WorldWideScience

Sample records for based multifunction filter

  1. Current Conveyor Based Multifunction Filter

    OpenAIRE

    Manish Kumar; M.C. Srivastava; Umesh Kumar

    2010-01-01

    The paper presents a current conveyor based multifunction filter. The proposed circuit can be realized as low pass, high pass, band pass and elliptical notch filter. The circuit employs two balanced output current conveyors, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The parameter resonance frequency (\\omega_0) and bandw...

  2. Protein-Based Nanofabrics for Multifunctional Air Filtering

    Science.gov (United States)

    Souzandeh, Hamid

    With the fast development of economics and population, air pollution is getting worse and becomes a great concern worldwide. The release of chemicals, particulates and biological materials into air can lead to various diseases or discomfort to humans and other living organisms, alongside other serious impacts on the environment. Therefore, improving indoor air quality using various air filters is in critical need because people stay inside buildings most time of the day. However, current air filters using traditional polymers can only remove particles from the polluted air and disposing the huge amount of used air filters can cause serious secondary environmental pollution. Therefore, development of multi-functional air filter materials with environmental friendliness is significant. For this purpose, we developed "green" protein-based multifunctional air-filtering materials. The outstanding performance of the green materials in removal of multiple species of pollutants, including particulate matter, toxic chemicals, and biological hazards, simultaneously, will greatly facilitate the development of the next-generation air-filtration systems. First and foremost, we developed high-performance protein-based nanofabric air-filter mats. It was found that the protein-nanofabrics possess high-efficiency multifunctional air-filtering properties for both particles and various species of chemical gases. Then, the high-performance natural protein-based nanofabrics were promoted both mechanically and functionally by a textured cellulose paper towel. It is interestingly discovered that the textured cellulose paper towel not only can act as a flexible mechanical support, but also a type of airflow regulator which can improve the pollutant-nanofilter interactions. Furthermore, the protein-based nanofabrics were crosslinked in order to enhance the environmental-stability of the filters. It was found that the crosslinked protein-nanofabrics can significantly improve the structure

  3. OTRA-Based Multi-Function Inverse Filter Configuration

    Directory of Open Access Journals (Sweden)

    Abdhesh Kumar Singh

    2017-01-01

    Full Text Available A new OTRA-based multifunction Inverse filter configuration is presented which is capable of realizing low pass, high pass and band pass filters using only two OTRAs and five to six passive elements. To the best knowledge of the authors, any inverse filter configuration using OTRAs has not been reported in the literature earlier. The effect of the major parasitics of the OTRAs and their effect on the performance filter have been investigated and measured through simulation results and Monte-Carlo analysis. The workability of the proposed circuits has been confirmed by SPICE simulations using CMOS-based-OTRA realizable in 0.18 µm CMOS technology. The proposed circuits are the only ones which provide simultaneously the following features: use of reasonable number of active elements (only 2, realizability of all the three basic filter functions, employment of all virtually grounded resistors and capacitors and tunability of all filter parameters (except gain factor, H_0 for inverse high pass. The centre/cut-off frequency of the various filter circuits lying in the vicinity of 1 MHz have been found to be realizable, which has been verified through SPICE simulation results and have been found to be in good agreement with the theoretical results.

  4. Tunable Multifunction Filter Using Current Conveyor

    OpenAIRE

    Kumar, Manish; Srivastava, M. C.; Kumar, Umesh

    2010-01-01

    The paper presents a current tunable multifunction filter using current conveyor. The proposed circuit can be realized as on chip tunable low pass, high pass, band pass and elliptical notch filter. The circuit employs two current conveyors, one OTA, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The resonance frequency ({\\om...

  5. Three-Input Single-Output Voltage-Mode Multifunction Filter with Electronic Controllability Based on Single Commercially Available IC

    Directory of Open Access Journals (Sweden)

    Supachai Klungtong

    2017-01-01

    Full Text Available This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP, band-reject (BR, low-pass (LP, high-pass (HP, and all-pass (AP functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.

