WorldWideScience

Sample records for based networked learning

  1. Quantitative learning strategies based on word networks

    Science.gov (United States)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  2. Distance learning, problem based learning and dynamic knowledge networks.

    Science.gov (United States)

    Giani, U; Martone, P

    1998-06-01

    This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.

  3. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  4. Efficient learning strategy of Chinese characters based on network approach.

    Directory of Open Access Journals (Sweden)

    Xiaoyong Yan

    Full Text Available We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved.

  5. Machine learning for network-based malware detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija

    and based on different, mutually complementary, principles of traffic analysis. The proposed approaches rely on machine learning algorithms (MLAs) for automated and resource-efficient identification of the patterns of malicious network traffic. We evaluated the proposed methods through extensive evaluations...

  6. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank

    2017-02-01

    Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Learning in neural networks based on a generalized fluctuation theorem

    Science.gov (United States)

    Hayakawa, Takashi; Aoyagi, Toshio

    2015-11-01

    Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.

  8. Functional networks inference from rule-based machine learning models.

    Science.gov (United States)

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The

  9. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  10. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  11. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  12. Late Departures from Paper-Based to Supported Networked Learning in South Africa: Lessons Learned

    Science.gov (United States)

    Kok, Illasha; Beter, Petra; Esterhuizen, Hennie

    2018-01-01

    Fragmented connectivity in South Africa is the dominant barrier for digitising initiatives. New insights surfaced when a university-based nursing programme introduced tablets within a supportive network learning environment. A qualitative, explorative design investigated adult nurses' experiences of the realities when moving from paper-based…

  13. A Team Formation and Project-based Learning Support Service for Social Learning Networks

    NARCIS (Netherlands)

    Spoelstra, Howard; Van Rosmalen, Peter; Van de Vrie, Evert; Obreza, Matija; Sloep, Peter

    2014-01-01

    The Internet affords new approaches to learning. Geographically dispersed self-directed learners can learn in computer-supported communities, forming social learning networks. However, self-directed learners can suffer from a lack of continuous motivation. And surprisingly, social learning networks

  14. Learning Based on CC1 and CC4 Neural Networks

    OpenAIRE

    Kak, Subhash

    2017-01-01

    We propose that a general learning system should have three kinds of agents corresponding to sensory, short-term, and long-term memory that implicitly will facilitate context-free and context-sensitive aspects of learning. These three agents perform mututally complementary functions that capture aspects of the human cognition system. We investigate the use of CC1 and CC4 networks for use as models of short-term and sensory memory.

  15. Exploring the Peer Interaction Effects on Learning Achievement in a Social Learning Platform Based on Social Network Analysis

    Science.gov (United States)

    Lin, Yu-Tzu; Chen, Ming-Puu; Chang, Chia-Hu; Chang, Pu-Chen

    2017-01-01

    The benefits of social learning have been recognized by existing research. To explore knowledge distribution in social learning and its effects on learning achievement, we developed a social learning platform and explored students' behaviors of peer interactions by the proposed algorithms based on social network analysis. An empirical study was…

  16. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network

    Science.gov (United States)

    Wenhui, Ma; Yu, Wang

    2017-06-01

    Learning evaluation is an effective method, which plays an important role in the network education evaluation system. But most of the current network learning evaluation methods still use traditional university education evaluation system, which do not take into account of web-based learning characteristics, and they are difficult to fit the rapid development of interuniversity collaborative learning based on network. Fuzzy comprehensive evaluation method is used to evaluate interuniversity collaborative learning based on the combination of fuzzy theory and analytic hierarchy process. Analytic hierarchy process is used to determine the weight of evaluation factors of each layer and to carry out the consistency check. According to the fuzzy comprehensive evaluation method, we establish interuniversity collaborative learning evaluation mathematical model. The proposed scheme provides a new thought for interuniversity collaborative learning evaluation based on network.

  17. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network

    Directory of Open Access Journals (Sweden)

    Wenhui Ma

    2017-06-01

    Full Text Available Learning evaluation is an effective method, which plays an important role in the network education evaluation system. But most of the current network learning evaluation methods still use traditional university education evaluation system, which do not take into account of web-based learning characteristics, and they are difficult to fit the rapid development of interuniversity collaborative learning based on network. Fuzzy comprehensive evaluation method is used to evaluate interuniversity collaborative learning based on the combination of fuzzy theory and analytic hierarchy process. Analytic hierarchy process is used to determine the weight of evaluation factors of each layer and to carry out the consistency check. According to the fuzzy comprehensive evaluation method, we establish interuniversity collaborative learning evaluation mathematical model. The proposed scheme provides a new thought for interuniversity collaborative learning evaluation based on network.

  18. Learning network theory : its contribution to our understanding of work-based learning projects and learning climate

    OpenAIRE

    Poell, R.F.; Moorsel, M.A.A.H. van

    1996-01-01

    This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of learning groups in organisations. Four theoretical types of learning projects are distinguished. Four different approaches to the learning climate of work groups are compared to the approach offered by t...

  19. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  20. Learning network theory : its contribution to our understanding of work-based learning projects and learning climate

    NARCIS (Netherlands)

    Poell, R.F.; Moorsel, M.A.A.H. van

    1996-01-01

    This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of

  1. Learning from Your Network of Friends: A Trajectory Representation Learning Model Based on Online Social Ties

    KAUST Repository

    Alharbi, Basma Mohammed; Zhang, Xiangliang

    2017-01-01

    Location-Based Social Networks (LBSNs) capture individuals whereabouts for a large portion of the population. To utilize this data for user (location)-similarity based tasks, one must map the raw data into a low-dimensional uniform feature space. However, due to the nature of LBSNs, many users have sparse and incomplete check-ins. In this work, we propose to overcome this issue by leveraging the network of friends, when learning the new feature space. We first analyze the impact of friends on individuals's mobility, and show that individuals trajectories are correlated with thoseof their friends and friends of friends (2-hop friends) in an online setting. Based on our observation, we propose a mixed-membership model that infers global mobility patterns from users' check-ins and their network of friends, without impairing the model's complexity. Our proposed model infers global patterns and learns new representations for both usersand locations simultaneously. We evaluate the inferred patterns and compare the quality of the new user representation against baseline methods on a social link prediction problem.

  2. Learning from Your Network of Friends: A Trajectory Representation Learning Model Based on Online Social Ties

    KAUST Repository

    Alharbi, Basma Mohammed

    2017-02-07

    Location-Based Social Networks (LBSNs) capture individuals whereabouts for a large portion of the population. To utilize this data for user (location)-similarity based tasks, one must map the raw data into a low-dimensional uniform feature space. However, due to the nature of LBSNs, many users have sparse and incomplete check-ins. In this work, we propose to overcome this issue by leveraging the network of friends, when learning the new feature space. We first analyze the impact of friends on individuals\\'s mobility, and show that individuals trajectories are correlated with thoseof their friends and friends of friends (2-hop friends) in an online setting. Based on our observation, we propose a mixed-membership model that infers global mobility patterns from users\\' check-ins and their network of friends, without impairing the model\\'s complexity. Our proposed model infers global patterns and learns new representations for both usersand locations simultaneously. We evaluate the inferred patterns and compare the quality of the new user representation against baseline methods on a social link prediction problem.

  3. Satellite -Based Networks for U-Health & U-Learning

    Science.gov (United States)

    Graschew, G.; Roelofs, T. A.; Rakowsky, S.; Schlag, P. M.

    2008-08-01

    The use of modern Information and Communication Technologies (ICT) as enabling tools for healthcare services (eHealth) introduces new ways of creating ubiquitous access to high-level medical care for all, anytime and anywhere (uHealth). Satellite communication constitutes one of the most flexible methods of broadband communication offering high reliability and cost-effectiveness of connections meeting telemedicine communication requirements. Global networks and the use of computers for educational purposes stimulate and support the development of virtual universities for e-learning. Especially real-time interactive applications can play an important role in tailored and personalised services.

  4. Pedagogy framework design in social networked-based learning: Focus on children with learning difficulties

    Directory of Open Access Journals (Sweden)

    Samira Sadat Sajadi

    2014-09-01

    Full Text Available This paper presents an investigation on the theory of constructivism applicable for learners with learning difficulties, specifically learners with Attention Deficit Hyperactivity Disorder (ADHD. The primary objective of this paper is to determine whether a constructivist technology enhanced learning pedagogy could be used to help ADHD learners cope with their educational needs within a social-media learning environment. Preliminary work is stated here, in which we are seeking evidence to determine the viability of a constructivist approach for learners with ADHD. The novelty of this research lies in the proposals to support ADHD learners to overcome their weaknesses with appropriate pedagogically sound interventions. As a result, a framework has been designed to illuminate areas in which constructivist pedagogies require to address the limitations of ADHD learners. An analytical framework addressing the suitability of a constructivist learning for ADHD is developed from a combination of literature and expert advice from those involved in the education of learners with ADHD. This analytical framework is married to a new model of pedagogy, which the authors have derived from literature analysis. Future work will expand this model to develop a constructivist social network-based learning and eventually test it in specialist schools with ADHD learners.

  5. Adaptive Learning Rule for Hardware-based Deep Neural Networks Using Electronic Synapse Devices

    OpenAIRE

    Lim, Suhwan; Bae, Jong-Ho; Eum, Jai-Ho; Lee, Sungtae; Kim, Chul-Heung; Kwon, Dongseok; Park, Byung-Gook; Lee, Jong-Ho

    2017-01-01

    In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network (HW-DNN) using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron net...

  6. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  7. Social Learning Networks: Build Mobile Learning Networks Based on Collaborative Services

    Science.gov (United States)

    Huang, Jeff J. S.; Yang, Stephen J. H.; Huang, Yueh-Min; Hsiao, Indy Y. T.

    2010-01-01

    Recently, the rising of Web 2.0 has made online community gradually become popular, like Facebook, blog, etc. As a result, the online knowledge sharing network formed by interpersonal interaction is now a major character of Web 2.0, and therefore, by this trend, we try to build up a collaborative service mechanism and further set up an analysis…

  8. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  9. Formation of community-based hypertension practice networks: success, obstacles, and lessons learned.

    Science.gov (United States)

    Dart, Richard A; Egan, Brent M

    2014-06-01

    Community-based practice networks for research and improving the quality of care are growing in size and number but have variable success rates. In this paper, the authors review recent efforts to initiate a community-based hypertension network modeled after the successful Outpatient Quality Improvement Network (O'QUIN) project, located at the Medical University of South Carolina. Key lessons learned and new directions to be explored are highlighted. ©2014 Wiley Periodicals, Inc.

  10. Learning Networks for Lifelong Learning

    OpenAIRE

    Sloep, Peter

    2009-01-01

    Presentation in a seminar organized by Christopher Hoadley at Penn State University, October 2004.Contains general introduction into the Learning Network Programme and a demonstration of the Netlogo Simulation of a Learning Network.

  11. Developing student engagement in networked teaching and learning practices through problem- and project-based learning approaches

    DEFF Research Database (Denmark)

    Andreasen, Lars Birch; Lerche Nielsen, Jørgen

    2012-01-01

    This paper focuses on how learner engagement can be facilitated through use of social media and communication technologies. The discussions are based on the Danish Master’s Programme of ICT and Learning (MIL), where students study in groups within a networked learning structure. The paper reflect...

  12. Mining Learning Social Networks for Cooperative Learning with Appropriate Learning Partners in a Problem-Based Learning Environment

    Science.gov (United States)

    Chen, Chih-Ming; Chang, Chia-Cheng

    2014-01-01

    Many studies have identified web-based cooperative learning as an increasingly popular educational paradigm with potential to increase learner satisfaction and interactions. However, peer-to-peer interaction often suffers barriers owing to a failure to explore useful social interaction information in web-based cooperative learning environments.…

  13. Using smart mobile devices in social-network-based health education practice: a learning behavior analysis.

    Science.gov (United States)

    Wu, Ting-Ting

    2014-06-01

    Virtual communities provide numerous resources, immediate feedback, and information sharing, enabling people to rapidly acquire information and knowledge and supporting diverse applications that facilitate interpersonal interactions, communication, and sharing. Moreover, incorporating highly mobile and convenient devices into practice-based courses can be advantageous in learning situations. Therefore, in this study, a tablet PC and Google+ were introduced to a health education practice course to elucidate satisfaction of learning module and conditions and analyze the sequence and frequency of learning behaviors during the social-network-based learning process. According to the analytical results, social networks can improve interaction among peers and between educators and students, particularly when these networks are used to search for data, post articles, engage in discussions, and communicate. In addition, most nursing students and nursing educators expressed a positive attitude and satisfaction toward these innovative teaching methods, and looked forward to continuing the use of this learning approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks

    Science.gov (United States)

    Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita

    2017-01-01

    More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…

  15. Disseminating Innovations in Teaching Value-Based Care Through an Online Learning Network.

    Science.gov (United States)

    Gupta, Reshma; Shah, Neel T; Moriates, Christopher; Wallingford, September; Arora, Vineet M

    2017-08-01

    A national imperative to provide value-based care requires new strategies to teach clinicians about high-value care. We developed a virtual online learning network aimed at disseminating emerging strategies in teaching value-based care. The online Teaching Value in Health Care Learning Network includes monthly webinars that feature selected innovators, online discussion forums, and a repository for sharing tools. The learning network comprises clinician-educators and health system leaders across North America. We conducted a cross-sectional online survey of all webinar presenters and the active members of the network, and we assessed program feasibility. Six months after the program launched, there were 277 learning community members in 22 US states. Of the 74 active members, 50 (68%) completed the evaluation. Active members represented independently practicing physicians and trainees in 7 specialties, nurses, educators, and health system leaders. Nearly all speakers reported that the learning network provided them with a unique opportunity to connect with a different audience and achieve greater recognition for their work. Of the members who were active in the learning network, most reported that strategies gleaned from the network were helpful, and some adopted or adapted these innovations at their home institutions. One year after the program launched, the learning network had grown to 364 total members. The learning network helped participants share and implement innovations to promote high-value care. The model can help disseminate innovations in emerging areas of health care transformation, and is sustainable without ongoing support after a period of start-up funding.

  16. Cellular-automata-based learning network for pattern recognition

    Science.gov (United States)

    Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios

    1991-11-01

    Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.

  17. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

    Science.gov (United States)

    Ergen, Tolga; Kozat, Suleyman Serdar

    2017-09-13

    We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

  18. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

    Directory of Open Access Journals (Sweden)

    Suwicha Jirayucharoensak

    2014-01-01

    Full Text Available Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.

  19. A Self-Organizing Incremental Neural Network based on local distribution learning.

    Science.gov (United States)

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An Adaptive Learning Based Network Selection Approach for 5G Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    2018-03-01

    Full Text Available Networks will continue to become increasingly heterogeneous as we move toward 5G. Meanwhile, the intelligent programming of the core network makes the available radio resource be more changeable rather than static. In such a dynamic and heterogeneous network environment, how to help terminal users select optimal networks to access is challenging. Prior implementations of network selection are usually applicable for the environment with static radio resources, while they cannot handle the unpredictable dynamics in 5G network environments. To this end, this paper considers both the fluctuation of radio resources and the variation of user demand. We model the access network selection scenario as a multiagent coordination problem, in which a bunch of rationally terminal users compete to maximize their benefits with incomplete information about the environment (no prior knowledge of network resource and other users’ choices. Then, an adaptive learning based strategy is proposed, which enables users to adaptively adjust their selections in response to the gradually or abruptly changing environment. The system is experimentally shown to converge to Nash equilibrium, which also turns out to be both Pareto optimal and socially optimal. Extensive simulation results show that our approach achieves significantly better performance compared with two learning and non-learning based approaches in terms of load balancing, user payoff and the overall bandwidth utilization efficiency. In addition, the system has a good robustness performance under the condition with non-compliant terminal users.

  1. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Networked professional learning

    NARCIS (Netherlands)

    Sloep, Peter

    2013-01-01

    Sloep, P. B. (2013). Networked professional learning. In A. Littlejohn, & A. Margaryan (Eds.), Technology-enhanced Professional Learning: Processes, Practices and Tools (pp. 97–108). London: Routledge.

  3. Multitask Learning-Based Security Event Forecast Methods for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hui He

    2016-01-01

    Full Text Available Wireless sensor networks have strong dynamics and uncertainty, including network topological changes, node disappearance or addition, and facing various threats. First, to strengthen the detection adaptability of wireless sensor networks to various security attacks, a region similarity multitask-based security event forecast method for wireless sensor networks is proposed. This method performs topology partitioning on a large-scale sensor network and calculates the similarity degree among regional subnetworks. The trend of unknown network security events can be predicted through multitask learning of the occurrence and transmission characteristics of known network security events. Second, in case of lacking regional data, the quantitative trend of unknown regional network security events can be calculated. This study introduces a sensor network security event forecast method named Prediction Network Security Incomplete Unmarked Data (PNSIUD method to forecast missing attack data in the target region according to the known partial data in similar regions. Experimental results indicate that for an unknown security event forecast the forecast accuracy and effects of the similarity forecast algorithm are better than those of single-task learning method. At the same time, the forecast accuracy of the PNSIUD method is better than that of the traditional support vector machine method.

  4. Network-based stochastic competitive learning approach to disambiguation in collaborative networks

    Science.gov (United States)

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  5. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  6. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  7. Networked Learning and Design Based Research for welfare innovation through further education

    DEFF Research Database (Denmark)

    Østergaard, Rina; Sorensen, Elsebeth Korsgaard

    2014-01-01

    Abstract This paper sets out on a reflective journey to investigate, theoretically, the potential of a marriage between Networked Learning (NL) and Design Based Research (DBR) (Barab & Squire, 2004) in a creative and innovative pedagogical practice for welfare professionals. With reference...... the entities of a model, which integrate the above mentioned relationships in learning designs. The suggested networked model offers possibilities of innovative learning in further educations. At the same time – in parallel – the suggested networked model offers possibilities of data generation to be used...... help and qualify the development of innovative DBR and NL designs directed towards the future. Assuming the views outlined and promoted in this paper, the authors claim that researchers in the field as well as welfare professionals in pedagogical, social and health areas, must display creative...

  8. Novel Machine Learning-Based Techniques for Efficient Resource Allocation in Next Generation Wireless Networks

    KAUST Repository

    AlQuerm, Ismail A.

    2018-02-21

    resources management in diverse wireless networks. The core operation of the proposed architecture is decision-making for resource allocation and system’s parameters adaptation. Thus, we develop the decision-making mechanism using different artificial intelligence techniques, evaluate the performance achieved and determine the tradeoff of using one technique over the others. The techniques include decision-trees, genetic algorithm, hybrid engine based on decision-trees and case based reasoning, and supervised engine with machine learning contribution to determine the ultimate technique that suits the current environment conditions. All the proposed techniques are evaluated using testbed implementation in different topologies and scenarios. LTE networks have been considered as a potential environment for demonstration of our proposed cognitive based resource allocation techniques as they lack of radio resource management. In addition, we explore the use of enhanced online learning to perform efficient resource allocation in the upcoming 5G networks to maximize energy efficiency and data rate. The considered 5G structures are heterogeneous multi-tier networks with device to device communication and heterogeneous cloud radio access networks. We propose power and resource blocks allocation schemes to maximize energy efficiency and data rate in heterogeneous 5G networks. Moreover, traffic offloading from large cells to small cells in 5G heterogeneous networks is investigated and an online learning based traffic offloading strategy is developed to enhance energy efficiency. Energy efficiency problem in heterogeneous cloud radio access networks is tackled using online learning in centralized and distributed fashions. The proposed online learning comprises improvement features that reduce the algorithms complexities and enhance the performance achieved.

  9. Considering a Twitter-Based Professional Learning Network in Literacy Education

    Science.gov (United States)

    Colwell, Jamie; Hutchison, Amy C.

    2018-01-01

    This study explored how 26 preservice secondary content teachers perceived their experiences participating in and developing a Twitter-based professional learning network focused on disciplinary literacy. Participants completed blog reflections and anonymous online surveys to reflect on their experiences, which served as data for this study. A…

  10. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm

    International Nuclear Information System (INIS)

    Yu, Lean; Wang, Shouyang; Lai, Kin Keung

    2008-01-01

    In this study, an empirical mode decomposition (EMD) based neural network ensemble learning paradigm is proposed for world crude oil spot price forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite, and often small, number of intrinsic mode functions (IMFs). Then a three-layer feed-forward neural network (FNN) model was used to model each of the extracted IMFs, so that the tendencies of these IMFs could be accurately predicted. Finally, the prediction results of all IMFs are combined with an adaptive linear neural network (ALNN), to formulate an ensemble output for the original crude oil price series. For verification and testing, two main crude oil price series, West Texas Intermediate (WTI) crude oil spot price and Brent crude oil spot price, are used to test the effectiveness of the proposed EMD-based neural network ensemble learning methodology. Empirical results obtained demonstrate attractiveness of the proposed EMD-based neural network ensemble learning paradigm. (author)

  11. Artificial neuron-glia networks learning approach based on cooperative coevolution.

    Science.gov (United States)

    Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B

    2015-06-01

    Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.

  12. Usefulness of an Internet-based thematic learning network: comparison of effectiveness with traditional teaching.

    Science.gov (United States)

    Coma Del Corral, María Jesús; Guevara, José Cordero; Luquin, Pedro Abáigar; Peña, Horacio J; Mateos Otero, Juan José

    2006-03-01

    UniNet is an Internet-based thematic network for a virtual community of users (VCU). It supports one multidisciplinary community of doctoral students, who receive most of the courses on the network. The evident advantages of distance learning by Internet, in terms of costs, comfort, etc., require a previous evaluation of the system, focusing on the learning outcomes of the student. The aim was to evaluate the real learning of the students of doctorate courses, by comparing the effectiveness of distance learning in UniNet with traditional classroom-based teaching. Five doctorate courses were taught simultaneously to two independent groups of students in two ways: one, through the UniNet Network, and the other in a traditional classroom. The academic knowledge of students was evaluated at the beginning and end of each course. The difference in score was considered as a knowledge increase. The comparison was made using Student's t-test for independent groups. There were no significant statistical differences in the outcomes of the two groups of students. This suggests that both teaching systems were equivalent in increasing the knowledge of the students. Both educational methods, the traditional system and the online system in a thematic network, are effective and similar for increasing knowledge.

  13. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  14. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  15. Optimal Channel Selection Based on Online Decision and Offline Learning in Multichannel Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mu Qiao

    2017-01-01

    Full Text Available We propose a channel selection strategy with hybrid architecture, which combines the centralized method and the distributed method to alleviate the overhead of access point and at the same time provide more flexibility in network deployment. By this architecture, we make use of game theory and reinforcement learning to fulfill the optimal channel selection under different communication scenarios. Particularly, when the network can satisfy the requirements of energy and computational costs, the online decision algorithm based on noncooperative game can help each individual sensor node immediately select the optimal channel. Alternatively, when the network cannot satisfy the requirements of energy and computational costs, the offline learning algorithm based on reinforcement learning can help each individual sensor node to learn from its experience and iteratively adjust its behavior toward the expected target. Extensive simulation results validate the effectiveness of our proposal and also prove that higher system throughput can be achieved by our channel selection strategy over the conventional off-policy channel selection approaches.

  16. Learning Networks Distributed Environment

    NARCIS (Netherlands)

    Martens, Harrie; Vogten, Hubert; Koper, Rob; Tattersall, Colin; Van Rosmalen, Peter; Sloep, Peter; Van Bruggen, Jan; Spoelstra, Howard

    2005-01-01

    Learning Networks Distributed Environment is a prototype of an architecture that allows the sharing and modification of learning materials through a number of transport protocols. The prototype implements a p2p protcol using JXTA.

  17. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images.

    Science.gov (United States)

    Khellal, Atmane; Ma, Hongbin; Fei, Qing

    2018-05-09

    The success of Deep Learning models, notably convolutional neural networks (CNNs), makes them the favorable solution for object recognition systems in both visible and infrared domains. However, the lack of training data in the case of maritime ships research leads to poor performance due to the problem of overfitting. In addition, the back-propagation algorithm used to train CNN is very slow and requires tuning many hyperparameters. To overcome these weaknesses, we introduce a new approach fully based on Extreme Learning Machine (ELM) to learn useful CNN features and perform a fast and accurate classification, which is suitable for infrared-based recognition systems. The proposed approach combines an ELM based learning algorithm to train CNN for discriminative features extraction and an ELM based ensemble for classification. The experimental results on VAIS dataset, which is the largest dataset of maritime ships, confirm that the proposed approach outperforms the state-of-the-art models in term of generalization performance and training speed. For instance, the proposed model is up to 950 times faster than the traditional back-propagation based training of convolutional neural networks, primarily for low-level features extraction.

  18. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    Science.gov (United States)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  19. Networks of Learning

    Science.gov (United States)

    Bettencourt, Luis; Kaiser, David

    2004-03-01

    Based on an a historically documented example of scientific discovery - Feynman diagrams as the main calculational tool of theoretical high energy Physics - we map the time evolution of the social network of early adopters through in the US, UK, Japan and the USSR. The spread of the technique for total number of users in each region is then modelled in terms of epidemic models, highlighting parallel and divergent aspects of this analogy. We also show that transient social arrangements develop as the idea is introduced and learned, which later disappear as the technique becomes common knowledge. Such early transient is characterized by abnormally low connectivity distribution powers and by high clustering. This interesting early non-equilibrium stage of network evolution is captured by a new dynamical model for network evolution, which coincides in its long time limit with familiar preferential aggregation dynamics.

