WorldWideScience

Sample records for based multimodal registration

  1. Manifold learning based registration algorithms applied to multimodal images.

    Science.gov (United States)

    Azampour, Mohammad Farid; Ghaffari, Aboozar; Hamidinekoo, Azam; Fatemizadeh, Emad

    2014-01-01

    Manifold learning algorithms are proposed to be used in image processing based on their ability in preserving data structures while reducing the dimension and the exposure of data structure in lower dimension. Multi-modal images have the same structure and can be registered together as monomodal images if only structural information is shown. As a result, manifold learning is able to transform multi-modal images to mono-modal ones and subsequently do the registration using mono-modal methods. Based on this application, in this paper novel similarity measures are proposed for multi-modal images in which Laplacian eigenmaps are employed as manifold learning algorithm and are tested against rigid registration of PET/MR images. Results show the feasibility of using manifold learning as a way of calculating the similarity between multimodal images.

  2. Multimodal registration of remotely sensed images based on Jeffrey's divergence

    Science.gov (United States)

    Xu, Xiaocong; Li, Xia; Liu, Xiaoping; Shen, Huanfeng; Shi, Qian

    2016-12-01

    Entropy-based measures (e.g., mutual information, also known as Kullback-Leiber divergence), which quantify the similarity between two signals, are widely used as similarity measures for image registration. Although they are proven superior to many classical statistical measures, entropy-based measures, such as mutual information, may fail to yield the optimum registration if the multimodal image pair has insufficient scene overlap region. To overcome this challenge, we proposed using the symmetric form of Kullback-Leiber divergence, namely Jeffrey's divergence, as the similarity measure in practical multimodal image registration tasks. Mathematical analysis was performed to investigate the causes accounting for the limitation of mutual information when dealing with insufficient scene overlap image pairs. Experimental registrations of SPOT image, Landsat TM image, ALOS PalSAR image, and DEM data were carried out to compare the performance of Jeffrey's divergence and mutual information. Results indicate that Jeffrey's divergence is capable of providing larger feasible search space, which is favorable for exploring optimum transformation parameters in a larger range. This superiority of Jeffrey's divergence was further confirmed by a series of paradigms. Thus, the proposed model is more applicable for registering image pairs that are greatly misaligned or have an insufficient scene overlap region.

  3. Incorporating global information in feature-based multimodal image registration

    Science.gov (United States)

    Li, Yong; Stevenson, Robert

    2014-03-01

    A multimodal image registration framework based on searching the best matched keypoints and the incorporation of global information is proposed. It comprises two key elements: keypoint detection and an iterative process. Keypoints are detected from both the reference and test images. For each test keypoint, a number of reference keypoints are chosen as mapping candidates. A triplet of keypoint mappings determine an affine transformation that is evaluated using a similarity metric between the reference image and the transformed test image by the determined transformation. An iterative process is conducted on triplets of keypoint mappings, keeping track of the best matched reference keypoint. Random sample consensus and mutual information are applied to eliminate outlier keypoint mappings. The similarity metric is defined to be the number of overlapped edge pixels over the entire images, allowing for global information to be incorporated in the evaluation of triplets of mappings. The performance of the framework is investigated with keypoints extracted by scale invariant feature transform and partial intensity invariant feature descriptor. Experimental results show that the proposed framework can provide more accurate registration than existing methods.

  4. EVolution: an edge-based variational method for non-rigid multi-modal image registration

    Science.gov (United States)

    de Senneville, B. Denis; Zachiu, C.; Ries, M.; Moonen, C.

    2016-10-01

    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).

  5. Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor

    Institute of Scientific and Technical Information of China (English)

    Jian Chen; Jie Tian

    2009-01-01

    The purpose of image registration is to spatially align two or more single-modality images taken at different times,or several images acquired by multiple imaging modalities.Intensity-based registration usually requires optimization of the similarity metric between the images.However,global optimization techniques are too time-consuming,and local optimization techniques frequently fail to search the global transformation space because of the large initial misalignment of the two images.Moreover,for large non-overlapping area registration,the similarity metric cannot reach its optimum value when the two images are properly registered.In order to solve these problems,we propose a novel Symmetric Scale Invariant Feature Transform (symmetric-SIFT) descriptor and develop a fast multi-modal image registration technique.The proposed technique automatically generates a lot of highly distinctive symmetric-SIFT descriptors for two images,and the registration is performed by matching the corresponding descriptors over two images.These descriptors are invariant to image scale and rotation,and are partially invariant to affine transformation.Moreover,these descriptors are symmetric to contrast,which makes it suitable for multi-modal image registration.The proposed technique abandons the optimization and similarity metric strategy.It works with near real-time performance,and can deal with the large non-overlapping and large initial misalignment situations.Test cases involving scale change,large non-overlapping,and large initial misalignment on computed tomography (CT) and magnetic resonance (MR) datasets show that it needs much less runtime and achieves better accuracy when compared to other algorithms.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  6. Multimodality imaging combination in small animal via point-based registration

    Science.gov (United States)

    Yang, C. C.; Wu, T. H.; Lin, M. H.; Huang, Y. H.; Guo, W. Y.; Chen, C. L.; Wang, T. C.; Yin, W. H.; Lee, J. S.

    2006-12-01

    We present a system of image co-registration in small animal study. Marker-based registration is chosen because of its considerable advantage that the fiducial feature is independent of imaging modality. We also experimented with different scanning protocols and different fiducial marker sizes to improve registration accuracy. Co-registration was conducted using rat phantom fixed by stereotactic frame. Overall, the co-registration accuracy was in sub-millimeter level and close to intrinsic system error. Therefore, we conclude that the system is an accurate co-registration method to be used in small animal studies.

  7. Curvelet-based sampling for accurate and efficient multimodal image registration

    Science.gov (United States)

    Safran, M. N.; Freiman, M.; Werman, M.; Joskowicz, L.

    2009-02-01

    We present a new non-uniform adaptive sampling method for the estimation of mutual information in multi-modal image registration. The method uses the Fast Discrete Curvelet Transform to identify regions along anatomical curves on which the mutual information is computed. Its main advantages of over other non-uniform sampling schemes are that it captures the most informative regions, that it is invariant to feature shapes, orientations, and sizes, that it is efficient, and that it yields accurate results. Extensive evaluation on 20 validated clinical brain CT images to Proton Density (PD) and T1 and T2-weighted MRI images from the public RIRE database show the effectiveness of our method. Rigid registration accuracy measured at 10 clinical targets and compared to ground truth measurements yield a mean target registration error of 0.68mm(std=0.4mm) for CT-PD and 0.82mm(std=0.43mm) for CT-T2. This is 0.3mm (1mm) more accurate in the average (worst) case than five existing sampling methods. Our method has the lowest registration errors recorded to date for the registration of CT-PD and CT-T2 images in the RIRE website when compared to methods that were tested on at least three patient datasets.

  8. Statistical power of intensity- and feature-based similarity measures for registration of multimodal remote sensing images

    Science.gov (United States)

    Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.

    2016-10-01

    This paper investigates performance characteristics of similarity measures (SM) used in image registration domain to discriminate between aligned and not-aligned reference and template image (RI and TI) fragments. The study emphasizes registration of multimodal remote sensing images including optical-to-radar, optical-to-DEM, and radar-to- DEM scenarios. We compare well-known area-based SMs such as Mutual Information, Normalized Correlation Coefficient, Phase Correlation, and feature-based SM using SIFT and SIFT-OCT descriptors. In addition, a new SM called logLR based on log-likelihood ratio test and parametric modeling of a pair of RI and TI fragments by the Fractional Brownian Motion model is proposed. While this new measure is restricted to linear intensity change between RI and TI (assumption somewhat restrictive for multimodal registration), it takes explicitly into account noise properties of RI and TI and multivariate mutual distribution of RI and TI pixels. Unlike other SMs, distribution of logLR measure for the null hypothesis does not depend on registration scenario or fragments size and follows closely chi-squared distribution according to Wilks's theorem. We demonstrate that a SM utility for image registration purpose can be naturally represented in (True Positive Rate, Positive Likelihood Rate) coordinates. Experiments on real images show that overall the logLR SM outperforms the other SMs in terms of area under the ROC curve, denoted AUC. It also provides the highest Positive Likelihood Rate for True Positive Rate values below 0.4-0.6. But for certain registration problem types, logLR can be second or third best after MI or SIFT SMs.

  9. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    Directory of Open Access Journals (Sweden)

    Pielot Rainer

    2010-01-01

    Full Text Available Abstract Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE, a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  10. Graph-based surface extraction of the liver using locally adaptive priors for multimodal interventional image registration

    Science.gov (United States)

    Kadoury, Samuel; Wood, Bradford J.; Venkatesan, Aradhana M.; Ardon, Roberto; Jago, James; Kruecker, Jochen

    2012-02-01

    The 3D fusion of tracked ultrasound with a diagnostic CT image has multiple benefits in a variety of interventional applications for oncology. Still, manual registration is a considerable drawback to the clinical workflow and hinders the widespread clinical adoption of this technique. In this paper, we propose a method to allow for an image-based automated registration, aligning multimodal images of the liver. We adopt a model-based approach that rigidly matches segmented liver shapes from ultrasound (U/S) and diagnostic CT imaging. Towards this end, a novel method which combines a dynamic region-growing method with a graph-based segmentation framework is introduced to address the challenging problem of liver segmentation from U/S. The method is able to extract liver boundary from U/S images after a partial surface is generated near the principal vector from an electromagnetically tracked U/S liver sweep. The liver boundary is subsequently expanded by modeling the problem as a graph-cut minimization scheme, where cost functions used to detect optimal surface topology are determined from adaptive priors of neighboring surface points. This allows including boundaries affected by shadow areas by compensating for varying levels of contrast. The segmentation of the liver surface is performed in 3D space for increased accuracy and robustness. The method was evaluated in a study involving 8 patients undergoing biopsy or radiofrequency ablation of the liver, yielding promising surface segmentation results based on ground-truth comparison. The proposed extended segmentation technique improved the fiducial landmark registration error compared to a point-based registration (7.2mm vs. 10.2mm on average, respectively), while achieving tumor target registration errors that are statistically equivalent (p > 0.05) to state-of-the-art methods.

  11. WE-D-9A-04: Improving Multi-Modality Image Registration Using Edge-Based Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Tyagi, N; Veeraraghavan, H; Deasy, J [Medical Physics Department, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: Multi-modality deformable image registration (DIR) for head and neck (HN) radiotherapy is difficult, particularly when matching computed tomography (CT) scans with magnetic resonance imaging (MRI) scans. We hypothesized that the ‘shared information’ between images of different modalities was to be found in some form of edge-based transformation, and that novel edge-based DIR methods might outperform standard DIR methods. Methods: We propose a novel method that combines gray-scale edge-based morphology and mutual information (MI) in two stages. In the first step, we applied a modification of a previously published mathematical morphology method as an efficient gray scale edge estimator, with denoising function. The results were fed into a MI-based solver (plastimatch). The method was tested on 5 HN patients with pretreatment CT and MR datasets and associated follow-up weekly MR scans. The followup MRs showed significant regression in tumor and normal structure volumes as compared to the pretreatment MRs. The MR images used in this study were obtained using fast spin echo based T2w images with a 1 mm isotropic resolution and FOV matching the CT scan. Results: In all cases, the novel edge-based registration method provided better registration quality than MI-based DIR using the original CT and MRI images. For example, the mismatch in carotid arteries was reduced from 3–5 mm to within 2 mm. The novel edge-based method with different registration regulation parameters did not show any distorted deformations as compared to the non-realistic deformations resulting from MI on the original images. Processing time was 1.3 to 2 times shorter (edge vs. non-edge). In general, we observed quality improvement and significant calculation time reduction with the new method. Conclusion: Transforming images to an ‘edge-space,’ if designed appropriately, greatly increases the speed and accuracy of DIR.

  12. Post-operative assessment in Deep Brain Stimulation based on multimodal images: registration workflow and validation

    Science.gov (United States)

    Lalys, Florent; Haegelen, Claire; Abadie, Alexandre; Jannin, Pierre

    2009-02-01

    Object Movement disorders in Parkinson disease patients may require functional surgery, when medical therapy isn't effective. In Deep Brain Stimulation (DBS) electrodes are implanted within the brain to stimulate deep structures such as SubThalamic Nucleus (STN). This paper describes successive steps for constructing a digital Atlas gathering patient's location of electrodes and contacts for post operative assessment. Materials and Method 12 patients who had undergone bilateral STN DBS have participated to the study. Contacts on post-operative CT scans were automatically localized, based on black artefacts. For each patient, post operative CT images were rigidly registered to pre operative MR images. Then, pre operative MR images were registered to a MR template (super-resolution Collin27 average MRI template). This last registration was the combination of global affine, local affine and local non linear registrations, respectively. Four different studies were performed in order to validate the MR patient to template registration process, based on anatomical landmarks and clinical scores (i.e., Unified Parkinson's disease rating Scale). Visualisation software was developed for displaying into the template images the stimulated contacts represented as cylinders with a colour code related to the improvement of the UPDRS. Results The automatic contact localization algorithm was successful for all the patients. Validation studies for the registration process gave a placement error of 1.4 +/- 0.2 mm and coherence with UPDRS scores. Conclusion The developed visualization tool allows post-operative assessment for previous interventions. Correlation with additional clinical scores will certainly permit to learn more about DBS and to better understand clinical side-effects.

  13. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-01-01

    Full Text Available Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  14. Semiautomated Multimodal Breast Image Registration

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved.

  15. Hierarchical segmentation-assisted multimodal registration for MR brain images.

    Science.gov (United States)

    Lu, Huanxiang; Beisteiner, Roland; Nolte, Lutz-Peter; Reyes, Mauricio

    2013-04-01

    Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.

  16. Multimodality image registration and fusion using neural network

    Institute of Scientific and Technical Information of China (English)

    Mostafa G Mostafa; Aly A Farag; Edward Essock

    2003-01-01

    Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty remote sensing data for the reconstruction of 3-D models of terrain regions. A FeedForward neural network isused to fuse the intensity data sets with the spatial data set after learning its geometry. Results on real data arepresented. Human performance evaluation is assessed on several perceptual tests in order to evaluate the fusionresults.

  17. Distance-Dependent Multimodal Image Registration for Agriculture Tasks

    Directory of Open Access Journals (Sweden)

    Ron Berenstein

    2015-08-01

    Full Text Available Image registration is the process of aligning two or more images of the same scene taken at different times; from different viewpoints; and/or by different sensors. This research focuses on developing a practical method for automatic image registration for agricultural systems that use multimodal sensory systems and operate in natural environments. While not limited to any particular modalities; here we focus on systems with visual and thermal sensory inputs. Our approach is based on pre-calibrating a distance-dependent transformation matrix (DDTM between the sensors; and representing it in a compact way by regressing the distance-dependent coefficients as distance-dependent functions. The DDTM is measured by calculating a projective transformation matrix for varying distances between the sensors and possible targets. To do so we designed a unique experimental setup including unique Artificial Control Points (ACPs and their detection algorithms for the two sensors. We demonstrate the utility of our approach using different experiments and evaluation criteria.

  18. Coercive Region-level Registration for Multi-modal Images

    CERN Document Server

    Chen, Yu-Hui; Newstadt, Gregory; Simmons, Jeffrey; hero, Alfred

    2015-01-01

    We propose a coercive approach to simultaneously register and segment multi-modal images which share similar spatial structure. Registration is done at the region level to facilitate data fusion while avoiding the need for interpolation. The algorithm performs alternating minimization of an objective function informed by statistical models for pixel values in different modalities. Hypothesis tests are developed to determine whether to refine segmentations by splitting regions. We demonstrate that our approach has significantly better performance than the state-of-the-art registration and segmentation methods on microscopy images.

  19. Automatic quantification of multi-modal rigid registration accuracy using feature detectors

    Science.gov (United States)

    Hauler, F.; Furtado, H.; Jurisic, M.; Polanec, S. H.; Spick, C.; Laprie, A.; Nestle, U.; Sabatini, U.; Birkfellner, W.

    2016-07-01

    In radiotherapy, the use of multi-modal images can improve tumor and target volume delineation. Images acquired at different times by different modalities need to be aligned into a single coordinate system by 3D/3D registration. State of the art methods for validation of registration are visual inspection by experts and fiducial-based evaluation. Visual inspection is a qualitative, subjective measure, while fiducial markers sometimes suffer from limited clinical acceptance. In this paper we present an automatic, non-invasive method for assessing the quality of intensity-based multi-modal rigid registration using feature detectors. After registration, interest points are identified on both image data sets using either speeded-up robust features or Harris feature detectors. The quality of the registration is defined by the mean Euclidean distance between matching interest point pairs. The method was evaluated on three multi-modal datasets: an ex vivo porcine skull (CT, CBCT, MR), seven in vivo brain cases (CT, MR) and 25 in vivo lung cases (CT, CBCT). Both a qualitative (visual inspection by radiation oncologist) and a quantitative (mean target registration error—mTRE—based on selected markers) method were employed. In the porcine skull dataset, the manual and Harris detectors give comparable results but both overestimated the gold standard mTRE based on fiducial markers. For instance, for CT-MR-T1 registration, the mTREman (based on manually annotated landmarks) was 2.2 mm whereas mTREHarris (based on landmarks found by the Harris detector) was 4.1 mm, and mTRESURF (based on landmarks found by the SURF detector) was 8 mm. In lung cases, the difference between mTREman and mTREHarris was less than 1 mm, while the difference between mTREman and mTRESURF was up to 3 mm. The Harris detector performed better than the SURF detector with a resulting estimated registration error close to the gold standard. Therefore the Harris detector was shown to be the more suitable

  20. Deformable registration of multi-modal data including rigid structures

    Energy Technology Data Exchange (ETDEWEB)

    Huesman, Ronald H.; Klein, Gregory J.; Kimdon, Joey A.; Kuo, Chaincy; Majumdar, Sharmila

    2003-05-02

    Multi-modality imaging studies are becoming more widely utilized in the analysis of medical data. Anatomical data from CT and MRI are useful for analyzing or further processing functional data from techniques such as PET and SPECT. When data are not acquired simultaneously, even when these data are acquired on a dual-imaging device using the same bed, motion can occur that requires registration between the reconstructed image volumes. As the human torso can allow non-rigid motion, this type of motion should be estimated and corrected. We report a deformation registration technique that utilizes rigid registration for bony structures, while allowing elastic transformation of soft tissue to more accurately register the entire image volume. The technique is applied to the registration of CT and MR images of the lumbar spine. First a global rigid registration is performed to approximately align features. Bony structures are then segmented from the CT data using semi-automated process, and bounding boxes for each vertebra are established. Each CT subvolume is then individually registered to the MRI data using a piece-wise rigid registration algorithm and a mutual information image similarity measure. The resulting set of rigid transformations allows for accurate registration of the parts of the CT and MRI data representing the vertebrae, but not the adjacent soft tissue. To align the soft tissue, a smoothly-varying deformation is computed using a thin platespline(TPS) algorithm. The TPS technique requires a sparse set of landmarks that are to be brought into correspondence. These landmarks are automatically obtained from the segmented data using simple edge-detection techniques and random sampling from the edge candidates. A smoothness parameter is also included in the TPS formulation for characterization of the stiffness of the soft tissue. Estimation of an appropriate stiffness factor is obtained iteratively by using the mutual information cost function on the result

  1. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    Science.gov (United States)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  2. Tensor scale-based image registration

    Science.gov (United States)

    Saha, Punam K.; Zhang, Hui; Udupa, Jayaram K.; Gee, James C.

    2003-05-01

    Tangible solutions to image registration are paramount in longitudinal as well as multi-modal medical imaging studies. In this paper, we introduce tensor scale - a recently developed local morphometric parameter - in rigid image registration. A tensor scale-based registration method incorporates local structure size, orientation and anisotropy into the matching criterion, and therefore, allows efficient multi-modal image registration and holds potential to overcome the effects of intensity inhomogeneity in MRI. Two classes of two-dimensional image registration methods are proposed - (1) that computes angular shift between two images by correlating their tensor scale orientation histogram, and (2) that registers two images by maximizing the similarity of tensor scale features. Results of applications of the proposed methods on proton density and T2-weighted MR brain images of (1) the same slice of the same subject, and (2) different slices of the same subject are presented. The basic superiority of tensor scale-based registration over intensity-based registration is that it may allow the use of local Gestalts formed by the intensity patterns over the image instead of simply considering intensities as isolated events at the pixel level. This would be helpful in dealing with the effects of intensity inhomogeneity and noise in MRI.

  3. Deformable image registration for multimodal lung-cancer staging

    Science.gov (United States)

    Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2016-03-01

    Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.

  4. Multi-modal 2D-3D non-rigid registration

    Science.gov (United States)

    Prümmer, M.; Hornegger, J.; Pfister, M.; Dörfler, A.

    2006-03-01

    In this paper, we propose a multi-modal non-rigid 2D-3D registration technique. This method allows a non-rigid alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make use of up-to-date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections. In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler-Lagrange equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field is driven to minimize the reconstruction distance between the volumetric data and its 2D projections using mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well. Experimental results are presented on both artificial phantom and 3D C-arm CT images.

  5. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Leibfarth, Sara; Moennich, David; Thorwarth, Daniela [Section for Biomedical Physics, Dept. of Radiation Oncology, Univ. Hospital Tuebingen, Tuebingen (Germany)], e-mail: Sara.Leibfarth@med.uni-tuebingen.de; Welz, Stefan; Siegel, Christine; Zips, Daniel [Dept. of Radiation Oncology, Univ. Hospital Tuebingen, Tuebingen (Germany); Schwenzer, Nina [Dept. of Diagnostic and Interventional Radiology, Univ. Hospital Tuebingen, Tuebingen (Germany); Holger Schmidt, Holger [Dept. of Diagnostic and Interventional Radiology, Univ. Hospital Tuebingen, Tuebingen (Germany); Lab. for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Dept. of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany)

    2013-10-15

    Background: Combined positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly promising for biologically individualized radiotherapy (RT). Hence, the purpose of this work was to develop an accurate and robust registration strategy to integrate combined PET/MR data into RT treatment planning. Material and methods: Eight patient datasets consisting of an FDG PET/computed tomography (CT) and a subsequently acquired PET/MR of the head and neck (HN) region were available. Registration strategies were developed based on CT and MR data only, whereas the PET components were fused with the resulting deformation field. Following a rigid registration, deformable registration was performed with a transform parametrized by B-splines. Three different optimization metrics were investigated: global mutual information (GMI), GMI combined with a bending energy penalty (BEP) for regularization (GMI + BEP) and localized mutual information with BEP (LMI + BEP). Different quantitative registration quality measures were developed, including volumetric overlap and mean distance measures for structures segmented on CT and MR as well as anatomical landmark distances. Moreover, the local registration quality in the tumor region was assessed by the normalized cross correlation (NCC) of the two PET datasets. Results: LMI + BEP yielded the most robust and accurate registration results. For GMI, GMI + BEP and LMI + BEP, mean landmark distances (standard deviations) were 23.9 mm (15.5 mm), 4.8 mm (4.0 mm) and 3.0 mm (1.0 mm), and mean NCC values (standard deviations) were 0.29 (0.29), 0.84 (0.14) and 0.88 (0.06), respectively. Conclusion: Accurate and robust multimodal deformable image registration of CT and MR in the HN region can be performed using a B-spline parametrized transform and LMI + BEP as optimization metric. With this strategy, biologically individualized RT based on combined PET/MRI in terms of dose painting is possible.

  6. Registration of multimodal brain images: some experimental results

    Science.gov (United States)

    Chen, Hua-mei; Varshney, Pramod K.

    2002-03-01

    Joint histogram of two images is required to uniquely determine the mutual information between the two images. It has been pointed out that, under certain conditions, existing joint histogram estimation algorithms like partial volume interpolation (PVI) and linear interpolation may result in different types of artifact patterns in the MI based registration function by introducing spurious maxima. As a result, the artifacts may hamper the global optimization process and limit registration accuracy. In this paper we present an extensive study of interpolation-induced artifacts using simulated brain images and show that similar artifact patterns also exist when other intensity interpolation algorithms like cubic convolution interpolation and cubic B-spline interpolation are used. A new joint histogram estimation scheme named generalized partial volume estimation (GPVE) is proposed to eliminate the artifacts. A kernel function is involved in the proposed scheme and when the 1st order B-spline is chosen as the kernel function, it is equivalent to the PVI. A clinical brain image database furnished by Vanderbilt University is used to compare the accuracy of our algorithm with that of PVI. Our experimental results show that the use of higher order kernels can effectively remove the artifacts and, in cases when MI based registration result suffers from the artifacts, registration accuracy can be improved significantly.

  7. Multimodal Registration and Fusion for 3D Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Moulay A. Akhloufi

    2015-01-01

    Full Text Available 3D vision is an area of computer vision that has attracted a lot of research interest and has been widely studied. In recent years we witness an increasing interest from the industrial community. This interest is driven by the recent advances in 3D technologies, which enable high precision measurements at an affordable cost. With 3D vision techniques we can conduct advanced manufactured parts inspections and metrology analysis. However, we are not able to detect subsurface defects. This kind of detection is achieved by other techniques, like infrared thermography. In this work, we present a new registration framework for 3D and thermal infrared multimodal fusion. The resulting fused data can be used for advanced 3D inspection in Nondestructive Testing and Evaluation (NDT&E applications. The fusion permits the simultaneous visible surface and subsurface inspections to be conducted in the same process. Experimental tests were conducted with different materials. The obtained results are promising and show how these new techniques can be used efficiently in a combined NDT&E-Metrology analysis of manufactured parts, in areas such as aerospace and automotive.

  8. Multimodal image fusion with SIMS: Preprocessing with image registration.

    Science.gov (United States)

    Tarolli, Jay Gage; Bloom, Anna; Winograd, Nicholas

    2016-06-14

    In order to utilize complementary imaging techniques to supply higher resolution data for fusion with secondary ion mass spectrometry (SIMS) chemical images, there are a number of aspects that, if not given proper consideration, could produce results which are easy to misinterpret. One of the most critical aspects is that the two input images must be of the same exact analysis area. With the desire to explore new higher resolution data sources that exists outside of the mass spectrometer, this requirement becomes even more important. To ensure that two input images are of the same region, an implementation of the insight segmentation and registration toolkit (ITK) was developed to act as a preprocessing step before performing image fusion. This implementation of ITK allows for several degrees of movement between two input images to be accounted for, including translation, rotation, and scale transforms. First, the implementation was confirmed to accurately register two multimodal images by supplying a known transform. Once validated, two model systems, a copper mesh grid and a group of RAW 264.7 cells, were used to demonstrate the use of the ITK implementation to register a SIMS image with a microscopy image for the purpose of performing image fusion.

  9. Multimodal acquisition of articulatory data: Geometrical and temporal registration.

    Science.gov (United States)

    Aron, Michaël; Berger, Marie-Odile; Kerrien, Erwan; Wrobel-Dautcourt, Brigitte; Potard, Blaise; Laprie, Yves

    2016-02-01

    Acquisition of dynamic articulatory data is of major importance for studying speech production. It turns out that one technique alone often is not enough to get a correct coverage of the whole vocal tract at a sufficient sampling rate. Ultrasound (US) imaging has been proposed as a good acquisition technique for the tongue surface because it offers a good temporal sampling, does not alter speech production, is cheap, and is widely available. However, it cannot be used alone and this paper describes a multimodal acquisition system which uses electromagnetography sensors to locate the US probe. The paper particularly focuses on the calibration of the US modality which is the key point of the system. This approach enables US data to be merged with other data. The use of the system is illustrated via an experiment consisting of measuring the minimal tongue to palate distance in order to evaluate and design Magnetic Resonance Imaging protocols well suited for the acquisition of three-dimensional images of the vocal tract. Compared to manual registration of acquisition modalities which is often used in acquisition of articulatory data, the approach presented relies on automatic techniques well founded from geometrical and mathematical points of view.

  10. The edge-driven dual-bootstrap iterative closest point algorithm for multimodal retinal image registration

    Science.gov (United States)

    Tsai, Chia-Ling; Li, Chun-Yi; Yang, Gehua

    2008-03-01

    Red-free (RF) fundus retinal images and fluorescein angiogram (FA) sequence are often captured from an eye for diagnosis and treatment of abnormalities of the retina. With the aid of multimodal image registration, physicians can combine information to make accurate surgical planning and quantitative judgment of the progression of a disease. The goal of our work is to jointly align the RF images with the FA sequence of the same eye in a common reference space. Our work is inspired by Generalized Dual-Bootstrap Iterative Closest Point (GDB-ICP), which is a fully-automatic, feature-based method using structural similarity. GDB-ICP rank-orders Lowe keypoint matches and refines the transformation computed from each keypoint match in succession. Albeit GDB-ICP has been shown robust to image pairs with illumination difference, the performance is not satisfactory for multimodal and some FA pairs which exhibit substantial non-linear illumination changes. Our algorithm, named Edge-Driven DBICP, modifies generation of keypoint matches for initialization by extracting the Lowe keypoints from the gradient magnitude image, and enriching the keypoint descriptor with global-shape context using the edge points. Our dataset consists of 61 randomly selected pathological sequences, each on average having two RF and 13 FA images. There are total of 4985 image pairs, out of which 1323 are multimodal pairs. Edge-Driven DBICP successfully registered 93% of all pairs, and 82% multimodal pairs, whereas GDB-ICP registered 80% and 40%, respectively. Regarding registration of the whole image sequence in a common reference space, Edge-Driven DBICP succeeded in 60 sequences, which is 26% improvement over GDB-ICP.

  11. A partial intensity invariant feature descriptor for multimodal retinal image registration.

    Science.gov (United States)

    Chen, Jian; Tian, Jie; Lee, Noah; Zheng, Jian; Smith, R Theodore; Laine, Andrew F

    2010-07-01

    Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency.

  12. A hybrid genetic algorithm for multi-modal image registration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU (High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tumor is very important. An automatic system is developed for registering pre-operative MR images with intra-operative ultrasound images based on the vessels visible in both of the modalities. When the MR and the ultrasound images are aligned, the centerline points of the vessels in the MR image will align with bright intensities in the ultrasound image. The method applies an optimization strategy combining the genetic algorithm with the conjugated gradients algorithm to minimize the objective function. It provides a feasible way of determining the global solution and makes the method robust to local maximum and insensitive to initial position. Two experiments were designed to evaluate the method, and the results show that our method has better registration accuracy and convergence rate than the other two classic algorithms.

  13. Multimodal registration of the face for computer-aided maxillofacial surgery

    CERN Document Server

    Leloup, T; Payan, Y; Leloup, Thierry; Chabanas, Matthieu; Payan, Yohan

    2006-01-01

    This paper introduces a multimodal elastic registration algorithm applied to match a generic Finite Element model of the face to several patients morphologies. The method is automatic and appears to be accurate and robust. The computing time is compatible with clinical practice constraints.

  14. Rapid registration of multimodal images using a reduced number of voxels

    Science.gov (United States)

    Huang, Xishi; Hill, Nicholas A.; Ren, Jing; Peters, Terry M.

    2006-03-01

    Rapid registration of multimodal cardiac images can improve image-guided cardiac surgeries and cardiac disease diagnosis. While mutual information (MI) is arguably the most suitable registration technique, this method is too slow to converge for real time cardiac image registration; moreover, correct registration may not coincide with a global or even local maximum of MI. These limitations become quite evident when registering three-dimensional (3D) ultrasound (US) images and dynamic 3D magnetic resonance (MR) images of the beating heart. To overcome these issues, we present a registration method that uses a reduced number of voxels, while retaining adequate registration accuracy. Prior to registration we preprocess the images such that only the most representative anatomical features are depicted. By selecting samples from preprocessed images, our method dramatically speeds up the registration process, as well as ensuring correct registration. We validated this registration method for registering dynamic US and MR images of the beating heart of a volunteer. Experimental results on in vivo cardiac images demonstrate significant improvements in registration speed without compromising registration accuracy. A second validation study was performed registering US and computed tomography (CT) images of a rib cage phantom. Two similarity metrics, MI and normalized crosscorrelation (NCC) were used to register the image sets. Experimental results on the rib cage phantom indicate that our method can achieve adequate registration accuracy within 10% of the computation time of conventional registration methods. We believe this method has the potential to facilitate intra-operative image fusion for minimally invasive cardio-thoracic surgical navigation.

  15. Spatial Information Based Medical Image Registration using Mutual Information

    Directory of Open Access Journals (Sweden)

    Benzheng Wei

    2011-06-01

    Full Text Available Image registration is a valuable technique for medical diagnosis and treatment. Due to the inferiority of image registration using maximum mutual information, a new hybrid method of multimodality medical image registration based on mutual information of spatial information is proposed. The new measure that combines mutual information, spatial information and feature characteristics, is proposed. Edge points are used as features, obtained from a morphology gradient detector. Feature characteristics like location, edge strength and orientation are taken into account to compute a joint probability distribution of corresponding edge points in two images. Mutual information based on this function is minimized to find the best alignment parameters. Finally, the translation parameters are calculated by using a modified Particle Swarm Optimization (MPSO algorithm. The experimental results demonstrate the effectiveness of the proposed registration scheme.

  16. Articulated registration: elastic registration based on a wire-model

    Science.gov (United States)

    Martin-Fernandez, Miguel A.; Munyoz-Moreno, Emma; Martin-Fernandez, Marcos; Alberola-Lopez, Carlos

    2005-04-01

    In this paper we propose a new method of elastic registration of anatomical structures that bears an inner skeleton, such as the knee, hand or spine. Such a method has to deal with great degrees of variability, specially for the case of inter-subject registration; but even for the intra-subject case the degree of variability of images will be large since the structures we bear in mind are articulated. Rigid registration methods are clearly inappropriate for this problem, and well-known elastic methods do not usually incorporate the restriction of maintaining long skeletal structures straight. A new method is therefore needed to deal with such a situation; we call this new method "articulated registration". The inner bone skeleton is modeled with a wire model, where wires are drawn by connecting landmarks located in the main joints of the skeletal structure to be registered (long bones). The main feature of our registration method is that within the bone axis (specifically, where the wires are) an exact registration is guaranteed, while for the remaining image points an elastic registration is carried out based on a distance transform (with respect to the model wires); this causes the registration on long bones to be affine to all practical purposes, while the registration of soft tissue -- far from the bones -- is elastic. As a proof-of-concept of this method we describe the registration of hands on radiographs.

  17. Multimode waveguide based directional coupler

    Science.gov (United States)

    Ahmed, Rajib; Rifat, Ahmmed A.; Sabouri, Aydin; Al-Qattan, Bader; Essa, Khamis; Butt, Haider

    2016-07-01

    The Silicon-on-Insulator (SOI) based platform overcomes limitations of the previous copper and fiber based technologies. Due to its high index difference, SOI waveguide (WG) and directional couplers (DC) are widely used for high speed optical networks and hybrid Electro-Optical inter-connections; TE00-TE01, TE00-TE00 and TM00-TM00 SOI direction couplers are designed with symmetrical and asymmetrical configurations to couple with TE00, TE01 and TM00 in a multi-mode semi-triangular ring-resonator configuration which will be applicable for multi-analyte sensing. Couplers are designed with effective index method and their structural parameters are optimized with consideration to coupler length, wavelength and polarization dependence. Lastly, performance of the couplers are analyzed in terms of cross-talk, mode overlap factor, coupling length and coupling efficiency.

  18. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Verhaart, René F. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC University Medical Center Cancer Institute, Rotterdam (Netherlands); Angeloni, Francesco [Istituto di Ricovero e Cura a Carattere Scientifico Foundation SDN for Research and High Education in Nuclear Diagnostics, Naples (Italy); Lugt, Aad van der [Department of Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Niessen, Wiro J. [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Veenland, Jifke F. [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Paulides, Margarethus M. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC University Medical Center Cancer Institute, Rotterdam (Netherlands); Walsum, Theo van [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands)

    2014-09-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealistic deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.

  19. Registration Method for CT-MR Image Based on Mutual Information

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Medical image registration is important in many medical applications. Registration method based on maximization of mutual information of voxel intensities is one of the most popular methods for 3-D multi-modality medical image registration. Generally, the optimization process is easily trapped in local maximum, resulting in wrong registration results. In order to find the correct optimum, a new multi-resolution approach for brain image registration based on normalized mutual information is proposed. In this method, to eliminate the effect of local optima, multi-scale wavelet transformation is adopted to extract the image edge features. Then the feature images are registered,and the result at this level is taken as the initial estimate for the registration of the original images.Three-dimensional volumes are used to test the algorithm. Experimental results show that the registration strategy proposed is a robust and efficient method which can reach sub-voxel accuracy and improve the optimization speed.

  20. Registration Based Retrieval using Texture Measures

    Directory of Open Access Journals (Sweden)

    Swarnambiga AYYACHAMY

    2015-09-01

    Full Text Available The aim of the study presented in this manuscript was to develop and analyze registration based retrieval of medical image using texture measures. Three main methods are implemented in this work. The first method includes Affine transformation, Demons and Affine with B-spline. The second method implemented is medical image retrieval system using content based medical image retrieval. GLCM, LBP and GLCM with LBP are used for texture based retrieval. Shape based retrieval is processed using canny edge with the Otsu method. From registration based retrieval, Affine with B-Spline performs well and produces best result by increasing the retrieval rate and the next better performances are given by Demons and Affine registration. The results showed that the best results for registration based retrieval are given by Affine with B-Spline registration based retrieval using GLCM+LBP with (100/50. Based on more relevant retrieved images, Brain (100/50 and Knee (100/50 observed to have more relevant retrieved images.

  1. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    Directory of Open Access Journals (Sweden)

    Hengkai Guo

    Full Text Available Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US and magnetic resonance (MR. Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  2. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Soto, J G; Antonio-Lopez, J E; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); May-Arrioja, D A, E-mail: darrioja@uat.edu.mx

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25 deg. C to 375 deg. C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  3. MUTUAL INFORMATION BASED 3D NON-RIGID REGISTRATION OF CT/MR ABDOMEN IMAGES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mutual information based 3D non-rigid registration approach was proposed for the registration of deformable CT/MR body abdomen images. The Parzen Windows Density Estimation (PWDE) method is adopted to calculate the mutual information between the two modals of CT and MRI abdomen images. By maximizing MI between the CT and MR volume images, the overlapping part of them reaches the biggest, which means that the two body images of CT and MR matches best to each other. Visible Human Project (VHP) Male abdomen CT and MRI Data are used as experimental data sets. The experimental results indicate that this approach of non-rigid 3D registration of CT/MR body abdominal images can be achieved effectively and automatically, without any prior processing procedures such as segmentation and feature extraction, but has a main drawback of very long computation time. Key words: medical image registration; multi-modality; mutual information; non-rigid; Parzen window density estimation

  4. Sub-Pixel Multimodal Image Registration by Human Interaction%基于人工交互的多模态图像亚像素配准

    Institute of Scientific and Technical Information of China (English)

    金宏彬; 范春晓; 李永; 杨仁杰

    2015-01-01

    Image registration based on key-point mappings usually provides alignment of integer-pixel precision. Sub-pixel registration is of great challenge to the technique exploiting key-point mappings. The authors proposed an interactive algorithm to address the sub-pixel registration problem. The proposed al-gorithm comprises two steps,the first step is to input control points and is getting a rough registration by using projection transform and linear least square algorithm, the second step is to adjust the control points with sub-pixel step. The average distance of control points was applied to quantitatively measure registra-tion quality. The evaluation method combined with subjective and objective judgment was used. Experi-ment shows that the proposed algorithm can achieve sub-pixel registration result. The performance will be more reliable than other registration technique using scale invariant feature transform and partial intensity invariant feature descriptor, and also the performance of multimodal image registration gets significantly improved.%基于特征点自动匹配的图像配准技术通常无法实现亚像素精度的配准,在多模态图像集上甚至无法完成整像素配准。为了提高多模态图像配准精度,对亚像素图像配准技术进行研究,提出了一种基于人工交互的适用于多模态图像的亚像素配准算法。对待配准图像和参考图像输入控制点,利用投影变换和最小线性平方差算法进行粗配准,根据双边平均配准误差对控制点进行亚像素调整,从而达到精确配准。定性与定量实验结果表明,相比基于尺度不变特征和局部强度不变的特征描述符配准算法,该算法具备更高的配准精度,可显著提高多模态图像配准性能。

  5. Phase Correlation Based Iris Image Registration Model

    Institute of Scientific and Technical Information of China (English)

    Jun-Zhou Huang; Tie-Niu Tan; Li Ma; Yun-Hong Wang

    2005-01-01

    Iris recognition is one of the most reliable personal identification methods. In iris recognition systems, image registration is an important component. Accurately registering iris images leads to higher recognition rate for an iris recognition system. This paper proposes a phase correlation based method for iris image registration with sub-pixel accuracy.Compared with existing methods, it is insensitive to image intensity and can compensate to a certain extent the non-linear iris deformation caused by pupil movement. Experimental results show that the proposed algorithm has an encouraging performance.

  6. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    2010-01-01

    on their teaching and learning situations. The choices they make involve e-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very......In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal' communication, which should not be confused with the term ‘multimedia'. While multimedia...... useful for developing pedagogies where a synergy of different symbol systems facilitates new and flexible learning situations that can meet different needs of different learners. The present paper includes an example from a Danish university program...

  7. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    and learning situations. The choices they make involve E-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very useful......In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal’ communication, which should not be confused with the term ‘multimedia’. While multimedia...... for developing pedagogies where a synergy of different symbol systems facilitates new and flexible learning situations that can meet different needs of different learners. The present paper includes an example from a Danish university program....

  8. Joint Sparsity-Based Robust Multimodal Biometrics Recognition

    Science.gov (United States)

    2012-10-07

    joint sparsity-based algorithm for multimodal biometrics recognition. Our method is based on the well known regu- larized regression method, multi-task...multivariate Lasso [7, 8]. Figure. 1 presents an overview of our method. This paper makes the following contributions: – We present a robust feature...reduces to the conventional Lasso [10] when D = 1 and d = 1. For D = 1 (1), it is equivalent to multivariate Lasso [7]. 2.2 Robust Multimodal

  9. Canny edge-based deformable image registration

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  10. Rapid multi-modality preregistration based on SIFT descriptor.

    Science.gov (United States)

    Chen, Jian; Tian, Jie

    2006-01-01

    This paper describes the scale invariant feature transform (SIFT) method for rapid preregistration of medical image. This technique originates from Lowe's method wherein preregistration is achieved by matching the corresponding keypoints between two images. The computational complexity has been reduced when we applied SIFT preregistration method before refined registration due to its O(n) exponential calculations. The features of SIFT are highly distinctive and invariant to image scaling and rotation, and partially invariant to change in illumination and contrast, it is robust and repeatable for cursorily matching two images. We also altered the descriptor so our method can deal with multimodality preregistration.

  11. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  12. A New Extended Projection-Based Image Registration Algorithm

    Institute of Scientific and Technical Information of China (English)

    CHENHuafu; YAODezhong

    2005-01-01

    In the presence of fixed -pattern noise, the projection-based image registration technique is effective but its implementation is only confined to translation registration. Presented in this paper is an extended projectionbased image registration technique in which, by rearranging the projections of images, the image registration is implemented in two steps: rotation and translation, to accomplish two-dimensional (2-D) image registration. Thisapproach transforms the general 2-D optimization procedure into an 1-D projection optimization, thus considerably reducing the amount of computation. The validity ofthe new method is testified by simulation experiment.

  13. Efficient Variational Approach to Multimodal Registration of Anatomical and Functional Intra-Patient Tumorous Brain Data.

    Science.gov (United States)

    Legaz-Aparicio, Alvar-Ginés; Verdú-Monedero, Rafael; Larrey-Ruiz, Jorge; Morales-Sánchez, Juan; López-Mir, Fernando; Naranjo, Valery; Bernabéu, Ángela

    2016-11-29

    This paper addresses the functional localization of intra-patient images of the brain. Functional images of the brain (fMRI and PET) provide information about brain function and metabolism whereas anatomical images (MRI and CT) supply the localization of structures with high spatial resolution. The goal is to find the geometric correspondence between functional and anatomical images in order to complement and fuse the information provided by each imaging modality. The proposed approach is based on a variational formulation of the image registration problem in the frequency domain. It has been implemented as a C/C[Formula: see text] library which is invoked from a GUI. This interface is routinely used in the clinical setting by physicians for research purposes (Inscanner, Alicante, Spain), and may be used as well for diagnosis and surgical planning. The registration of anatomic and functional intra-patient images of the brain makes it possible to obtain a geometric correspondence which allows for the localization of the functional processes that occur in the brain. Through 18 clinical experiments, it has been demonstrated how the proposed approach outperforms popular state-of-the-art registration methods in terms of efficiency, information theory-based measures (such as mutual information) and actual registration error (distance in space of corresponding landmarks).

  14. Three-dimensional registration methods for multi-modal magnetic resonance neuroimages

    CERN Document Server

    Triantafyllou, C

    2001-01-01

    automatically such measures in a reliable way. possible in principle, although the true accuracy of the method depends on the type of geometrical distortions present. These results also reveal that this class of algorithm is unable to solve more localised variations and higher order magnetic field distortions between the images. These facts motivate the development of a high-dimensional 3-D registration method capable of effecting a one-to-one correspondence by capturing the localised differences. This method was seen to account not only for topological differences but also for non-linear deformations in size and shape. Validation of the algorithm is carried out on geometrical objects, simulated data and real images to ensure that the important requirements for a topologically useful mapping; invertibility, smoothness of the deformation field and an almost perfect correspondence can be maintained between two image sequences. Finally, the performance of both approaches is compared by their application to clini...

  15. Multimodal target correction by local bone registration: a PET/CT evaluation.

    Science.gov (United States)

    Oliveira-Santos, Thiago; Weitzel, Thilo; Klaeser, Bernd; Krause, Thomas; Nolte, Lutz-Peter; Weber, Stefan; Reyes, Mauricio

    2010-01-01

    PET/CT guidance for percutaneous interventions allows biopsy of suspicious metabolically active bone lesions even when no morphological correlation is delineable in the CT images. Clinical use of PET/CT guidance with conventional step-by-step technique is time consuming and complicated especially in cases in which the target lesion is not shown in the CT image. Our recently developed multimodal instrument guidance system (IGS) for PET/CT improved this situation. Nevertheless, bone biopsies even with IGS have a trade-off between precision and intervention duration which is proportional to patient and personnel exposure to radiation. As image acquisition and reconstruction of PET may take up to 10 minutes, preferably only one time consuming combined PET/CT acquisition should be needed during an intervention. In case of required additional control images in order to check for possible patient movements/deformations, or to verify the final needle position in the target, only fast CT acquisitions should be performed. However, for precise instrument guidance accounting for patient movement and/or deformation without having a control PET image, it is essential to be able to transfer the position of the target as identified in the original PET/CT to a changed situation as shown in the control CT.

  16. Atlas to patient registration with brain tumor based on a mesh-free method.

    Science.gov (United States)

    Diaz, Idanis; Boulanger, Pierre

    2015-08-01

    Brain atlas to patient registration in the presence of tumors is a challenging task because its presence cause brain structure deformations and introduce large intensity variation between the affected areas. This large dissimilarity affects the results of traditional registration methods based on intensity or shape similarities. In order to overcome these problems, we propose a novel method that brings closer the atlas and the patient's image by simulating the mechanical behavior of brain deformation under a tumor pressure. The proposed method use a mesh-free total Lagrangian Explicit Dynamic algorithm for the simulation of atlas deformation and a data driven model of the tumor using multi-modal MRI segmentation. Experimental results look structurally very similar to the patient's image and outperform two of the top ranking algorithms.

