WorldWideScience

Sample records for based multimodal registration

  1. Multimodal image registration based on binary gradient angle descriptor.

    Science.gov (United States)

    Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian

    2017-12-01

    Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for

  2. An atlas-based multimodal registration method for 2D images with discrepancy structures.

    Science.gov (United States)

    Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng

    2018-06-04

    An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.

  3. PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Xingxing Zhu

    2018-05-01

    Full Text Available Nonrigid multimodal image registration remains a challenging task in medical image processing and analysis. The structural representation (SR-based registration methods have attracted much attention recently. However, the existing SR methods cannot provide satisfactory registration accuracy due to the utilization of hand-designed features for structural representation. To address this problem, the structural representation method based on the improved version of the simple deep learning network named PCANet is proposed for medical image registration. In the proposed method, PCANet is firstly trained on numerous medical images to learn convolution kernels for this network. Then, a pair of input medical images to be registered is processed by the learned PCANet. The features extracted by various layers in the PCANet are fused to produce multilevel features. The structural representation images are constructed for two input images based on nonlinear transformation of these multilevel features. The Euclidean distance between structural representation images is calculated and used as the similarity metrics. The objective function defined by the similarity metrics is optimized by L-BFGS method to obtain parameters of the free-form deformation (FFD model. Extensive experiments on simulated and real multimodal image datasets show that compared with the state-of-the-art registration methods, such as modality-independent neighborhood descriptor (MIND, normalized mutual information (NMI, Weber local descriptor (WLD, and the sum of squared differences on entropy images (ESSD, the proposed method provides better registration performance in terms of target registration error (TRE and subjective human vision.

  4. Spectral embedding-based registration (SERg) for multimodal fusion of prostate histology and MRI

    Science.gov (United States)

    Hwuang, Eileen; Rusu, Mirabela; Karthigeyan, Sudha; Agner, Shannon C.; Sparks, Rachel; Shih, Natalie; Tomaszewski, John E.; Rosen, Mark; Feldman, Michael; Madabhushi, Anant

    2014-03-01

    Multi-modal image registration is needed to align medical images collected from different protocols or imaging sources, thereby allowing the mapping of complementary information between images. One challenge of multimodal image registration is that typical similarity measures rely on statistical correlations between image intensities to determine anatomical alignment. The use of alternate image representations could allow for mapping of intensities into a space or representation such that the multimodal images appear more similar, thus facilitating their co-registration. In this work, we present a spectral embedding based registration (SERg) method that uses non-linearly embedded representations obtained from independent components of statistical texture maps of the original images to facilitate multimodal image registration. Our methodology comprises the following main steps: 1) image-derived textural representation of the original images, 2) dimensionality reduction using independent component analysis (ICA), 3) spectral embedding to generate the alternate representations, and 4) image registration. The rationale behind our approach is that SERg yields embedded representations that can allow for very different looking images to appear more similar, thereby facilitating improved co-registration. Statistical texture features are derived from the image intensities and then reduced to a smaller set by using independent component analysis to remove redundant information. Spectral embedding generates a new representation by eigendecomposition from which only the most important eigenvectors are selected. This helps to accentuate areas of salience based on modality-invariant structural information and therefore better identifies corresponding regions in both the template and target images. The spirit behind SERg is that image registration driven by these areas of salience and correspondence should improve alignment accuracy. In this work, SERg is implemented using Demons

  5. Multimodality Registration without a Dedicated Multimodality Scanner

    Directory of Open Access Journals (Sweden)

    Bradley J. Beattie

    2007-03-01

    Full Text Available Multimodality scanners that allow the acquisition of both functional and structural image sets on a single system have recently become available for animal research use. Although the resultant registered functional/structural image sets can greatly enhance the interpretability of the functional data, the cost of multimodality systems can be prohibitive, and they are often limited to two modalities, which generally do not include magnetic resonance imaging. Using a thin plastic wrap to immobilize and fix a mouse or other small animal atop a removable bed, we are able to calculate registrations between all combinations of four different small animal imaging scanners (positron emission tomography, single-photon emission computed tomography, magnetic resonance, and computed tomography [CT] at our disposal, effectively equivalent to a quadruple-modality scanner. A comparison of serially acquired CT images, with intervening acquisitions on other scanners, demonstrates the ability of the proposed procedures to maintain the rigidity of an anesthetized mouse during transport between scanners. Movement of the bony structures of the mouse was estimated to be 0.62 mm. Soft tissue movement was predominantly the result of the filling (or emptying of the urinary bladder and thus largely constrained to this region. Phantom studies estimate the registration errors for all registration types to be less than 0.5 mm. Functional images using tracers targeted to known structures verify the accuracy of the functional to structural registrations. The procedures are easy to perform and produce robust and accurate results that rival those of dedicated multimodality scanners, but with more flexible registration combinations and while avoiding the expense and redundancy of multimodality systems.

  6. Mesh-to-raster region-of-interest-based nonrigid registration of multimodal images.

    Science.gov (United States)

    Tatano, Rosalia; Berkels, Benjamin; Deserno, Thomas M

    2017-10-01

    Region of interest (RoI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from computed axial tomography scanners as pixel or voxel data. Previously, we presented a 2-D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster framework to register RoIs in multimodal images; (ii) a 3-D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2-D using ground truth (GT) provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem, where the objective consists of a data term, which involves the signed distance function of the RoI from the reference image and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The RoI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit and Elastix.

  7. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    Science.gov (United States)

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Diffusion Maps for Multimodal Registration

    Directory of Open Access Journals (Sweden)

    Gemma Piella

    2014-06-01

    Full Text Available Multimodal image registration is a difficult task, due to the significant intensity variations between the images. A common approach is to use sophisticated similarity measures, such as mutual information, that are robust to those intensity variations. However, these similarity measures are computationally expensive and, moreover, often fail to capture the geometry and the associated dynamics linked with the images. Another approach is the transformation of the images into a common space where modalities can be directly compared. Within this approach, we propose to register multimodal images by using diffusion maps to describe the geometric and spectral properties of the data. Through diffusion maps, the multimodal data is transformed into a new set of canonical coordinates that reflect its geometry uniformly across modalities, so that meaningful correspondences can be established between them. Images in this new representation can then be registered using a simple Euclidean distance as a similarity measure. Registration accuracy was evaluated on both real and simulated brain images with known ground-truth for both rigid and non-rigid registration. Results showed that the proposed approach achieved higher accuracy than the conventional approach using mutual information.

  9. Development of a hardware-based registration system for the multimodal medical images by USB cameras

    International Nuclear Information System (INIS)

    Iwata, Michiaki; Minato, Kotaro; Watabe, Hiroshi; Koshino, Kazuhiro; Yamamoto, Akihide; Iida, Hidehiro

    2009-01-01

    There are several medical imaging scanners and each modality has different aspect for visualizing inside of human body. By combining these images, diagnostic accuracy could be improved, and therefore, several attempts for multimodal image registration have been implemented. One popular approach is to use hybrid image scanners such as positron emission tomography (PET)/CT and single photon emission computed tomography (SPECT)/CT. However, these hybrid scanners are expensive and not fully available. We developed multimodal image registration system with universal serial bus (USB) cameras, which is inexpensive and applicable to any combinations of existed conventional imaging scanners. The multiple USB cameras will determine the three dimensional positions of a patient while scanning. Using information of these positions and rigid body transformation, the acquired image is registered to the common coordinate which is shared with another scanner. For each scanner, reference marker is attached on gantry of the scanner. For observing the reference marker's position by the USB cameras, the location of the USB cameras can be arbitrary. In order to validate the system, we scanned a cardiac phantom with different positions by PET and MRI scanners. Using this system, images from PET and MRI were visually aligned, and good correlations between PET and MRI images were obtained after the registration. The results suggest this system can be inexpensively used for multimodal image registrations. (author)

  10. Improving efficiency of multi-modality registration of brain scans based on mutual information

    International Nuclear Information System (INIS)

    Thurfjell, L.; Lau, Y.; Hutton, B.; Westmead Hospital, Sydney, NSW; University of Technology, Sydney, NSW

    1999-01-01

    Full text: One approach for multi-modality registration uses a similarity measure based on mutual information (MI) of voxel intensities. MI measures the statistical dependence between two images by comparing the joint probability distribution (approximated by the 2D joint histogram), with the distribution in the case of complete independence (approximated from the I D histograms). The MI measure reaches a maximum when the images are aligned. The purpose of the current work was to investigate if the registration process could be accelerated through subsampling, i.e. by using only a subset of all voxels for the calculations. The behaviour of the MI measure at different subsampling factors was studied. It was observed that subsampling caused MI to exhibit multiple local maxima unless it was accompanied by a reduction in the number of bins used for the histograms. However, too few bins in the histograms made the peak of the MI measure broader. It was therefore concluded that a coarse-to-fine subsampling procedure, followed by a corresponding increase in the number of bins in the histogram, would be the best choice. The method was validated on SPET-MRI data from seven healthy volunteers. Using a 64:1, 32:1 and 16:1 subsampling scheme with a corresponding bin size of 24, 32 and 48, the new method converged in an average time of 2.5 min as compared to 46 min for the original method (PC Pentium 200). The average absolute differences were 0.24, 0.34, 0.30 mm translation and 0.58, 0.41, 0.66 degrees rotation. We conclude that the suggested scheme renders the registration method sufficiently rapid for routine use in the clinical setting

  11. Registration for Optical Multimodal Remote Sensing Images Based on FAST Detection, Window Selection, and Histogram Specification

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhao

    2018-04-01

    Full Text Available In recent years, digital frame cameras have been increasingly used for remote sensing applications. However, it is always a challenge to align or register images captured with different cameras or different imaging sensor units. In this research, a novel registration method was proposed. Coarse registration was first applied to approximately align the sensed and reference images. Window selection was then used to reduce the search space and a histogram specification was applied to optimize the grayscale similarity between the images. After comparisons with other commonly-used detectors, the fast corner detector, FAST (Features from Accelerated Segment Test, was selected to extract the feature points. The matching point pairs were then detected between the images, the outliers were eliminated, and geometric transformation was performed. The appropriate window size was searched and set to one-tenth of the image width. The images that were acquired by a two-camera system, a camera with five imaging sensors, and a camera with replaceable filters mounted on a manned aircraft, an unmanned aerial vehicle, and a ground-based platform, respectively, were used to evaluate the performance of the proposed method. The image analysis results showed that, through the appropriate window selection and histogram specification, the number of correctly matched point pairs had increased by 11.30 times, and that the correct matching rate had increased by 36%, compared with the results based on FAST alone. The root mean square error (RMSE in the x and y directions was generally within 0.5 pixels. In comparison with the binary robust invariant scalable keypoints (BRISK, curvature scale space (CSS, Harris, speed up robust features (SURF, and commercial software ERDAS and ENVI, this method resulted in larger numbers of correct matching pairs and smaller, more consistent RMSE. Furthermore, it was not necessary to choose any tie control points manually before registration

  12. Prostate multimodality image registration based on B-splines and quadrature local energy.

    Science.gov (United States)

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  13. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    Directory of Open Access Journals (Sweden)

    Pielot Rainer

    2010-01-01

    Full Text Available Abstract Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE, a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  14. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    Science.gov (United States)

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  15. [Multimodal medical image registration using cubic spline interpolation method].

    Science.gov (United States)

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  16. Two Phase Non-Rigid Multi-Modal Image Registration Using Weber Local Descriptor-Based Similarity Metrics and Normalized Mutual Information

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2013-06-01

    Full Text Available Non-rigid multi-modal image registration plays an important role in medical image processing and analysis. Existing image registration methods based on similarity metrics such as mutual information (MI and sum of squared differences (SSD cannot achieve either high registration accuracy or high registration efficiency. To address this problem, we propose a novel two phase non-rigid multi-modal image registration method by combining Weber local descriptor (WLD based similarity metrics with the normalized mutual information (NMI using the diffeomorphic free-form deformation (FFD model. The first phase aims at recovering the large deformation component using the WLD based non-local SSD (wldNSSD or weighted structural similarity (wldWSSIM. Based on the output of the former phase, the second phase is focused on getting accurate transformation parameters related to the small deformation using the NMI. Extensive experiments on T1, T2 and PD weighted MR images demonstrate that the proposed wldNSSD-NMI or wldWSSIM-NMI method outperforms the registration methods based on the NMI, the conditional mutual information (CMI, the SSD on entropy images (ESSD and the ESSD-NMI in terms of registration accuracy and computation efficiency.

  17. Registration of deformed multimodality medical images

    International Nuclear Information System (INIS)

    Moshfeghi, M.; Naidich, D.

    1989-01-01

    The registration and combination of images from different modalities have several potential applications, such as functional and anatomic studies, 3D radiation treatment planning, surgical planning, and retrospective studies. Image registration algorithms should correct for any local deformations caused by respiration, heart beat, imaging device distortions, and so forth. This paper reports on an elastic matching technique for registering deformed multimodality images. Correspondences between contours in the two images are used to stretch the deformed image toward its goal image. This process is repeated a number of times, with decreasing image stiffness. As the iterations continue, the stretched image better approximates its goal image

  18. Multimodality image registration with software: state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Slomka, Piotr J. [Cedars-Sinai Medical Center, AIM Program/Department of Imaging, Los Angeles, CA (United States); University of California, David Geffen School of Medicine, Los Angeles, CA (United States); Baum, Richard P. [Center for PET, Department of Nuclear Medicine, Bad Berka (Germany)

    2009-03-15

    Multimodality image integration of functional and anatomical data can be performed by means of dedicated hybrid imaging systems or by software image co-registration techniques. Hybrid positron emission tomography (PET)/computed tomography (CT) systems have found wide acceptance in oncological imaging, while software registration techniques have a significant role in patient-specific, cost-effective, and radiation dose-effective application of integrated imaging. Software techniques allow accurate (2-3 mm) rigid image registration of brain PET with CT and MRI. Nonlinear techniques are used in whole-body image registration, and recent developments allow for significantly accelerated computing times. Nonlinear software registration of PET with CT or MRI is required for multimodality radiation planning. Difficulties remain in the validation of nonlinear registration of soft tissue organs. The utilization of software-based multimodality image integration in a clinical environment is sometimes hindered by the lack of appropriate picture archiving and communication systems (PACS) infrastructure needed to efficiently and automatically integrate all available images into one common database. In cardiology applications, multimodality PET/single photon emission computed tomography and coronary CT angiography imaging is typically not required unless the results of one of the tests are equivocal. Software image registration is likely to be used in a complementary fashion with hybrid PET/CT or PET/magnetic resonance imaging systems. Software registration of stand-alone scans ''paved the way'' for the clinical application of hybrid scanners, demonstrating practical benefits of image integration before the hybrid dual-modality devices were available. (orig.)

  19. Multimodality image registration with software: state-of-the-art

    International Nuclear Information System (INIS)

    Slomka, Piotr J.; Baum, Richard P.

    2009-01-01

    Multimodality image integration of functional and anatomical data can be performed by means of dedicated hybrid imaging systems or by software image co-registration techniques. Hybrid positron emission tomography (PET)/computed tomography (CT) systems have found wide acceptance in oncological imaging, while software registration techniques have a significant role in patient-specific, cost-effective, and radiation dose-effective application of integrated imaging. Software techniques allow accurate (2-3 mm) rigid image registration of brain PET with CT and MRI. Nonlinear techniques are used in whole-body image registration, and recent developments allow for significantly accelerated computing times. Nonlinear software registration of PET with CT or MRI is required for multimodality radiation planning. Difficulties remain in the validation of nonlinear registration of soft tissue organs. The utilization of software-based multimodality image integration in a clinical environment is sometimes hindered by the lack of appropriate picture archiving and communication systems (PACS) infrastructure needed to efficiently and automatically integrate all available images into one common database. In cardiology applications, multimodality PET/single photon emission computed tomography and coronary CT angiography imaging is typically not required unless the results of one of the tests are equivocal. Software image registration is likely to be used in a complementary fashion with hybrid PET/CT or PET/magnetic resonance imaging systems. Software registration of stand-alone scans ''paved the way'' for the clinical application of hybrid scanners, demonstrating practical benefits of image integration before the hybrid dual-modality devices were available. (orig.)

  20. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-01-01

    Full Text Available Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  1. Semiautomated Multimodal Breast Image Registration

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved.

  2. Image fusion between whole body FDG PET images and whole body MRI images using a full-automatic mutual information-based multimodality image registration software

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Nakano, Yoshitada; Fujibuchi, Toshiou; Isobe, Tomoko; Kazama, Toshiki; Ito, Hisao

    2006-01-01

    We attempted image fusion between whole body PET and whole body MRI of thirty patients using a full-automatic mutual information (MI) -based multimodality image registration software and evaluated accuracy of this method and impact of the coregistrated imaging on diagnostic accuracy. For 25 of 30 fused images in body area, translating gaps were within 6 mm in all axes and rotating gaps were within 2 degrees around all axes. In head and neck area, considerably much gaps caused by difference of head inclination at imaging occurred in 16 patients, however these gaps were able to decrease by fused separately. In 6 patients, diagnostic accuracy using PET/MRI fused images was superior compared by PET image alone. This work shows that whole body FDG PET images and whole body MRI images can be automatically fused using MI-based multimodality image registration software accurately and this technique can add useful information when evaluating FDG PET images. (author)

  3. Multimodal Registration of gated cardiac PET, CT and MR sequences

    International Nuclear Information System (INIS)

    Baty, X.

    2007-07-01

    The research described in this manuscript deals with the multimodal registration of cardiac images from Magnetic Resonance Imaging (MRI), Position Emission Tomography (PET) and Computerized Tomography (CT). All these modalities are gated to the Electrocardiogram (ECG) and provide information to evaluate cardiac function, and to diagnose and to follow-up cardiovascular pathologies. PET imaging allows the evaluation of ventricular function and MRI is a gold standard for the study of the left ventricular function. The goal of our registration process is to merge functional (from PET) and anatomical images (from CT and MRI). Our process is adapted to the modalities used and is divided in two steps: (i) a global rigid 3-dimensional model-based ICP (Iterative Closest Point) registration between CT and MR data and (ii) an iconic 2-dimensional registration based on Free Form Deformations and Mutual Information. This last step presents an original contribution by using a composite image of CT (which presents epicardic contours) and PET (where endocardic contours are partially visible) data to make mutual information more accurate in representing the similarity with the MR data. To speed up the whole process, we also present a transformation initialization scheme using displacement field obtained form MR data only. The obtained results have been evaluated by experts. (author)

  4. Assessment of rigid multi-modality image registration consistency using the multiple sub-volume registration (MSR) method

    International Nuclear Information System (INIS)

    Ceylan, C; Heide, U A van der; Bol, G H; Lagendijk, J J W; Kotte, A N T J

    2005-01-01

    Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient. (note)

  5. Graph-based surface extraction of the liver using locally adaptive priors for multimodal interventional image registration

    NARCIS (Netherlands)

    Kadoury, S.; Wood, B.; Venkatesan, A.; Ardon, R.; Jago, J.; Kruecker, J.

    2011-01-01

    The 3D fusion of tracked ultrasound with a diagnostic CT image has multiple benefits in a variety of interventional applications for oncology. Still, manual registration is a considerable drawback to theclinical workflow and hinders the widespread clinical adoption of this technique. In this paper,

  6. Multi-Modality Registration And Fusion Of Medical Image Data

    International Nuclear Information System (INIS)

    Kassak, P.; Vencko, D.; Cerovsky, I.

    2008-01-01

    Digitalisation of health care providing facilities allows US to maximize the usage of digital data from one patient obtained by various modalities. Complex view on to the problem can be achieved from the site of morphology as well as functionality. Multi-modal registration and fusion of medical image data is one of the examples that provides improved insight and allows more precise approach and treatment. (author)

  7. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    Science.gov (United States)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  8. Evaluation of registration strategies for multi-modality images of rat brain slices

    International Nuclear Information System (INIS)

    Palm, Christoph; Vieten, Andrea; Salber, Dagmar; Pietrzyk, Uwe

    2009-01-01

    In neuroscience, small-animal studies frequently involve dealing with series of images from multiple modalities such as histology and autoradiography. The consistent and bias-free restacking of multi-modality image series is obligatory as a starting point for subsequent non-rigid registration procedures and for quantitative comparisons with positron emission tomography (PET) and other in vivo data. Up to now, consistency between 2D slices without cross validation using an inherent 3D modality is frequently presumed to be close to the true morphology due to the smooth appearance of the contours of anatomical structures. However, in multi-modality stacks consistency is difficult to assess. In this work, consistency is defined in terms of smoothness of neighboring slices within a single modality and between different modalities. Registration bias denotes the distortion of the registered stack in comparison to the true 3D morphology and shape. Based on these metrics, different restacking strategies of multi-modality rat brain slices are experimentally evaluated. Experiments based on MRI-simulated and real dual-tracer autoradiograms reveal a clear bias of the restacked volume despite quantitatively high consistency and qualitatively smooth brain structures. However, different registration strategies yield different inter-consistency metrics. If no genuine 3D modality is available, the use of the so-called SOP (slice-order preferred) or MOSOP (modality-and-slice-order preferred) strategy is recommended.

  9. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Leibfarth, Sara; Moennich, David; Thorwarth, Daniela; Welz, Stefan; Siegel, Christine; Zips, Daniel; Schwenzer, Nina; Holger Schmidt, Holger

    2013-01-01

    Background: Combined positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly promising for biologically individualized radiotherapy (RT). Hence, the purpose of this work was to develop an accurate and robust registration strategy to integrate combined PET/MR data into RT treatment planning. Material and methods: Eight patient datasets consisting of an FDG PET/computed tomography (CT) and a subsequently acquired PET/MR of the head and neck (HN) region were available. Registration strategies were developed based on CT and MR data only, whereas the PET components were fused with the resulting deformation field. Following a rigid registration, deformable registration was performed with a transform parametrized by B-splines. Three different optimization metrics were investigated: global mutual information (GMI), GMI combined with a bending energy penalty (BEP) for regularization (GMI + BEP) and localized mutual information with BEP (LMI + BEP). Different quantitative registration quality measures were developed, including volumetric overlap and mean distance measures for structures segmented on CT and MR as well as anatomical landmark distances. Moreover, the local registration quality in the tumor region was assessed by the normalized cross correlation (NCC) of the two PET datasets. Results: LMI + BEP yielded the most robust and accurate registration results. For GMI, GMI + BEP and LMI + BEP, mean landmark distances (standard deviations) were 23.9 mm (15.5 mm), 4.8 mm (4.0 mm) and 3.0 mm (1.0 mm), and mean NCC values (standard deviations) were 0.29 (0.29), 0.84 (0.14) and 0.88 (0.06), respectively. Conclusion: Accurate and robust multimodal deformable image registration of CT and MR in the HN region can be performed using a B-spline parametrized transform and LMI + BEP as optimization metric. With this strategy, biologically individualized RT based on combined PET/MRI in terms of dose painting is possible

  10. Multimodal registration of three-dimensional maxillodental cone beam CT and photogrammetry data over time.

    Science.gov (United States)

    Bolandzadeh, N; Bischof, W; Flores-Mir, C; Boulanger, P

    2013-01-01

    In recent years, one of the foci of orthodontics has been on systems for the evaluation of treatment results and the tracking of tissue variations over time. This can be accomplished through analysing three-dimensional orthodontic images obtained before and after the treatments. Since complementary information is achieved by integrating multiple imaging modalities, cone beam CT (CBCT) and stereophotogrammetry technologies are used in this study to develop a method for tracking bone, teeth and facial soft-tissue variations over time. We propose a two-phase procedure of multimodal (Phase 1) and multitemporal (Phase 2) registration which aligns images taken from the same patient by different imaging modalities and at different times. Extrinsic (for Phase 1) and intrinsic (for Phase 2) landmark-based registration methods are employed as an initiation for a robust iterative closest points algorithm. Since the mandible moves independently of the upper skull, the registration procedure is applied separately on the mandible and the upper skull. The results show that the signed error distributions of both mandible and skull registrations follow a mixture of two Gaussian distributions, corresponding to alignment errors (due to our method) and temporal change over time. We suggest that the large values among the total registration errors correspond to the temporal change resulting from (1) the effect of treatment (i.e. the orthodontic changes of teeth positions); (2) the biological changes such as teeth growth over time, especially for teenagers; and (3) the segmentation procedure and CBCT precision change over time.

  11. Multimodal Registration and Fusion for 3D Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Moulay A. Akhloufi

    2015-01-01

    Full Text Available 3D vision is an area of computer vision that has attracted a lot of research interest and has been widely studied. In recent years we witness an increasing interest from the industrial community. This interest is driven by the recent advances in 3D technologies, which enable high precision measurements at an affordable cost. With 3D vision techniques we can conduct advanced manufactured parts inspections and metrology analysis. However, we are not able to detect subsurface defects. This kind of detection is achieved by other techniques, like infrared thermography. In this work, we present a new registration framework for 3D and thermal infrared multimodal fusion. The resulting fused data can be used for advanced 3D inspection in Nondestructive Testing and Evaluation (NDT&E applications. The fusion permits the simultaneous visible surface and subsurface inspections to be conducted in the same process. Experimental tests were conducted with different materials. The obtained results are promising and show how these new techniques can be used efficiently in a combined NDT&E-Metrology analysis of manufactured parts, in areas such as aerospace and automotive.

  12. Multi-modal image registration: matching MRI with histology

    Science.gov (United States)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  13. Surface-based prostate registration with biomechanical regularization

    Science.gov (United States)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  14. An embedded system for image segmentation and multimodal registration in noninvasive skin cancer screening.

    Science.gov (United States)

    Diaz, Silvana; Soto, Javier E; Inostroza, Fabian; Godoy, Sebastian E; Figueroa, Miguel

    2017-07-01

    We present a heterogeneous architecture for image registration and multimodal segmentation on an embedded system for noninvasive skin cancer screening. The architecture combines Otsu thresholding and the random walker algorithm to perform image segmentation, and features a hardware implementation of the Harris corner detection algorithm to perform region-of-interest detection and image registration. Running on a Xilinx XC7Z020 reconfigurable system-on-a-chip, our prototype computes the initial segmentation of a 400×400-pixel region of interest in the visible spectrum in 12.1 seconds, and registers infrared images against this region at 540 frames per second, while consuming 1.9W.

  15. Multimodal image registration of the scoliotic torso for surgical planning

    International Nuclear Information System (INIS)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-01-01

    This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso

  16. Multimodal image registration of the scoliotic torso for surgical planning

    Science.gov (United States)

    2013-01-01

    Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso. PMID:23289431

  17. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Verhaart, René F. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC University Medical Center Cancer Institute, Rotterdam (Netherlands); Angeloni, Francesco [Istituto di Ricovero e Cura a Carattere Scientifico Foundation SDN for Research and High Education in Nuclear Diagnostics, Naples (Italy); Lugt, Aad van der [Department of Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Niessen, Wiro J. [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Veenland, Jifke F. [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Paulides, Margarethus M. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC University Medical Center Cancer Institute, Rotterdam (Netherlands); Walsum, Theo van [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands)

    2014-09-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealistic deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.

  18. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    International Nuclear Information System (INIS)

    Fortunati, Valerio; Verhaart, René F.; Angeloni, Francesco; Lugt, Aad van der; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; Walsum, Theo van

    2014-01-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealistic deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration

  19. Comparison of manual vs. automated multimodality (CT-MRI) image registration for brain tumors

    International Nuclear Information System (INIS)

    Sarkar, Abhirup; Santiago, Roberto J.; Smith, Ryan; Kassaee, Alireza

    2005-01-01

    Computed tomgoraphy-magnetic resonance imaging (CT-MRI) registrations are routinely used for target-volume delineation of brain tumors. We clinically use 2 software packages based on manual operation and 1 automated package with 2 different algorithms: chamfer matching using bony structures, and mutual information using intensity patterns. In all registration algorithms, a minimum of 3 pairs of identical anatomical and preferably noncoplanar landmarks is used on each of the 2 image sets. In manual registration, the program registers these points and links the image sets using a 3-dimensional (3D) transformation. In automated registration, the 3 landmarks are used as an initial starting point and further processing is done to complete the registration. Using our registration packages, registration of CT and MRI was performed on 10 patients. We scored the results of each registration set based on the amount of time spent, the accuracy reported by the software, and a final evaluation. We evaluated each software program by measuring the residual error between 'matched' points on the right and left globes and the posterior fossa for fused image slices. In general, manual registration showed higher misalignment between corresponding points compared to automated registration using intensity matching. This error had no directional dependence and was, most of the time, larger for a larger structure in both registration techniques. Automated algorithm based on intensity matching also gave the best results in terms of registration accuracy, irrespective of whether or not the initial landmarks were chosen carefully, when compared to that done using bone matching algorithm. Intensity-matching algorithm required the least amount of user-time and provided better accuracy

  20. Automated Registration of Multimodal Optic Disc Images: Clinical Assessment of Alignment Accuracy.

    Science.gov (United States)

    Ng, Wai Siene; Legg, Phil; Avadhanam, Venkat; Aye, Kyaw; Evans, Steffan H P; North, Rachel V; Marshall, Andrew D; Rosin, Paul; Morgan, James E

    2016-04-01

    To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: "Fail" (no alignment of vessels with no vessel contact), "Weak" (vessels have slight contact), "Good" (vessels with 50% contact), and "Excellent" (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of "Good" or better in >95% of the image sets. NRFNMI had the highest percentage of "Excellent" (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images.

  1. A multicore based parallel image registration method.

    Science.gov (United States)

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L; Foran, David J

    2009-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform.

  2. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    Directory of Open Access Journals (Sweden)

    Hengkai Guo

    Full Text Available Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US and magnetic resonance (MR. Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  3. A general technique for interstudy registration of multifunction and multimodality images

    International Nuclear Information System (INIS)

    Lin, K.P.; Huang, S.C.; Bacter, L.R.; Phelps, M.E.

    1994-01-01

    A technique that can register anatomic/structural brain images (e.g., MRI) with various functional images (e.g., PET-FDG and PET-FDOPA) of the same subject has been developed. The procedure of this technique includes the following steps: (1) segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and, muscle (MS) components, (2) assignment of appropriate radio-tracer concentrations to various components depending on the kind of functional image that is being registered, (3) generation of simulated functional images to have a spatial resolution that is comparable to that of the measured ones, (4) alignment of the measured functional images to the simulated ones that are based on MRI images. A self-organization clustering method is used to segment the MRI images. The image alignment is based on the criterion of least squares of the pixel-by-pixel differences between the two sets of images that are being matched and on the Powell's algorithm for minimization. The technique was applied successfully for registering the MRI, PET-FDG, and PET-FDOPA images. This technique offers a general solution to the registration of structural images to functional images and to the registration of different functional images of markedly different distributions

  4. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    2010-01-01

    In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal' communication, which should not be confused with the term ‘multimedia'. While multimedia...... on their teaching and learning situations. The choices they make involve e-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very...

  5. A Joint Land Cover Mapping and Image Registration Algorithm Based on a Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Apisit Eiumnoh

    2013-10-01

    Full Text Available Traditionally, image registration of multi-modal and multi-temporal images is performed satisfactorily before land cover mapping. However, since multi-modal and multi-temporal images are likely to be obtained from different satellite platforms and/or acquired at different times, perfect alignment is very difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct registration errors as well as perform an accurate classification. In this paper, we propose a joint classification and registration technique based on a Markov random field (MRF model to simultaneously align two or more images and obtain a land cover map (LCM of the scene. The expectation maximization (EM algorithm is employed to solve the joint image classification and registration problem by iteratively estimating the map parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP criterion is used to produce an optimum land cover map. We conducted experiments on a set of four simulated images and one pair of remotely sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an unregistered image pair can achieve an accuracy that is as high as when images are perfectly aligned. Furthermore, the registration error can be greatly reduced.

  6. Evaluation of multi-modality CT-MRI-SPECT registration tools for radiotherapy treatment planning purposes

    International Nuclear Information System (INIS)

    Bianchini, S.; Alfonso, R.; Castillo, J.; Coca, M.; Torres, L.

    2013-01-01

    A qualitative and quantitative comparison of registration CT-CT, CT-MR and CT-SPECT performed by the different software and algorithms studies is presented. Only two studied software were full DICOM RT compatible while accepting DICOM images in any layout. Quantitative results of fiducial displacement errors were calculated for all software and available registration methods. The presented methodology demonstrated being effective for assessing the quality of studied image registration tools in the radiotherapy planning context, provided the images are free of significant geometric deformation. When implementing this methodology in real patients, the use of immobilization devices, such as thermoplastic masks, is recommended for enhanced quality of image registration. (Author)

  7. A Remote Registration Based on MIDAS

    Science.gov (United States)

    JIN, Xin

    2017-04-01

    We often need for software registration to protect the interests of the software developers. This article narrated one kind of software long-distance registration technology. The registration method is: place the registration information in a database table, after the procedure starts in check table registration information, if it has registered then the procedure may the normal operation; Otherwise, the customer must input the sequence number and registers through the network on the long-distance server. If it registers successfully, then records the registration information in the database table. This remote registration method can protect the rights of software developers.

  8. Canny edge-based deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-07

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  9. Multiresolution image registration for multimodal brain images and fusion for better neurosurgical planning

    Directory of Open Access Journals (Sweden)

    Siddeshappa Nandish

    2017-12-01

    Conclusion: The end resultant fused images are validated by the radiologists and mutual information measure is used to validate registration results. It is found that CT and MRI sequence with more number of slices gave promising results. Few cases with deformation during misregistrations recorded with low mutual information of about 0.3 and which is not acceptable and few recorded with 0.6 and above mutual information during registration gives promising results.