  20. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  1. Redes de aprendizaje, aprendizaje en red Learning Networks, Networked Learning

    Directory of Open Access Journals (Sweden)

    Peter Sloep

    2011-10-01

    Full Text Available Las redes de aprendizaje (Learning Networks son redes sociales en línea mediante las cuales los participantes comparten información y colaboran para crear conocimiento. De esta manera, estas redes enriquecen la experiencia de aprendizaje en cualquier contexto de aprendizaje, ya sea de educación formal (en escuelas o universidades o educación no-formal (formación profesional. Aunque el concepto de aprendizaje en red suscita el interés de diferentes actores del ámbito educativo, aún existen muchos interrogantes sobre cómo debe diseñarse el aprendizaje en red para facilitar adecuadamente la educación y la formación. El artículo toma este interrogante como punto de partida, y posteriormente aborda cuestiones como la dinámica de la evolución de las redes de aprendizaje, la importancia de fomentar la confianza entre los participantes y el papel central que desempeña el perfil de usuario en la construcción de la confianza, así como el apoyo entre compañeros. Además, se elabora el proceso de diseño de una red de aprendizaje, y se describe un ejemplo en el contexto universitario. Basándonos en la investigación que actualmente se lleva a cabo en nuestro propio centro y en otros lugares, el capítulo concluye con una visión del futuro de las redes de aprendizaje.Learning Networks are on-line social networks through which users share knowledge with each other and jointly develop new knowledge. This way, Learning Networks may enrich the experience of formal, school-based learning and form a viable setting for professional development. Although networked learning enjoys an increasing interest, many questions remain on how exactly learning in such networked contexts can contribute to successful education and training. Put differently, how should networked learning be designed best to facilitate education and training? Taking this as its point of departure, the chapter addresses such issues as the dynamic evolution of Learning Networks

  2. Secure relay selection based on learning with negative externality in wireless networks

    Science.gov (United States)

    Zhao, Caidan; Xiao, Liang; Kang, Shan; Chen, Guiquan; Li, Yunzhou; Huang, Lianfen

    2013-12-01

    In this paper, we formulate relay selection into a Chinese restaurant game. A secure relay selection strategy is proposed for a wireless network, where multiple source nodes send messages to their destination nodes via several relay nodes, which have different processing and transmission capabilities as well as security properties. The relay selection utilizes a learning-based algorithm for the source nodes to reach their best responses in the Chinese restaurant game. In particular, the relay selection takes into account the negative externality of relay sharing among the source nodes, which learn the capabilities and security properties of relay nodes according to the current signals and the signal history. Simulation results show that this strategy improves the user utility and the overall security performance in wireless networks. In addition, the relay strategy is robust against the signal errors and deviations of some user from the desired actions.

  3. Learning conditional Gaussian networks

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....

  4. Protein complex detection in PPI networks based on data integration and supervised learning method.

    Science.gov (United States)

    Yu, Feng; Yang, Zhi; Hu, Xiao; Sun, Yuan; Lin, Hong; Wang, Jian

    2015-01-01

    Revealing protein complexes are important for understanding principles of cellular organization and function. High-throughput experimental techniques have produced a large amount of protein interactions, which makes it possible to predict protein complexes from protein-protein interaction (PPI) networks. However, the small amount of known physical interactions may limit protein complex detection. The new PPI networks are constructed by integrating PPI datasets with the large and readily available PPI data from biomedical literature, and then the less reliable PPI between two proteins are filtered out based on semantic similarity and topological similarity of the two proteins. Finally, the supervised learning protein complex detection (SLPC), which can make full use of the information of available known complexes, is applied to detect protein complex on the new PPI networks. The experimental results of SLPC on two different categories yeast PPI networks demonstrate effectiveness of the approach: compared with the original PPI networks, the best average improvements of 4.76, 6.81 and 15.75 percentage units in the F-score, accuracy and maximum matching ratio (MMR) are achieved respectively; compared with the denoising PPI networks, the best average improvements of 3.91, 4.61 and 12.10 percentage units in the F-score, accuracy and MMR are achieved respectively; compared with ClusterONE, the start-of the-art complex detection method, on the denoising extended PPI networks, the average improvements of 26.02 and 22.40 percentage units in the F-score and MMR are achieved respectively. The experimental results show that the performances of SLPC have a large improvement through integration of new receivable PPI data from biomedical literature into original PPI networks and denoising PPI networks. In addition, our protein complexes detection method can achieve better performance than ClusterONE.

  5. Blending Formal and Informal Learning Networks for Online Learning

    Science.gov (United States)

    Czerkawski, Betül C.

    2016-01-01

    With the emergence of social software and the advance of web-based technologies, online learning networks provide invaluable opportunities for learning, whether formal or informal. Unlike top-down, instructor-centered, and carefully planned formal learning settings, informal learning networks offer more bottom-up, student-centered participatory…

  6. Learning Automata Based Caching for Efficient Data Access in Delay Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Zhenjie Ma

    2018-01-01

    Full Text Available Effective data access is one of the major challenges in Delay Tolerant Networks (DTNs that are characterized by intermittent network connectivity and unpredictable node mobility. Currently, different data caching schemes have been proposed to improve the performance of data access in DTNs. However, most existing data caching schemes perform poorly due to the lack of global network state information and the changing network topology in DTNs. In this paper, we propose a novel data caching scheme based on cooperative caching in DTNs, aiming at improving the successful rate of data access and reducing the data access delay. In the proposed scheme, learning automata are utilized to select a set of caching nodes as Caching Node Set (CNS in DTNs. Unlike the existing caching schemes failing to address the challenging characteristics of DTNs, our scheme is designed to automatically self-adjust to the changing network topology through the well-designed voting and updating processes. The proposed scheme improves the overall performance of data access in DTNs compared with the former caching schemes. The simulations verify the feasibility of our scheme and the improvements in performance.

  7. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Lin

    2016-10-01

    Full Text Available Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  8. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  9. A Deep Learning based Approach to Reduced Order Modeling of Fluids using LSTM Neural Networks

    Science.gov (United States)

    Mohan, Arvind; Gaitonde, Datta

    2017-11-01

    Reduced Order Modeling (ROM) can be used as surrogates to prohibitively expensive simulations to model flow behavior for long time periods. ROM is predicated on extracting dominant spatio-temporal features of the flow from CFD or experimental datasets. We explore ROM development with a deep learning approach, which comprises of learning functional relationships between different variables in large datasets for predictive modeling. Although deep learning and related artificial intelligence based predictive modeling techniques have shown varied success in other fields, such approaches are in their initial stages of application to fluid dynamics. Here, we explore the application of the Long Short Term Memory (LSTM) neural network to sequential data, specifically to predict the time coefficients of Proper Orthogonal Decomposition (POD) modes of the flow for future timesteps, by training it on data at previous timesteps. The approach is demonstrated by constructing ROMs of several canonical flows. Additionally, we show that statistical estimates of stationarity in the training data can indicate a priori how amenable a given flow-field is to this approach. Finally, the potential and limitations of deep learning based ROM approaches will be elucidated and further developments discussed.

  10. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  11. Characteristics and lessons learned from practice-based research networks (PBRNs in the United States

    Directory of Open Access Journals (Sweden)

    Keller S

    2012-09-01

    Full Text Available Melinda M Davis,1,2 Sara Keller,1 Jennifer E DeVoe,1,3 Deborah J Cohen11Department of Family Medicine, 2Oregon Rural Practice-based Research Network, Oregon Health & Science University, Portland, OR, USA; 3OCHIN Practice-based Research Network, Portland, OR, USAAbstract: Practice-based research networks (PBRNs are organizations that involve practicing clinicians in asking and answering clinically relevant research questions. This review explores the origins, characteristics, funding, and lessons learned through practice-based research in the United States. Primary care PBRNs emerged in the USA in the 1970s. Early studies explored the etiology of common problems encountered in primary care practices (eg, headache, miscarriage, demonstrating the gap between research conducted in controlled specialty settings and real-world practices. Over time, national initiatives and an evolving funding climate have shaped PBRN development, contributing to larger networks, a push for shared electronic health records, and the use of a broad range of research methodologies (eg, observational studies, pragmatic randomized controlled trials, continuous quality improvement, participatory methods. Today, there are over 160 active networks registered with the Agency for Healthcare Research and Quality's PBRN Resource Center that engage primary care clinicians, pharmacists, dentists, and other health care professionals in research and quality-improvement initiatives. PBRNs provide an important laboratory for encouraging collaborative research partnerships between academicians and practices or communities to improve population health, conduct comparative effectiveness and patient-centered outcomes research, and study health policy reform. PBRNs continue to face critical challenges that include: (1 adapting to a changing landscape; (2 recruiting and retaining membership; (3 securing infrastructure support; (4 straddling two worlds (academia and community and managing

  12. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  13. Collective Learning in Games through Social Networks

    NARCIS (Netherlands)

    Kosterman, S.; Gierasimczuk, N.; Armentano, M.G.; Monteserin, A.; Tang, J.; Yannibelli, V.

    2015-01-01

    This paper argues that combining social networks communication and games can positively influence the learning behavior of players. We propose a computational model that combines features of social network learning (communication) and game-based learning (strategy reinforcement). The focus is on

  14. Learning Analytics for Networked Learning Models

    Science.gov (United States)

    Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan

    2014-01-01

    Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…

  15. Research, Boundaries, and Policy in Networked Learning

    DEFF Research Database (Denmark)

    This book presents cutting-edge, peer reviewed research on networked learning organized by three themes: policy in networked learning, researching networked learning, and boundaries in networked learning. The "policy in networked learning" section explores networked learning in relation to policy...... networks, spaces of algorithmic governance and more. The "boundaries in networked learning" section investigates frameworks of students' digital literacy practices, among other important frameworks in digital learning. Lastly, the "research in networked learning" section delves into new research methods...

  16. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.

    Science.gov (United States)

    Xia, Peng; Hu, Jie; Peng, Yinghong

    2017-10-25

    A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Language Choice & Global Learning Networks

    Directory of Open Access Journals (Sweden)

    Dennis Sayers

    1995-05-01

    Full Text Available How can other languages be used in conjunction with English to further intercultural and multilingual learning when teachers and students participate in computer-based global learning networks? Two portraits are presented of multilingual activities in the Orillas and I*EARN learning networks, and are discussed as examples of the principal modalities of communication employed in networking projects between distant classes. Next, an important historical precedent --the social controversy which accompanied the introduction of telephone technology at the end of the last century-- is examined in terms of its implications for language choice in contemporary classroom telecomputing projects. Finally, recommendations are offered to guide decision making concerning the role of language choice in promoting collaborative critical inquiry.

  18. Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review

    Science.gov (United States)

    Zhang, Xue; Acencio, Marcio Luis; Lemke, Ney

    2016-01-01

    Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research. PMID:27014079

  19. Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the bnlearn R Package

    Directory of Open Access Journals (Sweden)

    Marco Scutari

    2017-03-01

    Full Text Available It is well known in the literature that the problem of learning the structure of Bayesian networks is very hard to tackle: Its computational complexity is super-exponential in the number of nodes in the worst case and polynomial in most real-world scenarios. Efficient implementations of score-based structure learning benefit from past and current research in optimization theory, which can be adapted to the task by using the network score as the objective function to maximize. This is not true for approaches based on conditional independence tests, called constraint-based learning algorithms. The only optimization in widespread use, backtracking, leverages the symmetries implied by the definitions of neighborhood and Markov blanket. In this paper we illustrate how backtracking is implemented in recent versions of the bnlearn R package, and how it degrades the stability of Bayesian network structure learning for little gain in terms of speed. As an alternative, we describe a software architecture and framework that can be used to parallelize constraint-based structure learning algorithms (also implemented in bnlearn and we demonstrate its performance using four reference networks and two real-world data sets from genetics and systems biology. We show that on modern multi-core or multiprocessor hardware parallel implementations are preferable over backtracking, which was developed when single-processor machines were the norm.

  20. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    Science.gov (United States)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  1. Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    The original publication is available from www.springerlink.com. Sloep, P. (2009). Social Interaction in Learning Networks. In R. Koper (Ed.), Learning Network Services for Professional Development (pp 13-15). Berlin, Germany: Springer Verlag.

  2. Computer Networks E-learning Based on Interactive Simulations and SCORM

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Candelas

    2011-05-01

    Full Text Available This paper introduces a new set of compact interactive simulations developed for the constructive learning of computer networks concepts. These simulations, which compose a virtual laboratory implemented as portable Java applets, have been created by combining EJS (Easy Java Simulations with the KivaNS API. Furthermore, in this work, the skills and motivation level acquired by the students are evaluated and measured when these simulations are combined with Moodle and SCORM (Sharable Content Object Reference Model documents. This study has been developed to improve and stimulate the autonomous constructive learning in addition to provide timetable flexibility for a Computer Networks subject.

  3. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

    Science.gov (United States)

    Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

    We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

  4. CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Parameter tuning is an important task of storage performance optimization. Current practice usually involves numerous tweak-benchmark cycles that are slow and costly. To address this issue, we developed CAPES, a model-less deep reinforcement learning-based unsupervised parameter tuning system driven by a deep neural network (DNN). It is designed to nd the optimal values of tunable parameters in computer systems, from a simple client-server system to a large data center, where human tuning can be costly and often cannot achieve optimal performance. CAPES takes periodic measurements of a target computer system’s state, and trains a DNN which uses Q-learning to suggest changes to the system’s current parameter values. CAPES is minimally intrusive, and can be deployed into a production system to collect training data and suggest tuning actions during the system’s daily operation. Evaluation of a prototype on a Lustre system demonstrates an increase in I/O throughput up to 45% at saturation point. About the...

  5. Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm.

    Science.gov (United States)

    Sengur, Abdulkadir; Akbulut, Yaman; Guo, Yanhui; Bajaj, Varun

    2017-12-01

    Electromyogram (EMG) signals contain useful information of the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS is a well-known brain disease, which can progressively degenerate the motor neurons. In this paper, we propose a deep learning based method for efficient classification of ALS and normal EMG signals. Spectrogram, continuous wavelet transform (CWT), and smoothed pseudo Wigner-Ville distribution (SPWVD) have been employed for time-frequency (T-F) representation of EMG signals. A convolutional neural network is employed to classify these features. In it, Two convolution layers, two pooling layer, a fully connected layer and a lost function layer is considered in CNN architecture. The CNN architecture is trained with the reinforcement sample learning strategy. The efficiency of the proposed implementation is tested on publicly available EMG dataset. The dataset contains 89 ALS and 133 normal EMG signals with 24 kHz sampling frequency. Experimental results show 96.80% accuracy. The obtained results are also compared with other methods, which show the superiority of the proposed method.

  6. Energy Cooperation in Ultradense Network Powered by Renewable Energy Based on Cluster and Learning Strategy

    Directory of Open Access Journals (Sweden)

    Chunhong Duo

    2017-01-01

    Full Text Available A new method about renewable energy cooperation among small base stations (SBSs is proposed, which is for maximizing the energy efficiency in ultradense network (UDN. In UDN each SBS is equipped with energy harvesting (EH unit, and the energy arrival times are modeled as a Poisson counting process. Firstly, SBSs of large traffic demands are selected as the clustering centers, and then all SBSs are clustered using dynamic k-means algorithm. Secondly, SBSs coordinate their renewable energy within each formed cluster. The process of energy cooperation among SBSs is considered as Markov decision process. Q-learning algorithm is utilized to optimize energy cooperation. In the algorithm there are four different actions and their corresponding reward functions. Q-learning explores the action as much as possible and predicts better action by calculating reward. In addition, ε greedy policy is used to ensure the algorithm convergence. Finally, simulation results show that the new method reduces data dimension and improves calculation speed, which furthermore improves the utilization of renewable energy and promotes the performance of UDN. Through online optimization, the proposed method can significantly improve the energy utilization rate and data transmission rate.

  7. Learning Networks for Professional Development & Lifelong Learning

    NARCIS (Netherlands)

    Brouns, Francis; Sloep, Peter

    2009-01-01

    Brouns, F., & Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation of the Learning Network Programme for a Korean delegation of Chonnam National University and Dankook University (researchers dr. Jeeheon Ryu and dr. Minjeong Kim and a Group of PhD and

  8. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  9. "Lost in Space": The Role of Social Networking in University-Based Entrepreneurial Learning

    Science.gov (United States)

    Lockett, Nigel; Quesada-Pallarès, Carla; Williams-Middleton, Karen; Padilla-Meléndez, Antonio; Jack, Sarah

    2017-01-01

    While entrepreneurship education increasingly uses various means to connect students to the "real world", the impact of social networking on learning remains underexplored. This qualitative study of student entrepreneurs in the United Kingdom and Sweden shows that their entrepreneurial journey becomes increasingly complex, requiring…

  10. A Social Learning Management System Supporting Feedback for Incorrect Answers Based on Social Network Services

    Science.gov (United States)

    Son, Jiseong; Kim, Jeong-Dong; Na, Hong-Seok; Baik, Doo-Kwon

    2016-01-01

    In this research, we propose a Social Learning Management System (SLMS) enabling real-time and reliable feedback for incorrect answers by learners using a social network service (SNS). The proposed system increases the accuracy of learners' assessment results by using a confidence scale and a variety of social feedback that is created and shared…

  11. A Learning Method for Neural Networks Based on a Pseudoinverse Technique

    Directory of Open Access Journals (Sweden)

    Chinmoy Pal

    1996-01-01

    Full Text Available A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.

  12. Teachers' professional development in a community: A study of the central actors, their networks and web-based learning

    Directory of Open Access Journals (Sweden)

    Jiri Lallimo

    2008-07-01

    Full Text Available The goal of this article was to study teachers' professional development related to web-based learning in the context of the teacher community. The object was to learn in what kind of networks teachers share the knowledge of web-based learning and what are the factors in the community that support or challenge teachers professional development of web-based learning. The findings of the study revealed that there are teachers who are especially active, called the central actors in this study, in the teacher community who collaborate and share knowledge of web-based learning. These central actors share both technical and pedagogical knowledge of web-based learning in networks that include both internal and external relations in the community and involve people, artefacts and a variety of media. Furthermore, the central actors appear to bridge different fields of teaching expertise in their community.According to the central actors' experiences the important factors that support teachers' professional development of web-based learning in the community are; the possibility to learn from colleagues and from everyday working practices, an emotionally safe atmosphere, the leader's personal support and community-level commitment. Also, the flexibility in work planning, challenging pupils, shared lessons with colleagues, training events in an authentic work environment and colleagues' professionalism are considered meaningful for professional development. As challenges, the knowledge sharing of web-based learning in the community needs mutual interests, transactive memory, time and facilities, peer support, a safe atmosphere and meaningful pedagogical practices.On the basis of the findings of the study it is suggested that by intensive collaboration related to web-based learning it may be possible to break the boundaries of individual teachership and create such sociocultural activities which support collaborative professional development in the teacher

  13. Learning Networks for Professional Development & Lifelong Learning

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation at a NeLLL seminar with Etienne Wenger held at the Open Universiteit Nederland. September, 10, 2009, Heerlen, The Netherlands.

  14. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    We study the effect of learning dynamics on network topology. Firstly, a network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity (STDP). This incorporates ...

  15. A Fusion Face Recognition Approach Based on 7-Layer Deep Learning Neural Network

    Directory of Open Access Journals (Sweden)

    Jianzheng Liu

    2016-01-01

    Full Text Available This paper presents a method for recognizing human faces with facial expression. In the proposed approach, a motion history image (MHI is employed to get the features in an expressive face. The face can be seen as a kind of physiological characteristic of a human and the expressions are behavioral characteristics. We fused the 2D images of a face and MHIs which were generated from the same face’s image sequences with expression. Then the fusion features were used to feed a 7-layer deep learning neural network. The previous 6 layers of the whole network can be seen as an autoencoder network which can reduce the dimension of the fusion features. The last layer of the network can be seen as a softmax regression; we used it to get the identification decision. Experimental results demonstrated that our proposed method performs favorably against several state-of-the-art methods.

  16. Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2017-01-01

    Full Text Available Aircraft detection from high-resolution remote sensing images is important for civil and military applications. Recently, detection methods based on deep learning have rapidly advanced. However, they require numerous samples to train the detection model and cannot be directly used to efficiently handle large-area remote sensing images. A weakly supervised learning method (WSLM can detect a target with few samples. However, it cannot extract an adequate number of features, and the detection accuracy requires improvement. We propose a cascade convolutional neural network (CCNN framework based on transfer-learning and geometric feature constraints (GFC for aircraft detection. It achieves high accuracy and efficient detection with relatively few samples. A high-accuracy detection model is first obtained using transfer-learning to fine-tune pretrained models with few samples. Then, a GFC region proposal filtering method improves detection efficiency. The CCNN framework completes the aircraft detection for large-area remote sensing images. The framework first-level network is an image classifier, which filters the entire image, excluding most areas with no aircraft. The second-level network is an object detector, which rapidly detects aircraft from the first-level network output. Compared with WSLM, detection accuracy increased by 3.66%, false detection decreased by 64%, and missed detection decreased by 23.1%.

  17. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  18. A Collaborative Learning Network Approach to Improvement: The CUSP Learning Network.

    Science.gov (United States)

    Weaver, Sallie J; Lofthus, Jennifer; Sawyer, Melinda; Greer, Lee; Opett, Kristin; Reynolds, Catherine; Wyskiel, Rhonda; Peditto, Stephanie; Pronovost, Peter J

    2015-04-01

    Collaborative improvement networks draw on the science of collaborative organizational learning and communities of practice to facilitate peer-to-peer learning, coaching, and local adaption. Although significant improvements in patient safety and quality have been achieved through collaborative methods, insight regarding how collaborative networks are used by members is needed. Improvement Strategy: The Comprehensive Unit-based Safety Program (CUSP) Learning Network is a multi-institutional collaborative network that is designed to facilitate peer-to-peer learning and coaching specifically related to CUSP. Member organizations implement all or part of the CUSP methodology to improve organizational safety culture, patient safety, and care quality. Qualitative case studies developed by participating members examine the impact of network participation across three levels of analysis (unit, hospital, health system). In addition, results of a satisfaction survey designed to evaluate member experiences were collected to inform network development. Common themes across case studies suggest that members found value in collaborative learning and sharing strategies across organizational boundaries related to a specific improvement strategy. The CUSP Learning Network is an example of network-based collaborative learning in action. Although this learning network focuses on a particular improvement methodology-CUSP-there is clear potential for member-driven learning networks to grow around other methods or topic areas. Such collaborative learning networks may offer a way to develop an infrastructure for longer-term support of improvement efforts and to more quickly diffuse creative sustainment strategies.

  19. Power Cable Fault Recognition Based on an Annealed Chaotic Competitive Learning Network

    Directory of Open Access Journals (Sweden)

    Xuebin Qin

    2014-09-01

    Full Text Available In electric power systems, power cable operation under normal conditions is very important. Various cable faults will happen in practical applications. Recognizing the cable faults correctly and in a timely manner is crucial. In this paper we propose a method that an annealed chaotic competitive learning network recognizes power cable types. The result shows a good performance using the support vector machine (SVM and improved Particle Swarm Optimization (IPSO-SVM method. The experimental result shows that the fault recognition accuracy reached was 96.2%, using 54 data samples. The network training time is about 0.032 second. The method can achieve cable fault classification effectively.

  20. Community-Based Research Networks: Development and Lessons Learned in an Emerging Field.

    Science.gov (United States)

    Stoecker, Randy; Ambler, Susan H.; Cutforth, Nick; Donohue, Patrick; Dougherty, Dan; Marullo, Sam; Nelson, Kris S.; Stutts, Nancy B.

    2003-01-01

    Compares seven multi-institutional community-based research networks in Appalachia; Colorado; District of Columbia; Minneapolis-St. Paul; Philadelphia; Richmond, Virginia; and Trenton, New Jersey. After reviewing the histories of the networks, conducts a comparative SWOT analysis, showing their common and unique strengths, weaknesses,…

  1. Adaptive metric learning with deep neural networks for video-based facial expression recognition

    Science.gov (United States)

    Liu, Xiaofeng; Ge, Yubin; Yang, Chao; Jia, Ping

    2018-01-01

    Video-based facial expression recognition has become increasingly important for plenty of applications in the real world. Despite that numerous efforts have been made for the single sequence, how to balance the complex distribution of intra- and interclass variations well between sequences has remained a great difficulty in this area. We propose the adaptive (N+M)-tuplet clusters loss function and optimize it with the softmax loss simultaneously in the training phrase. The variations introduced by personal attributes are alleviated using the similarity measurements of multiple samples in the feature space with many fewer comparison times as conventional deep metric learning approaches, which enables the metric calculations for large data applications (e.g., videos). Both the spatial and temporal relations are well explored by a unified framework that consists of an Inception-ResNet network with long short term memory and the two fully connected layer branches structure. Our proposed method has been evaluated with three well-known databases, and the experimental results show that our method outperforms many state-of-the-art approaches.

  2. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinhee Park

    2016-11-01

    Full Text Available Accurate classification of human aquatic activities using radar has a variety of potential applications such as rescue operations and border patrols. Nevertheless, the classification of activities on water using radar has not been extensively studied, unlike the case on dry ground, due to its unique challenge. Namely, not only is the radar cross section of a human on water small, but the micro-Doppler signatures are much noisier due to water drops and waves. In this paper, we first investigate whether discriminative signatures could be obtained for activities on water through a simulation study. Then, we show how we can effectively achieve high classification accuracy by applying deep convolutional neural networks (DCNN directly to the spectrogram of real measurement data. From the five-fold cross-validation on our dataset, which consists of five aquatic activities, we report that the conventional feature-based scheme only achieves an accuracy of 45.1%. In contrast, the DCNN trained using only the collected data attains 66.7%, and the transfer learned DCNN, which takes a DCNN pre-trained on a RGB image dataset and fine-tunes the parameters using the collected data, achieves a much higher 80.3%, which is a significant performance boost.