  6. Characterisation of multifunctional surfaces with robust filters

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Godi, Alessandro; De Chiffre, Leonardo

    2011-01-01

    Research has shown that engineered surfaces containing lubrication pockets and directional surface texture can decrease wear and friction in sliding or rolling contacts. A new generation of multifunctional (MUFU) surfaces is achieved by hard machining followed by robot assisted polishing (RAP......). The novel production method allows for a large degree of freedom in specifying surface characteristics such as frequency, depth and volume of the lubricant retention valleys, as well as the amount of load bearing area and the surface roughness. The surfaces cannot readily be characterized by means...... of conventional roughness parameters due to the multi-process production method involved. A series of MUFU surfaces were characterized by using the ISO 13565 standard for stratified surfaces and it is shown that the standard in some cases is inadequate for characterisation of a MUFU surface. To improve...

  7. A Current-mode Electronically Controllable Multifunction Biquadratic Filter Using CCCIIs

    Directory of Open Access Journals (Sweden)

    MONTREE SIRIPRUCHYANUN

    2013-03-01

    Full Text Available This article presents a current-mode multifunction biquadratic filter performing completely standard functions low-pass, high-pass, band-pass, band-reject and all-pass functions. The circuit principle is based on second-generation current-controlled current conveyor (CCCII with three input terminals and one output terminal. The features of the circuit are that, the pole frequency can be electronically tuned via the input bias currents. The circuit topology is very simple, consisting of merely 2 CCCIIs and 2 grounded capacitors. Without any external resistor and using only grounded elements, the proposed circuit is very comfortable to further develop into an integrated circuit architecture. The PSpice simulation results are shown. The given results agree well with the theoretical anticipation. The total power consumption is approximately 1.87mW at ±1.5V power supply voltages.

  8. Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering.

    Science.gov (United States)

    Jang, Segeun; Kang, Seong Min; Choi, Mansoo

    2017-12-20

    This work reports a facile fabrication method for constructing multifunctional moth-eye TiO 2 /polydimethylsiloxane (PDMS) pads using soft nano-imprinting lithography and a gas-phase-deposited thin sacrificial layer. Mesoporous TiO 2 nanoparticles act as an effective UV filter, completely blocking high-energy UVB light and partially blocking UVA light and forming a robust TiO 2 /PDMS composite pad by allowing the PDMS solution to easily fill the porous TiO 2 network. The paraboloid-shaped moth-eye nanostructures provided high transparency in the visible spectrum and also have self-cleaning effects because of nanoroughness on the surface. Furthermore, we successfully achieved a desired multiscale-patterned surface by partially curing select regions using TiO 2 /PDMS pads with partial UVA ray blockers. The ability to fabricate multifunctional polymeric pads is advantageous for satisfying increasing demands for flexible and wearable electronics, displays, and solar cells.

  9. A Generic Current Mode Design for Multifunction Grounded Capacitor Filters Employing Log-Domain Technique

    Directory of Open Access Journals (Sweden)

    N. A. Shah

    2011-01-01

    Full Text Available A generic design (GD for realizing an nth order log-domain multifunction filter (MFF, which can yield four possible stable filter configurations, each offering simultaneously lowpass (LP, highpass (HP, and bandpass (BP frequency responses, is presented. The features of these filters are very simple, consisting of merely a few exponential transconductor cells and capacitors; all grounded elements, capable of absorbing the shunt parasitic capacitances, responses are electronically tuneable, and suitable for monolithic integration. Furthermore, being designed using log-domain technique, it offers all its advantages. As an example, 5th-order MFFs are designed in each case and their performances are evaluated through simulation. Lastly, a comparative study of the MFFs is also carried, which helps in selecting better high-order MFF for a given application.

  10. Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-09-01

    Full Text Available We propose a polarization-dependent multi-functional metamaterial using ring-cross resonator. Based on the analysis of surface current distributions induced by different polarized incidence, we demonstrate that the proposed metamaterial serves as a polarization filter, a transparent wall and a circular polarizer under different polarization normal incidence. Additionally, parameter analyses on the control of resonance are discussed to complementally explain the physical origin. Simulated results show that the proposed metamaterial functions as a polarization filter eliminating the x-polarization wave at 10.1 GHz and y-polarization wave at 14.3 GHz, a transparent wall transmitting both x-polarized and y-polarized incident waves at 12.6 GHz, and a broadband circular polarizer converting the +45° polarized (-45° polarized incident wave to the left (right handed circularly polarized wave from 10.8 to 12.8 GHz, respectively. Measured results agree well with the simulation and validate the performance of the proposed multifunctional metamaterial.

  11. Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2013-06-01

    Full Text Available This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory.

