CTR) predicting. Combined with the characteristics of gated unit structure and the unique of time sequence in data, using BPTT algorithm to train the model. Furthermore, by optimizing the step length algorithm of the gated unit recurrent neural networks, making the model reach optimal point better and faster in less iterative rounds. The experiment results show that the model based on the gated recurrent unit neural networks and its optimization of step length algorithm has the better effect on the ads' CTR predicting, which helps advertisers, media and audience achieve a win-win and mutually beneficial situation in Three-Side Game.

  15. Design and Implementation of Behavior Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2017-01-01

    Full Text Available We build a set of human behavior recognition system based on the convolution neural network constructed for the specific human behavior in public places. Firstly, video of human behavior data set will be segmented into images, then we process the images by the method of background subtraction to extract moving foreground characters of body. Secondly, the training data sets are trained into the designed convolution neural network, and the depth learning network is constructed by stochastic gradient descent. Finally, the various behaviors of samples are classified and identified with the obtained network model, and the recognition results are compared with the current mainstream methods. The result show that the convolution neural network can study human behavior model automatically and identify human’s behaviors without any manually annotated trainings.

  16. A review on the neural bases of episodic odor memory: from laboratory-based to autobiographical approaches

    Science.gov (United States)

    Saive, Anne-Lise; Royet, Jean-Pierre; Plailly, Jane

    2014-01-01

    Odors are powerful cues that trigger episodic memories. However, in light of the amount of behavioral data describing the characteristics of episodic odor memory, the paucity of information available on the neural substrates of this function is startling. Furthermore, the diversity of experimental paradigms complicates the identification of a generic episodic odor memory network. We conduct a systematic review of the literature depicting the current state of the neural correlates of episodic odor memory in healthy humans by placing a focus on the experimental approaches. Functional neuroimaging data are introduced by a brief characterization of the memory processes investigated. We present and discuss laboratory-based approaches, such as odor recognition and odor associative memory, and autobiographical approaches, such as the evaluation of odor familiarity and odor-evoked autobiographical memory. We then suggest the development of new laboratory-ecological approaches allowing for the controlled encoding and retrieval of specific multidimensional events that could open up new prospects for the comprehension of episodic odor memory and its neural underpinnings. While large conceptual differences distinguish experimental approaches, the overview of the functional neuroimaging findings suggests relatively stable neural correlates of episodic odor memory. PMID:25071494

  17. A review on the neural bases of episodic odor memory: from laboratory-based to autobiographical approaches

    Directory of Open Access Journals (Sweden)

    Anne-Lise eSaive

    2014-07-01

    Full Text Available Odors are powerful cues that trigger episodic memories. However, in light of the amount of behavioral data describing the characteristics of episodic odor memory, the paucity of information available on the neural substrates of this function is startling. Furthermore, the diversity of experimental paradigms complicates the identification of a generic episodic odor memory network. We conduct a systematic review of the literature depicting the current state of the neural correlates of episodic odor memory in healthy humans by placing a focus on the experimental approaches. Functional neuroimaging data are introduced by a brief characterization of the memory processes investigated. We present and discuss laboratory-based approaches, such as odor recognition and odor associative memory, and autobiographical approaches, such as the evaluation of odor familiarity and odor-evoked autobiographical memory. We then suggest the development of new laboratory-ecological approaches allowing for the controlled encoding and retrieval of specific multidimensional events that could open up new prospects for the comprehension of episodic odor memory and its neural underpinnings. While large conceptual differences distinguish experimental approaches, the overview of the functional neuroimaging findings suggests relatively stable neural correlates of episodic odor memory.

  18. A Bioinspired Neural Model Based Extended Kalman Filter for Robot SLAM

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2014-01-01

    Full Text Available Robot simultaneous localization and mapping (SLAM problem is a very important and challenging issue in the robotic field. The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the robustness and accuracy of the algorithms. The extended Kalman filter (EKF based method is one of the most popular methods for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.