  3. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  4. A Tsallis’ statistics based neural network model for novel word learning

    Science.gov (United States)

    Hadzibeganovic, Tarik; Cannas, Sergio A.

    2009-03-01

    We invoke the Tsallis entropy formalism, a nonextensive entropy measure, to include some degree of non-locality in a neural network that is used for simulation of novel word learning in adults. A generalization of the gradient descent dynamics, realized via nonextensive cost functions, is used as a learning rule in a simple perceptron. The model is first investigated for general properties, and then tested against the empirical data, gathered from simple memorization experiments involving two populations of linguistically different subjects. Numerical solutions of the model equations corresponded to the measured performance states of human learners. In particular, we found that the memorization tasks were executed with rather small but population-specific amounts of nonextensivity, quantified by the entropic index q. Our findings raise the possibility of using entropic nonextensivity as a means of characterizing the degree of complexity of learning in both natural and artificial systems.

  5. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    Science.gov (United States)

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  6. A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning

    Science.gov (United States)

    Cruz-Roa, Angel; Arévalo, John; Judkins, Alexander; Madabhushi, Anant; González, Fabio

    2015-12-01

    Convolutional neural networks (CNN) have been very successful at addressing different computer vision tasks thanks to their ability to learn image representations directly from large amounts of labeled data. Features learned from a dataset can be used to represent images from a different dataset via an approach called transfer learning. In this paper we apply transfer learning to the challenging task of medulloblastoma tumor differentiation. We compare two different CNN models which were previously trained in two different domains (natural and histopathology images). The first CNN is a state-of-the-art approach in computer vision, a large and deep CNN with 16-layers, Visual Geometry Group (VGG) CNN. The second (IBCa-CNN) is a 2-layer CNN trained for invasive breast cancer tumor classification. Both CNNs are used as visual feature extractors of histopathology image regions of anaplastic and non-anaplastic medulloblastoma tumor from digitized whole-slide images. The features from the two models are used, separately, to train a softmax classifier to discriminate between anaplastic and non-anaplastic medulloblastoma image regions. Experimental results show that the transfer learning approach produce competitive results in comparison with the state of the art approaches for IBCa detection. Results also show that features extracted from the IBCa-CNN have better performance in comparison with features extracted from the VGG-CNN. The former obtains 89.8% while the latter obtains 76.6% in terms of average accuracy.

  7. Design of a Networked Learning Master Environment for Professionals

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone

    2010-01-01

    The paper is presenting the overall learning design of MIL (Master in ICT and Learning). The learning design is integrating a number of principles: 1. Principles of problem and project based learning 2. Networked learning / learning in communities of practice. The paper will discuss how these pri......The paper is presenting the overall learning design of MIL (Master in ICT and Learning). The learning design is integrating a number of principles: 1. Principles of problem and project based learning 2. Networked learning / learning in communities of practice. The paper will discuss how...

  8. Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Zhi He

    2017-10-01

    Full Text Available Classification of hyperspectral image (HSI is an important research topic in the remote sensing community. Significant efforts (e.g., deep learning have been concentrated on this task. However, it is still an open issue to classify the high-dimensional HSI with a limited number of training samples. In this paper, we propose a semi-supervised HSI classification method inspired by the generative adversarial networks (GANs. Unlike the supervised methods, the proposed HSI classification method is semi-supervised, which can make full use of the limited labeled samples as well as the sufficient unlabeled samples. Core ideas of the proposed method are twofold. First, the three-dimensional bilateral filter (3DBF is adopted to extract the spectral-spatial features by naturally treating the HSI as a volumetric dataset. The spatial information is integrated into the extracted features by 3DBF, which is propitious to the subsequent classification step. Second, GANs are trained on the spectral-spatial features for semi-supervised learning. A GAN contains two neural networks (i.e., generator and discriminator trained in opposition to one another. The semi-supervised learning is achieved by adding samples from the generator to the features and increasing the dimension of the classifier output. Experimental results obtained on three benchmark HSI datasets have confirmed the effectiveness of the proposed method , especially with a limited number of labeled samples.

  9. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Waqas Rehan

    2016-09-01

    Full Text Available Wireless sensor networks (WSNs have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM, that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI and the average of the link quality indicator (LQI of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC algorithm in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC algorithm, that can perform channel quality estimation on the basis of both current and past values of channel rank estimation

  10. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks.

    Science.gov (United States)

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-09-12

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end

  11. Relationship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning.

    Science.gov (United States)

    Munsell, B C; Wu, G; Fridriksson, J; Thayer, K; Mofrad, N; Desisto, N; Shen, D; Bonilha, L

    2017-09-09

    Impaired confrontation naming is a common symptom of temporal lobe epilepsy (TLE). The neurobiological mechanisms underlying this impairment are poorly understood but may indicate a structural disorganization of broadly distributed neuronal networks that support naming ability. Importantly, naming is frequently impaired in other neurological disorders and by contrasting the neuronal structures supporting naming in TLE with other diseases, it will become possible to elucidate the common systems supporting naming. We aimed to evaluate the neuronal networks that support naming in TLE by using a machine learning algorithm intended to predict naming performance in subjects with medication refractory TLE using only the structural brain connectome reconstructed from diffusion tensor imaging. A connectome-based prediction framework was developed using network properties from anatomically defined brain regions across the entire brain, which were used in a multi-task machine learning algorithm followed by support vector regression. Nodal eigenvector centrality, a measure of regional network integration, predicted approximately 60% of the variance in naming. The nodes with the highest regression weight were bilaterally distributed among perilimbic sub-networks involving mainly the medial and lateral temporal lobe regions. In the context of emerging evidence regarding the role of large structural networks that support language processing, our results suggest intact naming relies on the integration of sub-networks, as opposed to being dependent on isolated brain areas. In the case of TLE, these sub-networks may be disproportionately indicative naming processes that are dependent semantic integration from memory and lexical retrieval, as opposed to multi-modal perception or motor speech production. Copyright © 2017. Published by Elsevier Inc.

  12. A method for classification of network traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup

    2012-01-01

    current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown...... and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options...

  13. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  14. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  15. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  16. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  17. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    Science.gov (United States)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  18. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device.

    Science.gov (United States)

    McKinstry, Jeffrey L; Edelman, Gerald M

    2013-01-01

    Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.

  19. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  20. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  1. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-09-22

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.

  2. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Donghao Wang

    2016-09-01

    Full Text Available To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.

  3. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  4. Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans

    Science.gov (United States)

    Ramachandran S., Sindhu; George, Jose; Skaria, Shibon; V. V., Varun

    2018-02-01

    Lung cancer is the leading cause of cancer related deaths in the world. The survival rate can be improved if the presence of lung nodules are detected early. This has also led to more focus being given to computer aided detection (CAD) and diagnosis of lung nodules. The arbitrariness of shape, size and texture of lung nodules is a challenge to be faced when developing these detection systems. In the proposed work we use convolutional neural networks to learn the features for nodule detection, replacing the traditional method of handcrafting features like geometric shape or texture. Our network uses the DetectNet architecture based on YOLO (You Only Look Once) to detect the nodules in CT scans of lung. In this architecture, object detection is treated as a regression problem with a single convolutional network simultaneously predicting multiple bounding boxes and class probabilities for those boxes. By performing training using chest CT scans from Lung Image Database Consortium (LIDC), NVIDIA DIGITS and Caffe deep learning framework, we show that nodule detection using this single neural network can result in reasonably low false positive rates with high sensitivity and precision.

  5. Tractography-Based Score for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian Networks.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun K

    2018-05-01

    Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition EC is "the causal influence exerted by one neuronal group on another" which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure-function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.

  6. An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks

    Directory of Open Access Journals (Sweden)

    Huan-Yuan Chen

    2017-09-01

    Full Text Available This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting.

  7. An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks

    Science.gov (United States)

    Chen, Huan-Yuan; Chen, Chih-Chang

    2017-01-01

    This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting. PMID:28956859

  8. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    Science.gov (United States)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  9. Entropy Learning in Neural Network

    Directory of Open Access Journals (Sweden)

    Geok See Ng

    2017-12-01

    Full Text Available In this paper, entropy term is used in the learning phase of a neural network.  As learning progresses, more hidden nodes get into saturation.  The early creation of such hidden nodes may impair generalisation.  Hence entropy approach is proposed to dampen the early creation of such nodes.  The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes.  At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.

  10. Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors.

    Science.gov (United States)

    Kim, Seongjung; Kim, Jongman; Ahn, Soonjae; Kim, Youngho

    2018-04-18

    Deaf people use sign or finger languages for communication, but these methods of communication are very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication restrictions. In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors. The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in 17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network (ANN)-based classifier. As the number of classifiers (1 to 8) and size of training data (50 to 300) increased, the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that of the general ANN.

  11. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  12. A Large-Scale Multi-Hop Localization Algorithm Based on Regularized Extreme Learning for Wireless Networks.

    Science.gov (United States)

    Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan

    2017-12-20

    A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.

  13. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  14. Contingent factors affecting network learning

    OpenAIRE

    Peters, Linda D.; Pressey, Andrew D.; Johnston, Wesley J.

    2016-01-01

    To increase understanding of the impact of individuals on organizational learning processes, this paper explores the impact of individual cognition and action on the absorptive capacity process of the wider network. In particular this study shows how contingent factors such as social integration mechanisms and power relationships influence how network members engage in, and benefit from, learning. The use of cognitive consistency and sensemaking theory enables examination of how these conting...

  15. Novel Machine Learning-Based Techniques for Efficient Resource Allocation in Next Generation Wireless Networks

    KAUST Repository

    Alqerm, Ismail

    2018-01-01

    There is a large demand for applications of high data rates in wireless networks. These networks are becoming more complex and challenging to manage due to the heterogeneity of users and applications specifically in sophisticated networks

  16. A Digital Architecture for a Network-Based Learning Health System: Integrating Chronic Care Management, Quality Improvement, and Research.

    Science.gov (United States)

    Marsolo, Keith; Margolis, Peter A; Forrest, Christopher B; Colletti, Richard B; Hutton, John J

    2015-01-01

    We collaborated with the ImproveCareNow Network to create a proof-of-concept architecture for a network-based Learning Health System. This collaboration involved transitioning an existing registry to one that is linked to the electronic health record (EHR), enabling a "data in once" strategy. We sought to automate a series of reports that support care improvement while also demonstrating the use of observational registry data for comparative effectiveness research. We worked with three leading EHR vendors to create EHR-based data collection forms. We automated many of ImproveCareNow's analytic reports and developed an application for storing protected health information and tracking patient consent. Finally, we deployed a cohort identification tool to support feasibility studies and hypothesis generation. There is ongoing uptake of the system. To date, 31 centers have adopted the EHR-based forms and 21 centers are uploading data to the registry. Usage of the automated reports remains high and investigators have used the cohort identification tools to respond to several clinical trial requests. The current process for creating EHR-based data collection forms requires groups to work individually with each vendor. A vendor-agnostic model would allow for more rapid uptake. We believe that interfacing network-based registries with the EHR would allow them to serve as a source of decision support. Additional standards are needed in order for this vision to be achieved, however. We have successfully implemented a proof-of-concept Learning Health System while providing a foundation on which others can build. We have also highlighted opportunities where sponsors could help accelerate progress.

  17. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  18. Devising a New Model of Demand-Based Learning Integrated with Social Networks and Analyses of its Performance

    Directory of Open Access Journals (Sweden)

    Bekim Fetaji

    2018-02-01

    Full Text Available The focus of the research study is to devise a new model for demand based learning that will be integrated with social networks such as Facebook, twitter and other. The study investigates this by reviewing the published literature and realizes a case study analyses in order to analyze the new models’ analytical perspectives of practical implementation. The study focuses on analyzing demand-based learning and investigating how it can be improved by devising a specific model that incorporates social network use. Statistical analyses of the results of the questionnaire through research of the raised questions and hypothesis showed that there is a need for introducing new models in the teaching process. The originality stands on the prologue of the social login approach to an educational environment, whereas the approach is counted as a contribution of developing a demand-based web application, which aims to modernize the educational pattern of communication, introduce the social login approach, and increase the process of knowledge transfer as well as improve learners’ performance and skills. Insights and recommendations are provided, argumented and discussed.

  19. Changing Conditions for Networked Learning?

    DEFF Research Database (Denmark)

    Ryberg, Thomas

    2011-01-01

    in describing the novel pedagogical potentials of these new technologies and practices (e.g. in debates around virtual learning environments versus personal learning environment). Likewise, I shall briefly discuss the notions of ‘digital natives’ or ‘the net generation’ from a critical perspective...... of social technologies. I argue that we are seeing the emergence of new architectures and scales of participation, collaboration and networking e.g. through interesting formations of learning networks at different levels of scale, for different purposes and often bridging boundaries such as formal...

  20. THE IMPACTS OF SOCIAL NETWORKING SITES IN HIGHER LEARNING

    OpenAIRE

    Mohd Ishak Bin Ismail; Ruzaini Bin Abdullah Arshah

    2016-01-01

    Social networking sites, a web-based application have permeated the boundary between personal lives and student lives. Nowadays, students in higher learning used social networking site such as Facebook to facilitate their learning through the academic collaboration which it further enhances students’ social capital. Social networking site has many advantages to improve students’ learning. To date, Facebook is the leading social networking sites at this time which it being widely used by stude...

  1. Vision-based mobile robot navigation through deep convolutional neural networks and end-to-end learning

    Science.gov (United States)

    Zhang, Yachu; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Kong, Lingqin; Liu, Lingling

    2017-09-01

    In contrast to humans, who use only visual information for navigation, many mobile robots use laser scanners and ultrasonic sensors along with vision cameras to navigate. This work proposes a vision-based robot control algorithm based on deep convolutional neural networks. We create a large 15-layer convolutional neural network learning system and achieve the advanced recognition performance. Our system is trained from end to end to map raw input images to direction in supervised mode. The images of data sets are collected in a wide variety of weather conditions and lighting conditions. Besides, the data sets are augmented by adding Gaussian noise and Salt-and-pepper noise to avoid overfitting. The algorithm is verified by two experiments, which are line tracking and obstacle avoidance. The line tracking experiment is proceeded in order to track the desired path which is composed of straight and curved lines. The goal of obstacle avoidance experiment is to avoid the obstacles indoor. Finally, we get 3.29% error rate on the training set and 5.1% error rate on the test set in the line tracking experiment, 1.8% error rate on the training set and less than 5% error rate on the test set in the obstacle avoidance experiment. During the actual test, the robot can follow the runway centerline outdoor and avoid the obstacle in the room accurately. The result confirms the effectiveness of the algorithm and our improvement in the network structure and train parameters

  2. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  3. ENHANCING NETWORK SECURITY USING 'LEARNING-FROM-SIGNALS' AND FRACTIONAL FOURIER TRANSFORM BASED RF-DNA FINGERPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, Mark A [ORNL; Bobrek, Miljko [ORNL; Farquhar, Ethan [ORNL; Harmer, Paul K [Air Force Institute of Technology; Temple, Michael A [Air Force Institute of Technology

    2011-01-01

    Wireless Access Points (WAP) remain one of the top 10 network security threats. This research is part of an effort to develop a physical (PHY) layer aware Radio Frequency (RF) air monitoring system with multi-factor authentication to provide a first-line of defense for network security--stopping attackers before they can gain access to critical infrastructure networks through vulnerable WAPs. This paper presents early results on the identification of OFDM-based 802.11a WiFi devices using RF Distinct Native Attribute (RF-DNA) fingerprints produced by the Fractional Fourier Transform (FRFT). These fingerprints are input to a "Learning from Signals" (LFS) classifier which uses hybrid Differential Evolution/Conjugate Gradient (DECG) optimization to determine the optimal features for a low-rank model to be used for future predictions. Results are presented for devices under the most challenging conditions of intra-manufacturer classification, i.e., same-manufacturer, same-model, differing only in serial number. The results of Fractional Fourier Domain (FRFD) RF-DNA fingerprints demonstrate significant improvement over results based on Time Domain (TD), Spectral Domain (SD) and even Wavelet Domain (WD) fingerprints.

  4. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    Science.gov (United States)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2017-04-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  5. Generic Learning-Based Ensemble Framework for Small Sample Size Face Recognition in Multi-Camera Networks

    Directory of Open Access Journals (Sweden)

    Cuicui Zhang

    2014-12-01

    Full Text Available Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1 how to define diverse base classifiers from the small data; (2 how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.

  6. Generic Learning-Based Ensemble Framework for Small Sample Size Face Recognition in Multi-Camera Networks.

    Science.gov (United States)

    Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi

    2014-12-08

    Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.

  7. Q-Learning and p-persistent CSMA based rendezvous protocol for cognitive radio networks operating with shared spectrum activity

    Science.gov (United States)

    Watson, Clifton L.; Biswas, Subir

    2014-06-01

    With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.

  8. RLAM: A Dynamic and Efficient Reinforcement Learning-Based Adaptive Mapping Scheme in Mobile WiMAX Networks

    Directory of Open Access Journals (Sweden)

    M. Louta

    2014-01-01

    Full Text Available WiMAX (Worldwide Interoperability for Microwave Access constitutes a candidate networking technology towards the 4G vision realization. By adopting the Orthogonal Frequency Division Multiple Access (OFDMA technique, the latest IEEE 802.16x amendments manage to provide QoS-aware access services with full mobility support. A number of interesting scheduling and mapping schemes have been proposed in research literature. However, they neglect a considerable asset of the OFDMA-based wireless systems: the dynamic adjustment of the downlink-to-uplink width ratio. In order to fully exploit the supported mobile WiMAX features, we design, develop, and evaluate a rigorous adaptive model, which inherits its main aspects from the reinforcement learning field. The model proposed endeavours to efficiently determine the downlink-to-uplinkwidth ratio, on a frame-by-frame basis, taking into account both the downlink and uplink traffic in the Base Station (BS. Extensive evaluation results indicate that the model proposed succeeds in providing quite accurate estimations, keeping the average error rate below 15% with respect to the optimal sub-frame configurations. Additionally, it presents improved performance compared to other learning methods (e.g., learning automata and notable improvements compared to static schemes that maintain a fixed predefined ratio in terms of service ratio and resource utilization.

  9. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...

  10. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    Science.gov (United States)

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  11. Learning Python network programming

    CERN Document Server

    Sarker, M O Faruque

    2015-01-01

    If you're a Python developer or a system administrator with Python experience and you're looking to take your first steps in network programming, then this book is for you. Basic knowledge of Python is assumed.

  12. Explorative and exploitative learning strategies in technology-based alliance networks

    NARCIS (Netherlands)

    Vanhaverbeke, W.P.M.; Beerkens, B.E.; Duysters, G.M.

    2003-01-01

    This paper aims to improve our understanding of how exploitative and explorative learning of firms is enhanced through their social capital. Both types of learning differ considerably from each other and we argue that the distinction between them may be an important contingency factor in explaining

  13. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm.

    Science.gov (United States)

    Lee, Jae-Hong; Kim, Do-Hyung; Jeong, Seong-Nyum; Choi, Seong-Ho

    2018-04-01

    The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.

  14. Ischemia Detection Using Supervised Learning for Hierarchical Neural Networks Based on Kohonen-Maps

    National Research Council Canada - National Science Library

    Vladutu, L

    2001-01-01

    .... The motivation for developing the Supervising Network - Self Organizing Map (sNet-SOM) model is to design computationally effective solutions for the particular problem of ischemia detection and other similar applications...

  15. The networked student: A design-based research case study of student constructed personal learning environments in a middle school science course

    Science.gov (United States)

    Drexler, Wendy

    This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.

  16. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  17. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  18. How Wireless Sensor Networks Can Benefit from Brain Emotional Learning Based Intelligent Controller (BELBIC)

    NARCIS (Netherlands)

    Kalayci, Tahir Emre; Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2011-01-01

    Wireless sensor networks (WSNs) are composed of small sensing and actuating devices that collaboratively monitor a phenomena, process and reason about sensor measurements, and provide adequate feedback or take actions. One of WSNs tasks is event detection, in which occurrence of events of interest

  19. QL-MAC : a Q-learning based MAC for wireless sensor networks

    NARCIS (Netherlands)

    Galzarano, S.; Liotta, A.; Fortino, G.; Aversa, R.; Kolodziej, J.; Zhang, J.; Amato, F.; Fortino, G.

    2013-01-01

    WSNs are becoming an increasingly attractive technology thanks to the significant benefits they can offer to a wide range of application domains. Extending the system lifetime while preserving good network performance is one of the main challenges in WSNs. In this paper, a novel MAC protocol

  20. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  1. An Entropy-Based Kernel Learning Scheme toward Efficient Data Prediction in Cloud-Assisted Network Environments

    Directory of Open Access Journals (Sweden)

    Xiong Luo

    2016-07-01

    Full Text Available With the recent emergence of wireless sensor networks (WSNs in the cloud computing environment, it is now possible to monitor and gather physical information via lots of sensor nodes to meet the requirements of cloud services. Generally, those sensor nodes collect data and send data to sink node where end-users can query all the information and achieve cloud applications. Currently, one of the main disadvantages in the sensor nodes is that they are with limited physical performance relating to less memory for storage and less source of power. Therefore, in order to avoid such limitation, it is necessary to develop an efficient data prediction method in WSN. To serve this purpose, by reducing the redundant data transmission between sensor nodes and sink node while maintaining the required acceptable errors, this article proposes an entropy-based learning scheme for data prediction through the use of kernel least mean square (KLMS algorithm. The proposed scheme called E-KLMS develops a mechanism to maintain the predicted data synchronous at both sides. Specifically, the kernel-based method is able to adjust the coefficients adaptively in accordance with every input, which will achieve a better performance with smaller prediction errors, while employing information entropy to remove these data which may cause relatively large errors. E-KLMS can effectively solve the tradeoff problem between prediction accuracy and computational efforts while greatly simplifying the training structure compared with some other data prediction approaches. What’s more, the kernel-based method and entropy technique could ensure the prediction effect by both improving the accuracy and reducing errors. Experiments with some real data sets have been carried out to validate the efficiency and effectiveness of E-KLMS learning scheme, and the experiment results show advantages of the our method in prediction accuracy and computational time.

  2. Building and Sustaining Learning Networks.

    OpenAIRE

    Bessant, John; Barnes, Justin; Morris, Mike; Kaplinsky, Raphael

    2003-01-01

    Research suggests that there are a number of potential advantages to learning in some form of network which include being able to benefit from other’s experience, being able to reduce the risks in experimentation, being able to engage in challenging reflection and in making use of peer group support. Examples of such configurations can be found in regional clusters, in sector groupings, in heterogeneous groups sharing a common topic of interest, in user groups concerned with le...

  3. Dialogue, Language and Identity: Critical Issues for Networked Management Learning

    Science.gov (United States)

    Ferreday, Debra; Hodgson, Vivien; Jones, Chris

    2006-01-01

    This paper draws on the work of Mikhail Bakhtin and Norman Fairclough to show how dialogue is central to the construction of identity in networked management learning. The paper is based on a case study of a networked management learning course in higher education and attempts to illustrate how participants negotiate issues of difference,…

  4. Mobile Inquiry Based Learning

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 8 November). Mobile Inquiry Based Learning. Presentation given at the Workshop "Mobile inquiry-based learning" at the Mobile Learning Day 2012 at the Fernuniversität Hagen, Hagen, Germany.

  5. Personalizing Access to Learning Networks

    DEFF Research Database (Denmark)

    Dolog, Peter; Simon, Bernd; Nejdl, Wolfgang

    2008-01-01

    In this article, we describe a Smart Space for Learning™ (SS4L) framework and infrastructure that enables personalized access to distributed heterogeneous knowledge repositories. Helping a learner to choose an appropriate learning resource or activity is a key problem which we address in this fra......In this article, we describe a Smart Space for Learning™ (SS4L) framework and infrastructure that enables personalized access to distributed heterogeneous knowledge repositories. Helping a learner to choose an appropriate learning resource or activity is a key problem which we address...... in this framework, enabling personalized access to federated learning repositories with a vast number of learning offers. Our infrastructure includes personalization strategies both at the query and the query results level. Query rewriting is based on learning and language preferences; rule-based and ranking...

  6. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ...) to increase competitive advantage, innovation, and mission effectiveness. Network-based effectiveness occurs due to the influence of various factors such as people, procedures, technology, and organizations...

  7. Placing focus in the place-based spaces of networked learning

    DEFF Research Database (Denmark)

    Ashe, David; Dohn, Nina Bonderup

    2017-01-01

    elements are available and also on how particular individuals interact with the environment. It is tempting to consider a learning environment in terms of a pre-existing “place”— that which is designed by a designer, teacher, or educationalist, and which is separate from the learner who then enters...... a hammer. Similarly, classrooms, equipped with furniture and educational artifacts, seemingly await their teachers and students who then enter and make use of the equipment. However, it is not difficult to imagine scenarios when a hammer is used for other purposes. Educational artifacts certainly often are......, e.g. when a ruler is tapped on the desk to command silence instead of being used for measuring, or a whiteboard pen is held up to illustrate a color instead of being used for writing. Individuals use objects in ways that were not expected, or even considered, by the object’s designer. We will look...