  12. Status self-validation of a multifunctional sensor using a multivariate relevance vector machine and predictive filters

    International Nuclear Information System (INIS)

    Shen, Zhengguang; Wang, Qi

    2013-01-01

    A novel strategy by using a multivariable relevance vector machine coupled with predictive filters for status self-validation of a multifunctional sensor is proposed. The working principle and online updating algorithm of predictive filters are emphasized for multiple fault detection, isolation and recovery (FDIR), and the incorrect sensor measurements are validated online. The multivariable relevance vector machine is then employed for the signal reconstruction of the multifunctional sensor to generate the final validated measurement values (VMV) of multiple measured components, in which its advantages of sparse models and multivariable simultaneous outputs are fully used. With all likely uncertainty sources of the multifunctional self-validating sensor taken into account, the uncertainty propagation model is deduced in detail to evaluate the online validated uncertainty (VU) under a fault-free situation while a qualitative uncertainty component is appended to indicate the accuracy changes of VMV under different types of fault. A real experimental system of a multifunctional self-validating sensor is designed to verify the performance of the proposed strategy. From the real-time capacity and fault recovery accuracy of FDIR, and runtime of signal reconstruction under small samples, a performance comparison among different methods is made. Results demonstrate that the proposed scheme provides a better solution to the status self-validation of a multifunctional self-validating sensor under both normal and abnormal situations. (paper)

  13. Photonics-based multi-function analog signal processor based on a polarization division multiplexing Mach-Zehnder modulator.

    Science.gov (United States)

    Zhang, Yamei; Pan, Shilong

    2017-12-01

    A photonics-based multi-function analog signal processor based on an optical polarization division multiplexing dual-parallel Mach-Zehnder modulator is proposed and demonstrated, which can implement simultaneously photonic microwave phase shifting, upconversion/downconversion and filtering with excellent tunability. An experiment is carried out. Downconverted and upconverted phase shifters with phases continuously tuned from -180 to 180 deg over 0-11 and 11-33 GHz are implemented. Based on the frequency-mixed phase shifter, a four-tap microwave photonic filter that has the capability to select a frequency-mixed component is built. The proposed approach features multi-function, scalable independent channels, a wide bandwidth, and high tunability, which can find applications in beamforming networks, radio frequency frontends, and radio over fiber systems.

  14. High-Input Impedance Voltage-Mode Multifunction Filter with Four Grounded Components and Only Two Plus-Type DDCCs

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2010-01-01

    Full Text Available This paper introduces a novel voltage-mode multifunction biquadratic filter with single input and four outputs using two plus-type differential difference current conveyors (DDCCs and four grounded passive components. The filter can realize inverting highpass, inverting bandpass, noninverting lowpass, and noninverting bandpass filter responses, simultaneously. It still maintains the following advantages: (i using grounded capacitors attractive for integration and absorbing shunt parasitic capacitance, (ii using grounded resistors at all X terminals of DDCCs suitable for the variations of filter parameters and absorbing series parasitic resistances at all X terminals of DDCCs, (iii high-input impedance good for cascadability, (iv no need to change the filter topology, (v no need to component-matching conditions, (vi low active and passive sensitivity performances, and (vii simpler configuration due to the use of plus-type DDCCs only. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.

  15. An indicator-based method for quantifying farm multifunctionality

    DEFF Research Database (Denmark)

    Andersen, Peter Stubkjær; Vejre, Henrik; Dalgaard, Tommy

    2013-01-01

    multifunctionality at farm level. Four main farm functions–production, residence, provision of wildlife habitats, and recreation–are selected to describe multifunctionality. In the quantification process indicators are identified to produce four aggregated function scores based on farm characteristics and activities....... The farm data that support the indicators is derived from an interview survey conducted in 2008. The aggregated function scores vary with farm size as well as farm type; smaller, hobby-based farms in general score highest in the residence function whereas bigger, full-time farms score highest...