  19. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  20. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  1. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    Science.gov (United States)

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A systematic review of the neural bases of psychotherapy for anxiety and related disorders.

    Science.gov (United States)

    Brooks, Samantha J; Stein, Dan J

    2015-09-01

    Brain imaging studies over two decades have delineated the neural circuitry of anxiety and related disorders, particularly regions involved in fear processing and in obsessive-compulsive symptoms. The neural circuitry of fear processing involves the amygdala, anterior cingulate, and insular cortex, while cortico-striatal-thalamic circuitry plays a key role in obsessive-compulsive disorder. More recently, neuroimaging studies have examined how psychotherapy for anxiety and related disorders impacts on these neural circuits. Here we conduct a systematic review of the findings of such work, which yielded 19 functional magnetic resonance imaging studies examining the neural bases of cognitive-behavioral therapy (CBT) in 509 patients with anxiety and related disorders. We conclude that, although each of these related disorders is mediated by somewhat different neural circuitry, CBT may act in a similar way to increase prefrontal control of subcortical structures. These findings are consistent with an emphasis in cognitive-affective neuroscience on the potential therapeutic value of enhancing emotional regulation in various psychiatric conditions.

  3. Modeling and Control of CSTR using Model based Neural Network Predictive Control

    OpenAIRE

    Shrivastava, Piyush

    2012-01-01

    This paper presents a predictive control strategy based on neural network model of the plant is applied to Continuous Stirred Tank Reactor (CSTR). This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neural network predictive control, can be a better match to govern the system dynamics. In the paper, the NN model and the way in which it can be used to predict the behavior of the CSTR process over a certain prediction horizon are described, and some commen...

  4. Recursive Neural Networks Based on PSO for Image Parsing

    Directory of Open Access Journals (Sweden)

    Guo-Rong Cai

    2013-01-01

    Full Text Available This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO and Recursive Neural Networks (RNNs. State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel CRF, region-based energy, simultaneous MRF, and superpixel MRF.

  5. Flexible deep brain neural probes based on a parylene tube structure

    Science.gov (United States)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  6. Computer interpretation of thallium SPECT studies based on neural network analysis

    Science.gov (United States)

    Wang, David C.; Karvelis, K. C.

    1991-06-01

    A class of artificial intelligence (Al) programs known as neural networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from "expert system" Al programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The "bullseye" images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of a trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging.

  7. Computer interpretation of thallium SPECT studies based on neural network analysis

    International Nuclear Information System (INIS)

    Wang, D.C.; Karvelis, K.C.

    1991-01-01

    This paper reports that a class of artificial intelligence (AI) programs known as neural-networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from expert system AI programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The bullseye images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of the trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging

  8. Robust synchronization of delayed neural networks based on adaptive control and parameters identification

    International Nuclear Information System (INIS)

    Zhou Jin; Chen Tianping; Xiang Lan

    2006-01-01

    This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique

  9. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case.

    Science.gov (United States)

    Russ, Thomas A; Ramakrishnan, Cartic; Hovy, Eduard H; Bota, Mihail; Burns, Gully A P C

    2011-08-22

    We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain

  10. Evolution of an artificial neural network based autonomous land vehicle controller.

    Science.gov (United States)

    Baluja, S

    1996-01-01

    This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks.