  17. Designing Listening Material Based on Visual Multimodality Compositions

    Directory of Open Access Journals (Sweden)

    Jepri Ali Saiful

    2015-06-01

    Full Text Available In recent decades, multimodality has eventually augmented into the realm of language teaching and learning known as Applied Multimodality. This interdisciplinary approach draws on a multiplicity of communication or representation modes, all of which contribute to meaning. Accordingly, images, colors, and sounds within a text are catalysts to increase an audience’s reception of an idea or concept of the text, that is, a message. Thus, the present article intends to make a contribution to the field of material development in English language teaching. The aim of this article is therefore to provide guidelines for ELT teachers on how to design listening materials based on visual multimodal compositions of image and text. The result is that the compositions of image and text in designing listening materials rests upon three main principles: information value, salience and framing. These principles enable students’ L2 acquisition through listening as proved by recent research.

  18. Intensity-Based Registration for Lung Motion Estimation

    Science.gov (United States)

    Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.

    Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.

  19. Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots

    Science.gov (United States)

    2003-01-01

    Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots Donald Sofge, Magdalena Bugajska, William Adams, Dennis...computing paradigm for integrated distributed artificial intelligence systems on autonomous mobile robots (Figure 1). Figure 1 – CoABS Grid...Architecture for Dynamically Autonomous Mobile Robots The remainder of the paper is organized as follows. Section 2 describes our integrated AI

  20. An agent-based architecture for multimodal interaction

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.

    2001-01-01

    In this paper, an executable generic process model is proposed for combined verbal and non-verbal communication processes and their interaction. The agent-based architecture can be used to create multimodal interaction. The generic process model has been designed, implemented and used to simulate di

  1. Towards a Noninvasive Intracranial Tumor Irradiation Using 3D Optical Imaging and Multimodal Data Registration

    Science.gov (United States)

    Posada, R.; Daul, Ch.; Wolf, D.; Aletti, P.

    2007-01-01

    Conformal radiotherapy (CRT) results in high-precision tumor volume irradiation. In fractioned radiotherapy (FRT), lesions are irradiated in several sessions so that healthy neighbouring tissues are better preserved than when treatment is carried out in one fraction. In the case of intracranial tumors, classical methods of patient positioning in the irradiation machine coordinate system are invasive and only allow for CRT in one irradiation session. This contribution presents a noninvasive positioning method representing a first step towards the combination of CRT and FRT. The 3D data used for the positioning is point clouds spread over the patient's head (CT-data usually acquired during treatment) and points distributed over the patient's face which are acquired with a structured light sensor fixed in the therapy room. The geometrical transformation linking the coordinate systems of the diagnosis device (CT-modality) and the 3D sensor of the therapy room (visible light modality) is obtained by registering the surfaces represented by the two 3D point sets. The geometrical relationship between the coordinate systems of the 3D sensor and the irradiation machine is given by a calibration of the sensor position in the therapy room. The global transformation, computed with the two previous transformations, is sufficient to predict the tumor position in the irradiation machine coordinate system with only the corresponding position in the CT-coordinate system. Results obtained for a phantom show that the mean positioning error of tumors on the treatment machine isocentre is 0.4 mm. Tests performed with human data proved that the registration algorithm is accurate (0.1 mm mean distance between homologous points) and robust even for facial expression changes. PMID:18364992

  2. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    Science.gov (United States)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  3. Event based self-supervised temporal integration for multimodal sensor data.

    Science.gov (United States)

    Barakova, Emilia I; Lourens, Tino

    2005-06-01

    A method for synergistic integration of multimodal sensor data is proposed in this paper. This method is based on two aspects of the integration process: (1) achieving synergistic integration of two or more sensory modalities, and (2) fusing the various information streams at particular moments during processing. Inspired by psychophysical experiments, we propose a self-supervised learning method for achieving synergy with combined representations. Evidence from temporal registration and binding experiments indicates that different cues are processed individually at specific time intervals. Therefore, an event-based temporal co-occurrence principle is proposed for the integration process. This integration method was applied to a mobile robot exploring unfamiliar environments. Simulations showed that integration enhanced route recognition with many perceptual similarities; moreover, they indicate that a perceptual hierarchy of knowledge about instant movement contributes significantly to short-term navigation, but that visual perceptions have bigger impact over longer intervals.

  4. Geometrical analysis of registration errors in point-based rigid-body registration using invariants.

    Science.gov (United States)

    Shamir, Reuben R; Joskowicz, Leo

    2011-02-01

    Point-based rigid registration is the method of choice for aligning medical datasets in diagnostic and image-guided surgery systems. The most clinically relevant localization error measure is the Target Registration Error (TRE), which is the distance between the image-defined target and the corresponding target defined on another image or on the physical anatomy after registration. The TRE directly depends on the Fiducial Localization Error (FLE), which is the discrepancy between the selected and the actual (unknown) fiducial locations. Since the actual locations of targets usually cannot be measured after registration, the TRE is often estimated by the Fiducial Registration Error (FRE), which is the RMS distance between the fiducials in both datasets after registration, or with Fitzpatrick's TRE (FTRE) formula. However, low FRE-TRE and FTRE-TRE correlations have been reported in clinical practice and in theoretical studies. In this article, we show that for realistic FLE classes, the TRE and the FRE are uncorrelated, regardless of the target location and the number of fiducials and their configuration, and regardless of the FLE magnitude distribution. We use a geometrical approach and classical invariant theory to model the FLE and derive its relation to the TRE and FRE values. We show that, for these FLE classes, the FTRE and TRE are also uncorrelated. Finally, we show with simulations on clinical data that the FRE-TRE correlation is low also in the neighborhood of the FLE-FRE invariant classes. Consequently, and contrary to common practice, the FRE and FTRE may not always be used as surrogates for the TRE.

  5. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  6. Atlas-Based Prostate Segmentation Using an Hybrid Registration

    CERN Document Server

    Martin, Sébastien; Troccaz, Jocelyne

    2008-01-01

    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.

  7. An efficient strategy based on an individualized selection of registration methods. Application to the coregistration of MR and SPECT images in neuro-oncology

    Science.gov (United States)

    Tacchella, Jean-Marc; Roullot, Elodie; Lefort, Muriel; Cohen, Mike-Ely; Guillevin, Rémy; Petrirena, Grégorio; Delattre, Jean-Yves; Habert, Marie-Odile; Yeni, Nathanaëlle; Kas, Aurélie; Frouin, Frédérique

    2014-11-01

    An efficient registration strategy is described that aims to help solve delicate medical imaging registration problems. It consists of running several registration methods for each dataset and selecting the best one for each specific dataset, according to an evaluation criterion. Finally, the quality of the registration results, obtained with the best method, is visually scored by an expert as excellent, correct or poor. The strategy was applied to coregister Technetium-99m Sestamibi SPECT and MRI data in the framework of a follow-up protocol in patients with high grade gliomas receiving antiangiogenic therapy. To adapt the strategy to this clinical context, a robust semi-automatic evaluation criterion based on the physiological uptake of the Sestamibi tracer was defined. A panel of eighteen multimodal registration algorithms issued from BrainVisa, SPM or AIR software environments was systematically applied to the clinical database composed of sixty-two datasets. According to the expert visual validation, this new strategy provides 85% excellent registrations, 12% correct ones and only 3% poor ones. These results compare favorably to the ones obtained by the globally most efficient registration method over the whole database, for which only 61% of excellent registration results have been reported. Thus the registration strategy in its current implementation proves to be suitable for clinical application.

  8. Automatic Image Registration Algorithm Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LIU Qiong; NI Guo-qiang

    2006-01-01

    An automatic image registration approach based on wavelet transform is proposed. This proposed method utilizes multiscale wavelet transform to extract feature points. A coarse-to-fine feature matching method is utilized in the feature matching phase. A two-way matching method based on cross-correlation to get candidate point pairs and a fine matching based on support strength combine to form the matching algorithm. At last, based on an affine transformation model, the parameters are iteratively refined by using the least-squares estimation approach. Experimental results have verified that the proposed algorithm can realize automatic registration of various kinds of images rapidly and effectively.

  9. Multimodal sensing-based camera applications

    Science.gov (United States)

    Bordallo López, Miguel; Hannuksela, Jari; Silvén, J. Olli; Vehviläinen, Markku

    2011-02-01

    The increased sensing and computing capabilities of mobile devices can provide for enhanced mobile user experience. Integrating the data from different sensors offers a way to improve application performance in camera-based applications. A key advantage of using cameras as an input modality is that it enables recognizing the context. Therefore, computer vision has been traditionally utilized in user interfaces to observe and automatically detect the user actions. The imaging applications can also make use of various sensors for improving the interactivity and the robustness of the system. In this context, two applications fusing the sensor data with the results obtained from video analysis have been implemented on a Nokia Nseries mobile device. The first solution is a real-time user interface that can be used for browsing large images. The solution enables the display to be controlled by the motion of the user's hand using the built-in sensors as complementary information. The second application is a real-time panorama builder that uses the device's accelerometers to improve the overall quality, providing also instructions during the capture. The experiments show that fusing the sensor data improves camera-based applications especially when the conditions are not optimal for approaches using camera data alone.

  10. Audiovisual Quality Fusion based on Relative Multimodal Complexity

    DEFF Research Database (Denmark)

    You, Junyong; Korhonen, Jari; Reiter, Ulrich

    2011-01-01

    In multimodal presentations the perceived audiovisual quality assessment is significantly influenced by the content of both the audio and visual tracks. Based on our earlier subjective quality test for finding the optimal trade-off between audio and video quality, this paper proposes a novel method...... designed auditory and visual features, the relative complexity analysis model across sensory modalities is proposed for deriving the fusion parameter. Experimental results have demonstrated that the content adaptive fusion parameter can improve the prediction accuracy of objective audiovisual quality...

  11. Spatial Circular Granulation Method Based on Multimodal Finger Feature

    Directory of Open Access Journals (Sweden)

    Jinfeng Yang

    2016-01-01

    Full Text Available Finger-based personal identification has become an active research topic in recent years because of its high user acceptance and convenience. How to reliably and effectively fuse the multimodal finger features together, however, has still been a challenging problem in practice. In this paper, viewing the finger trait as the combination of a fingerprint, finger vein, and finger-knuckle-print, a new multimodal finger feature recognition scheme is proposed based on granular computing. First, the ridge texture features of FP, FV, and FKP are extracted using Gabor Ordinal Measures (GOM. Second, combining the three-modal GOM feature maps in a color-based manner, we then constitute the original feature object set of a finger. To represent finger features effectively, they are granulated at three levels of feature granules (FGs in a bottom-up manner based on spatial circular granulation. In order to test the performance of the multilevel FGs, a top-down matching method is proposed. Experimental results show that the proposed method achieves higher accuracy recognition rate in finger feature recognition.

  12. Multimodal MRI Neuroimaging with Motion Compensation Based on Particle Filtering

    CERN Document Server

    Chen, Yu-Hui; Kim, Boklye; Meyer, Charles; Hero, Alfred

    2015-01-01

    Head movement during scanning impedes activation detection in fMRI studies. Head motion in fMRI acquired using slice-based Echo Planar Imaging (EPI) can be estimated and compensated by aligning the images onto a reference volume through image registration. However, registering EPI images volume to volume fails to consider head motion between slices, which may lead to severely biased head motion estimates. Slice-to-volume registration can be used to estimate motion parameters for each slice by more accurately representing the image acquisition sequence. However, accurate slice to volume mapping is dependent on the information content of the slices: middle slices are information rich, while edge slides are information poor and more prone to distortion. In this work, we propose a Gaussian particle filter based head motion tracking algorithm to reduce the image misregistration errors. The algorithm uses a dynamic state space model of head motion with an observation equation that models continuous slice acquisitio...

  13. Image registration based on matrix perturbation analysis using spectral graph

    Institute of Scientific and Technical Information of China (English)

    Chengcai Leng; Zheng Tian; Jing Li; Mingtao Ding

    2009-01-01

    @@ We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration.It is based on matrix perturbation analysis on the spectral graph.The contribution may be divided into three parts.Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model.Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features.Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration.Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.

  14. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    Science.gov (United States)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  15. Multimodal Biometrics Based on Fingerprint and Finger Vein

    Directory of Open Access Journals (Sweden)

    Anand Viswanathan

    2014-07-01

    Full Text Available Biometric systems identify a person through physical traits or verify his/her identity through automatic processes. Various systems were used over years including systems like fingerprint, iris, facial images, hand geometry and speaker recognition. For biometric systems successful implementation, it has to address issues like efficiency, accuracy, applicability, robustness and universality. Single modality based recognition verifications are not robust while combining information from different biometric modalities ensures better performance. Multimodal biometric systems use multiple biometrics and integrate information for identification. It compensates unimodal biometric systems limitations. This study considers multimodal biometrics based on fingerprint and finger veins. Gabor features are extracted from finger vein using Gabor filter with orientation of 0, 15, 45, 60 and 75°, respectively. For fingerprint images, energy coefficients are attained using wavelet packet tree. Both features are normalized using min max normalization and fused with concatenation. Feature selection is through PCA and kernel PCA. Classification is achieved through KNN, Naïve Bayes and RBF Neural Network Classifiers.

  16. PCA-based groupwise image registration for quantitative MRI.

    Science.gov (United States)

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  17. Multi-mode reliability-based design of horizontal curves.

    Science.gov (United States)

    Essa, Mohamed; Sayed, Tarek; Hussein, Mohamed

    2016-08-01

    Recently, reliability analysis has been advocated as an effective approach to account for uncertainty in the geometric design process and to evaluate the risk associated with a particular design. In this approach, a risk measure (e.g. probability of noncompliance) is calculated to represent the probability that a specific design would not meet standard requirements. The majority of previous applications of reliability analysis in geometric design focused on evaluating the probability of noncompliance for only one mode of noncompliance such as insufficient sight distance. However, in many design situations, more than one mode of noncompliance may be present (e.g. insufficient sight distance and vehicle skidding at horizontal curves). In these situations, utilizing a multi-mode reliability approach that considers more than one failure (noncompliance) mode is required. The main objective of this paper is to demonstrate the application of multi-mode (system) reliability analysis to the design of horizontal curves. The process is demonstrated by a case study of Sea-to-Sky Highway located between Vancouver and Whistler, in southern British Columbia, Canada. Two noncompliance modes were considered: insufficient sight distance and vehicle skidding. The results show the importance of accounting for several noncompliance modes in the reliability model. The system reliability concept could be used in future studies to calibrate the design of various design elements in order to achieve consistent safety levels based on all possible modes of noncompliance.

  18. Multimodal biometrics system based on face profile and ear

    Science.gov (United States)

    Youssef, Iman S.; Abaza, Ayman A.; Rasmy, Mohamed E.; Badawi, Ahmed M.

    2014-05-01

    Face recognition from a side profile view, has recently received significant attention in the literature. Even though current face recognition systems have reached a certain level of maturity at angles up to 30 degrees, their success is still limited with side profile angles. This paper presents an efficient technique for the fusion of face profile and ear biometrics. We propose to use a Block-based Local Binary Pattern (LBP) to generate the features for recognition from face profile images and ear images. These feature distributions are then fused at the score level using simple mean rule. Experimental results show that the proposed multimodal system can achieve 97:98% recognition performance, compared to unimodal biometrics of face profile 96.76%, and unimodal biometrics of ear 96.95%, details in the Experimental Results Section. Comparisons with other multimodal systems used in the literature, like Principal Component Analysis (PCA), Full-space Linear Discriminant Analysis (FSLDA) and Kernel Fisher discriminant analysis (KFDA), are presented in the Experimental Results Section.

  19. Surface-based registration of liver in ultrasound and CT

    Science.gov (United States)

    Dehghan, Ehsan; Lu, Kongkuo; Yan, Pingkun; Tahmasebi, Amir; Xu, Sheng; Wood, Bradford J.; Abi-Jaoudeh, Nadine; Venkatesan, Aradhana; Kruecker, Jochen

    2015-03-01

    Ultrasound imaging is an attractive modality for real-time image-guided interventions. Fusion of US imaging with a diagnostic imaging modality such as CT shows great potential in minimally invasive applications such as liver biopsy and ablation. However, significantly different representation of liver in US and CT turns this image fusion into a challenging task, in particular if some of the CT scans may be obtained without contrast agents. The liver surface, including the diaphragm immediately adjacent to it, typically appears as a hyper-echoic region in the ultrasound image if the proper imaging window and depth setting are used. The liver surface is also well visualized in both contrast and non-contrast CT scans, thus making the diaphragm or liver surface one of the few attractive common features for registration of US and non-contrast CT. We propose a fusion method based on point-to-volume registration of liver surface segmented in CT to a processed electromagnetically (EM) tracked US volume. In this approach, first, the US image is pre-processed in order to enhance the liver surface features. In addition, non-imaging information from the EM-tracking system is used to initialize and constrain the registration process. We tested our algorithm in comparison with a manually corrected vessel-based registration method using 8 pairs of tracked US and contrast CT volumes. The registration method was able to achieve an average deviation of 12.8mm from the ground truth measured as the root mean square Euclidean distance for control points distributed throughout the US volume. Our results show that if the US image acquisition is optimized for imaging of the diaphragm, high registration success rates are achievable.

  20. A computer-based registration system for geological collections

    NARCIS (Netherlands)

    Germeraad, J.H.; Freudenthal, M.; Boogaard, van den M.; Arps, C.E.S.

    1972-01-01

    The new computer-based registration system, a project of the National Museum of Geology and Mineralogy in the Netherlands, will considerably increase the accessibility of the Museum collection. This greater access is realized by computerisation of the data in great detail, so that an almost unlimite

  1. FULLY AUTOMATIC IMAGE-BASED REGISTRATION OF UNORGANIZED TLS DATA

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2012-09-01

    Full Text Available The estimation of the transformation parameters between different point clouds is still a crucial task as it is usually followed by scene reconstruction, object detection or object recognition. Therefore, the estimates should be as accurate as possible. Recent developments show that it is feasible to utilize both the measured range information and the reflectance information sampled as image, as 2D imagery provides additional information. In this paper, an image-based registration approach for TLS data is presented which consists of two major steps. In the first step, the order of the scans is calculated by checking the similarity of the respective reflectance images via the total number of SIFT correspondences between them. Subsequently, in the second step, for each SIFT correspondence the respective SIFT features are filtered with respect to their reliability concerning the range information and projected to 3D space. Combining the 3D points with 2D observations on a virtual plane yields 3D-to-2D correspondences from which the coarse transformation parameters can be estimated via a RANSAC-based registration scheme including the EPnP algorithm. After this coarse registration, the 3D points are again checked for consistency by using constraints based on the 3D distance, and, finally, the remaining 3D points are used for an ICP-based fine registration. Thus, the proposed methodology provides a fast, reliable, accurate and fully automatic image-based approach for the registration of unorganized point clouds without the need of a priori information about the order of the scans, the presence of regular surfaces or human interaction.

  2. Detection and correction of inconsistency-based errors in non-rigid registration

    Science.gov (United States)

    Gass, Tobias; Szekely, Gabor; Goksel, Orcun

    2014-03-01

    In this paper we present a novel post-processing technique to detect and correct inconsistency-based errors in non-rigid registration. While deformable registration is ubiquitous in medical image computing, assessing its quality has yet been an open problem. We propose a method that predicts local registration errors of existing pairwise registrations between a set of images, while simultaneously estimating corrected registrations. In the solution the error is constrained to be small in areas of high post-registration image similarity, while local registrations are constrained to be consistent between direct and indirect registration paths. The latter is a critical property of an ideal registration process, and has been frequently used to asses the performance of registration algorithms. In our work, the consistency is used as a target criterion, for which we efficiently find a solution using a linear least-squares model on a coarse grid of registration control points. We show experimentally that the local errors estimated by our algorithm correlate strongly with true registration errors in experiments with known, dense ground-truth deformations. Additionally, the estimated corrected registrations consistently improve over the initial registrations in terms of average deformation error or TRE for different registration algorithms on both simulated and clinical data, independent of modality (MRI/CT), dimensionality (2D/3D) and employed primary registration method (demons/Markov-randomfield).

  3. Optical mode switch based on multimode interference couplers

    Science.gov (United States)

    Xiao, Huifu; Deng, Lin; Zhao, Guolin; Liu, Zilong; Meng, Yinghao; Guo, Xiaonan; Liu, Guipeng; Liu, Su; Ding, Jianfeng; Tian, Yonghui

    2017-02-01

    In this paper, we propose an optical mode switch based on two cascaded multimode interference (MMI) couplers. After a fundamental mode divided into two equal-power fundamental modes in the first MMI coupler, the thermo-optic effect is employed to modulate the phase of the two fundamental modes before directed to the next MMI for the purpose of mode switching. By adjusting the electric signals applied to the modulation arms, the proposed device can implement mode switching in three states: (a) one first-order and two fundamental modes simultaneously output, (b) one first-order mode output, and (c) two fundamental modes output. As a result, the simulated excess losses are -0.29 dB, -0.10 dB, and -0.63 dB, respectively.

  4. Validation of a deformable image registration technique for cone beam CT-based dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M. [Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  5. Gradient-Based Approach for Fine Registration of Panorama Images

    Institute of Scientific and Technical Information of China (English)

    Hui Chen

    2004-01-01

    This paper studies the application of gradient-based motion detection techniques (i.e., optical flow methods) for registration of adjacent images taken using a hand-held camera for the purposes of building a panorama. A general 8-parameter model or a more compact 3-parameter model is commonly used for transformation estimation. However, both models are approximations to the real situation when viewpoint position is not absolutely fixed but includes a small translation, and thus distortion and blurring are sometimes present in the final registration results. This paper proposes a new 5-parameter model that shows better result and has less strict requirement on good choice of unknown initial parameters. An analysis of disparity recovery range and its enlargement using Gaussian filter is also given.

  6. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  7. WEB-BASED PERSONAL DIGITAL PHOTO COLLECTIONS: MULTIMODAL RETRIEVAL

    Directory of Open Access Journals (Sweden)

    Nor Azman Ismail

    2010-09-01

    Full Text Available When personal photo collections get large retrieval of specific photos or sets of photos becomes difficult mainly due to the fairly primitive means by which they are organised. Commercial photo handling systems help but often have only elementary searching features. In this paper, we describe an interactive web-based photo retrieval system that enables personal digital photo users to accomplish photo browsing by using multimodal interaction. This system not only enables users to use mouse click input modalities but also speech input modality to browse their personal digital photos in the World Wide Web (WWW environment. The prototype system and it architecture utilise web technology which was built using web programming scripting (JavaScript, XHTML, ASP, XML based mark-up language and image database in order to achieve its objective. All prototype programs and data files including the user’s photo repository, profiles, dialogues, grammars, prompt, and retrieval engine are stored and located in the web server. Our approach also consists of human-computer speech dialogue based on photo browsing of image content by four main categories (Who? What? When? and Where?. Our user study with 20 digital photo users showed that the participants reacted positively to their experience with the system interactions.

  8. The Intersection of Multimodality and Critical Perspective: Multimodality as Subversion

    Science.gov (United States)

    Huang, Shin-ying

    2015-01-01

    This study explores the relevance of multimodality to critical media literacy. It is based on the understanding that communication is intrinsically multimodal and multimodal communication is inherently social and ideological. By analysing two English-language learners' multimodal ensembles, the study reports on how multimodality contributes to a…

  9. [A method for the medical image registration based on the statistics samples averaging distribution theory].

    Science.gov (United States)

    Xu, Peng; Yao, Dezhong; Luo, Fen

    2005-08-01

    The registration method based on mutual information is currently a popular technique for the medical image registration, but the computation for the mutual information is complex and the registration speed is slow. In engineering process, a subsampling technique is taken to accelerate the registration speed at the cost of registration accuracy. In this paper a new method based on statistics sample theory is developed, which has both a higher speed and a higher accuracy as compared with the normal subsampling method, and the simulation results confirm the validity of the new method.

  10. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    OpenAIRE

    Yong Yang; Song Tong; Shuying Huang; Pan Lin

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. ...

  11. A three-dimensional head-and-neck phantom for validation of multimodality deformable image registration for adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Singhrao, Kamal; Kirby, Neil; Pouliot, Jean, E-mail: jpouliot@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2014-12-15

    Purpose: To develop a three-dimensional (3D) deformable head-and-neck (H and N) phantom with realistic tissue contrast for both kilovoltage (kV) and megavoltage (MV) imaging modalities and use it to objectively evaluate deformable image registration (DIR) algorithms. Methods: The phantom represents H and N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kV and MV imaging. The phantom opens along a sagittal midsection to reveal radiotransparent markers, which were used to characterize the phantom deformation. The deformed and undeformed phantoms were scanned with kV and MV imaging modalities. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and MIM software. Results: The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able to represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV–kV registration, MIM produced mean and maximum errors of 1.8 and 11.5 mm, respectively. These same numbers for Velocity were 2.4 and 7.1 mm, respectively. For MV–MV, kV–MV, and kV–MC Velocity produced similar mean and maximum error values. MIM, however, produced gross errors for all three of these scenarios, with maximum errors ranging from 33.4 to 41.6 mm. Conclusions: The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H and N phantom is an effective tool

  12. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-09-01

    Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.

  13. Two new approaches for image registration based on spatial-temporal relationship

    Institute of Scientific and Technical Information of China (English)

    Deng Zhipeng; Yang Jie; Liu Xiaojun

    2005-01-01

    How to improve the probability of registration and precision of localization is a hard problem, which is desiderated to solve. The two basic approaches (normalized cross-correlation and phase correlation) for image registration are analysed, two improved approaches based on spatial-temporal relationship are presented. This method adds the correlation matrix according to the displacements in x- cirection and y- directions, and the registration pose is searched in the added matrix. The method overcomes the shortcoming that the probability of registration decreasing with area increasing owing to geometric distortion, improves the probability and the robustness of registration.

  14. Multimodal interfaces : a framework based on modality appropriateness

    NARCIS (Netherlands)

    Erp, J.B.F. van; Kooi, F.L.; Bronkhorst, A.; Leeuwen, D.L. van; Esch, M. van; Wijngaarden, S.J. van

    2006-01-01

    Our sensory modalities are specialized in perceiving different attributes of an object or event. This fact is the basis of the approach towards multimodal interfaces we describe in this paper. We rated the match between 20 possible information attributes (common in human computer interaction) and th

  15. Projection-slice theorem based 2D-3D registration

    Science.gov (United States)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  16. Rigid-body point-based registration: The distribution of the target registration error when the fiducial registration errors are given.

    Science.gov (United States)

    Seginer, A

    2011-08-01

    Medical guidance systems often employ several data sources using different coordinate systems. In order to map positions from one coordinate system to the other, these guidance systems usually employ rigid-body point-based registration, using pairs of fiducial points: pairs which describe the same physical positions, but in different coordinate systems. The customary test for the quality of the registration is the fiducial registration error (FRE), which is the root-mean-square of the mismatch between the fiducials in each pair (after the registration). The FRE, however, does not give an answer to the question which is usually of interest, and that is the accuracy at a "target" point which is not part of the set of fiducial points. The statistics of the target registration error (TRE) have been studied before and approximate expressions were derived, but those expressions require as input the unknown true fiducial positions. In the present paper, it is proven that by replacing these unknowable true positions with the known measured positions in the expression for mean-square TRE, a higher order approximation is achieved. In other words, it is shown that more accurate estimates are obtained by using less accurate, but available, inputs. Furthermore, in previous approximations FRE and TRE were shown to be statistically independent, whereas here, due to the higher approximation level, it is shown that a slight dependence exists. Thus, the knowledge of FRE can in fact be employed to improve predictions of the TRE statistics. These results are supported by simulations and hold even for fiducial localization error (FLE) distributions with large standard deviations.

  17. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    Directory of Open Access Journals (Sweden)

    Jing-Yu Yang

    2012-04-01

    Full Text Available When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person’s overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA. Specifically, one person’s different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  18. Facial Emotion Recognition Using Context Based Multimodal Approach

    Directory of Open Access Journals (Sweden)

    Priya Metri

    2011-12-01

    Full Text Available Emotions play a crucial role in person to person interaction. In recent years, there has been a growing interest in improving all aspects of interaction between humans and computers. The ability to understand human emotions is desirable for the computer in several applications especially by observing facial expressions. This paper explores a ways of human-computer interaction that enable the computer to be more aware of the user’s emotional expressions we present a approach for the emotion recognition from a facial expression, hand and body posture. Our model uses multimodal emotion recognition system in which we use two different models for facial expression recognition and for hand and body posture recognition and then combining the result of both classifiers using a third classifier which give the resulting emotion . Multimodal system gives more accurate result than a signal or bimodal system

  19. Neural Network-Based Multimode Fiber-Optic Information Transmission

    Science.gov (United States)

    Marusarz, Ronald K.; Sayeh, Mohammad R.

    2001-01-01

    A new technique for transmitting information through multimode fiber-optic cables is presented. This technique sends parallel channels through the fiber-optic cable, thereby greatly improving the data transmission rate compared with that of the current technology, which uses serial data transmission through single-mode fiber. An artificial neural network is employed to decipher the transmitted information from the received speckle pattern. Several different preprocessing algorithms are developed, tested, and evaluated. These algorithms employ average region intensity, distributed individual pixel intensity, and maximum mean-square-difference optimal group selection methods. The effect of modal dispersion on the data rate is analyzed. An increased data transmission rate by a factor of 37 over that of single-mode fibers is realized. When implementing our technique, we can increase the channel capacity of a typical multimode fiber by a factor of 6.

  20. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  1. 3D Elastic Registration of Ultrasound Images Based on Skeleton Feature

    Institute of Scientific and Technical Information of China (English)

    LI Dan-dan; LIU Zhi-Yan; SHEN Yi

    2005-01-01

    In order to eliminate displacement and elastic deformation between images of adjacent frames in course of 3D ultrasonic image reconstruction, elastic registration based on skeleton feature was adopt in this paper. A new automatically skeleton tracking extract algorithm is presented, which can extract connected skeleton to express figure feature. Feature points of connected skeleton are extracted automatically by accounting topical curvature extreme points several times. Initial registration is processed according to barycenter of skeleton. Whereafter, elastic registration based on radial basis function are processed according to feature points of skeleton. Result of example demonstrate that according to traditional rigid registration, elastic registration based on skeleton feature retain natural difference in shape for organ's different part, and eliminate slight elastic deformation between frames caused by image obtained process simultaneously. This algorithm has a high practical value for image registration in course of 3D ultrasound image reconstruction.

  2. A Novel Technique Based on Node Registration in MANETs

    Directory of Open Access Journals (Sweden)

    Rashid Jalal Qureshi

    2012-09-01

    Full Text Available In ad hoc network communication links between the nodes are wireless and each node acts as a router for the other node and packet is forward from one node to other. This type of networks helps in solving challenges and problems that may arise in every day communication. Mobile Ad Hoc Networks is a new field of research and it is particularly useful in situations where network infrastructure is costly. Protecting MANETs from security threats is a challenging task because of the MANETs dynamic topology. Every node in a MANETs is independent and is free to move in any direction, therefore change its connections to other nodes frequently. Due to its decentralized nature different types of attacks can be occur. The aim of this research paper is to investigate different MANETs security attacks and proposed nodes registration based technique by using cryptography functions.

  3. [Research on non-rigid medical image registration algorithm based on SIFT feature extraction].

    Science.gov (United States)

    Wang, Anna; Lu, Dan; Wang, Zhe; Fang, Zhizhen

    2010-08-01

    In allusion to non-rigid registration of medical images, the paper gives a practical feature points matching algorithm--the image registration algorithm based on the scale-invariant features transform (Scale Invariant Feature Transform, SIFT). The algorithm makes use of the image features of translation, rotation and affine transformation invariance in scale space to extract the image feature points. Bidirectional matching algorithm is chosen to establish the matching relations between the images, so the accuracy of image registrations is improved. On this basis, affine transform is chosen to complement the non-rigid registration, and normalized mutual information measure and PSO optimization algorithm are also chosen to optimize the registration process. The experimental results show that the method can achieve better registration results than the method based on mutual information.

  4. A Comparison of FFD-based Nonrigid Registration and AAMs Applied to Myocardial Perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Ersbøll, Bjarne Kjær;

    2006-01-01

    Little work has been done on comparing the performance of statistical model-based approaches and nonrigid registration algorithms. This paper deals with the qualitative and quantitative comparison of active appearance models (AAMs) and a nonrigid registration algorithm based on free......-form deformations (FFDs). AAMs are known to be much faster than nonrigid registration algorithms. On the other hand nonrigid registration algorithms are independent of a training set as required to build an AAM. To obtain a further comparison of the two methods, they are both applied to automatically register multi......-slice myocardial perfusion images. The images are acquired by magnetic resonance imaging, from infarct patients. A registration of these sequences is crucial for clinical practice, which currently is subjected to manual labor. In the paper, the pros and cons of the two registration approaches are discussed...

  5. Non-rigid registration of medical images based on ordinal feature and manifold learning

    Science.gov (United States)

    Li, Qi; Liu, Jin; Zang, Bo

    2015-12-01

    With the rapid development of medical imaging technology, medical image research and application has become a research hotspot. This paper offers a solution to non-rigid registration of medical images based on ordinal feature (OF) and manifold learning. The structural features of medical images are extracted by combining ordinal features with local linear embedding (LLE) to improve the precision and speed of the registration algorithm. A physical model based on manifold learning and optimization search is constructed according to the complicated characteristics of non-rigid registration. The experimental results demonstrate the robustness and applicability of the proposed registration scheme.

  6. Comparison of the accuracy of voxel based registration and surface based registration for 3D assessment of surgical change following orthognathic surgery.

    Directory of Open Access Journals (Sweden)

    Anas Almukhtar

    Full Text Available PURPOSE: Superimposition of two dimensional preoperative and postoperative facial images, including radiographs and photographs, are used to evaluate the surgical changes after orthognathic surgery. Recently, three dimensional (3D imaging has been introduced allowing more accurate analysis of surgical changes. Surface based registration and voxel based registration are commonly used methods for 3D superimposition. The aim of this study was to evaluate and compare the accuracy of the two methods. MATERIALS AND METHODS: Pre-operative and 6 months post-operative cone beam CT scan (CBCT images of 31 patients were randomly selected from the orthognathic patient database at the Dental Hospital and School, University of Glasgow, UK. Voxel based registration was performed on the DICOM images (Digital Imaging Communication in Medicine using Maxilim software (Medicim-Medical Image Computing, Belgium. Surface based registration was performed on the soft and hard tissue 3D models using VRMesh (VirtualGrid, Bellevue City, WA. The accuracy of the superimposition was evaluated by measuring the mean value of the absolute distance between the two 3D image surfaces. The results were statistically analysed using a paired Student t-test, ANOVA with post-hoc Duncan test, a one sample t-test and Pearson correlation coefficient test. RESULTS: The results showed no significant statistical difference between the two superimposition methods (p<0.05. However surface based registration showed a high variability in the mean distances between the corresponding surfaces compared to voxel based registration, especially for soft tissue. Within each method there was a significant difference between superimposition of the soft and hard tissue models. CONCLUSIONS: There were no significant statistical differences between the two registration methods and it was unlikely to have any clinical significance. Voxel based registration was associated with less variability. Registering on

  7. Learning-Based Approaches to Deformable Image Registration

    NARCIS (Netherlands)

    Munzing, S.E.A.

    2014-01-01

    Accurate registration of images is an important and often crucial step in many areas of image processing and analysis, yet it is only used in a small percentage of possible applications. Automated registration methods are not considered to be sufficiently robust to handle complex deformations and lo

  8. Advanced Impulse Detection & Reduction Based on Multimodal Filter

    Directory of Open Access Journals (Sweden)

    P. Thirumurugan

    2014-07-01

    Full Text Available Impulse noises are occurred in the images during image signal acquisition and processing from one location to another location. In this paper, the optimal detector noise filtering algorithm and its efficient hardware architecture is presented. The proposed architecture comprises of orthogonal direction pattern generation, sorter, thresholder, local binary converter, multimodal filter and pixel converter units respectively. The local binary converter unit detects and corrects the noise pixel efficiently using a simple logic circuit. The design possesses only two line memory buffers with very low computational complexity, thereby reducing the hardware cost and appropriate for several real-time applications.

  9. SU-E-T-237: Deformable Image Registration and Deformed Dose Composite for Volumetric Evaluation of Multimodal Gynecological Cancer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Albani, D; Sherertz, T; Ellis, R; Podder, T [Seidman Cancer Center University Hospitals Case Medical Center, Cleveland, OH (United States); Cantley, J [Case Western Reserve University, Cleveland, OH (United States); Herrmann, K [University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH (United States)

    2015-06-15

    Purpose: Radiotherapy plans for patients with cervical cancer treated with EBRT followed by HDR brachytherapy are optimized by constraining dose to organs at risk (OARs). Risk of treatment related toxicities is estimated based on the dose received to the hottest 2cc (D2cc) of the bladder, bowel, rectum, and sigmoid. To account for intrafractional variation in OAR volume and positioning, a dose deformation method is proposed for more accurate evaluation of dose distribution for these patients. Methods: Radiotherapy plans from five patients who received 50.4Gy pelvic EBRT followed by 30Gy in five fractions of HDR brachytherapy, using split-ring and tandem applicators, were retrospectively evaluated using MIM Software version 6.0. Dose accumulation workflows were used for initial deformation of EBRT and HDR planning CTs onto a common HDR planning CT. The Reg Refine tool was applied with user-specified local alignments to refine the deformation. Doses from the deformed images were transferred to the common planning CT. Deformed doses were scaled to the EQD2, following the linear-quadratic BED model (considered α/β ratio for tumor as 10, and 3 for rest of the tissues), and then combined to create the dose composite. MIM composite doses were compared to the clinically-reported plan assessments based upon the American Brachytherapy Society (ABS) guidelines for cervical HDR brachytherapy treatment. Results: Bladder D2cc exhibited significant reduction (−11.4%±3.85%, p< 0.02) when evaluated using MIM deformable dose composition. Differences observed for bowel, rectum, and sigmoid D2cc were not significant (−0.58±7.37%, −4.13%±13.7%, and 8.58%±4.71%, respectively and p>0.05 for all) relative to the calculated values used clinically. Conclusion: Application of deformable dose composite techniques may lead to more accurate total dose reporting and can allow for elevated dose to target structures with the assurance of not exceeding dose to OARs. Further study into

  10. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

    Directory of Open Access Journals (Sweden)

    Xiaogang Du

    2016-01-01

    Full Text Available The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU.

  11. Comprehensive Context Recognizer Based on Multimodal Sensors in a Smartphone

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2012-09-01

    Full Text Available Recent developments in smartphones have increased the processing capabilities and equipped these devices with a number of built-in multimodal sensors, including accelerometers, gyroscopes, GPS interfaces, Wi-Fi access, and proximity sensors. Despite the fact that numerous studies have investigated the development of user-context aware applications using smartphones, these applications are currently only able to recognize simple contexts using a single type of sensor. Therefore, in this work, we introduce a comprehensive approach for context aware applications that utilizes the multimodal sensors in smartphones. The proposed system is not only able to recognize different kinds of contexts with high accuracy, but it is also able to optimize the power consumption since power-hungry sensors can be activated or deactivated at appropriate times. Additionally, the system is able to recognize activities wherever the smartphone is on a human’s body, even when the user is using the phone to make a phone call, manipulate applications, play games, or listen to music. Furthermore, we also present a novel feature selection algorithm for the accelerometer classification module. The proposed feature selection algorithm helps select good features and eliminates bad features, thereby improving the overall accuracy of the accelerometer classifier. Experimental results show that the proposed system can classify eight activities with an accuracy of 92.43%.

  12. Optimal design of a multi-mode interference splitter based on SOI

    Institute of Scientific and Technical Information of China (English)

    SONG Wei; XIE Kang

    2008-01-01

    In this paper,the multimode waveguide lengths and the output port locations of a SOI(silicon on insulator)material-based 1x4 MMI(multimode interference)optical splitter are optimized by means of FD-BPM (finite difference-beam propaga-tion method).An improved 1x4 MMI optical splitter is designed.Compared with an usual optical splitter,a smaller loss O.12dB and a better output port power uniforrnity 0.11dB are achieved for the optical signal transmission.

  13. Photonic Crystal Waveguide Intersection Based on Self-Imaging of Multi-Mode Interference

    Institute of Scientific and Technical Information of China (English)

    DING Wei-Qiang; TANG Dong-Hua; CHEN Li-Xue; ZHAO Yuan; Liu Yan

    2007-01-01

    @@ A new mechanism of intersection formed by two line defect photonic crystal (PC) waveguides are numerically investigated using the finite-difference time-domain method. The results show that the normalized crosstalk is smaller than 10-4; the reflection is smaller than 10-3, and the transmission is larger than 0.999. The authors analyse the physical origins and find that a modified self-imaging process in the intersected multi-mode region is the main reason of the excellent performance. This kind of multi-mode interference based intersection may find potential applications in PC optical circuits.

  14. A refractive index sensor based on taper Michelson interferometer in multimode fiber

    Science.gov (United States)

    Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong

    2016-11-01

    A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.

  15. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    Science.gov (United States)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  16. Quick Web Services Lookup Model Based on Hierarchical Registration

    Institute of Scientific and Technical Information of China (English)

    谢山; 朱国进; 陈家训

    2003-01-01

    Quick Web Services Lookup (Q-WSL) is a new model to registration and lookup of complex services in the Internet. The model is designed to quickly find complex Web services by using hierarchical registration method. The basic concepts of Web services system are introduced and presented, and then the method of hierarchical registration of services is described. In particular, service query document description and service lookup procedure are concentrated, and it addresses how to lookup these services which are registered in the Web services system. Furthermore, an example design and an evaluation of its performance are presented.Specifically, it shows that the using of attributionbased service query document design and contentbased hierarchical registration in Q-WSL allows service requesters to discover needed services more flexibly and rapidly. It is confirmed that Q-WSL is very suitable for Web services system.

  17. A Randomized Trial of a Multimodal Community-Based Prisoner Reentry Program Emphasizing Substance Abuse Treatment

    Science.gov (United States)

    Grommon, Eric; Davidson, William S., II; Bynum, Timothy S.

    2013-01-01

    Prisoner reentry programs continue to be developed and implemented to ease the process of transition into the community and to curtail fiscal pressures. This study describes and provides relapse and recidivism outcome findings related to a randomized trial evaluating a multimodal, community-based reentry program that prioritized substance abuse…

  18. Predicting the Attitude Flow in Dialogue Based on Multi-Modal Speech Cues

    DEFF Research Database (Denmark)

    Juel Henrichsen, Peter; Allwood, Jens

    2013-01-01

    We present our experiments on attitude detection based on annotated multi-modal dialogue data1. Our long-term goal is to establish a computational model able to predict the attitudinal patterns in humanhuman dialogue. We believe, such prediction algorithms are useful tools in the pursuit...

  19. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    Directory of Open Access Journals (Sweden)

    Bogdan Raducanu

    2012-02-01

    Full Text Available Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links’ weights are a measure of the “influence” a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.

  20. Multimodal Detection of Music Performances for Intelligent Emotion Based Lighting

    DEFF Research Database (Denmark)

    Oxholm, Esben; Hansen, Ellen Kathrine; Triantafyllidis, Georgios

    2017-01-01

    is developed and described. Through existing research on music and emotion, as well as on musicians’ body movements related to the emotion they want to convey, a row of cues is defined. This includes amount, speed, fluency and regularity for the visual and level, tempo, articulation and timbre for the auditory......Playing music is about conveying emotions and the lighting at a concert can help do that. However, new and unknown bands that play at smaller venues and bands that don’t have the budget to hire a dedicated light technician have to miss out on lighting that will help them to convey the emotions...... of what they play. In this paper it is investigated whether it is possible or not to develop an intelligent system that through a multimodal input detects the intended emotions of the played music and in realtime adjusts the lighting accordingly. A concept for such an intelligent lighting system...

  1. An ASIFT-Based Local Registration Method for Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiangjun Wang

    2015-05-01

    Full Text Available Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion. Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE and better distribution of feature points.

  2. Modeling the Multicommodity Multimodal Routing Problem with Schedule-Based Services and Carbon Dioxide Emission Costs

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-01-01

    Full Text Available We explore a freight routing problem wherein the aim is to assign optimal routes to move commodities through a multimodal transportation network. This problem belongs to the operational level of service network planning. The following formulation characteristics will be comprehensively considered: (1 multicommodity flow routing; (2 a capacitated multimodal transportation network with schedule-based rail services and time-flexible road services; (3 carbon dioxide emissions consideration; and (4 a generalized costs optimum oriented to customer demands. The specific planning of freight routing is thus defined as a capacitated time-sensitive multicommodity multimodal generalized shortest path problem. To solve this problem systematically, we first establish a node-arc-based mixed integer nonlinear programming model that combines the above formulation characteristics in a comprehensive manner. Then, we develop a linearization method to transform the proposed model into a linear one. Finally, a computational experiment from the Chinese inland container export business is presented to demonstrate the feasibility of the model and linearization method. The computational results indicate that implementing the proposed model and linearization method in the mathematical programming software Lingo can effectively solve the large-scale practical multicommodity multimodal transportation routing problem.

  3. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study.

    Science.gov (United States)

    Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-08-01

    The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.

  4. A Multistage Approach for Image Registration.

    Science.gov (United States)

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  5. Improvement of registration accuracy in accelerated partial breast irradiation using the point-based rigid-body registration algorithm for patients with implanted fiducial markers

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Hirata, Kimiko; Ogura, Masakazu; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Sasaki, Makoto; Fujimoto, Takahiro [Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507 (Japan)

    2015-04-15

    Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were compared between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.

  6. A High-Precision Registration Technology Based on Bundle Adjustment in Structured Light Scanning System

    Directory of Open Access Journals (Sweden)

    Jianying Yuan

    2014-01-01

    Full Text Available The multiview 3D data registration precision will decrease with the increasing number of registrations when measuring a large scale object using structured light scanning. In this paper, we propose a high-precision registration method based on multiple view geometry theory in order to solve this problem. First, a multiview network is constructed during the scanning process. The bundle adjustment method from digital close range photogrammetry is used to optimize the multiview network to obtain high-precision global control points. After that, the 3D data under each local coordinate of each scan are registered with the global control points. The method overcomes the error accumulation in the traditional registration process and reduces the time consumption of the following 3D data global optimization. The multiview 3D scan registration precision and efficiency are increased. Experiments verify the effectiveness of the proposed algorithm.

  7. Redundant Discrete Wavelet Transform Based Super-Resolution Using Sub-Pixel Image Registration

    Science.gov (United States)

    2003-03-01

    AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel L. Ward Second...position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED...O3-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel Lee Ward, B.S.E.E. Second

  8. Non-rigid registration of medical images based on estimation of deformation states

    Science.gov (United States)

    Marami, Bahram; Sirouspour, Shahin; Capson, David W.

    2014-11-01

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.

  9. Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

    Directory of Open Access Journals (Sweden)

    XiangBo Lin

    2013-01-01

    Full Text Available Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic resonance imaging (MRI image data obtained from different individuals. Experimental results show that the proposed method has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration.

  10. Robust and Fast Initialization for Intensity-Based 2D/3D Registration

    Directory of Open Access Journals (Sweden)

    Zhenzhou Shao

    2014-06-01

    Full Text Available Intensity-based 2D/3D registration is a key technique using digitally reconstructed radiographs (DRRs to register the preoperative volume to the patient setup during the operation. Although DRR-based method provides a high accuracy, the small capture range hinders its clinical use. In this paper, such problem was addressed by a robust and fast initialization method using a two-level scheme including automatic tracking-based initialization (Level I and multiresolution estimation based on central-slice theorem and phase correlation (Level II. It provided almost optimal transformation parameters for intensity-based registration. Experiments using a public gold standard data set and a spinal phantom have been conducted. The mean target registration error (mTRE was limited in the range from 2.12 mm to 22.57 mm after tracking-based initialization. The capture range based on level II only was 20.1 mm and the mTRE in this capture range was 2.92 ± 2.21 mm. The intensity-based 2D/3D registration using proposed two-level initialization achieved the successful rate of 84.8% with the average error of 2.36 mm. The experimental results showed that the proposed method yielded the robust and fast initialization for intensity-based registration methods. In a similar way, it can be applied to other registration methods to enable a larger capture range and robust implementation.