  16. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  17. Too little, too much - Downsides of multifunctionality in team-based work

    NARCIS (Netherlands)

    van den Beukel, AL; Molleman, E

    2002-01-01

    Not only is multifunctionality regarded as an indispensable design feature of team-based work being multifunctional is allegedly beneficial for employees, and it is presumed to increase job satisfaction and commitment. In this article we argue that multifunctionality also has its downsides and

  18. Multifunctional Flexible Composites Based on Continuous Carbon Nanotube Fiber

    Science.gov (United States)

    2014-07-28

    different amounts of CNTs [23]. We wrap the graphene fiber with highly aligned CNT film (Fig. 14a). After the hybrid fibers were densified with ethanol ...multifunctional composites fibers [28] and accessing of large polymer chains to enhance fiber mechanical properties [29]. 2.14 Electromechanical...emitters, solid-phase microextraction and catalysis . Different from graphene- based aerogels (GBAs) and membranes (GBMs), GBFs have demonstrated

  19. Multifunctional microwave photonic signal processor based on dual-parallel Mach-Zehnder modulator and stimulated Brillouin scattering

    Science.gov (United States)

    Shi, Zhan; Wang, Ling; Yang, Cheng Wu; Li, Ming; Zhu, Ning Hua; Li, Wei

    2017-09-01

    We report a multifunctional microwave photonic signal processor based on dual-parallel Mach-Zehnder modulator and stimulated Brillouin scattering. The signal processor acts as a microwave photonic filter (MPF) and microwave photonic phase shifter (MPS) simultaneously. The MPF and MPS can be tuned separately. Experimental results demonstrate that the central frequency of the bandpass MPF is tunable from 3 to 18 GHz while the MPS in the passband of the MPF is continuously adjustable over 360 deg.

  20. Multifunctional logic gates based on silicon hybrid plasmonic waveguides

    Science.gov (United States)

    Cui, Luna; Yu, Li

    2018-01-01

    Nano-scale Multifunctional Logic Gates based on Si hybrid plasmonic waveguides (HPWGs) are designed by utilizing the multimode interference (MMI) effect. The proposed device is composed of three input waveguides, three output waveguides and an MMI waveguide. The functional size of the device is only 1000 nm × 3200 nm, which is much smaller than traditional Si-based all-optical logic gates. By setting different input signals and selecting suitable threshold value, OR, AND, XOR and NOT gates are achieved simultaneously or individually in a single device. This may provide a way for ultrahigh speed signal processing and future nanophotonic integrated circuits.

  1. Development of multifunctional fluoroelastomers based on nanocomposites

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto

    2015-01-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  2. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  3. Multifunctional bulk plasma source based on discharge with electron injection.

    Science.gov (United States)

    Klimov, A S; Medovnik, A V; Tyunkov, A V; Savkin, K P; Shandrikov, M V; Vizir, A V

    2013-01-01

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  4. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    LCL filters are widely used in Pulse Width Modulation (PWM) inverters. However, it also introduces a pair of unstable resonant poles that may challenge the controller stability. The passive damping is a convenient possibility to tackle the resonance problem at the cost of system overall efficiency....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated......, which has revealed that negative variations of the resonant frequency can seriously affect the system stability. In order to make the controller more robust against grid impedance variations, the notch filter frequency is thus designed smaller than the LCL filter resonant frequency, which is done...

  5. Multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides.

    Science.gov (United States)

    Chen, Mingsheng; Hu, Mei; Wang, Dali; Wang, Guojian; Zhu, Xinyuan; Yan, Deyue; Sun, Jian

    2012-06-20

    Multifunctional gene vectors with high transfection, low cytotoxicity, and good antitumor and antibacterial activities were prepared from natural aminoglycosides. Through the Michael-addition polymerization of gentamycin and N,N'-methylenebisacrylamide, cationic hyperbranched glycoconjugated polymers were synthesized, and their physical and chemical properties were analyzed by FTIR, (1)H NMR, (13)C NMR, GPC, ζ-potential, and acid-base titration techniques. The cytotoxicity of these hyperbranched glycoconjugated polycations was low because of the hydrolysis of degradable glycosidic and amide linkages in acid conditions. Owing to the presence of various primary, secondary, and tertiary amines in the polymers, hyperbranched glycoconjugated polymers showed high buffering capacity and strong DNA condensation ability, resulting in the high transfection efficiency. In the meantime, due to the introduction of natural aminoglycosides into the polymeric backbone, the resultant hyperbranched glycoconjugated polymers inhibited the growth of cancer cells and bacteria efficiently. Combining the gene transfection, antitumor, and antibacterial abilities together, the multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides may play an important role in protecting cancer patients from bacterial infections.