  8. The Significance and Impact of Innovation Networks of Academia and Business with a Special Emphasis on Work-Based Learning

    Directory of Open Access Journals (Sweden)

    Hogeforster Max A.

    2014-10-01

    Full Text Available The Europe 2020 Strategy puts the quality and relevance of education and training systems at the heart of EU’s efforts to improve innovation and competitiveness and to achieve intelligent, sustainable and inclusive growth. The development of partnerships between vocational schools or higher-education institutions and the business sector must be considered as a critical factor in identifying learning requirements, improving the relevance of education and facilitating access to education and learning. The growing lack of skills is one of the major challenges for companies that rely on more highly qualified personnel. To increase the cooperation between academia and the business world means to integrate small and medium-sized enterprises (SMEs, since 99.2 per cent of European businesses are SMEs. They are the blood cells of the European economy and are essential for growth, yet a very heterogeneous group that can only be integrated in cooperation networks by intermediate organisations which tackle the needs of this diverse group of businesses. Such a partnership of 17 universities and polytechnics, including the University of Latvia, was founded in 2010 and is shortly introduced as a best practice example.To stay competitive in the globalised world, companies need to be innovative and that requires cooperation with knowledge institutions. A survey conducted in 2013 revealed that one of the major obstacles for SMEs to improve their innovation capabilities is their inability to find qualified personnel. This corresponds to the huge challenges the labour markets face in Europe. Almost all countries report a growing lack of skilled workforce while at the same time youth unemployment is increasing. This gap between the current qualifications and the qualifications demanded by businesses sector can be overcome by a closer cooperation between enterprises and education facilities, on a national but also international level between Western and Eastern

  9. Performance evaluation in competence-based learning model in higher education scenarios using social network: a case study

    Directory of Open Access Journals (Sweden)

    Katherina Edith GALLARDO CÓRDOVA

    2017-12-01

    Full Text Available A research about performance evaluation was conducted in a graduate online course designed in the Based-Competency Model. Facebook was used as a social and interactive tool that would permit sharing information to illustrate various aspects of diverse educational contexts as well as the impacts of the implementation of improvement projects seen from the beneficiaries’ perspective. Case Study was the methodology selected. Postgraduate students got the task to work on certain improvements on learning assessment matters. The educational scenarios were located in Mexico and Colombia. 7 units of analysis were chosen among 34 possible. The findings pointed out that students worked on their contexts in alignment with the stipulated academic competencies. The use of video materials posted and shared using Facebook allowed get a deeper understanding of the way the benefits influenced in each of the educational communities. Besides, these products evidenced students’ appropriate performance. In conclusion, the use of social networks for fortifying performance assessment is highly recommended. Moreover, it is expected that these benefits also influence some of the curricular and instructional design aspects.

  10. Adaptive competitive learning neural networks

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2013-11-01

    Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.

  11. A functional-dependencies-based Bayesian networks learning method and its application in a mobile commerce system.

    Science.gov (United States)

    Liao, Stephen Shaoyi; Wang, Huai Qing; Li, Qiu Dan; Liu, Wei Yi

    2006-06-01

    This paper presents a new method for learning Bayesian networks from functional dependencies (FD) and third normal form (3NF) tables in relational databases. The method sets up a linkage between the theory of relational databases and probabilistic reasoning models, which is interesting and useful especially when data are incomplete and inaccurate. The effectiveness and practicability of the proposed method is demonstrated by its implementation in a mobile commerce system.

  12. Toward Project-based Learning and Team Formation in Open Learning Environments

    NARCIS (Netherlands)

    Spoelstra, Howard; Van Rosmalen, Peter; Sloep, Peter

    2014-01-01

    Open Learning Environments, MOOCs, as well as Social Learning Networks, embody a new approach to learning. Although both emphasise interactive participation, somewhat surprisingly, they do not readily support bond creating and motivating collaborative learning opportunities. Providing project-based

  13. The Integration of Personal Learning Environments & Open Network Learning Environments

    Science.gov (United States)

    Tu, Chih-Hsiung; Sujo-Montes, Laura; Yen, Cherng-Jyh; Chan, Junn-Yih; Blocher, Michael

    2012-01-01

    Learning management systems traditionally provide structures to guide online learners to achieve their learning goals. Web 2.0 technology empowers learners to create, share, and organize their personal learning environments in open network environments; and allows learners to engage in social networking and collaborating activities. Advanced…

  14. Enhancing Formal E-Learning with Edutainment on Social Networks

    Science.gov (United States)

    Labus, A.; Despotovic-Zrakic, M.; Radenkovic, B.; Bogdanovic, Z.; Radenkovic, M.

    2015-01-01

    This paper reports on the investigation of the possibilities of enhancing the formal e-learning process by harnessing the potential of informal game-based learning on social networks. The goal of the research is to improve the outcomes of the formal learning process through the design and implementation of an educational game on a social network…

  15. Learning of N-layers neural network

    Directory of Open Access Journals (Sweden)

    Vladimír Konečný

    2005-01-01

    Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.

  16. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming; Zhang, Jian

    2009-01-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly

  17. Identifying Gatekeepers in Online Learning Networks

    Science.gov (United States)

    Gursakal, Necmi; Bozkurt, Aras

    2017-01-01

    The rise of the networked society has not only changed our perceptions but also the definitions, roles, processes and dynamics of online learning networks. From offline to online worlds, networks are everywhere and gatekeepers are an important entity in these networks. In this context, the purpose of this paper is to explore gatekeeping and…

  18. Networks and learning in game theory

    NARCIS (Netherlands)

    Kets, W.

    2008-01-01

    This work concentrates on two topics, networks and game theory, and learning in games. The first part of this thesis looks at network games and the role of incomplete information in such games. It is assumed that players are located on a network and interact with their neighbors in the network.

  19. Co-Operative Learning and Development Networks.

    Science.gov (United States)

    Hodgson, V.; McConnell, D.

    1995-01-01

    Discusses the theory, nature, and benefits of cooperative learning. Considers the Cooperative Learning and Development Network (CLDN) trial in the JITOL (Just in Time Open Learning) project and examines the relationship between theories about cooperative learning and the reality of a group of professionals participating in a virtual cooperative…

  20. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  1. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  2. Personal Profiles: Enhancing Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Bitter-Rijpkema, Marlies; Brouns, Francis; Sloep, Peter; Fetter, Sibren

    2009-01-01

    Berlanga, A. J., Bitter-Rijpkema, M., Brouns, F., Sloep, P. B., & Fetter, S. (2011). Personal Profiles: Enhancing Social Interaction in Learning Networks. International Journal of Web Based Communities, 7(1), 66-82.

  3. Learning Initiatives for Network Economies in Asia (LIRNEasia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Learning Initiatives for Network Economies in Asia (LIRNEasia) : Building Capacity in ICT Policy ... LIRNEasia seeks to build capacity for evidence-based interventions in the public policy process by persons attuned to the ... Project status.

  4. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  5. Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2012-07-01

    Full Text Available In this paper, a new algorithm is presented for unsupervised learning of finite mixture models (FMMs using data set with missing values. This algorithm overcomes the local optima problem of the Expectation-Maximization (EM algorithm via integrating the EM algorithm with Particle Swarm Optimization (PSO. In addition, the proposed algorithm overcomes the problem of biased estimation due to overlapping clusters in estimating missing values in the input data set by integrating locally-tuned general regression neural networks with Optimal Completion Strategy (OCS. A comparison study shows the superiority of the proposed algorithm over other algorithms commonly used in the literature in unsupervised learning of FMM parameters that result in minimum mis-classification errors when used in clustering incomplete data set that is generated from overlapping clusters and these clusters are largely different in their sizes.

  6. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  7. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...

  8. THE IMPACTS OF SOCIAL NETWORKING SITES IN HIGHER LEARNING

    Directory of Open Access Journals (Sweden)

    Mohd Ishak Bin Ismail

    2016-02-01

    Full Text Available Social networking sites, a web-based application have permeated the boundary between personal lives and student lives. Nowadays, students in higher learning used social networking site such as Facebook to facilitate their learning through the academic collaboration which it further enhances students’ social capital. Social networking site has many advantages to improve students’ learning. To date, Facebook is the leading social networking sites at this time which it being widely used by students in higher learning to communicate to each other, to carry out academic collaboration and sharing resources. Learning through social networking sites is based on the social interaction which learning are emphasizing on students, real world resources, active students` participation, diversity of learning resources and the use of digital tools to deliver meaningful learning. Many studies found the positive, neutral and negative impact of social networking sites on academic performance. Thus, this study will determine the relationship between Facebook usage and academic achievement. Also, it will investigate the association of social capital and academic collaboration to Facebook usage.

  9. A Contextualised Multi-Platform Framework to Support Blended Learning Scenarios in Learning Networks

    NARCIS (Netherlands)

    De Jong, Tim; Fuertes, Alba; Schmeits, Tally; Specht, Marcus; Koper, Rob

    2008-01-01

    De Jong, T., Fuertes, A., Schmeits, T., Specht, M., & Koper, R. (2009). A Contextualised Multi-Platform Framework to Support Blended Learning Scenarios in Learning Networks. In D. Goh (Ed.), Multiplatform E-Learning Systems and Technologies: Mobile Devices for Ubiquitous ICT-Based Education (pp.

  10. Learning-parameter adjustment in neural networks

    Science.gov (United States)

    Heskes, Tom M.; Kappen, Bert

    1992-06-01

    We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.

  11. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  12. Conditions for Productive Learning in Network Learning Environments

    DEFF Research Database (Denmark)

    Ponti, M.; Dirckinck-Holmfeld, Lone; Lindström, B.

    2004-01-01

    are designed without a deep understanding of the pedagogical, communicative and collaborative conditions embedded in networked learning. Despite the existence of good theoretical views pointing to a social understanding of learning, rather than a traditional individualistic and information processing approach......The Kaleidoscope1 Jointly Executed Integrating Research Project (JEIRP) on Conditions for Productive Networked Learning Environments is developing and elaborating conceptual understandings of Computer Supported Collaborative Learning (CSCL) emphasizing the use of cross-cultural comparative......: Pedagogical design and the dialectics of the digital artefacts, the concept of collaboration, ethics/trust, identity and the role of scaffolding of networked learning environments.   The JEIRP is motivated by the fact that many networked learning environments in various European educational settings...

  13. Stochastic sensitivity analysis and Langevin simulation for neural network learning

    International Nuclear Information System (INIS)

    Koda, Masato

    1997-01-01

    A comprehensive theoretical framework is proposed for the learning of a class of gradient-type neural networks with an additive Gaussian white noise process. The study is based on stochastic sensitivity analysis techniques, and formal expressions are obtained for stochastic learning laws in terms of functional derivative sensitivity coefficients. The present method, based on Langevin simulation techniques, uses only the internal states of the network and ubiquitous noise to compute the learning information inherent in the stochastic correlation between noise signals and the performance functional. In particular, the method does not require the solution of adjoint equations of the back-propagation type. Thus, the present algorithm has the potential for efficiently learning network weights with significantly fewer computations. Application to an unfolded multi-layered network is described, and the results are compared with those obtained by using a back-propagation method

  14. Bayesian network learning for natural hazard assessments

    Science.gov (United States)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables

  15. Classification of Incomplete Data Based on Evidence Theory and an Extreme Learning Machine in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Yang; Liu, Yun; Chao, Han-Chieh; Zhang, Zhenjiang; Zhang, Zhiyuan

    2018-03-30

    In wireless sensor networks, the classification of incomplete data reported by sensor nodes is an open issue because it is difficult to accurately estimate the missing values. In many cases, the misclassification is unacceptable considering that it probably brings catastrophic damages to the data users. In this paper, a novel classification approach of incomplete data is proposed to reduce the misclassification errors. This method uses the regularized extreme learning machine to estimate the potential values of missing data at first, and then it converts the estimations into multiple classification results on the basis of the distance between interval numbers. Finally, an evidential reasoning rule is adopted to fuse these classification results. The final decision is made according to the combined basic belief assignment. The experimental results show that this method has better performance than other traditional classification methods of incomplete data.

  16. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  17. Stochastic Variational Learning in Recurrent Spiking Networks

    Directory of Open Access Journals (Sweden)

    Danilo eJimenez Rezende

    2014-04-01

    Full Text Available The ability to learn and perform statistical inference with biologically plausible recurrent network of spiking neurons is an important step towards understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators conveying information about ``novelty on a statistically rigorous ground.Simulations show that our model is able to learn bothstationary and non-stationary patterns of spike trains.We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  18. Stochastic variational learning in recurrent spiking networks.

    Science.gov (United States)

    Jimenez Rezende, Danilo; Gerstner, Wulfram

    2014-01-01

    The ability to learn and perform statistical inference with biologically plausible recurrent networks of spiking neurons is an important step toward understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators) conveying information about "novelty" on a statistically rigorous ground. Simulations show that our model is able to learn both stationary and non-stationary patterns of spike trains. We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  19. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  20. Students' Feedback of mDPBL Approach and the Learning Impact towards Computer Networks Teaching and Learning

    Science.gov (United States)

    Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook

    2018-01-01

    This study presents students' feedback and learning impact on design and development of a multimedia learning in Direct Problem-Based Learning approach (mDPBL) for Computer Networks in Dian Nuswantoro University, Indonesia. This study examined the usefulness, contents and navigation of the multimedia learning as well as learning impacts towards…

  1. Learning in innovation networks: Some simulation experiments

    Science.gov (United States)

    Gilbert, Nigel; Ahrweiler, Petra; Pyka, Andreas

    2007-05-01

    According to the organizational learning literature, the greatest competitive advantage a firm has is its ability to learn. In this paper, a framework for modeling learning competence in firms is presented to improve the understanding of managing innovation. Firms with different knowledge stocks attempt to improve their economic performance by engaging in radical or incremental innovation activities and through partnerships and networking with other firms. In trying to vary and/or to stabilize their knowledge stocks by organizational learning, they attempt to adapt to environmental requirements while the market strongly selects on the results. The simulation experiments show the impact of different learning activities, underlining the importance of innovation and learning.

  2. Network Learning and Innovation in SME Formal Networks

    Directory of Open Access Journals (Sweden)

    Jivka Deiters

    2013-02-01

    Full Text Available The driver for this paper is the need to better understand the potential for learning and innovation that networks canprovide especially for small and medium sized enterprises (SMEs which comprise by far the majority of enterprises in the food sector. With the challenges the food sector is facing in the near future, learning and innovation or more focused, as it is being discussed in the paper, ‘learning for innovation’ are not just opportunities but pre‐conditions for the sustainability of the sector. Network initiatives that could provide appropriate support involve social interaction and knowledge exchange, learning, competence development, and coordination (organization and management of implementation. The analysis identifies case studies in any of these orientations which serve different stages of the innovation process: invention and implementation. The variety of network case studies cover networks linked to a focus group for training, research, orconsulting, networks dealing with focused market oriented product or process development, promotional networks, and networks for open exchange and social networking.

  3. Deep learning in neural networks: an overview.

    Science.gov (United States)

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

  4. Cryptography based on neural networks - analytical results

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Kanter, Ido; Kinzel, Wolfgang

    2002-01-01

    The mutual learning process between two parity feed-forward networks with discrete and continuous weights is studied analytically, and we find that the number of steps required to achieve full synchronization between the two networks in the case of discrete weights is finite. The synchronization process is shown to be non-self-averaging and the analytical solution is based on random auxiliary variables. The learning time of an attacker that is trying to imitate one of the networks is examined analytically and is found to be much longer than the synchronization time. Analytical results are found to be in agreement with simulations. (letter to the editor)

  5. Inquiry based learning as didactic model in distant learning

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.

    2015-01-01

    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves

  6. Edmodo social learning network for elementary school mathematics learning

    Science.gov (United States)

    Ariani, Y.; Helsa, Y.; Ahmad, S.; Prahmana, RCI

    2017-12-01

    A developed instructional media can be as printed media, visual media, audio media, and multimedia. The development of instructional media can also take advantage of technological development by utilizing Edmodo social network. This research aims to develop a digital classroom learning model using Edmodo social learning network for elementary school mathematics learning which is practical, valid and effective in order to improve the quality of learning activities. The result of this research showed that the prototype of mathematics learning device for elementary school students using Edmodo was in good category. There were 72% of students passed the assessment as a result of Edmodo learning. Edmodo has become a promising way to engage students in a collaborative learning process.

  7. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    -being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...

  8. What Online Networks Offer: "Online Network Compositions and Online Learning Experiences of Three Ethnic Groups"

    Science.gov (United States)

    Lecluijze, Suzanne Elisabeth; de Haan, Mariëtte; Ünlüsoy, Asli

    2015-01-01

    This exploratory study examines ethno-cultural diversity in youth's narratives regarding their "online" learning experiences while also investigating how these narratives can be understood from the analysis of their online network structure and composition. Based on ego-network data of 79 respondents this study compared the…

  9. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  10. Problem Based Learning

    DEFF Research Database (Denmark)

    de Graaff, Erik; Guerra, Aida

    , the key principles remain the same everywhere. Graaff & Kolmos (2003) identify the main PBL principles as follows: 1. Problem orientation 2. Project organization through teams or group work 3. Participant-directed 4. Experiental learning 5. Activity-based learning 6. Interdisciplinary learning and 7...... model and in general problem based and project based learning. We apply the principle of teach as you preach. The poster aims to outline the visitors’ workshop programme showing the results of some recent evaluations.......Problem-Based Learning (PBL) is an innovative method to organize the learning process in such a way that the students actively engage in finding answers by themselves. During the past 40 years PBL has evolved and diversified resulting in a multitude in variations in models and practices. However...

  11. Social Networking Sites and Language Learning

    Science.gov (United States)

    Brick, Billy

    2011-01-01

    This article examines a study of seven learners who logged their experiences on the language leaning social networking site Livemocha over a period of three months. The features of the site are described and the likelihood of their future success is considered. The learners were introduced to the Social Networking Site (SNS) and asked to learn a…

  12. Adaptive Learning in Weighted Network Games

    NARCIS (Netherlands)

    Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank

    2017-01-01

    This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for

  13. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using

  14. Logic Learning in Hopfield Networks

    OpenAIRE

    Sathasivam, Saratha; Abdullah, Wan Ahmad Tajuddin Wan

    2008-01-01

    Synaptic weights for neurons in logic programming can be calculated either by using Hebbian learning or by Wan Abdullah's method. In other words, Hebbian learning for governing events corresponding to some respective program clauses is equivalent with learning using Wan Abdullah's method for the same respective program clauses. In this paper we will evaluate experimentally the equivalence between these two types of learning through computer simulations.

  15. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.

    Science.gov (United States)

    Chen-Ying Hung; Wei-Chen Chen; Po-Tsun Lai; Ching-Heng Lin; Chi-Chun Lee

    2017-07-01

    Electronic medical claims (EMCs) can be used to accurately predict the occurrence of a variety of diseases, which can contribute to precise medical interventions. While there is a growing interest in the application of machine learning (ML) techniques to address clinical problems, the use of deep-learning in healthcare have just gained attention recently. Deep learning, such as deep neural network (DNN), has achieved impressive results in the areas of speech recognition, computer vision, and natural language processing in recent years. However, deep learning is often difficult to comprehend due to the complexities in its framework. Furthermore, this method has not yet been demonstrated to achieve a better performance comparing to other conventional ML algorithms in disease prediction tasks using EMCs. In this study, we utilize a large population-based EMC database of around 800,000 patients to compare DNN with three other ML approaches for predicting 5-year stroke occurrence. The result shows that DNN and gradient boosting decision tree (GBDT) can result in similarly high prediction accuracies that are better compared to logistic regression (LR) and support vector machine (SVM) approaches. Meanwhile, DNN achieves optimal results by using lesser amounts of patient data when comparing to GBDT method.

  16. Competition-Based Learning: A Model for the Integration of Competitions with Project-Based Learning Using Open Source LMS

    Science.gov (United States)

    Issa, Ghassan; Hussain, Shakir M.; Al-Bahadili, Hussein

    2014-01-01

    In an effort to enhance the learning process in higher education, a new model for Competition-Based Learning (CBL) is presented. The new model utilizes two well-known learning models, namely, the Project-Based Learning (PBL) and competitions. The new model is also applied in a networked environment with emphasis on collective learning as well as…

  17. Functionality for learning networks: lessons learned from social web applications

    NARCIS (Netherlands)

    Berlanga, Adriana; Sloep, Peter; Brouns, Francis; Van Rosmalen, Peter; Bitter-Rijpkema, Marlies; Koper, Rob

    2007-01-01

    Berlanga, A. J., Sloep, P., Brouns, F., Van Rosmalen, P., Bitter-Rijpkema, M., & Koper, R. (2007). Functionality for learning networks: lessons learned from social web applications. Proceedings of the ePortfolio 2007 Conference. October, 18-19, 2007, Maastricht, The Netherlands. [See also

  18. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  19. Interconnecting Networks of Practice for Professional Learning

    Directory of Open Access Journals (Sweden)

    Julie Mackey

    2011-03-01

    Full Text Available The article explores the complementary connections between communities of practice and the ways in which individuals orchestrate their engagement with others to further their professional learning. It does so by reporting on part of a research project conducted in New Zealand on teachers’ online professional learning in a university graduate diploma program on ICT education. Evolving from social constructivist pedagogy for online professional development, the research describes how teachers create their own networks of practice as they blend online and offline interactions with fellow learners and workplace colleagues. Teachers’ perspectives of their professional learning activities challenge the way universities design formal online learning communities and highlight the potential for networked learning in the zones and intersections between professional practice and study.The article extends the concepts of Lave and Wenger’s (1991 communities of practice social theory of learning by considering the role participants play in determining their engagement and connections in and across boundaries between online learning communities and professional practice. It provides insights into the applicability of connectivist concepts for developing online pedagogies to promote socially networked learning and for emphasising the role of the learner in defining their learning pathways.

  20. Elements of Network-Based Assessment

    Science.gov (United States)

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  1. Language, Learning, and Identity in Social Networking Sites for Language Learning: The Case of Busuu

    Science.gov (United States)

    Alvarez Valencia, Jose Aldemar

    2014-01-01

    Recent progress in the discipline of computer applications such as the advent of web-based communication, afforded by the Web 2.0, has paved the way for novel applications in language learning, namely, social networking. Social networking has challenged the area of Computer Mediated Communication (CMC) to expand its research palette in order to…

  2. Using Social Networks to Enhance Teaching and Learning Experiences in Higher Learning Institutions

    Science.gov (United States)

    Balakrishnan, Vimala

    2014-01-01

    The paper first explores the factors that affect the use of social networks to enhance teaching and learning experiences among students and lecturers, using structured questionnaires prepared based on the Push-Pull-Mooring framework. A total of 455 students and lecturers from higher learning institutions in Malaysia participated in this study.…

  3. Machine Learning Topological Invariants with Neural Networks

    Science.gov (United States)

    Zhang, Pengfei; Shen, Huitao; Zhai, Hui

    2018-02-01

    In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.

  4. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  5. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    Science.gov (United States)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  6. Problem-based learning

    NARCIS (Netherlands)

    Loyens, Sofie; Kirschner, Paul A.; Paas, Fred

    2010-01-01

    Loyens, S. M. M., Kirschner, P. A., & Paas, F. (2011). Problem-based learning. In S. Graham (Editor-in-Chief), A. Bus, S. Major, & L. Swanson (Associate Editors), APA educational psychology handbook: Vol. 3. Application to learning and teaching (pp. 403-425). Washington, DC: American Psychological

  7. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  8. Machine-Learning Classifier for Patients with Major Depressive Disorder: Multifeature Approach Based on a High-Order Minimum Spanning Tree Functional Brain Network.

    Science.gov (United States)

    Guo, Hao; Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%.

  9. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  10. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  11. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    Science.gov (United States)

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Covariance-based synaptic plasticity in an attractor network model accounts for fast adaptation in free operant learning.

    Science.gov (United States)

    Neiman, Tal; Loewenstein, Yonatan

    2013-01-23

    In free operant experiments, subjects alternate at will between targets that yield rewards stochastically. Behavior in these experiments is typically characterized by (1) an exponential distribution of stay durations, (2) matching of the relative time spent at a target to its relative share of the total number of rewards, and (3) adaptation after a change in the reward rates that can be very fast. The neural mechanism underlying these regularities is largely unknown. Moreover, current decision-making neural network models typically aim at explaining behavior in discrete-time experiments in which a single decision is made once in every trial, making these models hard to extend to the more natural case of free operant decisions. Here we show that a model based on attractor dynamics, in which transitions are induced by noise and preference is formed via covariance-based synaptic plasticity, can account for the characteristics of behavior in free operant experiments. We compare a specific instance of such a model, in which two recurrently excited populations of neurons compete for higher activity, to the behavior of rats responding on two levers for rewarding brain stimulation on a concurrent variable interval reward schedule (Gallistel et al., 2001). We show that the model is consistent with the rats' behavior, and in particular, with the observed fast adaptation to matching behavior. Further, we show that the neural model can be reduced to a behavioral model, and we use this model to deduce a novel "conservation law," which is consistent with the behavior of the rats.

  13. Network Enabled - Unresolved Residual Analysis and Learning (NEURAL)

    Science.gov (United States)

    Temple, D.; Poole, M.; Camp, M.