  11. Registration algorithm for sensor alignment based on stochastic fuzzy neural network

    Institute of Scientific and Technical Information of China (English)

    Li Jiao; Jing Zhongliang; He Jiaona; Wang An

    2005-01-01

    Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.

  12. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: A feasibility study

    OpenAIRE

    Selmi, Sonia,; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-01-01

    International audience; The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity...

  13. Computer-aided psychotherapy based on multimodal elicitation, estimation and regulation of emotion.

    Science.gov (United States)

    Cosić, Krešimir; Popović, Siniša; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Kovač, Bernard; Jakovljević, Miro

    2013-09-01

    Contemporary psychiatry is looking at affective sciences to understand human behavior, cognition and the mind in health and disease. Since it has been recognized that emotions have a pivotal role for the human mind, an ever increasing number of laboratories and research centers are interested in affective sciences, affective neuroscience, affective psychology and affective psychopathology. Therefore, this paper presents multidisciplinary research results of Laboratory for Interactive Simulation System at Faculty of Electrical Engineering and Computing, University of Zagreb in the stress resilience. Patient's distortion in emotional processing of multimodal input stimuli is predominantly consequence of his/her cognitive deficit which is result of their individual mental health disorders. These emotional distortions in patient's multimodal physiological, facial, acoustic, and linguistic features related to presented stimulation can be used as indicator of patient's mental illness. Real-time processing and analysis of patient's multimodal response related to annotated input stimuli is based on appropriate machine learning methods from computer science. Comprehensive longitudinal multimodal analysis of patient's emotion, mood, feelings, attention, motivation, decision-making, and working memory in synchronization with multimodal stimuli provides extremely valuable big database for data mining, machine learning and machine reasoning. Presented multimedia stimuli sequence includes personalized images, movies and sounds, as well as semantically congruent narratives. Simultaneously, with stimuli presentation patient provides subjective emotional ratings of presented stimuli in terms of subjective units of discomfort/distress, discrete emotions, or valence and arousal. These subjective emotional ratings of input stimuli and corresponding physiological, speech, and facial output features provides enough information for evaluation of patient's cognitive appraisal deficit

  14. An SMS structure based temperature sensor using a chalcogenide multimode fibre

    Science.gov (United States)

    Wang, Pengfei; Yuan, Libo; Brambilla, Gilberto; Farrell, Gerald

    2016-11-01

    In this work we investigated the fabrication of a singlemode-multimode-singlemode (SMS) fibre structure based on a chalcogenide (As2S3 and AsxS1-x) multimode fibre (MMF) sandwiched between two standard silica singlemode fibres (SMFs) using a commercial fibre fusion splicer. The temperature dependence of this hybrid fibre structure was also investigated. A first proof of concept showed that the hybrid SMS fibre structure has an average experimental temperature sensitivity of 50.63 pm/°C over a temperature range of 20 °C 100°C at wavelengths around 1.55 μm. The measured results show a general agreement with numerical simulations based on a guided-mode propagation analysis method. Our result provides a potential platform for the development of compact, high-optical-quality and robust sensing devices operating at the mid-infrared wavelength range.

  15. Group-wise feature-based registration of CT and ultrasound images of spine

    Science.gov (United States)

    Rasoulian, Abtin; Mousavi, Parvin; Hedjazi Moghari, Mehdi; Foroughi, Pezhman; Abolmaesumi, Purang

    2010-02-01

    Registration of pre-operative CT and freehand intra-operative ultrasound of lumbar spine could aid surgeons in the spinal needle injection which is a common procedure for pain management. Patients are always in a supine position during the CT scan, and in the prone or sitting position during the intervention. This leads to a difference in the spinal curvature between the two imaging modalities, which means a single rigid registration cannot be used for all of the lumbar vertebrae. In this work, a method for group-wise registration of pre-operative CT and intra-operative freehand 2-D ultrasound images of the lumbar spine is presented. The approach utilizes a pointbased registration technique based on the unscented Kalman filter, taking as input segmented vertebrae surfaces in both CT and ultrasound data. Ultrasound images are automatically segmented using a dynamic programming approach, while the CT images are semi-automatically segmented using thresholding. Since the curvature of the spine is different between the pre-operative and the intra-operative data, the registration approach is designed to simultaneously align individual groups of points segmented from each vertebra in the two imaging modalities. A biomechanical model is used to constrain the vertebrae transformation parameters during the registration and to ensure convergence. The mean target registration error achieved for individual vertebrae on five spine phantoms generated from CT data of patients, is 2.47 mm with standard deviation of 1.14 mm.

  16. High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference.

    Science.gov (United States)

    Wang, Pengfei; Brambilla, Gilberto; Ding, Ming; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald

    2011-06-15

    We propose and experimentally demonstrate an enhanced evanescent field fiber refractometer based on a tapered multimode fiber sandwiched between two single-mode fibers. Experiments show that this fiber sensor offers ultrahigh sensitivity [better than 1900 nm/RIU at a refractive index (RI) of 1.44] for RI measurements within the range of 1.33-1.44, in agreement with the theoretical predictions. This is the highest value reported to date (to our knowledge) in the literature.

  17. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    Institute of Scientific and Technical Information of China (English)

    Ruan Juan; Zhang Wei-Gang; Zhang Hao; Geng Peng-Cheng; Bai Zhi-Yong

    2013-01-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated.The filter tunability is achieved by rotating the polarization controller.The spectral shift is dependent on rotation direction and the position of the polarization controller.In addition,the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  18. A New Multimodal Biometric System Based on Finger Vein and Hand Vein Recognition

    OpenAIRE

    Randa Boukhris Trabelsi; Alima Damak Masmoudi; Dorra Sellami Masmoudi

    2013-01-01

    As a reliable and robust biological characteristic, the vein pattern increases more and more the progress in biometric researches. Generally, it was shown that single biometric modality recognition is not able to meet high performances. In this paper, we propose a new multimodal biometric system based on fusion of both hand vein and finger vein modalities. For finger vein recognition, we employ the Monogenic Local Binary Pattern (MLBP), and for hand vein recognitionan Improved Gaussian Matche...

  19. A Practical Approach Based on Analytic Deformable Algorithm for Scenic Image Registration.

    Directory of Open Access Journals (Sweden)

    Wei-Yen Hsu

    Full Text Available Image registration is to produce an entire scene by aligning all the acquired image sequences. A registration algorithm is necessary to tolerance as much as possible for intensity and geometric variation among images. However, captured image views of real scene usually produce unexpected distortions. They are generally derived from the optic characteristics of image sensors or caused by the specific scenes and objects.An analytic registration algorithm considering the deformation is proposed for scenic image applications in this study. After extracting important features by the wavelet-based edge correlation method, an analytic registration approach is then proposed to achieve deformable and accurate matching of point sets. Finally, the registration accuracy is further refined to obtain subpixel precision by a feature-based Levenberg-Marquardt (FLM method. It converges evidently faster than most other methods because of its feature-based characteristic.We validate the performance of proposed method by testing with synthetic and real image sequences acquired by a hand-held digital still camera (DSC and in comparison with an optical flow-based motion technique in terms of the squared sum of intensity differences (SSD and correlation coefficient (CC. The results indicate that the proposed method is satisfactory in the registration accuracy and quality of DSC images.

  20. Log-Gabor energy based multimodal medical image fusion in NSCT domain.

    Science.gov (United States)

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images.

  1. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2014-01-01

    Full Text Available Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT, the fast discrete curvelet transform (FDCT, and the dual tree complex wavelet transform (DTCWT based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images.

  2. A robo-pigeon based on an innovative multi-mode telestimulation system.

    Science.gov (United States)

    Yang, Junqing; Huai, Ruituo; Wang, Hui; Lv, Changzhi; Su, Xuecheng

    2015-01-01

    In this paper, we describe a new multi-mode telestimulation system for brain-microstimulation for the navigation of a robo-pigeon, a new type of bio-robot based on Brain-Computer Interface (BCI) techniques. The multi-mode telestimulation system overcomes neuron adaptation that was a key shortcoming of the previous single-mode stimulation by the use of non-steady TTL biphasic pulses accomplished by randomly alternating pulse modes. To improve efficiency, a new behavior model ("virtual fear") is proposed and applied to the robo-pigeon. Unlike the previous "virtual reward" model, the "virtual fear" behavior model does not require special training. The performance and effectiveness of the system to alleviate the adaptation of neurons was verified by a robo-pigeon navigation test, simultaneously confirming the practicality of the "virtual fear" behavioral model.

  3. Signal classification method based on data mining for multi-mode radar

    Institute of Scientific and Technical Information of China (English)

    Qiang Guo; Pulong Nan; Jian Wan

    2016-01-01

    For the multi-mode radar working in the modern elec-tronic battlefield, different working states of one single radar are prone to being classified as multiple emitters when adopting traditional classification methods to process intercepted signals, which has a negative effect on signal classification. A classification method based on spatial data mining is presented to address the above chal enge. Inspired by the idea of spatial data mining, the classification method applies nuclear field to depicting the distribu-tion information of pulse samples in feature space, and digs out the hidden cluster information by analyzing distribution characteristics. In addition, a membership-degree criterion to quantify the correla-tion among al classes is established, which ensures classification accuracy of signal samples. Numerical experiments show that the presented method can effectively prevent different working states of multi-mode emitter from being classified as several emitters, and achieve higher classification accuracy.

  4. High bandwidth all-optical 3×3 switch based on multimode interference structures

    Science.gov (United States)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  5. Computer Network-based Multimodal Teaching of British and American Literature

    Directory of Open Access Journals (Sweden)

    Liu Xucai

    2013-01-01

    Full Text Available Guided under the multimodal teaching theory, the researchers mainly discuss the practice of the computer network-based multimodal teaching of British and American literature. This article emphasizes that the teachers take advantage of pictures, network screenshots, movies, video, sound, and other resources in the classroom lectures to mobilize the coordination operation of the auditory, visual and tactile senses, to enhance the students impression of the writer and his works. By doing so, the students have a good understanding of the original work, instead of having the boring sense of the single text-mode teaching and the distress of comprehension of literary works, and have no difficulties in comprehending the text and then the classroom teaching is improved.

  6. Combination of automatic non-rigid and landmark based registration: the best of both worlds

    Science.gov (United States)

    Fischer, Bernd; Modersitzki, Jan

    2003-05-01

    Automatic, parameter-free, and non-rigid registration schemes are known to be valuable tools in various (medical) image processing applications. Typically, these approaches aim to match intensity patterns in each scan by minimizing an appropriate distance measure. The outcome of an automatic registration procedure in general matches the target image quite good on the average. However, it may be inaccurate for specific, important locations as for example anatomical landmarks. On the other hand, landmark based registration techniques are designed to accurately match user specified landmarks. A drawback of landmark based registration is that the intensities of the images are completely neglected. Consequently, the registration result away from the landmarks may be very poor. Here we propose a framework for novel registration techniques which are capable to combine automatic and landmark driven approaches in order to benefit from the advantages of both strategies. We also propose a general, mathematical treatment of this framework and a particular implementation. The procedure computes a displacement field which is guaranteed to produce a one-to-one match between given landmarks and at the smae time minimizes an intensity based measure for the remaining parts of the images. The properties of the new scheme are demonstrated for a variety of numerical example. It is worthwhile noticing, that we not only present a new approach. Instead, we propose a general framework for a variety of different approaches. The choice of the main building blocks, the distance measure and the smoothness constraint, is essentially free.

  7. Shape-constrained multi-atlas based segmentation with multichannel registration

    Science.gov (United States)

    Hao, Yongfu; Jiang, Tianzi; Fan, Yong

    2012-02-01

    Multi-atlas based segmentation methods have recently attracted much attention in medical image segmentation. The multi-atlas based segmentation methods typically consist of three steps, including image registration, label propagation, and label fusion. Most of the recent studies devote to improving the label fusion step and adopt a typical image registration method for registering atlases to the target image. However, the existing registration methods may become unstable when poor image quality or high anatomical variance between registered image pairs involved. In this paper, we propose an iterative image segmentation and registration procedure to simultaneously improve the registration and segmentation performance in the multi-atlas based segmentation framework. Particularly, a two-channel registration method is adopted with one channel driven by appearance similarity between the atlas image and the target image and the other channel optimized by similarity between atlas label and the segmentation of the target image. The image segmentation is performed by fusing labels of multiple atlases. The validation of our method on hippocampus segmentation of 30 subjects containing MR images with both 1.5T and 3.0T field strength has demonstrated that our method can significantly improve the segmentation performance with different fusion strategies and obtain segmentation results with Dice overlap of 0.892+/-0.024 for 1.5T images and 0.902+/-0.022 for 3.0T images to manual segmentations.

  8. Landmark Optimization Using Local Curvature for Point-Based Nonlinear Rodent Brain Image Registration

    Directory of Open Access Journals (Sweden)

    Yutong Liu

    2012-01-01

    Full Text Available Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed and target (reference image. Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (=5 each. In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (<0.05 in registration accuracy by landmark optimization in most data sets and trends towards improvement (<0.1 in others as compared to manual landmark selection.

  9. Determining the Most Vital Arcs Within a Multi-Mode Communication Network Using Set-Based Measures

    Science.gov (United States)

    2015-03-26

    Determining the Most Vital Arcs Within a Multi-Mode Communication Network Using Set-Based Measures THESIS MARCH 2015 Christopher A. Hergenreter, Capt...material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENS-MS-15-M-131 DETERMINING THE MOST ...STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-MS-15-M-131 DETERMINING THE MOST VITAL ARCS WITHIN A MULTI-MODE COMMUNICATION

  10. An improved SIFT algorithm based on KFDA in image registration

    Science.gov (United States)

    Chen, Peng; Yang, Lijuan; Huo, Jinfeng

    2016-03-01

    As a kind of stable feature matching algorithm, SIFT has been widely used in many fields. In order to further improve the robustness of the SIFT algorithm, an improved SIFT algorithm with Kernel Discriminant Analysis (KFDA-SIFT) is presented for image registration. The algorithm uses KFDA to SIFT descriptors for feature extraction matrix, and uses the new descriptors to conduct the feature matching, finally chooses RANSAC to deal with the matches for further purification. The experiments show that the presented algorithm is robust to image changes in scale, illumination, perspective, expression and tiny pose with higher matching accuracy.

  11. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    Science.gov (United States)

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  12. Travel Demand-Based Assignment Model for Multimodal and Multiuser Transportation System

    Directory of Open Access Journals (Sweden)

    Bingfeng Si

    2012-01-01

    Full Text Available In this paper, the structural characteristic of urban multimodal transport system is fully analyzed and then a two-tier network structure is proposed to describe such a system, in which the first-tier network is used to depict the traveller’s mode choice behaviour and the second-tier network is used to depict the vehicle routing when a certain mode has been selected. Subsequently, the generalized travel cost is formulated considering the properties of both traveller and transport mode. A new link impedance function is proposed, in which the interferences between different vehicle flows are taken into account. Simultaneously, the bi-equilibrium patterns for multimodal transport network are proposed by extending Wardrop principle. Correspondingly, a bi-level programming model is then presented to describe the bi-equilibrium based assignment for multi-class multimodal transport network. The solution algorithm is also given. Finally, a numerical example is provided to illustrate the model and algorithm.

  13. A statistical model for point-based target registration error with anisotropic fiducial localizer error.

    Science.gov (United States)

    Wiles, Andrew D; Likholyot, Alexander; Frantz, Donald D; Peters, Terry M

    2008-03-01

    Error models associated with point-based medical image registration problems were first introduced in the late 1990s. The concepts of fiducial localizer error, fiducial registration error, and target registration error are commonly used in the literature. The model for estimating the target registration error at a position r in a coordinate frame defined by a set of fiducial markers rigidly fixed relative to one another is ubiquitous in the medical imaging literature. The model has also been extended to simulate the target registration error at the point of interest in optically tracked tools. However, the model is limited to describing the error in situations where the fiducial localizer error is assumed to have an isotropic normal distribution in R3. In this work, the model is generalized to include a fiducial localizer error that has an anisotropic normal distribution. Similar to the previous models, the root mean square statistic rms tre is provided along with an extension that provides the covariance Sigma tre. The new model is verified using a Monte Carlo simulation and a set of statistical hypothesis tests. Finally, the differences between the two assumptions, isotropic and anisotropic, are discussed within the context of their use in 1) optical tool tracking simulation and 2) image registration.

  14. Implementation of nonlinear registration of brain atlas based on piecewise grid system

    Science.gov (United States)

    Liu, Rong; Gu, Lixu; Xu, Jianrong

    2007-12-01

    In this paper, a multi-step registration method of brain atlas and clinical Magnetic Resonance Imaging (MRI) data based on Thin-Plate Splines (TPS) and Piecewise Grid System (PGS) is presented. The method can help doctors to determine the corresponding anatomical structure between patient image and the brain atlas by piecewise nonlinear registration. Since doctors mostly pay attention to particular Region of Interest (ROI), and a global nonlinear registration is quite time-consuming which is not suitable for real-time clinical application, we propose a novel method to conduct linear registration in global area before nonlinear registration is performed in selected ROI. The homogenous feature points are defined to calculate the transform matrix between patient data and the brain atlas to conclude the mapping function. Finally, we integrate the proposed approach into an application of neurosurgical planning and guidance system which lends great efficiency in both neuro-anatomical education and guiding of neurosurgical operations. The experimental results reveal that the proposed approach can keep an average registration error of 0.25mm in near real-time manner.

  15. Registration of 2D to 3D joint images using phase-based mutual information

    Science.gov (United States)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  16. Geometry-based vs. intensity-based medical image registration: A comparative study on 3D CT data.

    Science.gov (United States)

    Savva, Antonis D; Economopoulos, Theodore L; Matsopoulos, George K

    2016-02-01

    Spatial alignment of Computed Tomography (CT) data sets is often required in numerous medical applications and it is usually achieved by applying conventional exhaustive registration techniques, which are mainly based on the intensity of the subject data sets. Those techniques consider the full range of data points composing the data, thus negatively affecting the required processing time. Alternatively, alignment can be performed using the correspondence of extracted data points from both sets. Moreover, various geometrical characteristics of those data points can be used, instead of their chromatic properties, for uniquely characterizing each point, by forming a specific geometrical descriptor. This paper presents a comparative study reviewing variations of geometry-based, descriptor-oriented registration techniques, as well as conventional, exhaustive, intensity-based methods for aligning three-dimensional (3D) CT data pairs. In this context, three general image registration frameworks were examined: a geometry-based methodology featuring three distinct geometrical descriptors, an intensity-based methodology using three different similarity metrics, as well as the commonly used Iterative Closest Point algorithm. All techniques were applied on a total of thirty 3D CT data pairs with both known and unknown initial spatial differences. After an extensive qualitative and quantitative assessment, it was concluded that the proposed geometry-based registration framework performed similarly to the examined exhaustive registration techniques. In addition, geometry-based methods dramatically improved processing time over conventional exhaustive registration.

  17. The Pose Estimation of Mobile Robot Based on Improved Point Cloud Registration

    Directory of Open Access Journals (Sweden)

    Yanzi Miao

    2016-03-01

    Full Text Available Due to GPS restrictions, an inertial sensor is usually used to estimate the location of indoor mobile robots. However, it is difficult to achieve high-accuracy localization and control by inertial sensors alone. In this paper, a new method is proposed to estimate an indoor mobile robot pose with six degrees of freedom based on an improved 3D-Normal Distributions Transform algorithm (3D-NDT. First, point cloud data are captured by a Kinect sensor and segmented according to the distance to the robot. After the segmentation, the input point cloud data are processed by the Approximate Voxel Grid Filter algorithm in different sized voxel grids. Second, the initial registration and precise registration are performed respectively according to the distance to the sensor. The most distant point cloud data use the 3D-Normal Distributions Transform algorithm (3D-NDT with large-sized voxel grids for initial registration, based on the transformation matrix from the odometry method. The closest point cloud data use the 3D-NDT algorithm with small-sized voxel grids for precise registration. After the registrations above, a final transformation matrix is obtained and coordinated. Based on this transformation matrix, the pose estimation problem of the indoor mobile robot is solved. Test results show that this method can obtain accurate robot pose estimation and has better robustness.

  18. A cloud-based multimodality case file for mobile devices.

    Science.gov (United States)

    Balkman, Jason D; Loehfelm, Thomas W

    2014-01-01

    Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article.

  19. FMRI 3D registration based on Fourier space subsets using neural networks.

    Science.gov (United States)

    Freire, Luis C; Gouveia, Ana R; Godinho, Fernando M

    2010-01-01

    In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.

  20. Worst-case analysis of target localization errors in fiducial-based rigid body registration

    Science.gov (United States)

    Shamir, Reuben R.; Joskowicz, Leo

    2009-02-01

    Fiducial-based rigid registration is the preferred method for aligning the preoperative image with the intra-operative physical anatomy in existing image-guided surgery systems. After registration, the targets locations usually cannot be measured directly, so the Target Registration Error (TRE) is often estimated with the Fiducial Registration Error (FRE), or with Fitzpatrick TRE (FTRE) estimation formula. However, large discrepancies between the FRE and the TRE have been exemplified in hypothetical setups and have been observed in the clinic. In this paper, we formally prove that in the worst case the FRE and the TRE, and the FTRE and the TRE are independent, regardless of the target location, it location, the number of fiducials, and their configuration. The worst case occurs when the unknown Fiducial Localization Error (FLE) is modeled as an affine anisotropic inhomogeneous bias. Our results generalize previous examples, contribute to the mathematical understanding of TRE estimation in fiducial-based rigid-body registration, and strengthen the need for realistic and reliable FLE models and effective TRE estimation methods.

  1. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  2. Non-Rigid Image Registration Algorithm Based on B-Splines Approximation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongying; ZHANG Jiawan; SUN Jizhou; SUN Yigang

    2007-01-01

    An intensity-based non-rigid registration algorithm is discussed, which uses Gaussian smoothing to constrain the transformation to be smooth, and thus preserves the topology of images. In view of the insufficiency of the uniform Gaussian filtering of the deformation field, an automatic and accurate non-rigid image registration method based on B-splines approximation is proposed. The regularization strategy is adopted by using multi-level B-splines approximation to regularize the dis-placement fields in a coarse-to-fine manner. Moreover, it assigns the different weights to the estimated displacements according to their reliabilities. In this way, the level of regularity can be adapted locally. Experiments were performed on both synthetic and real medical images of brain, and the results show that the proposed method improves the registration accuracy and robustness.

  3. a Novel Image Registration Algorithm for SAR and Optical Images Based on Virtual Points

    Science.gov (United States)

    Ai, C.; Feng, T.; Wang, J.; Zhang, S.

    2013-07-01

    Optical image is rich in spectral information, while SAR instrument can work in both day and night and obtain images through fog and clouds. Combination of these two types of complementary images shows the great advantages of better image interpretation. Image registration is an inevitable and critical problem for the applications of multi-source remote sensing images, such as image fusion, pattern recognition and change detection. However, the different characteristics between SAR and optical images, which are due to the difference in imaging mechanism and the speckle noises in SAR image, bring great challenges to the multi-source image registration. Therefore, a novel image registration algorithm based on the virtual points, derived from the corresponding region features, is proposed in this paper. Firstly, image classification methods are adopted to extract closed regions from SAR and optical images respectively. Secondly, corresponding region features are matched by constructing cost function with rotate invariant region descriptors such as area, perimeter, and the length of major and minor axes. Thirdly, virtual points derived from corresponding region features, such as the centroids, endpoints and cross points of major and minor axes, are used to calculate initial registration parameters. Finally, the parameters are corrected by an iterative calculation, which will be terminated when the overlap of corresponding region features reaches its maximum. In the experiment, WordView-2 and Radasat-2 with 0.5 m and 4.7 m spatial resolution respectively, obtained in August 2010 in Suzhou, are used to test the registration method. It is shown that the multi-source image registration algorithm presented above is effective, and the accuracy of registration is up to pixel level.

  4. Biomechanical-based image registration for head and neck radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Velec, Mike; Chau, Lily; Breen, Stephen; Brock, Kristy, E-mail: adil.al-mayah@rmp.uhn.on.c [Radiation Medicine Program, Princess Margaret Hospital, 610 University Ave. Toronto, Ontario, M5G 2M9 (Canada)

    2010-11-07

    Deformable image registration of four head and neck cancer patients has been conducted using a biomechanical-based model. Patient-specific 3D finite element models have been developed using CT and cone-beam CT image data of the planning and a radiation treatment session. The model consists of seven vertebrae (C1 to C7), mandible, larynx, left and right parotid glands, tumor and body. Different combinations of boundary conditions are applied in the model in order to find the configuration with a minimum registration error. Each vertebra in the planning session is individually aligned with its correspondence in the treatment session. Rigid alignment is used for each individual vertebra and the mandible since no deformation is expected in the bones. In addition, the effect of morphological differences in the external body between the two image sessions is investigated. The accuracy of the registration is evaluated using the tumor and both parotid glands by comparing the calculated Dice similarity index of these structures following deformation in relation to their true surface defined in the image of the second session. The registration is improved when the vertebrae and mandible are aligned in the two sessions with the highest average Dice index of 0.86 {+-} 0.08, 0.84 {+-} 0.11 and 0.89 {+-} 0.04 for the tumor, left and right parotid glands, respectively. The accuracy of the center of mass location of tumor and parotid glands is also improved by deformable image registration where the errors in the tumor and parotid glands decrease from 4.0 {+-} 1.1, 3.4 {+-} 1.5 and 3.8 {+-} 0.9 mm using rigid registration to 2.3 {+-} 1.0, 2.5 {+-} 0.8 and 2.0 {+-} 0.9 mm in the deformable image registration when alignment of vertebrae and mandible is conducted in addition to the surface projection of the body.

  5. Design of a multimode beamforming network based on the scattering matrix analysis

    Institute of Scientific and Technical Information of China (English)

    CHENG YuJian; HONG Wei; WU Ke

    2009-01-01

    The investigation of the multimode beamforming network (BFN) has been developed from its scattering matrix (S-matrix) analysis. A substrate integrated waveguide (SIW) BFN is designed and fabricated on a single Rogers 5880 substrate. This device is not only marked by features of conventional BFN, such as Butler matrix, but also has additional benefits, e.g. more compact configuration and higher radiation efficiency. Measured and simulated results based on the proposed structure are in a good agreement, which indicates that this novel type of BFN has good characteristics and presents an excellent candidate in the development of intelligent microwave and millimeter-wave multibeam antenna systems.

  6. Silica-Based Arrayed Waveguide Grating with Flattened Spectral Response Using a Multimode Interference Coupler

    Institute of Scientific and Technical Information of China (English)

    TANG Yan-Zhe; JIA Ke-Miao; LI Bai-Yang; YANG Jian-Yi; JIANG Xiao-Qing; WU Ya-Ming; WANG Yue-Lin

    2004-01-01

    @@ We designed and fabricated an arrayed waveguide grating based on silica-on-silicon materials with flattened spectral response by adding a multimode interference coupler in the input region. The theoretical analysis and calculation are given. The device has worked effectively and has been tested with the passband 0.43 nm at 1 dB,0.72nm at 3dB and 1.56nm at 20dB respectively, at a cost of power penalty of about 1.5dB. The crosstalk is less than -30 dB, owing to the high-resolution photomask and well-controlled fabrication processes.

  7. Deep assessment: an exploratory study of game-based, multimodal learning in Epidemic

    Directory of Open Access Journals (Sweden)

    Jennifer Jenson

    2016-03-01

    Full Text Available n this study, we examine what and how intermediate age students learned from playing in a health-focused game-based digital learning environment, Epidemic. Epidemic is a playful interactive environment designed to deliver factual knowledge, invite critical understanding, and encourage effective self-care practices in dealing with viral contagious diseases, using a social networking interface to integrate both serious games and game-like multimodal design projects. Epidemic invites a playful approach to its deadly serious core concern – communicable disease – in order to see what happens when students are encouraged to critically approach information from multiple or contradictory perspectives. To identify what participants learned while interacting within Epidemic, we deployed two instructional and assessment models, noting the differences each instructional approach could potentially make, and what approach to assessment might help us evaluate game-based learning. We found that each approach provided importantly different perspectives on what and how students learned, and on the very meaning of student success. Recognizing that traditional assessment tools based in print-cultural literacy may prove increasingly ill-suited for assessing emergent multimodal literacies in game-based learning environments, this study seeks to contribute to a growing body of work on the development of novel assessments for learning.

  8. PCA and level set based non-rigid image registration for MRI and Paxinos-Watson atlas of rat brain

    Science.gov (United States)

    Cai, Chao; Liu, Ailing; Ding, Mingyue; Zhou, Chengping

    2007-12-01

    Image registration provides the ability to geometrically align one dataset with another. It is a basic task in a great variety of biomedical imaging applications. This paper introduced a novel three-dimensional registration method for Magnetic Resonance Image (MRI) and Paxinos-Watson Atlas of rat brain. For the purpose of adapting to a large range and non-linear deformation between MRI and atlas in higher registration accuracy, based on the segmentation of rat brain, we chose the principle components analysis (PCA) automatically performing the linear registration, and then, a level set based nonlinear registration correcting some small distortions. We implemented this registration method in a rat brain 3D reconstruction and analysis system. Experiments have demonstrated that this method can be successfully applied to registering the low resolution and noise affection MRI with Paxinos-Watson Atlas of rat brain.

  9. Spiking Cortical Model Based Multimodal Medical Image Fusion by Combining Entropy Information with Weber Local Descriptor.

    Science.gov (United States)

    Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei

    2016-09-15

    Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation.

  10. Spiking Cortical Model Based Multimodal Medical Image Fusion by Combining Entropy Information with Weber Local Descriptor

    Directory of Open Access Journals (Sweden)

    Xuming Zhang

    2016-09-01

    Full Text Available Multimodal medical image fusion (MIF plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation.

  11. Multimodal region-consistent saliency based on foreground and background priors for indoor scene

    Science.gov (United States)

    Zhang, J.; Wang, Q.; Zhao, Y.; Chen, S. Y.

    2016-09-01

    Visual saliency is a very important feature for object detection in a complex scene. However, image-based saliency is influenced by clutter background and similar objects in indoor scenes, and pixel-based saliency cannot provide consistent saliency to a whole object. Therefore, in this paper, we propose a novel method that computes visual saliency maps from multimodal data obtained from indoor scenes, whilst keeping region consistency. Multimodal data from a scene are first obtained by an RGB+D camera. This scene is then segmented into over-segments by a self-adapting approach to combine its colour image and depth map. Based on these over-segments, we develop two cues as domain knowledge to improve the final saliency map, including focus regions obtained from colour images, and planar background structures obtained from point cloud data. Thus, our saliency map is generated by compounding the information of the colour data, the depth data and the point cloud data in a scene. In the experiments, we extensively compare the proposed method with state-of-the-art methods, and we also apply the proposed method to a real robot system to detect objects of interest. The experimental results show that the proposed method outperforms other methods in terms of precisions and recall rates.

  12. Spatially adaptive log-euclidean polyaffine registration based on sparse matches.

    Science.gov (United States)

    Taquet, Maxime; Macq, Benoît; Warfield, Simon K

    2011-01-01

    Log-euclidean polyaffine transforms have recently been introduced to characterize the local affine behavior of the deformation in principal anatomical structures. The elegant mathematical framework makes them a powerful tool for image registration. However, their application is limited to large structures since they require the pre-definition of affine regions. This paper extends the polyaffine registration to adaptively fit a log-euclidean polyaffine transform that captures deformations at smaller scales. The approach is based on the sparse selection of matching points in the images and the formulation of the problem as an expectation maximization iterative closest point problem. The efficiency of the algorithm is shown through experiments on inter-subject registration of brain MRI between a healthy subject and patients with multiple sclerosis.

  13. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints.

    Science.gov (United States)

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter

    2016-12-30

    Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  14. Automatic multi-resolution image registration based on genetic algorithm and Hausdorff distance

    Institute of Scientific and Technical Information of China (English)

    Famao Ye; Lin Su; Shukai Li

    2006-01-01

    @@ Image registration is a crucial step in all image analysis tasks in which the final information is gained from the combination of various data sources, and it is difficult to automatically register due to the complexity of image. An approach based on genetic algorithm and Hausdorff distance to automatic image registration is presented. We use a multi-resolution edge tracker to find out the fine-quality edges and utilize the Hausdorff distance between the input image and the reference image as similarity measure. We use wavelet decomposition and genetic algorithm, which combine local search methods with global ones balancing exploration and exploitation, to speed up the search of the best transformation parameters.Experimental results show that the proposed approach is a promising method for registration of image.

  15. 3D point cloud registration based on the assistant camera and Harris-SIFT

    Science.gov (United States)

    Zhang, Yue; Yu, HongYang

    2016-07-01

    3D(Three-Dimensional) point cloud registration technology is the hot topic in the field of 3D reconstruction, but most of the registration method is not real-time and ineffective. This paper proposes a point cloud registration method of 3D reconstruction based on Harris-SIFT and assistant camera. The assistant camera is used to pinpoint mobile 3D reconstruction device, The feature points of images are detected by using Harris operator, the main orientation for each feature point is calculated, and lastly, the feature point descriptors are generated after rotating the coordinates of the descriptors relative to the feature points' main orientations. Experimental results of demonstrate the effectiveness of the proposed method.

  16. Correspondenceless 3D-2D registration based on expectation conditional maximization

    Science.gov (United States)

    Kang, X.; Taylor, R. H.; Armand, M.; Otake, Y.; Yau, W. P.; Cheung, P. Y. S.; Hu, Y.

    2011-03-01

    3D-2D registration is a fundamental task in image guided interventions. Due to the physics of the X-ray imaging, however, traditional point based methods meet new challenges, where the local point features are indistinguishable, creating difficulties in establishing correspondence between 2D image feature points and 3D model points. In this paper, we propose a novel method to accomplish 3D-2D registration without known correspondences. Given a set of 3D and 2D unmatched points, this is achieved by introducing correspondence probabilities that we model as a mixture model. By casting it into the expectation conditional maximization framework, without establishing one-to-one point correspondences, we can iteratively refine the registration parameters. The method has been tested on 100 real X-ray images. The experiments showed that the proposed method accurately estimated the rotations (< 1°) and in-plane (X-Y plane) translations (< 1 mm).

  17. Landmark matching based automatic retinal image registration with linear programming and self-similarities.

    Science.gov (United States)

    Zheng, Yuanjie; Hunter, Allan A; Wu, Jue; Wang, Hongzhi; Gao, Jianbin; Maguire, Maureen G; Gee, James C

    2011-01-01

    In this paper, we address the problem of landmark matching based retinal image registration. Two major contributions render our registration algorithm distinguished from many previous methods. One is a novel landmark-matching formulation which enables not only a joint estimation of the correspondences and transformation model but also the optimization with linear programming. The other contribution lies in the introduction of a reinforced self-similarities descriptor in characterizing the local appearance of landmarks. Theoretical analysis and a series of preliminary experimental results show both the effectiveness of our optimization scheme and the high differentiating ability of our features.

  18. Multimodal sparse representation-based classification for lung needle biopsy images.

    Science.gov (United States)

    Shi, Yinghuan; Gao, Yang; Yang, Yubin; Zhang, Ying; Wang, Dong

    2013-10-01

    Lung needle biopsy image classification is a critical task for computer-aided lung cancer diagnosis. In this study, a novel method, multimodal sparse representation-based classification (mSRC), is proposed for classifying lung needle biopsy images. In the data acquisition procedure of our method, the cell nuclei are automatically segmented from the images captured by needle biopsy specimens. Then, features of three modalities (shape, color, and texture) are extracted from the segmented cell nuclei. After this procedure, mSRC goes through a training phase and a testing phase. In the training phase, three discriminative subdictionaries corresponding to the shape, color, and texture information are jointly learned by a genetic algorithm guided multimodal dictionary learning approach. The dictionary learning aims to select the topmost discriminative samples and encourage large disagreement among different subdictionaries. In the testing phase, when a new image comes, a hierarchical fusion strategy is applied, which first predicts the labels of the cell nuclei by fusing three modalities, then predicts the label of the image by majority voting. Our method is evaluated on a real image set of 4372 cell nuclei regions segmented from 271 images. These cell nuclei regions can be divided into five classes: four cancerous classes (corresponding to four types of lung cancer) plus one normal class (no cancer). The results demonstrate that the multimodal information is important for lung needle biopsy image classification. Moreover, compared to several state-of-the-art methods (LapRLS, MCMI-AB, mcSVM, ESRC, KSRC), the proposed mSRC can achieve significant improvement (mean accuracy of 88.1%, precision of 85.2%, recall of 92.8%, etc.), especially for classifying different cancerous types.

  19. Surface membrane based bladder registration for evaluation of accumulated dose during brachytherapy in cervical cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Sørensen, Thomas Sangild

    2011-01-01

    of the fixed surface. Optional landmark based matches can be included in the suggested iterative solver. The technique is demonstrated for bladder registration in brachytherapy treatment evaluation of cervical cancer. It holds promise to better estimate the accumulated but unintentional dose delivered...

  20. 76 FR 2287 - Security-Based Swap Data Repository Registration, Duties, and Core Principles; Correction

    Science.gov (United States)

    2011-01-13

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION 17 CFR Parts 240 and 249 RIN 3235-AK79 Security-Based Swap Data Repository Registration, Duties, and Core Principles; Correction Correction In proposed rule document C1-2010-29719 beginning on...

  1. Improving Feature-based Non-rigid Registration for Applications in Radiotherapy

    NARCIS (Netherlands)

    E.M. Vásquez Osorio (Eliana)

    2012-01-01

    textabstractThis thesis describes the improvements of a feature-based non-rigid registration method that were essential for its application in radiotherapy. In addition, this thesis presents three practical applications of the improved method: 1) quantification of anatomical changes in 3D for head a

  2. 75 FR 79320 - Security-Based Swap Data Repository Registration, Duties, and Core Principles

    Science.gov (United States)

    2010-12-20

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION 17 CFR Parts 240 and 249 RIN 3235-AK79 Security-Based Swap Data Repository Registration, Duties, and Core Principles Correction In proposed rule document 2010-29719 beginning on page 77306 in...

  3. 75 FR 77305 - Security-Based Swap Data Repository Registration, Duties, and Core Principles

    Science.gov (United States)

    2010-12-10

    ... Core Principles; Proposed Rule #0;#0;Federal Register / Vol. 75 , No. 237 / Friday, December 10, 2010...-Based Swap Data Repository Registration, Duties, and Core Principles AGENCY: Securities and Exchange... process, duties, and core principles. DATES: Comments should be submitted on or before January 24,...

  4. Learner Use of Holistic Language Units in Multimodal, Task-Based Synchronous Computer-Mediated Communication

    Directory of Open Access Journals (Sweden)

    Karina Collentine

    2009-06-01

    Full Text Available Second language acquisition (SLA researchers strive to understand the language and exchanges that learners generate in synchronous computer-mediated communication (SCMC. Doughty and Long (2003 advocate replacing open-ended SCMC with task-based language teaching (TBLT design principles. Since most task-based SCMC (TB-SCMC research addresses an interactionist view (e.g., whether uptake occurs, we know little about holistic language units generated by learners even though research suggests that task demands make TB-SCMC communication notably different from general SCMC communication. This study documents and accounts for discourse-pragmatic and sociocultural behaviors learners exhibit in TB-SCMC. To capture a variety of such behaviors, it documents holistic language units produced by intermediate and advanced learners of Spanish during two multimodal, TB-SCMC activities. The study found that simple assertions were most prevalent (a with dyads at the lower level of instruction and (b when dyads had a relatively short amount of time to chat. Additionally, interpersonal, sociocultural behaviors (e.g., joking, off-task discussions were more likely to occur (a amongst dyads at the advanced level and (b when they had relatively more time to chat. Implications explain how tasks might mitigate the potential processing overload that multimodal materials could incur.

  5. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  6. Multi-modal face parts fusion based on Gabor feature for face recognition

    Institute of Scientific and Technical Information of China (English)

    Xiang Yan; Su Guangda; Shang Yan; Li Congcong

    2009-01-01

    A novel face recognition method, which is a fusion of multi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations.

  7. Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization

    Science.gov (United States)

    Bochud, N.; Vallet, Q.; Bala, Y.; Follet, H.; Minonzio, J.-G.; Laugier, P.

    2016-10-01

    Recent progress in quantitative ultrasound has exploited the multimode waveguide response of long bones. Measurements of the guided modes, along with suitable waveguide modeling, have the potential to infer strength-related factors such as stiffness (mainly determined by cortical porosity) and cortical thickness. However, the development of such model-based approaches is challenging, in particular because of the multiparametric nature of the inverse problem. Current estimation methods in the bone field rely on a number of assumptions for pairing the incomplete experimental data with the theoretical guided modes (e.g. semi-automatic selection and classification of the data). The availability of an alternative inversion scheme that is user-independent is highly desirable. Thus, this paper introduces an efficient inversion method based on genetic algorithms using multimode guided waves, in which the mode-order is kept blind. Prior to its evaluation on bone, our proposal is validated using laboratory-controlled measurements on isotropic plates and bone-mimicking phantoms. The results show that the model parameters (i.e. cortical thickness and porosity) estimated from measurements on a few ex vivo human radii are in good agreement with the reference values derived from x-ray micro-computed tomography. Further, the cortical thickness estimated from in vivo measurements at the third from the distal end of the radius is in good agreement with the values delivered by site-matched high-resolution x-ray peripheral computed tomography.

  8. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    Energy Technology Data Exchange (ETDEWEB)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  9. Automated registration of freehand B-mode ultrasound and magnetic resonance imaging of the carotid arteries based on geometric features

    DEFF Research Database (Denmark)

    Carvalho, Diego D. B.; Arias Lorza, Andres Mauricio; Niessen, Wiro J.;

    2017-01-01

    An automated method for registering B-mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid arteries is proposed. The registration uses geometric features, namely, lumen centerlines and lumen segmentations, which are extracted fully automatically from the images after manual...... annotation of three seed points in US and MRI. The registration procedure starts with alignment of the lumen centerlines using a point-based registration algorithm. The resulting rigid transformation is used to initialize a rigid and subsequent non-rigid registration procedure that jointly aligns centerlines...

  10. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.

    Science.gov (United States)

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-12-31

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  11. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Tingting Cui

    2016-12-01

    Full Text Available For multi-sensor integrated systems, such as the mobile mapping system (MMS, data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  12. Gradient-based 3D-2D registration of cerebral angiograms

    Science.gov (United States)

    Mitrović, Uroš; Markelj, Primož; Likar, Boštjan; Miloševič, Zoran; Pernuš, Franjo

    2011-03-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system into the brain and into the aneurysm or AVM. Intra-interventional navigation utilizes digital subtraction angiography (DSA) to visualize vascular structures and X-ray fluoroscopy to localize the endovascular components. Due to the two-dimensional (2D) nature of the intra-interventional images, navigation through a complex three-dimensional (3D) structure is a demanding task. Registration of pre-interventional MRA, CTA, or 3D-DSA images and intra-interventional 2D DSA images can greatly enhance visualization and navigation. As a consequence of better navigation in 3D, the amount of required contrast medium and absorbed dose could be significantly reduced. In the past, development and evaluation of 3D-2D registration methods received considerable attention. Several validation image databases and evaluation criteria were created and made publicly available in the past. However, applications of 3D-2D registration methods to cerebral angiograms and their validation are rather scarce. In this paper, the 3D-2D robust gradient reconstruction-based (RGRB) registration algorithm is applied to CTA and DSA images and analyzed. For the evaluation purposes five image datasets, each comprised of a 3D CTA and several 2D DSA-like digitally reconstructed radiographs (DRRs) generated from the CTA, with accurate gold standard registrations were created. A total of 4000 registrations on these five datasets resulted in mean mTRE values between 0.07 and 0.59 mm, capture ranges between 6 and 11 mm and success rates between 61 and 88% using a failure threshold of 2 mm.

  13. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    Science.gov (United States)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  14. Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance

    Science.gov (United States)

    Tsai, Woo-Hu; Tsao, Yu-Chia; Lin, Hong-Yu; Sheu, Bor-Chiou

    2005-09-01

    A novel analysis based on surface plasmon resonance (SPR) with a side-polished multimode fiber and a white-light (halogen light) source is presented. The sensing system is a multimode optical fiber in which half of the core has been polished away and a 40 nm gold layer is deposited on to the polished surface by dc sputter. The SPR dip in the optical spectrum is investigated with an optical spectrum analyzer (OSA). In our SPR fiber sensor, the use of liquids with different refractive indices leads to a shift in the spectral dip in the SPR curve. The cross point (CP) of the two SPR spectra obtained from the refractive-index liquid and the deionized water measurements was observed with the OSA. The CP is shifted sensitively in wavelength from 630to1300 nm relative to a change in the refractive index of the liquid from 1.34 to 1.46. High sensitivities of 1.9×10^-6 refractive-index units (RIUs) in the range of the refractive index of the liquid from 1.40 to 1.44 of 5.7×10^-7 RIUs above the value of 1.44 are proposed and demonstrated in our novel SPR analysis.

  15. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  16. Curvelet and Ridgelet-based Multimodal Biometric Recognition System using Weighted Similarity Approach

    Directory of Open Access Journals (Sweden)

    S. Arivazhagan

    2014-03-01

    Full Text Available Biometric security artifacts for establishing the identity of a person with high confidence have evoked enormous interest in security and access control applications for the past few years. Biometric systems based solely on unimodal biometrics often suffer from problems such as noise, intra-class variations and spoof attacks. This paper presents a novel multimodal biometric recognition system by integrating three biometric traits namely iris, fingerprint and face using weighted similarity approach. In this work, the multi-resolution features are extracted independently from query images using curvelet and ridgelet transforms, and are then compared to the enrolled templates stored in the database containing features of each biometric trait. The final decision is made by normalizing the feature vectors, assigning different weights to the modalities and fusing the computed scores using score combination techniques. This system is tested with the public unimodal databases such as CASIA–Iris-V3-Interval, FVC2004, ORL and self-built multimodal databases. Experimental results obtained shows that the designed system achieves an excellent recognition rate of 98.75 per cent and 100 per cent for the public and self-built databases respectively and provides ultra high security than unimodal biometric systems.Defence Science Journal, 2014, 64(2, pp. 106-114. DOI: http://dx.doi.org/10.14429/dsj.64.3469

  17. Urban expressway traffic state forecasting based on multimode maximum entropy model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The accurate and timely traffic state prediction has become increasingly important for the traffic participants,especially for the traffic managements. In this paper,the traffic state is described by Micro-LOS,and a direct prediction method is introduced. The development of the proposed method is based on Maximum Entropy (ME) models trained for multiple modes. In the Multimode Maximum Entropy (MME) framework,the different features like temporal and spatial features of traffic systems,regional traffic state are integrated simultaneously,and the different state behaviors based on 14 traffic modes defined by average speed according to the date-time division are also dealt with. The experiments based on the real data in Beijing expressway prove that the MME models outperforms the already existing model in both effectiveness and robustness.

  18. An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition

    KAUST Repository

    Li, Huibin

    2015-07-29

    We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.

  19. Applying Connectivist Principles and the Task-Based Approach to the Design of a Multimodal Didactic Unit

    Directory of Open Access Journals (Sweden)

    Yeraldine Aldana Gutiérrez

    2012-12-01

    Full Text Available This article describes the pedagogical intervention developed in a public school as part of the research “Exploring Communications Practices through Facebook as a Mediatic Device”, framed within the computer mediated communications field. Twelve ninth graders’ communications practices were explored and addressed by means of multimodal technological resources and tasks based on the connectivist learning view. As a result, a didactic unit was designed in the form of the digital book Diverface. This one in turn displayed information through different media channels and semiotic elements to support its multimodal features. Teachers and students might thus need to reconstruct an alternative multimodal literacy so that they can produce and interpret texts of the same nature in online environments.