  11. SCOWLP: a web-based database for detailed characterization and visualization of protein interfaces

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-03-01

    Full Text Available Abstract Background Currently there is a strong need for methods that help to obtain an accurate description of protein interfaces in order to be able to understand the principles that govern molecular recognition and protein function. Many of the recent efforts to computationally identify and characterize protein networks extract protein interaction information at atomic resolution from the PDB. However, they pay none or little attention to small protein ligands and solvent. They are key components and mediators of protein interactions and fundamental for a complete description of protein interfaces. Interactome profiling requires the development of computational tools to extract and analyze protein-protein, protein-ligand and detailed solvent interaction information from the PDB in an automatic and comparative fashion. Adding this information to the existing one on protein-protein interactions will allow us to better understand protein interaction networks and protein function. Description SCOWLP (Structural Characterization Of Water, Ligands and Proteins is a user-friendly and publicly accessible web-based relational database for detailed characterization and visualization of the PDB protein interfaces. The SCOWLP database includes proteins, peptidic-ligands and interface water molecules as descriptors of protein interfaces. It contains currently 74,907 protein interfaces and 2,093,976 residue-residue interactions formed by 60,664 structural units (protein domains and peptidic-ligands and their interacting solvent. The SCOWLP web-server allows detailed structural analysis and comparisons of protein interfaces at atomic level by text query of PDB codes and/or by navigating a SCOP-based tree. It includes a visualization tool to interactively display the interfaces and label interacting residues and interface solvent by atomic physicochemical properties. SCOWLP is automatically updated with every SCOP release. Conclusion SCOWLP enriches

  12. Optical implementation of a feature-based neural network with application to automatic target recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1993-01-01

    An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

  13. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  14. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays

    OpenAIRE

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and di...

  15. A 1microW 85nV/ radicalHz pseudo open-loop preamplifier with programmable band-pass filter for neural interface system.

    Science.gov (United States)

    Chang, Sun-Il; Yoon, Euisik

    2009-01-01

    We report an energy efficient pseudo open-loop amplifier with programmable band-pass filter developed for neural interface systems. The proposed amplifier consumes 400nA at 2.5V power supply. The measured thermal noise level is 85nV/ radicalHz and input-referred noise is 1.69microV(rms) from 0.3Hz to 1 kHz. The amplifier has a noise efficiency factor of 2.43, the lowest in the differential topologies reported up to date to our knowledge. By programming the switched-capacitor frequency and bias current, we could control the bandwidth of the preamplifier from 138 mHz to 2.2 kHz to meet various application requirements. The entire preamplifier including band-pass filters has been realized in a small area of 0.043mm(2) using a 0.25microm CMOS technology.

  16. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Neural network-based control of an intelligent solar Stirling pump

    International Nuclear Information System (INIS)

    Tavakolpour-Saleh, A.R.; Jokar, H.

    2016-01-01

    In this paper, an ANN (artificial neural network) control system is applied to a novel solar-powered active LTD (low temperature differential) Stirling pump. First, a mathematical description of the proposed Stirling pump is presented. Then, optimum operating frequencies of the converter corresponding to different operating conditions (i.e. different sink and source temperatures and water heads) are investigated using the proposed mathematical framework. It is found that the proposed complex mathematical scheme has a very slow convergence and thus, is not appropriate for real-time implementation of the model-based controller. Consequently, a NN (neural network) model with a lower complexity is proposed to learn the simulation data obtained from the mathematical model. The designed neural network controller is thus applied to a digital processor to effectively tune the converter frequency so that a maximum output power is acquired. Finally, the performance of the proposed mechatronic system is evaluated experimentally. The experimental results clearly demonstrate the feasibility of pumping water at low temperature difference under variable operating conditions using the proposed intelligent Stirling converter. - Highlights: • A novel intelligent solar-powered active LTD Stirling pump was introduced. • A neural network controller was used to tune the converter speed. • The intelligent converter was able to adapt itself to different operating conditions. • It was possible to excite the water column with its resonance mode. • Experimental results showed the effectiveness of the proposed converter.

  18. Chaos Control and Synchronization of Cellular Neural Network with Delays Based on OPNCL Control

    International Nuclear Information System (INIS)

    Qian, Tang; Xing-Yuan, Wang

    2010-01-01

    The problem of chaos control and complete synchronization of cellular neural network with delays is studied. Based on the open plus nonlinear closed loop (OPNCL) method, the control scheme and synchronization scheme are designed. Both the schemes can achieve the chaos control and complete synchronization of chaotic neural network respectively, and their validity is further verified by numerical simulation experiments. (general)

  19. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    Science.gov (United States)

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2017-07-01

    Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.