  6. A Multifunction Filter for Realizing Gain Variable Low-Pass and Band-Pass Responses

    Directory of Open Access Journals (Sweden)

    Halil ALPASLAN

    2010-02-01

    Full Text Available The second generation current conveyors (CCIIs as active circuit devices are widely used for designing current-mode (CM filters. In this paper, a single input multi output filter employing only plus-type CCIIs (CCII+s and grounded capacitors, and for providing variable gain low-pass and band-pass responses, is suggested. The proposed filter is free from critical passive component matching conditions. Therefore, it is suitable for integrated circuit (IC technology. Further, developed filter configuration can be easily realized with commercially available active devices such as AD844s. The circuit performance is demonstrated by means of SPICE simulation and experimental test results.

  7. Gradient based filtering of digital elevation models

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Andersen, Rune Carbuhn

    We present a filtering method for digital terrain models (DTMs). The method is based on mathematical morphological filtering within gradient (slope) defined domains. The intention with the filtering procedure is to improbé the cartographic quality of height contours generated from a DTM based on ...

  8. Luminescent multifunctional lanthanides-based metal-organic frameworks.

    Science.gov (United States)

    Rocha, João; Carlos, Luís D; Paz, Filipe A Almeida; Ananias, Duarte

    2011-02-01

    Metal-organic frameworks based on trivalent lanthanides (LnMOFs) are a very promising class of materials for addressing the challenges in engineering of luminescent centres. Lanthanide-bearing phosphors find numerous applications in lighting, optical communications, photonics and biomedical devices. In this critical review we discuss the potential of LnMOFs as multifunctional systems, which combine light emission with properties such as microporosity, magnetism, chirality, molecule and ion sensing, catalysis and activity as multimodal imaging contrast agents. We argue that these materials present a unique chance of observing synergy between several of these properties, such as the coupling between photoluminescence and magnetism. Moreover, an integrated approach towards the design of efficient, stable, cheap, environmentally-friendly and multifunctional luminescent LnMOFs is still missing. Although research into LnMOFs is at its early stage and much basic knowledge is still needed, the field is ripe for new ideas, which will enable sensor devices and photonic prototypes to become a commercial reality (81 references).

  9. A multifunctional data acquisition and processing system based on microcomputer

    International Nuclear Information System (INIS)

    Chen Huaide; Pan Dajin; Zhu Cuiqin; Wang Guangyu; Wang Shibo; Niu Wanfu; Gu Jinglan; Tang Yunli

    1988-01-01

    A data acquisition and processing system based on microcomputer TRS-80 has been developed since 1983 and has been operated for years. The system is a multifunctional MCA-Computer system which can be operated as a foreground and a background with the capabilities of high resolution in γ-ray spectrum analysis, multiplex multi-scale, multi-scale and the display system having the resolution up to 8192 points. MCA is 8192 channel with 20 bits 8 k buffer memory. First, the acquisition data is stored into the buffer memory. Then, it is transfered into computer for processing. The system software consists of the system management, spectrum processing and multiplex multi-scale measurement softwares. This article gives the block diagram of the system, the specifications, application and results

  10. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  11. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  12. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  13. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  14. Bacterial adherence to SiO2-based multifunctional bioceramics.

    Science.gov (United States)

    Kinnari, Teemu J; Esteban, Jaime; Gomez-Barrena, Enrique; Zamora, Nieves; Fernandez-Roblas, Ricardo; Nieto, Alejandra; Doadrio, Juan C; López-Noriega, Adolfo; Ruiz-Hernández, Eduardo; Arcos, Daniel; Vallet-Regí, María

    2009-04-01

    The bacterial adherence onto different multifunctional silica-based bioceramics has been evaluated. Staphylococcus aureus and Staphylococcus epidermidis were chosen, as they cause the majority of the implant-related infections in this field. Two SiO2 mesoporous materials (MCM-41, SBA-15), an ordered SiO2-CaO-P2O5 mesoporous glass (OMG), and a biphasic magnetic bioceramic (BMB), were incubated with S. aureus and S. epidermidis for 90 min, and subsequently sonicated to quantify the number of adhered bacteria on each material. It was found that S. aureus and S. epidermidis (10(8) CFU/mL) adhered significantly less to BMB samples when compared to MCM-41, SBA-15, or OMG. However, when the material pores accessible for bacteria in each material were taken into account, the lowest bacterial adherence was found in MCM-41, and the highest in SBA-15. The results show that bacterial adherence is higher on mesoporous bioceramics, although this higher microbial attachment is mainly due to the intergranular porosity and grain size morphology rather than to the mesoporous structure. Copyright 2008 Wiley Periodicals, Inc.