  10. Hierarchical patch-based co-registration of differently stained histopathology slides

    Science.gov (United States)

    Yigitsoy, Mehmet; Schmidt, Günter

    2017-03-01

    Over the past decades, digital pathology has emerged as an alternative way of looking at the tissue at subcellular level. It enables multiplexed analysis of different cell types at micron level. Information about cell types can be extracted by staining sections of a tissue block using different markers. However, robust fusion of structural and functional information from different stains is necessary for reproducible multiplexed analysis. Such a fusion can be obtained via image co-registration by establishing spatial correspondences between tissue sections. Spatial correspondences can then be used to transfer various statistics about cell types between sections. However, the multi-modal nature of images and sparse distribution of interesting cell types pose several challenges for the registration of differently stained tissue sections. In this work, we propose a co-registration framework that efficiently addresses such challenges. We present a hierarchical patch-based registration of intensity normalized tissue sections. Preliminary experiments demonstrate the potential of the proposed technique for the fusion of multi-modal information from differently stained digital histopathology sections.

  11. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal’ communication, which should not be confused with the term ‘multimedia’. While multimedia...... and learning situations. The choices they make involve E-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very useful...

  12. Optical sensor in planar configuration based on multimode interference

    Science.gov (United States)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  13. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  14. Reliability-Based Decision Fusion in Multimodal Biometric Verification Systems

    Directory of Open Access Journals (Sweden)

    Kryszczuk Krzysztof

    2007-01-01

    Full Text Available We present a methodology of reliability estimation in the multimodal biometric verification scenario. Reliability estimation has shown to be an efficient and accurate way of predicting and correcting erroneous classification decisions in both unimodal (speech, face, online signature and multimodal (speech and face systems. While the initial research results indicate the high potential of the proposed methodology, the performance of the reliability estimation in a multimodal setting has not been sufficiently studied or evaluated. In this paper, we demonstrate the advantages of using the unimodal reliability information in order to perform an efficient biometric fusion of two modalities. We further show the presented method to be superior to state-of-the-art multimodal decision-level fusion schemes. The experimental evaluation presented in this paper is based on the popular benchmarking bimodal BANCA database.

  15. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    Science.gov (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  16. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Li Dengwang; Wan Honglin; Li Hongsheng; Chen Jinhu; Gong Guanzhong; Yin Yong; Wang Hongjun; Wang Liming

    2012-01-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5–8% for mono-modality and 10–14% for multi-modality registration under the same condition. Furthermore, clinical application by

  17. Interactive, multi-modality image registrations for combined MRI/MRSI-planned HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Galen Reed

    2011-03-01

    Full Text Available Purpose: This study presents the steps and criteria involved in the series of image registrations used clinically during the planning and dose delivery of focal high dose-rate (HDR brachytherapy of the prostate. Material and methods: Three imaging modalities – Magnetic Resonance Imaging (MRI, Magnetic Resonance Spectroscopic Imaging (MRSI, and Computed Tomography (CT – were used at different steps during the process. MRSI is used for identification of dominant intraprosatic lesions (DIL. A series of rigid and nonrigid transformations were applied to the data to correct for endorectal-coil-induced deformations and for alignment with the planning CT. Mutual information was calculated as a morphing metric. An inverse planning optimization algorithm was applied to boost dose to the DIL while providing protection to the urethra, penile bulb, rectum, and bladder. Six prostate cancer patients were treated using this protocol. Results: The morphing algorithm successfully modeled the probe-induced prostatic distortion. Mutual information calculated between the morphed images and images acquired without the endorectal probe showed a significant (p = 0.0071 increase to that calculated between the unmorphed images and images acquired without the endorectal probe. Both mutual information and visual inspection serve as effective diagnostics of image morphing. The entire procedure adds less than thirty minutes to the treatment planning. Conclusion: This work demonstrates the utility of image transformations and registrations to HDR brachytherapy of prostate cancer.

  18. Three-dimensional registration methods for multi-modal magnetic resonance neuroimages

    International Nuclear Information System (INIS)

    Triantafyllou, C.

    2001-08-01

    In this thesis, image alignment techniques are developed and evaluated for applications in neuroimaging. In particular, the problem of combining cross-sequence MRI (Magnetic Resonance Imaging) intra-subject scans is considered. The challenge in this case is to find topographically uniform mappings in order to register (find a mapping between) low resolution echo-planar images and their high resolution structural counterparts. Such an approach enables us to effectually fuse, in a clinically useful way, information across scans. This dissertation devises a new framework by which this may be achieved, involving appropriate optimisation of the required mapping functions, which turn out to be non-linear and high-dimensional in nature. Novel ways to constrain and regularise these functions to enhance the computational speed of the process and the accuracy of the solution are also studied. The algorithms, whose characteristics are demonstrated for this specific application should be fully generalisable to other medical imaging modalities and potentially, other areas of image processing. To begin with, some existing registration methods are reviewed, followed by the introduction of an automated global 3-D registration method. Its performance is investigated on extracted cortical and ventricular surfaces by utilising the principles of the chamfer matching approach. Evaluations on synthetic and real data-sets, are performed to show that removal of global image differences is possible in principle, although the true accuracy of the method depends on the type of geometrical distortions present. These results also reveal that this class of algorithm is unable to solve more localised variations and higher order magnetic field distortions between the images. These facts motivate the development of a high-dimensional 3-D registration method capable of effecting a one-to-one correspondence by capturing the localised differences. This method was seen to account not only for

  19. Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections

    International Nuclear Information System (INIS)

    Lippolis, Giuseppe; Edsjö, Anders; Helczynski, Leszek; Bjartell, Anders; Overgaard, Niels Chr

    2013-01-01

    Prostate cancer is one of the leading causes of cancer related deaths. For diagnosis, predicting the outcome of the disease, and for assessing potential new biomarkers, pathologists and researchers routinely analyze histological samples. Morphological and molecular information may be integrated by aligning microscopic histological images in a multiplex fashion. This process is usually time-consuming and results in intra- and inter-user variability. The aim of this study is to investigate the feasibility of using modern image analysis methods for automated alignment of microscopic images from differently stained adjacent paraffin sections from prostatic tissue specimens. Tissue samples, obtained from biopsy or radical prostatectomy, were sectioned and stained with either hematoxylin & eosin (H&E), immunohistochemistry for p63 and AMACR or Time Resolved Fluorescence (TRF) for androgen receptor (AR). Image pairs were aligned allowing for translation, rotation and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale invariant image transform (SIFT), followed by the well-known RANSAC protocol for finding point correspondences and finally aligned by Procrustes fit. The Registration results were evaluated using both visual and quantitative criteria as defined in the text. Three experiments were carried out. First, images of consecutive tissue sections stained with H&E and p63/AMACR were successfully aligned in 85 of 88 cases (96.6%). The failures occurred in 3 out of 13 cores with highly aggressive cancer (Gleason score ≥ 8). Second, TRF and H&E image pairs were aligned correctly in 103 out of 106 cases (97%). The third experiment considered the alignment of image pairs with the same staining (H&E) coming from a stack of 4 sections. The success rate for alignment dropped from 93.8% in adjacent sections to 22% for sections furthest away. The proposed method is both reliable and fast and therefore well suited

  20. Content-based TV sports video retrieval using multimodal analysis

    Science.gov (United States)

    Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru

    2003-09-01

    In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.

  1. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  2. Fiducial-based registration with a touchable region model.

    Science.gov (United States)

    Kim, Sungmin; Kazanzides, Peter

    2017-02-01

    Image-guided surgery requires registration between an image coordinate system and an intraoperative coordinate system that is typically referenced to a tracking device. In fiducial-based registration methods, this is achieved by localizing points (fiducials) in each coordinate system. Often, both localizations are performed manually, first by picking a fiducial point in the image and then by using a hand-held tracked pointer to physically touch the corresponding fiducial on the patient. These manual procedures introduce localization error that is user-dependent and can significantly decrease registration accuracy. Thus, there is a need for a registration method that is tolerant of imprecise fiducial localization in the preoperative and intraoperative phases. We propose the iterative closest touchable point (ICTP) registration framework, which uses model-based localization and a touchable region model. This method consists of three stages: (1) fiducial marker localization in image space, using a fiducial marker model, (2) initial registration with paired-point registration, and (3) fine registration based on the iterative closest point method. We perform phantom experiments with a fiducial marker design that is commonly used in neurosurgery. The results demonstrate that ICTP can provide accuracy improvements compared to the standard paired-point registration method that is widely used for surgical navigation and surgical robot systems, especially in cases where the surgeon introduces large localization errors. The results demonstrate that the proposed method can reduce the effect of the surgeon's localization performance on the accuracy of registration, thereby producing more consistent and less user-dependent registration outcomes.

  3. An agent-based architecture for multimodal interaction

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.

    In this paper, an executable generic process model is proposed for combined verbal and non-verbal communication processes and their interaction. The agent-based architecture can be used to create multimodal interaction. The generic process model has been designed, implemented and used to simulate

  4. An agent-based architecture for multimodal interaction

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.

    2001-01-01

    In this paper, an executable generic process model is proposed for combined verbal and non-verbal communication processes and their interaction. The agent-based architecture can be used to create multimodal interaction. The generic process model has been designed, implemented and used to simulate

  5. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Reaungamornrat, S; Liu, W P; Otake, Y; Uneri, A; Siewerdsen, J H; Taylor, R H; Wang, A S; Nithiananthan, S; Schafer, S; Tryggestad, E; Richmon, J; Sorger, J M

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  6. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  7. Wavelet based free-form deformations for nonrigid registration

    Science.gov (United States)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  8. Modification of species-based differential evolution for multimodal optimization

    Science.gov (United States)

    Idrus, Said Iskandar Al; Syahputra, Hermawan; Firdaus, Muliawan

    2015-12-01

    At this time optimization has an important role in various fields as well as between other operational research, industry, finance and management. Optimization problem is the problem of maximizing or minimizing a function of one variable or many variables, which include unimodal and multimodal functions. Differential Evolution (DE), is a random search technique using vectors as an alternative solution in the search for the optimum. To localize all local maximum and minimum on multimodal function, this function can be divided into several domain of fitness using niching method. Species-based niching method is one of method that build sub-populations or species in the domain functions. This paper describes the modification of species-based previously to reduce the computational complexity and run more efficiently. The results of the test functions show species-based modifications able to locate all the local optima in once run the program.

  9. Overlay improvement by exposure map based mask registration optimization

    Science.gov (United States)

    Shi, Irene; Guo, Eric; Chen, Ming; Lu, Max; Li, Gordon; Li, Rivan; Tian, Eric

    2015-03-01

    Along with the increased miniaturization of semiconductor electronic devices, the design rules of advanced semiconductor devices shrink dramatically. [1] One of the main challenges of lithography step is the layer-to-layer overlay control. Furthermore, DPT (Double Patterning Technology) has been adapted for the advanced technology node like 28nm and 14nm, corresponding overlay budget becomes even tighter. [2][3] After the in-die mask registration (pattern placement) measurement is introduced, with the model analysis of a KLA SOV (sources of variation) tool, it's observed that registration difference between masks is a significant error source of wafer layer-to-layer overlay at 28nm process. [4][5] Mask registration optimization would highly improve wafer overlay performance accordingly. It was reported that a laser based registration control (RegC) process could be applied after the pattern generation or after pellicle mounting and allowed fine tuning of the mask registration. [6] In this paper we propose a novel method of mask registration correction, which can be applied before mask writing based on mask exposure map, considering the factors of mask chip layout, writing sequence, and pattern density distribution. Our experiment data show if pattern density on the mask keeps at a low level, in-die mask registration residue error in 3sigma could be always under 5nm whatever blank type and related writer POSCOR (position correction) file was applied; it proves random error induced by material or equipment would occupy relatively fixed error budget as an error source of mask registration. On the real production, comparing the mask registration difference through critical production layers, it could be revealed that registration residue error of line space layers with higher pattern density is always much larger than the one of contact hole layers with lower pattern density. Additionally, the mask registration difference between layers with similar pattern density

  10. elastix: a toolbox for intensity-based medical image registration.

    Science.gov (United States)

    Klein, Stefan; Staring, Marius; Murphy, Keelin; Viergever, Max A; Pluim, Josien P W

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

  11. Intensity-based hierarchical elastic registration using approximating splines.

    Science.gov (United States)

    Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C

    2014-01-01

    We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS

  12. A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images

    International Nuclear Information System (INIS)

    Kagadis, George C.; Delibasis, Konstantinos K.; Matsopoulos, George K.; Mouravliansky, Nikolaos A.; Asvestas, Pantelis A.; Nikiforidis, George C.

    2002-01-01

    Image registration of multimodality images is an essential task in numerous applications in three-dimensional medical image processing. Medical diagnosis can benefit from the complementary information in different modality images. Surface-based registration techniques, while still widely used, were succeeded by volume-based registration algorithms that appear to be theoretically advantageous in terms of reliability and accuracy. Several applications of such algorithms for the registration of CT-MRI, CT-PET, MRI-PET, and SPECT-MRI images have emerged in the literature, using local optimization techniques for the matching of images. Our purpose in this work is the development of automatic techniques for the registration of real CT and SPECT images, based on either surface- or volume-based algorithms. Optimization is achieved using genetic algorithms that are known for their robustness. The two techniques are compared against a well-established method, the Iterative Closest Point--ICP. The correlation coefficient was employed as an independent measure of spatial match, to produce unbiased results. The repeated measures ANOVA indicates the significant impact of the choice of registration method on the magnitude of the correlation (F=4.968, p=0.0396). The volume-based method achieves an average correlation coefficient value of 0.454 with a standard deviation of 0.0395, as opposed to an average of 0.380 with a standard deviation of 0.0603 achieved by the surface-based method and an average of 0.396 with a standard deviation equal to 0.0353 achieved by ICP. The volume-based technique performs significantly better compared to both ICP (p<0.05, Neuman Keuls test) and the surface-based technique (p<0.05, Neuman-Keuls test). Surface-based registration and ICP do not differ significantly in performance

  13. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  14. A robust probabilistic collaborative representation based classification for multimodal biometrics

    Science.gov (United States)

    Zhang, Jing; Liu, Huanxi; Ding, Derui; Xiao, Jianli

    2018-04-01

    Most of the traditional biometric recognition systems perform recognition with a single biometric indicator. These systems have suffered noisy data, interclass variations, unacceptable error rates, forged identity, and so on. Due to these inherent problems, it is not valid that many researchers attempt to enhance the performance of unimodal biometric systems with single features. Thus, multimodal biometrics is investigated to reduce some of these defects. This paper proposes a new multimodal biometric recognition approach by fused faces and fingerprints. For more recognizable features, the proposed method extracts block local binary pattern features for all modalities, and then combines them into a single framework. For better classification, it employs the robust probabilistic collaborative representation based classifier to recognize individuals. Experimental results indicate that the proposed method has improved the recognition accuracy compared to the unimodal biometrics.

  15. LINE-BASED REGISTRATION OF DSM AND HYPERSPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    J. Avbelj

    2013-04-01

    Full Text Available Data fusion techniques require a good registration of all the used datasets. In remote sensing, images are usually geo-referenced using the GPS and IMU data. However, if more precise registration is required, image processing techniques can be employed. We propose a method for multi-modal image coregistration between hyperspectral images (HSI and digital surface models (DSM. The method is divided in three parts: object and line detection of the same object in HSI and DSM, line matching and determination of transformation parameters. Homogeneous coordinates are used to implement matching and adjustment of transformation parameters. The common object in HSI and DSM are building boundaries. They have apparent change in height and material, that can be detected in DSM and HSI, respectively. Thus, before the matching and transformation parameter computation, building outlines are detected and adjusted in HSI and DSM. We test the method on a HSI and two DSM, using extracted building outbounds and for comparison also extracted lines with a line detector. The results show that estimated building boundaries provide more line assignments, than using line detector.

  16. An efficient strategy based on an individualized selection of registration methods. Application to the coregistration of MR and SPECT images in neuro-oncology

    International Nuclear Information System (INIS)

    Tacchella, Jean-Marc; Lefort, Muriel; Habert, Marie-Odile; Yeni, Nathanaëlle; Kas, Aurélie; Frouin, Frédérique; Roullot, Elodie; Cohen, Mike-Ely; Guillevin, Rémy; Petrirena, Grégorio; Delattre, Jean-Yves

    2014-01-01

    An efficient registration strategy is described that aims to help solve delicate medical imaging registration problems. It consists of running several registration methods for each dataset and selecting the best one for each specific dataset, according to an evaluation criterion. Finally, the quality of the registration results, obtained with the best method, is visually scored by an expert as excellent, correct or poor. The strategy was applied to coregister Technetium-99m Sestamibi SPECT and MRI data in the framework of a follow-up protocol in patients with high grade gliomas receiving antiangiogenic therapy. To adapt the strategy to this clinical context, a robust semi-automatic evaluation criterion based on the physiological uptake of the Sestamibi tracer was defined. A panel of eighteen multimodal registration algorithms issued from BrainVisa, SPM or AIR software environments was systematically applied to the clinical database composed of sixty-two datasets. According to the expert visual validation, this new strategy provides 85% excellent registrations, 12% correct ones and only 3% poor ones. These results compare favorably to the ones obtained by the globally most efficient registration method over the whole database, for which only 61% of excellent registration results have been reported. Thus the registration strategy in its current implementation proves to be suitable for clinical application. (paper)

  17. Evaluation of whole-body MR to CT deformable image registration

    NARCIS (Netherlands)

    Akbarzadeh, A.; Gutierrez, D.; Baskin, A.; Ay, M. R.; Ahmadian, A.; Alam, N. Riahi; Loevblad, K. O.; Zaidi, H.

    2013-01-01

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based

  18. Feature-based Alignment of Volumetric Multi-modal Images

    Science.gov (United States)

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  19. Improved image registration by sparse patch-based deformation estimation.

    Science.gov (United States)

    Kim, Minjeong; Wu, Guorong; Wang, Qian; Lee, Seong-Whan; Shen, Dinggang

    2015-01-15

    Despite intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation toward the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) for each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) a small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients; and (4) we

  20. Reducing uncertainties in volumetric image based deformable organ registration

    International Nuclear Information System (INIS)

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  1. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    Science.gov (United States)

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  2. Ultracompact photonic crystal polarization beam splitter based on multimode interference.

    Science.gov (United States)

    Lu, Ming-Feng; Liao, Shan-Mei; Huang, Yang-Tung

    2010-02-01

    We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the dependence of interference of modes on propagation distance is weak for a TE wave and strong for a TM wave; as a result, the length of the MMI section can be only seven lattice constants. Simulation results show that the insertion losses are 0.32 and 0.89 dB, and the extinction ratios are 14.4 and 17.5 dB for Port 1 (TE mode) and Port 2 (TM mode), respectively.

  3. Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)

    Science.gov (United States)

    Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul

    2017-10-01

    This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.

  4. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  5. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery

    Science.gov (United States)

    Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir

    2017-01-01

    Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659

  6. Photoacoustic-Based Multimodal Nanoprobes: from Constructing to Biological Applications.

    Science.gov (United States)

    Gao, Duyang; Yuan, Zhen

    2017-01-01

    Multimodal nanoprobes have attracted intensive attentions since they can integrate various imaging modalities to obtain complementary merits of single modality. Meanwhile, recent interest in laser-induced photoacoustic imaging is rapidly growing due to its unique advantages in visualizing tissue structure and function with high spatial resolution and satisfactory imaging depth. In this review, we summarize multimodal nanoprobes involving photoacoustic imaging. In particular, we focus on the method to construct multimodal nanoprobes. We have divided the synthetic methods into two types. First, we call it "one for all" concept, which involves intrinsic properties of the element in a single particle. Second, "all in one" concept, which means integrating different functional blocks in one particle. Then, we simply introduce the applications of the multifunctional nanoprobes for in vivo imaging and imaging-guided tumor therapy. At last, we discuss the advantages and disadvantages of the present methods to construct the multimodal nanoprobes and share our viewpoints in this area.

  7. Polyaffine parametrization of image registration based on geodesic flows

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Thorup, Signe Strann; Warfield, Simon K.

    2012-01-01

    Image registration based on geodesic flows has gained much popularity in recent years. We describe a novel parametrization of the velocity field in a stationary flow equation. We show that the method offers both precision, flexibility, and simplicity of evaluation. With our representation, which ...... of geodesic shooting for computational anatomy. We avoid to do warp field convolution by interpolation in a dense field, we can easily calculate warp derivatives in a reference frame of choice, and we can consequently avoid interpolation in the image space altogether....

  8. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    Science.gov (United States)

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Image Registration-Based Bolt Loosening Detection of Steel Joints

    Science.gov (United States)

    2018-01-01

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264

  10. Image Registration-Based Bolt Loosening Detection of Steel Joints.

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian

    2018-03-28

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.

  11. Optimization Model for Web Based Multimodal Interactive Simulations.

    Science.gov (United States)

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  12. Projection-slice theorem based 2D-3D registration

    Science.gov (United States)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  13. A three-dimensional head-and-neck phantom for validation of multimodality deformable image registration for adaptive radiotherapy

    International Nuclear Information System (INIS)

    Singhrao, Kamal; Kirby, Neil; Pouliot, Jean

    2014-01-01

    Purpose: To develop a three-dimensional (3D) deformable head-and-neck (H and N) phantom with realistic tissue contrast for both kilovoltage (kV) and megavoltage (MV) imaging modalities and use it to objectively evaluate deformable image registration (DIR) algorithms. Methods: The phantom represents H and N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kV and MV imaging. The phantom opens along a sagittal midsection to reveal radiotransparent markers, which were used to characterize the phantom deformation. The deformed and undeformed phantoms were scanned with kV and MV imaging modalities. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and MIM software. Results: The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able to represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV–kV registration, MIM produced mean and maximum errors of 1.8 and 11.5 mm, respectively. These same numbers for Velocity were 2.4 and 7.1 mm, respectively. For MV–MV, kV–MV, and kV–MC Velocity produced similar mean and maximum error values. MIM, however, produced gross errors for all three of these scenarios, with maximum errors ranging from 33.4 to 41.6 mm. Conclusions: The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H and N phantom is an effective tool

  14. Multimodal imaging and in vivo/post mortem co-registration in rodents and non human primates

    International Nuclear Information System (INIS)

    Delzescaux, T.

    2006-01-01

    provided information (typically 15-70 μm versus several hundreds μm to several mm for in vivo anatomy and function devices), make post mortem imaging a real advantage over in vivo and a gold standard for macroscopic in vivo studies. However, post mortem imaging does not allow longitudinal follow-up studies, requires brain cutting into serial sections producing up to several hundreds/thousands of histological and autoradiographic data, individual brain sections are spatially separated and 3-D spatial geometry (available with in vivo imaging systems) is lost. These later years, many methods have been proposed in the literature to align 2-D histological or autoradiographic . However, a few works have specifically addressed the registration of post mortem images from two modalities, such as histology and autoradiography or the in vivo/post mortem co-registration. Moreover, despite the diffusion of 3-D reconstruction automated tools, generic and robust algorithms, allowing massive digitization as well as automated data analysis taking advantage of the 3-D anatomo-functional reconstruction, are still missing. Hence, post mortem imaging encompasses low cost, easily available, very accurate methods which main limitations are the very large amounts of data, the duration time for the whole data processing and the loss of volumetric consistency. Thus, without dedicated computer tools able to easily and quickly process them, the analysis of such biological post mortem data is traditionally realized with a limited number of 2-D sections and remains time-consuming and labor-intensive . Our research projects aim at proposing automated image processing protocols of post mortem biological data obtained in rodent and non-human primates in order to reconstruct in 3-D post mortem data and to integrate both in vivo/post mortem and anatomical/functional information. The first project deals with animals presenting small brains such as rodents. It includes the optimized acquisition and the

  15. Multimodal imaging and in vivo/post mortem co-registration in rodents and non human primates

    Energy Technology Data Exchange (ETDEWEB)

    Delzescaux, T. [Service Hospitalier Frederic Joliot, Isotopic Imaging, 91 - Orsay (France)

    2006-07-01

    the microscopic range of provided information (typically 15-70 {mu}m versus several hundreds {mu}m to several mm for in vivo anatomy and function devices), make post mortem imaging a real advantage over in vivo and a gold standard for macroscopic in vivo studies. However, post mortem imaging does not allow longitudinal follow-up studies, requires brain cutting into serial sections producing up to several hundreds/thousands of histological and autoradiographic data, individual brain sections are spatially separated and 3-D spatial geometry (available with in vivo imaging systems) is lost. These later years, many methods have been proposed in the literature to align 2-D histological or autoradiographic . However, a few works have specifically addressed the registration of post mortem images from two modalities, such as histology and autoradiography or the in vivo/post mortem co-registration. Moreover, despite the diffusion of 3-D reconstruction automated tools, generic and robust algorithms, allowing massive digitization as well as automated data analysis taking advantage of the 3-D anatomo-functional reconstruction, are still missing. Hence, post mortem imaging encompasses low cost, easily available, very accurate methods which main limitations are the very large amounts of data, the duration time for the whole data processing and the loss of volumetric consistency. Thus, without dedicated computer tools able to easily and quickly process them, the analysis of such biological post mortem data is traditionally realized with a limited number of 2-D sections and remains time-consuming and labor-intensive . Our research projects aim at proposing automated image processing protocols of post mortem biological data obtained in rodent and non-human primates in order to reconstruct in 3-D post mortem data and to integrate both in vivo/post mortem and anatomical/functional information. The first project deals with animals presenting small brains such as rodents. It includes the

  16. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A; Toga, Arthur W; Thompson, Paul M

    2011-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic "Demons" algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future.

  17. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-09-01

    Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.

  18. Compact Spectrometer based on a silicon multimode waveguide

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip....

  19. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  20. Learning-Based Approaches to Deformable Image Registration

    NARCIS (Netherlands)

    Münzing, SEA

    2014-01-01

    Accurate registration of images is an important and often crucial step in many areas of image processing and analysis, yet it is only used in a small percentage of possible applications. Automated registration methods are not considered to be sufficiently robust to handle complex deformations and

  1. Subspace-Based Holistic Registration for Low-Resolution Facial Images

    Directory of Open Access Journals (Sweden)

    Boom BJ

    2010-01-01

    Full Text Available Subspace-based holistic registration is introduced as an alternative to landmark-based face registration, which has a poor performance on low-resolution images, as obtained in camera surveillance applications. The proposed registration method finds the alignment by maximizing the similarity score between a probe and a gallery image. We use a novel probabilistic framework for both user-independent as well as user-specific face registration. The similarity is calculated using the probability that the face image is correctly aligned in a face subspace, but additionally we take the probability into account that the face is misaligned based on the residual error in the dimensions perpendicular to the face subspace. We perform extensive experiments on the FRGCv2 database to evaluate the impact that the face registration methods have on face recognition. Subspace-based holistic registration on low-resolution images can improve face recognition in comparison with landmark-based registration on high-resolution images. The performance of the tested face recognition methods after subspace-based holistic registration on a low-resolution version of the FRGC database is similar to that after manual registration.

  2. Facial Emotion Recognition Using Context Based Multimodal Approach

    Directory of Open Access Journals (Sweden)

    Priya Metri

    2011-12-01

    Full Text Available Emotions play a crucial role in person to person interaction. In recent years, there has been a growing interest in improving all aspects of interaction between humans and computers. The ability to understand human emotions is desirable for the computer in several applications especially by observing facial expressions. This paper explores a ways of human-computer interaction that enable the computer to be more aware of the user’s emotional expressions we present a approach for the emotion recognition from a facial expression, hand and body posture. Our model uses multimodal emotion recognition system in which we use two different models for facial expression recognition and for hand and body posture recognition and then combining the result of both classifiers using a third classifier which give the resulting emotion . Multimodal system gives more accurate result than a signal or bimodal system

  3. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    Directory of Open Access Journals (Sweden)

    Jing-Yu Yang

    2012-04-01

    Full Text Available When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person’s overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA. Specifically, one person’s different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  4. Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.

    Science.gov (United States)

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  5. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    Science.gov (United States)

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600

  6. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    Science.gov (United States)

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

  7. Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma.

    Science.gov (United States)

    Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew

    2015-02-28

    To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P<0.001) and objective tumor response (P=0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P=0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P<0.001). Multivariate analysis identified tumor stage (P<0.001) and tumor type (P=0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P<0.001), surgical treatment (P=0.009), and multi-modal treatment (P=0.002) were identified as independent post-treatment prognostic factors. TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC.

  8. Relationship between pre-reconstruction filter and accuracy of registration software based on mutual-information maximization. A study of SPECT-MR brain phantom images

    International Nuclear Information System (INIS)

    Mito, Suzuko; Magota, Keiichi; Arai, Hiroshi; Omote, Hidehiko; Katsuura, Hidenori; Suzuki, Kotaro; Kubo Naoki

    2005-01-01

    Image registration technique is becoming an increasingly important tool in SPECT. Recently, software based on mutual-information maximization has been developed for automatic multimodality image registration. The accuracy of the software is important for its application to image registration. During SPECT reconstruction, the projection data are pre-filtered in order to reduce Poisson noise, commonly using a Butterworth filter. We have investigated the dependence of the absolute accuracy of MRI-SPECT registration on the cut-off frequencies of a range of Butterworth filters. This study used a 3D Hoffman phantom (Model No. 9000, Data-spectrum Co.). For the reference volume, an magnetization prepared rapid gradient echo (MPRage) sequence was performed on a Vision MRI (Siemence, 1.5 T). For the floating volumes, SPECT data of a phantom including 99m Tc 85 kBq/mL were acquired by a GCA-9300 (Toshiba Medical Systems Co.). During SPECT, the orbito-meatal (OM) line of the phantom was tilted by 5 deg and 15 deg to mimic the incline of a patient's head. The projection data were pre-filtered with Butterworth filters (cut-off frequency varying between 0.24 to 0.94 cycles/cm in 0.02 steps, order 8). The automated registrations were performed using iNRT β version software (Nihon Medi. Co.) and the rotation angles of SPECT for registration were noted. In this study, the registrations of all SPECT data were successful. Graphs of registration rotation angles against cut-off frequencies were scattered and showed no correlation between the two. The registration rotation angles ranged with changing cut-off frequency from -0.4 deg to +3.8 deg at a 5 deg tilt and from +12.7 deg to +19.6 deg at a 15 deg tilt. The registration rotation angles showed variation even for slight differences in cut-off frequencies. The absolute errors were a few degrees for any cut-off frequency. Regardless of the cut-off frequency, automatic registration using this software provides similar results. (author)

  9. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  10. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  11. Population based ranking of frameless CT-MRI registration methods

    Energy Technology Data Exchange (ETDEWEB)

    Opposits, Gabor; Kis, Sandor A.; Tron, Lajos; Emri, Miklos [Debrecen Univ. (Hungary). Dept. of Nuclear Medicine; Berenyi, Ervin [Debrecen Univ. (Hungary). Dept. of Biomedical Laboratory and Imaging Science; Takacs, Endre [Rotating Gamma Ltd., Debrecen (Hungary); Dobai, Jozsef G.; Bognar, Laszlo [Debrecen Univ., Medical Center (Hungary). Dept. of Neurosurgery; Szuecs, Bernadett [ScanoMed Ltd., Debrecen (Hungary)

    2015-07-01

    Clinical practice often requires simultaneous information obtained by two different imaging modalities. Registration algorithms are commonly used for this purpose. Automated procedures are very helpful in cases when the same kind of registration has to be performed on images of a high number of subjects. Radiotherapists would prefer to use the best automated method to assist therapy planning, however there are not accepted procedures for ranking the different registration algorithms. We were interested in developing a method to measure the population level performance of CT-MRI registration algorithms by a parameter of values in the [0,1] interval. Pairs of CT and MRI images were collected from 1051 subjects. Results of an automated registration were corrected manually until a radiologist and a neurosurgeon expert both accepted the result as good. This way 1051 registered MRI images were produced by the same pair of experts to be used as gold standards for the evaluation of the performance of other registration algorithms. Pearson correlation coefficient, mutual information, normalized mutual information, Kullback-Leibler divergence, L{sub 1} norm and square L{sub 2} norm (dis)similarity measures were tested for sensitivity to indicate the extent of (dis)similarity of a pair of individual mismatched images. The square Hellinger distance proved suitable to grade the performance of registration algorithms at population level providing the developers with a valuable tool to rank algorithms. The developed procedure provides an objective method to find the registration algorithm performing the best on the population level out of newly constructed or available preselected ones.

  12. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  13. CO-REGISTRATION AIRBORNE LIDAR POINT CLOUD DATA AND SYNCHRONOUS DIGITAL IMAGE REGISTRATION BASED ON COMBINED ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    Z. H. Yang

    2016-06-01

    Full Text Available Aim at the problem of co-registration airborne laser point cloud data with the synchronous digital image, this paper proposed a registration method based on combined adjustment. By integrating tie point, point cloud data with elevation constraint pseudo observations, using the principle of least-squares adjustment to solve the corrections of exterior orientation elements of each image, high-precision registration results can be obtained. In order to ensure the reliability of the tie point, and the effectiveness of pseudo observations, this paper proposed a point cloud data constrain SIFT matching and optimizing method, can ensure that the tie points are located on flat terrain area. Experiments with the airborne laser point cloud data and its synchronous digital image, there are about 43 pixels error in image space using the original POS data. If only considering the bore-sight of POS system, there are still 1.3 pixels error in image space. The proposed method regards the corrections of the exterior orientation elements of each image as unknowns and the errors are reduced to 0.15 pixels.