    Since the advent of modern computational capacity, machine learning algorithms and techniques have served as a method through which to solve numerous challenging problems. However, for machine learning methods to be effective and robust, sufficient data sets must be available; specifically, in the space domain, these are generally difficult to acquire. Rapidly evolving commercial space-situational awareness companies boast the capability to collect hundreds of thousands nightly observations of resident space objects (RSOs) using a ground-based optical sensor network. This provides the ability to maintain custody of and characterize thousands of objects persistently. With this information available, novel deep learning techniques can be implemented. The technique discussed in this paper utilizes deep learning to make distinctions between nightly data collects with and without maneuvers. Implementation of these techniques will allow the data collected from optical ground-based networks to enable well informed and timely the space domain decision making.

  14. The TENCompetence Infrastructure: A Learning Network Implementation

    Science.gov (United States)

    Vogten, Hubert; Martens, Harrie; Lemmers, Ruud

    The TENCompetence project developed a first release of a Learning Network infrastructure to support individuals, groups and organisations in professional competence development. This infrastructure Learning Network infrastructure was released as open source to the community thereby allowing users and organisations to use and contribute to this development as they see fit. The infrastructure consists of client applications providing the user experience and server components that provide the services to these clients. These services implement the domain model (Koper 2006) by provisioning the entities of the domain model (see also Sect. 18.4) and henceforth will be referenced as domain entity services.

  15. Networked Learning and Network Science: Potential Applications to Health Professionals' Continuing Education and Development.

    Science.gov (United States)

    Margolis, Alvaro; Parboosingh, John

    2015-01-01

    Prior interpersonal relationships and interactivity among members of professional associations may impact the learning process in continuing medical education (CME). On the other hand, CME programs that encourage interactivity between participants may impact structures and behaviors in these professional associations. With the advent of information and communication technologies, new communication spaces have emerged that have the potential to enhance networked learning in national and international professional associations and increase the effectiveness of CME for health professionals. In this article, network science, based on the application of network theory and other theories, is proposed as an approach to better understand the contribution networking and interactivity between health professionals in professional communities make to their learning and adoption of new practices over time. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  16. Social Networks: Rational Learning and Information Aggregation

    Science.gov (United States)

    2009-09-01

    predecessor, Gale and Kariv (2003) who generalize the payoff equalization result of Bala and Goyal (1998) in connected social networks (discussed below...requires more notation. Using Bayes’ Rule and the assumption of equal priors on the state θ, we have that the social belief given by observing... Social Networks: Rational Learning and Information Aggregation by Ilan Lobel B.Sc., Pontif́ıcia Universidade Católica do Rio de Janeiro (2004

  17. Learning Transferable Features with Deep Adaptation Networks

    OpenAIRE

    Long, Mingsheng; Cao, Yue; Wang, Jianmin; Jordan, Michael I.

    2015-01-01

    Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is important to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation...

  18. Lessons Learned from the Young Breast Cancer Survivorship Network.

    Science.gov (United States)

    Gisiger-Camata, Silvia; Nolan, Timiya S; Vo, Jacqueline B; Bail, Jennifer R; Lewis, Kayla A; Meneses, Karen

    2017-11-30

    The Young Breast Cancer Survivors Network (Network) is an academic and community-based partnership dedicated to education, support, and networking. The Network used a multi-pronged approach via monthly support and networking, annual education seminars, website networking, and individual survivor consultation. Formative and summative evaluations were conducted using group survey and individual survivor interviews for monthly gatherings, annual education meetings, and individual consultation. Google Analytics was applied to evaluate website use. The Network began with 4 initial partnerships and grew to 38 in the period from 2011 to 2017. During this 5-year period, 5 annual meetings (598 attendees), 23 support and networking meetings (373), and 115 individual survivor consultations were conducted. The Network website had nearly 12,000 individual users and more than 25,000 page views. Lessons learned include active community engagement, survivor empowerment, capacity building, social media outreach, and network sustainability. The 5-year experiences with the Network demonstrated that a regional program dedicated to the education, support, networking, and needs of young breast cancer survivors and their families can become a vital part of cancer survivorship services in a community. Strong community support, engagement, and encouragement were vital components to sustain the program.

  19. Logarithmic learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Cut Based Method for Comparing Complex Networks.

    Science.gov (United States)

    Liu, Qun; Dong, Zhishan; Wang, En

    2018-03-23

    Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.

  1. Learning Tools for Knowledge Nomads: Using Personal Digital Assistants (PDAs) in Web-based Learning Environments.

    Science.gov (United States)

    Loh, Christian Sebastian

    2001-01-01

    Examines how mobile computers, or personal digital assistants (PDAs), can be used in a Web-based learning environment. Topics include wireless networks on college campuses; online learning; Web-based learning technologies; synchronous and asynchronous communication via the Web; content resources; Web connections; and collaborative learning. (LRW)

  2. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  3. Learning-induced pattern classification in a chaotic neural network

    International Nuclear Information System (INIS)

    Li, Yang; Zhu, Ping; Xie, Xiaoping; He, Guoguang; Aihara, Kazuyuki

    2012-01-01

    In this Letter, we propose a Hebbian learning rule with passive forgetting (HLRPF) for use in a chaotic neural network (CNN). We then define the indices based on the Euclidean distance to investigate the evolution of the weights in a simplified way. Numerical simulations demonstrate that, under suitable external stimulations, the CNN with the proposed HLRPF acts as a fuzzy-like pattern classifier that performs much better than an ordinary CNN. The results imply relationship between learning and recognition. -- Highlights: ► Proposing a Hebbian learning rule with passive forgetting (HLRPF). ► Defining indices to investigate the evolution of the weights simply. ► The chaotic neural network with HLRPF acts as a fuzzy-like pattern classifier. ► The pattern classifier ability of the network is improved much.

  4. Reinforcement learning account of network reciprocity.

    Science.gov (United States)

    Ezaki, Takahiro; Masuda, Naoki

    2017-01-01

    Evolutionary game theory predicts that cooperation in social dilemma games is promoted when agents are connected as a network. However, when networks are fixed over time, humans do not necessarily show enhanced mutual cooperation. Here we show that reinforcement learning (specifically, the so-called Bush-Mosteller model) approximately explains the experimentally observed network reciprocity and the lack thereof in a parameter region spanned by the benefit-to-cost ratio and the node's degree. Thus, we significantly extend previously obtained numerical results.

  5. Reinforcement learning account of network reciprocity.

    Directory of Open Access Journals (Sweden)

    Takahiro Ezaki

    Full Text Available Evolutionary game theory predicts that cooperation in social dilemma games is promoted when agents are connected as a network. However, when networks are fixed over time, humans do not necessarily show enhanced mutual cooperation. Here we show that reinforcement learning (specifically, the so-called Bush-Mosteller model approximately explains the experimentally observed network reciprocity and the lack thereof in a parameter region spanned by the benefit-to-cost ratio and the node's degree. Thus, we significantly extend previously obtained numerical results.

  6. Learning State Space Dynamics in Recurrent Networks

    Science.gov (United States)

    Simard, Patrice Yvon

    Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.

  7. Learning and Model-checking Networks of I/O Automata

    DEFF Research Database (Denmark)

    Mao, Hua; Jaeger, Manfred

    2012-01-01

    We introduce a new statistical relational learning (SRL) approach in which models for structured data, especially network data, are constructed as networks of communicating nite probabilistic automata. Leveraging existing automata learning methods from the area of grammatical inference, we can...... learn generic models for network entities in the form of automata templates. As is characteristic for SRL techniques, the abstraction level aorded by learning generic templates enables one to apply the learned model to new domains. A main benet of learning models based on nite automata lies in the fact...

  8. Networked Learning in 70001 Programs.

    Science.gov (United States)

    Fine, Marija Futchs

    The 7000l Training and Employment Institute offers self-paced instruction through the use of computers and audiovisual materials to young people to improve opportunities for success in the work force. In 1988, four sites were equipped with Apple stand-alone software in an integrated learning system that included courses in reading and math, test…

  9. Gamification of learning deactivates the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Paul Alexander Howard-Jones

    2016-01-01

    Full Text Available We hypothesised that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN and deactivation of Default Mode Network (DMN regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer, Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards. DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  10. Gamification of Learning Deactivates the Default Mode Network.

    Science.gov (United States)

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  11. Evolving autonomous learning in cognitive networks.

    Science.gov (United States)

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  12. Networking and distance learning for teachers: A classification of possibilities

    NARCIS (Netherlands)

    Collis, Betty

    1995-01-01

    Computer based communication technologies, or what could be more conveniently called networking, are bringing new possibilities into teacher education in many different ways. As with distance education more generally they can facilitate flexibility in time and place of learning, but the range of

  13. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Science.gov (United States)

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  14. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    2017-01-01

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  15. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    Science.gov (United States)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  16. Social Networking Sites as a Learning Tool

    Science.gov (United States)

    Sanchez-Casado, Noelia; Cegarra Navarro, Juan Gabriel; Wensley, Anthony; Tomaseti-Solano, Eva

    2016-01-01

    Purpose: Over the past few years, social networking sites (SNSs) have become very useful for firms, allowing companies to manage the customer-brand relationships. In this context, SNSs can be considered as a learning tool because of the brand knowledge that customers develop from these relationships. Because of the fact that knowledge in…

  17. Social Networking Services in E-Learning

    Science.gov (United States)

    Weber, Peter; Rothe, Hannes

    2016-01-01

    This paper is a report on the findings of a study conducted on the use of the social networking service NING in a cross-location e-learning setting named "Net Economy." We describe how we implemented NING as a fundamental part of the setting through a special phase concept and team building approach. With the help of user statistics, we…

  18. Learning to trust : network effects through time.

    NARCIS (Netherlands)

    Barrera, D.; Bunt, G. van de

    2009-01-01

    This article investigates the effects of information originating from social networks on the development of interpersonal trust relations in the context of a dialysis department of a Dutch medium-sized hospital. Hypotheses on learning effects are developed from existing theories and tested using

  19. Learning to trust: network effects through time

    NARCIS (Netherlands)

    Barrera, D.; van de Bunt, G

    2009-01-01

    This article investigates the effects of information originating from social networks on the development of interpersonal trust relations in the context of a dialysis department of a Dutch medium-sized hospital. Hypotheses on learning effects are developed from existing theories and tested using

  20. Learning in Networks for Sustainable Development

    NARCIS (Netherlands)

    Lansu, Angelique; Boon, Jo; Sloep, Peter; Van Dam-Mieras, Rietje

    2010-01-01

    The didactic model of remote internships described in this study provides the flexibility needed to support networked learners, i.e. to facilitate the development and subsequent assessment of their competences. The heterogeneity of the participants (students, employers, tutors) in the learning

  1. Unraveling networked learning initiatives: an analytic framework

    NARCIS (Netherlands)

    Rusman, Ellen; Prinsen, Fleur; Vermeulen, Marjan

    2016-01-01

    Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences

  2. Identifying Students' Difficulties When Learning Technical Skills via a Wireless Sensor Network

    Science.gov (United States)

    Wang, Jingying; Wen, Ming-Lee; Jou, Min

    2016-01-01

    Practical training and actual application of acquired knowledge and techniques are crucial for the learning of technical skills. We established a wireless sensor network system (WSNS) based on the 5E learning cycle in a practical learning environment to improve students' reflective abilities and to reduce difficulties for the learning of technical…

  3. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    Science.gov (United States)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  4. Learning by stimulation avoidance: A principle to control spiking neural networks dynamics.

    Science.gov (United States)

    Sinapayen, Lana; Masumori, Atsushi; Ikegami, Takashi

    2017-01-01

    Learning based on networks of real neurons, and learning based on biologically inspired models of neural networks, have yet to find general learning rules leading to widespread applications. In this paper, we argue for the existence of a principle allowing to steer the dynamics of a biologically inspired neural network. Using carefully timed external stimulation, the network can be driven towards a desired dynamical state. We term this principle "Learning by Stimulation Avoidance" (LSA). We demonstrate through simulation that the minimal sufficient conditions leading to LSA in artificial networks are also sufficient to reproduce learning results similar to those obtained in biological neurons by Shahaf and Marom, and in addition explains synaptic pruning. We examined the underlying mechanism by simulating a small network of 3 neurons, then scaled it up to a hundred neurons. We show that LSA has a higher explanatory power than existing hypotheses about the response of biological neural networks to external simulation, and can be used as a learning rule for an embodied application: learning of wall avoidance by a simulated robot. In other works, reinforcement learning with spiking networks can be obtained through global reward signals akin simulating the dopamine system; we believe that this is the first project demonstrating sensory-motor learning with random spiking networks through Hebbian learning relying on environmental conditions without a separate reward system.

  5. Researching Design, Experience and Practice of Networked Learning

    DEFF Research Database (Denmark)

    Hodgson, Vivien; de Laat, Maarten; McConnell, David

    2014-01-01

    and final section draws attention to a growing topic of interest within networked learning: that of networked learning in informal practices. In addition, we provide a reflection on the theories, methods and settings featured in the networked learning research of the chapters. We conclude the introduction...

  6. Collaborative Supervised Learning for Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  7. Globally Networked Collaborative Learning in Industrial Design

    Science.gov (United States)

    Bohemia, Erik; Ghassan, Aysar

    2012-01-01

    This article explores project-based cross-cultural and cross-institutional learning. Using Web 2.0 technologies, this project involved more than 240 students and eighteen academic staff from seven international universities. The focus of this article relates to a project-based learning activity named "The Gift". At each institution the…

  8. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  9. Helping Children Actively Design How They Learn about Health and Wellness: The Institute of Play Tests an Online Social Networking Tool within a Game-Based School Curriculum. Program Results Report

    Science.gov (United States)

    Parker, Susan

    2011-01-01

    Youth rarely receive opportunities to craft their own strategies around health and wellness within contexts relevant to them. From 2009 to 2010, the Institute of Play, based in New York, developed Being Me, a social networking site, to enable sixth-graders at the Quest to Learn public school to explore, discover and document a range of ideas…

  10. DiNAMAC : A disruption tolerant, reinforcement learning-based Mac protocol for implantable body sensor networks

    NARCIS (Netherlands)

    Karuppiah Ramachandran, Vignesh Raja; Le Viet Duc, L Duc; Meratnia, Nirvana; Havinga, Paul J.M.

    Ongoing advancements in Body Sensor Networks (BSN) have enabled continuous health monitoring of chronically ill patients, with the use of implantable and body worn sensor nodes. Inevitable day-to-day activities such as walking, running, and sleeping cause severe disruptions in the wireless link

  11. Factors that influence cooperation in networks for innovation and learning

    NARCIS (Netherlands)

    Sie, Rory; Bitter-Rijpkema, Marlies; Stoyanov, Slavi; Sloep, Peter

    2018-01-01

    Networked cooperation fails if the available partnerships remain opaque. A literature review and Delphi study uncovered the elements of a fruitful partnership. They relate to personality, diversity, cooperation, and management. Innovation networks and learning networks share the same cooperative

  12. The Role of Electronic Learning Technology in Networks Systems

    International Nuclear Information System (INIS)

    Abd ELhamid, A.; Ayad, N.M.A.; Fouad, Y.; Abdelkader, T.

    2016-01-01

    Recently, Electronic Learning Technology (ELT) has been widely spread as one of the new technologies in the world through using Information and Communication Technology (ICT). One of the strategies of ELT is Simulation, for instance Military and Medical simulations that are used to avoid risks and reduce Costs. A wireless communication network refers to any network not physically connected by cables, which enables the desired convenience and mobility for the user. Wireless communication networks have been useful in areas such as commerce, education and defense. According to the nature of a particular application, they can be used in home-based and industrial systems or in commercial and military environments. Historically, Mobile Ad-hoc Networks (MANET) have primarily been used for tactical military network related applications to improve battlefield communications/ survivability. MANET is a collection of wireless nodes that can dynamically be set up anywhere and anytime without using any pre-existing network infrastructure. Mobility in wireless networks basically refers to nodes changing its point of attachment to the network. Also, how the end terminals can move, there are many mobility models described the movement of nodes, many researchers use the Random Way point Mobility Model (RWPM). In this paper, a Graphical User Interface (GUI) for RWPM simulation is introduced as a proposal to be used through ELT Project. In the research area of computer and communications networks, simulation is a very useful technique for the behavior of networks

  13. Note-Taking Evaluation Using Network Illustrations Based on Term Co-Occurrence in a Blended Learning Environment

    Science.gov (United States)

    Nakayama, Minoru; Mutsuura, Kouichi; Yamamoto, Hiroh

    2016-01-01

    Note contents taken by students during a blended learning course were evaluated, to improve the quality of university instruction. To conduct a quantitative comparison of the contents of all notes for effective instruction from lecturer to students to occur, the contents were mathematically compared and evaluated using two ways of summarizing the…

  14. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  15. Sparse dictionary learning of resting state fMRI networks.

    Science.gov (United States)

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  16. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    Science.gov (United States)

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  17. Systemwide Implementation of Project-Based Learning: The Philadelphia Approach

    Science.gov (United States)

    Schwalm, Jason; Tylek, Karen Smuck

    2012-01-01

    Citywide implementation of project-based learning highlights the benefits--and the challenges--of promoting exemplary practices across an entire out-of-school time (OST) network. In summer 2009, the City of Philadelphia and its intermediary, the Public Health Management Corporation (PHMC), introduced project-based learning to a network of more…

  18. Impact of censoring on learning Bayesian networks in survival modelling.

    Science.gov (United States)

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from

  19. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  20. Toward Bulk Synchronous Parallel-Based Machine Learning Techniques for Anomaly Detection in High-Speed Big Data Networks

    Directory of Open Access Journals (Sweden)

    Kamran Siddique

    2017-09-01

    Full Text Available Anomaly detection systems, also known as intrusion detection systems (IDSs, continuously monitor network traffic aiming to identify malicious actions. Extensive research has been conducted to build efficient IDSs emphasizing two essential characteristics. The first is concerned with finding optimal feature selection, while another deals with employing robust classification schemes. However, the advent of big data concepts in anomaly detection domain and the appearance of sophisticated network attacks in the modern era require some fundamental methodological revisions to develop IDSs. Therefore, we first identify two more significant characteristics in addition to the ones mentioned above. These refer to the need for employing specialized big data processing frameworks and utilizing appropriate datasets for validating system’s performance, which is largely overlooked in existing studies. Afterwards, we set out to develop an anomaly detection system that comprehensively follows these four identified characteristics, i.e., the proposed system (i performs feature ranking and selection using information gain and automated branch-and-bound algorithms respectively; (ii employs logistic regression and extreme gradient boosting techniques for classification; (iii introduces bulk synchronous parallel processing to cater computational requirements of high-speed big data networks; and; (iv uses the Infromation Security Centre of Excellence, of the University of Brunswick real-time contemporary dataset for performance evaluation. We present experimental results that verify the efficacy of the proposed system.

  1. PARTNERS IN LEARNING NETWORK FOR UKRAINIAN TEACHERS

    Directory of Open Access Journals (Sweden)

    K. Sereda

    2011-05-01

    Full Text Available The network «Partners in Learning Network» is presented in the article – the Ukrainian segment of global educational community. PILN is created with support of the Microsoft company for teachers who use information communication technology in their professional work. The PILN's purpose and value for Ukrainian teachers, for their professional dialogue and collaboration are described in the article. Functions of PILN's communities for teacher’s cooperation, the joint decision of questions and an exchange of ideas and of technique, teaching tools for increase of level of ICT introduction in educational process are described.

  2. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  3. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  4. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  5. Learning Negotiation Policies Using IB3 and Bayesian Networks

    Science.gov (United States)

    Nalepa, Gislaine M.; Ávila, Bráulio C.; Enembreck, Fabrício; Scalabrin, Edson E.

    This paper presents an intelligent offer policy in a negotiation environment, in which each agent involved learns the preferences of its opponent in order to improve its own performance. Each agent must also be able to detect drifts in the opponent's preferences so as to quickly adjust itself to their new offer policy. For this purpose, two simple learning techniques were first evaluated: (i) based on instances (IB3) and (ii) based on Bayesian Networks. Additionally, as its known that in theory group learning produces better results than individual/single learning, the efficiency of IB3 and Bayesian classifier groups were also analyzed. Finally, each decision model was evaluated in moments of concept drift, being the drift gradual, moderate or abrupt. Results showed that both groups of classifiers were able to effectively detect drifts in the opponent's preferences.

  6. Learning in Neural Networks: VLSI Implementation Strategies

    Science.gov (United States)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  7. Characteristic imsets for learning Bayesian network structure

    Czech Academy of Sciences Publication Activity Database

    Hemmecke, R.; Lindner, S.; Studený, Milan

    2012-01-01

    Roč. 53, č. 9 (2012), s. 1336-1349 ISSN 0888-613X R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * essential graph * standard imset * characteristic imset * LP relaxation of a polytope Subject RIV: BA - General Mathematics Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/studeny-0382596.pdf

  8. Learning Methods for Radial Basis Functions Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Kudová, Petra

    2005-01-01

    Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005

  9. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  10. Fastest learning in small-world neural networks

    International Nuclear Information System (INIS)

    Simard, D.; Nadeau, L.; Kroeger, H.

    2005-01-01

    We investigate supervised learning in neural networks. We consider a multi-layered feed-forward network with back propagation. We find that the network of small-world connectivity reduces the learning error and learning time when compared to the networks of regular or random connectivity. Our study has potential applications in the domain of data-mining, image processing, speech recognition, and pattern recognition

  11. Finite time convergent learning law for continuous neural networks.

    Science.gov (United States)

    Chairez, Isaac

    2014-02-01

    This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Application of Student Book Based On Integrated Learning Model Of Networked Type With Heart Electrical Activity Theme For Junior High School

    Science.gov (United States)

    Gusnedi, G.; Ratnawulan, R.; Triana, L.

    2018-04-01

    The purpose of this study is to determine the effect of the use of Integrated Science IPA books Using Networked Learning Model of knowledge competence through improved learning outcomes obtained. The experimental design used is one group pre test post test design to know the results before and after being treated. The number of samples used is one class that is divided into two categories of initial ability to see the improvement of knowledge competence. The sample used was taken from the students of grade VIII SMPN 2 Sawahlunto, Indonesia. The results of this study indicate that most students have increased knowledge competence.

  13. Predicting student satisfaction with courses based on log data from a virtual learning environment – a neural network and classification tree model

    Directory of Open Access Journals (Sweden)

    Ivana Đurđević Babić

    2015-03-01

    Full Text Available Student satisfaction with courses in academic institutions is an important issue and is recognized as a form of support in ensuring effective and quality education, as well as enhancing student course experience. This paper investigates whether there is a connection between student satisfaction with courses and log data on student courses in a virtual learning environment. Furthermore, it explores whether a successful classification model for predicting student satisfaction with course can be developed based on course log data and compares the results obtained from implemented methods. The research was conducted at the Faculty of Education in Osijek and included analysis of log data and course satisfaction on a sample of third and fourth year students. Multilayer Perceptron (MLP with different activation functions and Radial Basis Function (RBF neural networks as well as classification tree models were developed, trained and tested in order to classify students into one of two categories of course satisfaction. Type I and type II errors, and input variable importance were used for model comparison and classification accuracy. The results indicate that a successful classification model using tested methods can be created. The MLP model provides the highest average classification accuracy and the lowest preference in misclassification of students with a low level of course satisfaction, although a t-test for the difference in proportions showed that the difference in performance between the compared models is not statistically significant. Student involvement in forum discussions is recognized as a valuable predictor of student satisfaction with courses in all observed models.

  14. Reward-based training of recurrent neural networks for cognitive and value-based tasks.

    Science.gov (United States)

    Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing

    2017-01-13

    Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal's internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task.

  15. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  16. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.

    Science.gov (United States)

    Covi, Erika; Brivio, Stefano; Serb, Alexander; Prodromakis, Themis; Fanciulli, Marco; Spiga, Sabina

    2016-01-01

    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO 2 -based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%.

  17. Practice of Connectivism As Learning Theory: Enhancing Learning Process Through Social Networking Site (Facebook

    Directory of Open Access Journals (Sweden)

    Fahriye Altınay Aksal

    2013-12-01

    Full Text Available The impact of the digital age within learning and social interaction has been growing rapidly. The realm of digital age and computer mediated communication requires reconsidering instruction based on collaborative interactive learning process and socio-contextual experience for learning. Social networking sites such as facebook can help create group space for digital dialogue to inform, question and challenge within a frame of connectivism as learning theory within the digital age. The aim of this study is to elaborate the practice of connectivism as learning theory in terms of internship course. Facebook group space provided social learning platform for dialogue and negotiation beside the classroom learning and teaching process in this study. The 35 internship students provided self-reports within a frame of this qualitative research. This showed how principles of theory practiced and how this theory and facebook group space contribute learning, selfleadership, decision making and reflection skills. As the research reflects a practice of new theory based on action research, learning is not individualistic attempt in the digital age as regards the debate on learning in digital age within a frame of connectivism

  18. Outsmarting neural networks: an alternative paradigm for machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Protopopescu, V.; Rao, N.S.V.

    1996-10-01

    We address three problems in machine learning, namely: (i) function learning, (ii) regression estimation, and (iii) sensor fusion, in the Probably and Approximately Correct (PAC) framework. We show that, under certain conditions, one can reduce the three problems above to the regression estimation. The latter is usually tackled with artificial neural networks (ANNs) that satisfy the PAC criteria, but have high computational complexity. We propose several computationally efficient PAC alternatives to ANNs to solve the regression estimation. Thereby we also provide efficient PAC solutions to the function learning and sensor fusion problems. The approach is based on cross-fertilizing concepts and methods from statistical estimation, nonlinear algorithms, and the theory of computational complexity, and is designed as part of a new, coherent paradigm for machine learning.