  20. A 2×2 SOI mach-zehnder thermo-optical switch based on strongly guided paired multimode interference couplers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A silicon-on-insulator 2×2 Mach-Zehnder thermo-optical switch is developed based on strongly guided paired multimode interference couplers. The multimode-interference couplers were etched deeply for improving coupler characteristics such as self-imaging quality, uniformity and fabrication tolerance. The proposed switch achieves good performances, including a low insertion loss of -11 .OdB, a fiber-waveguide coupling loss of -4.3dB and a fast response speed measured to be 3.5 and 8.8 μs for raise and fall switching time, respectively.

  1. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  2. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Science.gov (United States)

    Iacono, Maria Ida; Neufeld, Esra; Akinnagbe, Esther; Bower, Kelsey; Wolf, Johanna; Vogiatzis Oikonomidis, Ioannis; Sharma, Deepika; Lloyd, Bryn; Wilm, Bertram J; Wyss, Michael; Pruessmann, Klaas P; Jakab, Andras; Makris, Nikos; Cohen, Ethan D; Kuster, Niels; Kainz, Wolfgang; Angelone, Leonardo M

    2015-01-01

    Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  3. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    Science.gov (United States)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  4. The evolution of gadolinium based contrast agents: from single-modality to multi-modality.

    Science.gov (United States)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K

    2016-05-19

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  5. Cooperative Moving Object Segmentation using Two Cameras based on Background Subtraction and Image Registration

    Directory of Open Access Journals (Sweden)

    Zhigao Cui

    2014-03-01

    Full Text Available Moving camera, such as PTZ (pan-tilt-zoom camera, has been widely applied in visual surveillance system. However, it’s difficult to extract moving objects because of the dynamic background caused by the camera motion. In this paper, a novel framework for moving object segmentation exploiting two cameras collaboration is presented by combining background subtraction and image registration method. The proposed method uses one static camera to capture large-view images at low resolution, and one moving camera (i.e. PTZ camera to capture local-view images at high resolution. Different with methods using a single moving camera, the moving objects can be effectively segmented in the static camera image by background subtraction method. Then image registration method can be applied to extract moving region in the moving camera image. To deal with the resolution and intensity discrepancy between two synchronized images, we design a practical three-step image registration method, which has higher registration accuracy than traditional feature based method. Experimental results on outdoor scene demonstrate the effectiveness and robustness of proposed approach.

  6. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.;

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  7. Intensity-based femoral atlas 2D/3D registration using Levenberg-Marquardt optimisation

    Science.gov (United States)

    Klima, Ondrej; Kleparnik, Petr; Spanel, Michal; Zemcik, Pavel

    2016-03-01

    The reconstruction of a patient-specific 3D anatomy is the crucial step in the computer-aided preoperative planning based on plain X-ray images. In this paper, we propose a robust and fast reconstruction methods based on fitting the statistical shape and intensity model of a femoral bone onto a pair of calibrated X-ray images. We formulate the registration as a non-linear least squares problem, allowing for the involvement of Levenberg-Marquardt optimisation. The proposed methods have been tested on a set of 96 virtual X-ray images. The reconstruction accuracy was evaluated using the symmetric Hausdorff distance between reconstructed and ground-truth bones. The accuracy of the intensity-based method reached 1.18 +/- 1.57mm on average, the registration took 8.76 seconds on average.

  8. User-based representation of time-resolved multimodal public transportation networks

    CERN Document Server

    Alessandretti, Laura; Gauvin, Laetitia

    2015-01-01

    Multimodal transportation systems can be represented as time-resolved multilayer networks where different transportation modes connecting the same set of nodes are associated to distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geolocalised transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, our aim is to provide a novel user-based methodological framework to represent public transportation systems considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. Using this framework we analyse public transportation systems in several French municipal areas. We incorporate travel routes and times over multiple transportation modes to identify efficient transportation connections and non-trivial connectivity patterns. The proposed method ...

  9. Template security analysis of multimodal biometric frameworks based on fingerprint and hand geometry

    Directory of Open Access Journals (Sweden)

    Arvind Selwal

    2016-09-01

    Full Text Available Biometric systems are automatic tools used to provide authentication during various applications of modern computing. In this work, three different design frameworks for multimodal biometric systems based on fingerprint and hand geometry modalities are proposed. An analysis is also presented to diagnose various types of template security issues in the proposed system. Fuzzy analytic hierarchy process (FAHP is applied with five decision parameters on all the designs and framework 1 is found to be better in terms of template data security, templates fusion and computational efficiency. It is noticed that template data security before storage in database is a challenging task. An important observation is that a template may be secured at feature fusion level and an indexing technique may be used to improve the size of secured templates.

  10. Variable Optical Attenuator Based on Long-Range Surface Plasmon Polariton Multimode Interference Coupler

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Sun

    2014-01-01

    Full Text Available The fabrication and characterization of a thermal variable optical attenuator based on long-range surface plasmon polariton (LRSPP waveguide with multimode interference architecture were investigated. The surface morphology and waveguide configuration of Au stripe were studied by atomic force microscopy. The fluctuation of refractive index of poly(methyl-methacrylate-glycidyl-methacrylate polymer cladding was confirmed to be less than 3×10-4 within 8 h curing at 120°C. The end-fire excitation of LRSPP mode guiding at 1550 nm along Au stripe indicated that the extinction ratio of attenuator was about 12 dB at a driving power of 69 mW. The measured optical rise time and fall time are 0.57 and 0.87 ms, respectively. These favorable properties promise potentials of this plasmonic device in the application of optical interconnection.

  11. Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation

    Science.gov (United States)

    Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.

    2016-02-01

    We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.

  12. Temperature Dependence of Characteristics for Multimode Interference Based 3-dB Coupler in SOI

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The temperature dependence of characteristics for multimode interference(MMI) based 3-dB coupler in silicon-on-insulator is analyzed, which originates from the relatively high thermo-optic coefficient of silicon. For restricted interference 3-dB MMI coupler, the output power uniformity is ideally 0 at room temperature and becomes 0.32dB when temperature rises up to 550K.For symmetric interference 3-dB MMI coupler, the power uniformity keeps ideally 0 due to its intrinsic symmetric interference mechanism. With the temperature rising, the excess loss of the both devices increases. The performance deterioration due to temperature variety is more obvious to restricted interference MMI 3-dB coupler, comparing with that of symmetric interference MMI 3-dB coupler.

  13. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  14. Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets

    Science.gov (United States)

    Yamamoto, Shunsuke; Uchiyama, Shun; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-03-01

    Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N-dodecylacrylamide (DDA) and dopamine methacrylamide (DMA). The p(DDA/DMA) nanosheets were immersed into water dispersions of SiO2, Al2O3, and WO3 nanoparticles (NPs) respectively. The results show that the adsorption properties can be altered by varying the NP type: SiO2 NP adsorption was observed only below pH = 6, at which the o-quinone form in p(DDA/DMA) nanosheets transforms into the catechol form or vice versa. However, their transition point for Al2O3 NP adsorption was found at approximately pH 10, at which the surface potential of Al2O3 NPs changes the charge polarity, indicating that the electrostatic interaction is predominant. For WO3 NPs, adsorption was observed when citric acid, which modifies the surface of WO3 NPs by complex formation, was used as a pH-controlling agent, but no adsorption was found for hydrochloric acid used as a pH controlling agent. FT-IR measurements proved that miniscule amounts of water molecules were trapped in p(DDA/DMA) nanosheets and that they acquired hydrogen bonding network formations, which might assist nanoparticle adsorption underwater and make the catechol units adjustable. The results indicate that the nanoscale spatial arrangements of catechol units in films are crucially important for the application of multimodal adsorption of oxide nanoparticles on catechol-based polymer materials.Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N

  15. Medical image retrieval based on plaque appearance and image registration.

    Science.gov (United States)

    Amores, Jaume; Radeva, Petia

    2005-01-01

    The increasing amount of medical images produced and stored daily in hospitals needs a datrabase management system that organizes them in a meaningful way, without the necessity of time-consuming textual annotations for each image. One of the basic ways to organize medical images in taxonomies consists of clustering them depending of plaque appearance (for example, intravascular ultrasound images). Although lately, there has been a lot of research in the field of Content-Based Image Retrieval systems, mostly these systems are designed for dealing a wide range of images but not medical images. Medical image retrieval by content is still an emerging field, and few works are presented in spite of the obvious applications and the complexity of the images demanding research studies. In this chapter, we overview the work on medical image retrieval and present a general framework of medical image retrieval based on plaque appearance. We stress on two basic features of medical image retrieval based on plaque appearance: plaque medical images contain complex information requiring not only local and global descriptors but also context determined by image features and their spatial relations. Additionally, given that most objects in medical images usually have high intra- and inter-patient shape variance, retrieval based on plaque should be invariant to a family of transformations predetermined by the application domain. To illustrate the medical image retrieval based on plaque appearance, we consider a specific image modality: intravascular ultrasound images and present extensive results on the retrieval performance.

  16. A robust linear feature-based procedure for automated registration of point clouds.

    Science.gov (United States)

    Poreba, Martyna; Goulette, François

    2015-01-14

    With the variety of measurement techniques available on the market today, fusing multi-source complementary information into one dataset is a matter of great interest. Target-based, point-based and feature-based methods are some of the approaches used to place data in a common reference frame by estimating its corresponding transformation parameters. This paper proposes a new linear feature-based method to perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm called Robust Line Matching and Registration (RLMR), which combines coarse and fine registration, was developed. The initial estimate is found from a triplet of conjugate line pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an iterative optimization algorithm. Conjugates of linear features are identified with respect to a similarity metric representing a line-to-line distance. The efficiency and robustness to noise of the proposed method are evaluated and discussed. The algorithm is valid and ensures valuable results when pre-aligned point clouds with the same scale are used. The studies show that the matching accuracy is at least 99.5%. The transformation parameters are also estimated correctly. The error in rotation is better than 2.8% full scale, while the translation error is less than 12.7%.

  17. A Robust Linear Feature-Based Procedure for Automated Registration of Point Clouds

    Directory of Open Access Journals (Sweden)

    Martyna Poreba

    2015-01-01

    Full Text Available With the variety of measurement techniques available on the market today, fusing multi-source complementary information into one dataset is a matter of great interest. Target-based, point-based and feature-based methods are some of the approaches used to place data in a common reference frame by estimating its corresponding transformation parameters. This paper proposes a new linear feature-based method to perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm called Robust Line Matching and Registration (RLMR, which combines coarse and fine registration, was developed. The initial estimate is found from a triplet of conjugate line pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an iterative optimization algorithm. Conjugates of linear features are identified with respect to a similarity metric representing a line-to-line distance. The efficiency and robustness to noise of the proposed method are evaluated and discussed. The algorithm is valid and ensures valuable results when pre-aligned point clouds with the same scale are used. The studies show that the matching accuracy is at least 99.5%. The transformation parameters are also estimated correctly. The error in rotation is better than 2.8% full scale, while the translation error is less than 12.7%.

  18. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    Science.gov (United States)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-04-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm. A hybrid DIR algorithm is proposed based on, a biomechanical model-based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used. Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone. The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5 mm.

  19. RFID based patient registration in mass casualty incidents

    Directory of Open Access Journals (Sweden)

    Nestler, Simon

    2011-01-01

    Full Text Available In MCIs (mass casualty incidents the EMC (emergency medical chief has to gain an overview on all patients at the scene. When using paper based patient tags the patient-related information remains at the patients themselves and the information relay is complex. We propose a mobile, RFID based solution, which makes the local patient-related information available to all relief workers at the scene. As a consequence all processes in an MCI are more transparent and the resulting medication and transport of the injured is more efficient. The introduction of RFID enhanced patient tags leads to various usability challenges which are discussed in this paper. Furthermore, three different implementations show, how these challenges can be solved in the future. These solutions have been evaluated in a disaster control exercise in order to get an impression of the practical suitability of the proposed solutions. The future introduction of RFID tags in rescue and emergency services can be based on this work.

  20. Comparison of Image Registration Based Measures of Regional Lung Ventilation from Dynamic Spiral CT with Xe-CT

    CERN Document Server

    Ding, Kai; Fuld, Matthew K; Du, Kaifang; Christensen, Gary E; Hoffman, Eric A; Reinhardt, Joseph M

    2012-01-01

    Purpose: Regional lung volume change as a function of lung inflation serves as an index of parenchymal and airway status as well as an index of regional ventilation and can be used to detect pathologic changes over time. In this article, we propose a new regional measure of lung mechanics --- the specific air volume change by corrected Jacobian. Methods: 4DCT and Xe-CT data sets from four adult sheep are used in this study. Nonlinear, 3D image registration is applied to register an image acquired near end inspiration to an image acquired near end expiration. Approximately 200 annotated anatomical points are used as landmarks to evaluate registration accuracy. Three different registration-based measures of regional lung mechanics are derived and compared: the specific air volume change calculated from the Jacobian (SAJ); the specific air volume change calculated by the corrected Jacobian (SACJ); and the specific air volume change by intensity change (SAI). Results: After registration, the mean registration err...

  1. Multimodal Afslapning

    Directory of Open Access Journals (Sweden)

    Stephen Palmer

    2012-10-01

    Full Text Available Artiklen beskriver Multimodal Relaxation Method (MRM, fremover Multimodal Afslapningsmetode, somkan anvendes i livs-, ledelses-, virksomheds-, sports- eller sundhedscoaching til at forbedre ydeevnen hos denenkelte og reducere eller håndtere stress. Inden for sports- og sundhedscoaching kan metoden anvendes til atreducere fysiske spændinger og styrke fysiologisk kontrol, fx lavere hjertefrekvens og nedsætte blodtrykket.

  2. Modified maximum likelihood registration based on information fusion

    Institute of Scientific and Technical Information of China (English)

    Yongqing Qi; Zhongliang Jing; Shiqiang Hu

    2007-01-01

    The bias estimation of passive sensors is considered based on information fusion in multi-platform multisensor tracking system. The unobservable problem of bearing-only tracking in blind spot is analyzed. A modified maximum likelihood method, which uses the redundant information of multi-sensor system to calculate the target position, is investigated to estimate the biases. Monte Carlo simulation results show that the modified method eliminates the effect of unobservable problem in the blind spot and can estimate the biases more rapidly and accurately than maximum likelihood method. It is statistically efficient since the standard deviation of bias estimation errors meets the theoretical lower bounds.

  3. A Secure and Decentralized Registration Scheme for IPv6 Network-Based Mobility

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Mathi

    2013-10-01

    Full Text Available For frequent movement of a mobile device, there is a need for a secure registration procedure of the mobile device by announcing its current location to the home network, especially, if it is not in the home domain. While devising the registration procedure for mobile IPv6 (MIPv6 based network, it is essential to consider the security issues for cryptographic approaches and an infrastructure requirement on the network. If a public key based cryptography is used for improving the security, then the key exchange mechanisms of the communicants must be handled appropriately. The infrastructure based approach increases the complexity of the mobile device and the mobility agents and also requires an additional message exchanges. Hence, this paper deals with an infrastructure-less registration scheme with symmetric key approach that acts upon MIPv6 environment consisting of the mobile node, home agent, and correspondent node. The proposed scheme is simulated and evaluated for security usingMurphi checker. The correctness of the signaling/message sequences of the proposed scheme are verified by the finite state machine. Finally, the simulation results reveals that better security and mutual authentication between MIPv6 nodes have been achieved, and further, mitigation for the various attack scenarios have also been addressed.

  4. Image registration via level-set motion: applications to atlas-based segmentation.

    Science.gov (United States)

    Vemuri, B C; Ye, J; Chen, Y; Leonard, C M

    2003-03-01

    Image registration is an often encountered problem in various fields including medical imaging, computer vision and image processing. Numerous algorithms for registering image data have been reported in these areas. In this paper, we present a novel curve evolution approach expressed in a level-set framework to achieve image intensity morphing and a simple non-linear PDE for the corresponding coordinate registration. The key features of the intensity morphing model are that (a) it is very fast and (b) existence and uniqueness of the solution for the evolution model are established in a Sobolev space as opposed to using viscosity methods. The salient features of the coordinate registration model are its simplicity and computational efficiency. The intensity morph is easily achieved via evolving level-sets of one image into the level-sets of the other. To explicitly estimate the coordinate transformation between the images, we derive a non-linear PDE-based motion model which can be solved very efficiently. We demonstrate the performance of our algorithm on a variety of images including synthetic and real data. As an application of the PDE-based motion model, atlas based segmentation of hippocampal shape from several MR brain scans is depicted. In each of these experiments, automated hippocampal shape recovery results are validated via manual "expert" segmentations.

  5. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  6. [Affine transformation-based automatic registration for peripheral digital subtraction angiography (DSA)].

    Science.gov (United States)

    Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min

    2008-07-01

    In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.

  7. Infrared image non-rigid registration based on regional information entropy demons algorithm

    Science.gov (United States)

    Lu, Chaoliang; Ma, Lihua; Yu, Ming; Cui, Shumin; Wu, Qingrong

    2015-02-01

    Infrared imaging fault detection which is treated as an ideal, non-contact, non-destructive testing method is applied to the circuit board fault detection. Since Infrared images obtained by handheld infrared camera with wide-angle lens have both rigid and non-rigid deformations. To solve this problem, a new demons algorithm based on regional information entropy was proposed. The new method overcame the shortcomings of traditional demons algorithm that was sensitive to the intensity. First, the information entropy image was gotten by computing regional information entropy of the image. Then, the deformation between the two images was calculated that was the same as demons algorithm. Experimental results demonstrated that the proposed algorithm has better robustness in intensity inconsistent images registration compared with the traditional demons algorithm. Achieving accurate registration between intensity inconsistent infrared images provided strong support for the temperature contrast.

  8. Optical flow based deformable volume registration using a novel second-order regularization prior

    Science.gov (United States)

    Grbić, Saša; Urschler, Martin; Pock, Thomas; Bischof, Horst

    2010-03-01

    Nonlinear image registration is an initial step for a large number of medical image analysis applications. Optical flow based intensity registration is often used for dealing with intra-modality applications involving motion differences. In this work we present an energy functional which uses a novel, second-order regularization prior of the displacement field. Compared to other methods our scheme is robust to non-Gaussian noise and does not penalize locally affine deformation fields in homogeneous areas. We propose an efficient and stable numerical scheme to find the minimizer of the presented energy. We implemented our algorithm using modern consumer graphics processing units and thereby increased the execution performance dramatically. We further show experimental evaluations on clinical CT thorax data sets at different breathing states and on dynamic 4D CT cardiac data sets.

  9. Scan-based volume animation driven by locally adaptive articulated registrations.

    Science.gov (United States)

    Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S

    2011-03-01

    This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries.

  10. Rationale for a multimodality strategy to enhance the efficacy of dendritic cell-based cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Jashodeep eDatta

    2015-06-01

    Full Text Available Dendritic cells (DC, master antigen-presenting cells that orchestrate interactions between the adaptive and innate immune arms, are increasingly utilized in cancer immunotherapy. Despite remarkable progress in our understanding of DC immunobiology, as well as several encouraging clinical applications — such as DC-based sipuleucel-T for metastatic castration-resistant prostate cancer — clinically effective DC-based immunotherapy as monotherapy for a majority of tumors remains a distant goal. The complex interplay between diverse molecular and immune processes that govern resistance to DC-based vaccination compels a multimodality approach, encompassing a growing arsenal of antitumor agents which target these distinct processes and synergistically enhance DC function. These include antibody-based targeted molecular therapies, immune checkpoint inhibitors, therapies that inhibit immunosuppressive cellular elements, conventional cytotoxic modalities, and immune potentiating adjuvants. It is likely that in the emerging era of precision cancer therapeutics, tangible clinical benefits will only be realized with a multifaceted—and personalized—approach combining DC-based vaccination with adjunctive strategies.

  11. A block matching-based registration algorithm for localization of locally advanced lung tumors

    Science.gov (United States)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2014-01-01

    Purpose: To implement and evaluate a block matching-based registration (BMR) algorithm for locally advanced lung tumor localization during image-guided radiotherapy. Methods: Small (1 cm3), nonoverlapping image subvolumes (“blocks”) were automatically identified on the planning image to cover the tumor surface using a measure of the local intensity gradient. Blocks were independently and automatically registered to the on-treatment image using a rigid transform. To improve speed and robustness, registrations were performed iteratively from coarse to fine image resolution. At each resolution, all block displacements having a near-maximum similarity score were stored. From this list, a single displacement vector for each block was iteratively selected which maximized the consistency of displacement vectors across immediately neighboring blocks. These selected displacements were regularized using a median filter before proceeding to registrations at finer image resolutions. After evaluating all image resolutions, the global rigid transform of the on-treatment image was computed using a Procrustes analysis, providing the couch shift for patient setup correction. This algorithm was evaluated for 18 locally advanced lung cancer patients, each with 4–7 weekly on-treatment computed tomography scans having physician-delineated gross tumor volumes. Volume overlap (VO) and border displacement errors (BDE) were calculated relative to the nominal physician-identified targets to establish residual error after registration. Results: Implementation of multiresolution registration improved block matching accuracy by 39% compared to registration using only the full resolution images. By also considering multiple potential displacements per block, initial errors were reduced by 65%. Using the final implementation of the BMR algorithm, VO was significantly improved from 77% ± 21% (range: 0%–100%) in the initial bony alignment to 91% ± 8% (range: 56%–100%; p < 0.001). Left

  12. Communications using multi-mode laser system based on chaotic synchronization

    Institute of Scientific and Technical Information of China (English)

    吴亮; 朱士群

    2003-01-01

    The communication using chaotic synchronization between two multi-mode Nd:YAG lasers has been investigated numerically. The digital communication using multi-mode chaotic lasers is quite different from that using single mode lasers. By introducing a short break between two adjacent bits in the communication scheme, the digital signals can be successfully encoded into the spiky pulses and decoded through the subtraction of receiver output from the transmitted.Even when the two multi-mode lasers are not synchronized perfectly with certain deviations, the encoded digits can still be decoded correctly.

  13. Registration of Aerial Image with Airborne LiDAR Data Based on Plücker Line

    OpenAIRE

    SHENG Qinghong; Chen, Shuwen; FEI Lijia; Liu, Jianfeng; Wang, Huinan

    2015-01-01

    Registration of aerial image with airborne LiDAR data is a key to feature extraction. A registration model based on Plücker line is proposed. The relative position and attitude relationship between the conjugate lines in LiDAR and image is determined based on Plücker linear equation, which describes line transformation in space, then coplanarity condition equation is established. Finally, coordinate transformation between image point and corresponding LiDAR point is achieved by the ...

  14. Fast Rotation-Free Feature-Based Image Registration Using Improved N-SIFT and GMM-Based Parallel Optimization.

    Science.gov (United States)

    Yu, Dongdong; Yang, Feng; Yang, Caiyun; Leng, Chengcai; Cao, Jian; Wang, Yining; Tian, Jie

    2016-08-01

    Image registration is a key problem in a variety of applications, such as computer vision, medical image processing, pattern recognition, etc., while the application of registration is limited by time consumption and the accuracy in the case of large pose differences. Aimed at these two kinds of problems, we propose a fast rotation-free feature-based rigid registration method based on our proposed accelerated-NSIFT and GMM registration-based parallel optimization (PO-GMMREG). Our method is accelerated by using the GPU/CUDA programming and preserving only the location information without constructing the descriptor of each interest point, while its robustness to missing correspondences and outliers is improved by converting the interest point matching to Gaussian mixture model alignment. The accuracy in the case of large pose differences is settled by our proposed PO-GMMREG algorithm by constructing a set of initial transformations. Experimental results demonstrate that our proposed algorithm can fast rigidly register 3-D medical images and is reliable for aligning 3-D scans even when they exhibit a poor initialization.

  15. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation

    Science.gov (United States)

    Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-01

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  16. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  17. A generative model for probabilistic label fusion of multimodal data

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen

    2012-01-01

    to the general case in which the target data are multimodal. The method is based on a generative model that exploits the consistency of voxel intensities within the target scan based on the current estimate of the segmentation. Using brain MRI scans acquired with a multiecho FLASH sequence, we compare the method......The maturity of registration methods, in combination with the increasing processing power of computers, has made multi-atlas segmentation methods practical. The problem of merging the deformed label maps from the atlases is known as label fusion. Even though label fusion has been well studied...... for intramodality scenarios, it remains relatively unexplored when the nature of the target data is multimodal or when its modality is different from that of the atlases. In this paper, we review the literature on label fusion methods and also present an extension of our previously published algorithm...

  18. [Rapid 2D-3D medical image registration based on CUDA].

    Science.gov (United States)

    Li, Lingzhi; Zou, Beiji

    2014-08-01

    The medical image registration between preoperative three-dimensional (3D) scan data and intraoperative two-dimensional (2D) image is a key technology in the surgical navigation. Most previous methods need to generate 2D digitally reconstructed radiographs (DRR) images from the 3D scan volume data, then use conventional image similarity function for comparison. This procedure includes a large amount of calculation and is difficult to archive real-time processing. In this paper, with using geometric feature and image density mixed characteristics, we proposed a new similarity measure function for fast 2D-3D registration of preoperative CT and intraoperative X-ray images. This algorithm is easy to implement, and the calculation process is very short, while the resulting registration accuracy can meet the clinical use. In addition, the entire calculation process is very suitable for highly parallel numerical calculation by using the algorithm based on CUDA hardware acceleration to satisfy the requirement of real-time application in surgery.

  19. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    Science.gov (United States)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  20. Evaluation of feature-based 3-d registration of probabilistic volumetric scenes

    Science.gov (United States)

    Restrepo, Maria I.; Ulusoy, Ali O.; Mundy, Joseph L.

    2014-12-01

    Automatic estimation of the world surfaces from aerial images has seen much attention and progress in recent years. Among current modeling technologies, probabilistic volumetric models (PVMs) have evolved as an alternative representation that can learn geometry and appearance in a dense and probabilistic manner. Recent progress, in terms of storage and speed, achieved in the area of volumetric modeling, opens the opportunity to develop new frameworks that make use of the PVM to pursue the ultimate goal of creating an entire map of the earth, where one can reason about the semantics and dynamics of the 3-d world. Aligning 3-d models collected at different time-instances constitutes an important step for successful fusion of large spatio-temporal information. This paper evaluates how effectively probabilistic volumetric models can be aligned using robust feature-matching techniques, while considering different scenarios that reflect the kind of variability observed across aerial video collections from different time instances. More precisely, this work investigates variability in terms of discretization, resolution and sampling density, errors in the camera orientation, and changes in illumination and geographic characteristics. All results are given for large-scale, outdoor sites. In order to facilitate the comparison of the registration performance of PVMs to that of other 3-d reconstruction techniques, the registration pipeline is also carried out using Patch-based Multi-View Stereo (PMVS) algorithm. Registration performance is similar for scenes that have favorable geometry and the appearance characteristics necessary for high quality reconstruction. In scenes containing trees, such as a park, or many buildings, such as a city center, registration performance is significantly more accurate when using the PVM.

  1. Refractometric sensors based on multimode interference in a thin-film coated single-mode-multimode-single-mode structure with reflection configuration.

    Science.gov (United States)

    Del Villar, Ignacio; Socorro, Abian B; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2014-06-20

    Thin-film coated single-mode-multimode-single-mode (SMS) structures have been analyzed both theoretically and experimentally with the aim of detecting different refractive indices. By adequate selection of the thickness of the thin film and of the diameter of the multimode segment in the SMS structure, a seven-fold improvement can be obtained in the sensitivity of the device to the surrounding medium refractive index, achieving a maximum sensitivity of 1199.18  nm/refractive index unit for the range of refractive indices from 1.321 to 1.382. Using layer-by-layer self-assembly for deposition, both on the cladding and on the tip of the multimode segment, allows the reflected power to increase, which avoids the application of a mirror on the tip of the multimode segment.

  2. Non-Rigid Medical Image Registration with Joint Histogram Estimation Based on Mutual Information

    Institute of Scientific and Technical Information of China (English)

    LU Xuesong; ZHANG Su; SU He; CHEN Yazhu

    2007-01-01

    A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Harming windowed sinc is used as kernel function of partial volume (PV)interpolation to estimate the joint histogram, which is the key to calculating the mutual information. And a new method is proposed to compute the gradient of mutual information with respect to themodel parameters. The transformation of object is modeled by a free-form deformation (FFD) based on B-splines. The experiments on 3D synthetic and real image data show that the algorithm can con-verge at the global optimum and restrain the emergency of local extreme.

  3. Two-port multimode interference reflectors based on aluminium mirrors in a thick SOI platform

    CERN Document Server

    Fandiño, Javier S; Muñoz, Pascual

    2015-01-01

    Multimode interference reflectors (MIRs) were recently introduced as a new type of photonic integrated devices for on-chip, broadband light reflection. In the original proposal, different MIRs were demonstrated based on total internal reflection mirrors made of two deep-etched facets. Although simpler to fabricate, this approach imposes certain limits on the shape of the field pattern at the reflecting facets, which in turn restricts the types of MIRs that can be implemented. In this work, we propose and experimentally demonstrate the use of aluminium-based mirrors for the design of 2-port MIRs with variable reflectivity. These mirrors do not impose any restrictions on the incident field, and thus give more flexibility at the design stage. Different devices with reflectivities between~0~and~0.5 were fabricated in a 3~um thick SOI platform, and characterization of multiple dies was performed to extract statistical data about their performance. Our measurements show that, on average, losses both in the aluminiu...

  4. Appearance-based human gesture recognition using multimodal features for human computer interaction

    Science.gov (United States)

    Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun

    2011-03-01

    The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.

  5. CPG-based Sensory Feedback Control for Bio-inspired Multimodal Swimming

    Directory of Open Access Journals (Sweden)

    Ming Wang

    2014-10-01

    Full Text Available Sensory feedback plays a very significant role in the generation of diverse and stable movements for animals. In this paper we describe our effort to develop a Central Pattern Generator (CPG-based sensory feedback control for the creation of multimodal swimming for a multi-articulated robotic fish in the context of neurocomputing. The proposed control strategy is composed of two phases: the upper decision-making and the automatic adjustment. According to the upper control commands and the sensory inputs, different swimming gaits are determined by a finite state machine algorithm. At the same time, the sensory feedback is exploited to shape the CPG coupling forms and control parameters. In the automatic adjustment phase, the CPG model with sensory feedback will adapt the environment autonomously. Simulation and underwater tests are further conducted to verify the presented control scheme. It is found that the CPG-based sensory feedback control method can effectively improve the manoeuvrability and adaptability of the robotic fish in water.

  6. Personalized, relevance-based Multimodal Robotic Imaging and augmented reality for Computer Assisted Interventions.

    Science.gov (United States)

    Navab, Nassir; Fellow, Miccai; Hennersperger, Christoph; Frisch, Benjamin; Fürst, Bernhard

    2016-10-01

    In the last decade, many researchers in medical image computing and computer assisted interventions across the world focused on the development of the Virtual Physiological Human (VPH), aiming at changing the practice of medicine from classification and treatment of diseases to that of modeling and treating patients. These projects resulted in major advancements in segmentation, registration, morphological, physiological and biomechanical modeling based on state of art medical imaging as well as other sensory data. However, a major issue which has not yet come into the focus is personalizing intra-operative imaging, allowing for optimal treatment. In this paper, we discuss the personalization of imaging and visualization process with particular focus on satisfying the challenging requirements of computer assisted interventions. We discuss such requirements and review a series of scientific contributions made by our research team to tackle some of these major challenges.

  7. FINDING A GOOD FEATURE DETECTOR-DESCRIPTOR COMBINATION FOR THE 2D KEYPOINT-BASED REGISTRATION OF TLS POINT CLOUDS

    OpenAIRE

    Urban, S; Weinmann, M

    2015-01-01

    The automatic and accurate registration of terrestrial laser scanning (TLS) data is a topic of great interest in the domains of city modeling, construction surveying or cultural heritage. While numerous of the most recent approaches focus on keypoint-based point cloud registration relying on forward-projected 2D keypoints detected in panoramic intensity images, little attention has been paid to the selection of appropriate keypoint detector-descriptor combinations. Instead, keypoints...

  8. Assessing Digital Student Productions, a Design-Based Research Study on the Development of a Criteria-Based Assessment Tool for Students’ Digital Multimodal Productions

    DEFF Research Database (Denmark)

    Hoffmeyer, Mikkeline; Jensen, Jesper Juellund; Olsen, Marie Veisegaard

    2016-01-01

    productions is often vague or lacking. Therefore, the research project aims at developing a tool to support assessment of student’s digital multimodal productions through a design-based research method. This paper presents a proposal for issues to be considered through a prototyping phase, based on interviews...

  9. Multimodal Image Acquisition System Based on Finger Correlation Features%基于指部关联特征的多模态图像采集系统

    Institute of Scientific and Technical Information of China (English)

    梁爱华; 袁家政; 和青芳; 何娟

    2014-01-01

    To avoid the low security and instability of single biometric authentication,a multimodal image acquisition system based on finger features is designed to realize the time-sharing collecting the fingerprint,finger knuckle and finger-vein images through a dual-band camera. Fingerprint and finger knuckle images are acquired by non-contact reflection way. The single light source and reflection mirror is adopted while collecting finger-vein image. The near-infrared LED light source position and angle can be adjusted according to the finger-vein image quality assessment. The weights are adjusted based on the information contents of three features. Actual test results show that multimodal image acquisition system has distinctive advantages compared to single-mode image acquisition system,which was based on fingerprint or finger-vein. In proposed system, authentication passing rate can reach 99. 1% and false accept rate is 0. 000 1% without rejection registration.%针对基于单个生物特征的身份认证安全性和稳定性不足的问题,设计了基于指部关联特征的多模态图像采集系统,采用单个双波段摄像头分时采集同一根手指的指纹、指节纹和指静脉图像。指纹和指节纹采用非接触反射采集方式,指静脉采用单侧近红外光源与反射镜面相结合的透射采集方式,并根据静脉图像质量评价动态调控光源,根据特征点信息量动态调整各个特征的权重。实验结果表明,该多模态采集系统在认证通过率、误识率和拒登率等指标都优于指纹或指静脉的单模态采集系统,认证通过率达到99.1%,误识率为0.0001%,不存在拒登现象。

  10. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  11. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation.

    Science.gov (United States)

    Duay, Valérie; Bresson, Xavier; Castro, Javier Sanchez; Pollo, Claudio; Cuadra, Meritxell Bach; Thiran, Jean-Philippe

    2008-01-01

    This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

  12. Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology.

    Science.gov (United States)

    Lee, Hyekyoung; Kang, Hyejin; Chung, Moo K; Lim, Seonhee; Kim, Bung-Nyun; Lee, Dong Soo

    2017-03-01

    Finding underlying relationships among multiple imaging modalities in a coherent fashion is one of the challenging problems in multimodal analysis. In this study, we propose a novel approach based on multidimensional persistence. In the extension of the previous threshold-free method of persistent homology, we visualize and discriminate the topological change of integrated brain networks by varying not only threshold but also mixing ratio between two different imaging modalities. The multidimensional persistence is implemented by a new bimodal integration method called 1D projection. When the mixing ratio is predefined, it constructs an integrated edge weight matrix by projecting two different connectivity information onto the one dimensional shared space. We applied the proposed methods to PET and MRI data from 23 attention deficit hyperactivity disorder (ADHD) children, 21 autism spectrum disorder (ASD), and 10 pediatric control subjects. From the results, we found that the brain networks of ASD, ADHD children and controls differ, with ASD and ADHD showing asymmetrical changes of connected structures between metabolic and morphological connectivities. The difference of connected structure between ASD and the controls was mainly observed in the metabolic connectivity. However, ADHD showed the maximum difference when two connectivity information were integrated with the ratio 0.6. These results provide a multidimensional homological understanding of disease-related PET and MRI networks that disclose the network association with ASD and ADHD. Hum Brain Mapp 38:1387-1402, 2017. © 2016 Wiley Periodicals, Inc.

  13. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  14. Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories.

    Science.gov (United States)

    Song, Zhi-li; Li, Sheng; George, Thomas F

    2010-01-18

    Through retrofitting the descriptor of a scale-invariant feature transform (SIFT) and developing a new similarity measure function based on trajectories generated from Lissajous curves, a new remote sensing image registration approach is constructed, which is more robust and accurate than prior approaches. In complex cases where the correct rate of feature matching is below 20%, the retrofitted SIFT descriptor improves the correct rate to nearly 100%. Mostly, the similarity measure function makes it possible to quantitatively analyze the temporary change of the same geographic position.

  15. Analysis to feature-based video stabilization/registration techniques within application of traffic data collection

    Science.gov (United States)

    Sadat, Mojtaba T.; Viti, Francesco

    2015-02-01

    Machine vision is rapidly gaining popularity in the field of Intelligent Transportation Systems. In particular, advantages are foreseen by the exploitation of Aerial Vehicles (AV) in delivering a superior view on traffic phenomena. However, vibration on AVs makes it difficult to extract moving objects on the ground. To partly overcome this issue, image stabilization/registration procedures are adopted to correct and stitch multiple frames taken of the same scene but from different positions, angles, or sensors. In this study, we examine the impact of multiple feature-based techniques for stabilization, and we show that SURF detector outperforms the others in terms of time efficiency and output similarity.

  16. A self-recalibration method based on scale-invariant registration for structured light measurement systems

    Science.gov (United States)

    Chen, Rui; Xu, Jing; Zhang, Song; Chen, Heping; Guan, Yong; Chen, Ken

    2017-01-01

    The accuracy of structured light measurement depends on delicate offline calibration. However, in some practical applications, the system is supposed to be reconfigured so frequently to track the target that an online calibration is required. To this end, this paper proposes a rapid and autonomous self-recalibration method. For the proposed method, first, the rotation matrix and the normalized translation vector are attained from the fundamental matrix; second, the scale factor is acquired based on scale-invariant registration such that the actual translation vector is obtained. Experiments have been conducted to verify the effectiveness of our proposed method and the results indicate a high degree of accuracy.

  17. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer

    2016-12-13

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  18. A computationally efficient approach for template matching-based image registration

    Indian Academy of Sciences (India)

    Vilas H Gaidhane; Yogesh V Hote; Vijander Singh

    2014-04-01

    Image registration using template matching is an important step in image processing. In this paper, a simple, robust and computationally efficient approach is presented. The proposed approach is based on the properties of a normalized covariance matrix. The main advantage of the proposed approach is that the image matching can be achieved without calculating eigenvalues and eigenvectors of a covariance matrix, hence reduces the computational complexity. The experimental results show that the proposed approach performs better in the presence of various noises and rigid geometric transformations.

  19. A temperature sensor based on the splicing of a core offset multi-mode fiber with two single mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Liu, Qin; Xiu, Yan-li; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2015-11-01

    In this paper, a temperature sensor based on the splicing of a core offset multi-mode fiber with two single mode fibers is proposed and demonstrated experimentally. The temperature sensing principle is analyzed and related experiment is performed. By controlling the core offset and splicing length of the specialty multi-mode fiber (SMMF), two sensors with different temperature sensing properties are obtained, and experimental results show that the temperature sensitivity can be up to 48.76 pm/°C in the range of 25—95 °C. Moreover, it has many advantages, including small size, high sensitivity, and simple structure. So it can be used in potential temperature sensing applications, such as industrial production, biomedical science, power electronics, and so on.

  20. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency.

    Science.gov (United States)

    Das, Sudeb; Kundu, Malay Kumar

    2012-10-01

    In this article, a novel multimodal medical image fusion (MIF) method based on non-subsampled contourlet transform (NSCT) and pulse-coupled neural network (PCNN) is presented. The proposed MIF scheme exploits the advantages of both the NSCT and the PCNN to obtain better fusion results. The source medical images are first decomposed by NSCT. The low-frequency subbands (LFSs) are fused using the 'max selection' rule. For fusing the high-frequency subbands (HFSs), a PCNN model is utilized. Modified spatial frequency in NSCT domain is input to motivate the PCNN, and coefficients in NSCT domain with large firing times are selected as coefficients of the fused image. Finally, inverse NSCT (INSCT) is applied to get the fused image. Subjective as well as objective analysis of the results and comparisons with state-of-the-art MIF techniques show the effectiveness of the proposed scheme in fusing multimodal medical images.

  1. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    Science.gov (United States)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  2. Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home

    Directory of Open Access Journals (Sweden)

    Mau-Tsuen Yang

    2014-08-01

    Full Text Available There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home’s entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.

  3. Multimodal Discrimination of Alzheimer's Disease Based on Regional Cortical Atrophy and Hypometabolism.

    Directory of Open Access Journals (Sweden)

    Hyuk Jin Yun

    Full Text Available Structural MR image (MRI and 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET have been widely employed in diagnosis of both Alzheimer's disease (AD and mild cognitive impairment (MCI pathology, which has led to the development of methods to distinguish AD and MCI from normal controls (NC. Synaptic dysfunction leads to a reduction in the rate of metabolism of glucose in the brain and is thought to represent AD progression. FDG-PET has the unique ability to estimate glucose metabolism, providing information on the distribution of hypometabolism. In addition, patients with AD exhibit significant neuronal loss in cerebral regions, and previous AD research has shown that structural MRI can be used to sensitively measure cortical atrophy. In this paper, we introduced a new method to discriminate AD from NC based on complementary information obtained by FDG and MRI. For accurate classification, surface-based features were employed and 12 predefined regions were selected from previous studies based on both MRI and FDG-PET. Partial least square linear discriminant analysis was employed for making diagnoses. We obtained 93.6% classification accuracy, 90.1% sensitivity, and 96.5% specificity in discriminating AD from NC. The classification scheme had an accuracy of 76.5% and sensitivity and specificity of 46.5% and 89.6%, respectively, for discriminating MCI from AD. Our method exhibited a superior classification performance compared with single modal approaches and yielded parallel accuracy to previous multimodal classification studies using MRI and FDG-PET.

  4. PetroSPIRE: a multimodal content-based retrieval system for petroleum applications

    Science.gov (United States)

    Bergman, Lawrence D.; Castelli, Vittorio; Li, Chung-Sheng; Tilke, Peter; Bryant, Ian

    1999-08-01

    In this paper we present a novel content-based search application for petroleum exploration and production. The target application is specification of and search for geologically significant features to be extracted from 2D imagery acquired from oil well bores, in conjunction with 1D parameter traces. The PetroSPIRE system permits a user to define rock strata using image examples in conjunction with parameter constraints. Similarity retrieval is based multimodal search, an relies on texture-matching techniques using pre-extracted texture features, employing high- dimensional indexing and nearest neighbor search. Special- purpose visualization techniques allow a user to evalute object definitions, which can then be iteratively refined by supplying multiple positive and negative image examples as well as multiple parameter constraints. Higher-level semantic constructs can be created from simpler entities by specifying sets of inter-object constraints. A delta-lobe riverbed, for examples, might be specified as layer of siltstone which is above and within 10 feet of a layer of sandstone, with an intervening layer of shale. These 'compound objects', along with simple objects, from a library of searchable entities that can be used in an operational setting. Both object definition and search are accomplished using a web-based Java client, supporting image and parameter browsing, drag-and-drop query specification, and thumbnail viewing of query results. Initial results from this search engine have been deemed encouraging by oil- industry E and P researchers. A more ambitious pilot is underway to evaluate the efficacy of this approach on a large database from a North Sea drilling site.

  5. MOBILTEL - Mobile Multimodal Telecommunications dialogue system based on VoIP telephony

    Directory of Open Access Journals (Sweden)

    Anton Čižmár

    2009-10-01

    Full Text Available In this paper the project MobilTel ispresented. The communication itself is becoming amultimodal interactive process. The MobilTel projectprovides research and development activities inmultimodal interfaces area. The result is a functionalarchitecture for mobile multimodal telecommunicationsystem running on handheld device. The MobilTelcommunicator is a multimodal Slovak speech andgraphical interface with integrated VoIP client. Theother possible modalities are pen – touch screeninteraction, keyboard, and display on which theinformation is more user friendly presented (icons,emoticons, etc., and provides hyperlink and scrollingmenu availability.We describe the method of interaction between mobileterminal (PDA and MobilTel multimodal PCcommunicator over a VoIP WLAN connection basedon SIP protocol. We also present the graphicalexamples of services that enable users to obtaininformation about weather or information about trainconnection between two train stations.

  6. ANALYSIS OF TWO TRIANGLE-BASED MULTI-SURFACE REGISTRATION ALGORITHMS OF IRREGULAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    M. Al-Durgham

    2012-09-01

    Full Text Available The registration of multiple surface point clouds into a common reference frame is a well addressed topic, and the Iterative Closest Point (ICP is – perhaps – the most used method when registering laser scans due to their irregular nature. In this paper, we examine the proposed Iterative Closest Projected Point (ICPP algorithm for the simultaneous registration of multiple point clouds. First, a point to triangular patch (i.e. closest three points match is established by checking if the point falls within the triangular dipyramid, which has the three triangular patch points as a base and a user-chosen normal distance as the height to establish the two peaks. Then, the point is projected onto the patch surface, and its projection is then used as a match for the original point. It is also shown through empirical experimentation that the Delaunay triangles are not a requirement for establishing matches. In fact, Delaunay triangles in some scenarios may force blunders into the final solution, while using the closest three points leads to avoiding some undesired erroneous points. In addition, we review the algorithm by which the ICPP is inspired, namely, the Iterative Closest Patch (ICPatch; where conjugate point-patch pairs are extracted in the overlapping surface areas, and the transformation parameters between all neighbouring surfaces are estimated in a pairwise manner. Then, using the conjugate point-patch pairs, and applying the transformation parameters from the pairwise registration as initial approximations, the final surface transformation parameters are solved for simultaneously. Finally, we evaluate the assumptions made and examine the performance of the new algorithm against the ICPatch.

  7. User-oriented summary extraction for soccer video based on multimodal analysis

    Science.gov (United States)

    Liu, Huayong; Jiang, Shanshan; He, Tingting

    2011-11-01

    An advanced user-oriented summary extraction method for soccer video is proposed in this work. Firstly, an algorithm of user-oriented summary extraction for soccer video is introduced. A novel approach that integrates multimodal analysis, such as extraction and analysis of the stadium features, moving object features, audio features and text features is introduced. By these features the semantic of the soccer video and the highlight mode are obtained. Then we can find the highlight position and put them together by highlight degrees to obtain the video summary. The experimental results for sports video of world cup soccer games indicate that multimodal analysis is effective for soccer video browsing and retrieval.

  8. Multimodal analgesia versus traditional opiate based analgesia after cardiac surgery, a randomized controlled trial

    DEFF Research Database (Denmark)

    Rafiq, Sulman; Steinbrüchel, Daniel Andreas; Wanscher, Michael Jaeger;

    2014-01-01

    BACKGROUND: To evaluate if an opiate sparing multimodal regimen of dexamethasone, gabapentin, ibuprofen and paracetamol had better analgesic effect, less side effects and was safe compared to a traditional morphine and paracetamol regimen after cardiac surgery. METHODS: Open-label, prospective....... 1, p = 0.31). 30-day mortality was 1 vs. 2, p = 0.54. CONCLUSIONS: In patients undergoing cardiac surgery, a multimodal regimen offered significantly better analgesia than a traditional opiate regimen. Nausea and vomiting complaints were significantly reduced. No safety issues were observed...