  14. Comprehensive Context Recognizer Based on Multimodal Sensors in a Smartphone

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2012-09-01

    Full Text Available Recent developments in smartphones have increased the processing capabilities and equipped these devices with a number of built-in multimodal sensors, including accelerometers, gyroscopes, GPS interfaces, Wi-Fi access, and proximity sensors. Despite the fact that numerous studies have investigated the development of user-context aware applications using smartphones, these applications are currently only able to recognize simple contexts using a single type of sensor. Therefore, in this work, we introduce a comprehensive approach for context aware applications that utilizes the multimodal sensors in smartphones. The proposed system is not only able to recognize different kinds of contexts with high accuracy, but it is also able to optimize the power consumption since power-hungry sensors can be activated or deactivated at appropriate times. Additionally, the system is able to recognize activities wherever the smartphone is on a human’s body, even when the user is using the phone to make a phone call, manipulate applications, play games, or listen to music. Furthermore, we also present a novel feature selection algorithm for the accelerometer classification module. The proposed feature selection algorithm helps select good features and eliminates bad features, thereby improving the overall accuracy of the accelerometer classifier. Experimental results show that the proposed system can classify eight activities with an accuracy of 92.43%.

  15. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    Science.gov (United States)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  16. Fast time-of-flight camera based surface registration for radiotherapy patient positioning

    International Nuclear Information System (INIS)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    Purpose: This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. Methods: A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an ''ICP only'' strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. Results: The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07 deg. ± 0.05 deg., respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. Conclusions: The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration

  17. Multimodal Detection of Music Performances for Intelligent Emotion Based Lighting

    DEFF Research Database (Denmark)

    Bonde, Esben Oxholm Skjødt; Hansen, Ellen Kathrine; Triantafyllidis, Georgios

    2016-01-01

    Playing music is about conveying emotions and the lighting at a concert can help do that. However, new and unknown bands that play at smaller venues and bands that don’t have the budget to hire a dedicated light technician have to miss out on lighting that will help them to convey the emotions...... of what they play. In this paper it is investigated whether it is possible or not to develop an intelligent system that through a multimodal input detects the intended emotions of the played music and in realtime adjusts the lighting accordingly. A concept for such an intelligent lighting system...... is developed and described. Through existing research on music and emotion, as well as on musicians’ body movements related to the emotion they want to convey, a row of cues is defined. This includes amount, speed, fluency and regularity for the visual and level, tempo, articulation and timbre for the auditory...

  18. MamMoeT : An intelligent agent-based communication support platform for multimodal transport

    NARCIS (Netherlands)

    Dullaert, Wout; Neutens, Tijs; Vanden Berghe, Greet; Vermeulen, Tijs; Vernimmen, Bert; Witlox, Frank

    In this paper, an intelligent agent-based communication support platform for multimodal transport is developed. The rationale for doing so is found in the potential of such a system to increase cost efficiency, service and safety for different transport-related actors. Although, at present several

  19. Extended feature-fusion guidelines to improve image-based multi-modal biometrics

    CSIR Research Space (South Africa)

    Brown, Dane

    2016-09-01

    Full Text Available The feature-level, unlike the match score-level, lacks multi-modal fusion guidelines. This work demonstrates a practical approach for improved image-based biometric feature-fusion. The approach extracts and combines the face, fingerprint...

  20. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both...

  1. Elastix : a toolbox for intensity-based medical image registration

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W.

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of

  2. Disease prevalence estimations based on contact registrations in general practice

    NARCIS (Netherlands)

    Hoogenveen, Rudolf; Westert, Gert; Dijkgraaf, Marcel; Schellevis, François; de Bakker, Dinny

    2002-01-01

    This paper describes how to estimate the prevalence of chronic diseases in a population using data from contact registrations in general practice with a limited time length. Instead of using only total numbers of observed patients adjusted for the length of the observation period, we propose the use

  3. Comparison of carina-based versus bony anatomy-based registration for setup verification in esophageal cancer radiotherapy.

    Science.gov (United States)

    Machiels, Mélanie; Jin, Peng; van Gurp, Christianne H; van Hooft, Jeanin E; Alderliesten, Tanja; Hulshof, Maarten C C M

    2018-03-21

    To investigate the feasibility and geometric accuracy of carina-based registration for CBCT-guided setup verification in esophageal cancer IGRT, compared with current practice bony anatomy-based registration. Included were 24 esophageal cancer patients with 65 implanted fiducial markers, visible on planning CTs and follow-up CBCTs. All available CBCT scans (n = 236) were rigidly registered to the planning CT with respect to the bony anatomy and the carina. Target coverage was visually inspected and marker position variation was quantified relative to both registration approaches; the variation of systematic (Σ) and random errors (σ) was estimated. Automatic carina-based registration was feasible in 94.9% of the CBCT scans, with an adequate target coverage in 91.1% compared to 100% after bony anatomy-based registration. Overall, Σ (σ) in the LR/CC/AP direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm using the bony anatomy registration compared to 3.3(3.0)/3.6(2.6)/3.9(3.1) mm for the carina. Mid-thoracic placed markers showed a non-significant but smaller Σ in CC and AP direction when using the carina-based registration. Compared with a bony anatomy-based registration, carina-based registration for esophageal cancer IGRT results in inadequate target coverage in 8.9% of cases. Furthermore, large Σ and σ, requiring larger anisotropic margins, were seen after carina-based registration. Only for tumors entirely confined to the mid-thoracic region the carina-based registration might be slightly favorable.

  4. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration

    NARCIS (Netherlands)

    de Groot, Marius; Vernooij, Meike W.; Klein, Stefan; Ikram, M. Arfan; Vos, Frans M.; Smith, Stephen M.; Niessen, Wiro J.; Andersson, Jesper L. R.

    2013-01-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS

  5. Improving alignment in Tract-based spatial statistics : Evaluation and optimization of image registration

    NARCIS (Netherlands)

    De Groot, M.; Vernooij, M.W.; Klein, S.; Arfan Ikram, M.; Vos, F.M.; Smith, S.M.; Niessen, W.J.; Andersson, J.L.R.

    2013-01-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS

  6. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  7. A Novel Multimodal Biometrics Recognition Model Based on Stacked ELM and CCA Methods

    Directory of Open Access Journals (Sweden)

    Jucheng Yang

    2018-04-01

    Full Text Available Multimodal biometrics combine a variety of biological features to have a significant impact on identification performance, which is a newly developed trend in biometrics identification technology. This study proposes a novel multimodal biometrics recognition model based on the stacked extreme learning machines (ELMs and canonical correlation analysis (CCA methods. The model, which has a symmetric structure, is found to have high potential for multimodal biometrics. The model works as follows. First, it learns the hidden-layer representation of biological images using extreme learning machines layer by layer. Second, the canonical correlation analysis method is applied to map the representation to a feature space, which is used to reconstruct the multimodal image feature representation. Third, the reconstructed features are used as the input of a classifier for supervised training and output. To verify the validity and efficiency of the method, we adopt it for new hybrid datasets obtained from typical face image datasets and finger-vein image datasets. Our experimental results demonstrate that our model performs better than traditional methods.

  8. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    Science.gov (United States)

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  9. Neural network-based feature point descriptors for registration of optical and SAR images

    Science.gov (United States)

    Abulkhanov, Dmitry; Konovalenko, Ivan; Nikolaev, Dmitry; Savchik, Alexey; Shvets, Evgeny; Sidorchuk, Dmitry

    2018-04-01

    Registration of images of different nature is an important technique used in image fusion, change detection, efficient information representation and other problems of computer vision. Solving this task using feature-based approaches is usually more complex than registration of several optical images because traditional feature descriptors (SIFT, SURF, etc.) perform poorly when images have different nature. In this paper we consider the problem of registration of SAR and optical images. We train neural network to build feature point descriptors and use RANSAC algorithm to align found matches. Experimental results are presented that confirm the method's effectiveness.

  10. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    Science.gov (United States)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  11. The skill of surface registration in CT-based navigation system for total hip arthroplasty

    International Nuclear Information System (INIS)

    Hananouchi, T.; Sugano, N.; Nishii, T.; Miki, H.; Sakai, T.; Yoshikawa, H.; Iwana, D.; Yamamura, M.; Nakamura, N.

    2007-01-01

    Surface registration of the CT-based navigation system, which is a matching between computational and real spatial spaces, is a key step to guarantee the accuracy of navigation. However, it has not been well described how the accuracy is affected by the registration skill of surgeon. Here, we reported the difference of the registration error between eight surgeons with the experience of navigation and six apprentice surgeons. A cadaveric pelvic model with an acetabular cup was made to measure the skill and learning curve of registration. After surface registration, two cup angles (inclination and anteversion) were recorded in the navigation system and the variance of these cup angles in ten trials were compared between the experienced surgeons and apprentices. In addition, we investigated whether the accuracy of registration by the apprentices was improved by visual information on how to take the surface points. The results showed that there was statistically significant difference in the accuracy of registration between the two groups. The accuracy of the second ten trials after getting the visual information showed great improvements. (orig.)

  12. THE IMAGE REGISTRATION OF FOURIER-MELLIN BASED ON THE COMBINATION OF PROJECTION AND GRADIENT PREPROCESSING

    Directory of Open Access Journals (Sweden)

    D. Gao

    2017-09-01

    Full Text Available Image registration is one of the most important applications in the field of image processing. The method of Fourier Merlin transform, which has the advantages of high precision and good robustness to change in light and shade, partial blocking, noise influence and so on, is widely used. However, not only this method can’t obtain the unique mutual power pulse function for non-parallel image pairs, even part of image pairs also can’t get the mutual power function pulse. In this paper, an image registration method based on Fourier-Mellin transformation in the view of projection-gradient preprocessing is proposed. According to the projection conformational equation, the method calculates the matrix of image projection transformation to correct the tilt image; then, gradient preprocessing and Fourier-Mellin transformation are performed on the corrected image to obtain the registration parameters. Eventually, the experiment results show that the method makes the image registration of Fourier-Mellin transformation not only applicable to the registration of the parallel image pairs, but also to the registration of non-parallel image pairs. What’s more, the better registration effect can be obtained

  13. Computer-aided psychotherapy based on multimodal elicitation, estimation and regulation of emotion.

    Science.gov (United States)

    Cosić, Krešimir; Popović, Siniša; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Kovač, Bernard; Jakovljević, Miro

    2013-09-01

    Contemporary psychiatry is looking at affective sciences to understand human behavior, cognition and the mind in health and disease. Since it has been recognized that emotions have a pivotal role for the human mind, an ever increasing number of laboratories and research centers are interested in affective sciences, affective neuroscience, affective psychology and affective psychopathology. Therefore, this paper presents multidisciplinary research results of Laboratory for Interactive Simulation System at Faculty of Electrical Engineering and Computing, University of Zagreb in the stress resilience. Patient's distortion in emotional processing of multimodal input stimuli is predominantly consequence of his/her cognitive deficit which is result of their individual mental health disorders. These emotional distortions in patient's multimodal physiological, facial, acoustic, and linguistic features related to presented stimulation can be used as indicator of patient's mental illness. Real-time processing and analysis of patient's multimodal response related to annotated input stimuli is based on appropriate machine learning methods from computer science. Comprehensive longitudinal multimodal analysis of patient's emotion, mood, feelings, attention, motivation, decision-making, and working memory in synchronization with multimodal stimuli provides extremely valuable big database for data mining, machine learning and machine reasoning. Presented multimedia stimuli sequence includes personalized images, movies and sounds, as well as semantically congruent narratives. Simultaneously, with stimuli presentation patient provides subjective emotional ratings of presented stimuli in terms of subjective units of discomfort/distress, discrete emotions, or valence and arousal. These subjective emotional ratings of input stimuli and corresponding physiological, speech, and facial output features provides enough information for evaluation of patient's cognitive appraisal deficit

  14. Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm

    Science.gov (United States)

    Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian

    2018-03-01

    In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.

  15. AUTOMATIC GLOBAL REGISTRATION BETWEEN AIRBORNE LIDAR DATA AND REMOTE SENSING IMAGE BASED ON STRAIGHT LINE FEATURES

    Directory of Open Access Journals (Sweden)

    Z. Q. Liu

    2018-04-01

    Full Text Available An automatic global registration approach for point clouds and remote sensing image based on straight line features is proposed which is insensitive to rotational and scale transformation. First, the building ridge lines and contour lines in point clouds are automatically detected as registration primitives by integrating region growth and topology identification. Second, the collinear condition equation is selected as registration transformation function which is based on rotation matrix described by unit quaternion. The similarity measure is established according to the distance between the corresponding straight line features from point clouds and the image in the same reference coordinate system. Finally, an iterative Hough transform is adopted to simultaneously estimate the parameters and obtain correspondence between registration primitives. Experimental results prove the proposed method is valid and the spectral information is useful for the following classification processing.

  16. Learning-based deformable image registration for infant MR images in the first year of life.

    Science.gov (United States)

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration

  17. AUTOMATED FEATURE BASED TLS DATA REGISTRATION FOR 3D BUILDING MODELING

    OpenAIRE

    K. Kitamura; N. Kochi; S. Kaneko

    2012-01-01

    In this paper we present a novel method for the registration of point cloud data obtained using terrestrial laser scanner (TLS). The final goal of our investigation is the automated reconstruction of CAD drawings and the 3D modeling of objects surveyed by TLS. Because objects are scanned from multiple positions, individual point cloud need to be registered to the same coordinate system. We propose in this paper an automated feature based registration procedure. Our proposed method does not re...

  18. Multimodality image registration. A special development in medical imaging has been strongly influenced by a small but highly qualified software think-tank

    International Nuclear Information System (INIS)

    Diemling, M.

    2007-01-01

    The importance of image fusion and registration in the field of medical diagnostics will be shown. After some details and background of image registration, as well as the history of nuclear medicine imaging - given by the example of HERMES Medical Solutions of Stockholm, Sweden - the reader finds seven cases illustrating the clinical importance of this method. These cases were collected from various fields of applications of medical imaging, they are carefully documented and illustrated. (orig.)

  19. Handover Based IMS Registration Scheme for Next Generation Mobile Networks

    Directory of Open Access Journals (Sweden)

    Shireen Tahira

    2017-01-01

    Full Text Available Next generation mobile networks aim to provide faster speed and more capacity along with energy efficiency to support video streaming and massive data sharing in social and communication networks. In these networks, user equipment has to register with IP Multimedia Subsystem (IMS which promises quality of service to the mobile users that frequently move across different access networks. After each handover caused due to mobility, IMS provides IPSec Security Association establishment and authentication phases. The main issue is that unnecessary reregistration after every handover results in latency and communication overhead. To tackle these issues, this paper presents a lightweight Fast IMS Mobility (FIM registration scheme that avoids unnecessary conventional registration phases such as security associations, authentication, and authorization. FIM maintains a flag to avoid deregistration and sends a subsequent message to provide necessary parameters to IMS servers after mobility. It also handles the change of IP address for user equipment and transferring the security associations from old to new servers. We have validated the performance of FIM by developing a testbed consisting of IMS servers and user equipment. The experimental results demonstrate the performance supremacy of FIM. It reduces media disruption time, number of messages, and packet loss up to 67%, 100%, and 61%, respectively, as compared to preliminaries.

  20. Automatic vertebral identification using surface-based registration

    Science.gov (United States)

    Herring, Jeannette L.; Dawant, Benoit M.

    2000-06-01

    This work introduces an enhancement to currently existing methods of intra-operative vertebral registration by allowing the portion of the spinal column surface that correctly matches a set of physical vertebral points to be automatically selected from several possible choices. Automatic selection is made possible by the shape variations that exist among lumbar vertebrae. In our experiments, we register vertebral points representing physical space to spinal column surfaces extracted from computed tomography images. The vertebral points are taken from the posterior elements of a single vertebra to represent the region of surgical interest. The surface is extracted using an improved version of the fully automatic marching cubes algorithm, which results in a triangulated surface that contains multiple vertebrae. We find the correct portion of the surface by registering the set of physical points to multiple surface areas, including all vertebral surfaces that potentially match the physical point set. We then compute the standard deviation of the surface error for the set of points registered to each vertebral surface that is a possible match, and the registration that corresponds to the lowest standard deviation designates the correct match. We have performed our current experiments on two plastic spine phantoms and one patient.

  1. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    Science.gov (United States)

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  2. Researchers and teachers learning together and from each other using video-based multimodal analysis

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Vanderlinde, Ruben

    2014-01-01

    integrated touch-screens into their teaching and learning. This paper examines the methodological usefulness of video-based multimodal analysis. Through reflection on the research project, we discuss how, by using video-based multimodal analysis, researchers and teachers can study children’s touch......This paper discusses a year-long technology integration project, during which teachers and researchers joined forces to explore children’s collaborative activities through the use of touch-screens. In the research project, discussed in this paper, 16 touch-screens were integrated into teaching...... and learning activities in two separate classrooms; the learning and collaborative processes were captured by using video, collecting over 150 hours of footage. By using digital research technologies and a longitudinal design, the authors of the research project studied how teachers and children gradually...

  3. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    Science.gov (United States)

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  4. Landmark Optimization Using Local Curvature for Point-Based Nonlinear Rodent Brain Image Registration

    Directory of Open Access Journals (Sweden)

    Yutong Liu

    2012-01-01

    Full Text Available Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed and target (reference image. Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (=5 each. In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (<0.05 in registration accuracy by landmark optimization in most data sets and trends towards improvement (<0.1 in others as compared to manual landmark selection.

  5. Multi-Modality Medical Image Fusion Based on Wavelet Analysis and Quality Evaluation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-modality medical image fusion has more and more important applications in medical image analysisand understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fusemedical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusionresults when applying different selection rules and obtain optimum combination of fusion parameters.

  6. Unified voxel- and tensor-based morphometry (UVTBM) using registration confidence.

    Science.gov (United States)

    Khan, Ali R; Wang, Lei; Beg, Mirza Faisal

    2015-01-01

    Voxel-based morphometry (VBM) and tensor-based morphometry (TBM) both rely on spatial normalization to a template and yet have different requirements for the level of registration accuracy. VBM requires only global alignment of brain structures, with limited degrees of freedom in transformation, whereas TBM performs best when the registration is highly deformable and can achieve higher registration accuracy. In addition, the registration accuracy varies over the whole brain, with higher accuracy typically observed in subcortical areas and lower accuracy seen in cortical areas. Hence, even the determinant of Jacobian of registration maps is spatially varying in their accuracy, and combining these with VBM by direct multiplication introduces errors in VBM maps where the registration is inaccurate. We propose a unified approach to combining these 2 morphometry methods that is motivated by these differing requirements for registration and our interest in harnessing the advantages of both. Our novel method uses local estimates of registration confidence to determine how to weight the influence of VBM- and TBM-like approaches. Results are shown on healthy and mild Alzheimer's subjects (N = 150) investigating age and group differences, and potential of differential diagnosis is shown on a set of Alzheimer's disease (N = 34) and frontotemporal dementia (N = 30) patients compared against controls (N = 14). These show that the group differences detected by our proposed approach are more descriptive than those detected from VBM, Jacobian-modulated VBM, and TBM separately, hence leveraging the advantages of both approaches in a unified framework. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    Science.gov (United States)

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  8. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    Directory of Open Access Journals (Sweden)

    Yoshinobu Hagiwara

    2018-03-01

    Full Text Available In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA. Object recognition results using convolutional neural network (CNN, hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL, and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  9. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2014-01-01

    Full Text Available Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT, the fast discrete curvelet transform (FDCT, and the dual tree complex wavelet transform (DTCWT based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images.

  10. Vision based tunnel inspection using non-rigid registration

    Science.gov (United States)

    Badshah, Amir; Ullah, Shan; Shahzad, Danish

    2015-04-01

    Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.

  11. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    Science.gov (United States)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the

  12. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  13. A robo-pigeon based on an innovative multi-mode telestimulation system.

    Science.gov (United States)

    Yang, Junqing; Huai, Ruituo; Wang, Hui; Lv, Changzhi; Su, Xuecheng

    2015-01-01

    In this paper, we describe a new multi-mode telestimulation system for brain-microstimulation for the navigation of a robo-pigeon, a new type of bio-robot based on Brain-Computer Interface (BCI) techniques. The multi-mode telestimulation system overcomes neuron adaptation that was a key shortcoming of the previous single-mode stimulation by the use of non-steady TTL biphasic pulses accomplished by randomly alternating pulse modes. To improve efficiency, a new behavior model ("virtual fear") is proposed and applied to the robo-pigeon. Unlike the previous "virtual reward" model, the "virtual fear" behavior model does not require special training. The performance and effectiveness of the system to alleviate the adaptation of neurons was verified by a robo-pigeon navigation test, simultaneously confirming the practicality of the "virtual fear" behavioral model.

  14. Comparing registration methods for mapping brain change using tensor-based morphometry.

    Science.gov (United States)

    Yanovsky, Igor; Leow, Alex D; Lee, Suh; Osher, Stanley J; Thompson, Paul M

    2009-10-01

    Measures of brain changes can be computed from sequential MRI scans, providing valuable information on disease progression for neuroscientific studies and clinical trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy. In this paper, we examine the power of different nonrigid registration models to detect changes in TBM, and their stability when no real changes are present. Specifically, we investigate an asymmetric version of a recently proposed Unbiased registration method, using mutual information as the matching criterion. We compare matching functionals (sum of squared differences and mutual information), as well as large-deformation registration schemes (viscous fluid and inverse-consistent linear elastic registration methods versus Symmetric and Asymmetric Unbiased registration) for detecting changes in serial MRI scans of 10 elderly normal subjects and 10 patients with Alzheimer's Disease scanned at 2-week and 1-year intervals. We also analyzed registration results when matching images corrupted with artificial noise. We demonstrated that the unbiased methods, both symmetric and asymmetric, have higher reproducibility. The unbiased methods were also less likely to detect changes in the absence of any real physiological change. Moreover, they measured biological deformations more accurately by penalizing bias in the corresponding statistical maps.

  15. Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.

    Science.gov (United States)

    Hor, Soheil; Moradi, Mehdi

    2016-12-01

    Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.

  16. Normalized mutual information based PET-MR registration using K-Means clustering and shading correction

    NARCIS (Netherlands)

    Knops, Z.F.; Maintz, J.B.A.; Viergever, M.A.; Pluim, J.P.W.; Gee, J.C.; Maintz, J.B.A.; Vannier, M.W.

    2003-01-01

    A method for the efficient re-binning and shading based correction of intensity distributions of the images prior to normalized mutual information based registration is presented. Our intensity distribution re-binning method is based on the K-means clustering algorithm as opposed to the generally

  17. Inverse consistent non-rigid image registration based on robust point set matching

    Science.gov (United States)

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number

  18. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    Science.gov (United States)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  19. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging.

    Science.gov (United States)

    Kumar, Sunil; Kamali, Tschackad; Levitte, Jonathan M; Katz, Ori; Hermann, Boris; Werkmeister, Rene; Považay, Boris; Drexler, Wolfgang; Unterhuber, Angelika; Silberberg, Yaron

    2015-05-18

    Noninvasive label-free imaging of biological systems raises demand not only for high-speed three-dimensional prescreening of morphology over a wide-field of view but also it seeks to extract the microscopic functional and molecular details within. Capitalizing on the unique advantages brought out by different nonlinear optical effects, a multimodal nonlinear optical microscope can be a powerful tool for bioimaging. Bringing together the intensity-dependent contrast mechanisms via second harmonic generation, third harmonic generation and four-wave mixing for structural-sensitive imaging, and single-beam/single-pulse coherent anti-Stokes Raman scattering technique for chemical sensitive imaging in the finger-print region, we have developed a simple and nearly alignment-free multimodal nonlinear optical microscope that is based on a single wide-band Ti:Sapphire femtosecond pulse laser source. Successful imaging tests have been realized on two exemplary biological samples, a canine femur bone and collagen fibrils harvested from a rat tail. Since the ultra-broad band-width femtosecond laser is a suitable source for performing high-resolution optical coherence tomography, a wide-field optical coherence tomography arm can be easily incorporated into the presented multimodal microscope making it a versatile optical imaging tool for noninvasive label-free bioimaging.

  20. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    Science.gov (United States)

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  1. FEM-based evaluation of deformable image registration for radiation therapy

    International Nuclear Information System (INIS)

    Zhong Hualiang; Peters, Terry; Siebers, Jeffrey V

    2007-01-01

    This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived energy indicates the quality of the DVF in its neighborhood. The new voxel-based evaluation approach is compared with three other validation criteria: landmark measurement, a finite element approach and visual comparison, for deformable registrations performed with the optical-flow-based 'demons' algorithm as well as thin-plate spline interpolation. This analysis was performed on three pairs of prostate CT images. The results of the analysis show that the four criteria give mutually comparable quantitative assessments on the six registration instances. As an objective concept, the unbalanced energy presents no requirement on boundary constraints in its calculation, different from traditional mechanical modeling. This method is automatic, and at voxel level suitable to evaluate deformable registration in a clinical setting

  2. The Pose Estimation of Mobile Robot Based on Improved Point Cloud Registration

    Directory of Open Access Journals (Sweden)

    Yanzi Miao

    2016-03-01

    Full Text Available Due to GPS restrictions, an inertial sensor is usually used to estimate the location of indoor mobile robots. However, it is difficult to achieve high-accuracy localization and control by inertial sensors alone. In this paper, a new method is proposed to estimate an indoor mobile robot pose with six degrees of freedom based on an improved 3D-Normal Distributions Transform algorithm (3D-NDT. First, point cloud data are captured by a Kinect sensor and segmented according to the distance to the robot. After the segmentation, the input point cloud data are processed by the Approximate Voxel Grid Filter algorithm in different sized voxel grids. Second, the initial registration and precise registration are performed respectively according to the distance to the sensor. The most distant point cloud data use the 3D-Normal Distributions Transform algorithm (3D-NDT with large-sized voxel grids for initial registration, based on the transformation matrix from the odometry method. The closest point cloud data use the 3D-NDT algorithm with small-sized voxel grids for precise registration. After the registrations above, a final transformation matrix is obtained and coordinated. Based on this transformation matrix, the pose estimation problem of the indoor mobile robot is solved. Test results show that this method can obtain accurate robot pose estimation and has better robustness.

  3. A dental implant-based registration method for measuring mandibular kinematics using cone beam computed tomography-based fluoroscopy.

    Science.gov (United States)

    Lin, Cheng-Chung; Chen, Chien-Chih; Chen, Yunn-Jy; Lu, Tung-Wu; Hong, Shih-Wun

    2014-01-01

    This study aimed to develop and evaluate experimentally an implant-based registration method for measuring three-dimensional (3D) kinematics of the mandible and dental implants in the mandible based on dental cone beam computed tomography (CBCT), modified to include fluoroscopic function. The proposed implant-based registration method was based on the registration of CBCT data of implants/bones with single-plane fluoroscopy images. Seven registration conditions that included one to three implants were evaluated experimentally for their performance in a cadaveric porcine headmodel. The implant-based registration method was shown to have measurement errors (SD) of less than -0.2 (0.3) mm, 1.1 (2.2) mm, and 0.7 degrees (1.3 degrees) for the in-plane translation, out-of-plane translation, and all angular components, respectively, regardless of the number of implants used. The corresponding errors were reduced to less than -0.1 (0.1) mm, -0.3 (1.7) mm, and 0.5 degree (0.4 degree) when three implants were used. An implant-based registration method was developed to measure the 3D kinematics of the mandible/implants. With its high accuracy and reliability, the new method will be useful for measuring the 3D motion of the bones/implants for relevant applications.

  4. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  5. Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy.

    Science.gov (United States)

    Cohen, E A K; Ober, R J

    2013-12-15

    We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data.

  6. A cloud-based multimodality case file for mobile devices.

    Science.gov (United States)

    Balkman, Jason D; Loehfelm, Thomas W

    2014-01-01

    Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article. ©RSNA, 2014.

  7. Tensor-based morphometry with stationary velocity field diffeomorphic registration: application to ADNI.

    Science.gov (United States)

    Bossa, Matias; Zacur, Ernesto; Olmos, Salvador

    2010-07-01

    Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations mapping a customized template with the observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerequisite for both template estimation and image warping. Subsequent statistical analysis on the spatial transformations is performed to highlight voxel-wise differences. Most of previous TBM studies did not explore the influence of the registration parameters, such as the parameters defining the deformation and the regularization models. In this work performance evaluation of TBM using stationary velocity field (SVF) diffeomorphic registration was performed in a subset of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A wide range of values of the registration parameters that define the transformation smoothness and the balance between image matching and regularization were explored in the evaluation. The proposed methodology provided brain atrophy maps with very detailed anatomical resolution and with a high significance level compared with results recently published on the same data set using a non-linear elastic registration method. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Feature-based US to CT registration of the aortic root

    Science.gov (United States)

    Lang, Pencilla; Chen, Elvis C. S.; Guiraudon, Gerard M.; Jones, Doug L.; Bainbridge, Daniel; Chu, Michael W.; Drangova, Maria; Hata, Noby; Jain, Ameet; Peters, Terry M.

    2011-03-01

    A feature-based registration was developed to align biplane and tracked ultrasound images of the aortic root with a preoperative CT volume. In transcatheter aortic valve replacement, a prosthetic valve is inserted into the aortic annulus via a catheter. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to significant morbidity and mortality. Registration of pre-operative CT to transesophageal ultrasound and fluoroscopy images is a major step towards providing augmented image guidance for this procedure. The proposed registration approach uses an iterative closest point algorithm to register a surface mesh generated from CT to 3D US points reconstructed from a single biplane US acquisition, or multiple tracked US images. The use of a single simultaneous acquisition biplane image eliminates reconstruction error introduced by cardiac gating and TEE probe tracking, creating potential for real-time intra-operative registration. A simple initialization procedure is used to minimize changes to operating room workflow. The algorithm is tested on images acquired from excised porcine hearts. Results demonstrate a clinically acceptable accuracy of 2.6mm and 5mm for tracked US to CT and biplane US to CT registration respectively.

  9. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Nasreddine Taleb

    2010-09-01

    Full Text Available Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT. An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  10. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    Science.gov (United States)

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  11. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    International Nuclear Information System (INIS)

    Lewis, Jason S.

    2012-01-01

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) (1,2). These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) (2). A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) (3). Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles (1). Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  12. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  13. Multimodal Microchannel and Nanowell-Based Microfluidic Platforms for Bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Tao; Smallwood, Chuck R.; Zhu, Ying; Bredeweg, Erin L.; Baker, Scott E.; Evans, James E.; Kelly, Ryan T.

    2017-03-30

    Modern live-cell imaging approaches permit real-time visualization of biological processes. However, limitations for unicellular organism trapping, culturing and long-term imaging can preclude complete understanding of how such microorganisms respond to perturbations in their local environment or linking single-cell variability to whole population dynamics. We have developed microfluidic platforms to overcome prior technical bottlenecks to allow both chemostat and compartmentalized cellular growth conditions using the same device. Additionally, a nanowell-based platform enables a high throughput approach to scale up compartmentalized imaging optimized within the microfluidic device. These channel and nanowell platforms are complementary, and both provide fine control over the local environment as well as the ability to add/replace media components at any experimental time point.

  14. Assessing Digital Student Productions, a Design-Based Research Study on the Development of a Criteria-Based Assessment Tool for Students’ Digital Multimodal Productions

    DEFF Research Database (Denmark)

    Hoffmeyer, Mikkeline; Jensen, Jesper Juellund; Olsen, Marie Veisegaard

    2017-01-01

    Digital multimodal production is becoming increasingly important as a 21st century skill and as a learning condition in school (K-12). Moreover, there is a growing attention to the significance of criteria-based assessment for learning. Nevertheless, assessment of students’ digital multimodal...... productions is often vague or lacking. Therefore, the research project aims at developing a tool to support assessment of student’s digital multimodal productions through a design-based research method. This paper presents a proposal for issues to be considered through a prototyping phase, based on interviews...

  15. FPFH-based graph matching for 3D point cloud registration

    Science.gov (United States)

    Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua

    2018-04-01

    Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.

  16. Registration of vehicle based panoramic image and LiDAR point cloud

    Science.gov (United States)

    Chen, Changjun; Cao, Liang; Xie, Hong; Zhuo, Xiangyu

    2013-10-01

    Higher quality surface information would be got when data from optical images and LiDAR were integrated, owing to the fact that optical images and LiDAR point cloud have unique characteristics that make them preferable in many applications. While most previous works focus on registration of pinhole perspective cameras to 2D or 3D LiDAR data. In this paper, a method for the registration of vehicle based panoramic image and LiDAR point cloud is proposed. Using the translation among panoramic image, single CCD image, laser scanner and Position and Orientation System (POS) along with the GPS/IMU data, precise co-registration between the panoramic image and the LiDAR point cloud in the world system is achieved. Results are presented under a real world data set collected by a new developed Mobile Mapping System (MMS) integrated with a high resolution panoramic camera, two laser scanners and a POS.

  17. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints

    Directory of Open Access Journals (Sweden)

    Junhui Huang

    2016-12-01

    Full Text Available Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  18. Robust Multimodal Dictionary Learning

    Science.gov (United States)

    Cao, Tian; Jojic, Vladimir; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    We propose a robust multimodal dictionary learning method for multimodal images. Joint dictionary learning for both modalities may be impaired by lack of correspondence between image modalities in training data, for example due to areas of low quality in one of the modalities. Dictionaries learned with such non-corresponding data will induce uncertainty about image representation. In this paper, we propose a probabilistic model that accounts for image areas that are poorly corresponding between the image modalities. We cast the problem of learning a dictionary in presence of problematic image patches as a likelihood maximization problem and solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly corresponding patches and re-finements of the dictionary. We tested our method on synthetic and real data. We show improvements in image prediction quality and alignment accuracy when using the method for multimodal image registration. PMID:24505674

  19. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    International Nuclear Information System (INIS)

    Yu, Gang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Liang, Yueqiang; Yin, Yong; Li, Dengwang

    2015-01-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software. (paper)

  20. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy

    NARCIS (Netherlands)

    Ven, W.J.M. van de; Hu, Y.; Barentsz, J.O.; Karssemeijer, N.; Barratt, D.; Huisman, H.J.