  20. Tangible interfaces for virtual nuclear power plant control desk

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio Alves C.; Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso M.F. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Nomiya, Diogo [Engenharia Eletrica (UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil); Cunha, Gerson G.; Landau, Luiz [Programa de Engenharia Civil (PEC/COPPE/UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Due to the high safety requirements for nuclear power plant operation, control desks must be designed in such a way operators can take all the procedures safely, with a good overview of all variable indicators and easy access to actuator controls. Also, operators must see alarms indication in a way they can easily identify any abnormal conditions and bring the NPP back to normal operation. The ergonomics and human factors fields have helped evaluations to improve the design of nuclear power plant control systems. Lately, the use of virtual control desks have helped even more such evaluations, by integrating in one platform both nuclear power plant dynamics simulator with a high visual fidelity control desk proto typing. Operators can interact with these virtual control desks in a similar way as with real ones. Such a virtual control desk has been under development at Instituto de Engenharia Nuclear, IEN/CNEN. This paper reports the latest improvements, with the use of more interaction modes, to turn operation a friendlier task. An automatic speech recognition interface has been implemented as a self-contained system, by accessing directly MS Windows Application Interface, and with online neural network training for spoken commend recognition. Thus, operators can switch among different desk views. Besides this, head tracking interfaces have been integrated with the virtual control desk, to move within desk views according to users head movements. Both marker and markerless-based head tracking interfaces have been implemented. Results are shown and commented. (author)

  1. Tangible interfaces for virtual nuclear power plant control desk

    International Nuclear Information System (INIS)

    Aghina, Mauricio Alves C.; Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso M.F.; Nomiya, Diogo; Cunha, Gerson G.; Landau, Luiz

    2011-01-01

    Due to the high safety requirements for nuclear power plant operation, control desks must be designed in such a way operators can take all the procedures safely, with a good overview of all variable indicators and easy access to actuator controls. Also, operators must see alarms indication in a way they can easily identify any abnormal conditions and bring the NPP back to normal operation. The ergonomics and human factors fields have helped evaluations to improve the design of nuclear power plant control systems. Lately, the use of virtual control desks have helped even more such evaluations, by integrating in one platform both nuclear power plant dynamics simulator with a high visual fidelity control desk proto typing. Operators can interact with these virtual control desks in a similar way as with real ones. Such a virtual control desk has been under development at Instituto de Engenharia Nuclear, IEN/CNEN. This paper reports the latest improvements, with the use of more interaction modes, to turn operation a friendlier task. An automatic speech recognition interface has been implemented as a self-contained system, by accessing directly MS Windows Application Interface, and with online neural network training for spoken commend recognition. Thus, operators can switch among different desk views. Besides this, head tracking interfaces have been integrated with the virtual control desk, to move within desk views according to users head movements. Both marker and markerless-based head tracking interfaces have been implemented. Results are shown and commented. (author)

  2. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  3. BELIEF dashboard - a web-based curation interface to support generation of BEL networks

    OpenAIRE

    Madan, Sumit; Hodapp, Sven; Fluck, Juliane

    2015-01-01

    The relevance of network-based approaches in systems biology to achieve a better understanding of biological mechanisms has increased enormously. The Biological Expression Language (BEL) is well designed to collate findings from scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a free and user-friendly web-based curation interface called BELIEF Dashboard has been developed. The interface incorporates an information extraction...

  4. Multidimensional control using a mobile-phone based brain-muscle-computer interface.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-01-01

    Many well-known brain-computer interfaces measure signals at the brain, and then rely on the brain's ability to learn via operant conditioning in order to control objects in the environment. In our lab, we have been developing brain-muscle-computer interfaces, which measure signals at a single muscle and then rely on the brain's ability to learn neuromuscular skills via operant conditioning. Here, we report a new mobile-phone based brain-muscle-computer interface prototype for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single sEMG signal. Electromyographic activity on the surface of a single face muscle (Auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone. User-modulated power in two separate frequency band serves as two separate and simultaneous control channels for machine control. After signal processing, the Android phone sends commands to external devices via Bluetooth. Users are trained to use the device via biofeedback, with simple cursor-to-target activities on the phone screen.