  19. Threshold Learning Dynamics in Social Networks

    Science.gov (United States)

    González-Avella, Juan Carlos; Eguíluz, Victor M.; Marsili, Matteo; Vega-Redondo, Fernado; San Miguel, Maxi

    2011-01-01

    Social learning is defined as the ability of a population to aggregate information, a process which must crucially depend on the mechanisms of social interaction. Consumers choosing which product to buy, or voters deciding which option to take with respect to an important issue, typically confront external signals to the information gathered from their contacts. Economic models typically predict that correct social learning occurs in large populations unless some individuals display unbounded influence. We challenge this conclusion by showing that an intuitive threshold process of individual adjustment does not always lead to such social learning. We find, specifically, that three generic regimes exist separated by sharp discontinuous transitions. And only in one of them, where the threshold is within a suitable intermediate range, the population learns the correct information. In the other two, where the threshold is either too high or too low, the system either freezes or enters into persistent flux, respectively. These regimes are generally observed in different social networks (both complex or regular), but limited interaction is found to promote correct learning by enlarging the parameter region where it occurs. PMID:21637714

  20. Learning as Issue Framing in Agricultural Innovation Networks

    Science.gov (United States)

    Tisenkopfs, Talis; Kunda, Ilona; Šumane, Sandra

    2014-01-01

    Purpose: Networks are increasingly viewed as entities of learning and innovation in agriculture. In this article we explore learning as issue framing in two agricultural innovation networks. Design/methodology/approach: We combine frame analysis and social learning theories to analyse the processes and factors contributing to frame convergence and…

  1. Parameter learning in MTE networks using incomplete data

    DEFF Research Database (Denmark)

    Fernández, Antonio; Langseth, Helge; Nielsen, Thomas Dyhre

    a considerable computational burden as well as the inability to handle missing values in the training data. In this paper we describe an EM-based algorithm for learning the maximum likelihood parameters of an MTE network when confronted with incomplete data. In order to overcome the computational difficulties we......Bayesian networks with mixtures of truncated exponentials (MTEs) are gaining popularity as a flexible modelling framework for hybrid domains. MTEs support efficient and exact inference algorithms, but estimating an MTE from data has turned out to be a difficult task. Current methods suffer from...

  2. Analytical reasoning task reveals limits of social learning in networks.

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-06

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.

  3. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  4. Maximum entropy methods for extracting the learned features of deep neural networks.

    Science.gov (United States)

    Finnegan, Alex; Song, Jun S

    2017-10-01

    New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.

  5. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  6. Supervised dictionary learning for inferring concurrent brain networks.

    Science.gov (United States)

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  7. A survey on social networks to determine requirements for Learning Networks for professional development of university staff

    NARCIS (Netherlands)

    Brouns, Francis; Berlanga, Adriana; Fetter, Sibren; Bitter-Rijpkema, Marlies; Van Bruggen, Jan; Sloep, Peter

    2009-01-01

    Brouns, F., Berlanga, A. J., Fetter, S., Bitter-Rijpkema, M. E., Van Bruggen, J. M., & Sloep, P. B. (2011). A survey on social networks to determine requirements for Learning Networks for professional development of university staff. International Journal of Web Based Communities, 7(3), 298-311.

  8. Structure Learning in Power Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  9. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  10. On local optima in learning bayesian networks

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Kocka, Tomas; Pena, Jose

    2003-01-01

    This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...... is set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported...

  11. Learning Reproducibility with a Yearly Networking Contest

    KAUST Repository

    Canini, Marco

    2017-08-10

    Better reproducibility of networking research results is currently a major goal that the academic community is striving towards. This position paper makes the case that improving the extent and pervasiveness of reproducible research can be greatly fostered by organizing a yearly international contest. We argue that holding a contest undertaken by a plurality of students will have benefits that are two-fold. First, it will promote hands-on learning of skills that are helpful in producing artifacts at the replicable-research level. Second, it will advance the best practices regarding environments, testbeds, and tools that will aid the tasks of reproducibility evaluation committees by and large.

  12. Learning Bayesian Networks with Incomplete Data by Augmentation

    OpenAIRE

    Adel, Tameem; de Campos, Cassio P.

    2016-01-01

    We present new algorithms for learning Bayesian networks from data with missing values using a data augmentation approach. An exact Bayesian network learning algorithm is obtained by recasting the problem into a standard Bayesian network learning problem without missing data. To the best of our knowledge, this is the first exact algorithm for this problem. As expected, the exact algorithm does not scale to large domains. We build on the exact method to create an approximate algorithm using a ...

  13. Social Networking Sites and Addiction: Ten Lessons Learned

    Science.gov (United States)

    Kuss, Daria J.; Griffiths, Mark D.

    2017-01-01

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i) social networking and social media use are not the same; (ii) social networking is eclectic; (iii) social networking is a way of being; (iv) individuals can become addicted to using social networking sites; (v) Facebook addiction is only one example of SNS addiction; (vi) fear of missing out (FOMO) may be part of SNS addiction; (vii) smartphone addiction may be part of SNS addiction; (viii) nomophobia may be part of SNS addiction; (ix) there are sociodemographic differences in SNS addiction; and (x) there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided. PMID:28304359

  14. Social Networking Sites and Addiction: Ten Lessons Learned

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2017-03-01

    Full Text Available Online social networking sites (SNSs have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i social networking and social media use are not the same; (ii social networking is eclectic; (iii social networking is a way of being; (iv individuals can become addicted to using social networking sites; (v Facebook addiction is only one example of SNS addiction; (vi fear of missing out (FOMO may be part of SNS addiction; (vii smartphone addiction may be part of SNS addiction; (viii nomophobia may be part of SNS addiction; (ix there are sociodemographic differences in SNS addiction; and (x there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided.

  15. Social Networking Sites and Addiction: Ten Lessons Learned.

    Science.gov (United States)

    Kuss, Daria J; Griffiths, Mark D

    2017-03-17

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i) social networking and social media use are not the same; (ii) social networking is eclectic; (iii) social networking is a way of being; (iv) individuals can become addicted to using social networking sites; (v) Facebook addiction is only one example of SNS addiction; (vi) fear of missing out (FOMO) may be part of SNS addiction; (vii) smartphone addiction may be part of SNS addiction; (viii) nomophobia may be part of SNS addiction; (ix) there are sociodemographic differences in SNS addiction; and (x) there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided.

  16. Exploring Practice-Research Networks for Critical Professional Learning

    Science.gov (United States)

    Appleby, Yvon; Hillier, Yvonne

    2012-01-01

    This paper discusses the contribution that practice-research networks can make to support critical professional development in the Learning and Skills sector in England. By practice-research networks we mean groups or networks which maintain a connection between research and professional practice. These networks stem from the philosophy of…

  17. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Robot soccer action selection based on Q learning

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper researches robot soccer action selection based on Q learning . The robot learn to activate particular behavior given their current situation and reward signal. We adopt neural network to implementations of Q learning for their generalization properties and limited computer memory requirements

  19. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  20. Robust Learning of High-dimensional Biological Networks with Bayesian Networks

    Science.gov (United States)

    Nägele, Andreas; Dejori, Mathäus; Stetter, Martin

    Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.

  1. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  2. RBF neural network based H∞ H∞ H∞ synchronization for ...

    Indian Academy of Sciences (India)

    Based on this neural network and linear matrix inequality (LMI) formulation, the RBFNNHS controller and the learning laws are presented to reduce the effect of disturbance to an H ∞ norm constraint. It is shown that finding the RBFNNHS controller and the learning laws can be transformed into the LMI problem and solved ...

  3. New designing of E-Learning systems with using network learning

    OpenAIRE

    Malayeri, Amin Daneshmand; Abdollahi, Jalal

    2010-01-01

    One of the most applied learning in virtual spaces is using E-Learning systems. Some E-Learning methodologies has been introduced, but the main subject is the most positive feedback from E-Learning systems. In this paper, we introduce a new methodology of E-Learning systems entitle "Network Learning" with review of another aspects of E-Learning systems. Also, we present benefits and advantages of using these systems in educating and fast learning programs. Network Learning can be programmable...

  4. Learning teams and networks: using information technology as a means of managing work process development in healthcare organizations.

    Science.gov (United States)

    Korhonen, Vesa; Paavilainen, Eija

    2002-01-01

    This article focuses on the introduction of team learning and shared knowledge creation using computer-based learning environments and teams as networks in the development of healthcare organizations. Using computer technology, care units can be considered learning teams and the hospital a network of those learning teams. Team learning requires that the healthcare workers' intellectual capital and personal competence be viewed as an important resource in developing the quality of action of the entire healthcare organization.

  5. Validating module network learning algorithms using simulated data.

    Science.gov (United States)

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

  6. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen

    2017-01-01

    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  7. Analysing the Correlation between Social Network Analysis Measures and Performance of Students in Social Network-Based Engineering Education

    Science.gov (United States)

    Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav

    2016-01-01

    Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment,…

  8. Network-based Database Course

    DEFF Research Database (Denmark)

    Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard

    A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...

  9. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  10. On the Use of Machine Learning for Identifying Botnet Network Traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    contemporary approaches use machine learning techniques for identifying malicious traffic. This paper presents a survey of contemporary botnet detection methods that rely on machine learning for identifying botnet network traffic. The paper provides a comprehensive overview on the existing scientific work thus...... contributing to the better understanding of capabilities, limitations and opportunities of using machine learning for identifying botnet traffic. Furthermore, the paper outlines possibilities for the future development of machine learning-based botnet detection systems....

  11. Cooperative Learning for Distributed In-Network Traffic Classification

    Science.gov (United States)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  12. A smart-pixel holographic competitive learning network

    Science.gov (United States)

    Slagle, Timothy Michael

    Neural networks are adaptive classifiers which modify their decision boundaries based on feedback from externally- or internally-generated error signals. Optics is an attractive technology for neural network implementation because it offers the possibility of parallel, nearly instantaneous computation of the weighted neuron inputs by the propagation of light through the optical system. Using current optical device technology, system performance levels of 3 × 1011 connection updates per second can be achieved. This thesis presents an architecture for an optical competitive learning network which offers advantages over previous optical implementations, including smart-pixel-based optical neurons, phase- conjugate self-alignment of a single neuron plane, and high-density, parallel-access weight storage, interconnection, and learning in a volume hologram. The competitive learning algorithm with modifications for optical implementation is described, and algorithm simulations are performed for an example problem. The optical competitive learning architecture is then introduced. The optical system is simulated using the ``beamprop'' algorithm at the level of light propagating through the system components, and results showing competitive learning operation in agreement with the algorithm simulations are presented. The optical competitive learning requires a non-linear, non-local ``winner-take-all'' (WTA) neuron function. Custom-designed smart-pixel WTA neuron arrays were fabricated using CMOS VLSI/liquid crystal technology. Results of laboratory tests of the WTA arrays' switching characteristics, time response, and uniformity are then presented. The system uses a phase-conjugate mirror to write the self-aligning interconnection weight holograms, and energy gain is required from the reflection to minimize erasure of the existing weights. An experimental system for characterizing the PCM response is described. Useful gains of 20 were obtained with a polarization

  13. Teaching Problem Based Learning as Blended Learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Nortvig, Anne-Mette

    2018-01-01

    Problem-based and project organized learning (PBL) was originally developed for collaboration between physically present students, but political decisions at many universities require that collaboration, dialogues, and other PBL activities take place online as well. With a theoretical point...... of departure in Dewey and a methodological point of departure in netnography, this study focuses on an online module at Aalborg University where teaching is based on PBL. With the research question ‘How can teachers design for PBL online,’ this study explores the teacher’s role in a six weeks’ blended learning...... program, and we present suggestions for designs for blended learning PBL based on case studies from two PBL courses...

  14. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  15. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Zou Xiaotao

    2009-01-01

    Full Text Available Abstract A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  16. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Xiaotao Zou

    2009-01-01

    Full Text Available A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  17. The Relationships Between Policy, Boundaries and Research in Networked Learning

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Sinclair, Christine

    2016-01-01

    the books that include a selection of reworked and peer-reviewed papers from the conference. The 2014 Networked Learning Conference which was held in Edinburgh was characterised by animated dialogue on emergent influences affecting networked teaching and learning building on work established in earlier...

  18. Social networks as ICT collaborative and supportive learning media ...

    African Journals Online (AJOL)

    ... ICT collaborative and supportive learning media utilisation within the Nigerian educational system. The concept of ICT was concisely explained vis-à-vis the social network concept, theory and collaborative and supportive learning media utilisation. Different types of social network are highlighted among which Facebook, ...

  19. The Practices of Student Network as Cooperative Learning in Ethiopia

    Science.gov (United States)

    Reda, Weldemariam Nigusse; Hagos, Girmay Tsegay

    2015-01-01

    Student network is a teaching strategy introduced as cooperative learning to all educational levels above the upper primary schools (grade 5 and above) in Ethiopia. The study was, therefore, aimed at investigating to what extent the student network in Ethiopia is actually practiced in line with the principles of cooperative learning. Consequently,…

  20. Towards a Social Networks Model for Online Learning & Performance

    Science.gov (United States)

    Chung, Kon Shing Kenneth; Paredes, Walter Christian

    2015-01-01

    In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…

  1. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  2. Problems in the Deployment of Learning Networks In Small Organizations

    NARCIS (Netherlands)

    Shankle, Dean E.; Shankle, Jeremy P.

    2006-01-01

    Please, cite this publication as: Shankle, D.E., & Shankle, J.P. (2006). Problems in the Deployment of Learning Networks In Small Organizations. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia, Bulgaria:

  3. Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition

    Science.gov (United States)

    Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang

    2018-03-01

    Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.

  4. Supervised Learning with Complex-valued Neural Networks

    CERN Document Server

    Suresh, Sundaram; Savitha, Ramasamy

    2013-01-01

    Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...

  5. IoT Security Techniques Based on Machine Learning

    OpenAIRE

    Xiao, Liang; Wan, Xiaoyue; Lu, Xiaozhen; Zhang, Yanyong; Wu, Di

    2018-01-01

    Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. In this article, we investigate the attack model for IoT systems, and review the IoT security solutions based on machine learning techniques including supervised learning, unsupervised learning and reinforcement learning. We focus on the machine le...

  6. Developing and Assessing Teachers' Knowledge of Game-Based Learning

    Science.gov (United States)

    Shah, Mamta; Foster, Aroutis

    2015-01-01

    Research focusing on the development and assessment of teacher knowledge in game-based learning is in its infancy. A mixed-methods study was undertaken to educate pre-service teachers in game-based learning using the Game Network Analysis (GaNA) framework. Fourteen pre-service teachers completed a methods course, which prepared them in game…

  7. Cloud-Based Mobile Learning

    Directory of Open Access Journals (Sweden)

    Alexandru BUTOI

    2013-01-01

    Full Text Available As the cloud technologies are largely studied and mobile technologies are evolving, new di-rections for development of mobile learning tools deployed on cloud are proposed.. M-Learning is treated as part of the ubiquitous learning paradigm and is a pervasive extension of E-Learning technologies. Development of such learning tools requires specific development strategies for an effective abstracting of pedagogical principles at the software design and implementation level. Current paper explores an interdisciplinary approach for designing and development of cloud based M-Learning tools by mapping a specific development strategy used for educational programs to software prototyping strategy. In order for such instruments to be user effective from the learning outcome point of view, the evaluation process must be rigorous as we propose a metric model for expressing the trainee’s overall learning experience with evaluated levels of interactivity, content presentation and graphical user interface usability.

  8. Multi-modal Social Networks: A MRF Learning Approach

    Science.gov (United States)

    2016-06-20

    Network forensics: random infection vs spreading epidemic , Proceedings of ACM Sigmetrics. 11-JUN-12, London, UK. : , TOTAL: 4 06/09/2016 Received Paper...Multi-modal Social Networks A MRF Learning Approach The work primarily focused on two lines of research. 1. We propose new greedy algorithms...Box 12211 Research Triangle Park, NC 27709-2211 social networks , learning and inference REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  9. Social networks and performance in distributed learning communities

    OpenAIRE

    Cadima, Rita; Ojeda Rodríguez, Jordi; Monguet Fierro, José María

    2012-01-01

    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this study we analyse two distributed learning communities' social networks in order to understand how characteristics of the social structure can enhance s...

  10. On-line learning in radial basis functions networks

    OpenAIRE

    Freeman, Jason; Saad, David

    1997-01-01

    An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives ...

  11. Robust Learning of Fixed-Structure Bayesian Networks

    OpenAIRE

    Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair

    2016-01-01

    We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...

  12. Do Convolutional Neural Networks Learn Class Hierarchy?

    Science.gov (United States)

    Bilal, Alsallakh; Jourabloo, Amin; Ye, Mao; Liu, Xiaoming; Ren, Liu

    2018-01-01

    Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.

  13. Structure of Small World Innovation Network and Learning Performance

    Directory of Open Access Journals (Sweden)

    Shuang Song

    2014-01-01

    Full Text Available This paper examines the differences of learning performance of 5 MNCs (multinational corporations that filed the largest number of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs with differing network structures, we develop an organization learning model by regarding the reality as having m dimensions, which denotes the heterogeneous knowledge about the reality. We further set n innovative individuals that are mutually interactive and own unique knowledge about the reality. A longer (shorter distance between the knowledge of the individual and the reality denotes a lower (higher knowledge level of that individual. Individuals interact with and learn from each other within the small-world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.

  14. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...

  15. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  16. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    Science.gov (United States)

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  17. Sentiment classification technology based on Markov logic networks

    Science.gov (United States)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  18. Anomaly-based Network Intrusion Detection Methods

    Directory of Open Access Journals (Sweden)

    Pavel Nevlud

    2013-01-01

    Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.

  19. Problem Based Learning Online

    DEFF Research Database (Denmark)

    Kolbæk, Ditte

    2018-01-01

    “How do two online learning designs affect student engagement in the PBL online modules?” The empirical data were collected and analyzed using a netnographic approach. The study finds that concepts such as self-directed learning and active involvement may be perceived very differently from the students...

  20. Semantic Web, Reusable Learning Objects, Personal Learning Networks in Health: Key Pieces for Digital Health Literacy.

    Science.gov (United States)

    Konstantinidis, Stathis Th; Wharrad, Heather; Windle, Richard; Bamidis, Panagiotis D

    2017-01-01

    The knowledge existing in the World Wide Web is exponentially expanding, while continuous advancements in health sciences contribute to the creation of new knowledge. There are a lot of efforts trying to identify how the social connectivity can endorse patients' empowerment, while other studies look at the identification and the quality of online materials. However, emphasis has not been put on the big picture of connecting the existing resources with the patients "new habits" of learning through their own Personal Learning Networks. In this paper we propose a framework for empowering patients' digital health literacy adjusted to patients' currents needs by utilizing the contemporary way of learning through Personal Learning Networks, existing high quality learning resources and semantics technologies for interconnecting knowledge pieces. The framework based on the concept of knowledge maps for health as defined in this paper. Health Digital Literacy needs definitely further enhancement and the use of the proposed concept might lead to useful tools which enable use of understandable health trusted resources tailored to each person needs.

  1. Integration of social networks in the teaching and learning process

    Directory of Open Access Journals (Sweden)

    Cynthia Dedós Reyes

    2015-09-01

    Full Text Available In this research we explored the integration of social media in the process of learning and teaching, in a private higher education institution, in Puerto Rico. Attention was given to the perspectives of teachers and students. The participants —9 part-time teachers and 118 students— were selected based on availability. The results showed that teachers and students alike use social the network You Tube for academic purposes; and use Facebook, Twitter, and blogs for social purposes and entertainment. Results also revealed that there is no significant contrast between the perspectives of teachers and students digital immigrants.

  2. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  3. Inter-firm Networks, Organizational Learning and Knowledge Updating: An Empirical Study

    Science.gov (United States)

    Zhang, Su-rong; Wang, Wen-ping

    In the era of knowledge-based economy which information technology develops rapidly, the rate of knowledge updating has become a critical factor for enterprises to gaining competitive advantage .We build an interactional theoretical model among inter-firm networks, organizational learning and knowledge updating thereby and demonstrate it with empirical study at last. The result shows that inter-firm networks and organizational learning is the source of knowledge updating.

  4. Dimensions of problem based learning

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Lerche; Andreasen, Lars Birch

    2013-01-01

    The article contributes to the literature on problem based learning and problem-oriented project work, building on and reflecting the experiences of the authors through decades of work with problem-oriented project pedagogy. The article explores different dimensions of problem based learning such...... and Learning (MIL). We discuss changes in the roles of the teachers as supervisors within this learning environment, and we explore the involvement of students as active participants and co-designers of how course and project activities unfold....

  5. The Effect of Social Interaction on Learning Engagement in a Social Networking Environment

    Science.gov (United States)

    Lu, Jie; Churchill, Daniel

    2014-01-01

    This study investigated the impact of social interactions among a class of undergraduate students on their learning engagement in a social networking environment. Thirteen undergraduate students enrolled in a course in a university in Hong Kong used an Elgg-based social networking platform throughout a semester to develop their digital portfolios…

  6. "A Lifelong Classroom": Social Studies Educators' Engagement with Professional Learning Networks on Twitter

    Science.gov (United States)

    Noble, Anna; McQuillan, Patrick; Littenberg-Tobias, Josh

    2016-01-01

    Growing numbers of educators are using social media platforms to connect with other educators to form professional learning networks. These networks serve as alternative sources of professional development for teachers who seek to enrich their professional growth beyond school-based programs. This study aims to add to the small but growing body of…

  7. Theoretical framework on selected core issues on conditions for productive learning in networked learning environments

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone; Svendsen, Brian Møller; Ponti, Marisa

    The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments.......The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments....

  8. LSTM-Based Hierarchical Denoising Network for Android Malware Detection

    OpenAIRE

    Yan, Jinpei; Qi, Yong; Rao, Qifan

    2018-01-01

    Mobile security is an important issue on Android platform. Most malware detection methods based on machine learning models heavily rely on expert knowledge for manual feature engineering, which are still difficult to fully describe malwares. In this paper, we present LSTM-based hierarchical denoise network (HDN), a novel static Android malware detection method which uses LSTM to directly learn from the raw opcode sequences extracted from decompiled Android files. However, most opcode sequence...

  9. Self-Learning Power Control in Wireless Sensor Networks.

    Science.gov (United States)

    Chincoli, Michele; Liotta, Antonio

    2018-01-27

    Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay.

  10. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  11. Convolutional neural network with transfer learning for rice type classification

    Science.gov (United States)

    Patel, Vaibhav Amit; Joshi, Manjunath V.

    2018-04-01

    Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.

  12. Learning through Social Networking Sites--The Critical Role of the Teacher

    Science.gov (United States)

    Callaghan, Noelene; Bower, Matt

    2012-01-01

    This comparative case study examined factors affecting behaviour and learning in social networking sites (SNS). The behaviour and learning of two classes completing identical SNS based modules of work was observed and compared. All student contributions to the SNS were analysed, with the cognitive process dimension of the Revised Bloom's Taxonomy…

  13. Social Networks and the Building of Learning Communities: An Experimental Study of a Social MOOC

    Science.gov (United States)

    de Lima, Mariana; Zorrilla, Marta

    2017-01-01

    This study aimed to analyze the student's behaviour in relation to their degree of commitment, participation, and contribution in a MOOC based on a social learning approach. Interaction data was collected on the learning platform and in social networks, both of which were used in the third edition of a social MOOC course. This data was then…

  14. Lessons Learnt from and Sustainability of Adopting a Personal Learning Environment & Network (Ple&N)

    Science.gov (United States)

    Tsui, Eric; Sabetzadeh, Farzad

    2014-01-01

    This paper describes the feedback from the configuration and deployment of a Personal Learning Environment & Network (PLE&N) tool to support peer-based social learning for university students and graduates. An extension of an earlier project in which a generic and PLE&N was deployed for all learners, the current PLE&N is a…

  15. Didactic Networks: A Proposal for e-learning Content Generation

    Directory of Open Access Journals (Sweden)

    F. Javier Del Alamo

    2010-12-01

    Full Text Available The Didactic Networks proposed in this paper are based on previous publications in the field of the RSR (Rhetorical-Semantic Relations. The RSR is a set of primitive relations used for building a specific kind of semantic networks for artificial intelligence applications on the web: the RSN (Rhetorical-Semantic Networks. We bring into focus the RSR application in the field of elearning, by defining Didactic Networks as a new set of semantic patterns oriented to the development of elearning applications. The different lines we offer in our research fall mainly into three levels: (1 The most basic one is in the field of computational linguistics and related to Logical Operations on RSR (RSR Inverses and plurals, RSR combinations, etc, once they have been created. The application of Walter Bosma's results regarding rhetorical distance application and treatment as semantic weighted networks is one of the important issues here. (2 In parallel, we have been working on the creation of a knowledge representation and storage model and data architecture capable of supporting the definition of knowledge networks based on RSR. (3 The third strategic line is in the meso-level, the formulation of a molecular structure of knowledge based on the most frequently used patterns. The main contribution at this level is the set of Fundamental Cognitive Networks (FCN as an application of Novak's mental maps proposal. This paper is part of this third intermediate level, and the Fundamental Didactic Networks (FDN are the result of the application of rhetorical theory procedures to the instructional theory. We have formulated a general set of RSR capable of building discourse, making it possible to express any concept, procedure or principle in terms of knowledge nodes and RSRs. The Instructional knowledge can then be elaborated in the same way. This network structure expressing the instructional knowledge in terms of RSR makes the objective of developing web-learning

  16. Relabeling exchange method (REM) for learning in neural networks

    Science.gov (United States)

    Wu, Wen; Mammone, Richard J.