    2015-01-01

    Adding magnetic resonance (MR)-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound (US) by using MR-US registration. A common approach is to use surface-based

  1. Surface membrane based bladder registration for evaluation of accumulated dose during brachytherapy in cervical cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Sørensen, Thomas Sangild

    2011-01-01

    of the fixed surface. Optional landmark based matches can be included in the suggested iterative solver. The technique is demonstrated for bladder registration in brachytherapy treatment evaluation of cervical cancer. It holds promise to better estimate the accumulated but unintentional dose delivered...

  2. Developing 2D and 3D cadastral registration system based on LADM : Illustrated with Malaysian cases

    NARCIS (Netherlands)

    Amalina Zulkifli, N.; Abdul Rahman, A.; Van Oosterom, P.J.M.

    2013-01-01

    This paper investigates several aspects of the Land Administration Domain Model (LADM, ISO 2012) associated to 2D and 3D cadastral situations within Malaysian cadastral registration system. Literature review shows that many countries propose their own profile based on the LADM such as The

  3. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  4. 75 FR 79320 - Security-Based Swap Data Repository Registration, Duties, and Core Principles

    Science.gov (United States)

    2010-12-20

    ... SECURITIES AND EXCHANGE COMMISSION 17 CFR Parts 240 and 249 [Release No. 34-63347; File No. S7-35-10] RIN 3235-AK79 Security-Based Swap Data Repository Registration, Duties, and Core Principles Correction In proposed rule document 2010-29719 beginning on page 77306 in the issue of December 10, 2010...

  5. Multimodal Image-Based Virtual Reality Presurgical Simulation and Evaluation for Trigeminal Neuralgia and Hemifacial Spasm.

    Science.gov (United States)

    Yao, Shujing; Zhang, Jiashu; Zhao, Yining; Hou, Yuanzheng; Xu, Xinghua; Zhang, Zhizhong; Kikinis, Ron; Chen, Xiaolei

    2018-05-01

    To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC

  6. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    Science.gov (United States)

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  7. Deep assessment: an exploratory study of game-based, multimodal learning in Epidemic

    Directory of Open Access Journals (Sweden)

    Jennifer Jenson

    2016-03-01

    Full Text Available n this study, we examine what and how intermediate age students learned from playing in a health-focused game-based digital learning environment, Epidemic. Epidemic is a playful interactive environment designed to deliver factual knowledge, invite critical understanding, and encourage effective self-care practices in dealing with viral contagious diseases, using a social networking interface to integrate both serious games and game-like multimodal design projects. Epidemic invites a playful approach to its deadly serious core concern – communicable disease – in order to see what happens when students are encouraged to critically approach information from multiple or contradictory perspectives. To identify what participants learned while interacting within Epidemic, we deployed two instructional and assessment models, noting the differences each instructional approach could potentially make, and what approach to assessment might help us evaluate game-based learning. We found that each approach provided importantly different perspectives on what and how students learned, and on the very meaning of student success. Recognizing that traditional assessment tools based in print-cultural literacy may prove increasingly ill-suited for assessing emergent multimodal literacies in game-based learning environments, this study seeks to contribute to a growing body of work on the development of novel assessments for learning.

  8. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    International Nuclear Information System (INIS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-01-01

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI

  9. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldini, Mehdi [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft (Iran, Islamic Republic of); Jafri, Mohd Zubir Mat [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.

  10. Performance Evaluation and Optimal Management of Distance-Based Registration Using a Semi-Markov Process

    Directory of Open Access Journals (Sweden)

    Jae Joon Suh

    2017-01-01

    Full Text Available We consider the distance-based registration (DBR which is a kind of dynamic location registration scheme in a mobile communication network. In the DBR, the location of a mobile station (MS is updated when it enters a base station more than or equal to a specified distance away from the base station where the location registration for the MS was done last. In this study, we first investigate the existing performance-evaluation methods on the DBR with implicit registration (DBIR presented to improve the performance of the DBR and point out some problems of the evaluation methods. We propose a new performance-evaluation method for the DBIR scheme using a semi-Markov process (SMP which can resolve the controversial issues of the existing methods. The numerical results obtained with the proposed SMP model are compared with those from previous models. It is shown that the SMP model should be considered to get an accurate performance of the DBIR scheme.

  11. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Tingting Cui

    2016-12-01

    Full Text Available For multi-sensor integrated systems, such as the mobile mapping system (MMS, data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  12. Multimodal Biometric System Based on the Recognition of Face and Both Irises

    Directory of Open Access Journals (Sweden)

    Yeong Gon Kim

    2012-09-01

    Full Text Available The performance of unimodal biometric systems (based on a single modality such as face or fingerprint has to contend with various problems, such as illumination variation, skin condition and environmental conditions, and device variations. Therefore, multimodal biometric systems have been used to overcome the limitations of unimodal biometrics and provide high accuracy recognition. In this paper, we propose a new multimodal biometric system based on score level fusion of face and both irises' recognition. Our study has the following novel features. First, the device proposed acquires images of the face and both irises simultaneously. The proposed device consists of a face camera, two iris cameras, near-infrared illuminators and cold mirrors. Second, fast and accurate iris detection is based on two circular edge detections, which are accomplished in the iris image on the basis of the size of the iris detected in the face image. Third, the combined accuracy is enhanced by combining each score for the face and both irises using a support vector machine. The experimental results show that the equal error rate for the proposed method is 0.131%, which is lower than that of face or iris recognition and other fusion methods.

  13. Seizure Onset Detection based on a Uni- or Multi-modal Intelligent Seizure Acquisition (UISA/MISA) System

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sándor; Wolf, Peter

    2010-01-01

    An automatic Uni- or Multi-modal Inteligent Seizure Acquisition (UISA/MISA) system is highly applicable for onset detection of epileptic seizures based on motion data. The modalities used are surface electromyography (sEMG), acceleration (ACC) and angular velocity (ANG). The new proposed automatic...... algorithm on motion data is extracting features as “log-sum” measures of discrete wavelet components. Classification into the two groups “seizure” versus “nonseizure” is made based on the support vector machine (SVM) algorithm. The algorithm performs with a sensitivity of 91-100%, a median latency of 1...... second and a specificity of 100% on multi-modal data from five healthy subjects simulating seizures. The uni-modal algorithm based on sEMG data from the subjects and patients performs satisfactorily in some cases. As expected, our results clearly show superiority of the multimodal approach, as compared...

  14. Real-time estimation of FLE for point-based registration

    Science.gov (United States)

    Wiles, Andrew D.; Peters, Terry M.

    2009-02-01

    In image-guide surgery, optimizing the accuracy in localizing the surgical tools within the virtual reality environment or 3D image is vitally important, significant effort has been spent reducing the measurement errors at the point of interest or target. This target registration error (TRE) is often defined by a root-mean-square statistic which reduces the vector data to a single term that can be minimized. However, lost in the data reduction is the directionality of the error which, can be modelled using a 3D covariance matrix. Recently, we developed a set of expressions that modeled the TRE statistics for point-based registrations as a function of the fiducial marker geometry, target location and the fiducial localizer error (FLE). Unfortunately, these expressions are only as good as the definition of the FLE. In order to close the gap, we have subsequently developed a closed form expression that estimates the FLE as a function of the estimated fiducial registration error (FRE, the error between the measured fiducials and the best fit locations of those fiducials). The FRE covariance matrix is estimated using a sliding window technique and used as input into the closed form expression to estimate the FLE. The estimated FLE can then used to estimate the TRE which, can be given to the surgeon to permit the procedure to be designed such that the errors associated with the point-based registrations are minimized.

  15. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    Science.gov (United States)

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  16. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  17. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    Energy Technology Data Exchange (ETDEWEB)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  18. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  19. A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    W. Lu

    2017-09-01

    Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.

  20. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Directory of Open Access Journals (Sweden)

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  1. A stereotactic method for the three-dimensional registration of multi-modality biologic images in animals: NMR, PET, histology, and autoradiography

    International Nuclear Information System (INIS)

    Humm, J.L.; Ballon, D.; Hu, Y.C.; Ruan, S.; Chui, C.; Tulipano, P.K.; Erdi, A.; Koutcher, J.; Zakian, K.; Urano, M.; Zanzonico, P.; Mattis, C.; Dyke, J.; Chen, Y.; Harrington, P.; O'Donoghue, J.A.; Ling, C.C.

    2003-01-01

    The objective of this work was to develop and then validate a stereotactic fiduciary marker system for tumor xenografts in rodents which could be used to co-register magnetic resonance imaging (MRI), PET, tissue histology, autoradiography, and measurements from physiologic probes. A Teflon TM fiduciary template has been designed which allows the precise insertion of small hollow Teflon rods (0.71 mm diameter) into a tumor. These rods can be visualized by MRI and PET as well as by histology and autoradiography on tissue sections. The methodology has been applied and tested on a rigid phantom, on tissue phantom material, and finally on tumor bearing mice. Image registration has been performed between the MRI and PET images for the rigid Teflon phantom and among MRI, digitized microscopy images of tissue histology, and autoradiograms for both tissue phantom and tumor-bearing mice. A registration accuracy, expressed as the average Euclidean distance between the centers of three fiduciary markers among the registered image sets, of 0.2±0.06 mm was achieved between MRI and microPET image sets of a rigid Teflon phantom. The fiduciary template allows digitized tissue sections to be co-registered with three-dimensional MRI images with an average accuracy of 0.21 and 0.25 mm for the tissue phantoms and tumor xenografts, respectively. Between histology and autoradiograms, it was 0.19 and 0.21 mm for tissue phantoms and tumor xenografts, respectively. The fiduciary marker system provides a coordinate system with which to correlate information from multiple image types, on a voxel-by-voxel basis, with sub-millimeter accuracy--even among imaging modalities with widely disparate spatial resolution and in the absence of identifiable anatomic landmarks

  2. Facial expression recognition in the wild based on multimodal texture features

    Science.gov (United States)

    Sun, Bo; Li, Liandong; Zhou, Guoyan; He, Jun

    2016-11-01

    Facial expression recognition in the wild is a very challenging task. We describe our work in static and continuous facial expression recognition in the wild. We evaluate the recognition results of gray deep features and color deep features, and explore the fusion of multimodal texture features. For the continuous facial expression recognition, we design two temporal-spatial dense scale-invariant feature transform (SIFT) features and combine multimodal features to recognize expression from image sequences. For the static facial expression recognition based on video frames, we extract dense SIFT and some deep convolutional neural network (CNN) features, including our proposed CNN architecture. We train linear support vector machine and partial least squares classifiers for those kinds of features on the static facial expression in the wild (SFEW) and acted facial expression in the wild (AFEW) dataset, and we propose a fusion network to combine all the extracted features at decision level. The final achievement we gained is 56.32% on the SFEW testing set and 50.67% on the AFEW validation set, which are much better than the baseline recognition rates of 35.96% and 36.08%.

  3. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  4. Detail-enhanced multimodality medical image fusion based on gradient minimization smoothing filter and shearing filter.

    Science.gov (United States)

    Liu, Xingbin; Mei, Wenbo; Du, Huiqian

    2018-02-13

    In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.

  5. MINERVA: A multi-modality plug-in-based radiation therapy treatment planning system

    International Nuclear Information System (INIS)

    Wemple, C. A.; Wessol, D. E.; Nigg, D. W.; Cogliati, J. J.; Milvich, M.; Fredrickson, C. M.; Perkins, M.; Harkin, G. J.; Hartmann-Siantar, C. L.; Lehmann, J.; Flickinger, T.; Pletcher, D.; Yuan, A.; DeNardo, G. L.

    2005-01-01

    Researchers at the INEEL, MSU, LLNL and UCD have undertaken development of MINERVA, a patient-centric, multi-modal, radiation treatment planning system, which can be used for planning and analysing several radiotherapy modalities, either singly or combined, using common treatment planning tools. It employs an integrated, lightweight plug-in architecture to accommodate multi-modal treatment planning using standard interface components. The design also facilitates the future integration of improved planning technologies. The code is being developed with the Java programming language for inter-operability. The MINERVA design includes the image processing, model definition and data analysis modules with a central module to coordinate communication and data transfer. Dose calculation is performed by source and transport plug-in modules, which communicate either directly through the database or through MINERVA's openly published, extensible markup language (XML)-based application programmer's interface (API). All internal data are managed by a database management system and can be exported to other applications or new installations through the API data formats. A full computation path has been established for molecular-targeted radiotherapy treatment planning, with additional treatment modalities presently under development. (authors)

  6. 2.5D Multi-View Gait Recognition Based on Point Cloud Registration

    Science.gov (United States)

    Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan

    2014-01-01

    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM. PMID:24686727

  7. MO-F-BRA-04: Voxel-Based Statistical Analysis of Deformable Image Registration Error via a Finite Element Method.

    Science.gov (United States)

    Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H

    2012-06-01

    Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in

  8. Consistency of parametric registration in serial MRI studies of brain tumor progression

    International Nuclear Information System (INIS)

    Mang, Andreas; Buzug, Thorsten M.; Schnabel, Julia A.; Crum, William R.; Modat, Marc; Ourselin, Sebastien; Hawkes, David J.; Camara-Rey, Oscar; Palm, Christoph; Caseiras, Gisele Brasil; Jaeger, H.R.

    2008-01-01

    The consistency of parametric registration in multi-temporal magnetic resonance (MR) imaging studies was evaluated. Serial MRI scans of adult patients with a brain tumor (glioma) were aligned by parametric registration. The performance of low-order spatial alignment (6/9/12 degrees of freedom) of different 3D serial MR-weighted images is evaluated. A registration protocol for the alignment of all images to one reference coordinate system at baseline is presented. Registration results were evaluated for both, multimodal intra-timepoint and mono-modal multi-temporal registration. The latter case might present a challenge to automatic intensity-based registration algorithms due to ill-defined correspondences. The performance of our algorithm was assessed by testing the inverse registration consistency. Four different similarity measures were evaluated to assess consistency. Careful visual inspection suggests that images are well aligned, but their consistency may be imperfect. Sub-voxel inconsistency within the brain was found for allsimilarity measures used for parametric multi-temporal registration. T1-weighted images were most reliable for establishing spatial correspondence between different timepoints. The parametric registration algorithm is feasible for use in this application. The sub-voxel resolution mean displacement error of registration transformations demonstrates that the algorithm converges to an almost identical solution for forward and reverse registration. (orig.)

  9. An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition

    KAUST Repository

    Li, Huibin

    2015-07-29

    We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.

  10. An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition

    KAUST Repository

    Li, Huibin; Ding, Huaxiong; Huang, Di; Wang, Yunhong; Zhao, Xi; Morvan, Jean-Marie; Chen, Liming

    2015-01-01

    We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.

  11. Automated Coarse Registration of Point Clouds in 3d Urban Scenes Using Voxel Based Plane Constraint

    Science.gov (United States)

    Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U.

    2017-09-01

    For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.

  12. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks

    Science.gov (United States)

    Le, Minh Hung; Chen, Jingyu; Wang, Liang; Wang, Zhiwei; Liu, Wenyu; (Tim Cheng, Kwang-Ting; Yang, Xin

    2017-08-01

    Automated methods for prostate cancer (PCa) diagnosis in multi-parametric magnetic resonance imaging (MP-MRIs) are critical for alleviating requirements for interpretation of radiographs while helping to improve diagnostic accuracy (Artan et al 2010 IEEE Trans. Image Process. 19 2444-55, Litjens et al 2014 IEEE Trans. Med. Imaging 33 1083-92, Liu et al 2013 SPIE Medical Imaging (International Society for Optics and Photonics) p 86701G, Moradi et al 2012 J. Magn. Reson. Imaging 35 1403-13, Niaf et al 2014 IEEE Trans. Image Process. 23 979-91, Niaf et al 2012 Phys. Med. Biol. 57 3833, Peng et al 2013a SPIE Medical Imaging (International Society for Optics and Photonics) p 86701H, Peng et al 2013b Radiology 267 787-96, Wang et al 2014 BioMed. Res. Int. 2014). This paper presents an automated method based on multimodal convolutional neural networks (CNNs) for two PCa diagnostic tasks: (1) distinguishing between cancerous and noncancerous tissues and (2) distinguishing between clinically significant (CS) and indolent PCa. Specifically, our multimodal CNNs effectively fuse apparent diffusion coefficients (ADCs) and T2-weighted MP-MRI images (T2WIs). To effectively fuse ADCs and T2WIs we design a new similarity loss function to enforce consistent features being extracted from both ADCs and T2WIs. The similarity loss is combined with the conventional classification loss functions and integrated into the back-propagation procedure of CNN training. The similarity loss enables better fusion results than existing methods as the feature learning processes of both modalities are mutually guided, jointly facilitating CNN to ‘see’ the true visual patterns of PCa. The classification results of multimodal CNNs are further combined with the results based on handcrafted features using a support vector machine classifier. To achieve a satisfactory accuracy for clinical use, we comprehensively investigate three critical factors which could greatly affect the performance of our

  13. A digital 3D atlas of the marmoset brain based on multi-modal MRI.

    Science.gov (United States)

    Liu, Cirong; Ye, Frank Q; Yen, Cecil Chern-Chyi; Newman, John D; Glen, Daniel; Leopold, David A; Silva, Afonso C

    2018-04-01

    The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. Published by Elsevier Inc.

  14. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  15. Applying Connectivist Principles and the Task-Based Approach to the Design of a Multimodal Didactic Unit

    Directory of Open Access Journals (Sweden)

    Yeraldine Aldana Gutiérrez

    2012-12-01

    Full Text Available This article describes the pedagogical intervention developed in a public school as part of the research “Exploring Communications Practices through Facebook as a Mediatic Device”, framed within the computer mediated communications field. Twelve ninth graders’ communications practices were explored and addressed by means of multimodal technological resources and tasks based on the connectivist learning view. As a result, a didactic unit was designed in the form of the digital book Diverface. This one in turn displayed information through different media channels and semiotic elements to support its multimodal features. Teachers and students might thus need to reconstruct an alternative multimodal literacy so that they can produce and interpret texts of the same nature in online environments.

  16. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  17. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    International Nuclear Information System (INIS)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-01-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm.A hybrid DIR algorithm is proposed based on, a biomechanical model–based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used.Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone.The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5

  18. Background suppression of infrared small target image based on inter-frame registration

    Science.gov (United States)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  19. Wavelet based Image Registration Technique for Matching Dental x-rays

    OpenAIRE

    P. Ramprasad; H. C. Nagaraj; M. K. Parasuram

    2008-01-01

    Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two l...

  20. Developing 2D and 3D cadastral registration system based on LADM: Illustrated with Malaysian cases

    OpenAIRE

    Amalina Zulkifli, N.; Abdul Rahman, A.; Van Oosterom, P.J.M.

    2013-01-01

    This paper investigates several aspects of the Land Administration Domain Model (LADM, ISO 2012) associated to 2D and 3D cadastral situations within Malaysian cadastral registration system. Literature review shows that many countries propose their own profile based on the LADM such as The Netherlands, Portugal, Indonesia, Korea, Japan, Australia/ Queensland, Cyprus and others. Malaysia is one of the potential candidates towards LADMbased country profile, as proposed in this paper. Several asp...

  1. Simulating Deformations of MR Brain Images for Validation of Atlas-based Segmentation and Registration Algorithms

    OpenAIRE

    Xue, Zhong; Shen, Dinggang; Karacali, Bilge; Stern, Joshua; Rottenberg, David; Davatzikos, Christos

    2006-01-01

    Simulated deformations and images can act as the gold standard for evaluating various template-based image segmentation and registration algorithms. Traditional deformable simulation methods, such as the use of analytic deformation fields or the displacement of landmarks followed by some form of interpolation, are often unable to construct rich (complex) and/or realistic deformations of anatomical organs. This paper presents new methods aiming to automatically simulate realistic inter- and in...

  2. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  3. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  4. A Multimodal Discourse Analysis of Advertisements-Based on Visual Grammar

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-03-01

    Full Text Available In addition to words, the symbols, colors, sculptures, photographs, music, etc. are also frequently employed by participants to express themselves in communication. Advertising is closely related to sounds, colors, picture animations and other symbols. This paper aims to present how semiotics acts effectively to realize the real business purpose to reflect the unique significance of the multimodal discourse analysis. Based on Visual Grammar, this paper analyzes the 2014 Brazil World Cup advertisements from the perspective of representational meaning, interactive meaning and compositional meaning, this research means to prove that different modes within an advertisement depend on each other and have an interdependent relationship. And these relationships have different roles in different contexts.

  5. Template security analysis of multimodal biometric frameworks based on fingerprint and hand geometry

    Directory of Open Access Journals (Sweden)

    Arvind Selwal

    2016-09-01

    Full Text Available Biometric systems are automatic tools used to provide authentication during various applications of modern computing. In this work, three different design frameworks for multimodal biometric systems based on fingerprint and hand geometry modalities are proposed. An analysis is also presented to diagnose various types of template security issues in the proposed system. Fuzzy analytic hierarchy process (FAHP is applied with five decision parameters on all the designs and framework 1 is found to be better in terms of template data security, templates fusion and computational efficiency. It is noticed that template data security before storage in database is a challenging task. An important observation is that a template may be secured at feature fusion level and an indexing technique may be used to improve the size of secured templates.

  6. Multimodal nonlinear microscope based on a compact fiber-format laser source

    Science.gov (United States)

    Crisafi, Francesco; Kumar, Vikas; Perri, Antonio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2018-01-01

    We present a multimodal non-linear optical (NLO) laser-scanning microscope, based on a compact fiber-format excitation laser and integrating coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and two-photon-excitation fluorescence (TPEF) on a single platform. We demonstrate its capabilities in simultaneously acquiring CARS and SRS images of a blend of 6-μm poly(methyl methacrylate) beads and 3-μm polystyrene beads. We then apply it to visualize cell walls and chloroplast of an unprocessed fresh leaf of Elodea aquatic plant via SRS and TPEF modalities, respectively. The presented NLO microscope, developed in house using off-the-shelf components, offers full accessibility to the optical path and ensures its easy re-configurability and flexibility.

  7. Authorship in the verbovocovisual composition of multimodal short stories based on selfies

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Michelan de Azevedo

    2016-10-01

    Full Text Available http://dx.doi.org/10.5007/1984-8412.2016v13n3p1492 This study aims at showing how a didactic and pedagogical proposal that uses digital information and communication technologies (DICT can contribute to the verbivocovisual text authors’ education, , from the literary and digital spheres, in two public schools of basic education. Based on the concepts developed by Bakhtin and the Circle, we also intend, through the analysis of a multimodal short story, to indicate criteria to encourage the understanding of students' responsive attitudes in Portuguese classes. Discussions compiled in this article indicate that the school practices associated with DICT (1 contribute towards the activities of reading and textual production, and (2 stimulate protagonism and the exercise of citizenship.

  8. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  9. [Affine transformation-based automatic registration for peripheral digital subtraction angiography (DSA)].

    Science.gov (United States)

    Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min

    2008-07-01

    In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.

  10. Scan-based volume animation driven by locally adaptive articulated registrations.

    Science.gov (United States)

    Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S

    2011-03-01

    This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE

  11. A Matlab user interface for the statistically assisted fluid registration algorithm and tensor-based morphometry

    Science.gov (United States)

    Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha

    2015-01-01

    Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.

  12. [Manufacture method and clinical application of minimally invasive dental implant guide template based on registration technology].

    Science.gov (United States)

    Lin, Zeming; He, Bingwei; Chen, Jiang; D u, Zhibin; Zheng, Jingyi; Li, Yanqin

    2012-08-01

    To guide doctors in precisely positioning surgical operation, a new production method of minimally invasive implant guide template was presented. The mandible of patient was scanned by CT scanner, and three-dimensional jaw bone model was constructed based on CT images data The professional dental implant software Simplant was used to simulate the plant based on the three-dimensional CT model to determine the location and depth of implants. In the same time, the dental plaster models were scanned by stereo vision system to build the oral mucosa model. Next, curvature registration technology was used to fuse the oral mucosa model and the CT model, then the designed position of implant in the oral mucosa could be determined. The minimally invasive implant guide template was designed in 3-Matic software according to the design position of implant and the oral mucosa model. Finally, the template was produced by rapid prototyping. The three-dimensional registration technology was useful to fuse the CT data and the dental plaster data, and the template was accurate that could provide the doctors a guidance in the actual planting without cut-off mucosa. The guide template which fabricated by comprehensive utilization of three-dimensional registration, Simplant simulation and rapid prototyping positioning are accurate and can achieve the minimally invasive and accuracy implant surgery, this technique is worthy of clinical use.

  13. A block matching-based registration algorithm for localization of locally advanced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D., E-mail: gdhugo@vcu.edu [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, 23298 (United States)

    2014-04-15

    Purpose: To implement and evaluate a block matching-based registration (BMR) algorithm for locally advanced lung tumor localization during image-guided radiotherapy. Methods: Small (1 cm{sup 3}), nonoverlapping image subvolumes (“blocks”) were automatically identified on the planning image to cover the tumor surface using a measure of the local intensity gradient. Blocks were independently and automatically registered to the on-treatment image using a rigid transform. To improve speed and robustness, registrations were performed iteratively from coarse to fine image resolution. At each resolution, all block displacements having a near-maximum similarity score were stored. From this list, a single displacement vector for each block was iteratively selected which maximized the consistency of displacement vectors across immediately neighboring blocks. These selected displacements were regularized using a median filter before proceeding to registrations at finer image resolutions. After evaluating all image resolutions, the global rigid transform of the on-treatment image was computed using a Procrustes analysis, providing the couch shift for patient setup correction. This algorithm was evaluated for 18 locally advanced lung cancer patients, each with 4–7 weekly on-treatment computed tomography scans having physician-delineated gross tumor volumes. Volume overlap (VO) and border displacement errors (BDE) were calculated relative to the nominal physician-identified targets to establish residual error after registration. Results: Implementation of multiresolution registration improved block matching accuracy by 39% compared to registration using only the full resolution images. By also considering multiple potential displacements per block, initial errors were reduced by 65%. Using the final implementation of the BMR algorithm, VO was significantly improved from 77% ± 21% (range: 0%–100%) in the initial bony alignment to 91% ± 8% (range: 56%–100%;p < 0

  14. A block matching-based registration algorithm for localization of locally advanced lung tumors

    International Nuclear Information System (INIS)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2014-01-01

    Purpose: To implement and evaluate a block matching-based registration (BMR) algorithm for locally advanced lung tumor localization during image-guided radiotherapy. Methods: Small (1 cm 3 ), nonoverlapping image subvolumes (“blocks”) were automatically identified on the planning image to cover the tumor surface using a measure of the local intensity gradient. Blocks were independently and automatically registered to the on-treatment image using a rigid transform. To improve speed and robustness, registrations were performed iteratively from coarse to fine image resolution. At each resolution, all block displacements having a near-maximum similarity score were stored. From this list, a single displacement vector for each block was iteratively selected which maximized the consistency of displacement vectors across immediately neighboring blocks. These selected displacements were regularized using a median filter before proceeding to registrations at finer image resolutions. After evaluating all image resolutions, the global rigid transform of the on-treatment image was computed using a Procrustes analysis, providing the couch shift for patient setup correction. This algorithm was evaluated for 18 locally advanced lung cancer patients, each with 4–7 weekly on-treatment computed tomography scans having physician-delineated gross tumor volumes. Volume overlap (VO) and border displacement errors (BDE) were calculated relative to the nominal physician-identified targets to establish residual error after registration. Results: Implementation of multiresolution registration improved block matching accuracy by 39% compared to registration using only the full resolution images. By also considering multiple potential displacements per block, initial errors were reduced by 65%. Using the final implementation of the BMR algorithm, VO was significantly improved from 77% ± 21% (range: 0%–100%) in the initial bony alignment to 91% ± 8% (range: 56%–100%;p < 0.001). Left

  15. “Abstractive description” of land registration system based on the theory of “public confidence”

    Directory of Open Access Journals (Sweden)

    Nasrini Tabatabai Hesari

    2014-10-01

    Full Text Available the system of land registration is protective formalism that is formed based on the theory of “public confidence”. This theory presumes that what reflected by the land registration offices is based on the legal fact. This theory, which provides legal stability and security in transactions, is manifested in three guiding principles including “mirror principle”, “curtain principle” and “insurance principle”, and offers an “abstractive description” to a land registration system. This character has different effects on diverse legal systems and can be studied for both positive and negative systems.

  16. Fast Rotation-Free Feature-Based Image Registration Using Improved N-SIFT and GMM-Based Parallel Optimization.

    Science.gov (United States)

    Yu, Dongdong; Yang, Feng; Yang, Caiyun; Leng, Chengcai; Cao, Jian; Wang, Yining; Tian, Jie

    2016-08-01

    Image registration is a key problem in a variety of applications, such as computer vision, medical image processing, pattern recognition, etc., while the application of registration is limited by time consumption and the accuracy in the case of large pose differences. Aimed at these two kinds of problems, we propose a fast rotation-free feature-based rigid registration method based on our proposed accelerated-NSIFT and GMM registration-based parallel optimization (PO-GMMREG). Our method is accelerated by using the GPU/CUDA programming and preserving only the location information without constructing the descriptor of each interest point, while its robustness to missing correspondences and outliers is improved by converting the interest point matching to Gaussian mixture model alignment. The accuracy in the case of large pose differences is settled by our proposed PO-GMMREG algorithm by constructing a set of initial transformations. Experimental results demonstrate that our proposed algorithm can fast rigidly register 3-D medical images and is reliable for aligning 3-D scans even when they exhibit a poor initialization.

  17. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  18. Workplace-based assessment for vocational registration of international medical graduates.

    Science.gov (United States)

    Lillis, Steven; Van Dyk, Valencia

    2014-01-01

    Medical regulatory authorities need efficient and effective methods of ensuring the competence of immigrating international medical graduates (IMGs). Not all IMGs who apply for specialist vocational registration will have directly comparable qualifications to those usually accepted. As general licensure examinations are inappropriate for these doctors, workplace-based assessment (WBA) techniques would appear to provide a solution. However, there is little published data on such outcomes. All cases of WBA (n = 81) used for vocational registration of IMGs in New Zealand between 2008 and 2013 were collated and analyzed. The successful completion rate of IMGs through the pathway was 87%. The majority (64%) undertook the year of supervised practice and the final assessment in a provincial center. For those unsuccessful in the pathway, inadequate clinical knowledge was the most common deficit found, followed by poor clinical reasoning. A WBA approach for assessing readiness of IMGs for vocational registration is feasible. The constructivist theoretical perspective of WBA has particular advantages in assessing the standard of practice for experienced practitioners working in narrow scopes than traditional methods of assessment. The majority of IMGs undertook both the clinical year and the assessment in provincial hospitals, thus providing a workforce for underserved areas. © 2014 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  19. Automatic markerless registration of point clouds with semantic-keypoint-based 4-points congruent sets

    Science.gov (United States)

    Ge, Xuming

    2017-08-01

    The coarse registration of point clouds from urban building scenes has become a key topic in applications of terrestrial laser scanning technology. Sampling-based algorithms in the random sample consensus (RANSAC) model have emerged as mainstream solutions to address coarse registration problems. In this paper, we propose a novel combined solution to automatically align two markerless point clouds from building scenes. Firstly, the method segments non-ground points from ground points. Secondly, the proposed method detects feature points from each cross section and then obtains semantic keypoints by connecting feature points with specific rules. Finally, the detected semantic keypoints from two point clouds act as inputs to a modified 4PCS algorithm. Examples are presented and the results compared with those of K-4PCS to demonstrate the main contributions of the proposed method, which are the extension of the original 4PCS to handle heavy datasets and the use of semantic keypoints to improve K-4PCS in relation to registration accuracy and computational efficiency.

  20. Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot

    Directory of Open Access Journals (Sweden)

    Tadahiro Taniguchi

    2018-05-01

    Full Text Available In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP. The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback–Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes

  1. Automated registration of freehand B-mode ultrasound and magnetic resonance imaging of the carotid arteries based on geometric features

    DEFF Research Database (Denmark)

    Carvalho, Diego D. B.; Arias Lorza, Andres Mauricio; Niessen, Wiro J.

    2017-01-01

    and segmentations by minimizing a weighted sum of the Euclidean distance between centerlines and the dissimilarity between segmentations. The method was evaluated in 28 carotid arteries from eight patients and six healthy volunteers. First, the automated US lumen segmentation method was validated and optimized......-and-point-based method, a registration using only the centerlines and a registration using manual US lumen segmentations. Registration accuracy was measured in terms of the mean surface distance between manual US segmentations and the registered MRI segmentations. The average mean surface distance was 0.78 ± 0.34 mm...

  2. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product.

    Science.gov (United States)

    Bhambure, Rahul; Gupta, Darpan; Rathore, Anurag S

    2013-11-01

    Methionine oxidized, reduced and fMet forms of a native recombinant protein product are often the critical product variants which are associated with proteins expressed as bacterial inclusion bodies in E. coli. Such product variants differ from native protein in their structural and functional aspects, and may lead to loss of biological activity and immunogenic response in patients. This investigation focuses on evaluation of multimodal chromatography for selective removal of these product variants using recombinant human granulocyte colony stimulating factor (GCSF) as the model protein. Unique selectivity in separation of closely related product variants was obtained using combined pH and salt based elution gradients in hydrophobic charge induction chromatography. Simultaneous removal of process related impurities was also achieved in flow-through leading to single step purification process for the GCSF. Results indicate that the product recovery of up to 90.0% can be obtained with purity levels of greater than 99.0%. Binding the target protein at pHproduct variants using the combined pH and salt based elution gradient and removal of the host cell impurities in flow-through are the key novel features of the developed multimodal chromatographic purification step. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Optical home network based on an N×N multimode fiber architecture and CWDM technology

    NARCIS (Netherlands)

    Richard, F.; Guignard, P.; Pizzinat, A.; Guillo, L.; Guillory, J.; Charbonnier, B; Koonen, A.M.J.; Martinez, E.O.; Tanguy, E.; Li, H.W.