  9. 基于互信息的图像配准技术的研究%Research on Image Registration Technology Based on Mutual Information

    Institute of Scientific and Technical Information of China (English)

    张银蒲

    2012-01-01

    Image registration based on mutual information (MI) has become an increasing popular match metric duing to it doesn' t relay on the image' s gray level and can realize automatic standerdising, multimodality medical image registration based on mutual information is deeply discussed mainly from the famework of registration, we have done the main reasearch of the method of image registration based on maximization of mutual information and used partial volume interpolation counted the value of column diagram, calculated the value of mutual information, analyzed its advantages and disadvantages. To speed up the rate of image registration and overcome the large calculation and the presence of local extremum of mutual information, we have focused on optimization strategy, based on discussing and analysing the common optimization strategy,we have put forward the improved optimization strategy. Because the common powell strategy dosen' t regard to the problem of linear independence, this design used the improved powell strategy that can make the direction of search linear independence and increase the degree of adjoint. This design also make the PSO optimization strategy compare with powell strategy,finaly make the analysis through simulation.%基于互信息的配准方法有不依赖于图像本身灰度,可实现自动校准等优点,针对基于互信息的多模态医学图像配准方法进行深入研究,从图像配准的框架入手,着重研究了基于最大互信息的配准方法,用PV插值法统计联合直方图的值计算出互信息值,分析了互信息作为配准的测度函数具有的优点和存在的缺点.为了加快配准速度,针对互信息计算量大和存在局部极值的问题,集中于优化策略的研究,在一般优化算法的讨论分析基础上,提出了改进的优化算法,针对一般Powell法不考虑线性无关问题,采用了改进后的Powell法,可以使搜索方向线性无关,共轭程度增加,

  10. Multi-camera calibration based on openCV and multi-view registration

    Science.gov (United States)

    Deng, Xiao-ming; Wan, Xiong; Zhang, Zhi-min; Leng, Bi-yan; Lou, Ning-ning; He, Shuai

    2010-10-01

    For multi-camera calibration systems, a method based on OpenCV and multi-view registration combining calibration algorithm is proposed. First of all, using a Zhang's calibration plate (8X8 chessboard diagram) and a number of cameras (with three industrial-grade CCD) to be 9 group images shooting from different angles, using OpenCV to calibrate the parameters fast in the camera. Secondly, based on the corresponding relationship between each camera view, the computation of the rotation matrix and translation matrix is formulated as a constrained optimization problem. According to the Kuhn-Tucker theorem and the properties on the derivative of the matrix-valued function, the formulae of rotation matrix and translation matrix are deduced by using singular value decomposition algorithm. Afterwards an iterative method is utilized to get the entire coordinate transformation of pair-wise views, thus the precise multi-view registration can be conveniently achieved and then can get the relative positions in them(the camera outside the parameters).Experimental results show that the method is practical in multi-camera calibration .

  11. Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.

    Science.gov (United States)

    Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan

    2016-08-10

    In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD.

  12. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    Directory of Open Access Journals (Sweden)

    Jae Won Bang

    2014-09-01

    Full Text Available With the development of 3D displays, user’s eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs, biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR, facial temperature (FT, and a subjective evaluation (SE score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively.

  13. On the accuracy of localization achievable in fiducial-based stereoscopic image registration system using an electronic portal imaging device.

    Science.gov (United States)

    Ung, N M; Wee, L

    2012-06-01

    Portal imaging using electronic portal imaging device (EPID) is a well-established image-guided radiation therapy (IGRT) technique for external beam radiation therapy. The aims of this study are threefold; (i) to assess the accuracy of isocentre localization in the fiducial-based stereoscopic image registration, (ii) to investigate the impact of errors in the beam collimation device on stereoscopic registration, and (iii) to evaluate the intra- and inter-observer variability in stereoscopic registration. Portal images of a ball bearing phantom were acquired and stereoscopic image registrations were performed based on a point centred in the ball bearing as the surrogate for registration. Experiments were replicated by applying intentional offsets in the beam collimation device to simulate collimation errors. The accuracy of fiducial markers localization was performed by repeating the experiment using three spherical lead shots implanted in a pelvic phantom. Portal images of pelvis phantom were given to four expert users to assess the inter-observer variability in performing registration. The isocentre localization accuracy tested using ball bearing phantom was within 0.3 mm. Gravity-induced systematic errors of beam collimation device by 2 mm resulted in positioning offsets of the order of 2 mm opposing the simulated errors. Relatively large inter-portal pair projection errors ranges from 1.3 mm to 1.8 mm were observed with simulated errors in the beam collimation device. The intra-user and inter-user variabilities were observed to be 0.8 and 0.4 mm respectively. Fiducial-based stereoscopic image registration using EPID is robust for IGRT procedure.

  14. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  15. Spectral demixing avoids registration errors and reduces noise in multicolor localization-based super-resolution microscopy

    Science.gov (United States)

    Lampe, André; Tadeus, Georgi; Schmoranzer, Jan

    2015-09-01

    Multicolor single molecule localization-based super-resolution microscopy (SMLM) approaches are challenged by channel crosstalk and errors in multi-channel registration. We recently introduced a spectral demixing-based variant of direct stochastic optical reconstruction microscopy (SD-dSTORM) to perform multicolor SMLM with minimal color crosstalk. Here, we demonstrate that the spectral demixing procedure is inherently free of errors in multicolor registration and therefore does not require multicolor channel alignment. Furthermore, spectral demixing significantly reduces single molecule noise and is applicable to astigmatism-based 3D multicolor imaging achieving 25 nm lateral and 66 nm axial resolution on cellular nanostructures.

  16. Metal complex-based templates and nanostructures for magnetic resonance/optical multimodal imaging agents

    NARCIS (Netherlands)

    Galindo Millan, J.J.

    2012-01-01

    In this thesis, new approaches directed towards simple and functional imaging agents (IAs) for magnetic resonance (MR) and fluorescence multimodal imaging are proposed. In Chapter 3, hybrid silver nanostructures (hAgNSs), grown using a polyamino carboxylic acid scaffold, namely 1,4,7,10-tetraaza-1-(

  17. Cross Space: The Exploration of SNS-Based Writing Activities in a Multimodal Learning Environment

    Science.gov (United States)

    Lee, Kwang-Soon; Kim, Bong-Gyu

    2016-01-01

    This study explores the positive learning effect of formulating English sentences via Social Network Service (SNS; "Kakao-Talk") on less proficient L2 university students' (LPSs') writing, when the application is utilized as a tool to link in and out-of class activities in a multimodal-learning environment. Its objective is also to…

  18. Installed Base Registration of Decentralised Solar Panels with Applications in Crisis Management

    Science.gov (United States)

    Aarsen, R.; Janssen, M.; Ramkisoen, M.; Biljecki, F.; Quak, W.; Verbree, E.

    2015-08-01

    In case of a calamity in the Netherlands - e.g. a dike breach - parts of the nationwide electric network can fall out. In these occasions it would be useful if decentralised energy sources of the Smart Grid would contribute to balance out the fluctuations of the energy network. Decentralised energy sources include: solar energy, wind energy, combined heat and power, and biogas. In this manner, parts of the built environment - e.g. hospitals - that are in need of a continuous power flow, could be secured of this power. When a calamity happens, information about the Smart Grid is necessary to control the crisis and to ensure a shared view on the energy networks for both the crisis managers and network operators. The current situation of publishing, storing and sharing data of solar energy has been shown a lack of reliability about the current number, physical location, and capacity of installed decentralised photovoltaic (PV) panels in the Netherlands. This study focuses on decentralised solar energy in the form of electricity via PV panels in the Netherlands and addresses this challenge by proposing a new, reliable and up-to-date database. The study reveals the requirements for a registration of the installed base of PV panels in the Netherlands. This new database should serve as a replenishment for the current national voluntary registration, called Production Installation Register of Energy Data Services Netherland (EDSN-PIR), of installed decentralised PV panel installations in the Smart Grid, and provide important information in case of a calamity.

  19. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    Science.gov (United States)

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  20. Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics

    Science.gov (United States)

    Franck, I. M.; Koutsourelakis, P. S.

    2017-01-01

    This paper is concerned with the numerical solution of model-based, Bayesian inverse problems. We are particularly interested in cases where the cost of each likelihood evaluation (forward-model call) is expensive and the number of unknown (latent) variables is high. This is the setting in many problems in computational physics where forward models with nonlinear PDEs are used and the parameters to be calibrated involve spatio-temporarily varying coefficients, which upon discretization give rise to a high-dimensional vector of unknowns. One of the consequences of the well-documented ill-posedness of inverse problems is the possibility of multiple solutions. While such information is contained in the posterior density in Bayesian formulations, the discovery of a single mode, let alone multiple, poses a formidable computational task. The goal of the present paper is two-fold. On one hand, we propose approximate, adaptive inference strategies using mixture densities to capture multi-modal posteriors. On the other, we extend our work in [1] with regard to effective dimensionality reduction techniques that reveal low-dimensional subspaces where the posterior variance is mostly concentrated. We validate the proposed model by employing Importance Sampling which confirms that the bias introduced is small and can be efficiently corrected if the analyst wishes to do so. We demonstrate the performance of the proposed strategy in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, medical diagnosis. The discovery of multiple modes (solutions) in such problems is critical in achieving the diagnostic objectives.

  1. Atomic clocks based on extened-cavity diode laser in multimode operation

    Science.gov (United States)

    Yim, Sin; Cho, D.

    2011-05-01

    We demonstrated the possibilities to develope an atomic clock based on coherent population trapping (CPT) without using a local oscillator and a modulator. Instead of using a modulator, we use two modes from a single extended-cavity diode laser in multimode operation. Two different types of feedback system are applied to stabilize a difference frequency between the two modes and eliminate the need for an extra frequency modulation. In the first type, we employ an electronic feedback using dispersion of the CPT resonance as an error signal. The two modes are phase locked with reference to a dispersion signal from a CPT resonance of 85Rb at 3.036 GHz ground hyperfine splitting. We use D1 transition at 794.8 nm with lin ⊥lin polarizations to obtain large-contrast CPT signal. Allan deviation of the beat frequency between the two modes is 1 ×10-10 at 200-s integration time. In the second type, we employ optoelectronic feedback to construct an opto-electronic oscillator (OEO). In an OEO, the beating signal between two modes is recovered by a fast photodiode, and its output is amplified and fed back to the laser diode by using a direct modulation of an injection current. When the OEO loop is closed, oscillation frequency depends on variations of the loop length. In order to stabilize an OEO loop length and thereby its oscillation frequency, CPT cell is inserted to play a role of microwave band pass filter. Allan deviation of the CPT-stabilized OEO is 2 ×10-10 at 100-s integration time.

  2. Registration Service

    CERN Multimedia

    GS Department

    2010-01-01

    Following a reorganization in Building 55, please note that the Registration Service is now organised as follows :  Ground floor: access cards (76903). 1st floor : registration of external firms’ personnel (76611 / 76622); car access stickers (76633); biometric registration (79710). Opening hours: 07-30 to 16-00 non-stop. GS-SEM Group General Infrastructure Services Department

  3. Efficient acceleration of mutual information computation for nonrigid registration using CUDA.

    Science.gov (United States)

    Ikeda, Kei; Ino, Fumihiko; Hagihara, Kenichi

    2014-05-01

    In this paper, we propose an efficient acceleration method for the nonrigid registration of multimodal images that uses a graphics processing unit. The key contribution of our method is efficient utilization of on-chip memory for both normalized mutual information (NMI) computation and hierarchical B-spline deformation, which compose a well-known registration algorithm. We implement this registration algorithm as a compute unified device architecture program with an efficient parallel scheme and several optimization techniques such as hierarchical data organization, data reuse, and multiresolution representation. We experimentally evaluate our method with four clinical datasets consisting of up to 512 × 512 × 296 voxels. We find that exploitation of on-chip memory achieves a 12-fold increase in speed over an off-chip memory version and, therefore, it increases the efficiency of parallel execution from 4% to 46%. We also find that our method running on a GeForce GTX 580 card is approximately 14 times faster than a fully optimized CPU-based implementation running on four cores. Some multimodal registration results are also provided to understand the limitation of our method. We believe that our highly efficient method, which completes an alignment task within a few tens of seconds, will be useful to realize rapid nonrigid registration.

  4. Agile multi-scale decompositions for automatic image registration

    Science.gov (United States)

    Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline

    2016-05-01

    In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the mixed MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.

  5. Multimodal stilistik

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2012-01-01

    socialsemiotiske multimodalitetsteori. Formålet med en sådan multimodal stilistik er således at udvikle et konsistent systematisk analyseapparat, der kan fange og beskrive den multimodale semiosis, der realiseres i romanen såvel som i andre typer tekst. Med nedslag i et udvalg af skandinaviske og oversatte...

  6. Registration of Aerial Image with Airborne LiDAR Data Based on Plücker Line

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-07-01

    Full Text Available Registration of aerial image with airborne LiDAR data is a key to feature extraction. A registration model based on Plücker line is proposed. The relative position and attitude relationship between the conjugate lines in LiDAR and image is determined based on Plücker linear equation, which describes line transformation in space, then coplanarity condition equation is established. Finally, coordinate transformation between image point and corresponding LiDAR point is achieved by the spiral movement of Plücker lines in the image. The registration model of Plücker linear coplanarity condition equation is simple, and jointly describes the rotation and translation to avoid coupling error between them, so the accuracy is approved. This research provides technical support for high-quality earth spatial information acquisition.

  7. Multimode geodesic branching components

    Science.gov (United States)

    Schulz, D.; Voges, E.

    1983-01-01

    Geodesic branching components are investigated for multimode guided wave optics. Geodesic structures with particular properties, e.g. focussing star couplers, are derived by a synthesis technique based on a theorem of Toraldo di Francia. Experimentally, the geodesic surfaces are printed on acrylic glass and are spin-coated with organic film waveguides.

  8. THE DIRECT REGISTRATION OF LIDAR POINT CLOUDS AND HIGH RESOLUTION IMAGE BASED ON LINEAR FEATURE BY INTRODUCING AN UNKNOWN PARAMETER

    Directory of Open Access Journals (Sweden)

    Y. Chunjing

    2012-07-01

    Full Text Available The registration between optical images and point clouds is the first task when the combination of these two datasets is concerned. Due to the discrete nature of the point clouds, and the 2D-3D transformation in particular, a tie points based registration strategy which is commonly adopted in image-to-image registration is hard to be used directly in this scenario. A derived collinear equation describing the map relationship between an image point and a ground point is used as the mathematical model for registration, with the point in the LiDAR space expressed by its parametric form. such a map relation can be viewed as the mathematical model which registers the image pixels to point clouds. This model is not only suitable for a single image registration but also applicable to multiple consecutive images. We also studied scale problem in image and point clouds registration, with scale problem is defined by the optimal corresponding between the image resolution and the density of point clouds. Test dataset includes the DMC images and point clouds acquired by the Leica ALS50 II over an area in Henan Prov., China. Main contributions of the paper includes: [1] an derived collinear equation is introduced by which a ground point is expressed by its parametric form, which makes it possible to replace point feature by linear feature, hence avoiding the problem that it is almost impossible to find a point in the point clouds which is accurately corresponds to a point in the image space; [2] least square method is used to calculate the registration transformation parameters and the unknown parameter λ in the same time;[3] scale problem is analyzed semi-quantitatively and to the authors’ best knowledge, it is the first time in literature that clearly defines the scale problem and carries out semi-quantitative analysis in the context of LiDAR data processing.

  9. Multi-atlas segmentation with particle-based group-wise image registration.

    Science.gov (United States)

    Lee, Joohwi; Lyu, Ilwoo; Styner, Martin

    2014-03-21

    We propose a novel multi-atlas segmentation method that employs a group-wise image registration method for the brain segmentation on rodent magnetic resonance (MR) images. The core element of the proposed segmentation is the use of a particle-guided image registration method that extends the concept of particle correspondence into the volumetric image domain. The registration method performs a group-wise image registration that simultaneously registers a set of images toward the space defined by the average of particles. The particle-guided image registration method is robust with low signal-to-noise ratio images as well as differing sizes and shapes observed in the developing rodent brain. Also, the use of an implicit common reference frame can prevent potential bias induced by the use of a single template in the segmentation process. We show that the use of a particle guided-image registration method can be naturally extended to a novel multi-atlas segmentation method and improves the registration method to explicitly use the provided template labels as an additional constraint. In the experiment, we show that our segmentation algorithm provides more accuracy with multi-atlas label fusion and stability against pair-wise image registration. The comparison with previous group-wise registration method is provided as well.

  10. PSO-based methods for medical image registration and change assessment of pigmented skin

    Science.gov (United States)

    Kacenjar, Steve; Zook, Matthew; Balint, Michael

    2011-03-01

    There are various scientific and technological areas in which it is imperative to rapidly detect and quantify changes in imagery over time. In fields such as earth remote sensing, aerospace systems, and medical imaging, searching for timedependent, regional changes across deformable topographies is complicated by varying camera acquisition geometries, lighting environments, background clutter conditions, and occlusion. Under these constantly-fluctuating conditions, the use of standard, rigid-body registration approaches often fail to provide sufficient fidelity to overlay image scenes together. This is problematic because incorrect assessments of the underlying changes of high-level topography can result in systematic errors in the quantification and classification of interested areas. For example, in the current naked-eye detection strategies of melanoma, a dermatologist often uses static morphological attributes to identify suspicious skin lesions for biopsy. This approach does not incorporate temporal changes which suggest malignant degeneration. By performing the co-registration of time-separated skin imagery, a dermatologist may more effectively detect and identify early morphological changes in pigmented lesions; enabling the physician to detect cancers at an earlier stage resulting in decreased morbidity and mortality. This paper describes an image processing system which will be used to detect changes in the characteristics of skin lesions over time. The proposed system consists of three main functional elements: 1.) coarse alignment of timesequenced imagery, 2.) refined alignment of local skin topographies, and 3.) assessment of local changes in lesion size. During the coarse alignment process, various approaches can be used to obtain a rough alignment, including: 1.) a manual landmark/intensity-based registration method1, and 2.) several flavors of autonomous optical matched filter methods2. These procedures result in the rough alignment of a patient

  11. Anatomy-based registration of CT-scan and intraoperative X-ray images for guiding a surgical robot.

    Science.gov (United States)

    Guéziec, A; Kazanzides, P; Williamson, B; Taylor, R H

    1998-10-01

    We describe new methods for rigid registration of a preoperative computed tomography (CT)-scan image to a set of intraoperative X-ray fluoroscopic images, for guiding a surgical robot to its trajectory planned from CT. Our goal is to perform the registration, i.e., compute a rotation and translation of one data set with respect to the other to within a prescribed accuracy, based upon bony anatomy only, without external fiducial markers. With respect to previous approaches, the following aspects are new: 1) we correct the geometric distortion in fluoroscopic images and calibrate them directly with respect to the robot by affixing to it a new calibration device designed as a radiolucent rod with embedded metallic markers, and by moving the device along two planes, while radiographs are being acquired at regular intervals; 2) the registration uses an algorithm for computing the best transformation between a set of lines in three space, the (intraoperative) X-ray paths, and a set of points on the surface of the bone (imaged preoperatively), in a statistically robust fashion, using the Cayley parameterization of a rotation; and 3) to find corresponding sets of points to the X-ray paths on the surfaces, our new approach consists of extracting the surface apparent contours for a given viewpoint, as a set of closed three-dimensional nonplanar curves, before registering the apparent contours to X-ray paths. Aside from algorithms, there are a number of major technical difficulties associated with engineering a clinically viable system using anatomy and image-based registration. To detect and solve them, we have so far conducted two experiments with the surgical robot in an operating room (OR), using CT and fluoroscopic image data of a cadaver bone, and attempting to faithfully simulate clinical conditions. Such experiments indicate that intraoperative X-ray-based registration is a promising alternative to marker-based registration for clinical use with our proposed method.

  12. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields

    Science.gov (United States)

    Wassermann, Demian; Ross, James; Washko, George; Wells, William M.; San Jose-Estepar, Raul

    2014-01-01

    The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees. PMID:25473253

  13. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    Science.gov (United States)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  14. Relative humidity sensor based on SMS fiber structure using multimode coreless fiber

    Science.gov (United States)

    Syafrani, Sanif; Hatta, Agus M.; Kusumawardhani, Apriani

    2016-11-01

    Singlemode-Multimode-Singlemode (SMS) optical fiber structure using multimode coreless have been able to sense changes in relative humidity. In this experiment the measured humidity is 60 % -90 %, while the method is done by comparing the relative humidity changes with the change in output power in the optical fiber. Then the underlying phenomena is the change in the refractive index of air as the cladding MMF coreless due to changes in relative humidity. It has been done three length variations MMF coreless to add sensitivity sensor, and the obtained sensor by 22.30 mm MMF length have the greatest sensitivity, that is 0.0747 dBm / %. Obtained conclusions on length variation will cause any change in the sensitivity significantly in relative humidity between 75 % -80 %.

  15. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F; Meyer, J; Sandison, G [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA (United States)

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database were included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.

  16. Development of real-time monitoring system for printing registration based on μC/OS-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    马志艳

    2009-01-01

    After analyzing the basic composition and principles of multicolor printing system,we presented a design of real-time monitoring system for printing registration based on multitask real-time operating system μC/OS-Ⅱ.According to functional requirements of registration system and the target development platform,we described the detailed process of task division, priority assignment,and synchronization and communication,and optimized the real-time performance of system in the premise of stability assurance.Fi...

  17. Incidence of unintentional injuries in farming based on one year of weekly registration in Danish farms

    DEFF Research Database (Denmark)

    Rasmussen, K; Carstensen, O; Lauritsen, Jens

    2000-01-01

    In Denmark, farming ranks as the industry with the highest incidence rate of fatal injuries. For nonfatal injuries, insufficient registration practices prevent valid comparisons between occupations. This study examines the occurrence of farm accidents and injuries, as well as work-specific factors......, via weekly registration in a representative sample of 393 farms in one county during 1 year....

  18. Template-based CTA X-ray angio rigid registration of coronary arteries in frequency domain

    Science.gov (United States)

    Aksoy, Timur; Demirci, Stefanie; Degertekin, Muzaffer; Navab, Nassir; Unal, Gozde

    2013-03-01

    This study performs 3D to 2D rigid registration of segmented pre-operative CTA coronary arteries with a single segmented intra-operative X-ray Angio frame in both frequency and spatial domains for real-time Angiography interventions by C-arm fluoroscopy. Most of the work on rigid registration in literature required a close initial- ization of poses and/or positions because of the abundance of local minima and high complexity that searching algorithms face. This study avoids such setbacks by transforming the projections into translation-invariant Fourier domain for estimating the 3D pose. First, template DRRs as candidate poses of 3D vessels of segmented CTA are produced by rotating the camera (image intensifier) around the DICOM angle values with a wide range as in C-arm setup. We have compared the 3D poses of template DRRs with the real X-ray after equalizing the scales (due to disparities in focal length distances) in 3 domains, namely Fourier magnitude, Fourier phase and Fourier polar. The best pose candidate was chosen by one of the highest similarity measures returned by the methods in these domains. It has been noted in literature that these methods are robust against noise and occlusion which was also validated by our results. Translation of the volume was then recovered by distance-map based BFGS optimization well suited to convex structure of our objective function without local minima due to distance maps. Final results were evaluated in 2D projection space rather than with actual values in 3D due to lack of ground truth, ill-posedness of the problem which we intend to address in future.

  19. INSTALLED BASE REGISTRATION OF DECENTRALISED SOLAR PANELS WITH APPLICATIONS IN CRISIS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    R. Aarsen

    2015-08-01

    Full Text Available In case of a calamity in the Netherlands - e.g. a dike breach - parts of the nationwide electric network can fall out. In these occasions it would be useful if decentralised energy sources of the Smart Grid would contribute to balance out the fluctuations of the energy network. Decentralised energy sources include: solar energy, wind energy, combined heat and power, and biogas. In this manner, parts of the built environment - e.g. hospitals - that are in need of a continuous power flow, could be secured of this power. When a calamity happens, information about the Smart Grid is necessary to control the crisis and to ensure a shared view on the energy networks for both the crisis managers and network operators. The current situation of publishing, storing and sharing data of solar energy has been shown a lack of reliability about the current number, physical location, and capacity of installed decentralised photovoltaic (PV panels in the Netherlands. This study focuses on decentralised solar energy in the form of electricity via PV panels in the Netherlands and addresses this challenge by proposing a new, reliable and up-to-date database. The study reveals the requirements for a registration of the installed base of PV panels in the Netherlands. This new database should serve as a replenishment for the current national voluntary registration, called Production Installation Register of Energy Data Services Netherland (EDSN-PIR, of installed decentralised PV panel installations in the Smart Grid, and provide important information in case of a calamity.

  20. The contribution of primary care based registration by sentinel networks to a European public health information system.

    NARCIS (Netherlands)

    Tomas Vega Alonso, A.; Schellevis, F.

    2003-01-01

    Primary care based registrations by Sentinel Networks have been operating for several decades in Europe. Participating general practitioners have provide health data for monitoring the health status and contribute to understand the epidemiological distribution of diseases and other conditons first a

  1. Multi-Modality Phantom Development

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  2. Research on non rigid registration algorithm of DCE-MRI based on mutual information and optical flow

    Science.gov (United States)

    Yu, Shihua; Wang, Rui; Wang, Kaiyu; Xi, Mengmeng; Zheng, Jiashuo; Liu, Hui

    2015-07-01

    Image matching plays a very important role in the field of medical image, while the two image registration methods based on the mutual information and the optical flow are very effective. The experimental results show that the two methods have their prominent advantages. The method based on mutual information is good for the overall displacement, while the method based on optical flow is very sensitive to small deformation. In the breast DCE-MRI images studied in this paper, there is not only overall deformation caused by the patient, but also non rigid small deformation caused by respiratory deformation. In view of the above situation, the single-image registration algorithms cannot meet the actual needs of complex situations. After a comprehensive analysis to the advantages and disadvantages of these two methods, this paper proposes a registration algorithm of combining mutual information with optical flow field, and applies subtraction images of the reference image and the floating image as the main criterion to evaluate the registration effect, at the same time, applies the mutual information between image sequence values as auxiliary criterion. With the test of the example, this algorithm has obtained a better accuracy and reliability in breast DCE-MRI image sequences.

  3. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results.

  4. Improving Intensity-Based Lung CT Registration Accuracy Utilizing Vascular Information

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available Accurate pulmonary image registration is a challenging problem when the lungs have a deformation with large distance. In this work, we present a nonrigid volumetric registration algorithm to track lung motion between a pair of intrasubject CT images acquired at different inflation levels and introduce a new vesselness similarity cost that improves intensity-only registration. Volumetric CT datasets from six human subjects were used in this study. The performance of four intensity-only registration algorithms was compared with and without adding the vesselness similarity cost function. Matching accuracy was evaluated using landmarks, vessel tree, and fissure planes. The Jacobian determinant of the transformation was used to reveal the deformation pattern of local parenchymal tissue. The average matching error for intensity-only registration methods was on the order of 1 mm at landmarks and 1.5 mm on fissure planes. After adding the vesselness preserving cost function, the landmark and fissure positioning errors decreased approximately by 25% and 30%, respectively. The vesselness cost function effectively helped improve the registration accuracy in regions near thoracic cage and near the diaphragm for all the intensity-only registration algorithms tested and also helped produce more consistent and more reliable patterns of regional tissue deformation.

  5. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  6. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  7. Towards multimodal detection of melanoma thickness based on optical coherence tomography and optoacoustics

    Science.gov (United States)

    Rahlves, M.; Varkentin, A.; Stritzel, J.; Blumenröther, E.; Mazurenka, M.; Wollweber, M.; Roth, B.

    2016-03-01

    Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology.

  8. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  9. Daily fraction dose recalculation based on rigid registration using Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Courtney Bosse

    2014-03-01

    Full Text Available Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2:020217. DOI: 10.14319/ijcto.0202.17

  10. WE-D-9A-01: A Novel Mesh-Based Deformable Surface-Contour Registration

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Cai, Y; Guo, X [The University of Texas at Dallas, Richardson, TX (United States); Jia, X; Chiu, T; Kearney, V; Liu, H; Jiang, L; Chen, S; Yordy, J; Nedzi, L; Mao, W [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-15

    Purpose: Initial guess is vital for 3D-2D deformable image registration (DIR) while dealing with large deformations for adaptive radiation therapy. A fast procedure has been developed to deform body surface to match 2D body contour on projections. This surface-contour DIR will provide an initial deformation for further complete 3D DIR or image reconstruction. Methods: Both planning CT images and come-beam CT (CBCT) projections are preprocessed to create 0–1 binary mask. Then the body surface and CBCT projection body contours are extracted by Canny edge detector. A finite element modeling system was developed to automatically generate adaptive meshes based on the image surface. After that, the projections of the CT surface voxels are computed and compared with corresponding 2D projection contours from CBCT scans. As a result, the displacement vector field (DVF) on mesh vertices around the surface was optimized iteratively until the shortest Euclidean distance between the pixels on the projections of the deformed CT surface and the corresponding CBCT projection contour is minimized. With the help of the tetrahedral meshes, we can smoothly diffuse the deformation from the surface into the interior of the volume. Finally, the deformed CT images are obtained by the optimal DVF applied on the original planning CT images. Results: The accuracy of the surface-contour registration is evaluated by 3D normalized cross correlation increased from 0.9176 to 0.9957 (sphere-ellipsoid phantom) and from 0.7627 to 0.7919 (H and N cancer patient data). Under the GPU-based implementation, our surface-contour-guided method on H and N cancer patient data takes 8 seconds/iteration, about 7.5 times faster than direct 3D method (60 seconds/iteration), and it needs fewer optimization iterations (30 iterations vs 50 iterations). Conclusion: The proposed surface-contour DIR method can substantially improve both the accuracy and the speed of reconstructing volumetric images, which is helpful

  11. Image Registration Using Log Polar Transform and Fft Based Scale Invariant

    Directory of Open Access Journals (Sweden)

    Mr. Divyang Patel,

    2014-05-01

    Full Text Available Image registration is the fundamental task used to match two or more partially overlapping images taken, for example, at different times, from different sensors, or from different viewpoints and stitch these images into one panoramic image comprising the whole scene. It is a fundamental image processing technique and is very useful in integrating information from different sensors, finding changes in images taken at different times, inferring three-dimensional information from stereo images, and recognizing model-based objects. Some techniques are proposed to find a geometrical transformation that relates the points of an image to their corresponding points of another image. To register two images, the coordinate transformation between a pair of images must be found. In this paper, we have proposed an algorithm that is based on Log-Polar Transform and first we roughly estimate the angle, scale and translation between two images. The proposed algorithm can recover scale value up to 5.85. The robustness of this algorithm is verified on different images with similarity transformation and in the presence of noise.

  12. Patient-specific port placement for laparoscopic surgery using atlas-based registration

    Science.gov (United States)

    Enquobahrie, Andinet; Shivaprabhu, Vikas; Aylward, Stephen; Finet, Julien; Cleary, Kevin; Alterovitz, Ron

    2013-03-01

    Laparoscopic surgery is a minimally invasive surgical approach, in which abdominal surgical procedures are performed through trocars via small incisions. Patients benefit by reduced postoperative pain, shortened hospital stays, improved cosmetic results, and faster recovery times. Optimal port placement can improve surgeon dexterity and avoid the need to move the trocars, which would cause unnecessary trauma to the patient. We are building an intuitive open source visualization system to help surgeons identify ports. Our methodology is based on an intuitive port placement visualization module and atlas-based registration algorithm to transfer port locations to individual patients. The methodology follows three steps:1) Use a port placement visualization module to manually place ports in an abdominal organ atlas. This step generates port-augmented abdominal atlas. This is done only once for a given patient population. 2) Register the atlas data with the patient CT data, to transfer the prescribed ports to the individual patient 3) Review and adjust the transferred port locations using the port placement visualization module. Tool maneuverability and target reachability can be tested using the visualization system. Our methodology would decrease the amount of physician input necessary to optimize port placement for each patient case. In a follow up work, we plan to use the transferred ports as starting point for further optimization of the port locations by formulating a cost function that will take into account factors such as tool dexterity and likelihood of collision between instruments.

  13. Uneven splitting-ratio 1×2 multimode interference splitters based on silicon wire waveguides

    Institute of Scientific and Technical Information of China (English)

    Jingtao Zhou; Huajun Shen; Rui Jia; Huanming Liu; Yidan Tang; Chengyue Yang; Chunlai Xue; Xinyu Liu

    2011-01-01

    Two types of 1x2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3×18.2 and 3x14.3 (μm). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function.%@@ Two types of 1×2 multi-mode interference(MMI) splitters with splitting ratios of 85:15 and 72:28 are designed.On the basis of a numerical simulation,an optimal length of the MMI section is obtained.Subsequently,the devices are fabricated and tested.The footprints of the rectangular MMI regions are only 3×18.2 and 3×14.3(mm).

  14. Fiber-optic Fabry-Pérot strain sensor based on graded-index multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Tian Zhao; Yuan Gong; Yunjiang Rao; Yu Wu; Zengling Ran; Huijuan Wu

    2011-01-01

    By using a graded-index multimode fiber (GI-MMF) with a relatively flat index profile and high refractive index of the fiber core, a microextrinsic fiber-optic Fabry-Pérot interferometric (MEFPI) strain sensor is fabricated through chemical etching and fusion splicing. Higher reflectance of the microcavity is obtained due to the less-curved inner wall in the center of the fiber core after etching and higher index contrast between the GI-MMF core and air. The maximum reflection of the sensor is enhanced 12 dB than that obtained by etching of the Er- or B-doped fibers. High fringe contrast of 22 dB is obtained. The strain and temperature responses of the MEFPI sensors are investigated in this experiment. Good linearity and high sensitivity axe achieved, with wavelength-strain and wavelength-temperature sensitivities of 7.82 pm/μεand 5.01 pm/℃, respectively.%@@ By using a graded-index multimode fiber (GI-MMF) with a relatively flat index profile and high refractive index of the fiber core, a microextrinsic fiber-optic Fabry-Pérot interferometric (MEFPI) strain sensor is fabricated through chemical etching and fusion splicing.Higher reflectance of the microcavity is obtained due to the less-curved inner wall in the center of the fiber core after etching and higher index contrast between the GI-MMF core and air.

  15. Constructing and Using Multimodal Narratives to Research in Science Education: Contributions Based on Practical Classroom

    Science.gov (United States)

    Lopes, J. B.; Silva, A. A.; Cravino, J. P.; Santos, C. A.; Cunha, A.; Pinto, A.; Silva, A.; Viegas, C.; Saraiva, E.; Branco, M. J.

    2014-06-01

    This study deals with the problem of how to collect genuine and useful data about science classroom practices, and preserving the complex and holistic nature of teaching and learning. Additionally, we were looking for an instrument that would allow comparability and verifiability for teaching and research purposes. Given the multimodality of teaching and learning processes, we developed the multimodal narrative (MN), which describes what happens during a task and incorporates data such as examples of students' work, photos, diagrams, etc. Also, it describes teachers' intentions, preserving the nature of teaching practice in natural settings and it is verifiable and comparable. In this paper, we show how the MN was developed and present the protocol that was used for its construction. We identify the main characteristics of the MN and place it in the context of international research. We explore the potential of the MN for research purposes, illustrating its use in a research study that we carried out. We find that the MN provides a way to gather, organize and transform data, avoiding confusing and time-consuming manipulation of data, while minimizing the natural subjectivity of the narrator. The same MN can be used by the same or by different researchers for different purposes. Furthermore, the same MN can be used with different analysis techniques. It is also possible to study research practices on a large scale using MNs from different teachers and lessons. We propose that MNs can also be useful for teachers' professional development.

  16. Validation of experts versus atlas-based and automatic registration methods for subthalamic nucleus targeting on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Castro, F.J.; Cuisenaire, O.; Thiran, J.P. [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Signal Processing Inst.; Pollo, C. [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Signal Processing Inst.; Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland). Dept. of Neurosurgery; Villemure, J.G. [Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland). Dept. of Neurosurgery

    2006-03-15

    Objects: In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying deep brain stimulation for Parkinson's disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. Materials and methods: Eight bilaterally implanted PD patients were included in this study. A three-dimensional T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We propose a methodology for the construction of a ground truth of the STN location and a scheme that allows both, to perform a comparison between different non-rigid registration algorithms and to evaluate their usability to locate the STN automatically. Results: The intra-expert variability in identifying the STN location is 1.06{+-}0.61 mm while the best non-rigid registration method gives an error of 1.80{+-}0.62 mm. On the other hand, statistical tests show that an affine registration with only 12 degrees of freedom is not enough for this application. Conclusions: Using our validation-evaluation scheme, we demonstrate that automatic STN localization is possible and accurate with non-rigid registration algorithms. (orig.)

  17. Image registration with uncertainty analysis

    Science.gov (United States)

    Simonson, Katherine M.

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  18. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate

    Science.gov (United States)

    Limeng, Zhang; Dan, Lu; Zhaosong, Li; Biwei, Pan; Lingjuan, Zhao

    2016-12-01

    The design, fabrication and characterization of a fundamental/first-order mode converter based on multimode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with excess loss less than 3 dB. Moreover, LP01 and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system. Project supported by the National Basic Research Program of China (No. 2014CB340102) and in part by the National Natural Science Foundation of China (Nos. 61274045, 61335009).

  19. Student Teachers' Modeling of Acceleration Using a Video-Based Laboratory in Physics Education: A Multimodal Case Study

    Directory of Open Access Journals (Sweden)

    Louis Trudel

    2016-06-01

    Full Text Available This exploratory study intends to model kinematics learning of a pair of student teachers when exposed to prescribed teaching strategies in a video-based laboratory. Two student teachers were chosen from the Francophone B.Ed. program of the Faculty of Education of a Canadian university. The study method consisted of having the participants interact with a video-based laboratory to complete two activities for learning properties of acceleration in rectilinear motion. Time limits were placed on the learning activities during which the researcher collected detailed multimodal information from the student teachers' answers to questions, the graphs they produced from experimental data, and the videos taken during the learning sessions. As a result, we describe the learning approach each one followed, the evidence of conceptual change and the difficulties they face in tackling various aspects of the accelerated motion. We then specify advantages and limits of our research and propose recommendations for further study.

  20. Feature-based registration of historical aerial images by Area Minimization

    Science.gov (United States)

    Nagarajan, Sudhagar; Schenk, Toni

    2016-06-01

    The registration of historical images plays a significant role in assessing changes in land topography over time. By comparing historical aerial images with recent data, geometric changes that have taken place over the years can be quantified. However, the lack of ground control information and precise camera parameters has limited scientists' ability to reliably incorporate historical images into change detection studies. Other limitations include the methods of determining identical points between recent and historical images, which has proven to be a cumbersome task due to continuous land cover changes. Our research demonstrates a method of registering historical images using Time Invariant Line (TIL) features. TIL features are different representations of the same line features in multi-temporal data without explicit point-to-point or straight line-to-straight line correspondence. We successfully determined the exterior orientation of historical images by minimizing the area formed between corresponding TIL features in recent and historical images. We then tested the feasibility of the approach with synthetic and real data and analyzed the results. Based on our analysis, this method shows promise for long-term 3D change detection studies.

  1. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua;

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  2. Intensity-based image registration for 3D spatial compounding using a freehand 3D ultrasound system

    Science.gov (United States)

    Pagoulatos, Niko; Haynor, David R.; Kim, Yongmin

    2002-04-01

    3D spatial compounding involves the combination of two or more 3D ultrasound (US) data sets, acquired under different insonation angles and windows, to form a higher quality 3D US data set. An important requirement for this method to succeed is the accurate registration between the US images used to form the final compounded image. We have developed a new automatic method for rigid and deformable registration of 3D US data sets, acquired using a freehand 3D US system. Deformation is provided by using a 3D thin-plate spline (TPS). Our method is fundamentally different from the previous ones in that the acquired scattered US 2D slices are registered and compounded directly into the 3D US volume. Our approach has several benefits over the traditional registration and spatial compounding methods: (i) we only peform one 3D US reconstruction, for the first acquired data set, therefore we save the computation time required to reconstruct subsequent acquired scans, (ii) for our registration we use (except for the first scan) the acquired high-resolution 2D US images rather than the 3D US reconstruction data which are of lower quality due to the interpolation and potential subsampling associated with 3D reconstruction, and (iii) the scans performed after the first one are not required to follow the typical 3D US scanning protocol, where a large number of dense slices have to be acquired; slices can be acquired in any fashion in areas where compounding is desired. We show that by taking advantage of the similar information contained in adjacent acquired 2D US slices, we can reduce the computation time of linear and nonlinear registrations by a factor of more than 7:1, without compromising registration accuracy. Furthermore, we implemented an adaptive approximation to the 3D TPS with local bilinear transformations allowing additional reduction of the nonlinear registration computation time by a factor of approximately 3.5. Our results are based on a commercially available

  3. An Image-Based Approach for the Co-Registration of Multi-Temporal UAV Image Datasets

    Directory of Open Access Journals (Sweden)

    Irene Aicardi

    2016-09-01

    Full Text Available During the past years, UAVs (Unmanned Aerial Vehicles became very popular as low-cost image acquisition platforms since they allow for high resolution and repetitive flights in a flexible way. One application is to monitor dynamic scenes. However, the fully automatic co-registration of the acquired multi-temporal data still remains an open issue. Most UAVs are not able to provide accurate direct image georeferencing and the co-registration process is mostly performed with the manual introduction of ground control points (GCPs, which is time consuming, costly and sometimes not possible at all. A new technique to automate the co-registration of multi-temporal high resolution image blocks without the use of GCPs is investigated in this paper. The image orientation is initially performed on a reference epoch and the registration of the following datasets is achieved including some anchor images from the reference data. The interior and exterior orientation parameters of the anchor images are then fixed in order to constrain the Bundle Block Adjustment of the slave epoch to be aligned with the reference one. The study involved the use of two different datasets acquired over a construction site and a post-earthquake damaged area. Different tests have been performed to assess the registration procedure using both a manual and an automatic approach for the selection of anchor images. The tests have shown that the procedure provides results comparable to the traditional GCP-based strategy and both the manual and automatic selection of the anchor images can provide reliable results.

  4. Initial registration of point clouds based on images%基于图像的点云初始配准

    Institute of Scientific and Technical Information of China (English)

    张晓; 张爱武

    2014-01-01

    Aiming at the problems of the point clouds registration for the terrestrial laser scanning technique (TLS) ,such as the different resolution ,an initial registration algorithm with the combination of the 2d image and the 3d point cloud was presented . In this algorithm ,the different resolution point clouds were firstly filtered uniformly .Then ,the three-dimensional point cloud was transformed into the two-dimensional gray image based on the point cloud depth value ,and the image feature matching points were extracted using SURF algorithm .According to the corresponding relation ,the 3D feature points were found .Final-ly ,the transformation matrix was calculated by using the unit quaternion and the initial registration was completed .Results of the experiment indicate the algorithm is greatly improved both in terms of the registration accuracy and registration time .%针对地面激光点云的分辨率不同等问题,提出一种不借助额外装置,把二维图像与三维点云相结合的初始配准方法。把不同分辨率点云均匀滤波,根据深度值把三维点云转化为二维灰度图,利用SURF算法提取图像的特征匹配点对;根据映射关系找到三维特征匹配点,利用单位四元数法求出变换矩阵完成点云初始配准。实验结果表明,该算法对于地面激光数据的配准,无论从配准的精度上还是时间上均有很大提高。

  5. Temperature-Corrected Oxygen Detection Based on Multi-Mode Diode Laser Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiutao Lou

    2013-01-01

    Full Text Available Temperature-corrected oxygen measurements were performed by using multi-mode diode laser correlation spectroscopy at temperatures ranging between 300 and 473 K. The experiments simulate in situ monitoring of oxygen in coal-combustion exhaust gases at the tail of the flue. A linear relationship with a correlation coefficient of −0.999 was found between the evaluated concentration and the gas temperature. Temperature effects were either auto-corrected by keeping the reference gas at the same conditions as the sample gas, or rectified by using a predetermined effective temperature-correction coefficient calibrated for a range of absorption wavelengths. Relative standard deviations of the temperature-corrected oxygen concentrations obtained by different schemes and at various temperatures were estimated, yielding a measurement precision of 0.6%.

  6. Tunable 1 × 2 plasmonic splitter of dielectric-loaded graphene waveguide based on multimode interference

    Science.gov (United States)

    Wang, YueKe; Hong, XiaoRong; Sang, Tian; Yang, GuoFeng

    2016-12-01

    We study the multimode interference (MMI) effect in a dielectric-loaded graphene waveguide (DLGW) numerically by the finite element method. By conducting the dispersion relation of graphene plasmon (GP) modes, a 1 × 2 splitter of GPs is proposed. Structure parameters are designed on the basis of the self-imaging principle, and the calculation of electrical field distributions illustrates two-wavelength splitting. Owing to the tunable permittivity of graphene by bias voltages, the active control of wavelength routing is achieved. High extinction ratios can also be obtained, which proves good splitting performance. It is considered that our findings provide a smart way of designing a tunable plasmonic splitter in the infrared region.

  7. An optical authentication system based on encryption technique and multimodal biometrics

    Science.gov (United States)

    Yuan, Sheng; Zhang, Tong; Zhou, Xin; Liu, Xuemei; Liu, Mingtang

    2013-12-01

    A major concern nowadays for a biometric credential management system is its potential vulnerability to protect its information sources. To prevent a genuine user's templates from both internal and external threats, a novel and simple method combined optical encryption with multimodal biometric authentication technique is proposed. In this method, the standard biometric templates are generated real-timely by the verification keys owned by legal user so that they are unnecessary to be stored in a database. Compared with the traditional recognition algorithms, storage space and matching time are greatly saved. In addition, the verification keys are difficult to be forged due to the utilization of optical encryption technique. Although the verification keys are lost or stolen, they are useless for others in absence of the legal owner's biometric. A series of numerical simulations are performed to demonstrate the feasibility and performance of this method.

  8. Research on optical fiber magnetic field sensors based on multi-mode fiber and spherical structure

    Science.gov (United States)

    Wang, Yan; Tong, Zheng-rong; Zhang, Wei-hua; Luan, Pan-pan; Zhao, Yue; Xue, Li-fang

    2017-01-01

    A magnetic field sensor with a magnetic fluid (MF)-coated intermodal interferometer is proposed and experimentally demonstrated. The interferometer is formed by sandwiching a segment of single mode fiber (SMF) between a segment of multi-mode fiber (MMF) and a spherical structure. It can be considered as a cascade of the traditional SMF-MMF-SMF structure and MMF-SMF-sphere structure. The transmission spectral characteristics change with the variation of applied magnetic field. The experimental results exhibit that the magnetic field sensitivities for wavelength and transmission loss are 0.047 nm/mT and 0.215 dB/mT for the interference dip around 1 535.36 nm. For the interference dip around 1548.41nm, the sensitivities are 0.077 nm/mT and 0.243 dB/mT. Simultaneous measurement can be realized according to the different spectral responses.

  9. Rendering-based video-CT registration with physical constraints for image-guided endoscopic sinus surgery

    Science.gov (United States)

    Otake, Y.; Leonard, S.; Reiter, A.; Rajan, P.; Siewerdsen, J. H.; Ishii, M.; Taylor, R. H.; Hager, G. D.

    2015-03-01

    We present a system for registering the coordinate frame of an endoscope to pre- or intra- operatively acquired CT data based on optimizing the similarity metric between an endoscopic image and an image predicted via rendering of CT. Our method is robust and semi-automatic because it takes account of physical constraints, specifically, collisions between the endoscope and the anatomy, to initialize and constrain the search. The proposed optimization method is based on a stochastic optimization algorithm that evaluates a large number of similarity metric functions in parallel on a graphics processing unit. Images from a cadaver and a patient were used for evaluation. The registration error was 0.83 mm and 1.97 mm for cadaver and patient images respectively. The average registration time for 60 trials was 4.4 seconds. The patient study demonstrated robustness of the proposed algorithm against a moderate anatomical deformation.

  10. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Dror Malka

    2016-06-01

    Full Text Available In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI coupler in a silicon (Si–gallium nitride (GaN slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM. Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm into four output ports with low insertion losses (0.07 dB.

  11. Securing Revocable Iris and Retinal Templates using Combined User and Soft Biometric based Password Hardened Multimodal Fuzzy Vault

    Directory of Open Access Journals (Sweden)

    V. S. Meenakshi

    2010-09-01

    Full Text Available Biometric systems are subjected to a variety of attacks. Stored biometric template attack is very severe compared to all other attacks. Providing security to biometric templates is an important issue in building a reliable personal identification system. Multi biometric systems are more resistive towards spoof attacks compared to unibiometric counterpart. Soft biometric are ancillary information about a person. This work provides security and revocability to iris and retinal templates using combined user and soft biometric based password hardened multimodal biometric fuzzy vault. Password hardening provides security and revocability to biometric templates. Eye biometrics namely iris and retina have certain merits compared to fingerprint. Iris and retina capturing cameras can be mounted on a single device to improve user convenience. Security of the vault is measured in terms of min-entropy.