    1994-02-01

    The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.

  17. Learning oncogenetic networks by reducing to mixed integer linear programming.

    Science.gov (United States)

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  18. Some Learning Properties of Modular Network SOMs

    Science.gov (United States)

    Takeda, Manabu; Ikeda, Kazushi; Furukawa, Tetsuo

    The Modular Network Self-Organizing Map (mnSOM) is a generalization of the SOM, where each node represents a parametric function such as a multi-layer perceptron or another SOM. Since given datasets are, in general, fewer than nodes, some nodes never win in competition and have to update their parameters from the winners in the neighborhood. This is a process that can be regarded as interpolation. This study derives the interpolation curve between winners in simple cases and discusses the distribution of winners based on the neighborhood function.

  19. Application of artificial neural network with extreme learning machine for economic growth estimation

    Science.gov (United States)

    Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica

    2017-01-01

    The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

  20. Learning Networks: connecting people, organizations, autonomous agents and learning resources to establish the emergence of effective lifelong learning

    NARCIS (Netherlands)

    Koper, Rob; Sloep, Peter

    2003-01-01

    Koper, E.J.R., Sloep, P.B. (2002) Learning Networks connecting people, organizations, autonomous agents and learning resources to establish the emergence of effective lifelong learning. RTD Programma into Learning Technologies 2003-2008. More is different… Heerlen, Nederland: Open Universiteit

  1. Hybrid E-Learning Tool TransLearning: Video Storytelling to Foster Vicarious Learning within Multi-Stakeholder Collaboration Networks

    Science.gov (United States)

    van der Meij, Marjoleine G.; Kupper, Frank; Beers, Pieter J.; Broerse, Jacqueline E. W.

    2016-01-01

    E-learning and storytelling approaches can support informal vicarious learning within geographically widely distributed multi-stakeholder collaboration networks. This case study evaluates hybrid e-learning and video-storytelling approach "TransLearning" by investigation into how its storytelling e-tool supported informal vicarious…

  2. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  3. Developing 21st century skills through the use of student personal learning networks

    Science.gov (United States)

    Miller, Robert D.

    This research was conducted to study the development of 21st century communication, collaboration, and digital literacy skills of students at the high school level through the use of online social network tools. The importance of this study was based on evidence high school and college students are not graduating with the requisite skills of communication, collaboration, and digital literacy skills yet employers see these skills important to the success of their employees. The challenge addressed through this study was how high schools can integrate social network tools into traditional learning environments to foster the development of these 21st century skills. A qualitative research study was completed through the use of case study. One high school class in a suburban high performing town in Connecticut was selected as the research site and the sample population of eleven student participants engaged in two sets of interviews and learned through the use social network tools for one semester of the school year. The primary social network tools used were Facebook, Diigo, Google Sites, Google Docs, and Twitter. The data collected and analyzed partially supported the transfer of the theory of connectivism at the high school level. The students actively engaged in collaborative learning and research. Key results indicated a heightened engagement in learning, the development of collaborative learning and research skills, and a greater understanding of how to use social network tools for effective public communication. The use of social network tools with high school students was a positive experience that led to an increased awareness of the students as to the benefits social network tools have as a learning tool. The data supported the continued use of social network tools to develop 21st century communication, collaboration, and digital literacy skills. Future research in this area may explore emerging social network tools as well as the long term impact these tools

  4. Research on Fault Diagnosis Method Based on Rule Base Neural Network

    Directory of Open Access Journals (Sweden)

    Zheng Ni

    2017-01-01

    Full Text Available The relationship between fault phenomenon and fault cause is always nonlinear, which influences the accuracy of fault location. And neural network is effective in dealing with nonlinear problem. In order to improve the efficiency of uncertain fault diagnosis based on neural network, a neural network fault diagnosis method based on rule base is put forward. At first, the structure of BP neural network is built and the learning rule is given. Then, the rule base is built by fuzzy theory. An improved fuzzy neural construction model is designed, in which the calculated methods of node function and membership function are also given. Simulation results confirm the effectiveness of this method.

  5. Pupils' Views on an ICT-Based Learning Environment in Health Learning

    Science.gov (United States)

    Räihä, Teija; Tossavainen, Kerttu; Enkenberg, Jorma; Turunen, Hannele

    2014-01-01

    This paper presents a study that examined pupils' views on an ICT-based learning environment in health learning. The study was a part of the wider European Network of Health Promoting Schools programme (ENHPS; since 2008, Schools for Health in Europe, SHE) in Finland, and particularly its sub-project, From Puijo to the World with Health Lunch,…

  6. On Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  7. Building Trust-Based Sustainable Networks

    Science.gov (United States)

    2013-06-05

    entities to build sustainable networks with limited resources or misbehaving entities by learning from the lessons in the social sciences. We discuss...their individuality); and ■ Misbehaving nodes in terms of environmental, economic, and social perspectives. The sustainable network concerns...equitable access to particular services which are otherwise abused by misbehaving or malicious users. Such approaches provide a fair and

  8. Using machine learning, neural networks and statistics to predict bankruptcy

    NARCIS (Netherlands)

    Pompe, P.P.M.; Feelders, A.J.; Feelders, A.J.

    1997-01-01

    Recent literature strongly suggests that machine learning approaches to classification outperform "classical" statistical methods. We make a comparison between the performance of linear discriminant analysis, classification trees, and neural networks in predicting corporate bankruptcy. Linear

  9. The Design, Experience and Practice of Networked Learning

    DEFF Research Database (Denmark)

    . The Design, Experience and Practice of Networked Learning will prove indispensable reading for researchers, teachers, consultants, and instructional designers in higher and continuing education; for those involved in staff and educational development, and for those studying post graduate qualifications...

  10. Nonbinary Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  11. Learning second language vocabulary: neural dissociation of situation-based learning and text-based learning.

    Science.gov (United States)

    Jeong, Hyeonjeong; Sugiura, Motoaki; Sassa, Yuko; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta

    2010-04-01

    Second language (L2) acquisition necessitates learning and retrieving new words in different modes. In this study, we attempted to investigate the cortical representation of an L2 vocabulary acquired in different learning modes and in cross-modal transfer between learning and retrieval. Healthy participants learned new L2 words either by written translations (text-based learning) or in real-life situations (situation-based learning). Brain activity was then measured during subsequent retrieval of these words. The right supramarginal gyrus and left middle frontal gyrus were involved in situation-based learning and text-based learning, respectively, whereas the left inferior frontal gyrus was activated when learners used L2 knowledge in a mode different from the learning mode. Our findings indicate that the brain regions that mediate L2 memory differ according to how L2 words are learned and used. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Thermodynamic efficiency of learning a rule in neural networks

    Science.gov (United States)

    Goldt, Sebastian; Seifert, Udo

    2017-11-01

    Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.

  13. Learning Local Components to Understand Large Bayesian Networks

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge

    2009-01-01

    (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes......Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....

  14. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    Science.gov (United States)

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  15. Construction of multi-agent mobile robots control system in the problem of persecution with using a modified reinforcement learning method based on neural networks

    Science.gov (United States)

    Patkin, M. L.; Rogachev, G. N.

    2018-02-01

    A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.

  16. Learning and forgetting on asymmetric, diluted neural networks

    International Nuclear Information System (INIS)

    Derrida, B.; Nadal, J.P.

    1987-01-01

    It is possible to construct diluted asymmetric models of neural networks for which the dynamics can be calculated exactly. The authors test several learning schemes, in particular, models for which the values of the synapses remain bounded and depend on the history. Our analytical results on the relative efficiencies of the various learning schemes are qualitatively similar to the corresponding ones obtained numerically on fully connected symmetric networks

  17. Content-Based Covert Group Detection in Social Networks

    Science.gov (United States)

    2017-09-06

    The students took courses in natural language processing, data mining in various multi-media data sets, text retrieval, text summarization and... mining in social media including: we performed work, on (a) diffusion in social networks, (b) influence maximization in signed social networks, (c...Learning, Information Retrieval, Data Mining and Database. There are 8,293 messages. Our method outperformed state of the art methods based on content

  18. The Design and Analysis of Learning Effects for a Game-based Learning System

    OpenAIRE

    Wernhuar Tarng; Weichian Tsai

    2010-01-01

    The major purpose of this study is to use network and multimedia technologies to build a game-based learning system for junior high school students to apply in learning “World Geography" through the “role-playing" game approaches. This study first investigated the motivation and habits of junior high school students to use the Internet and online games, and then designed a game-based learning system according to situated and game-based learning theories. A teaching experiment was conducted to...

  19. Creating a peer-driven learning network in higher education – using Web 2.0 tools to facilitate online dialogue and collaboration

    DEFF Research Database (Denmark)

    Nicolajsen, Hanne Westh; Ryberg, Thomas

    2014-01-01

    learning networks or engaging in web-based activities particularly related to learning or academia (Clark et al. 2009, Luckin et al. 2009). We argue that learning networks based on social media and employed for academic purposes may challenge the traditional norms and practices for both teachers...

  20. Social Software: Participants' Experience Using Social Networking for Learning

    Science.gov (United States)

    Batchelder, Cecil W.

    2010-01-01

    Social networking tools used in learning provides instructional design with tools for transformative change in education. This study focused on defining the meanings and essences of social networking through the lived common experiences of 7 college students. The problem of the study was a lack of learner voice in understanding the value of social…

  1. Social Media and Social Networking Applications for Teaching and Learning

    Science.gov (United States)

    Yeo, Michelle Mei Ling

    2014-01-01

    This paper aims to better understand the experiences of the youth and the educators with the tapping of social media like YouTube videos and the social networking application of Facebook for teaching and learning. This paper is interested in appropriating the benefits of leveraging of social media and networking applications like YouTube and…

  2. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    structures, protein–protein interaction networks, social interactions, the Internet, and so on can be described by complex networks [1–5]. Recent developments in the understanding of complex networks has led to deeper insights about their origin and other properties [1–5]. One common realization that emerges from these ...

  3. How to Trigger Emergence and Self-Organisation in Learning Networks

    Science.gov (United States)

    Brouns, Francis; Fetter, Sibren; van Rosmalen, Peter

    The previous chapters of this section discussed why the social structure of Learning Networks is important and present guidelines on how to maintain and allow the emergence of communities in Learning Networks. Chapter 2 explains how Learning Networks rely on social interaction and active participations of the participants. Chapter 3 then continues by presenting guidelines and policies that should be incorporated into Learning Network Services in order to maintain existing communities by creating conditions that promote social interaction and knowledge sharing. Chapter 4 discusses the necessary conditions required for knowledge sharing to occur and to trigger communities to self-organise and emerge. As pointed out in Chap. 4, ad-hoc transient communities facilitate the emergence of social interaction in Learning Networks, self-organising them into communities, taking into account personal characteristics, community characteristics and general guidelines. As explained in Chap. 4 community members would benefit from a service that brings suitable people together for a specific purpose, because it will allow the participant to focus on the knowledge sharing process by reducing the effort or costs. In the current chapter, we describe an example of a peer support Learning Network Service based on the mechanism of peer tutoring in ad-hoc transient communities.

  4. SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks

    Science.gov (United States)

    Li, Jingjing; Zhang, Yumei; Man, Jiayu; Zhou, Yun; Wu, Xiaojun

    2017-02-01

    Cooperative learning is one of the most effective teaching methods, which has been widely used. Students' mutual contact forms a cooperative learning network in this process. Our previous research demonstrated that the cooperative learning network has complex characteristics. This study aims to investigating the dynamic spreading process of the knowledge in the cooperative learning network and the inspiration of leaders in this process. To this end, complex network transmission dynamics theory is utilized to construct the knowledge dissemination model of a cooperative learning network. Based on the existing epidemic models, we propose a new susceptible-infected-susceptible-leader (SISL) model that considers both students' forgetting and leaders' inspiration, and a susceptible-infected-removed-leader (SIRL) model that considers students' interest in spreading and leaders' inspiration. The spreading threshold λcand its impact factors are analyzed. Then, numerical simulation and analysis are delivered to reveal the dynamic transmission mechanism of knowledge and leaders' role. This work is of great significance to cooperative learning theory and teaching practice. It also enriches the theory of complex network transmission dynamics.

  5. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  6. Networking for English Literature Class: Cooperative Learning in Chinese Context

    Science.gov (United States)

    Li, Huiyin

    2017-01-01

    This action research was conducted to investigate the efficacy of networking, an adjusted cooperative learning method employed in an English literature class for non-English majors in China. Questionnaire was administered online anonymously to college students after a 14-week cooperative learning in literature class in a Chinese university, aiming…

  7. Informal Learning and Identity Formation in Online Social Networks

    Science.gov (United States)

    Greenhow, Christine; Robelia, Beth

    2009-01-01

    All students today are increasingly expected to develop technological fluency, digital citizenship, and other twenty-first century competencies despite wide variability in the quality of learning opportunities schools provide. Social network sites (SNSs) available via the internet may provide promising contexts for learning to supplement…

  8. Social Networks and Performance in Distributed Learning Communities

    Science.gov (United States)

    Cadima, Rita; Ojeda, Jordi; Monguet, Josep M.

    2012-01-01

    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this…

  9. Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring

    NARCIS (Netherlands)

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. B. (2009). Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring. In D. Kinshuk, J. Sampson, J. Spector, P. Isaías, P. Barbosa & D. Ifenthaler (Eds.). Proceedings of IADIS International Conference Cognition and Exploratory Learning

  10. Language Learning through Social Networks: Perceptions and Reality

    Science.gov (United States)

    Lin, Chin-Hsi; Warschauer, Mark; Blake, Robert

    2016-01-01

    Language Learning Social Network Sites (LLSNSs) have attracted millions of users around the world. However, little is known about how people participate in these sites and what they learn from them. This study investigated learners' attitudes, usage, and progress in a major LLSNS through a survey of 4,174 as well as 20 individual case studies. The…

  11. A Newton-type neural network learning algorithm

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

    1993-01-01

    First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

  12. Parameter diagnostics of phases and phase transition learning by neural networks

    Science.gov (United States)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  13. A learning algorithm for oscillatory cellular neural networks.

    Science.gov (United States)

    Ho, C Y.; Kurokawa, H

    1999-07-01

    We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

  14. Biosignals learning and synthesis using deep neural networks.

    Science.gov (United States)

    Belo, David; Rodrigues, João; Vaz, João R; Pezarat-Correia, Pedro; Gamboa, Hugo

    2017-09-25

    Modeling physiological signals is a complex task both for understanding and synthesize biomedical signals. We propose a deep neural network model that learns and synthesizes biosignals, validated by the morphological equivalence of the original ones. This research could lead the creation of novel algorithms for signal reconstruction in heavily noisy data and source detection in biomedical engineering field. The present work explores the gated recurrent units (GRU) employed in the training of respiration (RESP), electromyograms (EMG) and electrocardiograms (ECG). Each signal is pre-processed, segmented and quantized in a specific number of classes, corresponding to the amplitude of each sample and fed to the model, which is composed by an embedded matrix, three GRU blocks and a softmax function. This network is trained by adjusting its internal parameters, acquiring the representation of the abstract notion of the next value based on the previous ones. The simulated signal was generated by forecasting a random value and re-feeding itself. The resulting generated signals are similar with the morphological expression of the originals. During the learning process, after a set of iterations, the model starts to grasp the basic morphological characteristics of the signal and later their cyclic characteristics. After training, these models' prediction are closer to the signals that trained them, specially the RESP and ECG. This synthesis mechanism has shown relevant results that inspire the use to characterize signals from other physiological sources.

  15. Self-teaching neural network learns difficult reactor control problem

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits

  16. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE IN IMAGE CODING

    Directory of Open Access Journals (Sweden)

    OMER MAHMOUD

    2007-08-01

    Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.

  17. The Mobile Learning Network: Getting Serious about Games Technologies for Learning

    Science.gov (United States)

    Petley, Rebecca; Parker, Guy; Attewell, Jill

    2011-01-01

    The Mobile Learning Network currently in its third year, is a unique collaborative initiative encouraging and enabling the introduction of mobile learning in English post-14 education. The programme, funded jointly by the Learning and Skills Council and participating colleges and schools and supported by LSN has involved nearly 40,000 learners and…

  18. Understanding the Context of Learning in an Online Social Network for Health Professionals' Informal Learning.

    Science.gov (United States)

    Li, Xin; Gray, Kathleen; Verspoor, Karin; Barnett, Stephen

    2017-01-01

    Online social networks (OSN) enable health professionals to learn informally, for example by sharing medical knowledge, or discussing practice management challenges and clinical issues. Understanding the learning context in OSN is necessary to get a complete picture of the learning process, in order to better support this type of learning. This study proposes critical contextual factors for understanding the learning context in OSN for health professionals, and demonstrates how these contextual factors can be used to analyse the learning context in a designated online learning environment for health professionals.

  19. Deep learning with convolutional neural network in radiology.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Kiryu, Shigeru; Abe, Osamu

    2018-04-01

    Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

  20. Learning, memory, and the role of neural network architecture.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2011-06-01

    Full Text Available The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  1. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  2. Domesticating Digital Game-based Learning

    Directory of Open Access Journals (Sweden)

    Helga Dís Sigurdardottir

    2016-07-01

    Full Text Available This paper analyses the use of digital game-based learning (DGBL in schools in Norway. It investigates the types of games used in Norwegian schools and how pupils experience that practice. Digital game-based learning is being widely employed throughout Norway as a result of the increased focus on digital skills in Norwegian education. This paper analyses that development by way of focus group interviews with a total of sixty-four pupils at four schools. Drawing upon domestication and actor-network theory, the paper provides a novel approach to the study of DGBL. The broad empirical investigation into DGBL practices furthermore provides a contribution to scholarly literature on the subject. A noteworthy finding of this study is the diversity of games employed in schools—around 30 different titles— indicating that the choice of games lies at the discretion of individual teachers. Findings from this research show that the domestication of digital game-based learning occurs through the construction of complex game-based learning assemblages. This includes the classroom and home as gaming sites, group work and individual assignments as practices, and PCs and iPads as platforms.

  3. Teachers' Self-Initiated Professional Learning through Personal Learning Networks

    Science.gov (United States)

    Tour, Ekaterina

    2017-01-01

    It is widely acknowledged that to be able to teach language and literacy with digital technologies, teachers need to engage in relevant professional learning. Existing formal models of professional learning are often criticised for being ineffective. In contrast, informal and self-initiated forms of learning have been recently recognised as…

  4. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  5. Evolution of individual versus social learning on social networks.

    Science.gov (United States)

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning

    NARCIS (Netherlands)

    Villmann, T.; Biehl, M.; Villmann, A.; Saralajew, S.

    2017-01-01

    The advantage of prototype based learning vector quantizers are the intuitive and simple model adaptation as well as the easy interpretability of the prototypes as class representatives for the class distribution to be learned. Although they frequently yield competitive performance and show robust

  7. Rapid learning in visual cortical networks.

    Science.gov (United States)

    Wang, Ye; Dragoi, Valentin

    2015-08-26

    Although changes in brain activity during learning have been extensively examined at the single neuron level, the coding strategies employed by cell populations remain mysterious. We examined cell populations in macaque area V4 during a rapid form of perceptual learning that emerges within tens of minutes. Multiple single units and LFP responses were recorded as monkeys improved their performance in an image discrimination task. We show that the increase in behavioral performance during learning is predicted by a tight coordination of spike timing with local population activity. More spike-LFP theta synchronization is correlated with higher learning performance, while high-frequency synchronization is unrelated with changes in performance, but these changes were absent once learning had stabilized and stimuli became familiar, or in the absence of learning. These findings reveal a novel mechanism of plasticity in visual cortex by which elevated low-frequency synchronization between individual neurons and local population activity accompanies the improvement in performance during learning.

  8. Client-Server and Peer-to-Peer Ad-hoc Network for a Flexible Learning Environment

    Directory of Open Access Journals (Sweden)

    Ferial Khaddage

    2011-01-01

    Full Text Available Peer-to-Peer (P2P networking in a mobile learning environment has become a popular topic of research. One of the new emerging research ideas is on the ability to combine P2P network with server-based network to form a strong efficient portable and compatible network infrastructure. This paper describes a unique mobile network architecture, which reflects the on-campus students’ need for a mobile learning environment. This can be achieved by combining two different networks, client-server and peer-to-peer ad-hoc to form a sold and secure network. This is accomplished by employing one peer within the ad-hoc network to act as an agent-peer to facilitate communication and information sharing between the two networks. It can be implemented without any major changes to the current network technologies, and can combine any wireless protocols such as GPRS, Wi-Fi, Bluetooth, and 3G.

  9. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total ..... Genetic algorithm-based self-learning fuzzy PI controller for shunt active filter, ... Verification of global optimality of the OFC active power filters by means of ...

  10. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  11. Approximation methods for efficient learning of Bayesian networks

    CERN Document Server

    Riggelsen, C

    2008-01-01

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

  12. A Quantum Cryptography Communication Network Based on Software Defined Network

    Directory of Open Access Journals (Sweden)

    Zhang Hongliang

    2018-01-01

    Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.

  13. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    Science.gov (United States)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  14. Learning Effectiveness of the NASA Digital Learning Network

    Science.gov (United States)

    Hix, Billy

    2005-01-01

    Student participation in actual investigations which develop inquiry and intellectual skills has long been regarded as an essential component of science instructions (Schwab, 1962; White, 1999). Such investigations give students an opportunity to appreciate the spirit of science and promote an understanding of the nature of science. However, classroom research conducted over the past 20 years describes science teaching as primarily teacher centered. Typical instruction consists of whole class, noninteractive activities in which individual seatwork has constituted the bulk of classroom interactions (Tobin and Gallagher, 1997). Students typically learn science from textbooks and lectures. Their main motivation is to do reasonably well on tests and examinations (Layman, 1999). During the past five years, infrastructure constraints have reduced to the point that many schools systems can now afford low cost, high quality video conferencing equipment (International Society for Technology in Education, 2003). This study investigates the use of interactive video conferencing vs. face to face interaction with hands-on, inquiry based activities. Some basic questions to be addressed are: How does the delivery method impact the students understanding of the goals of the experiment? Are students explanation of the strategies of experimentation different based on the method of instruction that was provided. Do students engaged in a workshop with the instructor in the room vs. an instructor over video conferencing have different perception of the understanding of the subject materials?

  15. Deep Learning Neural Networks in Cybersecurity - Managing Malware with AI

    OpenAIRE

    Rayle, Keith

    2017-01-01

    There’s a lot of talk about the benefits of deep learning (neural networks) and how it’s the new electricity that will power us into the future. Medical diagnosis, computer vision and speech recognition are all examples of use-cases where neural networks are being applied in our everyday business environment. This begs the question…what are the uses of neural-network applications for cyber security? How does the AI process work when applying neural networks to detect malicious software bombar...

  16. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  17. Phonological Networks and New Word Learning

    Science.gov (United States)

    Service, Elisabet

    2006-01-01

    The first report of a connection between vocabulary learning and phonological short-term memory was published in 1988 (Baddeley, Papagno, & Vallar, 1988). At that time, both Susan Gathercole and I were involved in longitudinal studies, investigating the relation between nonword repetition and language learning. We both found a connection. Now,…

  18. "Follow" Me: Networked Professional Learning for Teachers

    Science.gov (United States)

    Holmes, Kathryn; Preston, Greg; Shaw, Kylie; Buchanan, Rachel

    2013-01-01

    Effective professional learning for teachers is fundamental for any school system aiming to make transformative and sustainable change to teacher practice. This paper investigates the efficacy of Twitter as a medium for teachers to participate in professional learning by analysing the tweets of 30 influential users of the popular medium. We find…

  19. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  20. 基于AdaBoost与BP神经网络增量学习的手机用户分类预测%Mobile Phone Users Classification Forecast Based on AdaBoost and BP Neural Network Incremental Learning

    Institute of Scientific and Technical Information of China (English)

    张冉

    2011-01-01

    随着3G网络的全面普及,手机广告目前已逐渐成为商家抢占市场的一种营销手段,但手机广告投放的精准性是目前比较突出的一个问题。本文介绍了BP神经网络以及AdaBoost算法的基本原理,研究了应用AdaBoost结合BP神经网络算法的增量学习模型,该模型基于用户历史点击记录来预测手机用户感兴趣的广告类别,以提高手机广告投放的精准度。%With the overall popularity of 3G networks,mobile advertising business has become a marketing tool to seize the market,but the precise nature of mobile advertising is a more prominent issue.This article describes the BP neural network and the basic principles of AdaBoost algorithm to study the application of BP neural network algorithm AdaBoost with incremental learning model that records based on user click history to predict the mobile phone users are interested in advertising categories,in order to improve the mobile advertising the accuracy.

  1. Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hasan A. A. Al-Rawi

    2014-01-01

    Full Text Available Cognitive radio (CR enables unlicensed users (or secondary users, SUs to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs. Reinforcement learning (RL is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs’ network performance without significantly jeopardizing PUs’ network performance, specifically SUs’ interference to PUs.

  2. Networking for Learning The role of Networking in a Lifelong Learner's Professional Development

    OpenAIRE

    Rajagopal, Kamakshi

    2016-01-01

    This dissertation discusses the role the social activity of networking plays in lifelong learners’ professional and personal continuous development. The main hypothesis of this thesis is that networking is a learning strategy for lifelong learners, in which conversations are key activities through which they reassess their held thoughts and make sense of their experiences together with others.