    2011-01-01

    With this optical home network solution associating an N×N multimode architecture and CWDM technology, various applications and network topologies are supported by a unique multiformat infrastructure. Issues related to the use of MMF are discussed.

  4. Registration-based Bone Morphometry for Shape Analysis of the Bones of the Human Wrist

    Science.gov (United States)

    Joshi, Anand A.; Leahy, Richard M.; Badawi, Ramsey D.; Chaudhari, Abhijit J.

    2015-01-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest l2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized l2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis. PMID:26353369

  5. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer; Zhang, Tianzhu; Ghanem, Bernard

    2016-01-01

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  6. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer

    2016-12-13

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  7. Registration-Based Range-Dependence Compensation for Bistatic STAP Radars

    Directory of Open Access Journals (Sweden)

    Lapierre Fabian D

    2005-01-01

    Full Text Available We address the problem of detecting slow-moving targets using space-time adaptive processing (STAP radar. Determining the optimum weights at each range requires data snapshots at neighboring ranges. However, in virtually all configurations, snapshot statistics are range dependent, meaning that snapshots are nonstationary with respect to range. This results in poor performance. In this paper, we propose a new compensation method based on registration of clutter ridges and designed to work on a single realization of the stochastic snapshot at each range. The method has been successfully tested on simulated, stochastic snapshots. An evaluation of performance is presented.

  8. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  9. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    Science.gov (United States)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  10. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    Science.gov (United States)

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  11. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    Science.gov (United States)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  12. Spline-based image-to-volume registration for three-dimensional electron microscopy

    International Nuclear Information System (INIS)

    Jonic, S.; Sorzano, C.O.S.; Thevenaz, P.; El-Bez, C.; De Carlo, S.; Unser, M.

    2005-01-01

    This paper presents an algorithm based on a continuous framework for a posteriori angular and translational assignment in three-dimensional electron microscopy (3DEM) of single particles. Our algorithm can be used advantageously to refine the assignment of standard quantized-parameter methods by registering the images to a reference 3D particle model. We achieve the registration by employing a gradient-based iterative minimization of a least-squares measure of dissimilarity between an image and a projection of the volume in the Fourier transform (FT) domain. We compute the FT of the projection using the central-slice theorem (CST). To compute the gradient accurately, we take advantage of a cubic B-spline model of the data in the frequency domain. To improve the robustness of the algorithm, we weight the cost function in the FT domain and apply a 'mixed' strategy for the assignment based on the minimum value of the cost function at registration for several different initializations. We validate our algorithm in a fully controlled simulation environment. We show that the mixed strategy improves the assignment accuracy; on our data, the quality of the angular and translational assignment was better than 2 voxel (i.e., 6.54 A). We also test the performance of our algorithm on real EM data. We conclude that our algorithm outperforms a standard projection-matching refinement in terms of both consistency of 3D reconstructions and speed

  13. Accuracy of radiotherapy dose calculations based on cone-beam CT: comparison of deformable registration and image correction based methods

    Science.gov (United States)

    Marchant, T. E.; Joshi, K. D.; Moore, C. J.

    2018-03-01

    Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).

  14. Appearance-based human gesture recognition using multimodal features for human computer interaction

    Science.gov (United States)

    Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun

    2011-03-01

    The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.

  15. Face-iris multimodal biometric scheme based on feature level fusion

    Science.gov (United States)

    Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei

    2015-11-01

    Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.

  16. Multimodal physiotherapy treatment based on a biobehavioral approach for patients with chronic cervico-craniofacial pain: a prospective case series.

    Science.gov (United States)

    Marcos-Martín, Fernando; González-Ferrero, Luis; Martín-Alcocer, Noelia; Paris-Alemany, Alba; La Touche, Roy

    2018-01-17

    The purpose of this prospective case series was to observe and describe changes in patients with chronic cervico-craniofacial pain of muscular origin treated with multimodal physiotherapy based on a biobehavioral approach. Nine patients diagnosed with chronic myofascial temporomandibular disorder and neck pain were treated with 6 sessions over the course of 2 weeks including: (1) orthopedic manual physiotherapy (joint mobilizations, neurodynamic mobilization, and dynamic soft tissue mobilizations); (2) therapeutic exercises (motor control and muscular endurance exercises); and (3) patient education. The outcome measures of craniofacial (CF-PDI) and neck disability (NDI), kinesiophobia (TSK-11) and catastrophizing (PCS), and range of cervical and mandibular motion (ROM) and posture were collected at baseline, and at 2 and 14 weeks post-baseline. Compared to baseline, statistically significant (p posture were observed following a multimodal physiotherapy treatment based on a biobehavioral approach.

  17. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    Directory of Open Access Journals (Sweden)

    Byeong Hak Kim

    2017-12-01

    Full Text Available Unmanned aerial vehicles (UAVs are equipped with optical systems including an infrared (IR camera such as electro-optical IR (EO/IR, target acquisition and designation sights (TADS, or forward looking IR (FLIR. However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC and scene-based NUC (SBNUC. However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA. In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR and long wave infrared (LWIR images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  18. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    Science.gov (United States)

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-01-01

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970

  19. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.

    Science.gov (United States)

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-12-27

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  20. Learning multimodal dictionaries.

    Science.gov (United States)

    Monaci, Gianluca; Jost, Philippe; Vandergheynst, Pierre; Mailhé, Boris; Lesage, Sylvain; Gribonval, Rémi

    2007-09-01

    Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This paradigm can be also extremely useful in many signal processing and computer vision problems involving mutually related signals. The simultaneous processing of multimodal data can, in fact, reveal information that is otherwise hidden when considering the signals independently. However, in natural multimodal signals, the statistical dependencies between modalities are in general not obvious. Learning fundamental multimodal patterns could offer deep insight into the structure of such signals. In this paper, we present a novel model of multimodal signals based on their sparse decomposition over a dictionary of multimodal structures. An algorithm for iteratively learning multimodal generating functions that can be shifted at all positions in the signal is proposed, as well. The learning is defined in such a way that it can be accomplished by iteratively solving a generalized eigenvector problem, which makes the algorithm fast, flexible, and free of user-defined parameters. The proposed algorithm is applied to audiovisual sequences and it is able to discover underlying structures in the data. The detection of such audio-video patterns in audiovisual clips allows to effectively localize the sound source on the video in presence of substantial acoustic and visual distractors, outperforming state-of-the-art audiovisual localization algorithms.

  1. User-based representation of time-resolved multimodal public transportation networks.

    Science.gov (United States)

    Alessandretti, Laura; Karsai, Márton; Gauvin, Laetitia

    2016-07-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.

  2. Feature-Fusion Guidelines for Image-Based Multi-Modal Biometric Fusion

    Directory of Open Access Journals (Sweden)

    Dane Brown

    2017-07-01

    Full Text Available The feature level, unlike the match score level, lacks multi-modal fusion guidelines. This work demonstrates a new approach for improved image-based biometric feature-fusion. The approach extracts and combines the face, fingerprint and palmprint at the feature level for improved human identification accuracy. Feature-fusion guidelines, proposed in our recent work, are extended by adding a new face segmentation method and the support vector machine classifier. The new face segmentation method improves the face identification equal error rate (EER by 10%. The support vector machine classifier combined with the new feature selection approach, proposed in our recent work, outperforms other classifiers when using a single training sample. Feature-fusion guidelines take the form of strengths and weaknesses as observed in the applied feature processing modules during preliminary experiments. The guidelines are used to implement an effective biometric fusion system at the feature level, using a novel feature-fusion methodology, reducing the EER of two groups of three datasets namely: SDUMLA face, SDUMLA fingerprint and IITD palmprint; MUCT Face, MCYT Fingerprint and CASIA Palmprint.

  3. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  4. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  5. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  6. Installed Base Registration of Decentralised Solar Panels with Applications in Crisis Management

    Science.gov (United States)

    Aarsen, R.; Janssen, M.; Ramkisoen, M.; Biljecki, F.; Quak, W.; Verbree, E.

    2015-08-01

    In case of a calamity in the Netherlands - e.g. a dike breach - parts of the nationwide electric network can fall out. In these occasions it would be useful if decentralised energy sources of the Smart Grid would contribute to balance out the fluctuations of the energy network. Decentralised energy sources include: solar energy, wind energy, combined heat and power, and biogas. In this manner, parts of the built environment - e.g. hospitals - that are in need of a continuous power flow, could be secured of this power. When a calamity happens, information about the Smart Grid is necessary to control the crisis and to ensure a shared view on the energy networks for both the crisis managers and network operators. The current situation of publishing, storing and sharing data of solar energy has been shown a lack of reliability about the current number, physical location, and capacity of installed decentralised photovoltaic (PV) panels in the Netherlands. This study focuses on decentralised solar energy in the form of electricity via PV panels in the Netherlands and addresses this challenge by proposing a new, reliable and up-to-date database. The study reveals the requirements for a registration of the installed base of PV panels in the Netherlands. This new database should serve as a replenishment for the current national voluntary registration, called Production Installation Register of Energy Data Services Netherland (EDSN-PIR), of installed decentralised PV panel installations in the Smart Grid, and provide important information in case of a calamity.

  7. Accurate and robust brain image alignment using boundary-based registration.

    Science.gov (United States)

    Greve, Douglas N; Fischl, Bruce

    2009-10-15

    The fine spatial scales of the structures in the human brain represent an enormous challenge to the successful integration of information from different images for both within- and between-subject analysis. While many algorithms to register image pairs from the same subject exist, visual inspection shows that their accuracy and robustness to be suspect, particularly when there are strong intensity gradients and/or only part of the brain is imaged. This paper introduces a new algorithm called Boundary-Based Registration, or BBR. The novelty of BBR is that it treats the two images very differently. The reference image must be of sufficient resolution and quality to extract surfaces that separate tissue types. The input image is then aligned to the reference by maximizing the intensity gradient across tissue boundaries. Several lower quality images can be aligned through their alignment with the reference. Visual inspection and fMRI results show that BBR is more accurate than correlation ratio or normalized mutual information and is considerably more robust to even strong intensity inhomogeneities. BBR also excels at aligning partial-brain images to whole-brain images, a domain in which existing registration algorithms frequently fail. Even in the limit of registering a single slice, we show the BBR results to be robust and accurate.

  8. Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents.

    Science.gov (United States)

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-05-30

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

  9. Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home

    Directory of Open Access Journals (Sweden)

    Mau-Tsuen Yang

    2014-08-01

    Full Text Available There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home’s entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.

  10. Multimodal Wireless Sensor Network-Based Ambient Assisted Living in Real Homes with Multiple Residents

    Directory of Open Access Journals (Sweden)

    Can Tunca

    2014-05-01

    Full Text Available Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs provide a great potential for ambient assisted living (AAL applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

  11. MOBILTEL - Mobile Multimodal Telecommunications dialogue system based on VoIP telephony

    Directory of Open Access Journals (Sweden)

    Anton Čižmár

    2009-10-01

    Full Text Available In this paper the project MobilTel ispresented. The communication itself is becoming amultimodal interactive process. The MobilTel projectprovides research and development activities inmultimodal interfaces area. The result is a functionalarchitecture for mobile multimodal telecommunicationsystem running on handheld device. The MobilTelcommunicator is a multimodal Slovak speech andgraphical interface with integrated VoIP client. Theother possible modalities are pen – touch screeninteraction, keyboard, and display on which theinformation is more user friendly presented (icons,emoticons, etc., and provides hyperlink and scrollingmenu availability.We describe the method of interaction between mobileterminal (PDA and MobilTel multimodal PCcommunicator over a VoIP WLAN connection basedon SIP protocol. We also present the graphicalexamples of services that enable users to obtaininformation about weather or information about trainconnection between two train stations.

  12. T-Spline Based Unifying Registration Procedure for Free-Form Surface Workpieces in Intelligent CMM

    Directory of Open Access Journals (Sweden)

    Zhenhua Han

    2017-10-01

    Full Text Available With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs. To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs.

  13. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    Science.gov (United States)

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined

  14. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    International Nuclear Information System (INIS)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A.; Bondar, L.; Zolnay, A. G.; Hoogeman, M. S.

    2013-01-01

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors’ unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  15. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  16. Registration Service

    CERN Multimedia

    GS Department

    2010-01-01

    Following a reorganization in Building 55, please note that the Registration Service is now organised as follows :  Ground floor: access cards (76903). 1st floor : registration of external firms’ personnel (76611 / 76622); car access stickers (76633); biometric registration (79710). Opening hours: 07-30 to 16-00 non-stop. GS-SEM Group General Infrastructure Services Department

  17. MR/PET quantification tools: Registration, segmentation, classification, and MR-based attenuation correction

    Science.gov (United States)

    Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Aarsvold, John N.; Raghunath, Nivedita; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.; Votaw, John R.

    2012-01-01

    Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [11C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR

  18. MR/PET quantification tools: Registration, segmentation, classification, and MR-based attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Baowei, E-mail: bfei@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road Northeast, Atlanta, Georgia 30329 (United States); Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States); Department of Mathematics and Computer Sciences, Emory University, Atlanta, Georgia 30322 (United States); Yang, Xiaofeng; Nye, Jonathon A.; Raghunath, Nivedita; Votaw, John R. [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Aarsvold, John N. [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Nuclear Medicine Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033 (United States); Cervo, Morgan; Stark, Rebecca [The Medical Physics Graduate Program in the George W. Woodruff School, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Meltzer, Carolyn C. [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Department of Neurology and Department of Psychiatry and Behavior Sciences, Emory University School of Medicine, Atlanta, Georgia 30322 (United States)

    2012-10-15

    Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [{sup 11}C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET.

  19. MR/PET quantification tools: Registration, segmentation, classification, and MR-based attenuation correction

    International Nuclear Information System (INIS)

    Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Raghunath, Nivedita; Votaw, John R.; Aarsvold, John N.; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.

    2012-01-01

    Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with ["1"1C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET.

  20. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    Science.gov (United States)

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  1. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    Directory of Open Access Journals (Sweden)

    Jae Won Bang

    2014-09-01

    Full Text Available With the development of 3D displays, user’s eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs, biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR, facial temperature (FT, and a subjective evaluation (SE score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively.

  2. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.

    Science.gov (United States)

    von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert

    2017-06-01

    For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).

  3. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging.

    Science.gov (United States)

    Zhou, Jing; Zhu, Xingjun; Chen, Min; Sun, Yun; Li, Fuyou

    2012-09-01

    Multimodal imaging is rapidly becoming an important tool for biomedical applications because it can compensate for the deficiencies of individual imaging modalities. Herein, multifunctional NaLuF(4)-based upconversion nanoparticles (Lu-UCNPs) were synthesized though a facile one-step microemulsion method under ambient condition. The doping of lanthanide ions (Gd(3+), Yb(3+) and Er(3+)/Tm(3+)) endows the Lu-UCNPs with high T(1)-enhancement, bright upconversion luminescence (UCL) emissions, and excellent X-ray absorption coefficient. Moreover, the as-prepared Lu-UCNPs are stable in water for more than six months, due to the protection of sodium glutamate and diethylene triamine pentacetate acid (DTPA) coordinating ligands on the surface. Lu-UCNPs have been successfully applied to the trimodal CT/MR/UCL lymphatic imaging on the modal of small animals. It is worth noting that Lu-UCNPs could be used for imaging even after preserving for over six months. In vitro transmission electron microscope (TEM), methyl thiazolyl tetrazolium (MTT) assay and histological analysis demonstrated that Lu-UCNPs exhibited low toxicity on living systems. Therefore, Lu-UCNPs could be multimodal agents for CT/MR/UCL imaging, and the concept can be served as a platform technology for the next-generation of probes for multimodal imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. SU-F-I-50: Finite Element-Based Deformable Image Registration of Lung and Heart

    Energy Technology Data Exchange (ETDEWEB)

    Penjweini, R [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Kim, M [University of Pennsylvania, Philadelphia, PA (United States); Zhu, T [University Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. Although accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery impacts the delivered light dose. To facilitate treatment planning, we use a finite-element-based (FEM) deformable image registration to quantify the anatomical variation of lung and heart volumes between CT pre-(or post-) surgery and surface contours obtained during PDT using an infrared camera-based navigation system (NDI). Methods: NDI is used during PDT to obtain the information of the cumulative light fluence on every cavity surface point that is being treated. A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the light during PDT. The position of the treatment is tracked using an attachment with nine reflective passive markers that are seen by the NDI system. Then, the position points are plotted as three-dimensional volume of the pleural cavity using Matlab and Meshlab. A series of computed tomography (CT) scans of the lungs and heart, in the same patient, are also acquired before and after the surgery. The NDI and CT contours are imported into COMSOL Multiphysics, where the FEM-based deformable image registration is obtained. The NDI and CT contours acquired during and post-PDT are considered as the reference, and the Pre-PDT CT contours are used as the target, which will be deformed. Results: Anatomical variation of the lung and heart volumes, taken at different times from different imaging devices, was determined by using our model. The resulting three-dimensional deformation map along x, y and z-axes was obtained. Conclusion: Our model fuses images acquired by different modalities and provides insights into the variation in anatomical structures over time.

  5. Implementing a Web-Based Registration and Administration System for Credit-by-Examination: Graduate Education Course Test Case.

    Science.gov (United States)

    Wang, Lih-Ching Chen

    2002-01-01

    Discusses the problems and successes encountered in implementing a Web-based registration and administration system for credit-by-examination in a required graduate course, detailing the ways in which this system improves upon its paper-based predecessor. (EV)

  6. Microcomputer-based system for registration of oxygen tension in peripheral muscle.

    Science.gov (United States)

    Odman, S; Bratt, H; Erlandsson, I; Sjögren, L

    1986-01-01

    For registration of oxygen tension fields in peripheral muscle a microcomputer based system was designed on the M6800 microprocessor. The system was designed to record the signals from a multiwire oxygen electrode, MDO, which is a multiwire electrode for measuring oxygen on the surface of an organ. The system contained patient safety isolation unit built on optocopplers and the upper frequency limit was 0.64 Hz. Collected data were corrected for drift and temperature changes during the measurement by using pre- and after calibrations and a linear compensation technique. Measure drift of the electrodes were proved to be linear and thus the drift could be compensated for. The system was tested in an experiment on pig. To study the distribution of oxygen statistically mean, standard deviation, skewness and curtosis were calculated. To see changes or differences between histograms a Kolmogorv-Smirnov test was used.

  7. Automatic registration of remote sensing images based on SIFT and fuzzy block matching for change detection

    Directory of Open Access Journals (Sweden)

    Cai Guo-Rong

    2011-10-01

    Full Text Available This paper presents an automated image registration approach to detecting changes in multi-temporal remote sensing images. The proposed algorithm is based on the scale invariant feature transform (SIFT and has two phases. The first phase focuses on SIFT feature extraction and on estimation of image transformation. In the second phase, Structured Local Binary Haar Pattern (SLBHP combined with a fuzzy similarity measure is then used to build a new and effective block similarity measure for change detection. Experimental results obtained on multi-temporal data sets show that compared with three mainstream block matching algorithms, the proposed algorithm is more effective in dealing with scale, rotation and illumination changes.

  8. Multi-feature-based plaque characterization in ex vivo MRI trained by registration to 3D histology

    International Nuclear Information System (INIS)

    Van Engelen, Arna; Niessen, Wiro J; Klein, Stefan; De Bruijne, Marleen; Groen, Harald C; Wentzel, Jolanda J; Verhagen, Hence JM; Lugt, Aad van der

    2012-01-01

    We present a new method for automated characterization of atherosclerotic plaque composition in ex vivo MRI. It uses MRI intensities as well as four other types of features: smoothed, gradient magnitude and Laplacian images at several scales, and the distances to the lumen and outer vessel wall. The ground truth for fibrous, necrotic and calcified tissue was provided by histology and μCT in 12 carotid plaque specimens. Semi-automatic registration of a 3D stack of histological slices and μCT images to MRI allowed for 3D rotations and in-plane deformations of histology. By basing voxelwise classification on different combinations of features, we evaluated their relative importance. To establish whether training by 3D registration yields different results than training by 2D registration, we determined plaque composition using (1) a 2D slice-based registration approach for three manually selected MRI and histology slices per specimen, and (2) an approach that uses only the three corresponding MRI slices from the 3D-registered volumes. Voxelwise classification accuracy was best when all features were used (73.3 ± 6.3%) and was significantly better than when only original intensities and distance features were used (Friedman, p < 0.05). Although 2D registration or selection of three slices from the 3D set slightly decreased accuracy, these differences were non-significant. (paper)

  9. Multimodal Discourse Analysis of the Movie "Argo"

    Science.gov (United States)

    Bo, Xu

    2018-01-01

    Based on multimodal discourse theory, this paper makes a multimodal discourse analysis of some shots in the movie "Argo" from the perspective of context of culture, context of situation and meaning of image. Results show that this movie constructs multimodal discourse through particular context, language and image, and successfully…

  10. Constructing and Using Multimodal Narratives to Research in Science Education: Contributions Based on Practical Classroom

    Science.gov (United States)

    Lopes, J. B.; Silva, A. A.; Cravino, J. P.; Santos, C. A.; Cunha, A.; Pinto, A.; Silva, A.; Viegas, C.; Saraiva, E.; Branco, M. J.

    2014-01-01

    This study deals with the problem of how to collect genuine and useful data about science classroom practices, and preserving the complex and holistic nature of teaching and learning. Additionally, we were looking for an instrument that would allow comparability and verifiability for teaching and research purposes. Given the multimodality of…

  11. Multimode Adaptable Microwave Radar Sensor Based on Leaky-Wave Antennas

    Czech Academy of Sciences Publication Activity Database

    Hudec, P.; Pánek, Petr; Jeník, V.

    2017-01-01

    Roč. 65, č. 9 (2017), s. 3464-3473 ISSN 0018-9480 Institutional support: RVO:67985882 Keywords : adaptable sensor * low-range radar * multimode sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 2.897, year: 2016

  12. Multimodal Voxel-Based Meta-Analysis of White Matter Abnormalities in Obsessive-Compulsive Disorder

    NARCIS (Netherlands)

    Radua, J.; Grau, M.; van den Heuvel, O.A.; Thiebaut de Schotten, M.; Stein, D.J.; Canales-Rodriguez, E.J.; Catani, M.; Mataix-Cols, D.

    2014-01-01

    White matter (WM) abnormalities have long been suspected in obsessive-compulsive disorder (OCD) but the available evidence has been inconsistent. We conducted the first multimodal meta-analysis of WM volume (WMV) and fractional anisotropy (FA) studies in OCD. All voxel-wise studies comparing WMV or

  13. Metal complex-based templates and nanostructures for magnetic resonance/optical multimodal imaging agents

    NARCIS (Netherlands)

    Galindo Millan, Jealemy

    2012-01-01

    In this thesis, new approaches directed towards simple and functional imaging agents (IAs) for magnetic resonance (MR) and fluorescence multimodal imaging are proposed. In Chapter 3, hybrid silver nanostructures (hAgNSs), grown using a polyamino carboxylic acid scaffold, namely

  14. Multimodal analgesia versus traditional opiate based analgesia after cardiac surgery, a randomized controlled trial

    DEFF Research Database (Denmark)

    Rafiq, Sulman; Steinbrüchel, Daniel Andreas; Wanscher, Michael Jaeger

    2014-01-01

    BACKGROUND: To evaluate if an opiate sparing multimodal regimen of dexamethasone, gabapentin, ibuprofen and paracetamol had better analgesic effect, less side effects and was safe compared to a traditional morphine and paracetamol regimen after cardiac surgery. METHODS: Open-label, prospective...

  15. Mannan-based conjugates as a multimodal imaging platform for lymph nodes

    Czech Academy of Sciences Publication Activity Database

    Rabyk, Mariia; Galisová, A.; Jirátová, M.; Patsula, Vitalii; Srbová, Linda; Loukotová, Lenka; Parnica, Jozef; Jirák, D.; Štěpánek, Petr; Hrubý, Martin

    2018-01-01

    Roč. 6, č. 17 (2018), s. 2584-2596 ISSN 2050-750X R&D Projects: GA MZd(CZ) NV15-25781A Institutional support: RVO:61389013 Keywords : polysaccharide modification * mannan * multimodal imaging Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 4.543, year: 2016

  16. Design of 1x2 wavelength demultiplexer based on multimode interference

    Czech Academy of Sciences Publication Activity Database

    Prajzler, Václav; Nekvindová, P.; Varga, Marián; Kromka, Alexander; Remeš, Zdeněk

    2014-01-01

    Roč. 16, 11-12 (2014), s. 1226-1231 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : demultiplexer * multimode interference * nanocrystalline diamond Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.429, year: 2014

  17. Automatic event-based synchronization of multimodal data streams from wearable and ambient sensors

    NARCIS (Netherlands)

    Bannach, D.; Amft, O.D.; Lukowicz, P.; Barnaghi, P.; Moessner, K.; Presser, M.; Meissner, S.

    2009-01-01

    A major challenge in using multi-modal, distributed sensor systems for activity recognition is to maintain a temporal synchronization between individually recorded data streams. A common approach is to use well defined ‘synchronization actions’ performed by the user to generate, easily identifiable

  18. One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI

    DEFF Research Database (Denmark)

    Arabi, H.; Zaidi, H.

    2016-01-01

    Purpose: The outcome of a detailed assessment of various strategies for atlas-based whole-body bone segmentation from magnetic resonance imaging (MRI) was exploited to select the optimal parameters and setting, with the aim of proposing a novel one-registration multi-atlas (ORMA) pseudo-CT genera......Purpose: The outcome of a detailed assessment of various strategies for atlas-based whole-body bone segmentation from magnetic resonance imaging (MRI) was exploited to select the optimal parameters and setting, with the aim of proposing a novel one-registration multi-atlas (ORMA) pseudo...... regarding the accuracy of extracted bone using the different techniques demonstrated the superiority of the VWW atlas fusion algorithm achieving a Dice similarity measure of 0.82 ± 0.04 compared to arithmetic averaging atlas fusion (0.60 ± 0.02), which uses conventional direct registration. Application...

  19. A robust cloud registration method based on redundant data reduction using backpropagation neural network and shift window

    Science.gov (United States)

    Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang

    2018-02-01

    A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.

  20. Registration of Aerial Image with Airborne LiDAR Data Based on Plücker Line

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-07-01

    Full Text Available Registration of aerial image with airborne LiDAR data is a key to feature extraction. A registration model based on Plücker line is proposed. The relative position and attitude relationship between the conjugate lines in LiDAR and image is determined based on Plücker linear equation, which describes line transformation in space, then coplanarity condition equation is established. Finally, coordinate transformation between image point and corresponding LiDAR point is achieved by the spiral movement of Plücker lines in the image. The registration model of Plücker linear coplanarity condition equation is simple, and jointly describes the rotation and translation to avoid coupling error between them, so the accuracy is approved. This research provides technical support for high-quality earth spatial information acquisition.

  1. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  2. Multimodal MRI-based study in patients with SPG4 mutations.

    Directory of Open Access Journals (Sweden)

    Thiago J R Rezende

    Full Text Available Mutations in the SPG4 gene (SPG4-HSP are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.

  3. Multimodality imaging of 131I uptake in nude mice thyroid based on Cerenkov radiation

    International Nuclear Information System (INIS)

    Hu Zhenhua; Liang Jimin; Qu Xiaochao; Yang Weidong; Ma Xiaowei; Wang Jing; Tian Jie

    2012-01-01

    Objective: To perform the multimodality 131 I thyroid imaging using Cerenkov luminescence tomography (CLT) and gamma imaging, and to compare the results of CLT and gamma imaging. Methods The nude mice (n=4, mass: (21 ±3) g) were injected with 1.67 ×10 7 Bq 131 I. CLT and gamma imaging were acquired at 0.5, 3, 12 and 24 h after the injection. Three-dimensional biodistribution of 131 I uptake in thyroid was reconstructed using Cerenkov source reconstruction method based on the diffusion equation (DE), and the reconstructed power of 131 I in different acquisition time points was obtained. Additionally, the ROIs were drawn over the gamma images of the mouse neck, and the counts were read. The correlation between the reconstructed power of CLT and gamma ray counts of gamma imaging was analyzed. Results: The power of 131 I uptake in thyroid at 0.5, 3, 12 and 24 h were 7.80 ×10 -13 , 1.62×10 -12 , 2.20×10 -12 and 2.68 × 10 -12 W, respectively. CLT results showed that reconstructed power increased with the increasing of acquisition time. Gamma imaging results indicated that 131 I uptake decreased in abdomen and increased in thyroid with the collection time. The results of CLT were consistent with that of gamma imaging (r 2 =0.7620, P<0.05). Conclusion: CLT has the potential to identify and monitor functioning thyroid tissue at before and (or) after 131 I treatment. (authors)

  4. Co-registration of the BNCT treatment planning images for clinical practice

    International Nuclear Information System (INIS)

    Salli, Eero; Seppaelae, Tiina; Kankaanranta, Leena; Asikainen, Sami; Savolainen, Sauli; Koivunoro, Hanna

    2006-01-01

    We have co-registered MRI, CT and FBPA-PET images for BNCT in clinical practice. Co-registration improves the spatial accuracy of the treatment planning by enabling use of information from all the co-registered modalities. The multimodal co-registration has been implemented as a service product provided by the Imaging Center of Helsinki University Central Hospital to other departments. To increase the accuracy of co-registration and patient positioning in the head area BNCT, a patient-specific fixation mask suitable for PET, MRI and CT was developed. The goal of the fixation mask is to normalize the orientation of the patient's head and neck. Co-registration is performed at the image processing unit by using a rigid body model, mutual-information based algorithms and partly in-house developed software tools. The accuracy of co-registration is verified by comparing the locations of the external skin markers and anatomical landmarks in different modalities. After co-registration, the images are transformed and covered into a format required by the BNCT dose-planning software and set to the dose-planning unit of the hospital. So far co-registration has been done for 22 patients. The co-registration protocol has proved to be reliable and efficient. Some registration errors are seen on some patients in the neck area because the rigid-body model used in co-registration is not fully valid for the brain-neck entity. The registration accuracy in this area could likely be improved by implementing a co-registration procedure utilizing a partly non-rigid body model. (author)

  5. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F; Meyer, J; Sandison, G [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA (United States)

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database were included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.

  6. Registration of Space Objects

    Science.gov (United States)

    Schmidt-Tedd, Bernhard

    2017-07-01

    Space objects are subject to registration in order to allocate "jurisdiction and control" over those objects in the sovereign-free environment of outer space. This approach is similar to the registration of ships in view of the high sea and for aircrafts with respect to the international airspace. Registration is one of the basic principles of space law, starting with UN General Assembly Resolution 1721 B (XVI) of December 20, 1961, followed by Resolution 1962 (XVIII) of December 13, 1963, then formulated in Article VIII of the Outer Space Treaty of 1967 and as specified in the Registration Convention of 1975. Registration of space objects can be seen today as a principle of customary international law, relevant for each spacefaring state. Registration is divided into a national and an international level. The State Party establishes a national registry for its space objects, and those registrations have to be communicated via diplomatic channel to the UN Register of space objects. This UN Register is handled by the UN Office for Outer Space Affairs (UNOOSA) and is an open source of information for space objects worldwide. Registration is linked to the so-called launching state of the relevant space object. There might be more than one launching state for the specific launch event, but only one state actor can register a specific space object. The state of registry gains "jurisdiction and control" over the space object and therefore no double registration is permissible. Based on the established UN Space Law, registration practice was subject to some adaptions due to technical developments and legal challenges. After the privatization of the major international satellite organizations, a number of non-registrations had to be faced. The state actors reacted with the UN Registration Practice Resolution of 2007 as elaborated in the Legal Subcommittee of UNCOPUOS, the Committee for the Peaceful Use of Outer Space. In this context an UNOOSA Registration Information

  7. A Comparison of FFD-based Nonrigid Registration and AAMs Applied to Myocardial Perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Ersbøll, Bjarne Kjær

    2006-01-01

    -form deformations (FFDs). AAMs are known to be much faster than nonrigid registration algorithms. On the other hand nonrigid registration algorithms are independent of a training set as required to build an AAM. To obtain a further comparison of the two methods, they are both applied to automatically register multi...

  8. Incidence of unintentional injuries in farming based on one year of weekly registration in Danish farms

    DEFF Research Database (Denmark)

    Rasmussen, K; Carstensen, Ole; Lauritsen, J M

    2000-01-01

    In Denmark, farming ranks as the industry with the highest incidence rate of fatal injuries. For nonfatal injuries, insufficient registration practices prevent valid comparisons between occupations. This study examines the occurrence of farm accidents and injuries, as well as work-specific factors......, via weekly registration in a representative sample of 393 farms in one county during 1 year....

  9. 75 FR 77305 - Security-Based Swap Data Repository Registration, Duties, and Core Principles

    Science.gov (United States)

    2010-12-10

    ... Repository Registration, Duties, and Core Principles; Proposed Rule #0;#0;Federal Register / Vol. 75 , No... Swap Data Repository Registration, Duties, and Core Principles AGENCY: Securities and Exchange... process, duties, and core principles. DATES: Comments should be submitted on or before January 24, 2011...

  10. Registration of partially overlapping surfaces for range image based augmented reality on mobile devices

    Science.gov (United States)

    Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.

    2012-02-01

    Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.