  12. Ultra-compact and broadband tunable mid-infrared multimode interference splitter based on graphene plasmonic waveguide

    CERN Document Server

    Zheng, Ruiqi; Dong, Jianji

    2015-01-01

    We propose and design an ultra-compact and broadband tunable multimode interference (MMI) splitter in mid-infrared based on graphene plasmonic waveguides. The size of the device is only 0.56{\\mu}m*1.2{\\mu}m, which corresponds to device area of only about 0.014{\\lambda}^2, where {\\lambda} is the vacuum wavelength. And the center wavelength of the device can be tuned in a broad band from 7{\\mu}m to 9{\\mu}m with the Fermi level of graphene varied from 0.5eV to 1eV. Furthermore, the device is easy to be fabricated on chip.

  13. Multimodal eye recognition

    Science.gov (United States)

    Zhou, Zhi; Du, Yingzi; Thomas, N. L.; Delp, Edward J., III

    2010-04-01

    Multimodal biometrics use more than one means of biometric identification to achieve higher recognition accuracy, since sometimes a unimodal biometric is not good enough used to do identification and classification. In this paper, we proposed a multimodal eye recognition system, which can obtain both iris and sclera patterns from one color eye image. Gabor filter and 1-D Log-Gabor filter algorithms have been applied as the iris recognition algorithms. In sclera recognition, we introduced automatic sclera segmentation, sclera pattern enhancement, sclera pattern template generation, and sclera pattern matching. We applied kernelbased matching score fusion to improve the performance of the eye recognition system. The experimental results show that the proposed eye recognition method can achieve better performance compared to unimodal biometric identification, and the accuracy of our proposed kernel-based matching score fusion method is higher than two classic linear matching score fusion methods: Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

  14. Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer

    DEFF Research Database (Denmark)

    Andersen, E S; Muren, L P; Sørensen, T S

    2012-01-01

    Variations in bladder position, shape and volume cause uncertainties in the doses delivered to this organ during a course of radiotherapy for pelvic tumors. The purpose of this study was to evaluate the potential of dose accumulation based on repeat imaging and deformable image registration (DIR...... in individual patients between the doses from the initial treatment plan and the accumulated bladder doses. Hence, the use of repeat imaging has a potential for improved accuracy in treatment dose reporting....

  15. Studying primate carpal kinematics in three dimensions using a computed-tomography-based markerless registration method.

    Science.gov (United States)

    Orr, Caley M; Leventhal, Evan L; Chivers, Spencer F; Marzke, Mary W; Wolfe, Scott W; Crisco, Joseph J

    2010-04-01

    The functional morphology of the wrist pertains to a number of important questions in primate evolutionary biology, including that of hominins. Reconstructing locomotor and manipulative capabilities of the wrist in extinct species requires a detailed understanding of wrist biomechanics in extant primates and the relationship between carpal form and function. The kinematics of carpal movement, and the role individual joints play in providing mobility and stability of the wrist, is central to such efforts. However, there have been few detailed biomechanical studies of the nonhuman primate wrist. This is largely because of the complexity of wrist morphology and the considerable technical challenges involved in tracking the movements of the many small bones that compose the carpus. The purpose of this article is to introduce and outline a method adapted from human clinical studies of three-dimensional (3D) carpal kinematics for use in a comparative context. The method employs computed tomography of primate cadaver forelimbs in increments throughout the wrist's range of motion, coupled with markerless registration of 3D polygon models based on inertial properties of each bone. The 3D kinematic principles involved in extracting motion axis parameters that describe bone movement are reviewed. In addition, a set of anatomically based coordinate systems embedded in the radius, capitate, hamate, lunate, and scaphoid is presented for the benefit of other primate functional morphologists interested in studying carpal kinematics. Finally, a brief demonstration of how the application of these methods can elucidate the mechanics of the wrist in primates illustrates the closer-packing of carpals in chimpanzees than in orangutans, which may help to stabilize the midcarpus and produce a more rigid wrist beneficial for efficient hand posturing during knuckle-walking locomotion.

  16. Adaptive robust image registration approach based on adequately sampling polar transform and weighted angular projection function

    Science.gov (United States)

    Wei, Zhao; Tao, Feng; Jun, Wang

    2013-10-01

    An efficient, robust, and accurate approach is developed for image registration, which is especially suitable for large-scale change and arbitrary rotation. It is named the adequately sampling polar transform and weighted angular projection function (ASPT-WAPF). The proposed ASPT model overcomes the oversampling problem of conventional log-polar transform. Additionally, the WAPF presented as the feature descriptor is robust to the alteration in the fovea area of an image, and reduces the computational cost of the following registration process. The experimental results show two major advantages of the proposed method. First, it can register images with high accuracy even when the scale factor is up to 10 and the rotation angle is arbitrary. However, the maximum scaling estimated by the state-of-the-art algorithms is 6. Second, our algorithm is more robust to the size of the sampling region while not decreasing the accuracy of the registration.

  17. A piecewise monotone subgradient algorithm for accurate L¹-TV based registration of physical slices with discontinuities in microscopy.

    Science.gov (United States)

    Michalek, Jan; Capek, Martin

    2013-05-01

    Image registration tasks are often formulated in terms of minimization of a functional consisting of a data fidelity term penalizing the mismatch between the reference and the target image, and a term enforcing smoothness of shift between neighboring pairs of pixels (a min-sum problem). Most methods for deformable image registration use some form of interpolation between matching control points. The interpolation makes it impossible to account for isolated discontinuities in the deformation field that may appear, e.g., when a physical slice of a microscopy specimen is ruptured by the cutting tool. For registration of neighboring physical slices of microscopy specimens with discontinuities, Janácek proposed an L¹-distance data fidelity term and a total variation (TV) smoothness term, and used a graph-cut (GC) based iterative steepest descent algorithm for minimization. The L¹-TV functional is nonconvex; hence a steepest descent algorithm is not guaranteed to converge to the global minimum. Schlesinger presented transformation of max-sum problems to minimization of a dual quantity called problem power, which is--contrary to the original max-sum functional--convex. Based on Schlesinger's solution to max-sum problems we developed an algorithm for L¹-TV minimization by iterative multi-label steepest descent minimization of the convex dual problem. For Schlesinger's subgradient algorithm we proposed a novel step control heuristics that considerably enhances both speed and accuracy compared with standard step size strategies for subgradient methods. It is shown experimentally that our subgradient scheme achieves consistently better image registration than GC in terms of lower values both of the composite L¹-TV functional, and of its components, i.e., the L¹ distance of the images and the transformation smoothness TV, and yields visually acceptable results even in cases where the GC based algorithm fails. The new algorithm allows easy parallelization and can thus be

  18. An Acetazolamide Based Multimodal Analgesic Approach Versus Conventional Pain Management in Patients Undergoing Laparoscopic Living Donor Nephrectomy

    Science.gov (United States)

    Singh, Rupinder; Sen, Indu; Wig, Jyotsna; Minz, M; Sharma, Ashish; Bala, Indu

    2009-01-01

    Summary Choice of an appropriate anaesthetic technique and adequate pain relief during laparoscopic living donor nephrectomy (LDN) is likely to make the procedure more appealing to kidney donors. Various analgesic regimens proposed to relieve pain after laparoscopic surgery include: opioids, non-opioid analgesics followed by opioids for the breakthrough pain and intra-peritoneal normal saline irrigation and instillation of local anaesthetics at surgical sites. Thorough literature review and medline search did not reveal any study where a combination of orogastric acetazolamide along with intraperitoneal saline irrigation and bupivacaine instillation techniques have been tried in these patients. In a prospective, double blind, randomized trial, eighty healthy adults undergoing LDN under general anaesthesia were enrolled to compare the efficacy of an acetazolamide based multimodal analgesic approach (Group A) with conventional pain management (Group B). Donors' demographics, intra-operative variables, early allograft function and recovery characteristics were evaluated for 72 hours. The primary end points were postoperative pain intensity on a visual analog scale and the incidence of shoulder tip pain (STP). The secondary end points included the latency of the rescue analgesia request rate, total analgesic consumption and patient satisfaction. Consistently lower mean pain scores were observed in Group A (p<0.03 for visceral pain). Frequency as well as the total dose of rescue analgesics administered was significantly less in Group A (p=0.001). Twelve patients (30.7%) in Group B complained of STP compared to three (7.5%) in Group A (p=0.025). Shoulder pain also presented earlier (8 hours versus 12 hours) and persisted for longer period in Group B (72 hours versus 48 hours, p 0.025). To conclude, a multimodal analgesic approach consisting a combination of orogastric acetazolamide, intraperito-neal saline irrigation and use of bupivacaine in the operated renal fossa

  19. Intensity-based 3D/2D registration for percutaneous intervention of major aorto-pulmonary collateral arteries

    Science.gov (United States)

    Couet, Julien; Rivest-Henault, David; Miro, Joaquim; Lapierre, Chantal; Duong, Luc; Cheriet, Mohamed

    2012-02-01

    Percutaneous cardiac interventions rely mainly on the experience of the cardiologist to safely navigate inside soft tissues vessels under X-ray angiography guidance. Additional navigation guidance tool might contribute to improve reliability and safety of percutaneous procedures. This study focus on major aorta-pulmonary collateral arteries (MAPCAs) which are pediatric structures. We present a fully automatic intensity-based 3D/2D registration method that accurately maps pre-operatively acquired 3D tomographic vascular data of a newborn patient over intra-operatively acquired angiograms. The tomographic dataset 3D pose is evaluated by comparing the angiograms with simulated X-ray projections, computed from the pre-operative dataset with a proposed splatting-based projection technique. The rigid 3D pose is updated via a transformation matrix usually defined in respect of the C-Arm acquisition system reference frame, but it can also be defined in respect of the projection plane local reference frame. The optimization of the transformation is driven by two algorithms. First the hill climbing local search and secondly a proposed variant, the dense hill climbing. The latter makes the search space denser by considering the combinations of the registration parameters instead of neighboring solutions only. Although this study focused on the registration of pediatric structures, the same procedure could be applied for any cardiovascular structures involving CT-scan and X-ray angiography. Our preliminary results are promising that an accurate (3D TRE 0.265 +/- 0.647mm) and robust (99% success rate) bi-planes registration of the aorta and MAPCAs from a initial displacement up to 20mm and 20° can be obtained within a reasonable amount of time (13.7 seconds).

  20. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    Energy Technology Data Exchange (ETDEWEB)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R. [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Salmanpour, Aryan; Rahnamayan, Shahryar [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rodrigues, George [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.

  1. Musculoskeletal complaints among nurses related to patient handling tasks and psychosocial factors - Based on logbook registrations

    DEFF Research Database (Denmark)

    Warming, S.; Precht, D.H.; Suadicani, P.

    2009-01-01

    The aims were to evaluate the inter-method reliability of a registration sheet for patient handling tasks, to study the day-to-day variation of musculoskeletal complaints (MSC) and to examine whether patient handling tasks and psychosocial factors were associated with MSC. Nurses (n = 148...

  2. Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description

    Institute of Scientific and Technical Information of China (English)

    赵付洲; 宋冰; 侍洪波

    2016-01-01

    There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization (WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description (SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method’s validity, it is applied to a numerical example and a Tennessee Eastman (TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy (LNS-PCA) in multi-mode process monitoring.

  3. Automatic registration between 3D intra-operative ultrasound and pre-operative CT images of the liver based on robust edge matching

    Science.gov (United States)

    Nam, Woo Hyun; Kang, Dong-Goo; Lee, Duhgoon; Lee, Jae Young; Ra, Jong Beom

    2012-01-01

    The registration of a three-dimensional (3D) ultrasound (US) image with a computed tomography (CT) or magnetic resonance image is beneficial in various clinical applications such as diagnosis and image-guided intervention of the liver. However, conventional methods usually require a time-consuming and inconvenient manual process for pre-alignment, and the success of this process strongly depends on the proper selection of initial transformation parameters. In this paper, we present an automatic feature-based affine registration procedure of 3D intra-operative US and pre-operative CT images of the liver. In the registration procedure, we first segment vessel lumens and the liver surface from a 3D B-mode US image. We then automatically estimate an initial registration transformation by using the proposed edge matching algorithm. The algorithm finds the most likely correspondences between the vessel centerlines of both images in a non-iterative manner based on a modified Viterbi algorithm. Finally, the registration is iteratively refined on the basis of the global affine transformation by jointly using the vessel and liver surface information. The proposed registration algorithm is validated on synthesized datasets and 20 clinical datasets, through both qualitative and quantitative evaluations. Experimental results show that automatic registration can be successfully achieved between 3D B-mode US and CT images even with a large initial misalignment.

  4. A Context-Aware-Based Audio Guidance System for Blind People Using a Multimodal Profile Model

    Directory of Open Access Journals (Sweden)

    Qing Lin

    2014-10-01

    Full Text Available A wearable guidance system is designed to provide context-dependent guidance messages to blind people while they traverse local pathways. The system is composed of three parts: moving scene analysis, walking context estimation and audio message delivery. The combination of a downward-pointing laser scanner and a camera is used to solve the challenging problem of moving scene analysis. By integrating laser data profiles and image edge profiles, a multimodal profile model is constructed to estimate jointly the ground plane, object locations and object types, by using a Bayesian network. The outputs of the moving scene analysis are further employed to estimate the walking context, which is defined as a fuzzy safety level that is inferred through a fuzzy logic model. Depending on the estimated walking context, the audio messages that best suit the current context are delivered to the user in a flexible manner. The proposed system is tested under various local pathway scenes, and the results confirm its efficiency in assisting blind people to attain autonomous mobility.

  5. Analysis of Predictive Values Based on Individual Risk Factors in Multi-Modality Trials.

    Science.gov (United States)

    Lange, Katharina; Brunner, Edgar

    2013-03-15

    The accuracy of diagnostic tests with binary end-points is most frequently measured by sensitivity and specificity. However, from the clinical perspective, the main purpose of a diagnostic agent is to assess the probability of a patient actually being diseased and hence predictive values are more suitable here. As predictive values depend on the pre-test probability of disease, we provide a method to take risk factors influencing the patient's prior probability of disease into account, when calculating predictive values. Furthermore, approaches to assess confidence intervals and a methodology to compare predictive values by statistical tests are presented. Hereby the methods can be used to analyze predictive values of factorial diagnostic trials, such as multi-modality, multi-reader-trials. We further performed a simulation study assessing length and coverage probability for different types of confidence intervals, and we present the R-Package facROC that can be used to analyze predictive values in factorial diagnostic trials in particular. The methods are applied to a study evaluating CT-angiography as a noninvasive alternative to coronary angiography for diagnosing coronary artery disease. Hereby the patients' symptoms are considered as risk factors influencing the respective predictive values.

  6. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review.

    Science.gov (United States)

    Alberdi, Ane; Aztiria, Asier; Basarab, Adrian

    2016-02-01

    Stress is a major problem of our society, as it is the cause of many health problems and huge economic losses in companies. Continuous high mental workloads and non-stop technological development, which leads to constant change and need for adaptation, makes the problem increasingly serious for office workers. To prevent stress from becoming chronic and provoking irreversible damages, it is necessary to detect it in its early stages. Unfortunately, an automatic, continuous and unobtrusive early stress detection method does not exist yet. The multimodal nature of stress and the research conducted in this area suggest that the developed method will depend on several modalities. Thus, this work reviews and brings together the recent works carried out in the automatic stress detection looking over the measurements executed along the three main modalities, namely, psychological, physiological and behavioural modalities, along with contextual measurements, in order to give hints about the most appropriate techniques to be used and thereby, to facilitate the development of such a holistic system.

  7. Comparison of DCT, SVD and BFOA based multimodal biometric watermarking system

    Directory of Open Access Journals (Sweden)

    S. Anu H. Nair

    2015-12-01

    Full Text Available Digital image watermarking is a major domain for hiding the biometric information, in which the watermark data are made to be concealed inside a host image imposing imperceptible change in the picture. Due to the advance in digital image watermarking, the majority of research aims to make a reliable improvement in robustness to prevent the attack. The reversible invisible watermarking scheme is used for fingerprint and iris multimodal biometric system. A novel approach is used for fusing different biometric modalities. Individual unique modalities of fingerprint and iris biometric are extracted and fused using different fusion techniques. The performance of different fusion techniques is evaluated and the Discrete Wavelet Transform fusion method is identified as the best. Then the best fused biometric template is watermarked into a cover image. The various watermarking techniques such as the Discrete Cosine Transform (DCT, Singular Value Decomposition (SVD and Bacterial Foraging Optimization Algorithm (BFOA are implemented to the fused biometric feature image. Performance of watermarking systems is compared using different metrics. It is found that the watermarked images are found robust over different attacks and they are able to reverse the biometric template for Bacterial Foraging Optimization Algorithm (BFOA watermarking technique.

  8. Analysis of Predictive Values Based on Individual Risk Factors in Multi-Modality Trials

    Directory of Open Access Journals (Sweden)

    Katharina Lange

    2013-03-01

    Full Text Available The accuracy of diagnostic tests with binary end-points is most frequently measured by sensitivity and specificity. However, from the clinical perspective, the main purpose of a diagnostic agent is to assess the probability of a patient actually being diseased and hence predictive values are more suitable here. As predictive values depend on the pre-test probability of disease, we provide a method to take risk factors influencing the patient’s prior probability of disease into account, when calculating predictive values. Furthermore, approaches to assess confidence intervals and a methodology to compare predictive values by statistical tests are presented. Hereby the methods can be used to analyze predictive values of factorial diagnostic trials, such as multi-modality, multi-reader-trials. We further performed a simulation study assessing length and coverage probability for different types of confidence intervals, and we present the R-Package facROC that can be used to analyze predictive values in factorial diagnostic trials in particular. The methods are applied to a study evaluating CT-angiography as a noninvasive alternative to coronary angiography for diagnosing coronary artery disease. Hereby the patients’ symptoms are considered as risk factors influencing the respective predictive values.

  9. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); and others

    2011-04-15

    compared to (3.5{+-}3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.

  10. Shadow-Based Hierarchical Matching for the Automatic Registration of Airborne LiDAR Data and Space Imagery

    Directory of Open Access Journals (Sweden)

    Alireza Safdarinezhad

    2016-06-01

    Full Text Available The automatic registration of LiDAR data and optical images, which are heterogeneous data sources, has been a major research challenge in recent years. In this paper, a novel hierarchical method is proposed in which the least amount of interaction of a skilled operator is required. Thereby, two shadow extraction schemes, one from LiDAR and the other from high-resolution satellite images, were used, and the obtained 2D shadow maps were then considered as prospective matching entities. Taken as the base, the reconstructed LiDAR shadows were transformed to image shadows using a four-step hierarchical method starting from a coarse 2D registration model and leading to a fine 3D registration model. In the first step, a general matching was performed in the frequency domain that yielded a rough 2D similarity model that related the LiDAR and image shadow masks. This model was further improved by modeling and compensating for the local geometric distortions that existed between the two heterogeneous data sources. In the third step, shadow masks, which were organized as segmented matched patches, were the subjects of a coinciding procedure that resulted in a coarse 3D registration model. In the last hierarchical step, that model was ultimately reinforced via a precise matching between the LiDAR and image edges. The evaluation results, which were conducted on six datasets and from different relative and absolute aspects, demonstrated the efficiency of the proposed method, which had a very promising accuracy on the order of one pixel.

  11. SU-E-J-237: Image Feature Based DRR and Portal Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Chang, J [NY Weill Cornell Medical Ctr, NY (United States)

    2014-06-01

    Purpose: Two-dimensional (2D) matching of the kV X-ray and digitally reconstructed radiography (DRR) images is an important setup technique for image-guided radiotherapy (IGRT). In our clinics, mutual information based methods are used for this purpose on commercial linear accelerators, but with often needs for manual corrections. This work proved the feasibility that feature based image transform can be used to register kV and DRR images. Methods: The scale invariant feature transform (SIFT) method was implemented to detect the matching image details (or key points) between the kV and DRR images. These key points represent high image intensity gradients, and thus the scale invariant features. Due to the poor image contrast from our kV image, direct application of the SIFT method yielded many detection errors. To assist the finding of key points, the center coordinates of the kV and DRR images were read from the DICOM header, and the two groups of key points with similar relative positions to their corresponding centers were paired up. Using these points, a rigid transform (with scaling, horizontal and vertical shifts) was estimated. We also artificially introduced vertical and horizontal shifts to test the accuracy of our registration method on anterior-posterior (AP) and lateral pelvic images. Results: The results provided a satisfactory overlay of the transformed kV onto the DRR image. The introduced vs. detected shifts were fit into a linear regression. In the AP image experiments, linear regression analysis showed a slope of 1.15 and 0.98 with an R2 of 0.89 and 0.99 for the horizontal and vertical shifts, respectively. The results are 1.2 and 1.3 with R2 of 0.72 and 0.82 for the lateral image shifts. Conclusion: This work provided an alternative technique for kV to DRR alignment. Further improvements in the estimation accuracy and image contrast tolerance are underway.

  12. Co-Registration of Terrestrial and Uav-Based Images - Experimental Results

    Science.gov (United States)

    Gerke, M.; Nex, F.; Jende, P.

    2016-03-01

    For many applications within urban environments the combined use of images taken from the ground and from unmanned aerial platforms seems interesting: while from the airborne perspective the upper parts of objects including roofs can be observed, the ground images can complement the data from lateral views to retrieve a complete visualisation or 3D reconstruction of interesting areas. The automatic co-registration of air- and ground-based images is still a challenge and cannot be considered solved. The main obstacle is originating from the fact that objects are photographed from quite different angles, and hence state-of-the-art tie point measurement approaches cannot cope with the induced perspective transformation. One first important step towards a solution is to use airborne images taken under slant directions. Those oblique views not only help to connect vertical images and horizontal views but also provide image information from 3D-structures not visible from the other two directions. According to our experience, however, still a good planning and many images taken under different viewing angles are needed to support an automatic matching across all images and complete bundle block adjustment. Nevertheless, the entire process is still quite sensible - the removal of a single image might lead to a completely different or wrong solution, or separation of image blocks. In this paper we analyse the impact different parameters and strategies have on the solution. Those are a) the used tie point matcher, b) the used software for bundle adjustment. Using the data provided in the context of the ISPRS benchmark on multi-platform photogrammetry, we systematically address the mentioned influences. Concerning the tie-point matching we test the standard SIFT point extractor and descriptor, but also the SURF and ASIFT-approaches, the ORB technique, as well as (A)KAZE, which are based on a nonlinear scale space. In terms of pre-processing we analyse the Wallis

  13. CO-REGISTRATION OF TERRESTRIAL AND UAV-BASED IMAGES – EXPERIMENTAL RESULTS

    Directory of Open Access Journals (Sweden)

    M. Gerke

    2016-03-01

    Full Text Available For many applications within urban environments the combined use of images taken from the ground and from unmanned aerial platforms seems interesting: while from the airborne perspective the upper parts of objects including roofs can be observed, the ground images can complement the data from lateral views to retrieve a complete visualisation or 3D reconstruction of interesting areas. The automatic co-registration of air- and ground-based images is still a challenge and cannot be considered solved. The main obstacle is originating from the fact that objects are photographed from quite different angles, and hence state-of-the-art tie point measurement approaches cannot cope with the induced perspective transformation. One first important step towards a solution is to use airborne images taken under slant directions. Those oblique views not only help to connect vertical images and horizontal views but also provide image information from 3D-structures not visible from the other two directions. According to our experience, however, still a good planning and many images taken under different viewing angles are needed to support an automatic matching across all images and complete bundle block adjustment. Nevertheless, the entire process is still quite sensible – the removal of a single image might lead to a completely different or wrong solution, or separation of image blocks. In this paper we analyse the impact different parameters and strategies have on the solution. Those are a the used tie point matcher, b the used software for bundle adjustment. Using the data provided in the context of the ISPRS benchmark on multi-platform photogrammetry, we systematically address the mentioned influences. Concerning the tie-point matching we test the standard SIFT point extractor and descriptor, but also the SURF and ASIFT-approaches, the ORB technique, as well as (AKAZE, which are based on a nonlinear scale space. In terms of pre-processing we analyse the

  14. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    Science.gov (United States)

    Yang, Deshan; Li, Hua; Low, Daniel A.; Deasy, Joseph O.; El Naqa, Issam

    2008-11-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  15. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El [Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, LL, St. Louis, MO 63110 (United States)

    2008-11-07

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  16. Image registration

    CERN Document Server

    Goshtasby, A Ardeshir

    2012-01-01

    This book presents a thorough and detailed guide to image registration, outlining the principles and reviewing state-of-the-art tools and methods. The book begins by identifying the components of a general image registration system, and then describes the design of each component using various image analysis tools. The text reviews a vast array of tools and methods, not only describing the principles behind each tool and method, but also measuring and comparing their performances using synthetic and real data. Features: discusses similarity/dissimilarity measures, point detectors, feature extr

  17. New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging

    Science.gov (United States)

    Ge, Xiaoqian; Dong, Liang; Sun, Lining; Song, Zhengmei; Wei, Ruoyan; Shi, Liyi; Chen, Haige

    2015-04-01

    A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology analysis, the POSS modified upconversion nanoplatforms were successfully applied to upconversion luminescence imaging of living cells in vitro and nude mouse in vivo (upon excitation at 980 nm). In addition, the doped Gd3+ ion endows the POSS-UCNPs with effective T1 signal enhancement and the POSS-UCNPs were successfully applied to in vivo magnetic resonance imaging (MRI) for a Kunming mouse, which makes them potential MRI positive-contrast agents. More importantly, the corner organic groups of POSS can be easily modified, resulting in kinds of POSS-UCNPs with many potential applications. Therefore, the method and results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications.A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology

  18. An Acetazolamide Based Multimodal Analgesic Approach Versus Conventional Pain Management in Patients Undergoing Laparoscopic Living Donor Nephrectomy

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2009-01-01

    To conclude, a multimodal analgesic approach consisting a combination of orogastric acetazolamide, intraperito-neal saline irrigation and use of bupivacaine in the operated renal fossa, pfannenstiel incision and laparoscopic port sites provide significant reduction in postoperative pain after LDN.

  19. Easily processable multimodal spectral converters based on metal oxide/organic-inorganic hybrid nanocomposites.

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P; Freitas, Vânia T; André, Paulo S; Carlos, Luis D; Ferreira, Rute A S

    2015-10-09

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er(3+), Yb(3+) codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er(3+)- and Yb(3+)-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  20. Easily processable multimodal spectral converters based on metal oxide/organic—inorganic hybrid nanocomposites

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P.; Freitas, Vânia T.; André, Paulo S.; Carlos, Luis D.; Ferreira, Rute A. S.

    2015-10-01

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er3+, Yb3+ codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er3+- and Yb3+-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  1. Multimodality multiparametric imaging of early tumor response to a novel antiangiogenic therapy based on anticalins.

    Directory of Open Access Journals (Sweden)

    Reinhard Meier

    Full Text Available Anticalins are a novel class of targeted protein therapeutics. The PEGylated Anticalin Angiocal (PRS-050-PEG40 is directed against VEGF-A. The purpose of our study was to compare the performance of diffusion weighted imaging (DWI, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI and positron emission tomography with the tracer [18F]fluorodeoxyglucose (FDG-PET for monitoring early response to antiangiogenic therapy with PRS-050-PEG40. 31 mice were implanted subcutaneously with A673 rhabdomyosarcoma xenografts and underwent DWI, DCE-MRI and FDG-PET before and 2 days after i.p. injection of PRS-050-PEG40 (n = 13, Avastin (n = 6 or PBS (n = 12. Tumor size was measured manually with a caliper. Imaging results were correlated with histopathology. In the results, the tumor size was not significantly different in the treatment groups when compared to the control group on day 2 after therapy onset (P = 0.09. In contrast the imaging modalities DWI, DCE-MRI and FDG-PET showed significant differences between the therapeutic compared to the control group as early as 2 days after therapy onset (P<0.001. There was a strong correlation of the early changes in DWI, DCE-MRI and FDG-PET at day 2 after therapy onset and the change in tumor size at the end of therapy (r = -0.58, 0.71 and 0.67 respectively. The imaging results were confirmed by histopathology, showing early necrosis and necroptosis in the tumors. Thus multimodality multiparametric imaging was able to predict therapeutic success of PRS-050-PEG40 and Avastin as early as 2 days after onset of therapy and thus promising for monitoring early response of antiangiogenic therapy.

  2. Effective incorporation of spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    Science.gov (United States)

    Zheng, Guoyan

    2008-01-01

    This paper addresses the problem of estimating the 3D rigid pose of a CT volume of an object from its 2D X-ray projections. We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on X-ray and CT datasets of a plastic phantom and a cadaveric spine segment.

  3. 3D-2D registration of cerebral angiograms based on vessel directions and intensity gradients

    Science.gov (United States)

    Mitrovic, Uroš; Špiclin, Žiga; Štern, Darko; Markelj, Primož; Likar, Boštjan; Miloševic, Zoran; Pernuš, Franjo

    2012-02-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system to the site of pathology. Intra-interventional navigation is done under the guidance of one or at most two two-dimensional (2D) X-ray fluoroscopic images or 2D digital subtracted angiograms (DSA). Due to the projective nature of 2D images, the interventionist needs to mentally reconstruct the position of the catheter in respect to the three-dimensional (3D) patient vasculature, which is not a trivial task. By 3D-2D registration of pre-interventional 3D images like CTA, MRA or 3D-DSA and intra-interventional 2D images, intra-interventional tools such as catheters can be visualized on the 3D model of patient vasculature, allowing easier and faster navigation. Such a navigation may consequently lead to the reduction of total ionizing dose and delivered contrast medium. In the past, development and evaluation of 3D-2D registration methods for endovascular treatments received considerable attention. The main drawback of these methods is that they have to be initialized rather close to the correct position as they mostly have a rather small capture range. In this paper, a novel registration method that has a higher capture range and success rate is proposed. The proposed method and a state-of-the-art method were tested and evaluated on synthetic and clinical 3D-2D image-pairs. The results on both databases indicate that although the proposed method was slightly less accurate, it significantly outperformed the state-of-the-art 3D-2D registration method in terms of robustness measured by capture range and success rate.

  4. Osteo-cise: Strong Bones for Life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Directory of Open Access Journals (Sweden)

    Gianoudis Jenny

    2012-05-01

    maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand, falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture. Trial registration Australian New Zealand Clinical Trials Registry reference ACTRN12609000100291

  5. Automatic Descriptor-Based Co-Registration of Frame Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Maria Vakalopoulou

    2014-04-01

    Full Text Available Frame hyperspectral sensors, in contrast to push-broom or line-scanning ones, produce hyperspectral datasets with, in general, better geometry but with unregistered spectral bands. Being acquired at different instances and due to platform motion and movements (UAVs, aircrafts, etc., every spectral band is displaced and acquired with a different geometry. The automatic and accurate registration of hyperspectral datasets from frame sensors remains a challenge. Powerful local feature descriptors when computed over the spectrum fail to extract enough correspondences and successfully complete the registration procedure. To this end, we propose a generic and automated framework which decomposes the problem and enables the efficient computation of a sufficient amount of accurate correspondences over the given spectrum, without using any ancillary data (e.g., from GPS/IMU. First, the spectral bands are divided in spectral groups according to their wavelength. The spectral borders of each group are not strict and their formulation allows certain overlaps. The spectral variance and proximity determine the applicability of every spectral band to act as a reference during the registration procedure. The proposed decomposition allows the descriptor and the robust estimation process to deliver numerous inliers. The search space of possible solutions has been effectively narrowed by sorting and selecting the optimal spectral bands which under an unsupervised manner can quickly recover hypercube’s geometry. The developed approach has been qualitatively and quantitatively evaluated with six different datasets obtained by frame sensors onboard aerial platforms and UAVs. Experimental results appear promising.

  6. Contrast-Based 3D/2D Registration of the Left Atrium: Fast versus Consistent

    Directory of Open Access Journals (Sweden)

    Matthias Hoffmann

    2016-01-01

    Full Text Available For augmented fluoroscopy during cardiac ablation, a preoperatively acquired 3D model of a patient’s left atrium (LA can be registered to X-ray images recorded during a contrast agent (CA injection. An automatic registration method that works also for small amounts of CA is desired. We propose two similarity measures: The first focuses on edges of the patient anatomy. The second computes a contrast agent distribution estimate (CADE inside the 3D model and rates its consistency with the CA as seen in biplane fluoroscopic images. Moreover, temporal filtering on the obtained registration results of a sequence is applied using a Markov chain framework. Evaluation was performed on 11 well-contrasted clinical angiographic sequences and 10 additional sequences with less CA. For well-contrasted sequences, the error for all 73 frames was 7.9 ± 6.3 mm and it dropped to 4.6 ± 4.0 mm when registering to an automatically selected, well enhanced frame in each sequence. Temporal filtering reduced the error for all frames from 7.9 ± 6.3 mm to 5.7 ± 4.6 mm. The error was typically higher if less CA was used. A combination of both similarity measures outperforms a previously proposed similarity measure. The mean accuracy for well contrasted sequences is in the range of other proposed manual registration methods.

  7. Maternal mortality in rural south Ethiopia: outcomes of community-based birth registration by health extension workers.

    Directory of Open Access Journals (Sweden)

    Yaliso Yaya

    Full Text Available Rural communities in low-income countries lack vital registrations to track birth outcomes. We aimed to examine the feasibility of community-based birth registration and measure maternal mortality ratio (MMR in rural south Ethiopia.In 2010, health extension workers (HEWs registered births and maternal deaths among 421,639 people in three districts (Derashe, Bonke, and Arba Minch Zuria. One nurse-supervisor per district provided administrative and technical support to HEWs. The primary outcomes were the feasibility of registration of a high proportion of births and measuring MMR. The secondary outcome was the proportion of skilled birth attendance. We validated the completeness of the registry and the MMR by conducting a house-to-house survey in 15 randomly selected villages in Bonke.We registered 10,987 births (81·4% of expected 13,492 births with annual crude birth rate of 32 per 1,000 population. The validation study showed that, of 2,401 births occurred in the surveyed households within eight months of the initiation of the registry, 71·6% (1,718 were registered with similar MMRs (474 vs. 439 between the registered and unregistered births. Overall, we recorded 53 maternal deaths; MMR was 489 per 100,000 live births and 83% (44 of 53 maternal deaths occurred at home. Ninety percent (9,863 births were at home, 4% (430 at health posts, 2·5% (282 at health centres, and 3·5% (412 in hospitals. MMR increased if: the male partners were illiterate (609 vs. 346; p= 0·051 and the villages had no road access (946 vs. 410; p= 0·039. The validation helped to increase the registration coverage by 10% through feedback discussions.It is possible to obtain a high-coverage birth registration and measure MMR in rural communities where a functional system of community health workers exists. The MMR was high in rural south Ethiopia and most births and maternal deaths occurred at home.

  8. Implicit reference-based group-wise image registration and its application to structural and functional MRI.

    Science.gov (United States)

    Geng, Xiujuan; Christensen, Gary E; Gu, Hong; Ross, Thomas J; Yang, Yihong

    2009-10-01

    In this study, an implicit reference group-wise (IRG) registration with a small deformation, linear elastic model was used to jointly estimate correspondences between a set of MRI images. The performance of pair-wise and group-wise registration algorithms was evaluated for spatial normalization of structural and functional MRI data. Traditional spatial normalization is accomplished by group-to-reference (G2R) registration in which a group of images are registered pair-wise to a reference image. G2R registration is limited due to bias associated with selecting a reference image. In contrast, implicit reference group-wise (IRG) registration estimates correspondences between a group of images by jointly registering the images to an implicit reference corresponding to the group average. The implicit reference is estimated during IRG registration eliminating the bias associated with selecting a specific reference image. Registration performance was evaluated using segmented T1-weighted magnetic resonance images from the Nonrigid Image Registration Evaluation Project (NIREP), DTI and fMRI images. Implicit reference pair-wise (IRP) registration-a special case of IRG registration for two images-is shown to produce better relative overlap than IRG for pair-wise registration using the same small deformation, linear elastic registration model. However, IRP-G2R registration is shown to have significant transitivity error, i.e., significant inconsistencies between correspondences defined by different pair-wise transformations. In contrast, IRG registration produces consistent correspondence between images in a group at the cost of slightly reduced pair-wise RO accuracy compared to IRP-G2R. IRG spatial normalization of the fractional anisotropy (FA) maps of DTI is shown to have smaller FA variance compared with G2R methods using the same elastic registration model. Analyses of fMRI data sets with sensorimotor and visual tasks show that IRG registration, on average, increases the

  9. Multimodal perception and simulation

    NARCIS (Netherlands)

    Werkhoven, P.J.; Erp, J.B.F. van

    2013-01-01

    This chapter discusses mechanisms of multimodal perception in the context of multimodal simulators and virtual worlds. We review some notable findings from psychophysical experiments with a focus on what we call touch-inclusive multimodal perception—that is, the sensory integration of the tactile sy

  10. Fast simulated annealing and adaptive Monte Carlo sampling based parameter optimization for dense optical-flow deformable image registration of 4DCT lung anatomy

    Science.gov (United States)

    Dou, Tai H.; Min, Yugang; Neylon, John; Thomas, David; Kupelian, Patrick; Santhanam, Anand P.

    2016-03-01

    Deformable image registration (DIR) is an important step in radiotherapy treatment planning. An optimal input registration parameter set is critical to achieve the best registration performance with the specific algorithm. Methods In this paper, we investigated a parameter optimization strategy for Optical-flow based DIR of the 4DCT lung anatomy. A novel fast simulated annealing with adaptive Monte Carlo sampling algorithm (FSA-AMC) was investigated for solving the complex non-convex parameter optimization problem. The metric for registration error for a given parameter set was computed using landmark-based mean target registration error (mTRE) between a given volumetric image pair. To reduce the computational time in the parameter optimization process, a GPU based 3D dense optical-flow algorithm was employed for registering the lung volumes. Numerical analyses on the parameter optimization for the DIR were performed using 4DCT datasets generated with breathing motion models and open-source 4DCT datasets. Results showed that the proposed method efficiently estimated the optimum parameters for optical-flow and closely matched the best registration parameters obtained using an exhaustive parameter search method.

  11. Gelatin-based Hydrogel Degradation and Tissue Interaction in vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice

    Science.gov (United States)

    Tondera, Christoph; Hauser, Sandra; Krüger-Genge, Anne; Jung, Friedrich; Neffe, Axel T.; Lendlein, Andreas; Klopfleisch, Robert; Steinbach, Jörg; Neuber, Christin; Pietzsch, Jens

    2016-01-01

    Hydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation). Degradation and biomaterial-tissue-interaction were investigated in vivo (MRI, optical imaging, PET) and ex vivo (autoradiography, histology, serum analysis). Multimodal imaging revealed that the number of covalent net points correlates well with degradation time, which allows for targeted modification of hydrogels based on properties of the tissue to be replaced. Importantly, the degradation time was also dependent on the number of implants per animal. Despite local mechanisms of tissue remodeling no adverse tissue responses could be observed neither locally nor systemically. Finally, this preclinical investigation in immunocompetent mice clearly demonstrated a complete restoration of the original healthy tissue. PMID:27698944

  12. An Entropy-Based Upper Bound Methodology for Robust Predictive Multi-Mode RCPSP Schedules

    Directory of Open Access Journals (Sweden)

    Angela Hsiang-Ling Chen

    2014-09-01

    Full Text Available Projects are an important part of our activities and regardless of their magnitude, scheduling is at the very core of every project. In an ideal world makespan minimization, which is the most commonly sought objective, would give us an advantage. However, every time we execute a project we have to deal with uncertainty; part of it coming from known sources and part remaining unknown until it affects us. For this reason, it is much more practical to focus on making our schedules robust, capable of handling uncertainty, and even to determine a range in which the project could be completed. In this paper we focus on an approach to determine such a range for the Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP, a widely researched, NP-complete problem, but without adding any subjective considerations to its estimation. We do this by using a concept well known in the domain of thermodynamics, entropy and a three-stage approach. First we use Artificial Bee Colony (ABC—an effective and powerful meta-heuristic—to determine a schedule with minimized makespan which serves as a lower bound. The second stage defines buffer times and creates an upper bound makespan using an entropy function, with the advantage over other methods that it only considers elements which are inherent to the schedule itself and does not introduce any subjectivity to the buffer time generation. In the last stage, we use the ABC algorithm with an objective function that seeks to maximize robustness while staying within the makespan boundaries defined previously and in some cases even below the lower boundary. We evaluate our approach with two different benchmarks sets: when using the PSPLIB for the MRCPSP benchmark set, the computational results indicate that it is possible to generate robust schedules which generally result in an increase of less than 10% of the best known solutions while increasing the robustness in at least 20% for practically every

  13. Multi-feature-based plaque characterization in ex vivo MRI trained by registration to 3D histology

    DEFF Research Database (Denmark)

    Engelen, Arna van; Niessen, Wiro J.; Klein, Stefan;

    2012-01-01

    We present a new method for automated characterization of atherosclerotic plaque composition in ex vivo MRI. It uses MRI intensities as well as four other types of features: smoothed, gradient magnitude and Laplacian images at several scales, and the distances to the lumen and outer vessel wall....... The ground truth for fibrous, necrotic and calcified tissue was provided by histology and micro-CT in 12 carotid plaque specimens. Semi-automatic registration of a 3D stack of histological slices and micro-CT images to MRI allowed for 3D rotations and inplane deformations of histology. By basing voxelwise...

  14. Registration-based segmentation of three-dimensional ultrasound images for quantitative measurement of fetal craniofacial structure.

    Science.gov (United States)

    Chen, Hsin-Chen; Tsai, Pei-Yin; Huang, Hsiao-Han; Shih, Hui-Hsuan; Wang, Yi-Ying; Chang, Chiung-Hsin; Sun, Yung-Nien

    2012-05-01

    Segmentation of a fetal head from three-dimensional (3-D) ultrasound images is a critical step in the quantitative measurement of fetal craniofacial structure. However, two main issues complicate segmentation, including fuzzy boundaries and large variations in pose and shape among different ultrasound images. In this article, we propose a new registration-based method for automatically segmenting the fetal head from 3-D ultrasound images. The proposed method first detects the eyes based on Gabor features to identify the pose of the fetus image. Then, a reference model, which is constructed from a fetal phantom and contains prior knowledge of head shape, is aligned to the image via feature-based registration. Finally, 3-D snake deformation is utilized to improve the boundary fitness between the model and image. Four clinically useful parameters including inter-orbital diameter (IOD), bilateral orbital diameter (BOD), occipital frontal diameter (OFD) and bilateral parietal diameter (BPD) are measured based on the results of the eye detection and head segmentation. Ultrasound volumes from 11 subjects were used for validation of the method accuracy. Experimental results showed that the proposed method was able to overcome the aforementioned difficulties and achieve good agreement between automatic and manual measurements.

  15. SU-E-J-132: Automated Segmentation with Post-Registration Atlas Selection Based On Mutual Information

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The delineation of targets and organs-at-risk is a critical step during image-guided radiation therapy, for which manual contouring is the gold standard. However, it is often time-consuming and may suffer from intra- and inter-rater variability. The purpose of this work is to investigate the automated segmentation. Methods: The automatic segmentation here is based on mutual information (MI), with the atlas from Public Domain Database for Computational Anatomy (PDDCA) with manually drawn contours.Using dice coefficient (DC) as the quantitative measure of segmentation accuracy, we perform leave-one-out cross-validations for all PDDCA images sequentially, during which other images are registered to each chosen image and DC is computed between registered contour and ground truth. Meanwhile, six strategies, including MI, are selected to measure the image similarity, with MI to be the best. Then given a target image to be segmented and an atlas, automatic segmentation consists of: (a) the affine registration step for image positioning; (b) the active demons registration method to register the atlas to the target image; (c) the computation of MI values between the deformed atlas and the target image; (d) the weighted image fusion of three deformed atlas images with highest MI values to form the segmented contour. Results: MI was found to be the best among six studied strategies in the sense that it had the highest positive correlation between similarity measure (e.g., MI values) and DC. For automated segmentation, the weighted image fusion of three deformed atlas images with highest MI values provided the highest DC among four proposed strategies. Conclusion: MI has the highest correlation with DC, and therefore is an appropriate choice for post-registration atlas selection in atlas-based segmentation. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)

  16. An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract.

    Science.gov (United States)

    Liu, Zhen; Liu, Jianhua; Wang, Rui; Du, Yingda; Ren, Jinsong; Qu, Xiaogang

    2015-07-01

    Since understanding the healthy status of gastrointestinal tract (GI tract) is of vital importance, clinical implementation for GI tract-related disease have attracted much more attention along with the rapid development of modern medicine. Here, a multifunctional theranostic system combining X-rays/CT/photothermal/photoacoustic mapping of GI tract and imaging-guided photothermal anti-bacterial treatment is designed and constructed. PEGylated W18O49 nanosheets (PEG-W18O49) are created via a facile solvothermal method and an in situ probe-sonication approach. In terms of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of PEG-W18O49, we demonstrate the first example of high-performance four-modal imaging of GI tract by using these nanosheets as contrast agents. More importantly, due to their intrinsic absorption of NIR light, glutaraldehyde-modified PEG-W18O49 are successfully applied as fault-free targeted photothermal agents for imaging-guided killing of bacteria on a mouse infection model. Critical to pre-clinical and clinical prospects, long-term toxicity is further investigated after oral administration of these theranostic agents. These kinds of tungsten-based nanomaterials exhibit great potential as multi-modal contrast agents for directed visualization of GI tract and anti-bacterial agents for phothothermal sterilization.

  17. A Markov random field approach for topology-preserving registration: application to object-based tomographic image interpolation.

    Science.gov (United States)

    Cordero-Grande, Lucilio; Vegas-Sánchez-Ferrero, Gonzalo; Casaseca-de-la-Higuera, Pablo; Alberola-López, Carlos

    2012-04-01

    This paper proposes a topology-preserving multiresolution elastic registration method based on a discrete Markov random field of deformations and a block-matching procedure. The method is applied to the object-based interpolation of tomographic slices. For that purpose, the fidelity of a given deformation to the data is established by a block-matching strategy based on intensity- and gradient-related features, the smoothness of the transformation is favored by an appropriate prior on the field, and the deformation is guaranteed to maintain the topology by imposing some hard constraints on the local configurations of the field. The resulting deformation is defined as the maximum a posteriori configuration. Additionally, the relative influence of the fidelity and smoothness terms is weighted by the unsupervised estimation of the field parameters. In order to obtain an unbiased interpolation result, the registration is performed both in the forward and backward directions, and the resulting transformations are combined by using the local information content of the deformation. The method is applied to magnetic resonance and computed tomography acquisitions of the brain and the torso. Quantitative comparisons offer an overall improvement in performance with respect to related works in the literature. Additionally, the application of the interpolation method to cardiac magnetic resonance images has shown that the removal of any of the main components of the algorithm results in a decrease in performance which has proven to be statistically significant.

  18. Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Directory of Open Access Journals (Sweden)

    Binjie Qin

    2009-12-01

    Full Text Available This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM, is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case.

  19. Lesion registration for longitudinal disease tracking in an imaging informatics-based multiple sclerosis eFolder

    Science.gov (United States)

    Ma, Kevin; Liu, Joseph; Zhang, Xuejun; Lerner, Alex; Shiroishi, Mark; Amezcua, Lilyana; Liu, Brent

    2016-03-01

    We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results stored in DICOM-SR format. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system needs to quantify lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. In order to perform lesion registration, we have developed a brain warping and normalizing methodology using Statistical Parametric Mapping (SPM) MATLAB toolkit for brain MRI. Patients' brain MR images are processed via SPM's normalization processes, and the brain images are analyzed and warped according to the tissue probability map. Lesion identification and contouring are completed by neuroradiologists, and lesion volume quantification is completed by the eFolder's CAD program. Lesion comparison results in longitudinal studies show key growth and active regions. The results display successful lesion registration and tracking over a longitudinal study. Lesion change results are graphically represented in the web-based user interface, and users are able to correlate patient progress and changes in the MRI images. The completed lesion and disease tracking tool would enable the eFolder to provide complete patient profiles, improve the efficiency of patient care, and perform comprehensive data analysis through an integrated imaging informatics system.