  3. Networking for Learning The role of Networking in a Lifelong Learner's Professional Development

    NARCIS (Netherlands)

    Rajagopal, Kamakshi

    2016-01-01

    This dissertation discusses the role the social activity of networking plays in lifelong learners’ professional and personal continuous development. The main hypothesis of this thesis is that networking is a learning strategy for lifelong learners, in which conversations are key activities through

  4. Learning Errors by Radial Basis Function Neural Networks and Regularization Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Vidnerová, Petra

    2009-01-01

    Roč. 1, č. 2 (2009), s. 49-57 ISSN 2005-4262 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural network * RBF networks * regularization * learning Subject RIV: IN - Informatics, Computer Science http://www.sersc.org/journals/IJGDC/vol2_no1/5.pdf

  5. Distance metric learning for complex networks: Towards size-independent comparison of network structures

    Science.gov (United States)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-02-01

    Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.

  6. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Breast image feature learning with adaptive deconvolutional networks

    Science.gov (United States)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  8. Accelerating Innovation Through Coopetition: The Innovation Learning Network Experience.

    Science.gov (United States)

    McCarthy, Chris; Ford Carleton, Penny; Krumpholz, Elizabeth; Chow, Marilyn P

    Coopetition, the simultaneous pursuit of cooperation and competition, is a growing force in the innovation landscape. For some organizations, the primary mode of innovation continues to be deeply secretive and highly competitive, but for others, a new style of shared challenges, shared purpose, and shared development has become a superior, more efficient way of working to accelerate innovation capabilities and capacity. Over the last 2 decades, the literature base devoted to coopetition has gradually expanded. However, the field is still in its infancy. The majority of coopetition research is qualitative, primarily consisting of case studies. Few studies have addressed the nonprofit sector or service industries such as health care. The authors believe that this article may offer a unique perspective on coopetition in the context of a US-based national health care learning alliance designed to accelerate innovation, the Innovation Learning Network or ILN. The mission of the ILN is to "Share the joy and pain of innovation," accelerating innovation by sharing solutions, teaching techniques, and cultivating friendships. These 3 pillars (sharing, teaching, and cultivating) form the foundation for coopetition within the ILN. Through the lens of coopetition, we examine the experience of the ILN over the last 10 years and provide case examples that illustrate the benefits and challenges of coopetition in accelerating innovation in health care.

  9. Reinforcement learning techniques for controlling resources in power networks

    Science.gov (United States)

    Kowli, Anupama Sunil

    As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.

  10. Teachers' Motives for Learning in Networks: Costs, Rewards and Community Interest

    Science.gov (United States)

    van den Beemt, Antoine; Ketelaar, Evelien; Diepstraten, Isabelle; de Laat, Maarten

    2018-01-01

    Background: This paper discusses teachers' perspectives on learning networks and their motives for participating in these networks. Although it is widely held that teachers' learning may be developed through learning networks, not all teachers participate in such networks. Purpose: The theme of reciprocity, central to studies in the area of…

  11. Teachers’ motives for learning in networks : costs, rewards and community interest

    NARCIS (Netherlands)

    van den Beemt, A.A.J.; Ketelaar, E.; Diepstraten, I.; de Laat, M.

    2018-01-01

    Background: This paper discusses teachers’ perspectives on learning networks and their motives for participating in these networks. Although it is widely held that teachers’ learning may be developed through learning networks, not all teachers participate in such networks. Purpose: The theme of

  12. Nonbinary tree-based phylogenetic networks

    OpenAIRE

    Jetten, Laura; van Iersel, Leo

    2016-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can for example represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and st...

  13. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  14. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  15. A theoretical design for learning model addressing the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin; Nielsen, Janni; Sørensen, Birgitte Holm

    2010-01-01

    The transition from the industrial to the networked society produces contradictions that challenges the educational system and force it to adapt to new conditions. In a Danish virtual Master in Information and Communication Technologies and Learning (MIL) these contradictions appear as a field of...... which enables students to develop Networked Society competencies and maintain progression in the learning process also during the online periods. Additionally we suggest that our model contributes to the innovation of a networked society's design for learning....... is continuously decreasing. We teach for deep learning but are confronted by students' cost-benefit strategies when they navigate through the study programme under time pressure. To meet these challenges a Design for Learning Model has been developed. The aim is to provide a scaffold that ensures students......' acquisition of the subject matter within a time limit and at a learning quality that support their deep learning process during a subsequent period of on-line study work. In the process of moving from theory to application the model passes through three stages: 1) Conceptual modelling; 2) Orchestration, and 3...

  16. The Effect of Virtual versus Traditional Learning in Achieving Competency-Based Skills

    Science.gov (United States)

    Mosalanejad, Leili; Shahsavari, Sakine; Sobhanian, Saeed; Dastpak, Mehdi

    2012-01-01

    Background: By rapid developing of the network technology, the internet-based learning methods are substituting the traditional classrooms making them expand to the virtual network learning environment. The purpose of this study was to determine the effectiveness of virtual systems on competency-based skills of first-year nursing students.…

  17. Characteristics of Problem-Based Learning

    DEFF Research Database (Denmark)

    Kolmos, Anette

    2003-01-01

    Problem BAsed LEarning (PBL) is widely regarded as a successful and innovative method for engineering education. The article highlights the Dutch approach of directing the learning process throuogh problem analysis and the Danish model of project-organised learning...

  18. Lifelong learning networks for sustainable regional development

    NARCIS (Netherlands)

    De Kraker, Joop; Cörvers, Ron; Ruelle, Christine; Valkering, Pieter

    2010-01-01

    Sustainable regional development is a participatory, multi-actor process, involving a diversity of societal stakeholders, administrators, policy makers, practitioners and scientific experts. In this process, mutual and collective learning plays a major role as participants have to exchange and

  19. Community and Social Network Sites as Technology Enhanced Learning Environments

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Christiansen, Ellen

    2008-01-01

    This paper examines the affordance of the Danish social networking site Mingler.dk for peer-to-peer learning and development. With inspiration from different theoretical frameworks, the authors argue how learning and development in such social online systems can be conceptualised and analysed....... Theoretically the paper defines development in accordance with Vygotsky's concept of the zone of proximal development, and learning in accordance with Wenger's concept of communities of practice. The authors suggest analysing the learning and development taking place on Mingler.dk by using these concepts...... supplemented by the notion of horizontal learning adopted from Engestrm and Wenger. Their analysis shows how horizontal learning happens by crossing boundaries between several sites of engagement, and how the actors' multiple membership enables the community members to draw on a vast amount of resources from...

  20. Collaborative Inquiry-based Learning

    NARCIS (Netherlands)

    Suarez, Angel

    2017-01-01

    This thesis presents the results of the conducted research and development of applications to support collaborative inquiry-based learning, with a special focus on leveraging learners’ agency. The reported results are structured into three parts: the theoretical foundations, the design and

  1. Breast Cancer Diagnosis using Artificial Neural Networks with Extreme Learning Techniques

    OpenAIRE

    Chandra Prasetyo Utomo; Aan Kardiana; Rika Yuliwulandari

    2014-01-01

    Breast cancer is the second cause of dead among women. Early detection followed by appropriate cancer treatment can reduce the deadly risk. Medical professionals can make mistakes while identifying a disease. The help of technology such as data mining and machine learning can substantially improve the diagnosis accuracy. Artificial Neural Networks (ANN) has been widely used in intelligent breast cancer diagnosis. However, the standard Gradient-Based Back Propagation Artificial Neural Networks...

  2. A Data-Driven Sparse-Learning Approach to Model Reduction in Chemical Reaction Networks

    OpenAIRE

    Harirchi, Farshad; Khalil, Omar A.; Liu, Sijia; Elvati, Paolo; Violi, Angela; Hero, Alfred O.

    2017-01-01

    In this paper, we propose an optimization-based sparse learning approach to identify the set of most influential reactions in a chemical reaction network. This reduced set of reactions is then employed to construct a reduced chemical reaction mechanism, which is relevant to chemical interaction network modeling. The problem of identifying influential reactions is first formulated as a mixed-integer quadratic program, and then a relaxation method is leveraged to reduce the computational comple...

  3. Transfer Learning for Video Recognition with Scarce Training Data for Deep Convolutional Neural Network

    OpenAIRE

    Su, Yu-Chuan; Chiu, Tzu-Hsuan; Yeh, Chun-Yen; Huang, Hsin-Fu; Hsu, Winston H.

    2014-01-01

    Unconstrained video recognition and Deep Convolution Network (DCN) are two active topics in computer vision recently. In this work, we apply DCNs as frame-based recognizers for video recognition. Our preliminary studies, however, show that video corpora with complete ground truth are usually not large and diverse enough to learn a robust model. The networks trained directly on the video data set suffer from significant overfitting and have poor recognition rate on the test set. The same lack-...

  4. Deep learning classification in asteroseismology using an improved neural network

    DEFF Research Database (Denmark)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2018-01-01

    Deep learning in the form of 1D convolutional neural networks have previously been shown to be capable of efficiently classifying the evolutionary state of oscillating red giants into red giant branch stars and helium-core burning stars by recognizing visual features in their asteroseismic...... frequency spectra. We elaborate further on the deep learning method by developing an improved convolutional neural network classifier. To make our method useful for current and future space missions such as K2, TESS, and PLATO, we train classifiers that are able to classify the evolutionary states of lower...

  5. Web-Based Instruction, Learning Effectiveness and Learning Behavior: The Impact of Relatedness

    Science.gov (United States)

    Shieh, Chich-Jen; Liao, Ying; Hu, Ridong

    2013-01-01

    This study aims to discuss the effects of Web-based Instruction and Learning Behavior on Learning Effectiveness. Web-based Instruction contains the dimensions of Active Learning, Simulation-based Learning, Interactive Learning, and Accumulative Learning; and, Learning Behavior covers Learning Approach, Learning Habit, and Learning Attitude. The…

  6. Machine learning using a higher order correlation network

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.C.; Doolen, G.; Chen, H.H.; Sun, G.Z.; Maxwell, T.; Lee, H.Y.

    1986-01-01

    A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.

  7. Social Networking Sites and Addiction: Ten Lessons Learned

    OpenAIRE

    Kuss, Daria J.; Griffiths, Mark D.

    2017-01-01

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning onl...

  8. Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks

    OpenAIRE

    Shen, Li; Lin, Zhouchen; Huang, Qingming

    2015-01-01

    Learning deeper convolutional neural networks becomes a tendency in recent years. However, many empirical evidences suggest that performance improvement cannot be gained by simply stacking more layers. In this paper, we consider the issue from an information theoretical perspective, and propose a novel method Relay Backpropagation, that encourages the propagation of effective information through the network in training stage. By virtue of the method, we achieved the first place in ILSVRC 2015...

  9. Overcoming uncertainty for within-network relational machine learning

    OpenAIRE

    Pfeiffer, Joseph J.

    2015-01-01

    People increasingly communicate through email and social networks to maintain friendships and conduct business, as well as share online content such as pictures, videos and products. Relational machine learning (RML) utilizes a set of observed attributes and network structure to predict corresponding labels for items; for example, to predict individuals engaged in securities fraud, we can utilize phone calls and workplace information to make joint predictions over the individuals. However, in...

  10. The Use Of Social Networking Sites For Learning In Institutions Of Higher Learning

    Directory of Open Access Journals (Sweden)

    Mange Gladys Nkatha

    2015-08-01

    Full Text Available Abstract Institutions of higher learning are facing greater challenges to change and subjected to various transformations in the surrounding environment including technology. These challenge and motivate them to explore new ways to improve their teaching approaches. This study sought to investigate the use of social networking site in institutions of higher learning. To this end two objectives were formulated 1 to investigate the current state of the use of social networking sites by the students 2 investigate how social networking sites can be used to promote authentic learning in institutions of higher learning. The study adopted exploratory approach using descriptive survey design where a sample of 10 67 students were picked from Jomo Kenyatta University of Agriculture and Technology JKUAT main campus. The findings indicate the use of social networking sites is a viable option as the students are not only members of social networking sites but also that majority have access to the requisite technological devices. Additionally recommendations for ensuring authentic learning were presented. The researcher recommends the exploration of the leveraging of the existing social networking sites for learning in conjunction with key stakeholders.

  11. A random network based, node attraction facilitated network evolution method

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-03-01

    Full Text Available In present study, I present a method of network evolution that based on random network, and facilitated by node attraction. In this method, I assume that the initial network is a random network, or a given initial network. When a node is ready to connect, it tends to link to the node already owning the most connections, which coincides with the general rule (Barabasi and Albert, 1999 of node connecting. In addition, a node may randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the pruning of some connections. The dynamics of network evolution is determined of the attraction factor Lamda of nodes, the probability of node connection, the probability of node disconnection, and the expected initial connectance. The attraction factor of nodes, the probability of node connection, and the probability of node disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters. Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor Lamda can reflect various effects of the node degree on connection mechanism. Even the changes of Lamda only will generate various networks from the random to the complex. Therefore, the present algorithm can be treated as a general model for network evolution. Modeling results show that to generate a power-law type of network, the likelihood of a node attracting connections is dependent upon the power function of the node's degree with a higher-order power. Matlab codes for simplified version of the method are provided.

  12. "FORCE" learning in recurrent neural networks as data assimilation

    Science.gov (United States)

    Duane, Gregory S.

    2017-12-01

    It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.

  13. Learning and Generalisation in Neural Networks with Local Preprocessing

    OpenAIRE

    Kutsia, Merab

    2007-01-01

    We study learning and generalisation ability of a specific two-layer feed-forward neural network and compare its properties to that of a simple perceptron. The input patterns are mapped nonlinearly onto a hidden layer, much larger than the input layer, and this mapping is either fixed or may result from an unsupervised learning process. Such preprocessing of initially uncorrelated random patterns results in the correlated patterns in the hidden layer. The hidden-to-output mapping of the net...

  14. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  15. Learning Object Retrieval and Aggregation Based on Learning Styles

    Science.gov (United States)

    Ramirez-Arellano, Aldo; Bory-Reyes, Juan; Hernández-Simón, Luis Manuel

    2017-01-01

    The main goal of this article is to develop a Management System for Merging Learning Objects (msMLO), which offers an approach that retrieves learning objects (LOs) based on students' learning styles and term-based queries, which produces a new outcome with a better score. The msMLO faces the task of retrieving LOs via two steps: The first step…

  16. A Telescopic Binary Learning Machine for Training Neural Networks.

    Science.gov (United States)

    Brunato, Mauro; Battiti, Roberto

    2017-03-01

    This paper proposes a new algorithm based on multiscale stochastic local search with binary representation for training neural networks [binary learning machine (BLM)]. We study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multiscale version of local search, where the number of bits is increased in an adaptive manner, leading to a faster search and to local minima of better quality. An analysis related to adapting the number of bits in a dynamic way is presented. The control on the number of bits, which happens in a natural manner in the proposed method, is effective to increase the generalization performance. The learning dynamics are discussed and validated on a highly nonlinear artificial problem and on real-world tasks in many application domains; BLM is finally applied to a problem requiring either feedforward or recurrent architectures for feedback control.

  17. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    Science.gov (United States)

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  18. Learning about knowledge: A complex network approach

    International Nuclear Information System (INIS)

    Fontoura Costa, Luciano da

    2006-01-01

    An approach to modeling knowledge acquisition in terms of walks along complex networks is described. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks--i.e., networks composed of successive interconnected layers--are related to compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks--i.e., unreachable nodes--the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barabasi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaus of knowledge stagnation in the case of the preferential movement strategy in the presence of conditional edges

  19. The scientific learning approach using multimedia-based maze game to improve learning outcomes

    Science.gov (United States)

    Setiawan, Wawan; Hafitriani, Sarah; Prabawa, Harsa Wara

    2016-02-01

    The objective of curriculum 2013 is to improve the quality of education in Indonesia, which leads to improving the quality of learning. The scientific approach and supported empowerment media is one approach as massaged of curriculum 2013. This research aims to design a labyrinth game based multimedia and apply in the scientific learning approach. This study was conducted in one of the Vocational School in Subjects of Computer Network on 2 (two) classes of experimental and control. The method used Mix Method Research (MMR) which combines qualitative in multimedia design, and quantitative in the study of learning impact. The results of a survey showed that the general of vocational students like of network topology material (68%), like multimedia (74%), and in particular, like interactive multimedia games and flash (84%). Multimediabased maze game developed good eligibility based on media and material aspects of each value 840% and 82%. Student learning outcomes as a result of using a scientific approach to learning with a multimediabased labyrinth game increase with an average of gain index about (58%) and higher than conventional multimedia with index average gain of 0.41 (41%). Based on these results the scientific approach to learning by using multimediabased labyrinth game can improve the quality of learning and increase understanding of students. Multimedia of learning based labyrinth game, which developed, got a positive response from the students with a good qualification level (75%).

  20. Assessment of Learning in Digital Interactive Social Networks: A Learning Analytics Approach

    Science.gov (United States)

    Wilson, Mark; Gochyyev, Perman; Scalise, Kathleen

    2016-01-01

    This paper summarizes initial field-test results from data analytics used in the work of the Assessment and Teaching of 21st Century Skills (ATC21S) project, on the "ICT Literacy--Learning in digital networks" learning progression. This project, sponsored by Cisco, Intel and Microsoft, aims to help educators around the world enable…

  1. Let's Face(book) It: Analyzing Interactions in Social Network Groups for Chemistry Learning

    Science.gov (United States)

    Rap, Shelley; Blonder, Ron

    2016-02-01

    We examined how social network (SN) groups contribute to the learning of chemistry. The main goal was to determine whether chemistry learning could occur in the group discourse. The emphasis was on groups of students in the 11th and 12th grades who learn chemistry in preparation for their final external examination. A total of 1118 discourse events were tallied in the different groups. We analyzed the different events that were found in chemistry learning Facebook groups (CLFGs). The analysis revealed that seven types of interactions were observed in the CLFGs: The most common interaction (47 %) dealt with organizing learning (e.g., announcements regarding homework, the location of the next class); learning interactions were observed in 22 % of the posts, and links to learning materials and social interactions constituted about 20 % each. The learning events that were ascertained underwent a deeper examination and three different types of chemistry learning interactions were identified. This examination was based on the theoretical framework of the commognitive approach to learning (Sfard in Thinking as communicating. Cambridge University Press, Cambridge, 2008), which will be explained. The identified learning interactions that were observed in the Facebook groups illustrate the potential of SNs to serve as an additional tool for teachers to advance their students' learning of chemistry.

  2. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  3. Ensemble learning in fixed expansion layer networks for mitigating catastrophic forgetting.

    Science.gov (United States)

    Coop, Robert; Mishtal, Aaron; Arel, Itamar

    2013-10-01

    Catastrophic forgetting is a well-studied attribute of most parameterized supervised learning systems. A variation of this phenomenon, in the context of feedforward neural networks, arises when nonstationary inputs lead to loss of previously learned mappings. The majority of the schemes proposed in the literature for mitigating catastrophic forgetting were not data driven and did not scale well. We introduce the fixed expansion layer (FEL) feedforward neural network, which embeds a sparsely encoding hidden layer to help mitigate forgetting of prior learned representations. In addition, we investigate a novel framework for training ensembles of FEL networks, based on exploiting an information-theoretic measure of diversity between FEL learners, to further control undesired plasticity. The proposed methodology is demonstrated on a basic classification task, clearly emphasizing its advantages over existing techniques. The architecture proposed can be enhanced to address a range of computational intelligence tasks, such as regression problems and system control.

  4. Noise-driven manifestation of learning in mature neural networks

    International Nuclear Information System (INIS)

    Monterola, Christopher; Saloma, Caesar

    2002-01-01

    We show that the generalization capability of a mature thresholding neural network to process above-threshold disturbances in a noise-free environment is extended to subthreshold disturbances by ambient noise without retraining. The ability to benefit from noise is intrinsic and does not have to be learned separately. Nonlinear dependence of sensitivity with noise strength is significantly narrower than in individual threshold systems. Noise has a minimal effect on network performance for above-threshold signals. We resolve two seemingly contradictory responses of trained networks to noise--their ability to benefit from its presence and their robustness against noisy strong disturbances

  5. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  6. Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning Frameworks

    OpenAIRE

    Airola, Rasmus; Hager, Kristoffer

    2017-01-01

    The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some o...

  7. Experiment in Collaborative Learning Network for Enhanced ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... process and results of collaborative networking in a particular region and on a specific theme. They will share knowledge in the form of thematic information, best practices, policy analysis, practical methodologies and tools, online courses and seminars, coaching and mentoring, face-to-face exchanges, and workshops.

  8. Understanding Knowledge Network, Learning and Connectivism

    Science.gov (United States)

    AlDahdouh, Alaa A.; Osório, António J.; Caires, Susana

    2015-01-01

    Behaviorism, Cognitivism, Constructivism and other growing theories such as Actor-Network and Connectivism are circulating in the educational field. For each, there are allies who stand behind research evidence and consistency of observation. Meantime, those existing theories dominate the field until the background is changed or new concrete…

  9. Will Learning Social Inclusion Assist Rural Networks

    Science.gov (United States)

    Marchant, Jillian

    2013-01-01

    Current research on social networks in some rural communities reports continuing demise despite efforts to build resilient communities. Several factors are identified as contributing to social decline including globalisation and rural social characteristics. Particular rural social characteristics, such as strong social bonds among members of…

  10. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  11. Learning Reproducibility with a Yearly Networking Contest

    KAUST Repository

    Canini, Marco; Crowcroft, Jon

    2017-01-01

    fostered by organizing a yearly international contest. We argue that holding a contest undertaken by a plurality of students will have benefits that are two-fold. First, it will promote hands-on learning of skills that are helpful in producing artifacts

  12. Virtual learning networks for sustainable development

    NARCIS (Netherlands)

    De Kraker, Joop; Cörvers, Ron

    2010-01-01

    Sustainable development is a participatory, multi-actor process. In this process, learning plays a major role as participants have to exchange and integrate a diversity of perspectives and types of knowledge and expertise in order to arrive at innovative, jointly supported solutions. Virtual

  13. Learning Networks for Lifelong Competence Development

    NARCIS (Netherlands)

    Koper, Rob

    2006-01-01

    Contribution to Prolearn Summerschool, 7-6-2006; Bled; Slovenia. Slides of the lecture and the 'user questions' we produced in the workshop. The task in the workshop was to identify learning questions that a user could have for the TENCompetence system. These questions should be a) hard to answer

  14. Reflections and challenges in Networked Learning

    DEFF Research Database (Denmark)

    Bonderup Dohn, Nina; Sime, Julie-Ann; Cranmer, Susan

    2018-01-01

    with a short presentation of each of the chapters. This leads us to identify broader themes which point out significant perspectives and challenges for future research and practice. Among these are social justice, criticality, mobility, new forms of openness and learning in the public arena (all leading themes...

  15. An Online Social Networking Approach to Reinforce Learning of Rocks and Minerals

    Science.gov (United States)

    Kennelly, Patrick

    2009-01-01

    Numerous and varied methods are used in introductory Earth science and geology classes to help students learn about rocks and minerals, such as classroom lectures, laboratory specimen identification, and field trips. This paper reports on a method using online social networking. The choice of this forum was based on two criteria. First, many…

  16. A Co-Citation Network of Young Children's Learning with Technology

    Science.gov (United States)

    Tang, Kai-Yu; Li, Ming-Chaun; Hsin, Ching-Ting; Tsai, Chin-Chung

    2016-01-01

    This paper used a novel literature review approach--co-citation network analysis--to illuminate the latent structure of 87 empirical papers in the field of young children's learning with technology (YCLT). Based on the document co-citation analysis, a total of 206 co-citation relationships among the 87 papers were identified and then graphically…

  17. On the Importance of Personal Profiles to Enhance Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana

    2008-01-01

    Berlanga, A. J., Bitter-Rijpkema, M. E., Brouns F., & Sloep, P. B. (2008). On the Importance of Personal Profiles to Enhance Social Interaction in Learning Networks. Presented at the IADIS International Conference on Web Based Communities 2008. July, 24-26, 2008, Amsterdam, The Netherlands.

  18. On the importance of personal profiles to enhance social interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Bitter-Rijpkema, Marlies; Brouns, Francis; Sloep, Peter

    2008-01-01

    Berlanga, A. J., Bitter-Rijpkema, M., Brouns F., & Sloep, P.B. (2008). On the importance of personal profiles to enhance social interaction in Learning Networks. In P. Kommers (Ed.), Proceedings of Web Based Communities Conference (WEBC 2008) (pp. 55-62). July, 24-26, 2008, Amsterdam, The

  19. Project team formation support for self-directed learners in social learning networks

    NARCIS (Netherlands)

    Spoelstra, Howard; Van Rosmalen, Peter; Sloep, Peter

    2012-01-01

    Spoelstra, H., Van Rosmalen, P., & Sloep, P. B. (2012). Project team formation support for self-directed learners in social learning networks. In P. Kommers, P. Isaias, & N. Bessis (Eds.), Proceedings of the IADIS International Conference on Web Based Communities and Social Media (ICWBC & SM 2012)

  20. Challenges to the Learning Organization in the Context of Generational Diversity and Social Networks

    Science.gov (United States)

    Kaminska, Renata; Borzillo, Stefano

    2018-01-01

    Purpose: The purpose of this paper is to gain a better understanding of the challenges to the emergence of a learning organization (LO) posed by a context of generational diversity and an enterprise social networking system (ESNS). Design/methodology/approach: This study uses a qualitative methodology based on an analysis of 20 semi-structured…