  11. INSTALLED BASE REGISTRATION OF DECENTRALISED SOLAR PANELS WITH APPLICATIONS IN CRISIS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    R. Aarsen

    2015-08-01

    Full Text Available In case of a calamity in the Netherlands - e.g. a dike breach - parts of the nationwide electric network can fall out. In these occasions it would be useful if decentralised energy sources of the Smart Grid would contribute to balance out the fluctuations of the energy network. Decentralised energy sources include: solar energy, wind energy, combined heat and power, and biogas. In this manner, parts of the built environment - e.g. hospitals - that are in need of a continuous power flow, could be secured of this power. When a calamity happens, information about the Smart Grid is necessary to control the crisis and to ensure a shared view on the energy networks for both the crisis managers and network operators. The current situation of publishing, storing and sharing data of solar energy has been shown a lack of reliability about the current number, physical location, and capacity of installed decentralised photovoltaic (PV panels in the Netherlands. This study focuses on decentralised solar energy in the form of electricity via PV panels in the Netherlands and addresses this challenge by proposing a new, reliable and up-to-date database. The study reveals the requirements for a registration of the installed base of PV panels in the Netherlands. This new database should serve as a replenishment for the current national voluntary registration, called Production Installation Register of Energy Data Services Netherland (EDSN-PIR, of installed decentralised PV panel installations in the Smart Grid, and provide important information in case of a calamity.

  12. TPS-HAMMER: improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation.

    Science.gov (United States)

    Wu, Guorong; Yap, Pew-Thian; Kim, Minjeong; Shen, Dinggang

    2010-02-01

    We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to (1) the employment of soft correspondence matching and (2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: (1) unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; (2) the smoothness of deformation field is preserved due to the nice properties of TPS; (3) possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  13. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    Science.gov (United States)

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  14. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features.

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mousavi Kahaki

    Full Text Available An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new descriptor's similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence.

  15. Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer

    DEFF Research Database (Denmark)

    Andersen, E S; Muren, L P; Sørensen, T S

    2012-01-01

    Variations in bladder position, shape and volume cause uncertainties in the doses delivered to this organ during a course of radiotherapy for pelvic tumors. The purpose of this study was to evaluate the potential of dose accumulation based on repeat imaging and deformable image registration (DIR)...

  16. Improving Intensity-Based Lung CT Registration Accuracy Utilizing Vascular Information

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available Accurate pulmonary image registration is a challenging problem when the lungs have a deformation with large distance. In this work, we present a nonrigid volumetric registration algorithm to track lung motion between a pair of intrasubject CT images acquired at different inflation levels and introduce a new vesselness similarity cost that improves intensity-only registration. Volumetric CT datasets from six human subjects were used in this study. The performance of four intensity-only registration algorithms was compared with and without adding the vesselness similarity cost function. Matching accuracy was evaluated using landmarks, vessel tree, and fissure planes. The Jacobian determinant of the transformation was used to reveal the deformation pattern of local parenchymal tissue. The average matching error for intensity-only registration methods was on the order of 1 mm at landmarks and 1.5 mm on fissure planes. After adding the vesselness preserving cost function, the landmark and fissure positioning errors decreased approximately by 25% and 30%, respectively. The vesselness cost function effectively helped improve the registration accuracy in regions near thoracic cage and near the diaphragm for all the intensity-only registration algorithms tested and also helped produce more consistent and more reliable patterns of regional tissue deformation.

  17. Feature-Based Retinal Image Registration Using D-Saddle Feature

    Directory of Open Access Journals (Sweden)

    Roziana Ramli

    2017-01-01

    Full Text Available Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%, Harris-PIIFD (4%, H-M (16%, and Saddle (16%. Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle.

  18. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  19. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  20. Landmark-based elastic registration using approximating thin-plate splines.

    Science.gov (United States)

    Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H

    2001-06-01

    We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.

  1. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation

    Science.gov (United States)

    Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin

    2018-06-01

    We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.

  2. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    Science.gov (United States)

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  3. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber

    Science.gov (United States)

    Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu

    2017-05-01

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.

  4. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.

    Science.gov (United States)

    Dai, Daoxin; Mao, Mao

    2015-11-02

    An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm(2) SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE(11), TE(21), TE(31), TE(41), TM(11), TM(12)) in a 1.4 × 0.22μm(2) multimode SOI waveguide and the six modes (like the LP(01), LP(11a), LP(11b) modes in a few-mode fiber) in a 3 × 3μm(2) SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.

  5. TH-CD-206-09: Learning-Based MRI-CT Prostate Registration Using Spare Patch-Deformation Dictionary

    International Nuclear Information System (INIS)

    Yang, X; Jani, A; Rossi, P; Mao, H; Curran, W; Liu, T

    2016-01-01

    Purpose: To enable MRI-guided prostate radiotherapy, MRI-CT deformable registration is required to map the MRI-defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey-level intensity characteristics between MRI and CT images, the integration of MRI into CT-based radiotherapy is very challenging. We are developing a learning-based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch-wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch-wise appearance patterns are similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI-CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate-cancer patients’ data and its performance was compared with the commonly used free-form-deformation-based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity-based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR-CT registration approach based on patch-deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient-specific treatment variation measured during the course of

  6. TH-CD-206-09: Learning-Based MRI-CT Prostate Registration Using Spare Patch-Deformation Dictionary

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X; Jani, A; Rossi, P; Mao, H; Curran, W; Liu, T [Emory University, Atlanta, GA (United States)

    2016-06-15

    Purpose: To enable MRI-guided prostate radiotherapy, MRI-CT deformable registration is required to map the MRI-defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey-level intensity characteristics between MRI and CT images, the integration of MRI into CT-based radiotherapy is very challenging. We are developing a learning-based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch-wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch-wise appearance patterns are similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI-CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate-cancer patients’ data and its performance was compared with the commonly used free-form-deformation-based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity-based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR-CT registration approach based on patch-deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient-specific treatment variation measured during the course of

  7. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    Directory of Open Access Journals (Sweden)

    Zhiying Song

    2017-01-01

    Full Text Available The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS method and a dynamic threshold denoising (DTD method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933 on feature images and less Euclidean distance error (ED = 2.826 on landmark points, outperforming the source data (NC = −0.496, ED = 25.847 and the compared method (NC = −0.614, ED = 16.085. Moreover, our method is about ten times faster than the compared one.

  8. MRI-based treatment planning with pseudo CT generated through atlas registration

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Hua, Chiaho [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Li, Yimei; Li, Xingyu [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2014-05-15

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the

  9. MRI-based treatment planning with pseudo CT generated through atlas registration

    International Nuclear Information System (INIS)

    Uh, Jinsoo; Merchant, Thomas E.; Hua, Chiaho; Li, Yimei; Li, Xingyu

    2014-01-01

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the

  10. SU-E-J-95: Towards Optimum Boundary Conditions for Biomechanical Model Based Deformable Registration Using Intensity Based Image Matching for Prostate Correlative Pathology.

    Science.gov (United States)

    Samavati, N; McGrath, D M; Lee, J; van der Kwast, T; Jewett, M; Mã Nard, C; Pluim, J P W; Brock, K K

    2012-06-01

    Deformable registration of histology to MRI is an essential tool to validate in vivo prostate cancer imaging. However, direct registration of histology to in vivo MR is prone to error due to geometric differences between the tissue sections and the in vivo imaging planes. To increase the accuracy of registration, an ex vivo high resolution MRI is acquired to compensate for the direct registration difficulties. A novel intensity-based deformable registration algorithm based on local variation in image intensities is proposed to register the histology to ex vivo MRI of prostatectomy specimens. Four sets of ex vivo MR and whole mount pathology images from four patients were used to investigate and validate the technique. In addition, 9 synthetically deformed ex vivo MR images were used. The standard deviation in local windows within the images was calculated to generate intermediate images based on both MR and histology. The intermediate images were registered using the Drop package (Munich, Germany). To further increase the accuracy, a final refinement of the registration was performed using Drop with a finer B-spline rid. The registration parameters were tuned to achieve a visually acceptable registration. Magnitude of Differences (MOD) and Angular Error (AE) were used to validate the synthetic data, and the Target Registration Error (TRE) of manually indicated landmarks was used for the clinical data. MOD of 0.6mm and AE of 8.3 degrees showed the efficacy of using intermediate images, compared to 0.8mm and 10.0 degrees achieved with Drop without the intermediate images. The average mean±std TRE among the four patients was 1.0±0.6 mm using the proposed method compared to 1.6±1.1 mm using Elastix (Utrecht, The Netherlands). An intensity-based deformable registration algorithm which uses intermediate images was evaluated on prostatectomy specimens and synthetically deformed clinical data, indicating improvement in overall accuracy and robustness. OICR, Terry Fox

  11. Atlas-based deformable image registration for MRI-guided prostate radiation therapy

    International Nuclear Information System (INIS)

    Dowling, J.; Fripp, J.; Salvado, O.; Lambert, J.; Denham, J.W.; Capp, A.; Grer, P.B.; Parker, J.

    2010-01-01

    Full text: To develop atlas-based deformable image registration methods to automatically segment organs and map electron densities to pelvic MRI scans for MRI-guided radiation therapy. Methods An MRT pelvic atlas and corresponding CT atlas were developed based on whole pelvic T 2 MRI scans and CT scans for 39 patients. Expert manual segmentations on both MRI and CT scans were obtained. The atlas was deformably registered to the individual patient MRI scans for automatic prostate, rectum, bladder and bone segmentation. These were compared to the manual segmentations using the Dice overlap coefficient. The same deformation vectors were then applied to the CT-atlas to produce pseudo-CT scans that correspond to the patient MRI scan anatomy but are populated with Hounsfield units. The original patient plan was recalculated on the pseudo-CT and compared to the original CT plan and bulk density plans on the MRI scans. Results Dice coefficient results were high (>0.8) for bone and prostate but lower (<0.7) for bladder and rectum which exhibit greater changes in shape and volume. Doses calculated on pseudo-CT scans were within 3% of original patient plans. Two sources of discrepancy were found; MR anatomy differences from CT due to patient setup differences at the MR scanner. and Hounsfield unit differences for bone in the pseudo-CT from original CT. Patient setup will be adressed with a

  12. Daily fraction dose recalculation based on rigid registration using Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Courtney Bosse

    2014-03-01

    Full Text Available Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2:020217. DOI: 10.14319/ijcto.0202.17

  13. MRI-based treatment planning with pseudo CT generated through atlas registration.

    Science.gov (United States)

    Uh, Jinsoo; Merchant, Thomas E; Li, Yimei; Li, Xingyu; Hua, Chiaho

    2014-05-01

    To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787-0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%-98.7%) satisfied the criteria of chi-evaluation (pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs

  14. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.

    Science.gov (United States)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-11-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images

    International Nuclear Information System (INIS)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo

    2014-01-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. (author)

  16. Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue

    International Nuclear Information System (INIS)

    Brock, Kristy K.; Dawson, Laura A.; Sharpe, Michael B.; Moseley, Douglas J.; Jaffray, David A.

    2006-01-01

    Purpose: To investigate the feasibility of a biomechanical-based deformable image registration technique for the integration of multimodality imaging, image guided treatment, and response monitoring. Methods and Materials: A multiorgan deformable image registration technique based on finite element modeling (FEM) and surface projection alignment of selected regions of interest with biomechanical material and interface models has been developed. FEM also provides an inherent method for direct tracking specified regions through treatment and follow-up. Results: The technique was demonstrated on 5 liver cancer patients. Differences of up to 1 cm of motion were seen between the diaphragm and the tumor center of mass after deformable image registration of exhale and inhale CT scans. Spatial differences of 5 mm or more were observed for up to 86% of the surface of the defined tumor after deformable image registration of the computed tomography (CT) and magnetic resonance images. Up to 6.8 mm of motion was observed for the tumor after deformable image registration of the CT and cone-beam CT scan after rigid registration of the liver. Deformable registration of the CT to the follow-up CT allowed a more accurate assessment of tumor response. Conclusions: This biomechanical-based deformable image registration technique incorporates classification, targeting, and monitoring of tumor and normal tissue using one methodology

  17. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Registration of T2-weighted and diffusion-weighted MR images of the prostate: comparison between manual and landmark-based methods

    Science.gov (United States)

    Peng, Yahui; Jiang, Yulei; Soylu, Fatma N.; Tomek, Mark; Sensakovic, William; Oto, Aytekin

    2012-02-01

    Quantitative analysis of multi-parametric magnetic resonance (MR) images of the prostate, including T2-weighted (T2w) and diffusion-weighted (DW) images, requires accurate image registration. We compared two registration methods between T2w and DW images. We collected pre-operative MR images of 124 prostate cancer patients (68 patients scanned with a GE scanner and 56 with Philips scanners). A landmark-based rigid registration was done based on six prostate landmarks in both T2w and DW images identified by a radiologist. Independently, a researcher manually registered the same images. A radiologist visually evaluated the registration results by using a 5-point ordinal scale of 1 (worst) to 5 (best). The Wilcoxon signed-rank test was used to determine whether the radiologist's ratings of the results of the two registration methods were significantly different. Results demonstrated that both methods were accurate: the average ratings were 4.2, 3.3, and 3.8 for GE, Philips, and all images, respectively, for the landmark-based method; and 4.6, 3.7, and 4.2, respectively, for the manual method. The manual registration results were more accurate than the landmark-based registration results (p < 0.0001 for GE, Philips, and all images). Therefore, the manual method produces more accurate registration between T2w and DW images than the landmark-based method.

  19. The plant virus microscope image registration method based on mismatches removing.

    Science.gov (United States)

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Radiation dose response simulation for biomechanical-based deformable image registration of head and neck cancer treatment

    International Nuclear Information System (INIS)

    Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Brock, Kristy

    2015-01-01

    Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D). (paper)

  1. Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs

    International Nuclear Information System (INIS)

    Xie Yaoqin; Chao Ming; Xing Lei

    2009-01-01

    Purpose: To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials: The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform method. The control point pairs were then sorted into different 'colors' according to the organs in which they resided and used to model the involved organs individually. A thin-plate spline method was used to register a structure characterized by the control points with a given 'color.' The proposed technique was applied to study a digital phantom case and 3 lung and 3 liver cancer patients. Results: For the phantom case, a comparison with the conventional thin-plate spline method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and standard deviation of the 15 points against the known ground truth were reduced from 3.0 to 0.5 mm and from 1.5 to 0.2 mm, respectively, when the new method was used. A similar level of improvement was achieved for the clinical cases. Conclusion: The results of our study have shown that the segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration.

  2. [Landmark-based automatic registration of serial cross-sectional images of Chinese digital human using Photoshop and Matlab software].

    Science.gov (United States)

    Su, Xiu-yun; Pei, Guo-xian; Yu, Bin; Hu, Yan-ling; Li, Jin; Huang, Qian; Li, Xu; Zhang, Yuan-zhi

    2007-12-01

    This paper describes automatic registration of the serial cross-sectional images of Chinese digital human by projective registration method based on the landmarks using the commercially available software Photoshop and Matlab. During cadaver embedment for acquisition of the Chinese digital human images, 4 rods were placed parallel to the vertical axis of the frozen cadaver to allow orientation. Projective distortion of the rod positions on the cross-sectional images was inevitable due to even slight changes of the relative position of the camera. The original cross-sectional images were first processed using Photoshop software firstly to obtain the images of the orientation rods, and the centroid coordinate of every rod image was acquired with Matlab software. With the average coordinate value of the rods as the fiducial point, two-dimensional projective transformation coefficient of each image was determined. Projective transformation was then carried out and projective distortion from each original serial image was eliminated. The rectified cross-sectional images were again processed using Photoshop to obtain the image of the first orientation rod, the coordinate value of first rod image was calculated using Matlab software, and the cross-sectional images were cut into images of the same size according to the first rod spatial coordinate, to achieve automatic registration of the serial cross-sectional images. sing Photoshop and Matlab softwares, projective transformation can accurately accomplish the image registration for the serial images with simpler calculation processes and easier computer processing.

  3. Mapping of the prostate in endorectal coil-based MRI/MRSI and CT: A deformable registration and validation study

    International Nuclear Information System (INIS)

    Lian, J.; Xing, L.; Hunjan, S.; Dumoulin, C.; Levin, J.; Lo, A.; Watkins, R.; Rohling, K.; Giaquinto, R.; Kim, D.; Spielman, D.; Daniel, B.

    2004-01-01

    The endorectal coil is being increasingly used in magnetic resonance imaging (MRI) and MR spectroscopic imaging (MRSI) to obtain anatomic and metabolic images of the prostate with high signal-to-noise ratio (SNR). In practice, however, the use of endorectal probe inevitably distorts the prostate and other soft tissue organs, making the analysis and the use of the acquired image data in treatment planning difficult. The purpose of this work is to develop a deformable image registration algorithm to map the MRI/MRSI information obtained using an endorectal probe onto CT images and to verify the accuracy of the registration by phantom and patient studies. A mapping procedure involved using a thin plate spline (TPS) transformation was implemented to establish voxel-to-voxel correspondence between a reference image and a floating image with deformation. An elastic phantom with a number of implanted fiducial markers was designed for the validation of the quality of the registration. Radiographic images of the phantom were obtained before and after a series of intentionally introduced distortions. After mapping the distorted phantom to the original one, the displacements of the implanted markers were measured with respect to their ideal positions and the mean error was calculated. In patient studies, CT images of three prostate patients were acquired, followed by 3 Tesla (3 T) MR images with a rigid endorectal coil. Registration quality was estimated by the centroid position displacement and image coincidence index (CI). Phantom and patient studies show that TPS-based registration has achieved significantly higher accuracy than the previously reported method based on a rigid-body transformation and scaling. The technique should be useful to map the MR spectroscopic dataset acquired with ER probe onto the treatment planning CT dataset to guide radiotherapy planning

  4. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.

    Science.gov (United States)

    Bricq, S; Collet, Ch; Armspach, J P

    2008-12-01

    In the frame of 3D medical imaging, accurate segmentation of multimodal brain MR images is of interest for many brain disorders. However, due to several factors such as noise, imaging artifacts, intrinsic tissue variation and partial volume effects, tissue classification remains a challenging task. In this paper, we present a unifying framework for unsupervised segmentation of multimodal brain MR images including partial volume effect, bias field correction, and information given by a probabilistic atlas. Here-proposed method takes into account neighborhood information using a Hidden Markov Chain (HMC) model. Due to the limited resolution of imaging devices, voxels may be composed of a mixture of different tissue types, this partial volume effect is included to achieve an accurate segmentation of brain tissues. Instead of assigning each voxel to a single tissue class (i.e., hard classification), we compute the relative amount of each pure tissue class in each voxel (mixture estimation). Further, a bias field estimation step is added to the proposed algorithm to correct intensity inhomogeneities. Furthermore, atlas priors were incorporated using probabilistic brain atlas containing prior expectations about the spatial localization of different tissue classes. This atlas is considered as a complementary sensor and the proposed method is extended to multimodal brain MRI without any user-tunable parameter (unsupervised algorithm). To validate this new unifying framework, we present experimental results on both synthetic and real brain images, for which the ground truth is available. Comparison with other often used techniques demonstrates the accuracy and the robustness of this new Markovian segmentation scheme.

  5. Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

    Science.gov (United States)

    Casalena, Lee

    The development of viable high-temperature shape memory alloys (HTSMAs) demands a coordinated multimodal characterization effort linking nanoscale crystal structure to macroscale thermomechanical properties. In this work, several high performance NiTi-based shape memory alloys are comprehensively explored with the goal of gaining insight into the complex transformation and deformation mechanisms responsible for their remarkable behavior. Through precise control of alloying and aging parameters, microstructures are optimized to enhance properties such as high-temperature strength and stability. These are crucial requirements for the development of advanced applications such as actuators and adaptive components that operate in demanding automotive and aerospace environments. An array of NiTiHf and NiTiAu alloys are at the core of this effort, offering the possibility of increased capability over traditional pneumatic and hydraulic systems, while simultaneously reducing weight and energy requirements. NiTi-20Hf alloys exhibit a favorable balance of properties, including high strength, stability, and work output at temperatures in excess of 150 °C. The raw material cost of Hf is also much lower compared with Pt, Pd, and Au containing counterparts. Advanced scanning transmission electron microscopy (STEM) and synchrotron X-ray characterization techniques are used to explore unusual nanoscale effects of precipitate-matrix interactions, coherency strain, and dislocation activity in these alloys. Novel use of the 4D STEM strain mapping technique is used to quantify strain fields associated with precipitates, which are being coupled with new phase field modeling approaches to particle/defect interactions. Volume fractions of nanoscale precipitates are measured using STEM-based tomography techniques, atom probe tomography, and synchrotron diffraction of bulk samples. Plastic deformation of the HTSMA austenite phase is shown to occur through B2 type slip for the first time

  6. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    Science.gov (United States)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  7. Multimodality and Ambient Intelligence

    NARCIS (Netherlands)

    Nijholt, Antinus; Verhaegh, W.; Aarts, E.; Korst, J.

    2004-01-01

    In this chapter we discuss multimodal interface technology. We present eexamples of multimodal interfaces and show problems and opportunities. Fusion of modalities is discussed and some roadmap discussions on research in multimodality are summarized. This chapter also discusses future developments

  8. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel

    Science.gov (United States)

    Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng

    2018-03-01

    The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.

  9. Image-based dose planning of intracavitary brachytherapy: registration of serial-imaging studies using deformable anatomic templates

    International Nuclear Information System (INIS)

    Christensen, Gary E.; Carlson, Blake; Chao, K.S. Clifford; Yin Pen; Grigsby, Perry W.; Nguyen, Kim; Dempsey, James F; Lerma, Fritz A.; Bae, Kyongtae T.; Vannier, Michael W.; Williamson, Jeffrey F.

    2001-01-01

    cancer. These changes cannot be modeled by the conventional rigid landmark transformation method. In the current study, we found that the deformable anatomic template registration method, based on continuum-mechanics models of deformation, successfully described these large anatomic shape changes before and after ICT. These promising modeling results indicate that realistic registration of the cumulative dose distribution to the organs (or targets) of interest for radiation therapy of cervical cancers is achievable

  10. Implementation of Fiducial-Based Image Registration in the Cyberknife Robotic System

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Chen Hungcheng; Wagner, Henry

    2008-01-01

    Fiducial-based image registration methodology as implemented in the Cyberknife system is explored. The Cyberknife is a radiosurgery system that uses image guidance technology and computer-controlled robotics to determine target positions and adjust beam directions accordingly during the dose delivery. The image guidance system consists of 2 x-ray sources mounted on the ceiling and a detection system mounted on both sides of the treatment couch. Two orthogonal live radiographs are taken prior to and during patient treatment. Fiducial markers are identified on these radiographs and compared to a library of digital reconstructed radiographs (DRRs) using the fiducial extraction software. The fiducial extraction software initially sets an intensity threshold on the live radiographs to generate white areas on black images referred to as 'blobs.' Different threshold values are being used and blobs at the same location are assumed to originate from the same object. The number of blobs is then reduced by examining each blob against a predefined set of properties such as shape and exposure levels. The remaining blobs are further reduced by examining the location of the blobs in the inferior-superior patient axis. Those blobs that have the corresponding positions are assumed to originate from the same object. The remaining blobs are used to create fiducial configurations and are compared to the reference configuration from the computed tomography (CT) image dataset for treatment planning. The best-fit configuration is considered to have the appropriate fiducial markers. The patient position is determined based on these fiducial markers. During the treatment, the radiation beam is turned off when the Cyberknife changes nodes. This allows a time window to acquire live radiographs for the determination of the patient target position and to update the robotic manipulator to change beam orientations accordingly

  11. Registration for deceased organ and tissue donation among Ontario immigrants: a population-based cross-sectional study.

    Science.gov (United States)

    Li, Alvin Ho-Ting; Lam, Ngan N; Dhanani, Sonny; Weir, Matthew; Prakash, Versha; Kim, Joseph; Knoll, Greg; Garg, Amit X

    2016-01-01

    Canada has low rates of deceased organ and tissue donation. Immigrants to Canada may differ in their registered support for deceased organ donation based on their country of origin. We used linked administrative databases in Ontario (about 11 million residents aged ≥ 16 yr) to study the proportion of immigrants and long-term residents registered for deceased organ and tissue donation as of October 2013. We used modified Poisson regression to identify and quantify predictors of donor registration. Compared with long-term residents ( n = 9 244 570), immigrants ( n = 1 947 646) were much less likely to register for deceased organ and tissue donation (11.9% v. 26.5%). Immigrants from the United States, Australia and New Zealand had the highest registration rate (40.0%), whereas immigrants with the lowest registration rates were from Eastern Europe and Central Asia (9.4%), East Asia and Pacific (8.4%) and sub-Saharan Africa (7.9%). The largest numbers of unregistered immigrants were from India ( n = 202 548), China ( n = 186 678) and the Philippines ( n = 125 686). Characteristics among the immigrant population associated with a higher likelihood of registration included economic immigrant status, living in a rural area (population speak English and French, and more years residing in Canada. Immigrants in Ontario were less likely to register for deceased organ and tissue donation than long-term residents. There is a need to better understand reasons for lower registration rates among Canadian immigrants and to create culture-sensitive materials to build support for deceased organ and tissue donation.

  12. Drug-related webpages classification based on multi-modal local decision fusion

    Science.gov (United States)

    Hu, Ruiguang; Su, Xiaojing; Liu, Yanxin

    2018-03-01

    In this paper, multi-modal local decision fusion is used for drug-related webpages classification. First, meaningful text are extracted through HTML parsing, and effective images are chosen by the FOCARSS algorithm. Second, six SVM classifiers are trained for six kinds of drug-taking instruments, which are represented by PHOG. One SVM classifier is trained for the cannabis, which is represented by the mid-feature of BOW model. For each instance in a webpage, seven SVMs give seven labels for its image, and other seven labels are given by searching the names of drug-taking instruments and cannabis in its related text. Concatenating seven labels of image and seven labels of text, the representation of those instances in webpages are generated. Last, Multi-Instance Learning is used to classify those drugrelated webpages. Experimental results demonstrate that the classification accuracy of multi-instance learning with multi-modal local decision fusion is much higher than those of single-modal classification.

  13. A novel APD-based detector module for multi-modality PET/SPECT/CT scanners

    International Nuclear Information System (INIS)

    Saoudi, A.; Lecomte, R.

    1999-01-01

    The lack of anatomical information in SPECT and PET images is one of the major factors limiting the ability to localize and accurately quantify radionuclide uptake in small regions of interest. This problem could be resolved by using multi-modality scanners having the capability to acquire anatomical and functional images simultaneously. The feasibility of a novel detector suitable for measuring high-energy annihilation radiation in PET, medium-energy γ-rays in SPECT and low-energy X-rays in transmission CT is demonstrated and its performance is evaluated for potential use in multi-modality PET/SPECT/CT imaging. The proposed detector consists of a thin CsI(Tl) scintillator sitting on top of a deep GSO/LSO pair read out by an avalanche photodiode. The GSO/LOS pair provides depth-of-interaction information for 511 keV detection in PET, while the thin CsI(Tl) that is essentially transparent to annihilation radiation is used for detecting lower energy X- and γ-rays. The detector performance is compared to that of an LSO/YSO phoswich. Although the implementation of the proposed GSO/LSO/CsI(Tl) detector raises special problems that increase complexity, it generally outperforms the LSO/YSO phoswich for simultaneous PET, SPECT and CT imaging

  14. 2D/3D registration using a rotation-invariant cost function based on Zernike moments

    Science.gov (United States)

    Birkfellner, Wolfgang; Yang, Xinhui; Burgstaller, Wolfgang; Baumann, Bernard; Jacob, Augustinus L.; Niederer, Peter F.; Regazzoni, Pietro; Messmer, Peter

    2004-05-01

    We present a novel in-plane rotation invariant cost function for 2D/3D registration utilizing projection-invariant transformation properties and the decomposition of the X-ray nad the DRR under comparision into orhogonal Zernike moments. As a result, only five dof have to be optimized, and the number of iteration necessary for registration can be significantly reduced. Results in a phantom study show that an accuracy of approximately 0.7° and 2 mm can be achieved using this method. We conclude that reduction of coupled dof and usage of linear independent coefficients for cost function evaluation provide intersting new perspectives for the field of 2D/3D registration.

  15. Multiple Vehicle Cooperative Localization with Spatial Registration Based on a Probability Hypothesis Density Filter

    Directory of Open Access Journals (Sweden)

    Feihu Zhang

    2014-01-01

    Full Text Available This paper studies the problem of multiple vehicle cooperative localization with spatial registration in the formulation of the probability hypothesis density (PHD filter. Assuming vehicles are equipped with proprioceptive and exteroceptive sensors (with biases to cooperatively localize positions, a simultaneous solution for joint spatial registration and state estimation is proposed. For this, we rely on the sequential Monte Carlo implementation of the PHD filtering. Compared to other methods, the concept of multiple vehicle cooperative localization with spatial registration is first proposed under Random Finite Set Theory. In addition, the proposed solution also addresses the challenges for multiple vehicle cooperative localization, e.g., the communication bandwidth issue and data association uncertainty. The simulation result demonstrates its reliability and feasibility in large-scale environments.

  16. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation.

    Science.gov (United States)

    Malinsky, Milos; Peter, Roman; Hodneland, Erlend; Lundervold, Astri J; Lundervold, Arvid; Jan, Jiri

    2013-08-01

    In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

  17. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions

    Science.gov (United States)

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-01

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  18. Student Teachers' Modeling of Acceleration Using a Video-Based Laboratory in Physics Education: A Multimodal Case Study

    Directory of Open Access Journals (Sweden)

    Louis Trudel

    2016-06-01

    Full Text Available This exploratory study intends to model kinematics learning of a pair of student teachers when exposed to prescribed teaching strategies in a video-based laboratory. Two student teachers were chosen from the Francophone B.Ed. program of the Faculty of Education of a Canadian university. The study method consisted of having the participants interact with a video-based laboratory to complete two activities for learning properties of acceleration in rectilinear motion. Time limits were placed on the learning activities during which the researcher collected detailed multimodal information from the student teachers' answers to questions, the graphs they produced from experimental data, and the videos taken during the learning sessions. As a result, we describe the learning approach each one followed, the evidence of conceptual change and the difficulties they face in tackling various aspects of the accelerated motion. We then specify advantages and limits of our research and propose recommendations for further study.

  19. Image registration with uncertainty analysis

    Science.gov (United States)

    Simonson, Katherine M [Cedar Crest, NM

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  20. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration

    International Nuclear Information System (INIS)

    Sharp, G C; Kandasamy, N; Singh, H; Folkert, M

    2007-01-01

    This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup-up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration

  1. Fast Geodesic Active Fields for Image Registration Based on Splitting and Augmented Lagrangian Approaches.

    Science.gov (United States)

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2014-02-01

    In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.

  2. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization

    Science.gov (United States)

    Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.

    2017-12-01

    Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

  3. Improving treatment planning accuracy through multimodality imaging

    International Nuclear Information System (INIS)

    Sailer, Scott L.; Rosenman, Julian G.; Soltys, Mitchel; Cullip, Tim J.; Chen, Jun

    1996-01-01

    Purpose: In clinical practice, physicians are constantly comparing multiple images taken at various times during the patient's treatment course. One goal of such a comparison is to accurately define the gross tumor volume (GTV). The introduction of three-dimensional treatment planning has greatly enhanced the ability to define the GTV, but there are times when the GTV is not visible on the treatment-planning computed tomography (CT) scan. We have modified our treatment-planning software to allow for interactive display of multiple, registered images that enhance the physician's ability to accurately determine the GTV. Methods and Materials: Images are registered using interactive tools developed at the University of North Carolina at Chapel Hill (UNC). Automated methods are also available. Images registered with the treatment-planning CT scan are digitized from film. After a physician has approved the registration, the registered images are made available to the treatment-planning software. Structures and volumes of interest are contoured on all images. In the beam's eye view, wire loop representations of these structures can be visualized from all image types simultaneously. Each registered image can be seamlessly viewed during the treatment-planning process, and all contours from all image types can be seen on any registered image. A beam may, therefore, be designed based on any contour. Results: Nineteen patients have been planned and treated using multimodality imaging from November 1993 through August 1994. All registered images were digitized from film, and many were from outside institutions. Brain has been the most common site (12), but the techniques of registration and image display have also been used for the thorax (4), abdomen (2), and extremity (1). The registered image has been an magnetic resonance (MR) scan in 15 cases and a diagnostic CT scan in 5 cases. In one case, sequential MRs, one before treatment and another after 30 Gy, were used to plan

  4. Temperature-Corrected Oxygen Detection Based on Multi-Mode Diode Laser Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiutao Lou

    2013-01-01

    Full Text Available Temperature-corrected oxygen measurements were performed by using multi-mode diode laser correlation spectroscopy at temperatures ranging between 300 and 473 K. The experiments simulate in situ monitoring of oxygen in coal-combustion exhaust gases at the tail of the flue. A linear relationship with a correlation coefficient of −0.999 was found between the evaluated concentration and the gas temperature. Temperature effects were either auto-corrected by keeping the reference gas at the same conditions as the sample gas, or rectified by using a predetermined effective temperature-correction coefficient calibrated for a range of absorption wavelengths. Relative standard deviations of the temperature-corrected oxygen concentrations obtained by different schemes and at various temperatures were estimated, yielding a measurement precision of 0.6%.

  5. Compact multimode fiber beam-shaping system based on GPU accelerated digital holography.

    Science.gov (United States)

    Plöschner, Martin; Čižmár, Tomáš

    2015-01-15

    Real-time, on-demand, beam shaping at the end of the multimode fiber has recently been made possible by exploiting the computational power of rapidly evolving graphics processing unit (GPU) technology [Opt. Express 22, 2933 (2014)]. However, the current state-of-the-art system requires the presence of an acousto-optic deflector (AOD) to produce images at the end of the fiber without interference effects between neighboring output points. Here, we present a system free from the AOD complexity where we achieve the removal of the undesired interference effects computationally using GPU implemented Gerchberg-Saxton and Yang-Gu algorithms. The GPU implementation is two orders of magnitude faster than the CPU implementation which allows video-rate image control at the distal end of the fiber virtually free of interference effects.