  20. 3D Assessment of Mandibular Growth Based on Image Registration: A Feasibility Study in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    I. Kim

    2014-01-01

    Full Text Available Background. Our knowledge of mandibular growth mostly derives from cephalometric radiography, which has inherent limitations due to the two-dimensional (2D nature of measurement. Objective. To assess 3D morphological changes occurring during growth in a rabbit mandible. Methods. Serial cone-beam computerised tomographic (CBCT images were made of two New Zealand white rabbits, at baseline and eight weeks after surgical implantation of 1 mm diameter metallic spheres as fiducial markers. A third animal acted as an unoperated (no implant control. CBCT images were segmented and registered in 3D (Implant Superimposition and Procrustes Method, and the remodelling pattern described used color maps. Registration accuracy was quantified by the maximal of the mean minimum distances and by the Hausdorff distance. Results. The mean error for image registration was 0.37 mm and never exceeded 1 mm. The implant-based superimposition showed most remodelling occurred at the mandibular ramus, with bone apposition posteriorly and vertical growth at the condyle. Conclusion. We propose a method to quantitatively describe bone remodelling in three dimensions, based on the use of bone implants as fiducial markers and CBCT as imaging modality. The method is feasible and represents a promising approach for experimental studies by comparing baseline growth patterns and testing the effects of growth-modification treatments.

  1. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  2. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    Energy Technology Data Exchange (ETDEWEB)

    Akhbardeh, A [The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD (United States); Parekth, VS [Department of Computer Science, The Johns Hopkins University, Baltimore, MD (United States); Jacobs, MA [The Russell H. Morgan Department of Radiology and Radiological Sciences and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Sparks, MD (United States)

    2015-06-15

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were used in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was

  3. Tibial cortical lesions: A multimodality pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, P.A., E-mail: philippa.tyler@rnoh.nhs.uk [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Mohaghegh, P., E-mail: pegah1000@gmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Foley, J., E-mail: jfoley1@nhs.net [Department of Radiology, Glasgow Royal Infirmary, 16 Alexandra Parade, Glasgow G31 2ES (United Kingdom); Isaac, A., E-mail: amandaisaac@doctors.org.uk [Department of Radiology, King' s College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Zavareh, A., E-mail: ali.zavareh@gmail.com [Department of Radiology, North Bristol NHS Trust, Frenchay, Bristol BS16 1LE (United Kingdom); Thorning, C., E-mail: cthorning@doctors.org.uk [Department of Radiology, East Surrey Hospital, Canada Avenue, Redhill, Surrey RH1 5RH (United Kingdom); Kirwadi, A., E-mail: anandkirwadi@gmail.com [Department of Radiology, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL (United Kingdom); Pressney, I., E-mail: ipressney@hotmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Amary, F., E-mail: fernanda.amary@rnoh.nhs.uk [Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Rajeswaran, G., E-mail: grajeswaran@gmail.com [Department of Radiology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH (United Kingdom)

    2015-01-15

    Highlights: • Multimodality imaging plays an important role in the investigation and diagnosis of shin pain. • We review the multimodality imaging findings of common cortically based tibial lesions. • We also describe the rarer pathologies of tibial cortical lesions. - Abstract: Shin pain is a common complaint, particularly in young and active patients, with a wide range of potential diagnoses and resulting implications. We review the natural history and multimodality imaging findings of the more common causes of cortically-based tibial lesions, as well as the rarer pathologies less frequently encountered in a general radiology department.

  4. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Mao, Hui [Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States)

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  5. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  6. A multiple-image-based method to evaluate the performance of deformable image registration in the pelvis

    Science.gov (United States)

    Saleh, Ziad; Thor, Maria; Apte, Aditya P.; Sharp, Gregory; Tang, Xiaoli; Veeraraghavan, Harini; Muren, Ludvig; Deasy, Joseph

    2016-08-01

    Deformable image registration (DIR) is essential for adaptive radiotherapy (RT) for tumor sites subject to motion, changes in tumor volume, as well as changes in patient normal anatomy due to weight loss. Several methods have been published to evaluate DIR-related uncertainties but they are not widely adopted. The aim of this study was, therefore, to evaluate intra-patient DIR for two highly deformable organs—the bladder and the rectum—in prostate cancer RT using a quantitative metric based on multiple image registration, the distance discordance metric (DDM). Voxel-by-voxel DIR uncertainties of the bladder and rectum were evaluated using DDM on weekly CT scans of 38 subjects previously treated with RT for prostate cancer (six scans/subject). The DDM was obtained from group-wise B-spline registration of each patient’s collection of repeat CT scans. For each structure, registration uncertainties were derived from DDM-related metrics. In addition, five other quantitative measures, including inverse consistency error (ICE), transitivity error (TE), Dice similarity (DSC) and volume ratios between corresponding structures from pre- and post- registered images were computed and compared with the DDM. The DDM varied across subjects and structures; DDMmean of the bladder ranged from 2 to 13 mm and from 1 to 11 mm for the rectum. There was a high correlation between DDMmean of the bladder and the rectum (Pearson’s correlation coefficient, R p  =  0.62). The correlation between DDMmean and the volume ratios post-DIR was stronger (R p  =  0.51 0.68) than the correlation with the TE (bladder: R p  =  0.46 rectum: R p  =  0.47), or the ICE (bladder: R p  =  0.34 rectum: R p  =  0.37). There was a negative correlation between DSC and DDMmean of both the bladder (R p  =  -0.23) and the rectum (R p  =  -0.63). The DDM uncertainty metric indicated considerable DIR variability across subjects and structures

  7. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  8. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    Science.gov (United States)

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  9. Bi-Objective Modelling for Hazardous Materials Road-Rail Multimodal Routing Problem with Railway Schedule-Based Space-Time Constraints.

    Science.gov (United States)

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-07-28

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing-Tianjin-Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study.

  10. One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, Hossein [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva 4 (Switzerland); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva 4 (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark)

    2016-10-15

    The outcome of a detailed assessment of various strategies for atlas-based whole-body bone segmentation from magnetic resonance imaging (MRI) was exploited to select the optimal parameters and setting, with the aim of proposing a novel one-registration multi-atlas (ORMA) pseudo-CT generation approach. The proposed approach consists of only one online registration between the target and reference images, regardless of the number of atlas images (N), while for the remaining atlas images, the pre-computed transformation matrices to the reference image are used to align them to the target image. The performance characteristics of the proposed method were evaluated and compared with conventional atlas-based attenuation map generation strategies (direct registration of the entire atlas images followed by voxel-wise weighting (VWW) and arithmetic averaging atlas fusion). To this end, four different positron emission tomography (PET) attenuation maps were generated via arithmetic averaging and VWW scheme using both direct registration and ORMA approaches as well as the 3-class attenuation map obtained from the Philips Ingenuity TF PET/MRI scanner commonly used in the clinical setting. The evaluation was performed based on the accuracy of extracted whole-body bones by the different attenuation maps and by quantitative analysis of resulting PET images compared to CT-based attenuation-corrected PET images serving as reference. The comparison of validation metrics regarding the accuracy of extracted bone using the different techniques demonstrated the superiority of the VWW atlas fusion algorithm achieving a Dice similarity measure of 0.82 ± 0.04 compared to arithmetic averaging atlas fusion (0.60 ± 0.02), which uses conventional direct registration. Application of the ORMA approach modestly compromised the accuracy, yielding a Dice similarity measure of 0.76 ± 0.05 for ORMA-VWW and 0.55 ± 0.03 for ORMA-averaging. The results of quantitative PET analysis followed the same

  11. Solid Mesh Registration for Radiotherapy Treatment Planning

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Sørensen, Thomas Sangild

    2010-01-01

    We present an algorithm for solid organ registration of pre-segmented data represented as tetrahedral meshes. Registration of the organ surface is driven by force terms based on a distance field representation of the source and reference shapes. Registration of internal morphology is achieved usi...... to complete. The proposed method has many potential uses in image guided radiotherapy (IGRT) which relies on registration to account for organ deformation between treatment sessions....

  12. A Multi-Modal Digital Game-Based Learning Environment for Hospitalized Children with Chronic Illnesses.

    Science.gov (United States)

    Chin, Jui-Chih; Tsuei, Mengping

    2014-01-01

    The aim of this study was to explore the digital game-based learning for children with chronic illnesses in the hospital settings. The design-based research and qualitative methods were applied. Three eight-year-old children with leukemia participated in this study. In the first phase, the multi-user game-based learning system was developed and…

  13. Evaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration

    Directory of Open Access Journals (Sweden)

    Amir Pasha Mahmoudzadeh

    2013-01-01

    Full Text Available Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order and to compare the effect of cost functions (least squares (LS, normalized mutual information (NMI, normalized cross correlation (NCC, and correlation ratio (CR for optimized automatic image registration (OAIR on 3D spoiled gradient recalled (SPGR magnetic resonance images (MRI of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  14. Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration.

    Science.gov (United States)

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  15. A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating

    Science.gov (United States)

    Badea, Cristian T.; Schreibmann, Eduard; Fox, Tim

    2008-01-01

    Recent advances in murine cardiac studies with three-dimensional cone beam micro-computed tomography (CT) have used either prospective or retrospective gating technique. While prospective gating ensures the best image quality and the highest resolution, it involves longer sampling times and higher radiation dose. Sampling is faster and the radiation dose can be reduced with retrospective gating but the image quality is affected by the limited number of projections with an irregular angular distribution which complicate the reconstruction process, causing significant streaking artifacts. This work involves both prospective and retrospective gating in sampling. Deformable registration is used between a high quality image set acquired with prospective gating with the multiple data sets during the cardiac cycle obtained using retrospective gating. Tests were conducted on a four-dimensional (4D) cardiac mouse phantom and after optimization, the method was applied to in vivo cardiac micro-CT data. Results indicate that, by using our method, the sampling time can be reduced by a factor of 2.5 and the radiation dose can be reduced 35% compared to the prospective sampling while the image quality can be maintained. In conclusion, we proposed a novel solution to 4D cine cardiac micro-CT based on a combined prospective with retrospective gating in sampling and deformable registration post reconstruction that mixed the advantages of both strategies. PMID:18491508

  16. Efficient nonrigid registration using ranked order statistics

    DEFF Research Database (Denmark)

    Tennakoon, Ruwan B.; Bab-Hadiashar, Alireza; de Bruijne, Marleen

    2013-01-01

    Non-rigid image registration techniques are widely used in medical imaging applications. Due to high computational complexities of these techniques, finding appropriate registration method to both reduce the computation burden and increase the registration accuracy has become an intense area...... of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find the important regions for registration and use an appropriate sampling scheme...... to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments on registration of real lung CT images, with expert annotated landmarks, show...

  17. Validation of Shape Context Based Image Registration Method Using Digital Image Correlation Measurement on a Rat Stomach

    DEFF Research Database (Denmark)

    Liao, Donghua; Wang, P; Zhao, Jingbo

    2014-01-01

    Recently we developed analysis for 3D visceral organ deformation by combining the shape context (SC) method with a full-field strain (strain distribution on a whole 3D surface) analysis for calculating distension-induced rat stomach deformation. The surface deformation detected by the SC method...... needs to be further verified by using a feature tracking measurement. Hence, the aim of this study was to verify the SC method-based calculation by using digital image correlation (DIC) measurement on a rat stomach. The rat stomach exposed to distension pressures 0.0, 0.2, 0.4, and 0.6 kPa were studied...... using both 3D DIC system and SC-based image registration calculation. Three different surface sample counts between the reference and the target surfaces were usedto gauge the effect of the surface sample counts on the calculation. Each pair of the surface points between the DIC measured target surface...

  18. An Optimized Spline-Based Registration of a 3D CT to a Set of C-Arm Images.

    Science.gov (United States)

    Jonić, S; Thévenaz, P; Zheng, G; Nolte, L-P; Unser, M

    2006-01-01

    We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is determined using a set of fiducial markers.

  19. Towards Multimodal Content Representation

    CERN Document Server

    Bunt, Harry

    2009-01-01

    Multimodal interfaces, combining the use of speech, graphics, gestures, and facial expressions in input and output, promise to provide new possibilities to deal with information in more effective and efficient ways, supporting for instance: - the understanding of possibly imprecise, partial or ambiguous multimodal input; - the generation of coordinated, cohesive, and coherent multimodal presentations; - the management of multimodal interaction (e.g., task completion, adapting the interface, error prevention) by representing and exploiting models of the user, the domain, the task, the interactive context, and the media (e.g. text, audio, video). The present document is intended to support the discussion on multimodal content representation, its possible objectives and basic constraints, and how the definition of a generic representation framework for multimodal content representation may be approached. It takes into account the results of the Dagstuhl workshop, in particular those of the informal working group...

  20. Hopc: a Novel Similarity Metric Based on Geometric Structural Properties for Multi-Modal Remote Sensing Image Matching

    Science.gov (United States)

    Ye, Yuanxin; Shen, Li

    2016-06-01

    Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.

  1. The development of a performance assessment methodology for activity based intelligence: A study of spatial, temporal, and multimodal considerations

    Science.gov (United States)

    Lewis, Christian M.

    Activity Based Intelligence (ABI) is the derivation of information from a series of in- dividual actions, interactions, and transactions being recorded over a period of time. This usually occurs in Motion imagery and/or Full Motion Video. Due to the growth of unmanned aerial systems technology and the preponderance of mobile video devices, more interest has developed in analyzing people's actions and interactions in these video streams. Currently only visually subjective quality metrics exist for determining the utility of these data in detecting specific activities. One common misconception is that ABI boils down to a simple resolution problem; more pixels and higher frame rates are better. Increasing resolution simply provides more data, not necessary more informa- tion. As part of this research, an experiment was designed and performed to address this assumption. Nine sensors consisting of four modalities were place on top of the Chester F. Carlson Center for Imaging Science in order to record a group of participants executing a scripted set of activities. The multimodal characteristics include data from the visible, long-wave infrared, multispectral, and polarimetric regimes. The activities the participants were scripted to cover a wide range of spatial and temporal interactions (i.e. walking, jogging, and a group sporting event). As with any large data acquisition, only a subset of this data was analyzed for this research. Specifically, a walking object exchange scenario and simulated RPG. In order to analyze this data, several steps of preparation occurred. The data were spatially and temporally registered; the individual modalities were fused; a tracking algorithm was implemented, and an activity detection algorithm was applied. To develop a performance assessment for these activities a series of spatial and temporal degradations were performed. Upon completion of this work, the ground truth ABI dataset will be released to the community for further analysis.

  2. The UCLA Multimodal Connectivity Database: A web-based platform for brain connectivity matrix sharing and analysis

    Directory of Open Access Journals (Sweden)

    Jesse A. Brown

    2012-11-01

    Full Text Available Brain connectomics research has rapidly expanded using functional MRI (fMRI and diffusion-weighted MRI (dwMRI. A common product of these varied analyses is a connectivity matrix (CM. A CM stores the connection strength between any two regions (nodes in a brain network. This format is useful for several reasons: 1 it is highly distilled, with minimal data size and complexity, 2 graph theory can be applied to characterize the network’s topology, and 3 it retains sufficient information to capture individual differences such as age, gender, intelligence quotient, or disease state. Here we introduce the UCLA Multimodal Connectivity Database (http://umcd.humanconnectomeproject.org, an openly available website for brain network analysis and data sharing. The site is a repository for researchers to publicly share CMs derived from their data. The site also allows users to select any CM shared by another user, compute graph theoretical metrics on the site, visualize a report of results, or download the raw CM. To date, users have contributed over 2000 individual CMs, spanning different imaging modalities (fMRI, dwMRI and disorders (Alzheimer’s, autism, Attention Deficit Hyperactive Disorder. To demonstrate the site’s functionality, whole brain functional and structural connectivity matrices are derived from 60 subjects’ (ages 26-45 resting state fMRI (rs-fMRI and dwMRI data and uploaded to the site. The site is utilized to derive graph theory global and regional measures for the rs-fMRI and dwMRI networks. Global and nodal graph theoretical measures between functional and structural networks exhibit low correspondence. This example demonstrates how this tool can enhance the comparability of brain networks from different imaging modalities and studies. The existence of this connectivity-based repository should foster broader data sharing and enable larger-scale meta analyses comparing networks across imaging modality, age group, and disease state.

  3. Integrating HMM-Based Speech Recognition With Direct Manipulation In A Multimodal Korean Natural Language Interface

    CERN Document Server

    Lee, G; Kim, S; Lee, Geunbae; Lee, Jong-Hyeok; Kim, Sangeok

    1996-01-01

    This paper presents a HMM-based speech recognition engine and its integration into direct manipulation interfaces for Korean document editor. Speech recognition can reduce typical tedious and repetitive actions which are inevitable in standard GUIs (graphic user interfaces). Our system consists of general speech recognition engine called ABrain {Auditory Brain} and speech commandable document editor called SHE {Simple Hearing Editor}. ABrain is a phoneme-based speech recognition engine which shows up to 97% of discrete command recognition rate. SHE is a EuroBridge widget-based document editor that supports speech commands as well as direct manipulation interfaces.

  4. A Note on Polynomials Based Image Registration%基于多项式图像配准问题的一点研究

    Institute of Scientific and Technical Information of China (English)

    黄凤荣; 胡占义

    2005-01-01

    It is shown that the polynomials based image registration, which is widely used in remote sensing field, does not have a sound mathematical basis. In fact, there seems no theoretical basis for the polynomials based transform to outperform the affine transformation, a much simpler one,in image registration. If the transformation functions are polynomials of order n, the corresponding scene is shown to be in general the intersection of two curved surfaces of order n + 1, in other words,a space curve. In some special cases, the scene is approaching to a plane. To our knowledge, such results did not appear in the literature previously.

  5. OptoCeramic-Based High Speed Fiber Multiplexer for Multimode Fiber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A fiber-based fixed-array laser transmitter can be combined with a fiber-arrayed detector to create the next-generation NASA array LIDAR systems. High speed optical...

  6. Non-rigid contour-to-pixel registration of photographic and quantitative light-induced fluorescence imaging of decalcified teeth

    Science.gov (United States)

    Berkels, Benjamin; Deserno, Thomas; Ehrlich, Eva E.; Fritz, Ulrike B.; Sirazitdinova, Ekaterina; Tatano, Rosalia

    2016-03-01

    Quantitative light-induced fluorescence (QLF) is widely used to assess the damage of a tooth due to decalcification. In digital photographs, decalcification appears as white spot lesions, i.e. white spots on the tooth surface. We propose a novel multimodal registration approach for the matching of digital photographs and QLF images of decalcified teeth. The registration is based on the idea of contour-to-pixel matching. Here, the curve, which represents the shape of the tooth, is extracted from the QLF image using a contour segmentation by binarization and morphological processing. This curve is aligned to the photo with a non-rigid variational registration approach. Thus, the registration problem is formulated as minimization problem with an objective function that consists of a data term and a regularizer for the deformation. To construct the data term, the photo is pointwise classified into tooth and non-tooth regions. Then, the signed distance function of the tooth region allows to measure the mismatch between curve and photo. As regularizer a higher order, linear elastic prior is used. The resulting minimization problem is solved numerically using bilinear Finite Elements for the spatial discretization and the Gauss-Newton algorithm. The evaluation is based on 150 image pairs, where an average of 5 teeth have been captured from 32 subjects. All registrations have been confirmed correctly by a dental expert. The contour-to-pixel methods can directly be used in 3D for surface-to-voxel tasks.

  7. Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre

    OpenAIRE

    V. Matejec; Jaffrezic-Renault, N.; Abdelghani, A.; S. Hleli; Cherif, K

    2002-01-01

    In this paper the physical basis for the design of an optical fibre sensor suited for aqueous medium and gas phase based on the excitation of an evanescent wave at the core/cladding interface is developed. The detection based on the refractive index changes (between 1.41 and 1.45) of the infinite dielectric medium which can be an electrolyte or a sol-gel polymer deposited on the uncladed part of the fibre. Refractive indices of absorbent and volatile compounds such as fuel and unleaded gas we...

  8. Using Multimodal Learning Analytics to Identify Patterns of Interactions in a Body-Based Mathematics Activity

    Science.gov (United States)

    Smith, Carmen; King, Barbara; Gonzalez, Diana

    2016-01-01

    Elementary students' difficulties with angles in geometry are well documented, but we know little about how they conceptualize angles while solving problems and how their thinking changes over time. In this study, we examined 26 third and fourth grade students completing a body-based angle task supported by the Kinect for Windows. We used…

  9. Multimodal emotion recognition as assessment for learning in a game-based communication skills training

    NARCIS (Netherlands)

    Nadolski, Rob; Bahreini, Kiavash; Westera, Wim

    2014-01-01

    This paper presentation describes how our FILTWAM software artifacts for face and voice emotion recognition will be used for assessing learners' progress and providing adequate feedback in an online game-based communication skills training. This constitutes an example of in-game assessment for mainl

  10. Earth Science Imagery Registration

    Science.gov (United States)

    LeMoigne, Jacqueline; Morisette, Jeffrey; Cole-Rhodes, Arlene; Johnson, Kisha; Netanyahu, Nathan S.; Eastman, Roger; Stone, Harold; Zavorin, Ilya

    2003-01-01

    The study of global environmental changes involves the comparison, fusion, and integration of multiple types of remotely-sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, as well as for the validation of new instruments or for new data analysis. Furthermore, future multiple satellite missions will include many different sensors carried on separate platforms, and the amount of remote sensing data to be combined is increasing tremendously. For all of these applications, the first required step is fast and automatic image registration, and as this need for automating registration techniques is being recognized, it becomes necessary to survey all the registration methods which may be applicable to Earth and space science problems and to evaluate their performances on a large variety of existing remote sensing data as well as on simulated data of soon-to-be-flown instruments. In this paper we present one of the first steps toward such an exhaustive quantitative evaluation. First, the different components of image registration algorithms are reviewed, and different choices for each of these components are described. Then, the results of the evaluation of the corresponding algorithms combining these components are presented o n several datasets. The algorithms are based on gray levels or wavelet features and compute rigid transformations (including scale, rotation, and shifts). Test datasets include synthetic data as well as data acquired over several EOS Land Validation Core Sites with the IKONOS and the Landsat-7 sensors.

  11. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    Science.gov (United States)

    Wang, Yan; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Wu, Xi; Zhou, Jiliu; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures.

  12. Automatic histology registration in application to x-ray modalities

    Science.gov (United States)

    Chicherova, Natalia; Hieber, Simone E.; Schulz, Georg; Khimchenko, Anna; Bikis, Christos; Cattin, Philippe C.; Müller, Bert

    2016-10-01

    Registration of microscope images to Computed Tomography (CT) 3D volumes is a challenging task because it requires not only multi-modal similarity measure but also 2D-3D or slice-to-volume correspondence. This type of registration is usually done manually which is very time-consuming and prone to errors. Recently we have developed the first automatic approach to localize histological sections in μCT data of a jaw bone. The median distance between the automatically found slices and the ground truth was below 35 μm. Here we explore the limitations of the method by applying it to three tomography datasets acquired with grating interferometry, laboratory-based μCT and single-distance phase retrieval. Moreover, we compare the performance of three feature detectors in the proposed framework, i.e. Speeded Up Robust Features (SURF), Scale Invariant Feature Transform (SIFT) and Affine SIFT (ASIFT). Our results show that all the feature detectors performed significantly better on the grating interferometry dataset than on other modalities. The median accuracy for the vertical position was 0.06 mm. Across the feature detector types the smallest error was achieved by the SURF-based feature detector (0.29 mm). Furthermore, the SURF-based method was computationally the most efficient. Thus, we recommend to use the SURF feature detector for the proposed framework.

  13. Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre

    Directory of Open Access Journals (Sweden)

    V. Matejec

    2002-06-01

    Full Text Available In this paper the physical basis for the design of an optical fibre sensor suited for aqueous medium and gas phase based on the excitation of an evanescent wave at the core/cladding interface is developed. The detection based on the refractive index changes (between 1.41 and 1.45 of the infinite dielectric medium which can be an electrolyte or a sol-gel polymer deposited on the uncladed part of the fibre. Refractive indices of absorbent and volatile compounds such as fuel and unleaded gas were determined. Using a xerogel sensing layer as optical cladding, toluene detection in water was performed. The observed sensitivity is linear and the detection limit is 1% (in volume toluene in water.

  14. Contextual Multivariate Segmentation of Pork Tissue from Grating-Based Multimodal X-Ray Tomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel S.; Ersbøll, Bjarne Kjær;

    2013-01-01

    have made novel X-ray image modalities available, where the refraction and scattering of X-rays is obtained simultaneously with the absorption properties, providing enhanced contrast for soft biological tissues. This paper demonstrates how data obtained from grating-based imaging can be segmented...... by means of multivariate and contextual methods to improve the classification of soft tissues in meat products. The results show that the presented segmentation method provides improved classification over univariate segmentation....

  15. Image-based motion estimation for cardiac CT via image registration

    Science.gov (United States)

    Cammin, J.; Taguchi, K.

    2010-03-01

    Images reconstructed from tomographic projection data are subject to motion artifacts from organs that move during the duration of the scan. The effect can be reduced by taking the motion into account in the reconstruction algorithm if an estimate of the deformation exists. This paper presents the estimation of the three-dimensional cardiac motion by registering reconstructed images from cardiac quiet phases as a first step towards motion-compensated cardiac image reconstruction. The non-rigid deformations of the heart are parametrized on a coarse grid on the image volume and are interpolated with cubic b-splines. The optimization problem of finding b-spline coefficients that best describe the observed deformations is ill-posed due to the large number of parameters and the resulting motion vector field is sensitive to the choice of initial parameters. Particularly challenging is the task to capture the twisting motion of the heart. The motion vector field from a dynamic computer phantom of the human heart is used to initialize the transformation parameters for the optimization process with realistic starting values. The results are evaluated by comparing the registered images and the obtained motion vector field to the case when the registration is performed without using prior knowledge about the expected cardiac motion. We find that the registered images are similar for both approaches, but the motion vector field obtained from motion estimation initialized with the phantom describes the cardiac contraction and twisting motion more accurately.

  16. Multimode Process Monitoring Based on Fuzzy C-means in Locality Preserving Projection Subspace

    Institute of Scientific and Technical Information of China (English)

    解翔; 侍洪波

    2012-01-01

    For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.

  17. A Parallel Global-Local Mixed Evolutionary Algorithm for Multimodal Function Optimization Based on Domain Decomposition

    Institute of Scientific and Technical Information of China (English)

    Wu Zhi-jian; Tang Zhi-long; Kang Li-shan

    2003-01-01

    This paper presents a parallel two level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions.By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optirma and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.

  18. Dispersion-based control of modal characteristics for parametric down-conversion in a multimode waveguide

    CERN Document Server

    Karpinski, Michal; Banaszek, Konrad

    2011-01-01

    We report generation of near-infrared photon pairs in fundamental spatial modes via type-II spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate nonlinear waveguide supporting multiple transverse modes. This demonstrates experimentally a versatile scheme for complete control over the spatial characteristics of the produced nonclassical light based on careful exploitation of intermodal dispersion. The down-converted photons are characterized by the measurement of the beam quality factors in the heralded regime. Their indistinguishability is verified by the preparation of a polarization-entangled two-photon state shown to violate Bell's inequality.

  19. Nonparametric Feature Matching Based Conditional Random Fields for Gesture Recognition from Multi-Modal Video.

    Science.gov (United States)

    Chang, Ju Yong

    2016-08-01

    We present a new gesture recognition method that is based on the conditional random field (CRF) model using multiple feature matching. Our approach solves the labeling problem, determining gesture categories and their temporal ranges at the same time. A generative probabilistic model is formalized and probability densities are nonparametrically estimated by matching input features with a training dataset. In addition to the conventional skeletal joint-based features, the appearance information near the active hand in an RGB image is exploited to capture the detailed motion of fingers. The estimated likelihood function is then used as the unary term for our CRF model. The smoothness term is also incorporated to enforce the temporal coherence of our solution. Frame-wise recognition results can then be obtained by applying an efficient dynamic programming technique. To estimate the parameters of the proposed CRF model, we incorporate the structured support vector machine (SSVM) framework that can perform efficient structured learning by using large-scale datasets. Experimental results demonstrate that our method provides effective gesture recognition results for challenging real gesture datasets. By scoring 0.8563 in the mean Jaccard index, our method has obtained the state-of-the-art results for the gesture recognition track of the 2014 ChaLearn Looking at People (LAP) Challenge.

  20. Quantifying Quality Aspects of Multimodal Interactive Systems

    CERN Document Server

    Kühnel, Christine

    2012-01-01

    This book systematically addresses the quantification of quality aspects of multimodal interactive systems. The conceptual structure is based on a schematic view on human-computer interaction where the user interacts with the system and perceives it via input and output interfaces. Thus, aspects of multimodal interaction are analyzed first, followed by a discussion of the evaluation of output and input and concluding with a view on the evaluation of a complete system.

  1. Multimodal Biometric System Based on the Recognition of Face and Both Irises

    Directory of Open Access Journals (Sweden)

    Yeong Gon Kim

    2012-09-01

    Our study has the following novel features. First, the device proposed acquires images of the face and both irises simultaneously. The proposed device consists of a face camera, two iris cameras, near‐infrared illuminators and cold mirrors. Second, fast and accurate iris detection is based on two circular edge detections, which are accomplished in the iris image on the basis of the size of the iris detected in the face image. Third, the combined accuracy is enhanced by combining each score for the face and both irises using a support vector machine. The experimental results show that the equal error rate for the proposed method is 0.131%, which is lower than that of face or iris recognition and other fusion methods.

  2. FPGA-Based Multimodal Embedded Sensor System Integrating Low- and Mid-Level Vision

    Directory of Open Access Journals (Sweden)

    Uwe Meyer-Baese

    2011-08-01

    Full Text Available Motion estimation is a low-level vision task that is especially relevant due to its wide range of applications in the real world. Many of the best motion estimation algorithms include some of the features that are found in mammalians, which would demand huge computational resources and therefore are not usually available in real-time. In this paper we present a novel bioinspired sensor based on the synergy between optical flow and orthogonal variant moments. The bioinspired sensor has been designed for Very Large Scale Integration (VLSI using properties of the mammalian cortical motion pathway. This sensor combines low-level primitives (optical flow and image moments in order to produce a mid-level vision abstraction layer. The results are described trough experiments showing the validity of the proposed system and an analysis of the computational resources and performance of the applied algorithms.

  3. Multimodal Medical Image Fusion Framework Based on Simplified PCNN in Nonsubsampled Contourlet Transform Domain

    Directory of Open Access Journals (Sweden)

    Nianyi Wang

    2013-06-01

    Full Text Available In this paper, we present a new medical image fusion algorithm based on nonsubsampled contourlet transform (NSCT and spiking cortical model (SCM. The flexible multi-resolution, anisotropy, and directional expansion characteristics of NSCT are associated with global coupling and pulse synchronization features of SCM. Considering the human visual system characteristics, two different fusion rules are used to fuse the low and high frequency sub-bands respectively. Firstly, maximum selection rule (MSR is used to fuse low frequency coefficients. Secondly, spatial frequency (SF is applied to motivate SCM network rather than using coefficients value directly, and then the time matrix of SCM is set as criteria to select coefficients of high frequency subband. The effectiveness of the proposed algorithm is achieved by the comparison with existing fusion methods.

  4. Design and evaluation of a multimodal mHealth based medication management system for patient self administration.

    Science.gov (United States)

    Schreier, Gunter; Schwarz, Mark; Modre-Osprian, Robert; Kastner, Peter; Scherr, Daniel; Fruhwald, Friedrich

    2013-01-01

    The intake of prescribed medication presents a challenge, in particular for elderly people and in cases where a variety of medications have to be taken in accordance to a complex schedule. To support patients with this task, an mHealth-concept was developed and evaluated in the course of a clinical trial. The system used a multimodal user interface concept, i.e. both RFID tags and barcodes to identify and document the intake of medications. Results of the clinical study with 20 patients indicate that the multimodal mHealth concept utilizing barcode and RFID tags enabled easy-to-use medication management. Although further clinical evaluation is needed to assess whether such a tool can also enhance adherence, the system shows the potential for targeting the problem of medication management with mHealth methods.

  5. Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California.

    Science.gov (United States)

    Xie, Fei; Huang, Yongxi; Eksioglu, Sandra

    2014-01-01

    A multistage, mixed integer programing model was developed that fully integrates multimodal transport into the cellulosic biofuel supply chain design under feedstock seasonality. Three transport modes are considered: truck, single railcar, and unit train. The goal is to minimize the total cost for infrastructure, feedstock harvesting, biofuel production, and transportation. Strategic decisions including the locations and capacities of transshipment hubs, biorefineries, and terminals and tactical decisions on system operations are optimized in an integrated manner. When the model was implemented to a case study of cellulosic ethanol production in California, it was found that trucks are convenient for short-haul deliveries while rails are more effective for long-haul transportation. Taking the advantage of these benefits, the multimodal transport provides more cost effective solutions than the single-mode transport (truck).

  6. Model-based process development for the purification of a modified human growth hormone using multimodal chromatography.

    Science.gov (United States)

    Sejergaard, Lars; Karkov, Hanne Sophie; Krarup, Janus Kristian; Hagel, Anne Birgitte Bagge; Cramer, Steven M

    2014-01-01

    This study demonstrates how the multimodal Capto adhere resin can be used in concert with calcium chloride or arginine hydrochloride as mobile phase modifiers to create a highly selective purification process for a modified human growth hormone. Importantly, these processes are shown to result in significant clearance of product related aggregates and host cell proteins. Furthermore, the steric mass action model is shown to be capable of accurately describing the chromatographic process and the aggregate removal. Finally, justification of the selected operating ranges is evaluated using the model together with Latin hypercube sampling. The results in this article establish the utility of multimodal chromatography when used with appropriate mobile phase modifiers for the downstream bioprocessing of a modified human growth hormone and offer new approaches for bioprocess verification.

  7. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 16. Sensing by fluorescence.

    Science.gov (United States)

    Kaval, Necati; Seliskar, Carl J; Heineman, William R

    2003-11-15

    A fluorescence spectroelectrochemical sensor capable of detecting very low concentrations of metal complexes is described. The sensor is based on a novel spectroelectrochemical sensor that incorporates multiple internal reflection spectroscopy at an optically transparent electrode (OTE) coated with a selective film to enhance detection limits by preconcentrating the analyte at the OTE surface. Nafion was used as the selective cation exchange film for detecting Ru(bpy)(3)(2+), the model analyte, which fluoresces at 605 nm when excited with a 441.6-nm HeCd laser. The unoptimized linear dynamic range of the sensor for Ru(bpy)(3)(2+) is between 1 x 10(-)(11) and 1 x 10(-)(7) M with a calculated 2 x 10(-)(13) M detection limit. The sensor employs extremely thin films ( approximately 12 nm) without significantly sacrificing its sensitivity. The sensor response is demonstrated with varying film thicknesses. A state-of-the-art flow cell design allows variable cell volumes as low as approximately 4 microL. Fluorescence of the sample can be controlled by electromodulation between 0.7 and 1.3 V. Sensor operation is not reversible for the chosen model film (Nafion) and sample (Ru(bpy)(3)(2+)) but it can be regenerated with ethanol for multiple uses.

  8. An In vivo Multi-Modal Structural Template for Neonatal Piglets Using High Angular Resolution and Population-Based Whole-Brain Tractography

    Science.gov (United States)

    Zhong, Jidan; Chen, David Q.; Walker, Matthew; Waspe, Adam; Looi, Thomas; Piorkowska, Karolina; Drake, James M.; Hodaie, Mojgan

    2016-01-01

    An increasing number of applications use the postnatal piglet model in neuroimaging studies, however, these are based primarily on T1 weighted image templates. There is a growing need for a multimodal structural brain template for a comprehensive depiction of the piglet brain, particularly given the growing applications of diffusion weighted imaging for characterizing tissue microstructures and white matter organization. In this study, we present the first multimodal piglet structural brain template which includes a T1 weighted image with tissue segmentation probability maps, diffusion weighted metric templates with multiple diffusivity maps, and population-based whole-brain fiber tracts for postnatal piglets. These maps provide information about the integrity of white matter that is not available in T1 images alone. The availability of this diffusion weighted metric template will contribute to the structural imaging analysis of the postnatal piglet brain, especially models that are designed for the study of white matter diseases. Furthermore, the population-based whole-brain fiber tracts permit researchers to visualize the white matter connections in the piglet brain across subjects, guiding the delineation of a specific white matter region for structural analysis where current diffusion data is lacking. Researchers are able to augment the tracts by merging tracts from their own data to the population-based fiber tracts and thus improve the confidence of the population-wise fiber distribution. PMID:27729850

  9. Creating an entire community covering population based injury registration system: a developed country perspective

    Directory of Open Access Journals (Sweden)

    Turin Nahid Rumana

    2007-06-01

    Full Text Available "nThe public-health approach to injury prevention and control includes epidemiological assessment, development of prevention strategies, and evaluation of these strategies. Injury-surveillance systems should be capable of providing essential information for each of these elements. The scale of injury problem is not a matter of dispute. The costs of injury mortality and morbidity are immense not only in terms of lost economic opportunity and demands on national health budget but also in terms of personal and social sufferings. Despite this, few countries have comprehensive surveillance system that generates reliable information on the nature and extent of injuries, especially with regards to non-fatal injuries. Without reliable information health care planners are severely handicapped. They are unable to allocate resources efficiently in order to achieve the greatest impact in preventing injuries. This is true for planners at all levels, whether they are concerned with the world wide injury problem or national, regional or local level injury problems. Injury registries are indispensable in determining the incidence and trends in a particular population. A registry complements the cross-sectional studies of the differences in disease rates by longitudinal investigation. The initiation of the simultaneous monitoring of the incidence, mortality, morbidity, risk factor levels, social and behavioral tendency within defined community over a period of years will help in clarify the interrelation between these variables in terms of the dynamics of change in the natural history of injury trend. Information of injury occurrences and risk factors in population is very essential and surveillance provides this essential information that can be used for designing effective prevention strategies, appropriate allocation of health resource, assessment of effectiveness of the health programs, etc. The purpose of this registration is to follow the injury incidence

  10. Volume-Preserving Mapping and Registration for Collective Data Visualization.

    Science.gov (United States)

    Hu, Jiaxi; Zou, Guangyu Jeff; Hua, Jing

    2014-12-01

    In order to visualize and analyze complex collective data, complicated geometric structure of each data is desired to be mapped onto a canonical domain to enable map-based visual exploration. This paper proposes a novel volume-preserving mapping and registration method which facilitates effective collective data visualization. Given two 3-manifolds with the same topology, there exists a mapping between them to preserve each local volume element. Starting from an initial mapping, a volume restoring diffeomorphic flow is constructed as a compressible flow based on the volume forms at the manifold. Such a flow yields equality of each local volume element between the original manifold and the target at its final state. Furthermore, the salient features can be used to register the manifold to a reference template by an incompressible flow guided by a divergence-free vector field within the manifold. The process can retain the equality of local volume elements while registering the manifold to a template at the same time. An efficient and practical algorithm is also presented to generate a volume-preserving mapping and a salient feature registration on discrete 3D volumes which are represented with tetrahedral meshes embedded in 3D space. This method can be applied to comparative analysis and visualization of volumetric medical imaging data across subjects. We demonstrate an example application in multimodal neuroimaging data analysis and collective data visualization.

  11. The developmental trajectory of hippocampus across the human lifespan based on multimodal neuroimaging

    Directory of Open Access Journals (Sweden)

    Xiu WANG

    2014-04-01

    Full Text Available Background During the last 2 decades, more and more functional MRI (fMRI researches have increasingly focused on both structures and functions of the hippocampal region to discover the relationship between hippocampus and memory. In order to reveal the normative pattern of individual development or aging processes of the hippocampus or further memory-related disease prediction, an investigation on such a brain structure's trajectory across the human lifespan is necessary.  Methods Regional volume is the most commonly used variable for the structural change of normal brain. The regional homogeneity (ReHo and amplitude of low-frequency fluctuation (ALFF are the two test-retest reliable metrics for detection of functional changes. We here investigate ReHo, ALFF and fractional ALFF (fALFF based upon both structural and resting state fMRI of 125 subjects from 7 to 85 years old.  Results As results, significant age-related decreases were detected for volumes of bilateral hippocampus (corrected Ps = 0.000. In contrast, ALFF (corrected P = 0.034, β = -0.314, fALFF (corrected P = 0.059, β = - 0.687 and ReHo (corrected P = 0.005, β = - 0.330 demonstrated a trend of negative linear correlation with age in the left hippocampus.  Conclusions Our findings partly reflect the structure-function relationship of the hippocampus during the human lifespan. doi: 10.3969/j.issn.1672-6731.2014.04.006

  12. Registration-based filtering: An acceptable tool for noise reduction in left ventricular dynamic rotational angiography images?

    Science.gov (United States)

    Wielandts, Jean-Yves; De Buck, Stijn; Ector, Joris; Nuyens, Dieter; Maes, Frederik; Heidbuchel, Hein

    2014-03-01

    VT ablations could benefit from Dynamic 3D (4D) left ventricle (LV) visualization as road-map for anatomy-guided procedures. We developed a registration-based method that combines information of several cardiac phases to filter out noise and artifacts in low-dose 3D Rotational Angiography (3DRA) images. This also enables generation of accurate multi-phase surface models by semi-automatic segmentation (SAS). The method uses B-spline non-rigid inter-phase registration (IPR) and subsequent averaging of the registered 3DRA images of 4 cardiac phases, acquired with a slow atrial pacing protocol, and was validated on data from 5 porcine experiments. IPR parameter settings were optimized against manual delineations of the LVs using a composed similarity score (Q), dependent on DICE-coefficient, RMSDistance, Hausdorff (HD) and the percentage of inter-surface distances ≤3mm and ≤4mm. The latter are clinically acceptable error cut-off values. Validation was performed after SAS for varying voxel intensity thresholds (ISO), by comparison between models with and without prior use of IPR. Distances to the manual delineations at optimal ISO were reduced to ≤3mm for 95.6±2.7% and to ≤4mm for 97.1±2.0% of model surfaces. Improved quality was proven by significant mean Q-increase irrespective of ISO (7.6% at optimal ISO (95%CI 4.6-10.5,pmodels proved feasible, with sufficient accuracy for clinical applications, opening the perspective of more accurate overlay and guidance during ablation in locations with high degrees of movement.

  13. Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior

    Directory of Open Access Journals (Sweden)

    Yisu Lu

    2014-01-01

    Full Text Available Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.

  14. "MedTRIS" (Medical Triage and Registration Informatics System): A Web-based Client Server System for the Registration of Patients Being Treated in First Aid Posts at Public Events and Mass Gatherings.

    Science.gov (United States)

    Gogaert, Stefan; Vande Veegaete, Axel; Scholliers, Annelies; Vandekerckhove, Philippe

    2016-10-01

    First aid (FA) services are provisioned on-site as a preventive measure at most public events. In Flanders, Belgium, the Belgian Red Cross-Flanders (BRCF) is the major provider of these FA services with volunteers being deployed at approximately 10,000 public events annually. The BRCF has systematically registered information on the patients being treated in FA posts at major events and mass gatherings during the last 10 years. This information has been collected in a web-based client server system called "MedTRIS" (Medical Triage and Registration Informatics System). MedTRIS contains data on more than 200,000 patients at 335 mass events. This report describes the MedTRIS architecture, the data collected, and how the system operates in the field. This database consolidates different types of information with regards to FA interventions in a standardized way for a variety of public events. MedTRIS allows close monitoring in "real time" of the situation at mass gatherings and immediate intervention, when necessary; allows more accurate prediction of resources needed; allows to validate conceptual and predictive models for medical resources at (mass) public events; and can contribute to the definition of a standardized minimum data set (MDS) for mass-gathering health research and evaluation. Gogaert S , Vande veegaete A , Scholliers A , Vandekerckhove P . "MedTRIS" (Medical Triage and Registration Informatics System): a web-based client server system for the registration of patients being treated in first aid posts at public events and mass gatherings. Prehosp Disaster Med. 2016;31(5):557-562.

  15. Histology image search using multimodal fusion.

    Science.gov (United States)

    Caicedo, Juan C; Vanegas, Jorge A; Páez, Fabian; González, Fabio A

    2014-10-01

    This work proposes a histology image indexing strategy based on multimodal representations obtained from the combination of visual features and associated semantic annotations. Both data modalities are complementary information sources for an image retrieval system, since visual features lack explicit semantic information and semantic terms do not usually describe the visual appearance of images. The paper proposes a novel strategy to build a fused image representation using matrix factorization algorithms and data reconstruction principles to generate a set of multimodal features. The methodology can seamlessly recover the multimodal representation of images without semantic annotations, allowing us to index new images using visual features only, and also accepting single example images as queries. Experimental evaluations on three different histology image data sets show that our strategy is a simple, yet effective approach to building multimodal representations for histology image search, and outperforms the response of the popular late fusion approach to combine information.

  16. SU-E-J-136: Multimodality-Image-Based Target Delineation for Dose Painting of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dalah, E; Paulson, E; Erickson, B; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-01

    Purpose: Dose escalated RT may provide improved disease local-control for selected unresectable pancreatic cancer. Accurate delineation of the gross tumor volume (GTV) inside pancreatic head or body would allow safe dose escalation considering the tolerances of adjacent organs at risk (OAR). Here we explore the potential of multi-modality imaging (DCE-MRI, ADC-MRI, and FDG-PET) to define the GTV for dose painting of pancreatic cancer. Volumetric variations of DCE-MRI, ADC-MRI and FDG-PET defined GTVs were assessed in comparison to the findings on CT, and to pathology specimens for resectable and borderline reseactable cases of pancreatic cancer. Methods: A total of 19 representative patients with DCE-MRI, ADC-MRI and FDG-PET data were analyzed. Of these, 8 patients had pathological specimens. GTV, inside pancreatic head/neck, or body, were delineated on MRI (denoted GTVDCE, and GTVADC), on FDG-PET using SUV of 2.5, 40% SUVmax, and 50% SUVmax (denoted GTV2.5, GTV40%, and GTV50%). A Kruskal-Wallis test was used to determine whether significant differences existed between GTV volumes. Results: Significant statistical differences were found between the GTVs defined by DCE-MRI, ADC-MRI, and FDG-PET, with a mean and range of 4.73 (1.00–9.79), 14.52 (3.21–25.49), 22.04 (1.00–45.69), 19.10 (4.84–45.59), and 9.80 (0.32–35.21) cm3 (p<0.0001) for GTVDCE, GTVADC, GTV2.5, GTV40%, and GTV50%, respectively. The mean difference and range in the measurements of maximum dimension of GTVs based on DCE-MRI, ADC-MRI, SUV2.5, 40% SUVmax, and 50% SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. Conclusion: Differences exists between DCE, ADC, and PET defined target volumes for RT of pancreatic cancer. Further studies combined with pathological specimens are required to identify the optimal imaging modality and/or acquisition method to

  17. Effective incorporating spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    Science.gov (United States)

    Zheng, Guoyan

    2010-10-01

    This paper addresses the problem of estimating the 3D rigid poses of a CT volume of an object from its 2D X-ray projection(s). We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measures only take intensity values into account without considering spatial information and their robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experiments were conducted on datasets from two applications: (a) intra-operative patient pose estimation from a limited number (e.g. 2) of calibrated fluoroscopic images, and (b) post-operative cup orientation estimation from a single standard X-ray radiograph with/without gonadal shielding. The experiment on intra-operative patient pose estimation showed a mean target registration accuracy of 0.8mm and a capture range of 11.5mm, while the experiment on estimating the post-operative cup orientation from a single X-ray radiograph showed a mean accuracy below 2 degrees for both anteversion and inclination. More importantly, results from both experiments demonstrated that the newly derived similarity measures were robust to occlusions in the X-ray image(s).