  5. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Charles Yaacoub

    2017-01-01

    Full Text Available Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5% while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  6. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface.

    Science.gov (United States)

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-23

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  7. ATCA-based ATLAS FTK input interface system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Yasuyuki [Chicago U., EFI; Liu, Tiehui Ted [Fermilab; Olsen, Jamieson [Fermilab; Iizawa, Tomoya [Waseda U.; Mitani, Takashi [Waseda U.; Korikawa, Tomohiro [Waseda U.; Yorita, Kohei [Waseda U.; Annovi, Alberto [Frascati; Beretta, Matteo [Frascati; Gatta, Maurizio [Frascati; Sotiropoulou, C-L. [Aristotle U., Thessaloniki; Gkaitatzis, Stamatios [Aristotle U., Thessaloniki; Kordas, Konstantinos [Aristotle U., Thessaloniki; Kimura, Naoki [Aristotle U., Thessaloniki; Cremonesi, Matteo [Chicago U., EFI; Yin, Hang [Fermilab; Xu, Zijun [Peking U.

    2015-04-27

    The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping eta-phi trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.

  8. ATCA-based ATLAS FTK input interface system

    CERN Document Server

    Okumura, Y; The ATLAS collaboration; Olsen, J; Iizawa, T; Mitani, T; Korikawa, T; Yorita, K; Annovi, A; Beretta, M; Gatta, M; Sotiropoulou, C; Gkaitatzis, S; Kordas, K; Kimura, N; Cremonesi, M; Yin, H; Xu, Z

    2014-01-01

    The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker must be clustered and organized into overlapping eta-phi trigger towers before being sent to the tracking processors. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over a full-mesh backplane. The board and system level performance studies and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.

  9. A Cognitive Neural Architecture Able to Learn and Communicate through Natural Language.

    Directory of Open Access Journals (Sweden)

    Bruno Golosio

    Full Text Available Communicative interactions involve a kind of procedural knowledge that is used by the human brain for processing verbal and nonverbal inputs and for language production. Although considerable work has been done on modeling human language abilities, it has been difficult to bring them together to a comprehensive tabula rasa system compatible with current knowledge of how verbal information is processed in the brain. This work presents a cognitive system, entirely based on a large-scale neural architecture, which was developed to shed light on the procedural knowledge involved in language elaboration. The main component of this system is the central executive, which is a supervising system that coordinates the other components of the working memory. In our model, the central executive is a neural network that takes as input the neural activation states of the short-term memory and yields as output mental actions, which control the flow of information among the working memory components through neural gating mechanisms. The proposed system is capable of learning to communicate through natural language starting from tabula rasa, without any a priori knowledge of the structure of phrases, meaning of words, role of the different classes of words, only by interacting with a human through a text-based interface, using an open-ended incremental learning process. It is able to learn nouns, verbs, adjectives, pronouns and other word classes, and to use them in expressive language. The model was validated on a corpus of 1587 input sentences, based on literature on early language assessment, at the level of about 4-years old child, and produced 521 output sentences, expressing a broad range of language processing functionalities.

  10. Optimizing the Usability of Brain-Computer Interfaces.

    Science.gov (United States)

    Zhang, Yin; Chase, Steve M

    2018-03-22

    Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.