  6. A multimodal 3D framework for fire characteristics estimation

    Science.gov (United States)

    Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.

    2018-02-01

    In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.

  7. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  8. Tractography-Based Score for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian Networks.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun K

    2018-05-01

    Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition EC is "the causal influence exerted by one neuronal group on another" which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure-function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.

  9. Neurofunctional maps of the 'maternal brain' and the effects of oxytocin: a multimodal voxel-based meta-analysis.

    Science.gov (United States)

    Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo

    2014-10-01

    Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  10. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  11. The Zernike expansion--an example of a merit function for 2D/3D registration based on orthogonal functions.

    Science.gov (United States)

    Dong, Shuo; Kettenbach, Joachim; Hinterleitner, Isabella; Bergmann, Helmar; Birkfellner, Wolfgang

    2008-01-01

    Current merit functions for 2D/3D registration usually rely on comparing pixels or small regions of images using some sort of statistical measure. Problems connected to this paradigm the sometimes problematic behaviour of the method if noise or artefacts (for instance a guide wire) are present on the projective image. We present a merit function for 2D/3D registration which utilizes the decomposition of the X-ray and the DRR under comparison into orthogonal Zernike moments; the quality of the match is assessed by an iterative comparison of expansion coefficients. Results in a imaging study on a physical phantom show that--compared to standard cross--correlation the Zernike moment based merit function shows better robustness if histogram content in images under comparison is different, and that time expenses are comparable if the merit function is constructed out of a few significant moments only.

  12. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    Science.gov (United States)

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  13. MRI to X-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters.

    Science.gov (United States)

    Mertzanidou, Thomy; Hipwell, John; Johnsen, Stian; Han, Lianghao; Eiben, Bjoern; Taylor, Zeike; Ourselin, Sebastien; Huisman, Henkjan; Mann, Ritse; Bick, Ulrich; Karssemeijer, Nico; Hawkes, David

    2014-05-01

    Determining corresponding regions between an MRI and an X-ray mammogram is a clinically useful task that is challenging for radiologists due to the large deformation that the breast undergoes between the two image acquisitions. In this work we propose an intensity-based image registration framework, where the biomechanical transformation model parameters and the rigid-body transformation parameters are optimised simultaneously. Patient-specific biomechanical modelling of the breast derived from diagnostic, prone MRI has been previously used for this task. However, the high computational time associated with breast compression simulation using commercial packages, did not allow the optimisation of both pose and FEM parameters in the same framework. We use a fast explicit Finite Element (FE) solver that runs on a graphics card, enabling the FEM-based transformation model to be fully integrated into the optimisation scheme. The transformation model has seven degrees of freedom, which include parameters for both the initial rigid-body pose of the breast prior to mammographic compression, and those of the biomechanical model. The framework was tested on ten clinical cases and the results were compared against an affine transformation model, previously proposed for the same task. The mean registration error was 11.6±3.8mm for the CC and 11±5.4mm for the MLO view registrations, indicating that this could be a useful clinical tool. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    Energy Technology Data Exchange (ETDEWEB)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R. [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Salmanpour, Aryan; Rahnamayan, Shahryar [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rodrigues, George [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.

  15. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    International Nuclear Information System (INIS)

    Khalvati, Farzad; Tizhoosh, Hamid R.; Salmanpour, Aryan; Rahnamayan, Shahryar; Rodrigues, George

    2013-01-01

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability

  16. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Dror Malka

    2016-06-01

    Full Text Available In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI coupler in a silicon (Si–gallium nitride (GaN slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM. Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm into four output ports with low insertion losses (0.07 dB.

  17. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    Science.gov (United States)

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  18. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    Science.gov (United States)

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  19. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  20. Multi-modal Intelligent Seizure Acquisition (MISA) system - A new approach towards seizure detection based on full body motion measures

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sándor; Wolf, Peter

    2009-01-01

    Many epilepsy patients cannot call for help during a seizure, because they are unconscious or because of the affection of their motor system or speech function. This can lead to injuries, medical complications and at worst death. An alarm system setting off at seizure onset could help to avoid...... hazards. Today no reliable alarm systems are available. A Multi-modal Intelligent Seizure Acquisition (MISA) system based on full body motion data seems as a good approach towards detection of epileptic seizures. The system is the first to provide a full body description for epilepsy applications. Three...... test subjects were used for this pilot project. Each subject simulated 15 seizures and in addition performed some predefined normal activities, during a 4-hour monitoring with electromyography (EMG), accelerometer, magnetometer and gyroscope (AMG), electrocardiography (ECG), electroencephalography (EEG...

  1. CO-REGISTRATION OF TERRESTRIAL AND UAV-BASED IMAGES – EXPERIMENTAL RESULTS

    Directory of Open Access Journals (Sweden)

    M. Gerke

    2016-03-01

    Full Text Available For many applications within urban environments the combined use of images taken from the ground and from unmanned aerial platforms seems interesting: while from the airborne perspective the upper parts of objects including roofs can be observed, the ground images can complement the data from lateral views to retrieve a complete visualisation or 3D reconstruction of interesting areas. The automatic co-registration of air- and ground-based images is still a challenge and cannot be considered solved. The main obstacle is originating from the fact that objects are photographed from quite different angles, and hence state-of-the-art tie point measurement approaches cannot cope with the induced perspective transformation. One first important step towards a solution is to use airborne images taken under slant directions. Those oblique views not only help to connect vertical images and horizontal views but also provide image information from 3D-structures not visible from the other two directions. According to our experience, however, still a good planning and many images taken under different viewing angles are needed to support an automatic matching across all images and complete bundle block adjustment. Nevertheless, the entire process is still quite sensible – the removal of a single image might lead to a completely different or wrong solution, or separation of image blocks. In this paper we analyse the impact different parameters and strategies have on the solution. Those are a the used tie point matcher, b the used software for bundle adjustment. Using the data provided in the context of the ISPRS benchmark on multi-platform photogrammetry, we systematically address the mentioned influences. Concerning the tie-point matching we test the standard SIFT point extractor and descriptor, but also the SURF and ASIFT-approaches, the ORB technique, as well as (AKAZE, which are based on a nonlinear scale space. In terms of pre-processing we analyse the

  2. SU-E-J-237: Image Feature Based DRR and Portal Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Chang, J [NY Weill Cornell Medical Ctr, NY (United States)

    2014-06-01

    Purpose: Two-dimensional (2D) matching of the kV X-ray and digitally reconstructed radiography (DRR) images is an important setup technique for image-guided radiotherapy (IGRT). In our clinics, mutual information based methods are used for this purpose on commercial linear accelerators, but with often needs for manual corrections. This work proved the feasibility that feature based image transform can be used to register kV and DRR images. Methods: The scale invariant feature transform (SIFT) method was implemented to detect the matching image details (or key points) between the kV and DRR images. These key points represent high image intensity gradients, and thus the scale invariant features. Due to the poor image contrast from our kV image, direct application of the SIFT method yielded many detection errors. To assist the finding of key points, the center coordinates of the kV and DRR images were read from the DICOM header, and the two groups of key points with similar relative positions to their corresponding centers were paired up. Using these points, a rigid transform (with scaling, horizontal and vertical shifts) was estimated. We also artificially introduced vertical and horizontal shifts to test the accuracy of our registration method on anterior-posterior (AP) and lateral pelvic images. Results: The results provided a satisfactory overlay of the transformed kV onto the DRR image. The introduced vs. detected shifts were fit into a linear regression. In the AP image experiments, linear regression analysis showed a slope of 1.15 and 0.98 with an R2 of 0.89 and 0.99 for the horizontal and vertical shifts, respectively. The results are 1.2 and 1.3 with R2 of 0.72 and 0.82 for the lateral image shifts. Conclusion: This work provided an alternative technique for kV to DRR alignment. Further improvements in the estimation accuracy and image contrast tolerance are underway.

  3. Hearing and Seeing Tone through Color: An Efficacy Study of Web-Based, Multimodal Chinese Tone Perception Training

    Science.gov (United States)

    Godfroid, Aline; Lin, Chin-Hsi; Ryu, Catherine

    2017-01-01

    Multimodal approaches have been shown to be effective for many learning tasks. In this study, we compared the effectiveness of five multimodal methods for second language (L2) Mandarin tone perception training: three single-cue methods (number, pitch contour, color) and two dual-cue methods (color and number, color and pitch contour). A total of…

  4. Pulmonary nodule registration in serial CT scans based on rib anatomy and nodule template matching

    International Nuclear Information System (INIS)

    Shi Jiazheng; Sahiner, Berkman; Chan, H.-P.; Hadjiiski, Lubomir; Zhou, C.; Cascade, Philip N.; Bogot, Naama; Kazerooni, Ella A.; Wu, Y.-T.; Wei, J.

    2007-01-01

    An automated method is being developed in order to identify corresponding nodules in serial thoracic CT scans for interval change analysis. The method uses the rib centerlines as the reference for initial nodule registration. A spatially adaptive rib segmentation method first locates the regions where the ribs join the spine, which define the starting locations for rib tracking. Each rib is tracked and locally segmented by expectation-maximization. The ribs are automatically labeled, and the centerlines are estimated using skeletonization. For a given nodule in the source scan, the closest three ribs are identified. A three-dimensional (3D) rigid affine transformation guided by simplex optimization aligns the centerlines of each of the three rib pairs in the source and target CT volumes. Automatically defined control points along the centerlines of the three ribs in the source scan and the registered ribs in the target scan are used to guide an initial registration using a second 3D rigid affine transformation. A search volume of interest (VOI) is then located in the target scan. Nodule candidate locations within the search VOI are identified as regions with high Hessian responses. The initial registration is refined by searching for the maximum cross-correlation between the nodule template from the source scan and the candidate locations. The method was evaluated on 48 CT scans from 20 patients. Experienced radiologists identified 101 pairs of corresponding nodules. Three metrics were used for performance evaluation. The first metric was the Euclidean distance between the nodule centers identified by the radiologist and the computer registration, the second metric was a volume overlap measure between the nodule VOIs identified by the radiologist and the computer registration, and the third metric was the hit rate, which measures the fraction of nodules whose centroid computed by the computer registration in the target scan falls within the VOI identified by the

  5. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    International Nuclear Information System (INIS)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El

    2008-01-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  6. Multimodal label-free microscopy

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    2014-09-01

    Full Text Available This paper reviews the different multimodal applications based on a large extent of label-free imaging modalities, ranging from linear to nonlinear optics, while also including spectroscopic measurements. We put specific emphasis on multimodal measurements going across the usual boundaries between imaging modalities, whereas most multimodal platforms combine techniques based on similar light interactions or similar hardware implementations. In this review, we limit the scope to focus on applications for biology such as live cells or tissues, since by their nature of being alive or fragile, we are often not free to take liberties with the image acquisition times and are forced to gather the maximum amount of information possible at one time. For such samples, imaging by a given label-free method usually presents a challenge in obtaining sufficient optical signal or is limited in terms of the types of observable targets. Multimodal imaging is then particularly attractive for these samples in order to maximize the amount of measured information. While multimodal imaging is always useful in the sense of acquiring additional information from additional modes, at times it is possible to attain information that could not be discovered using any single mode alone, which is the essence of the progress that is possible using a multimodal approach.

  7. Gestures and multimodal input

    OpenAIRE

    Keates, Simeon; Robinson, Peter

    1999-01-01

    For users with motion impairments, the standard keyboard and mouse arrangement for computer access often presents problems. Other approaches have to be adopted to overcome this. In this paper, we will describe the development of a prototype multimodal input system based on two gestural input channels. Results from extensive user trials of this system are presented. These trials showed that the physical and cognitive loads on the user can quickly become excessive and detrimental to the interac...

  8. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    Science.gov (United States)

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  9. Anatomical based registration of multi-sector x-ray images for panorama reconstruction

    Science.gov (United States)

    Ben-Zikri, Yehuda Kfir; Mendez, Stacy; Linte, Cristian A.

    2017-03-01

    Accurate measurement of long limb alignment is an essential stage of the pre-operative planning of realignment surgery. This alignment is quantified according to the hip-knee-ankle (HKA) angle of the mechanical axis of the lower extremity and is measured based on a full-length weight-bearing X-ray or standard computed radiography (CR) image of the patient in standing position. Due to the limited field-of-view of the traditionally employed digital X-ray imaging systems, several sector images are required to capture the posture of a standing individual. These sector images need to then be "stitched" together to reconstruct the standing posture. To eliminate user-induced variability and time constraints associated with the traditional manual "stitching" protocol, we have created an image processing application to automate the stitching process, when there are no reliable external markers available in the images, by only relying on the most reliable anatomical content of the image. The application starts with a rough segmentation of the tibia and the sector images are then registered by evaluating the DICE coefficient between the edges of these corresponding bones along the medial edge. The identified translations are then used to register the original sector images into the standing panorama image. To test the robustness of our method, we randomly selected 40 datasets from a variant database consisting of nearly 100 patient X-ray images acquired for patient screening as part of a multi-site clinical trial. The resulting horizontal and vertical translation values from the automated registration were compared to the homologous translations recorded during the manual panorama generation conducted by a knowledgeable X-ray imaging technician. The mean and standard deviation of the differences for the horizontal translation parameters was -0:27+/-1:14 mm and 0:31+/-1:86 mm for the left and right tibia, respectively. The vertical translation differences for the left and

  10. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    Science.gov (United States)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  11. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    Science.gov (United States)

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  12. Study on Low Illumination Simultaneous Polarization Image Registration Based on Improved SURF Algorithm

    Science.gov (United States)

    Zhang, Wanjun; Yang, Xu

    2017-12-01

    Registration of simultaneous polarization images is the premise of subsequent image fusion operations. However, in the process of shooting all-weather, the polarized camera exposure time need to be kept unchanged, sometimes polarization images under low illumination conditions due to too dark result in SURF algorithm can not extract feature points, thus unable to complete the registration, therefore this paper proposes an improved SURF algorithm. Firstly, the luminance operator is used to improve overall brightness of low illumination image, and then create integral image, using Hession matrix to extract the points of interest to get the main direction of characteristic points, calculate Haar wavelet response in X and Y directions to get the SURF descriptor information, then use the RANSAC function to make precise matching, the function can eliminate wrong matching points and improve accuracy rate. And finally resume the brightness of the polarized image after registration, the effect of the polarized image is not affected. Results show that the improved SURF algorithm can be applied well under low illumination conditions.

  13. Clinical significance of creative 3D-image fusion across multimodalities [PET + CT + MR] based on characteristic coregistration

    International Nuclear Information System (INIS)

    Peng, Matthew Jian-qiao; Ju Xiangyang; Khambay, Balvinder S.; Ayoub, Ashraf F.; Chen, Chin-Tu; Bai Bo

    2012-01-01

    Objective: To investigate a registration approach for 2-dimension (2D) based on characteristic localization to achieve 3-dimension (3D) fusion from images of PET, CT and MR one by one. Method: A cubic oriented scheme of“9-point and 3-plane” for co-registration design was verified to be geometrically practical. After acquisiting DICOM data of PET/CT/MR (directed by radiotracer 18 F-FDG etc.), through 3D reconstruction and virtual dissection, human internal feature points were sorted to combine with preselected external feature points for matching process. By following the procedure of feature extraction and image mapping, “picking points to form planes” and “picking planes for segmentation” were executed. Eventually, image fusion was implemented at real-time workstation mimics based on auto-fuse techniques so called “information exchange” and “signal overlay”. Result: The 2D and 3D images fused across modalities of [CT + MR], [PET + MR], [PET + CT] and [PET + CT + MR] were tested on data of patients suffered from tumors. Complementary 2D/3D images simultaneously presenting metabolic activities and anatomic structures were created with detectable-rate of 70%, 56%, 54% (or 98%) and 44% with no significant difference for each in statistics. Conclusion: Currently, based on the condition that there is no complete hybrid detector integrated of triple-module [PET + CT + MR] internationally, this sort of multiple modality fusion is doubtlessly an essential complement for the existing function of single modality imaging.

  14. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  15. 3D ultrasound-CT registration of the liver using combined landmark-intensity information

    International Nuclear Information System (INIS)

    Lange, Thomas; Schlag, Peter M.; Papenberg, Nils; Heldmann, Stefan; Modersitzki, Jan; Fischer, Bernd; Lamecker, Hans

    2009-01-01

    An important issue in computer-assisted surgery of the liver is a fast and reliable transfer of preoperative resection plans to the intraoperative situation. One problem is to match the planning data, derived from preoperative CT or MR images, with 3D ultrasound images of the liver, acquired during surgery. As the liver deforms significantly in the intraoperative situation non-rigid registration is necessary. This is a particularly challenging task because pre- and intraoperative image data stem from different modalities and ultrasound images are generally very noisy. One way to overcome these problems is to incorporate prior knowledge into the registration process. We propose a method of combining anatomical landmark information with a fast non-parametric intensity registration approach. Mathematically, this leads to a constrained optimization problem. As distance measure we use the normalized gradient field which allows for multimodal image registration. A qualitative and quantitative validation on clinical liver data sets of three different patients has been performed. We used the distance of dense corresponding points on vessel center lines for quantitative validation. The combined landmark and intensity approach improves the mean and percentage of point distances above 3 mm compared to rigid and thin-plate spline registration based only on landmarks. The proposed algorithm offers the possibility to incorporate additional a priori knowledge - in terms of few landmarks - provided by a human expert into a non-rigid registration process. (orig.)

  16. Quality assurance of CT-PET alignment and image registration for radiation treatment planning

    International Nuclear Information System (INIS)

    Gong, S.J.; O'Keefe, G.J.; Gunawardana, D.H.

    2005-01-01

    A multi-layer point source phantom was first used to calibrate and verify the CT-PET system alignment. A partial whole-body Aldcrson RANDO Man Phantom (head through mid-femur) was externally and internally marked with small metal cannulas filled with 18F-FDG and then scanned with both modalities. Six series of phantom studies with different acquisition settings and scan positions were performed to reveal possible system bias and evaluate the accuracy and reliabilities of Philips Syntegra program in image alignment, coregistration and fusion. The registration error was assessed quantitatively by measuring the root-mean-square distance between the iso-centers of corresponding fiducial marker geometries in reference CT volumes and transformed CT or PET volumes. Results: Experimental data confirms the accuracy of manual, parameter, point and image-based registration using Syntegra is better than 2 mm. Comparisons between blind and cross definition of iso-centers of fiducial marks indicate that the fused CT and PET is superior to visual correlation of CT and PET side-by-side. Conclusion: In this work we demonstrate the QA procedures of Gemini image alignment and registration. Syntegra produces intrinsic and robust multi-modality image registration and fusion with careful user interaction. The registration accuracy is generally better than the spatial resolution of the PET scanner used and this appears to be sufficient for most RTP CT-PET registration procedures

  17. A Fuzzy-Based Fusion Method of Multimodal Sensor-Based Measurements for the Quantitative Evaluation of Eye Fatigue on 3D Displays

    Directory of Open Access Journals (Sweden)

    Jae Won Bang

    2015-05-01

    Full Text Available With the rapid increase of 3-dimensional (3D content, considerable research related to the 3D human factor has been undertaken for quantitatively evaluating visual discomfort, including eye fatigue and dizziness, caused by viewing 3D content. Various modalities such as electroencephalograms (EEGs, biomedical signals, and eye responses have been investigated. However, the majority of the previous research has analyzed each modality separately to measure user eye fatigue. This cannot guarantee the credibility of the resulting eye fatigue evaluations. Therefore, we propose a new method for quantitatively evaluating eye fatigue related to 3D content by combining multimodal measurements. This research is novel for the following four reasons: first, for the evaluation of eye fatigue with high credibility on 3D displays, a fuzzy-based fusion method (FBFM is proposed based on the multimodalities of EEG signals, eye blinking rate (BR, facial temperature (FT, and subjective evaluation (SE; second, to measure a more accurate variation of eye fatigue (before and after watching a 3D display, we obtain the quality scores of EEG signals, eye BR, FT and SE; third, for combining the values of the four modalities we obtain the optimal weights of the EEG signals BR, FT and SE using a fuzzy system based on quality scores; fourth, the quantitative level of the variation of eye fatigue is finally obtained using the weighted sum of the values measured by the four modalities. Experimental results confirm that the effectiveness of the proposed FBFM is greater than other conventional multimodal measurements. Moreover, the credibility of the variations of the eye fatigue using the FBFM before and after watching the 3D display is proven using a t-test and descriptive statistical analysis using effect size.

  18. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, R. [Children’s National Health System (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  19. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    International Nuclear Information System (INIS)

    Shekhar, R.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  20. Comparison of DCT, SVD and BFOA based multimodal biometric watermarking system

    Directory of Open Access Journals (Sweden)

    S. Anu H. Nair

    2015-12-01

    Full Text Available Digital image watermarking is a major domain for hiding the biometric information, in which the watermark data are made to be concealed inside a host image imposing imperceptible change in the picture. Due to the advance in digital image watermarking, the majority of research aims to make a reliable improvement in robustness to prevent the attack. The reversible invisible watermarking scheme is used for fingerprint and iris multimodal biometric system. A novel approach is used for fusing different biometric modalities. Individual unique modalities of fingerprint and iris biometric are extracted and fused using different fusion techniques. The performance of different fusion techniques is evaluated and the Discrete Wavelet Transform fusion method is identified as the best. Then the best fused biometric template is watermarked into a cover image. The various watermarking techniques such as the Discrete Cosine Transform (DCT, Singular Value Decomposition (SVD and Bacterial Foraging Optimization Algorithm (BFOA are implemented to the fused biometric feature image. Performance of watermarking systems is compared using different metrics. It is found that the watermarked images are found robust over different attacks and they are able to reverse the biometric template for Bacterial Foraging Optimization Algorithm (BFOA watermarking technique.

  1. Simultaneous strain and temperature sensor based on polarization maintaining fiber and multimode fiber

    Science.gov (United States)

    Xing, Rui; Dong, Changbin; Wang, Zixiao; Wu, Yue; Yang, Yuguang; Jian, Shuisheng

    2018-06-01

    A novel, simultaneous strain and temperature sensor utilizing polarization maintaining fiber (PMF) and multimode fiber (MMF) is proposed and experimentally demonstrated in this paper. The sensing head of this sensor can be obtained by splicing PMF and MMF in the structure of PMF-MMF-PMF. The extinction ratio of the transmission spectrum can be over 30 dB. The strain sensitivities of sensor by two spectrum dips can be 1.01 pm/με and 1.27 pm/με in the range from 0 to 2000 με. Meanwhile, the temperature sensitivities of 49 pm/°C and 41 pm/°C can be achieved by two spectrum dips in the range from 30 °C to 70 °C. The sensitivity difference between the two spectrum dips can be used to realize dual parameters fiber sensing. This sensor exhibits the advantages of simple fabrication, compact structure and multi-purpose measuring. It may have the great potential in fields of robot arms and artificial limbs.

  2. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  3. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis.

    Directory of Open Access Journals (Sweden)

    Vimal Chandran

    Full Text Available Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medical imaging techniques such as quantitative computed tomography (QCT. Hip fracture sites involve trabecular bone, whose strength is determined by volume fraction and orientation, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT images of proximal femur. Accordingly, we propose a novel registration-based estimation of bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by a global and local decomposition of the gradient of a non-rigid image registration transformation. Furthermore, no comprehensive analysis on the critical components of this methodology has been previously conducted. Hence, the aim of this work was to identify the best registration-based strategy to assign bone fabric to the QCT image of a patient's proximal femur. The normalized correlation coefficient and curvature-based regularization were used for image-based registration and the Frobenius norm of the stretch tensor of the local gradient was selected to quantify the distance among the proximal femora in the population. Based on this distance, closest, farthest and mean femora with a distinction of sex were chosen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-only, rotation and stretch tensor. Third, we investigated the use of a population average fabric atlas. A leave one out (LOO evaluation study was performed with a dual QCT and HR-pQCT database of 36 pairs of human femora. The quality of the fabric prediction was assessed with three metrics, the tensor norm (TN error, the degree of anisotropy (DA error and the angular deviation of the principal tensor direction (PTD. The closest femur atlas (CTP with a full rotation (CR for fabric mapping delivered the best results with a TN error of 7

  4. Maternal mortality in rural south Ethiopia: outcomes of community-based birth registration by health extension workers.

    Directory of Open Access Journals (Sweden)

    Yaliso Yaya

    Full Text Available Rural communities in low-income countries lack vital registrations to track birth outcomes. We aimed to examine the feasibility of community-based birth registration and measure maternal mortality ratio (MMR in rural south Ethiopia.In 2010, health extension workers (HEWs registered births and maternal deaths among 421,639 people in three districts (Derashe, Bonke, and Arba Minch Zuria. One nurse-supervisor per district provided administrative and technical support to HEWs. The primary outcomes were the feasibility of registration of a high proportion of births and measuring MMR. The secondary outcome was the proportion of skilled birth attendance. We validated the completeness of the registry and the MMR by conducting a house-to-house survey in 15 randomly selected villages in Bonke.We registered 10,987 births (81·4% of expected 13,492 births with annual crude birth rate of 32 per 1,000 population. The validation study showed that, of 2,401 births occurred in the surveyed households within eight months of the initiation of the registry, 71·6% (1,718 were registered with similar MMRs (474 vs. 439 between the registered and unregistered births. Overall, we recorded 53 maternal deaths; MMR was 489 per 100,000 live births and 83% (44 of 53 maternal deaths occurred at home. Ninety percent (9,863 births were at home, 4% (430 at health posts, 2·5% (282 at health centres, and 3·5% (412 in hospitals. MMR increased if: the male partners were illiterate (609 vs. 346; p= 0·051 and the villages had no road access (946 vs. 410; p= 0·039. The validation helped to increase the registration coverage by 10% through feedback discussions.It is possible to obtain a high-coverage birth registration and measure MMR in rural communities where a functional system of community health workers exists. The MMR was high in rural south Ethiopia and most births and maternal deaths occurred at home.

  5. Maternal Mortality in Rural South Ethiopia: Outcomes of Community-Based Birth Registration by Health Extension Workers

    Science.gov (United States)

    Yaya, Yaliso; Data, Tadesse; Lindtjørn, Bernt

    2015-01-01

    Introduction Rural communities in low-income countries lack vital registrations to track birth outcomes. We aimed to examine the feasibility of community-based birth registration and measure maternal mortality ratio (MMR) in rural south Ethiopia. Methods In 2010, health extension workers (HEWs) registered births and maternal deaths among 421,639 people in three districts (Derashe, Bonke, and Arba Minch Zuria). One nurse-supervisor per district provided administrative and technical support to HEWs. The primary outcomes were the feasibility of registration of a high proportion of births and measuring MMR. The secondary outcome was the proportion of skilled birth attendance. We validated the completeness of the registry and the MMR by conducting a house-to-house survey in 15 randomly selected villages in Bonke. Results We registered 10,987 births (81·4% of expected 13,492 births) with annual crude birth rate of 32 per 1,000 population. The validation study showed that, of 2,401 births occurred in the surveyed households within eight months of the initiation of the registry, 71·6% (1,718) were registered with similar MMRs (474 vs. 439) between the registered and unregistered births. Overall, we recorded 53 maternal deaths; MMR was 489 per 100,000 live births and 83% (44 of 53 maternal deaths) occurred at home. Ninety percent (9,863 births) were at home, 4% (430) at health posts, 2·5% (282) at health centres, and 3·5% (412) in hospitals. MMR increased if: the male partners were illiterate (609 vs. 346; p= 0·051) and the villages had no road access (946 vs. 410; p= 0·039). The validation helped to increase the registration coverage by 10% through feedback discussions. Conclusion It is possible to obtain a high-coverage birth registration and measure MMR in rural communities where a functional system of community health workers exists. The MMR was high in rural south Ethiopia and most births and maternal deaths occurred at home. PMID:25799229

  6. The pivotal role of multimodality reporter sensors in drug discovery: from cell based assays to real time molecular imaging.

    Science.gov (United States)

    Ray, Pritha

    2011-04-01

    Development and marketing of new drugs require stringent validation that are expensive and time consuming. Non-invasive multimodality molecular imaging using reporter genes holds great potential to expedite these processes at reduced cost. New generations of smarter molecular imaging strategies such as Split reporter, Bioluminescence resonance energy transfer, Multimodality fusion reporter technologies will further assist to streamline and shorten the drug discovery and developmental process. This review illustrates the importance and potential of molecular imaging using multimodality reporter genes in drug development at preclinical phases.

  7. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    Science.gov (United States)

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and

  8. Multi-mode optical fibers for connecting space-based spectrometers

    Science.gov (United States)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    significantly smaller, less massive and less robust. Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end. For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it's implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.

  9. Multimodality multiparametric imaging of early tumor response to a novel antiangiogenic therapy based on anticalins.

    Directory of Open Access Journals (Sweden)

    Reinhard Meier

    Full Text Available Anticalins are a novel class of targeted protein therapeutics. The PEGylated Anticalin Angiocal (PRS-050-PEG40 is directed against VEGF-A. The purpose of our study was to compare the performance of diffusion weighted imaging (DWI, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI and positron emission tomography with the tracer [18F]fluorodeoxyglucose (FDG-PET for monitoring early response to antiangiogenic therapy with PRS-050-PEG40. 31 mice were implanted subcutaneously with A673 rhabdomyosarcoma xenografts and underwent DWI, DCE-MRI and FDG-PET before and 2 days after i.p. injection of PRS-050-PEG40 (n = 13, Avastin (n = 6 or PBS (n = 12. Tumor size was measured manually with a caliper. Imaging results were correlated with histopathology. In the results, the tumor size was not significantly different in the treatment groups when compared to the control group on day 2 after therapy onset (P = 0.09. In contrast the imaging modalities DWI, DCE-MRI and FDG-PET showed significant differences between the therapeutic compared to the control group as early as 2 days after therapy onset (P<0.001. There was a strong correlation of the early changes in DWI, DCE-MRI and FDG-PET at day 2 after therapy onset and the change in tumor size at the end of therapy (r = -0.58, 0.71 and 0.67 respectively. The imaging results were confirmed by histopathology, showing early necrosis and necroptosis in the tumors. Thus multimodality multiparametric imaging was able to predict therapeutic success of PRS-050-PEG40 and Avastin as early as 2 days after onset of therapy and thus promising for monitoring early response of antiangiogenic therapy.

  10. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, J. [Johns Hopkins University (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  11. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    International Nuclear Information System (INIS)

    Siewerdsen, J.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  12. Registration of airborne LiDAR data and aerial images based on straight lines and POS data

    Science.gov (United States)

    Du, Quanye; Xu, Biao; Cao, Hui

    2009-10-01

    This paper presents a registration method which based on straight lines primitive. Firstly, 2D straight lines are extracted from aerial images using Canny operator and straight line fitting. In the similar way, 3D straight lines are extracted from LiDAR range images which derive from laser scanning point cloud. Secondly, 3D straight lines are projected to aerial images using collinearity equations and Position and Orientation System (POS) data. Then the corresponding lines are determined by straight line error. At last, each image's new exterior orientation elements are calculated by generalized point (straight line) photogrammetry.

  13. SU-E-J-132: Automated Segmentation with Post-Registration Atlas Selection Based On Mutual Information

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The delineation of targets and organs-at-risk is a critical step during image-guided radiation therapy, for which manual contouring is the gold standard. However, it is often time-consuming and may suffer from intra- and inter-rater variability. The purpose of this work is to investigate the automated segmentation. Methods: The automatic segmentation here is based on mutual information (MI), with the atlas from Public Domain Database for Computational Anatomy (PDDCA) with manually drawn contours.Using dice coefficient (DC) as the quantitative measure of segmentation accuracy, we perform leave-one-out cross-validations for all PDDCA images sequentially, during which other images are registered to each chosen image and DC is computed between registered contour and ground truth. Meanwhile, six strategies, including MI, are selected to measure the image similarity, with MI to be the best. Then given a target image to be segmented and an atlas, automatic segmentation consists of: (a) the affine registration step for image positioning; (b) the active demons registration method to register the atlas to the target image; (c) the computation of MI values between the deformed atlas and the target image; (d) the weighted image fusion of three deformed atlas images with highest MI values to form the segmented contour. Results: MI was found to be the best among six studied strategies in the sense that it had the highest positive correlation between similarity measure (e.g., MI values) and DC. For automated segmentation, the weighted image fusion of three deformed atlas images with highest MI values provided the highest DC among four proposed strategies. Conclusion: MI has the highest correlation with DC, and therefore is an appropriate choice for post-registration atlas selection in atlas-based segmentation. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)

  14. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  15. SU-E-J-132: Automated Segmentation with Post-Registration Atlas Selection Based On Mutual Information

    International Nuclear Information System (INIS)

    Ren, X; Gao, H; Sharp, G

    2015-01-01

    Purpose: The delineation of targets and organs-at-risk is a critical step during image-guided radiation therapy, for which manual contouring is the gold standard. However, it is often time-consuming and may suffer from intra- and inter-rater variability. The purpose of this work is to investigate the automated segmentation. Methods: The automatic segmentation here is based on mutual information (MI), with the atlas from Public Domain Database for Computational Anatomy (PDDCA) with manually drawn contours.Using dice coefficient (DC) as the quantitative measure of segmentation accuracy, we perform leave-one-out cross-validations for all PDDCA images sequentially, during which other images are registered to each chosen image and DC is computed between registered contour and ground truth. Meanwhile, six strategies, including MI, are selected to measure the image similarity, with MI to be the best. Then given a target image to be segmented and an atlas, automatic segmentation consists of: (a) the affine registration step for image positioning; (b) the active demons registration method to register the atlas to the target image; (c) the computation of MI values between the deformed atlas and the target image; (d) the weighted image fusion of three deformed atlas images with highest MI values to form the segmented contour. Results: MI was found to be the best among six studied strategies in the sense that it had the highest positive correlation between similarity measure (e.g., MI values) and DC. For automated segmentation, the weighted image fusion of three deformed atlas images with highest MI values provided the highest DC among four proposed strategies. Conclusion: MI has the highest correlation with DC, and therefore is an appropriate choice for post-registration atlas selection in atlas-based segmentation. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)

  16. Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of Alzheimer's disease.