  18. Evidence-based development and first usability testing of a social serious game based multi-modal system for early screening for atypical socio-cognitive development.

    Science.gov (United States)

    Gyori, Miklos; Borsos, Zsófia; Stefanik, Krisztina

    2015-01-01

    At current, screening for, and diagnosis of, autism spectrum disorders (ASD) are based on purely behavioral data; established screening tools rely on human observation and ratings of relevant behaviors. The research and development project in the focus of this paper is aimed at designing, creating and evaluating a social serious game based multi-modal, interactive software system for screening for high functioning cases of ASD at kindergarten age. The aims of this paper are (1) to summarize the evidence-based design process and (2) to present results from the first usability test of the system. Game topic, candidate responses, and candidate game contents were identified via an iterative literature review. On this basis, the 1st partial prototype of the fully playable game has been created, with complete data recording functionality but without the decision making component. A first usability test was carried out on this prototype (n=13). Overall results were unambiguously promising. Although sporadic difficulties in, and slightly negative attitudes towards, using the game occasionally arose, these were confined to non-target-group children only. The next steps of development include (1) completing the game design; (2) carrying out first large-n field test; (3) creating the first prototype of the decision making component.

  19. A registration-based segmentation method with application to adiposity analysis of mice microCT images

    Science.gov (United States)

    Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.

    2014-04-01

    Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.

  20. Critical Analysis of Multimodal Discourse

    DEFF Research Database (Denmark)

    van Leeuwen, Theo

    2013-01-01

    This is an encyclopaedia article which defines the fields of critical discourse analysis and multimodality studies, argues that within critical discourse analysis more attention should be paid to multimodality, and within multimodality to critical analysis, and ends reviewing a few examples...... of recent work in the critical analysis of multimodal discourse....

  1. Multimode-singlemode-multimode fiber sensor for alcohol sensing application

    Science.gov (United States)

    Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.

  2. The use of team-based learning in a second year undergraduate pre-registration nursing course on evidence-informed decision making.

    Science.gov (United States)

    Morris, Jenny

    2016-11-01

    More engaging teaching and learning strategies are needed to teach research-related courses to pre-registration nursing students. Team-based learning was implemented within a second year pre-registration nursing evidence-informed decision making course. Results from a questionnaire survey indicated that 70% believed team-based learning was appropriate for the course, 60% that it was an effective and motivating learning strategy, and 54% recommended using team-based learning in other courses. The results from ten student interviews illustrated the positive way in which team-based learning was perceived, and how the students thought it contributed to their learning. Test results were improved with an increase in the numbers of students achieving 70% or higher; and higher scores for students in the lowest quartile. Team-based learning was shown to be an effective strategy that preserved the benefits of small group teaching with large student groups.

  3. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    Science.gov (United States)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  4. Digital Landscapes: Rethinking Poetry Interpretation in Multimodal Texts

    Directory of Open Access Journals (Sweden)

    Hessa A. Alghadeer

    2014-03-01

    Full Text Available Regardless of the fact that a great deal of scholarly studies in the field of digital humanities have emphasized implementing various modes of digital literacy, critical perspectives considering the use of multimodal texts in literature, namely poetry, have received scant attention. Beyond the boundaries of printed texts and verbal means, the present study aims to cast some light on how meaning making in poetry into multimodal contexts becomes crucial to poetry interpretation in multimodal contexts. In particular, the study tackles the theory of multimodality in regard to the poetry genre and briefly reviews its significance in relevant studies. The paper then shifts to show how the multimodalities in question enhance the transformation of print-based poetic texts into creative multimodal poetry experiences. Ultimately, the study provides insight into how digital media have altered our perspectives on definitions, interpretations, and appreciation of poetry.

  5. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NARCIS (Netherlands)

    Pirpinia, K.; Bosman, P.A.N.; Sonke, J.-J.; van Herk, M.; Alderliesten, T.

    2015-01-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previous

  6. Towards real-time 3D US to CT bone image registration using phase and curvature feature based GMM matching.

    Science.gov (United States)

    Brounstein, Anna; Hacihaliloglu, Ilker; Guy, Pierre; Hodgson, Antony; Abugharbieh, Rafeef

    2011-01-01

    In order to use pre-operatively acquired computed tomography (CT) scans to guide surgical tool movements in orthopaedic surgery, the CT scan must first be registered to the patient's anatomy. Three-dimensional (3D) ultrasound (US) could potentially be used for this purpose if the registration process could be made sufficiently automatic, fast and accurate, but existing methods have difficulties meeting one or more of these criteria. We propose a near-real-time US-to-CT registration method that matches point clouds extracted from local phase images with points selected in part on the basis of local curvature. The point clouds are represented as Gaussian Mixture Models (GMM) and registration is achieved by minimizing the statistical dissimilarity between the GMMs using an L2 distance metric. We present quantitative and qualitative results on both phantom and clinical pelvis data and show a mean registration time of 2.11 s with a mean accuracy of 0.49 mm.

  7. An Optimized Spline-Based Registration of a 3D CT to a Set of C-Arm Images

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is determined using a set of fiducial markers.

  8. An Image-Based Approach for the Co-Registration of Multi-Temporal UAV Image Datasets

    OpenAIRE

    Irene Aicardi; Francesco Nex; Markus Gerke; Andrea Maria Lingua

    2016-01-01

    During the past years, UAVs (Unmanned Aerial Vehicles) became very popular as low-cost image acquisition platforms since they allow for high resolution and repetitive flights in a flexible way. One application is to monitor dynamic scenes. However, the fully automatic co-registration of the acquired multi-temporal data still remains an open issue. Most UAVs are not able to provide accurate direct image georeferencing and the co-registration process is mostly performed with the manual introduc...

  9. Ultra-low-loss CMOS-Compatible Waveguide Crossing Arrays Based on Multimode Bloch Waves and Imaginary Coupling

    OpenAIRE

    Liu, Yangyang; Shainline, Jeffrey M.; Zeng, Xiaoge; Popovic, Milos A.

    2013-01-01

    We experimentally demonstrate broadband waveguide crossing arrays showing ultra low loss down to $0.04\\,$dB/crossing ($0.9\\%$), matching theory, and crosstalk suppression over $35\\,$dB, in a CMOS-compatible geometry. The principle of operation is the tailored excitation of a low-loss spatial Bloch wave formed by matching the periodicity of the crossing array to the difference in propagation constants of the 1$^\\text{st}$- and 3$^\\text{rd}$-order TE-like modes of a multimode silicon waveguide....

  10. A survey of medical image registration - under review.

    Science.gov (United States)

    Viergever, Max A; Maintz, J B Antoine; Klein, Stefan; Murphy, Keelin; Staring, Marius; Pluim, Josien P W

    2016-10-01

    A retrospective view on the past two decades of the field of medical image registration is presented, guided by the article "A survey of medical image registration" (Maintz and Viergever, 1998). It shows that the classification of the field introduced in that article is still usable, although some modifications to do justice to advances in the field would be due. The main changes over the last twenty years are the shift from extrinsic to intrinsic registration, the primacy of intensity-based registration, the breakthrough of nonlinear registration, the progress of inter-subject registration, and the availability of generic image registration software packages. Two problems that were called urgent already 20 years ago, are even more urgent nowadays: Validation of registration methods, and translation of results of image registration research to clinical practice. It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects.

  11. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    Science.gov (United States)

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-02-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images.

  12. Design and Implementation Freshmen Based on of Registration System for Struts Framework%基于Struts框架的迎新系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    季恒

    2012-01-01

    在数字化校园建设过程中,充分考虑高等学校发展中出现的大校区、多校区的趋势问题,通过分析传统方式下迎新工作的业务流程,提出基于Struts Web技术的网络数字迎新系统的方案,并就系统在校园阳光教育体系工程中的作用做出分析,达到实时反馈迎新数据,提升高校迎新工作的效率,逐步实现无纸化迎新的目的。%In the process of digital campus construction, big campus and multi-campus trends in the development of colleges and universities are sufficiently considered, through the analysis of workflow of the traditional way of registration system for freshmen, the scheme of digital registration network system program based on the Struts Web technology is proposed, the role of the scheme in the campus s t education system engineering is analyzed, the realtime data for freshmen registration are responded to promote work efficiency for freshmen registration of colleges and universities, and the purpose of the paperless office is gradually achieved.

  13. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm

    Science.gov (United States)

    Wang, Hao; Gardecki, Joseph A.; Ughi, Giovanni J.; Jacques, Paulino Vacas; Hamidi, Ehsan; Tearney, Guillermo J.

    2015-01-01

    While optical coherence tomography (OCT) has been shown to be capable of imaging coronary plaque microstructure, additional chemical/molecular information may be needed in order to determine which lesions are at risk of causing an acute coronary event. In this study, we used a recently developed imaging system and double-clad fiber (DCF) catheter capable of simultaneously acquiring both OCT and red excited near-infrared autofluorescence (NIRAF) images (excitation: 633 nm, emission: 680nm to 900nm). We found that NIRAF is elevated in lesions that contain necrotic core – a feature that is critical for vulnerable plaque diagnosis and that is not readily discriminated by OCT alone. We first utilized a DCF ball lens probe and a bench top setup to acquire en face NIRAF images of aortic plaques ex vivo (n = 20). In addition, we used the OCT-NIRAF system and fully assembled catheters to acquire multimodality images from human coronary arteries (n = 15) prosected from human cadaver hearts (n = 5). Comparison of these images with corresponding histology demonstrated that necrotic core plaques exhibited significantly higher NIRAF intensity than other plaque types. These results suggest that multimodality intracoronary OCT-NIRAF imaging technology may be used in the future to provide improved characterization of coronary artery disease in human patients. PMID:25909020

  14. Multimodality imaging of pulmonary infarction

    Energy Technology Data Exchange (ETDEWEB)

    Bray, T.J.P., E-mail: timothyjpbray@gmail.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); Mortensen, K.H., E-mail: mortensen@doctors.org.uk [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); University Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Box 318, Cambridge CB2 0QQ (United Kingdom); Gopalan, D., E-mail: deepa.gopalan@btopenworld.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom)

    2014-12-15

    Highlights: • A plethora of pulmonary and systemic disorders, often associated with grave outcomes, may cause pulmonary infarction. • A stereotypical infarct is a peripheral wedge shaped pleurally based opacity but imaging findings can be highly variable. • Multimodality imaging is key to diagnosing the presence, aetiology and complications of pulmonary infarction. • Multimodality imaging of pulmonary infarction together with any ancillary features often guide to early targeted treatment. • CT remains the principal imaging modality with MRI increasingly used alongside nuclear medicine studies and ultrasound. - Abstract: The impact of absent pulmonary arterial and venous flow on the pulmonary parenchyma depends on a host of factors. These include location of the occlusive insult, the speed at which the occlusion develops and the ability of the normal dual arterial supply to compensate through increased bronchial arterial flow. Pulmonary infarction occurs when oxygenation is cut off secondary to sudden occlusion with lack of recruitment of the dual supply arterial system. Thromboembolic disease is the commonest cause of such an insult but a whole range of disease processes intrinsic and extrinsic to the pulmonary arterial and venous lumen may also result in infarcts. Recognition of the presence of infarction can be challenging as imaging manifestations often differ from the classically described wedge shaped defect and a number of weighty causes need consideration. This review highlights aetiologies and imaging appearances of pulmonary infarction, utilising cases to illustrate the essential role of a multimodality imaging approach in order to arrive at the appropriate diagnosis.

  15. Voxel-based morphometric analysis in hypothyroidism using diffeomorphic anatomic registration via an exponentiated lie algebra algorithm approach.

    Science.gov (United States)

    Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S

    2013-03-01

    The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism.

  16. 3d virtual object tracking and registration based on marker tecnology for AR apps

    OpenAIRE

    Ibern Ortega, Lidia

    2017-01-01

    Augmented Reality is a technology based on image processing and computer graphics employed to merge a real world with virtual images. The system provides the user a real-time video feed with overlapped information generated by a computer based system taking into account the content of the video, the location and orientation of the user. This Master Thesis provides the background information and state of the art of AR systems. It focuses on the system composition and the difficulties found in ...

  17. A community intervention trial of multimodal suicide prevention program in Japan: A Novel multimodal Community Intervention program to prevent suicide and suicide attempt in Japan, NOCOMIT-J

    Directory of Open Access Journals (Sweden)

    Suzuki Yuriko

    2008-09-01

    Full Text Available Abstract Background To respond to the rapid surge in the incidence of suicide in Japan, which appears to be an ongoing trend, the Japanese Multimodal Intervention Trials for Suicide Prevention (J-MISP have launched a multimodal community-based suicide prevention program, NOCOMIT-J. The primary aim of this study is to examine whether NOCOMIT-J is effective in reducing suicidal behavior in the community. Methods/DesignThis study is a community intervention trial involving seven intervention regions with accompanying control regions, all with populations of statistically sufficient size. The program focuses on building social support networks in the public health system for suicide prevention and mental health promotion, intending to reinforce human relationships in the community. The intervention program components includes a primary prevention measures of awareness campaign for the public and key personnel, secondary prevention measures for screening of, and assisting, high-risk individuals, after-care for individuals bereaved by suicide, and other measures. The intervention started in July 2006, and will continue for 3.5 years. Participants are Japanese and foreign residents living in the intervention and control regions (a total of population of 2,120,000 individuals. Discussion The present study is designed to evaluate the effectiveness of the community-based suicide prevention program in the seven participating areas. Trial registration UMIN Clinical Trials Registry (UMIN-CTR UMIN000000460.

  18. Multimodal navigated skull base tumor resection using image-based vascular and cranial nerve segmentation: A prospective pilot study

    Directory of Open Access Journals (Sweden)

    Parviz Dolati

    2015-01-01

    Conclusion: Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients.

  19. Mass Preserving Image Registration

    DEFF Research Database (Denmark)

    Gorbunova, V.; Sporring, J.; Lo, P.;

    2010-01-01

    The paper presents results the mass preserving image registration method in the Evaluation of Methods for Pulmonary Image Registration 2010 (EMPIRE10) Challenge. The mass preserving image registration algorithm was applied to the 20 image pairs. Registration was evaluated using four different...... scores: lung boundary alignment, major fissure lignment, landmark alignment and transform singularity scores. The registration algorithm achieved an average landmark alignment score of 2.20 } 2.05 mm and the median of 1.29 mm. In 19 out of 20 image pairs, the method produced invertible deformations....... Overall, the masspreserving image registration method was ranked 20th out of 34 participants...

  20. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    Science.gov (United States)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  1. Respiratory motion correction in gated cardiac SPECT using quaternion-based, rigid-body registration.

    Science.gov (United States)

    Parker, Jason G; Mair, Bernard A; Gilland, David R

    2009-10-01

    In this article, a new method is introduced for estimating the motion of the heart due to respiration in gated cardiac SPECT using a rigid-body model with rotation parametrized by a unit quaternion. The method is based on minimizing the sum of squared errors between the reference and the deformed frames resulting from the usual optical flow constraint by using an optimized conjugate gradient routine. This method does not require any user-defined parameters or penalty terms, which simplifies its use in a clinical setting. Using a mathematical phantom, the method was quantitatively compared to the principal axis method, as well as an iterative method in which the rotation matrix was represented by Euler angles. The quaternion-based method was shown to be substantially more accurate and robust across a wide range of extramyocardial activity levels than the principal axis method. Compared with the Euler angle representation, the quaternion-based method resulted in similar accuracy but a significant reduction in computation times. Finally, the quaternion-based method was investigated using a respiratory-gated cardiac SPECT acquisition of a human subject. The motion-corrected image has increased sharpness and myocardial uniformity compared to the uncorrected image.

  2. Non-rigid registration using higher-order mutual information

    Science.gov (United States)

    Rueckert, D.; Clarkson, M. J.; Hill, D. L. G.; Hawkes, D. J.

    2000-03-01

    Non-rigid registration of multi-modality images is an important tool for assessing temporal and structural changesbetween images. For rigid registration, voxel similarity measures like mutual information have been shown to alignimages from different modalities accurately and robustly. For non-rigid registration, mutual information can besensitive to local variations of intensity which in MR images may be caused by RF inhomogeneity. The reasonfor the sensitivity of mutual information towards intensity variations stems from the fact that mutual informationignores any spatial information. In this paper we propose an extension of the mutual information framework whichincorporates spatial information about higher-order image structure into the registration process and has the potentialto improve the accuracy and robustness of non-rigid registration in the presence of intensity variations. We haveapplied the non-rigid registration algorithm to a number of simulated MR brain images of a digital phantom whichhave been degraded by a simulated intensity shading and a known deformation. In addition, we have applied thealgorithm for the non-rigid registration of eight pre- and post-operative brain MR images which were acquired withan interventional MR scanner and therefore have substantial intensity shading due to RF field inhomogeneities. Inall cases the second-order estimate of mutual information leads to robust and accurate registration.

  3. Fracturing Writing Spaces: Multimodal Storytelling Ignites Process Writing

    Science.gov (United States)

    Lenters, Kimberly; Winters, Kari-Lynn

    2013-01-01

    In this paper, we explore the affordances of literature-based, arts-infused and digital media processes for students, as multimodal practices take centre stage in an English Language Arts unit on fractured fairy tales. The study takes up the challenge of addressing multimodal literacy instruction and research in ways that utilize a range of…

  4. CIS-based registration of quality of life in a single source approach

    Directory of Open Access Journals (Sweden)

    Riek Markus

    2011-04-01

    Full Text Available Abstract Background Documenting quality of life (QoL in routine medical care and using it both for treatment and for clinical research is not common, although such information is absolutely valuable for physicians and patients alike. We therefore aimed at developing an efficient method to integrate quality of life information into the clinical information system (CIS and thus make it available for clinical care and secondary use. Methods We piloted our method in three different medical departments, using five different QoL questionnaires. In this setting we used structured interviews and onsite observations to perform workflow and form analyses. The forms and pertinent data reports were implemented using the integrated tools of the local CIS. A web-based application for mobile devices was developed based on XML schemata to facilitate data import into the CIS. Data exports of the CIS were analysed with statistical software to perform an analysis of data quality. Results The quality of life questionnaires are now regularly documented by patients and physicians. The resulting data is available in the Electronic Health Record (EHR and can be used for treatment purposes and communication as well as research functionalities. The completion of questionnaires by the patients themselves using a mobile device (iPad and the import of the respective data into the CIS forms were successfully tested in a pilot installation. The quality of data is rendered high by the use of automatic score calculations as well as the automatic creation of forms for follow-up documentation. The QoL data was exported to research databases for use in scientific analysis. Conclusion The CIS-based QoL is technically feasible, clinically accepted and provides an excellent quality of data for medical treatment and clinical research. Our approach with a commercial CIS and the web-based application is transferable to other sites.

  5. Respiratory motion correction in gated cardiac SPECT using quaternion-based, rigid-body registration

    OpenAIRE

    Parker, Jason G.; Mair, Bernard A.; Gilland, David R.

    2009-01-01

    In this article, a new method is introduced for estimating the motion of the heart due to respiration in gated cardiac SPECT using a rigid-body model with rotation parametrized by a unit quaternion. The method is based on minimizing the sum of squared errors between the reference and the deformed frames resulting from the usual optical flow constraint by using an optimized conjugate gradient routine. This method does not require any user-defined parameters or penalty terms, which simplifies i...

  6. The Study on the Interactive Effect of Multimodality and Meta Cognition upon College Students' Listening Ability

    Institute of Scientific and Technical Information of China (English)

    崔中原

    2015-01-01

    Multimodality and meta cognition are the hot topic in SLA research and FLT research. This paper integrates the theoretical framework of multi-modality and meta cognition, proposing multimodal integrative and meta cognitive process approach can improve the learners' listening performance. Based on this, this paper also gives some enlightenment on the college English teaching and further listening teaching research in the end.

  7. [Progress of research in retinal image registration].

    Science.gov (United States)

    Yu, Lun; Wei, Lifang; Pan, Lin

    2011-10-01

    The retinal image registration has important applications in the processes of auxiliary diagnosis and treatment for a variety of diseases. The retinal image registration can be used to measure the disease process and the therapeutic effect. A variety of retinal image registration techniques have been studied extensively in recent years. However, there are still many problems existing and there are numerous research possibilities. Based on extensive investigation of existing literatures, the present paper analyzes the feature of retinal image and current challenges of retinal image registration, and reviews the transformation models of the retinal image registration technology and the main research algorithms in current retinal image registration, and analyzes the advantages and disadvantages of various types of algorithms. Some research challenges and future developing trends are also discussed.

  8. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    inhale phases of 4D-CT images. Registration errors, measured as the average distance between vessel tree centerlines in the matched images, are significantly lower for the proposed mass preserving image registration method in the second, third and fourth group, while there is no statistically significant......This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... into a standard image registration framework with a composition of a global affine and several free-form B-Spline transformations with increasing grid resolution. The proposed mass preserving registration method is compared to registration using the sum of squared intensity differences as a similarity function...

  9. Ultra-compact and temperature-insensitive Mach-Zehnder interferometer based on one multimode waveguide on silicon.

    Science.gov (United States)

    Yang, Huizhan; Zhang, Jianhao; Zhu, Yuntao; Zhou, Xuan; He, Sailing; Liu, Liu

    2017-02-01

    An ultra-compact and temperature-insensitive Mach-Zehnder interferometer device is introduced on the silicon-on-insulator platform. The device is constructed through one straight multimode waveguide, which consists of two densely packed silicon wires with a narrow gap of varying positions along the device. The total width of the proposed Mach-Zehnder interferometer is only about 1 μm. Interference patterns with extinction ratios of better than 20 dB are achieved. Temperature insensitive operation of the proposed device is also demonstrated for both global and local temperature changes. The shift rate of the wavelength response with respect to the substrate temperature change is within ±10  pm/K in a 30 nm wavelength range.

  10. Ultra-low-loss CMOS-Compatible Waveguide Crossing Arrays Based on Multimode Bloch Waves and Imaginary Coupling

    CERN Document Server

    Liu, Yangyang; Zeng, Xiaoge; Popovic, Milos A

    2013-01-01

    We experimentally demonstrate broadband waveguide crossing arrays showing ultra low loss down to $0.04\\,$dB/crossing ($0.9\\%$), matching theory, and crosstalk suppression over $35\\,$dB, in a CMOS-compatible geometry. The principle of operation is the tailored excitation of a low-loss spatial Bloch wave formed by matching the periodicity of the crossing array to the difference in propagation constants of the 1$^\\text{st}$- and 3$^\\text{rd}$-order TE-like modes of a multimode silicon waveguide. Radiative scattering at the crossing points acts like a periodic imaginary-permittivity perturbation that couples two supermodes, which results in imaginary (radiative) propagation-constant splitting and gives rise to a low-loss, unidirectional breathing Bloch wave. This type of crossing array provides a robust implementation of a key component enabling dense photonic integration.

  11. Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    Directory of Open Access Journals (Sweden)

    P. Bhattacharya

    2007-11-01

    Full Text Available To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i casual or contextual feature, (ii contact feature, (iii contactless feature, and (iv performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA, is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue. We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

  12. 多模态互存的大学英语教学新模式%On Multimodality-Based English Teaching Mode

    Institute of Scientific and Technical Information of China (English)

    郭建红; 黄田

    2011-01-01

    在话语交流中,话语的实际发生具有多模态性,现代技术条件下的多模态选择可以有效地实现话语意义的理解,使交流的信息易于接受,避免模糊和不确定性。这为构建多媒体信息化的大学英语教学模式提供了充分的依据。%Communication proceeds with multimodality.Modern media technology helps the choice of modes realize effective meaning-making and enhance the acceptability of information in communication,avoiding vagueness and uncertainties.The strong foundation is thus laid for setting up a multimedia-based College English teaching mode.

  13. A wavelength tunable ONU transmitter based on multi-mode Fabry-Perot laser and micro-ring resonator for bandwidth symmetric TWDM-PON

    Science.gov (United States)

    Gao, Zhensen; Sun, Xiao; Zhang, Kaibin

    2016-02-01

    Wavelength tunable optical transmitter is an essential component for the newly standardized time and wavelength division multiplexed passive optical network (TWDM-PON), where tunable ONU with 10Gb/s bit rate is desired to provide 40Gb/s symmetric bandwidth. In this paper, a novel wavelength tunable optical transmitter is proposed by reusing legacy low speed multi-mode Fabry-Perot laser and connecting it with an integrated photonic chip with two coupled micro-ring resonators to generate a tunable single mode signal based on Vernier effect for 10Gb/s high speed modulation, which makes it as a promising solution for colorless ONU in future symmetric TWDM-PON.

  14. Discriminating between intentional and unintentional gaze fixation using multimodal-based fuzzy logic algorithm for gaze tracking system with NIR camera sensor

    Science.gov (United States)

    Naqvi, Rizwan Ali; Park, Kang Ryoung

    2016-06-01

    Gaze tracking systems are widely used in human-computer interfaces, interfaces for the disabled, game interfaces, and for controlling home appliances. Most studies on gaze detection have focused on enhancing its accuracy, whereas few have considered the discrimination of intentional gaze fixation (looking at a target to activate or select it) from unintentional fixation while using gaze detection systems. Previous research methods based on the use of a keyboard or mouse button, eye blinking, and the dwell time of gaze position have various limitations. Therefore, we propose a method for discriminating between intentional and unintentional gaze fixation using a multimodal fuzzy logic algorithm applied to a gaze tracking system with a near-infrared camera sensor. Experimental results show that the proposed method outperforms the conventional method for determining gaze fixation.

  15. Contours Based Approach for Thermal Image and Terrestrial Point Cloud Registration

    Science.gov (United States)

    Bennis, A.; Bombardier, V.; Thiriet, P.; Brie, D.

    2013-07-01

    Building energetic performances strongly depend on the thermal insulation. However the performance of the insulation materials tends to decrease over time which necessitates the continuous monitoring of the building in order to detect and repair the anomalous zones. In this paper, it is proposed to couple 2D infrared images representing the surface temperature of the building with 3D point clouds acquired with Terrestrial Laser Scanner (TLS) resulting in a semi-automatic approach allowing the texturation of TLS data with infrared image of buildings. A contour-based algorithm is proposed whose main features are : 1) the extraction of high level primitive is not required 2) the use of projective transform allows to handle perspective effects 3) a point matching refinement procedure allows to cope with approximate control point selection. The procedure is applied to test modules aiming at investigating the thermal properties of material.

  16. Automated brain structure segmentation based on atlas registration and appearance models

    DEFF Research Database (Denmark)

    van der Lijn, Fedde; de Bruijne, Marleen; Klein, Stefan;

    2012-01-01

    Accurate automated brain structure segmentation methods facilitate the analysis of large-scale neuroimaging studies. This work describes a novel method for brain structure segmentation in magnetic resonance images that combines information about a structure’s location and appearance. The spatial...... model is implemented by registering multiple atlas images to the target image and creating a spatial probability map. The structure’s appearance is modeled by a classi¿er based on Gaussian scale-space features. These components are combined with a regularization term in a Bayesian framework...... that is globally optimized using graph cuts. The incorporation of the appearance model enables the method to segment structures with complex intensity distributions and increases its robustness against errors in the spatial model. The method is tested in cross-validation experiments on two datasets acquired...

  17. Semi-Automatic Anatomical Tree Matching for Landmark-Based Elastic Registration of Liver Volumes

    Directory of Open Access Journals (Sweden)

    Klaus Drechsler

    2010-01-01

    Full Text Available One promising approach to register liver volume acquisitions is based on the branching points of the vessel trees as anatomical landmarks inherently available in the liver. Automated tree matching algorithms were proposed to automatically find pair-wise correspondences between two vessel trees. However, to the best of our knowledge, none of the existing automatic methods are completely error free. After a review of current literature and methodologies on the topic, we propose an efficient interaction method that can be employed to support tree matching algorithms with important pre-selected correspondences or after an automatic matching to manually correct wrongly matched nodes. We used this method in combination with a promising automatic tree matching algorithm also presented in this work. The proposed method was evaluated by 4 participants and a CT dataset that we used to derive multiple artificial datasets.

  18. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bhagalia, Roshni; Pack, Jed D.; Miller, James V.; Iatrou, Maria [GE Global Research, Niskayuna, New York 12309 (United States); GE Healthcare, Hoboken, New Jersey 07030 (United States)

    2012-07-15

    Purpose: X-ray computed tomography angiography (CTA) is the modality of choice to noninvasively monitor and diagnose heart disease with coronary artery health and stenosis detection being of particular interest. Reliable, clinically relevant coronary artery imaging mandates high spatiotemporal resolution. However, advances in intrinsic scanner spatial resolution (CT scanners are available which combine nearly 900 detector columns with focal spot oversampling) can be tempered by motion blurring, particularly in patients with unstable heartbeats. As a result, recently numerous methods have been devised to improve coronary CTA imaging. Solutions involving hardware, multisector algorithms, or {beta}-blockers are limited by cost, oversimplifying assumptions about cardiac motion, and populations showing contraindications to drugs, respectively. This work introduces an inexpensive algorithmic solution that retrospectively improves the temporal resolution of coronary CTA without significantly affecting spatial resolution. Methods: Given the goal of ruling out coronary stenosis, the method focuses on 'deblurring' the coronary arteries. The approach makes no assumptions about cardiac motion, can be used on exams acquired at high heart rates (even over 75 beats/min), and draws on a fast and accurate three-dimensional (3D) nonrigid bidirectional labeled point matching approach to estimate the trajectories of the coronary arteries during image acquisition. Motion compensation is achieved by employing a 3D warping of a series of partial reconstructions based on the estimated motion fields. Each of these partial reconstructions is created from data acquired over a short time interval. For brevity, the algorithm 'Subphasic Warp and Add' (SWA) reconstruction. Results: The performance of the new motion estimation-compensation approach was evaluated by a systematic observer study conducted using nine human cardiac CTA exams acquired over a range of average heart

  19. Multimodal Resources in Transnational Adoption

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko Liisa

    The paper discusses an empirical analysis which highlights the multimodal nature of identity construction. A documentary on transnational adoption provides real life incidents as research material. The incidents involve (or from them emerge) various kinds of multimodal resources and participants...

  20. Construction for multi-mode computing system based on many-core processor%众核多计算模式系统的构建

    Institute of Scientific and Technical Information of China (English)

    王可锋; 吴晓; 罗眉

    2013-01-01

    复杂应用领域中的一些具体计算任务不仅需要计算平台具备高效的计算能力,而且也应具有与计算任务特点相匹配的计算模式。依据NVIDIA Kepler GK110架构中Hyper-Q特性与CUDA流的关系,提出单任务并行、多任务并行与多任务流式计算三种计算模式。采用空位标记的方法对计算模式进行构建与切换,结合数据缓冲机制和计算任务加载方式,设计了众核多计算模式处理系统,实现了众核处理机多模式计算的功能。%Some specific computing tasks in complex application domains not only require that the computing platform has efficient computing capability,but also have corresponding computation modes which match with the characteristics of computing tasks. Based on the relation between hyper-Q and CUDA stream in NVIDIA Kepler GK110 architecture,three computing models are presented in this paper:single task parallel computation,multi-task parallel computation and multi-task stream-oriented com-putation. The method of marking notation on unoccupied location is adopted to construct and switch computing modes. In combi-nation with data buffering mechanism and computational task loading,the multi-mode computing system based on many-core pro-cessor was designed and the multi-mode computation function of many-core processor was implemented.

  1. Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe

    Directory of Open Access Journals (Sweden)

    Rui eLi

    2014-03-01

    Full Text Available The prefrontal cortex and medial temporal lobe are particularly vulnerable to the effects of aging. The disconnection between them is suggested to be an important cause of cognitive decline in normal aging. Here, using multimodal intervention training, we investigated the functional plasticity in resting-state connectivity of these two regions in older adults. The multimodal intervention, comprised of cognitive training, Tai Chi exercise, and group counseling, was conducted to explore the regional connectivity changes in the default-mode network, as well as changes in prefrontal-based voxel-wise connectivity in the whole brain. Results showed that the intervention selectively affected resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Moreover, the strength of resting-state functional connectivity between these regions correlated with individual cognitive performance. Our results suggest that multimodal intervention could postpone the effects of aging and improve the function of the regions that are most heavily influenced by aging, as well as play an important role in preserving the brain and cognition during old age.Clinical Trial Registration: This trial was registered in the Chinese Clinical Trial Registry (ChiCTR (http://www.chictr.org: ChiCTR-PNRC-13003813.

  2. Swedish translation and validation of a web-based questionnaire for registration of overuse problems.

    Science.gov (United States)

    Ekman, E; Frohm, A; Ek, P; Hagberg, J; Wirén, C; Heijne, A

    2015-02-01

    The main aim of this study was to translate the Oslo Sport Trauma Research Center (OSTRC) Overuse Injury Questionnaire into Swedish. The validity and applicability of the questionnaire for studying overuse injuries among Swedish handball, volleyball, tennis, and orienteering top athletes were also examined. The back-translation method was used for translation. An expert committee further developed it for use in a study of injuries in handball, orienteering, tennis, and volleyball. A 10-week pretest was then conducted on 43 athletes, average age 21 (18-31) from these sports, during which time the athletes completed the modified OSTRC questionnaire on a weekly basis. In the 10th week, four additional questions were added in order to examine the questionnaire's content validity. No major disagreement was found in the translation. The athletes perceived the web-based questionnaire to be smooth and easy to complete, accurately capturing overuse injuries. However, suggestions were made to add questions relating to the hip for orienteerers and to the hand/fingers for handball players. The average prevalence of overuse injuries for all athletes, in any anatomical area was 22% (95% confidence interval 20-25). Construct validity appeared to be high, and we therefore suggest that the questionnaire may be used when studying overuse injuries in different sports.

  3. Keypoint-based 4-Points Congruent Sets - Automated marker-less registration of laser scans

    Science.gov (United States)

    Theiler, Pascal Willy; Wegner, Jan Dirk; Schindler, Konrad

    2014-10-01

    We propose a method to automatically register two point clouds acquired with a terrestrial laser scanner without placing any markers in the scene. What makes this task challenging are the strongly varying point densities caused by the line-of-sight measurement principle, and the huge amount of data. The first property leads to low point densities in potential overlap areas with scans taken from different viewpoints while the latter calls for highly efficient methods in terms of runtime and memory requirements. A crucial yet largely unsolved step is the initial coarse alignment of two scans without any simplifying assumptions, that is, point clouds are given in arbitrary local coordinates and no knowledge about their relative orientation is available. Once coarse alignment has been solved, scans can easily be fine-registered with standard methods like least-squares surface or Iterative Closest Point matching. In order to drastically thin out the original point clouds while retaining characteristic features, we resort to extracting 3D keypoints. Such clouds of keypoints, which can be viewed as a sparse but nevertheless discriminative representation of the original scans, are then used as input to a very efficient matching method originally developed in computer graphics, called 4-Points Congruent Sets (4PCS) algorithm. We adapt the 4PCS matching approach to better suit the characteristics of laser scans. The resulting Keypoint-based 4-Points Congruent Sets (K-4PCS) method is extensively evaluated on challenging indoor and outdoor scans. Beyond the evaluation on real terrestrial laser scans, we also perform experiments with simulated indoor scenes, paying particular attention to the sensitivity of the approach with respect to highly symmetric scenes.

  4. Multimodal acquisition of articulatory data: Geometrical and temporal registration

    OpenAIRE

    Aron, Michaël; Berger, Marie-Odile; Kerrien, Erwan; Wrobel-Dautcourt, Brigitte; Potard, Blaise; Laprie, Yves

    2016-01-01

    International audience; Acquisition of dynamic articulatory data is of major importance for studying speech production. It turns out that one technique alone often is not enough to get a correct coverage of the whole vocal tract at a sufficient sampling rate. Ultrasound (US) imaging has been proposed as a good acquisition technique for the tongue surface because it offers a good temporal sampling, does not alter speech production, is cheap and widely available. However, it cannot be used alon...

  5. 20-years of population-based cancer registration in hepatitis B and liver cancer prevention in the Gambia, West Africa.

    Directory of Open Access Journals (Sweden)

    Ebrima Bah

    Full Text Available BACKGROUND: The Gambia Hepatitis Intervention Study (GHIS was designed as a randomised control trial of infant hepatitis B vaccination applied to public health policy, with the main goal of preventing primary liver cancer later in adult life in The Gambia. To that effect, the National Cancer Registry of The Gambia (NCR, a population-based cancer registry (PBCR, was established in 1986 to actively collect data on all cancer diagnosis nation-wide. We extracted 20-years (1990-2009 of data to assess for the first time, the evolution of the most common cancers, also describe and demonstrate the role of the PBCR in a hepatitis B and liver cancer prevention programme in this population. METHODS AND FINDINGS: We estimated Age-Standardised Incidence Rates (ASR (W of the most common cancers registered during the period by gender. The registration period was divided into four 5-year intervals and incidence rates were estimated for each interval. The most common cancers in males were liver, prostate, lung plus bronchus, non-Hodgkin lymphoma (NHL and stomach, accounting for 60%, 5%, 4%, 5% and 3%, respectively. Similarly, cancers of the cervix uteri, liver, breast and NHL, were the most common in females, accounting for 33%, 24%, 11% and 4% of the female cancers, respectively. CONCLUSIONS: Cancer incidence has remained relatively stable over time, but as shown elsewhere in sub-Saharan Africa the disease is a threat in The Gambia. The infection related cancers which are mostly preventable (HBV in men and HPV/HIV in women were the most common. At the moment the data is not enough to detect an effect of hepatitis B vaccination on liver cancer incidence in The Gambia. However, we observed that monitoring case occurrence through PBCR is a key public health pre-requisite for rational planning and implementation of targeted interventions for improving the health of the population.

  6. Interactive Multimodal Learning for Venue Recommendation

    NARCIS (Netherlands)

    Zahálka, J.; Rudinac, S.; Worring, M.

    2015-01-01

    In this paper, we propose City Melange, an interactive and multimodal content-based venue explorer. Our framework matches the interacting user to the users of social media platforms exhibiting similar taste. The data collection integrates location-based social networks such as Foursquare with genera

  7. 基于Web的在线报名系统设计与实现%Design and Implementation of Online Registration System Based on Web

    Institute of Scientific and Technical Information of China (English)

    周鹏飞; 胡一波

    2012-01-01

    This paper describes the design and implementation of online registration system based on Web. Online registration system based on Web is developed which suits College of Engineering, Xi' an International University through the design of Logic function, physical implementation and practical test to promote teaching and learning, improve teaching effectiveness, meet the timely exchange of students. It also has a positive reference for the development of online registration system of other schools%本文介绍了一个基于Web在线报名系统的设计与实现.通过逻辑功能设计、物理实现及实用测试,开发出了适合笔者所在学校教学需求的基于web在线报名管理系统.旨在促进教学相长、提高教学效果、满足学生的及时交流,也对其它学校在线报名系统的开发有积极的参考、借鉴意义.

  8. Epidemiology of paediatric injury in low income environment: Value of hospital based data prior to the institution of a formal registration system

    Directory of Open Access Journals (Sweden)

    Alain Chichom-Mefire

    2013-01-01

    Full Text Available Background: Little attention is generally paid to paediatric injuries, especially in low income settings. The aim of this study is to provide an overview of the epidemiology of hospital-based paediatric injuries in a semi-urban area in Cameroon prior to the initiation of a formal registration system. Patients and Methods: A sixteen items data collection sheet derived from a newly instituted trauma registry is used to retrospectively gather hospital-based basic information about epidemiology of injuries in patients aged 15 years or below in a low income setting. Results: Two hundred and seventy seven cases representing 16% of all injury cases could be analysed. The frequency of injuries significantly increased with age with a peak between 11 and 15 years (P < 0.001. Children in school playgrounds carried a significantly higher risk of sustaining an injury (P < 0.001. Falls and interpersonal violence were the most frequent mechanisms. The face and locomotor systems were the most commonly involved. More than 60% of patients were discharged back home. Conclusions: The data from the present registration system seem to indicate a higher injury rate in pre-adolescent children and in the school playground. The institution of a formal registration system is likely to improve the quality of data recording system.

  9. Musculoskeletal complaints among nurses related to patient handling tasks and psychosocial factors--based on logbook registrations

    DEFF Research Database (Denmark)

    Warming, S; Precht, D H; Suadicani, P

    2008-01-01

    The aims were to evaluate the inter-method reliability of a registration sheet for patient handling tasks, to study the day-to-day variation of musculoskeletal complaints (MSC) and to examine whether patient handling tasks and psychosocial factors were associated with MSC. Nurses (n=148) fulfilled...

  10. Intersection-based registration of slice stacks to form 3D images of the human fetal brain

    DEFF Research Database (Denmark)

    Kim, Kio; Hansen, Mads Fogtmann; Habas, Piotr;

    2008-01-01

    Clinical fetal MR imaging of the brain commonly makes use of fast 2D acquisitions of multiple sets of approximately orthogonal 2D slices. We and others have previously proposed an iterative slice-to-volume registration process to recover a geometrically consistent 3D image. However, these approac...

  11. Multimodal sequence learning.

    Science.gov (United States)

    Kemény, Ferenc; Meier, Beat

    2016-02-01

    While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence.

  12. Coordinate Systems Integration for Craniofacial Database from Multimodal Devices

    Directory of Open Access Journals (Sweden)

    Deni Suwardhi

    2005-05-01

    Full Text Available This study presents a data registration method for craniofacial spatial data of different modalities. The data consists of three dimensional (3D vector and raster data models. The data is stored in object relational database. The data capture devices are Laser scanner, CT (Computed Tomography scan and CR (Close Range Photogrammetry. The objective of the registration is to transform the data from various coordinate systems into a single 3-D Cartesian coordinate system. The standard error of the registration obtained from multimodal imaging devices using 3D affine transformation is in the ranged of 1-2 mm. This study is a step forward for storing the craniofacial spatial data in one reference system in database.

  13. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    of the velocity field of the fluid. Using the linearity of this deformation we derive a convolution filter which we use in a scale-space framework. We also demonstrate that the `demon'-based registration method of (Thirion, 1996) can be seen as an approximation to the fluid registration method and point...

  14. Multimodal Processes Rescheduling

    DEFF Research Database (Denmark)

    Bocewicz, Grzegorz; Banaszak, Zbigniew A.; Nielsen, Peter

    2013-01-01

    Cyclic scheduling problems concerning multimodal processes are usually observed in FMSs producing multi-type parts where the Automated Guided Vehicles System (AGVS) plays a role of a material handling system. Schedulability analysis of concurrently flowing cyclic processes (SCCP) exe-cuted in the......Cyclic scheduling problems concerning multimodal processes are usually observed in FMSs producing multi-type parts where the Automated Guided Vehicles System (AGVS) plays a role of a material handling system. Schedulability analysis of concurrently flowing cyclic processes (SCCP) exe...

  15. Efficient Hyperelastic Regularization for Registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Hansen, Michael S; Larsen, Rasmus;

    2011-01-01

    For most image registration problems a smooth one-to-one mapping is desirable, a diffeomorphism. This can be obtained using priors such as volume preservation, certain kinds of elasticity or both. The key principle is to regularize the strain of the deformation which can be done through penalizat......For most image registration problems a smooth one-to-one mapping is desirable, a diffeomorphism. This can be obtained using priors such as volume preservation, certain kinds of elasticity or both. The key principle is to regularize the strain of the deformation which can be done through...... penalization of the eigen values of the stress tensor. We present a computational framework for regularization of image registration for isotropic hyper elasticity. We formulate an efficient and parallel scheme for computing the principal stain based for a given parameterization by decomposing the left Cauchy...... elastic priors such at the Saint Vernant Kirchoff model, the Ogden material model or Riemanian elasticity. We exemplify the approach through synthetic registration and special tests as well as registration of different modalities; 2D cardiac MRI and 3D surfaces of the human ear. The artificial examples...

  16. Development and evaluation of an articulated registration algorithm for human skeleton registration

    Science.gov (United States)

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-01

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the

  17. Instrumentation challenges in multi-modality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brasse, D., E-mail: david.brasse@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France); Boisson, F. [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2016-02-11

    Based on different physical principles, imaging procedures currently used in both clinical and preclinical applications present different performance that allow researchers to achieve a large number of studies. However, the relevance of obtaining a maximum of information relating to the same subject is undeniable. The last two decades have thus seen the advent of a full-fledged research axis, the multimodal in vivo imaging. Whether from an instrumentation point of view, for medical research or the development of new probes, all these research works illustrate the growing interest of the scientific community for multimodal imaging, which can be approached with different backgrounds and perspectives from engineers to end-users point of views. In the present review, we discuss the multimodal imaging concept, which focuses not only on PET/CT and PET/MRI instrumentation but also on recent investigations of what could become a possible future in the field.

  18. Research on Sonar Image Registration and Fusion Based on SURF Algorithm%基于SURF的声纳图像配准与融合方法研究

    Institute of Scientific and Technical Information of China (English)

    郭军

    2013-01-01

    针对侧扫声纳图像分辨率高测深精度低而多波束声纳图像分辨率低测深精度高的特点,提出了一种基于SUFR的声纳图像自动配准与融合方法.该算法检测同一区域内侧扫声纳图像和多波束图像的特征点,通过最近邻匹配获得匹配点后,计算图像间的变换矩阵,利用空间变换完成配准,采用加权融合法实现两者的融合.实验结果表明该算法具有很好的鲁棒性,配准精度达到像素级,可实现两者的高精度自动配准与融合,取得了理想的效果.%According to multi - beam sonar system, the high - resolution backscatter but poor horizontal position accuracy, and side -scan sonar system, the accurate bathymetry and horizontal position but low resolution, the study is concerned with an automatic registration and fusion method of sonar image based on SURF. To achieve the integration of multi - beam sonar system and side - scan sonar system with the weighted fusion method, it extracts feature points by using SURF, computes transformation matrix by using match points, and performs registration and fusion with a spatial transform. The results indicate that this method is robust and stable with registration accuracy up to pixel level realizing the quite precise automatic registration and fusion, and is more suitable for sonar image.

  19. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    Science.gov (United States)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  20. A cross validation study of deep brain stimulation targeting: from experts to atlas-based, segmentation-based and automatic registration algorithms.

    Science.gov (United States)

    Castro, F Javier Sanchez; Pollo, Claudio; Meuli, Reto; Maeder, Philippe; Cuisenaire, Olivier; Cuadra, Meritxell Bach; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2006-11-01

    Validation of image registration algorithms is a difficult task and open-ended problem, usually application-dependent. In this paper, we focus on deep brain stimulation (DBS) targeting for the treatment of movement disorders like Parkinson's disease and essential tremor. DBS involves implantation of an electrode deep inside the brain to electrically stimulate specific areas shutting down the disease's symptoms. The subthalamic nucleus (STN) has turned out to be the optimal target for this kind of surgery. Unfortunately, the STN is in general not clearly distinguishable in common medical imaging modalities. Usual techniques to infer its location are the use of anatomical atlases and visible surrounding landmarks. Surgeons have to adjust the electrode intraoperatively using electrophysiological recordings and macrostimulation tests. We constructed a ground truth derived from specific patients whose STNs are clearly visible on magnetic resonance (MR) T2-weighted images. A patient is chosen as atlas both for the right and left sides. Then, by registering each patient with the atlas using different methods, several estimations of the STN location are obtained. Two studies are driven using our proposed validation scheme. First, a comparison between different atlas-based and nonrigid registration algorithms with a evaluation of their performance and usability to locate the STN automatically. Second, a study of which visible surrounding structures influence the STN location. The two studies are cross validated between them and against expert's variability. Using this scheme, we evaluated the expert's ability against the estimation error provided by the tested algorithms and we demonstrated that automatic STN targeting is possible and as accurate as the expert-driven techniques currently used. We also show which structures have to be taken into account to accurately estimate the STN location.