  11. Brain machine interfaces combining microelectrode arrays with nanostructured optical biochemical sensors

    Science.gov (United States)

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafer-Zadeh, Ebrahim; Chodavarapu, Vamsy; Musallam, Sam; Andrews, Mark

    2009-02-01

    Neural microelectrodes are an important component of neural prosthetic systems which assist paralyzed patients by allowing them to operate computers or robots using their neural activity. These microelectrodes are also used in clinical settings to localize the locus of seizure initiation in epilepsy or to stimulate sub-cortical structures in patients with Parkinson's disease. In neural prosthetic systems, implanted microelectrodes record the electrical potential generated by specific thoughts and relay the signals to algorithms trained to interpret these thoughts. In this paper, we describe novel elongated multi-site neural electrodes that can record electrical signals and specific neural biomarkers and that can reach depths greater than 8mm in the sulcus of non-human primates (monkeys). We hypothesize that additional signals recorded by the multimodal probes will increase the information yield when compared to standard probes that record just electropotentials. We describe integration of optical biochemical sensors with neural microelectrodes. The sensors are made using sol-gel derived xerogel thin films that encapsulate specific biomarker responsive luminophores in their nanostructured pores. The desired neural biomarkers are O2, pH, K+, and Na+ ions. As a prototype, we demonstrate direct-write patterning to create oxygen-responsive xerogel waveguide structures on the neural microelectrodes. The recording of neural biomarkers along with electrical activity could help the development of intelligent and more userfriendly neural prosthesis/brain machine interfaces as well as aid in providing answers to complex brain diseases and disorders.

  12. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A convolutional neural network-based screening tool for X-ray serial crystallography.

    Science.gov (United States)

    Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K

    2018-05-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.

  14. Image Fusion Based on the Self-Organizing Feature Map Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaoli; SUN Shenghe

    2001-01-01

    This paper presents a new image datafusion scheme based on the self-organizing featuremap (SOFM) neural networks.The scheme consists ofthree steps:(1) pre-processing of the images,whereweighted median filtering removes part of the noisecomponents corrupting the image,(2) pixel clusteringfor each image using two-dimensional self-organizingfeature map neural networks,and (3) fusion of the im-ages obtained in Step (2) utilizing fuzzy logic,whichsuppresses the residual noise components and thusfurther improves the image quality.It proves thatsuch a three-step combination offers an impressive ef-fectiveness and performance improvement,which isconfirmed by simulations involving three image sen-sors (each of which has a different noise structure).

  15. Polymer SU-8 Based Microprobes for Neural Recording and Drug Delivery

    Science.gov (United States)

    Altuna, Ane; Fernandez, Luis; Berganzo, Javier

    2015-06-01

    This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a) minimize injury in neural tissue, b) obtain high-quality electrical signals and c) deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  16. POLYMER SU-8 BASED MICROPROBES FOR NEURAL RECORDING AND DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Ane eAltuna

    2015-06-01

    Full Text Available This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a minimize injury in neural tissue, b obtain high-quality electrical signals and c deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  17. One-way hash function based on hyper-chaotic cellular neural network

    International Nuclear Information System (INIS)

    Yang Qunting; Gao Tiegang

    2008-01-01

    The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge–Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corresponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability. (general)

  18. The graphics-based human interface to the DISYS diagnostic/control guidance system at EBR-2

    International Nuclear Information System (INIS)

    Edwards, R.M.; Chavez, C.; Kamarthi, S.; Dharap, S.; Lindsay, R.W.; Staffon, J.

    1990-01-01

    An initial graphics based interface to the real-time DISYS diagnostic system has been developed using the multi-tasking capabilities of the UNIX operating system and X-Windows 11 Xlib graphics library. This system is interfaced to live plant data at the Experimental Breeder Reactor (EBR-2) for the Argon Cooling System of fuel handling operations and the steam plant. The interface includes an intelligent process schematic which highlights problematic components and sensors based on the results of the diagnostic computations. If further explanation of a faulted component is required, the user can call up a display of the diagnostic computations presented in a tree-like diagram. Numerical data on the process schematic and optional diagnostic tree are updated as new real-time data becomes available. The initial X-Windows 11 based interface will be further enhanced using VI Corporation DATAVIEWS graphical data base software. 5 refs., 6 figs

  19. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended

  20. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Tao, Yong; Zheng, Jiaqi; Lin, Yuanchang

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  1. A shared memory based interface of MARTe with EPICS for real-time applications

    International Nuclear Information System (INIS)

    Yun, Sangwon; Neto, André C.; Park, Mikyung; Lee, Sangil; Park, Kaprai

    2014-01-01

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS

  2. A shared memory based interface of MARTe with EPICS for real-time applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sangwon, E-mail: yunsw@nfri.re.kr [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Neto, André C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Park, Mikyung; Lee, Sangil; Park, Kaprai [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2014-05-15

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS.