    Science.gov (United States)

    Marchewka, Artur; Kherif, Ferath; Krueger, Gunnar; Grabowska, Anna; Frackowiak, Richard; Draganski, Bogdan

    2014-05-01

    Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS. Copyright © 2013 Wiley Periodicals, Inc.

  17. Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow.

    Science.gov (United States)

    Lui, Lok Ming; Wong, Tsz Wai; Thompson, Paul; Chan, Tony; Gu, Xianfeng; Yau, Shing-Tung

    2010-01-01

    We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.

  18. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    Energy Technology Data Exchange (ETDEWEB)

    Popple, R; Bredel, M; Brezovich, I; Dobelbower, M; Fisher, W; Fiveash, J; Guthrie, B; Riley, K; Wu, X [The University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-06-15

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods from a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.

  19. Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion

    Science.gov (United States)

    Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel

    2008-03-01

    Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.

  20. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  1. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Mao, Hui [Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States)

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  2. An Entropy-Based Upper Bound Methodology for Robust Predictive Multi-Mode RCPSP Schedules

    Directory of Open Access Journals (Sweden)

    Angela Hsiang-Ling Chen

    2014-09-01

    Full Text Available Projects are an important part of our activities and regardless of their magnitude, scheduling is at the very core of every project. In an ideal world makespan minimization, which is the most commonly sought objective, would give us an advantage. However, every time we execute a project we have to deal with uncertainty; part of it coming from known sources and part remaining unknown until it affects us. For this reason, it is much more practical to focus on making our schedules robust, capable of handling uncertainty, and even to determine a range in which the project could be completed. In this paper we focus on an approach to determine such a range for the Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP, a widely researched, NP-complete problem, but without adding any subjective considerations to its estimation. We do this by using a concept well known in the domain of thermodynamics, entropy and a three-stage approach. First we use Artificial Bee Colony (ABC—an effective and powerful meta-heuristic—to determine a schedule with minimized makespan which serves as a lower bound. The second stage defines buffer times and creates an upper bound makespan using an entropy function, with the advantage over other methods that it only considers elements which are inherent to the schedule itself and does not introduce any subjectivity to the buffer time generation. In the last stage, we use the ABC algorithm with an objective function that seeks to maximize robustness while staying within the makespan boundaries defined previously and in some cases even below the lower boundary. We evaluate our approach with two different benchmarks sets: when using the PSPLIB for the MRCPSP benchmark set, the computational results indicate that it is possible to generate robust schedules which generally result in an increase of less than 10% of the best known solutions while increasing the robustness in at least 20% for practically every

  3. Multimodal pain management after arthroscopic surgery

    DEFF Research Database (Denmark)

    Rasmussen, Sten

    Multimodal Pain Management after Arthroscopic Surgery By Sten Rasmussen, M.D. The thesis is based on four randomized controlled trials. The main hypothesis was that multimodal pain treatment provides faster recovery after arthroscopic surgery. NSAID was tested against placebo after knee arthroscopy...

  4. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.

    Science.gov (United States)

    Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas

    2018-04-15

    Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    International Nuclear Information System (INIS)

    Ingram, S; Rao, A; Wendt, R; Castillo, R; Court, L; Yang, J; Beadle, B

    2014-01-01

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the camera by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination

  6. A semi-automated 2D/3D marker-based registration algorithm modelling prostate shrinkage during radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Budiharto, Tom; Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Verstraete, Jan; Heuvel, Frank Van den; Depuydt, Tom; Oyen, Raymond; Haustermans, Karin

    2009-01-01

    Background and purpose: Currently, most available patient alignment tools based on implanted markers use manual marker matching and rigid registration transformations to measure the needed translational shifts. To quantify the particular effect of prostate gland shrinkage, implanted gold markers were tracked during a course of radiotherapy including an isotropic scaling factor to model prostate shrinkage. Materials and methods: Eight patients with prostate cancer had gold markers implanted transrectally and seven were treated with (neo) adjuvant androgen deprivation therapy. After patient alignment to skin tattoos, orthogonal electronic portal images (EPIs) were taken. A semi-automated 2D/3D marker-based registration was performed to calculate the necessary couch shifts. The registration consists of a rigid transformation combined with an isotropic scaling to model prostate shrinkage. Results: The inclusion of an isotropic shrinkage model in the registration algorithm cancelled the corresponding increase in registration error. The mean scaling factor was 0.89 ± 0.09. For all but two patients, a decrease of the isotropic scaling factor during treatment was observed. However, there was almost no difference in the translation offset between the manual matching of the EPIs to the digitally reconstructed radiographs and the semi-automated 2D/3D registration. A decrease in the intermarker distance was found correlating with prostate shrinkage rather than with random marker migration. Conclusions: Inclusion of shrinkage in the registration process reduces registration errors during a course of radiotherapy. Nevertheless, this did not lead to a clinically significant change in the proposed table translations when compared to translations obtained with manual marker matching without a scaling correction

  7. Estimation of lung motion fields in 4D CT data by variational non-linear intensity-based registration: A comparison and evaluation study

    International Nuclear Information System (INIS)

    Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz; Ehrhardt, Jan

    2014-01-01

    Accurate and robust estimation of motion fields in respiration-correlated CT (4D CT) images, usually performed by non-linear registration of the temporal CT frames, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported diagnostics and treatment planning. In this work, we present a comprehensive comparison and evaluation study of non-linear registration variants applied to the task of lung motion estimation in thoracic 4D CT data. In contrast to existing multi-institutional comparison studies (e.g. MIDRAS and EMPIRE10), we focus on the specific but common class of variational intensity-based non-parametric registration and analyze the impact of the different main building blocks of the underlying optimization problem: the distance measure to be minimized, the regularization approach and the transformation space considered during optimization. In total, 90 different combinations of building block instances are compared. Evaluated on proprietary and publicly accessible 4D CT images, landmark-based registration errors (TRE) between 1.14 and 1.20 mm for the most accurate registration variants demonstrate competitive performance of the applied general registration framework compared to other state-of-the-art approaches for lung CT registration. Although some specific trends can be observed, effects of interchanging individual instances of the building blocks on the TRE are in general rather small (no single outstanding registration variant existing); the same level of accuracy is, however, associated with significantly different degrees of motion field smoothness and computational demands. Consequently, the building block combination of choice will depend on application-specific requirements on motion field characteristics. (paper)

  8. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  9. Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction.

    Science.gov (United States)

    Ravì, Daniele; Szczotka, Agnieszka Barbara; Shakir, Dzhoshkun Ismail; Pereira, Stephen P; Vercauteren, Tom

    2018-06-01

    Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the fusion, is computationally demanding and prone to artefacts. In this work, we propose a novel synthetic data generation approach to train exemplar-based Deep Neural Networks (DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images (generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results were validated through an extensive image quality assessment that takes into account different quality scores, including a Mean Opinion Score (MOS). Results indicate that the proposed solution produces an effective improvement in the quality of the obtained reconstructed image. The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE images.

  10. Spectroelectrochemical Sensing Based on Multimode Selectivity simultaneously Achievable in a Single Device. 11. Design and Evaluation of a Small Portable Sensor for the Determination of Ferrocyanide in Hanford Waste Samples

    International Nuclear Information System (INIS)

    Stegemiller, Michael L.; Heineman, William R.; Seliskar, Carl J.; Ridgway, Thomas H.; Bryan, Samuel A.; Hubler, Timothy L.; Sell, Richard L.

    2003-01-01

    Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 11. Design and evaluation of a small portable sensor for the determination of ferrocyanide in Hanford waste samples

  11. Musculoskeletal complaints among nurses related to patient handling tasks and psychosocial factors - Based on logbook registrations

    DEFF Research Database (Denmark)

    Warming, S.; Precht, D.H.; Suadicani, P.

    2009-01-01

    The aims were to evaluate the inter-method reliability of a registration sheet for patient handling tasks, to study the day-to-day variation of musculoskeletal complaints (MSC) and to examine whether patient handling tasks and psychosocial factors were associated with MSC. Nurses (n = 148...... transfer and care tasks. The numbers of nurses reporting MSC and the level of pain increased significantly during the three working days (15%-30% and 17%-37%, respectively) and decreased on the day off. Stress and transfer task were associated with LPB and transfer tasks were associated with KP. Our...... results confirm a relationship between work factors and MSC and indicate that logs could be one way to obtain a better understanding of the complex interaction of various nursing working conditions in relation to MSC. (C) 2008 Elsevier Ltd. All rights reserved Udgivelsesdato: 2009/7...

  12. Note: A simple image processing based fiducial auto-alignment method for sample registration.

    Science.gov (United States)

    Robertson, Wesley D; Porto, Lucas R; Ip, Candice J X; Nantel, Megan K T; Tellkamp, Friedjof; Lu, Yinfei; Miller, R J Dwayne

    2015-08-01

    A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.

  13. Osteo-cise: Strong Bones for Life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Directory of Open Access Journals (Sweden)

    Gianoudis Jenny

    2012-05-01

    maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand, falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture. Trial registration Australian New Zealand Clinical Trials Registry reference ACTRN12609000100291

  14. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  15. One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI

    International Nuclear Information System (INIS)

    Arabi, Hossein; Zaidi, Habib

    2016-01-01

    The outcome of a detailed assessment of various strategies for atlas-based whole-body bone segmentation from magnetic resonance imaging (MRI) was exploited to select the optimal parameters and setting, with the aim of proposing a novel one-registration multi-atlas (ORMA) pseudo-CT generation approach. The proposed approach consists of only one online registration between the target and reference images, regardless of the number of atlas images (N), while for the remaining atlas images, the pre-computed transformation matrices to the reference image are used to align them to the target image. The performance characteristics of the proposed method were evaluated and compared with conventional atlas-based attenuation map generation strategies (direct registration of the entire atlas images followed by voxel-wise weighting (VWW) and arithmetic averaging atlas fusion). To this end, four different positron emission tomography (PET) attenuation maps were generated via arithmetic averaging and VWW scheme using both direct registration and ORMA approaches as well as the 3-class attenuation map obtained from the Philips Ingenuity TF PET/MRI scanner commonly used in the clinical setting. The evaluation was performed based on the accuracy of extracted whole-body bones by the different attenuation maps and by quantitative analysis of resulting PET images compared to CT-based attenuation-corrected PET images serving as reference. The comparison of validation metrics regarding the accuracy of extracted bone using the different techniques demonstrated the superiority of the VWW atlas fusion algorithm achieving a Dice similarity measure of 0.82 ± 0.04 compared to arithmetic averaging atlas fusion (0.60 ± 0.02), which uses conventional direct registration. Application of the ORMA approach modestly compromised the accuracy, yielding a Dice similarity measure of 0.76 ± 0.05 for ORMA-VWW and 0.55 ± 0.03 for ORMA-averaging. The results of quantitative PET analysis followed the same

  16. One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, Hossein [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva 4 (Switzerland); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva 4 (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark)

    2016-10-15

    The outcome of a detailed assessment of various strategies for atlas-based whole-body bone segmentation from magnetic resonance imaging (MRI) was exploited to select the optimal parameters and setting, with the aim of proposing a novel one-registration multi-atlas (ORMA) pseudo-CT generation approach. The proposed approach consists of only one online registration between the target and reference images, regardless of the number of atlas images (N), while for the remaining atlas images, the pre-computed transformation matrices to the reference image are used to align them to the target image. The performance characteristics of the proposed method were evaluated and compared with conventional atlas-based attenuation map generation strategies (direct registration of the entire atlas images followed by voxel-wise weighting (VWW) and arithmetic averaging atlas fusion). To this end, four different positron emission tomography (PET) attenuation maps were generated via arithmetic averaging and VWW scheme using both direct registration and ORMA approaches as well as the 3-class attenuation map obtained from the Philips Ingenuity TF PET/MRI scanner commonly used in the clinical setting. The evaluation was performed based on the accuracy of extracted whole-body bones by the different attenuation maps and by quantitative analysis of resulting PET images compared to CT-based attenuation-corrected PET images serving as reference. The comparison of validation metrics regarding the accuracy of extracted bone using the different techniques demonstrated the superiority of the VWW atlas fusion algorithm achieving a Dice similarity measure of 0.82 ± 0.04 compared to arithmetic averaging atlas fusion (0.60 ± 0.02), which uses conventional direct registration. Application of the ORMA approach modestly compromised the accuracy, yielding a Dice similarity measure of 0.76 ± 0.05 for ORMA-VWW and 0.55 ± 0.03 for ORMA-averaging. The results of quantitative PET analysis followed the same

  17. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  18. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide.

    Science.gov (United States)

    Guan, Xiaowei; Wu, Hao; Shi, Yaocheng; Dai, Daoxin

    2014-01-15

    A novel polarization beam splitter (PBS) with an extremely small footprint is proposed based on a multimode interference (MMI) coupler with a silicon hybrid plasmonic waveguide. The MMI section, covered with a metal strip partially, is designed to achieve mirror imaging for TE polarization. On the other hand, for TM polarization, there is almost no MMI effect since the higher-order TM modes are hardly excited due to the hybrid plasmonic effect. With this design, the whole PBS including the 1.1 μm long MMI section as well as the output section has a footprint as small as ∼1.8 μm×2.5 μm. Besides, the fabrication process is simple since the waveguide dimension is relatively large (e.g., the input/output waveguides widths w ≥300 nm and the MMI width w(MMI)=800 nm). Numerical simulations show that the designed PBS has a broad band of ∼80 nm for an ER >10 dB as well as a large fabrication tolerance to allow a silicon core width variation of -30 nm<Δw<50 nm and a metal strip width variation of -200 nm<Δw(m)<0.

  19. Multimodal Physiotherapy Based on a Biobehavioral Approach as a Treatment for Chronic Tension-Type Headache: A Case Report.

    Science.gov (United States)

    Beltran-Alacreu, Hector; Lopez-de-Uralde-Villanueva, Ibai; La Touche, Roy

    2015-12-01

    Tension-type headache (TTH) is the most common primary headache affecting the general population, which is characterized by bilateral headache and mild to moderate pain. This disorder causes high levels of disability and recent scientific evidence suggests that manual therapy (MT) and therapeutic exercise are effective in reducing medication intake and decreasing the frequency and intensity of headaches in patients with TTH. A 34-year-old woman was known to have chronic TTH. Initially, the patient presented moderate headaches 5 days per week, mechanical neck pain and no positive response to analgesics. A battery of self-reports was given to the patient to assess disability (using the Spanish versions of the Headache Impact Test-6 and the neck disability index), pain (visual analogue scale) and psychosocial issues (Spanish version of the pain catastrophizing scale) involved in the headaches. All measurements were taken four times during 161 days. Eleven sessions of treatment including MT, motor control therapeutic exercise (MCTE) and therapeutic patient education (TPE) were applied. This biobehavioral-based multimodal physical rehabilitation treatment combining MT, TPE and MCTE produced a substantial reduction in pain intensity, pain catastrophizing, disability and the impact of headaches on patient's life.

  20. Global Registration of 3D LiDAR Point Clouds Based on Scene Features: Application to Structured Environments

    Directory of Open Access Journals (Sweden)

    Julia Sanchez

    2017-09-01

    Full Text Available Acquiring 3D data with LiDAR systems involves scanning multiple scenes from different points of view. In actual systems, the ICP algorithm (Iterative Closest Point is commonly used to register the acquired point clouds together to form a unique one. However, this method faces local minima issues and often needs a coarse initial alignment to converge to the optimum. This paper develops a new method for registration adapted to indoor environments and based on structure priors of such scenes. Our method works without odometric data or physical targets. The rotation and translation of the rigid transformation are computed separately, using, respectively, the Gaussian image of the point clouds and a correlation of histograms. To evaluate our algorithm on challenging registration cases, two datasets were acquired and are available for comparison with other methods online. The evaluation of our algorithm on four datasets against six existing methods shows that the proposed method is more robust against sampling and scene complexity. Moreover, the time performances enable a real-time implementation.

  1. Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration.

    Science.gov (United States)

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  2. Evaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration

    Directory of Open Access Journals (Sweden)

    Amir Pasha Mahmoudzadeh

    2013-01-01

    Full Text Available Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order and to compare the effect of cost functions (least squares (LS, normalized mutual information (NMI, normalized cross correlation (NCC, and correlation ratio (CR for optimized automatic image registration (OAIR on 3D spoiled gradient recalled (SPGR magnetic resonance images (MRI of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  3. Locally orderless registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Sporring, Jon

    2013-01-01

    This paper presents a unifying approach for calculating a wide range of popular, but seemingly very different, similarity measures. Our domain is the registration of n-dimensional images sampled on a regular grid, and our approach is well suited for gradient-based optimization algorithms. Our app...

  4. Simplified Multimodal Biometric Identification

    Directory of Open Access Journals (Sweden)

    Abhijit Shete

    2014-03-01

    Full Text Available Multibiometric systems are expected to be more reliable than unimodal biometric systems for personal identification due to the presence of multiple, fairly independent pieces of evidence e.g. Unique Identification Project "Aadhaar" of Government of India. In this paper, we present a novel wavelet based technique to perform fusion at the feature level and score level by considering two biometric modalities, face and fingerprint. The results indicate that the proposed technique can lead to substantial improvement in multimodal matching performance. The proposed technique is simple because of no preprocessing of raw biometric traits as well as no feature and score normalization.

  5. Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell Microscopy Images Using a Dynamic Elasticity Model.

    Science.gov (United States)

    Sorokin, Dmitry V; Peterlik, Igor; Tektonidis, Marco; Rohr, Karl; Matula, Pavel

    2018-01-01

    The analysis of the pure motion of subnuclear structures without influence of the cell nucleus motion and deformation is essential in live cell imaging. In this paper, we propose a 2-D contour-based image registration approach for compensation of nucleus motion and deformation in fluorescence microscopy time-lapse sequences. The proposed approach extends our previous approach, which uses a static elasticity model to register cell images. Compared with that scheme, the new approach employs a dynamic elasticity model for the forward simulation of nucleus motion and deformation based on the motion of its contours. The contour matching process is embedded as a constraint into the system of equations describing the elastic behavior of the nucleus. This results in better performance in terms of the registration accuracy. Our approach was successfully applied to real live cell microscopy image sequences of different types of cells including image data that was specifically designed and acquired for evaluation of cell image registration methods. An experimental comparison with the existing contour-based registration methods and an intensity-based registration method has been performed. We also studied the dependence of the results on the choice of method parameters.

  6. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images.

    Science.gov (United States)

    Rousseau, Francois; Glenn, Orit A; Iordanova, Bistra; Rodriguez-Carranza, Claudia; Vigneron, Daniel B; Barkovich, James A; Studholme, Colin

    2006-09-01

    This paper describes a novel approach to forming high-resolution MR images of the human fetal brain. It addresses the key problem of fetal motion by proposing a registration-refined compounding of multiple sets of orthogonal fast two-dimensional MRI slices, which are currently acquired for clinical studies, into a single high-resolution MRI volume. A robust multiresolution slice alignment is applied iteratively to the data to correct motion of the fetus that occurs between two-dimensional acquisitions. This is combined with an intensity correction step and a super-resolution reconstruction step, to form a single high isotropic resolution volume of the fetal brain. Experimental validation on synthetic image data with known motion types and underlying anatomy, together with retrospective application to sets of clinical acquisitions, are included. Results indicate that this method promises a unique route to acquiring high-resolution MRI of the fetal brain in vivo allowing comparable quality to that of neonatal MRI. Such data provide a highly valuable window into the process of normal and abnormal brain development, which is directly applicable in a clinical setting.

  7. Increased-resolution OCT thickness mapping of the human macula: a statistically based registration.

    Science.gov (United States)

    Bernardes, Rui; Santos, Torcato; Cunha-Vaz, José

    2008-05-01

    To describe the development of a technique that enhances spatial resolution of retinal thickness maps of the Stratus OCT (Carl Zeiss Meditec, Inc., Dublin, CA). A retinal thickness atlas (RT-atlas) template was calculated, and a macular coordinate system was established, to pursue this objective. The RT-atlas was developed from principal component analysis of retinal thickness analyzer (RTA) maps acquired from healthy volunteers. The Stratus OCT radial thickness measurements were registered on the RT-atlas, from which an improved macular thickness map was calculated. Thereafter, Stratus OCT circular scans were registered on the previously calculated map to enhance spatial resolution. The developed technique was applied to Stratus OCT thickness data from healthy volunteers and from patients with diabetic retinopathy (DR) or age-related macular degeneration (AMD). Results showed that for normal, or close to normal, macular thickness maps from healthy volunteers and patients with DR, this technique can be an important aid in determining retinal thickness. Efforts are under way to improve the registration of retinal thickness data in patients with AMD. The developed technique enhances the evaluation of data acquired by the Stratus OCT, helping the detection of early retinal thickness abnormalities. Moreover, a normative database of retinal thickness measurements gained from this technique, as referenced to the macular coordinate system, can be created without errors induced by missed fixation and eye tilt.

  8. A Multi-Modal Digital Game-Based Learning Environment for Hospitalized Children with Chronic Illnesses.

    Science.gov (United States)

    Chin, Jui-Chih; Tsuei, Mengping

    2014-01-01

    The aim of this study was to explore the digital game-based learning for children with chronic illnesses in the hospital settings. The design-based research and qualitative methods were applied. Three eight-year-old children with leukemia participated in this study. In the first phase, the multi-user game-based learning system was developed and…

  9. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Directory of Open Access Journals (Sweden)

    O. Barkman

    2013-04-01

    Full Text Available Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+, Na+ and K+, Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method.

  10. ADMultiImg: a novel missing modality transfer learning based CAD system for diagnosis of MCI due to AD using incomplete multi-modality imaging data

    Science.gov (United States)

    Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing

    2018-02-01

    Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.

  11. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    Science.gov (United States)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  12. Dynamic neural network-based methods for compensation of nonlinear effects in multimode communication lines

    Science.gov (United States)

    Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.

    2017-12-01

    We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.

  13. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy.

    Science.gov (United States)

    Zhu, Ming; Chai, Gang; Zhang, Yan; Ma, Xiaofei; Gan, Jiliang

    2011-09-01

    An augmented reality tool allows for visual tracking of real anatomic structures in superposition with volume-rendered computed tomographic or magnetic resonance imaging scans and thus can be used for navigated translocation of important structures during operation. In this feasibility study, ARToolKit was used in mandibular angle oblique split osteotomy to define the cutting planes according to an operative plan. We overlay the operative plan on the model of a mandible made by rapid prototyping technology, and the technology was successfully used in 15 patients. Before the operation, all patients underwent computed tomographic scan, and dental casts were prepared by surgeons. Then, surgeons make the occlusal splint according to a dental cast to fix the marker, which can be recognized by the ARToolKit. The occlusal splint and marker were transformed to three-dimensional data using a laser scanner, and a programmer that runs on a personal computer named Rapidform matches the marker and the mandible image to generate the virtual image. By this step, the virtual image describing the marker, occlusal splint, and the mandible image of the patient are integrated. During the operation, the operative plan was overlaid on the rapid prototyping model of the mandible as soon as the ARToolKit recognized the marker. The technology was successfully used in 15 patients; the virtual image of the mandible and the cutting-plane both overlaid the real model of the mandible. This study has reported a new and effective way for mandibular angle oblique split osteotomy, and using occlusal splint might be a powerful option for the registration of augmented reality. Augmented reality tools like ARToolKit may be helpful for control of maxillary translocation in orthognathic surgery.

  14. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, T. [Brigham & Women’s Hospital (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  15. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    International Nuclear Information System (INIS)

    Kapur, T.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  16. Solid Mesh Registration for Radiotherapy Treatment Planning

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Sørensen, Thomas Sangild

    2010-01-01

    We present an algorithm for solid organ registration of pre-segmented data represented as tetrahedral meshes. Registration of the organ surface is driven by force terms based on a distance field representation of the source and reference shapes. Registration of internal morphology is achieved usi...

  17. OptoCeramic-Based High Speed Fiber Multiplexer for Multimode Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A fiber-based fixed-array laser transmitter can be combined with a fiber-arrayed detector to create the next-generation NASA array LIDAR systems. High speed optical...

  18. Score level fusion scheme based on adaptive local Gabor features for face-iris-fingerprint multimodal biometric

    Science.gov (United States)

    He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Chen, Ying

    2014-05-01

    A multimodal biometric system has been considered a promising technique to overcome the defects of unimodal biometric systems. We have introduced a fusion scheme to gain a better understanding and fusion method for a face-iris-fingerprint multimodal biometric system. In our case, we use particle swarm optimization to train a set of adaptive Gabor filters in order to achieve the proper Gabor basic functions for each modality. For a closer analysis of texture information, two different local Gabor features for each modality are produced by the corresponding Gabor coefficients. Next, all matching scores of the two Gabor features for each modality are projected to a single-scalar score via a trained, supported, vector regression model for a final decision. A large-scale dataset is formed to validate the proposed scheme using the Facial Recognition Technology database-fafb and CASIA-V3-Interval together with FVC2004-DB2a datasets. The experimental results demonstrate that as well as achieving further powerful local Gabor features of multimodalities and obtaining better recognition performance by their fusion strategy, our architecture also outperforms some state-of-the-art individual methods and other fusion approaches for face-iris-fingerprint multimodal biometric systems.

  19. Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer

    International Nuclear Information System (INIS)

    Andersen, E S; Muren, L P; Thor, M; Petersen, J B; Tanderup, K; Sørensen, T S; Noe, K Ø; Høyer, M; Bentzen, L

    2012-01-01

    Variations in bladder position, shape and volume cause uncertainties in the doses delivered to this organ during a course of radiotherapy for pelvic tumors. The purpose of this study was to evaluate the potential of dose accumulation based on repeat imaging and deformable image registration (DIR) to improve the accuracy of bladder dose assessment. For each of nine prostate cancer patients, the initial treatment plan was re-calculated on eight to nine repeat computed tomography (CT) scans. The planned bladder dose–volume histogram (DVH) parameters were compared to corresponding parameters derived from DIR-based accumulations as well as DVH summation based on dose re-calculations. It was found that the deviations between the DIR-based accumulations and the planned treatment were substantial and ranged (−0.5–2.3) Gy and (−9.4–13.5) Gy for D 2% and D mean , respectively, whereas the deviations between DIR-based accumulations and DVH summation were small and well within 1 Gy. For the investigated treatment scenario, DIR-based bladder dose accumulation did not result in substantial improvement of dose estimation as compared to the straightforward DVH summation. Large variations were found in individual patients between the doses from the initial treatment plan and the accumulated bladder doses. Hence, the use of repeat imaging has a potential for improved accuracy in treatment dose reporting. (paper)

  20. Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications.

    Science.gov (United States)

    Yang, Ri-Long; Zhu, Ying-Jie; Chen, Fei-Fei; Dong, Li-Ying; Xiong, Zhi-Chao

    2017-08-02

    Counterfeiting of valuable certificates, documents, and banknotes is a serious issue worldwide. As a result, the need for developing novel anticounterfeiting materials is greatly increasing. Herein, we report a new kind of ultralong hydroxyapatite nanowire (HAPNW)-based paper with luminescence, fire resistance, and waterproofness properties that may be exploited for anticounterfeiting applications. In this work, lanthanide-ion-doped HAPNWs (HAPNW:Ln 3+ ) with lengths over 100 μm have been synthesized and used as a raw material to fabricating a free-standing luminescent, fire-resistant, water-proof paper through a simple vacuum filtration process. It is interesting to find that the luminescence intensity, structure, and morphology of HAPNW:Ln 3+ highly depend on the experimental conditions. The as-prepared HAPNW:Ln 3+ paper has a unique combination of properties, such as high flexibility, good processability, writing and printing abilities, luminescence, tunable emission color, waterproofness, and fire resistance. In addition, a well-designed pattern can be embedded in the paper that is invisible under ambient light but viewable as a luminescent color under ultraviolet light. Moreover, the HAPNW:Ln 3+ paper can be well-preserved without any damage after being burned by fire or soaked in water. The unique combination of luminescence, fire resistance, and waterproofness properties and the nanowire structure of the as-prepared HAPNW:Ln 3+ paper may be exploited toward developing a new kind of multimode anticounterfeiting technology for various high-level security antiforgery applications, such as in making forgery-proof documents, certificates, labels, and tags and in packaging.

  1. The UCLA Multimodal Connectivity Database: A web-based platform for brain connectivity matrix sharing and analysis

    Directory of Open Access Journals (Sweden)

    Jesse A. Brown

    2012-11-01

    Full Text Available Brain connectomics research has rapidly expanded using functional MRI (fMRI and diffusion-weighted MRI (dwMRI. A common product of these varied analyses is a connectivity matrix (CM. A CM stores the connection strength between any two regions (nodes in a brain network. This format is useful for several reasons: 1 it is highly distilled, with minimal data size and complexity, 2 graph theory can be applied to characterize the network’s topology, and 3 it retains sufficient information to capture individual differences such as age, gender, intelligence quotient, or disease state. Here we introduce the UCLA Multimodal Connectivity Database (http://umcd.humanconnectomeproject.org, an openly available website for brain network analysis and data sharing. The site is a repository for researchers to publicly share CMs derived from their data. The site also allows users to select any CM shared by another user, compute graph theoretical metrics on the site, visualize a report of results, or download the raw CM. To date, users have contributed over 2000 individual CMs, spanning different imaging modalities (fMRI, dwMRI and disorders (Alzheimer’s, autism, Attention Deficit Hyperactive Disorder. To demonstrate the site’s functionality, whole brain functional and structural connectivity matrices are derived from 60 subjects’ (ages 26-45 resting state fMRI (rs-fMRI and dwMRI data and uploaded to the site. The site is utilized to derive graph theory global and regional measures for the rs-fMRI and dwMRI networks. Global and nodal graph theoretical measures between functional and structural networks exhibit low correspondence. This example demonstrates how this tool can enhance the comparability of brain networks from different imaging modalities and studies. The existence of this connectivity-based repository should foster broader data sharing and enable larger-scale meta analyses comparing networks across imaging modality, age group, and disease state.

  2. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    International Nuclear Information System (INIS)

    Akhbardeh, A; Parekth, VS; Jacobs, MA

    2015-01-01

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were used in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was

  3. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    Science.gov (United States)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  4. Design of Polymer Wavelength Splitter 1310 nm/1550 nm Based on Multimode Interferences

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2010-12-01

    Full Text Available We report about design of 1x2 1310/1550 nm optical wavelength division multiplexer based on polymer waveguides. The polymer splitter was designed by using RSoft software based on beam propagation method. Epoxy novolak resin polymer was used as core waveguides layer, silicon substrate with silica layer was used as buffer layer and polymethylmethacrylate was used as protection cover layer. The simulation shows that the output energy for the fundamental mode is 67.1 % for 1310 nm and 67.8 % for 1550 nm wavelength.

  5. Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber

    Science.gov (United States)

    Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel

    2018-02-01

    We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.

  6. Contextual Multivariate Segmentation of Pork Tissue from Grating-Based Multimodal X-Ray Tomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel S.; Ersbøll, Bjarne Kjær

    2013-01-01

    have made novel X-ray image modalities available, where the refraction and scattering of X-rays is obtained simultaneously with the absorption properties, providing enhanced contrast for soft biological tissues. This paper demonstrates how data obtained from grating-based imaging can be segmented...

  7. Multimodal emotion recognition as assessment for learning in a game-based communication skills training

    NARCIS (Netherlands)

    Nadolski, Rob; Bahreini, Kiavash; Westera, Wim

    2014-01-01

    This paper presentation describes how our FILTWAM software artifacts for face and voice emotion recognition will be used for assessing learners' progress and providing adequate feedback in an online game-based communication skills training. This constitutes an example of in-game assessment for

  8. Multimodal Emotion Recognition for Assessment of Learning in a Game-Based Communication Skills Training

    NARCIS (Netherlands)

    Bahreini, Kiavash; Nadolski, Rob; Westera, Wim

    2015-01-01

    This paper describes how our FILTWAM software artifacts for face and voice emotion recognition will be used for assessing learners' progress and providing adequate feedback in an online game-based communication skills training. This constitutes an example of in-game assessment for mainly formative

  9. Model based estimation for multi-modal user interface component selection

    CSIR Research Space (South Africa)

    Coetzee, L

    2009-12-01

    Full Text Available and literacy level of the user should be taken into account. This paper presents one approach to develop a cost-based model which can be used to derive appropriate mappings for specific user profiles. The model is explained through a number of small examples...

  10. Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines

    International Nuclear Information System (INIS)

    Coselmon, Martha M.; Balter, James M.; McShan, Daniel L.; Kessler, Marc L.

    2004-01-01

    The advent of dynamic radiotherapy modeling and treatment techniques requires an infrastructure to weigh the merits of various interventions (breath holding, gating, tracking). The creation of treatment planning models that account for motion and deformation can allow the relative worth of such techniques to be evaluated. In order to develop a treatment planning model of a moving and deforming organ such as the lung, registration tools that account for deformation are required. We tested the accuracy of a mutual information based image registration tool using thin-plate splines driven by the selection of control points and iterative alignment according to a simplex algorithm. Eleven patients each had