  3. JAIL: a structure-based interface library for macromolecules.

    Science.gov (United States)

    Günther, Stefan; von Eichborn, Joachim; May, Patrick; Preissner, Robert

    2009-01-01

    The increasing number of solved macromolecules provides a solid number of 3D interfaces, if all types of molecular contacts are being considered. JAIL annotates three different kinds of macromolecular interfaces, those between interacting protein domains, interfaces of different protein chains and interfaces between proteins and nucleic acids. This results in a total number of about 184,000 database entries. All the interfaces can easily be identified by a detailed search form or by a hierarchical tree that describes the protein domain architectures classified by the SCOP database. Visual inspection of the interfaces is possible via an interactive protein viewer. Furthermore, large scale analyses are supported by an implemented sequential and by a structural clustering. Similar interfaces as well as non-redundant interfaces can be easily picked out. Additionally, the sequential conservation of binding sites was also included in the database and is retrievable via Jmol. A comprehensive download section allows the composition of representative data sets with user defined parameters. The huge data set in combination with various search options allow a comprehensive view on all interfaces between macromolecules included in the Protein Data Bank (PDB). The download of the data sets supports numerous further investigations in macromolecular recognition. JAIL is publicly available at http://bioinformatics.charite.de/jail.

  4. EDITORIAL: Why we need a new journal in neural engineering

    Science.gov (United States)

    Durand, Dominique M.

    2004-03-01

    The field of neural engineering crystallizes for many engineers and scientists an area of research at the interface between neuroscience and engineering. For the last 15 years or so, the discipline of neural engineering (neuroengineering) has slowly appeared at conferences as a theme or track. The first conference devoted entirely to this area was the 1st International IEEE EMBS Conference on Neural Engineering which took place in Capri, Italy in 2003. Understanding how the brain works is considered the ultimate frontier and challenge in science. The complexity of the brain is so great that understanding even the most basic functions will require that we fully exploit all the tools currently at our disposal in science and engineering and simultaneously develop new methods of analysis. While neuroscientists and engineers from varied fields such as brain anatomy, neural development and electrophysiology have made great strides in the analysis of this complex organ, there remains a great deal yet to be uncovered. The potential for applications and remedies deriving from scientific discoveries and breakthroughs is extremely high. As a result of the growing availability of micromachining technology, research into neurotechnology has grown relatively rapidly in recent years and appears to be approaching a critical mass. For example, by understanding how neuronal circuits process and store information, we could design computers with capabilities beyond current limits. By understanding how neurons develop and grow, we could develop new technologies for spinal cord repair or central nervous system repair following neurological disorders. Moreover, discoveries related to higher-level cognitive function and consciousness could have a profound influence on how humans make sense of their surroundings and interact with each other. The ability to successfully interface the brain with external electronics would have enormous implications for our society and facilitate a

  5. Power Conditioning and Stimulation for Wireless Neural Interface ICs

    OpenAIRE

    Biederman, William

    2014-01-01

    Brain machine interfaces have the potential to revolutionize our understanding of the brain, restore motor function, and improve the quality of life to patients with neurological con- ditions. In recent human trials, control of robotic prostheses has been demonstrated using micro-electrode arrays, which provide high spatio-temporal resolution and an electrical feed- back path to the brain. However, after implantation, scar tissue degrades the recording signal-to-noise ratio and limits the use...

  6. Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces.

    Directory of Open Access Journals (Sweden)

    Florent Bocquelet

    2016-11-01

    Full Text Available Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN trained on electromagnetic articulography (EMA data recorded on a refere