  15. A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction.

    Science.gov (United States)

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Nagiah, Naveen; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2018-07-26

    A multifunctional material based on co-electrospinning has been developed as a basic material for the development of biosensors with optical oxygen transduction. It is based on coaxial nanofibres: inner fibres containing an oxygen sensitive dye and outer fibres containing aldehyde groups to allow the formation of Schiff bases with the amino groups of the enzyme. The resulting material preserves the oxygen sensing properties of the inner optical transducer as well as exhibits a high capacity for immobilizing molecules on its surface. Uricase has been selected as model enzyme and several parameters (temperature, pH, reaction time, buffer, and enzyme concentration) have been optimised to demonstrate the versatility of this novel multifunctional material in the development of biosensors with optical oxygen transduction for determining uric acid in serum samples. It suggests that the proposed multifunctional material can provide a promising multifunctional platform for biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A Novel Microwave Tunable Band-Pass Filter Integrated Power Divider Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Yupeng Liu

    2015-01-01

    Full Text Available This paper proposes a novel microwave continuous adjustable band-pass filter integrated power divider based on nematic liquid crystals (LCs. The proposed power divider uses liquid crystal (LC as the dielectric material. It can realize phase shift by changing the dielectric anisotropy, when biasing the high anisotropy nematic liquid crystal. It is mainly used in microwave frequencies. It has a large number of advantages compared to conventional filter integrated power divider, such as low loss, multifunction integration, continuous adjustable, miniaturization, low processing costs, low operating voltage, high phase shift, and convenient manufacture. Therefore, it has shown great potential for application.

  17. Mechanical properties of multifunctional structure with viscoelastic components based on FVE model

    Science.gov (United States)

    Hao, Dong; Zhang, Lin; Yu, Jing; Mao, Daiyong

    2018-02-01

    Based on the models of Lion and Kardelky (2004) and Hofer and Lion (2009), a finite viscoelastic (FVE) constitutive model, considering the predeformation-, frequency- and amplitude-dependent properties, has been proposed in our earlier paper [1]. FVE model is applied to investigating the dynamic characteristics of the multifunctional structure with the viscoelastic components. Combing FVE model with the finite element theory, the dynamic model of the multifunctional structure could be obtained. Additionally, the parametric identification and the experimental verification are also given via the frequency-sweep tests. The results show that the computational data agree well with the experimental data. FVE model has made a success of expressing the dynamic characteristics of the viscoelastic materials utilized in the multifunctional structure. The multifunctional structure technology has been verified by in-orbit experiments.

  18. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  19. Multifunction system

    International Nuclear Information System (INIS)

    Wauthier, J.; Fiori, R.

    1990-01-01

    The development, the characteristics and the applications of a multifunction system are presented. The system is used on the RBES laboratory pipes, at Marcoule. The system was developed in order to allow, without time loss, the modification of the circuit function by replacing only one component. The following elements form the multifunction system: a fixed base, which is part of the tube, a removable piece, which is inserted into the base, a cover plate and its locking system. The material, chosen among commercial trade marks, required small modifications in order to be used in the circuit [fr

  20. Linear-g-hyperbranched and cyclodextrin-based amphiphilic block copolymer as a multifunctional nanocarrier

    Directory of Open Access Journals (Sweden)

    Yamei Zhao

    2014-11-01

    Full Text Available In this paper, a novel, multifunctional polymer nanocarrier was designed to provide adequate volume for high drug loading, to afford a multiregion encapsulation ability, and to achieve controlled drug release. An amphiphilic, triblock polymer (ABC with hyperbranched polycarbonsilane (HBPCSi and β-cyclodextrin (β-CD moieties were first synthesized by the combination of a two-step reversible addition-fragmentation transfer polymerization into a pseudo-one-step hydrosilylation and quaternization reaction. The ABC then self-assembled into stable micelles with a core–shell structure in aqueous solution. These resulting micelles are multifunctional nanocarriers which possess higher drug loading capability due to the introduction of HBPCSi segments and β-CD moieties, and exhibit controlled drug release based on the diffusion release mechanism. The novel multifunctional nanocarrier may be applicable to produce highly efficient and specialized delivery systems for drugs, genes, and diagnostic agents.

  1. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  2. Development of multifunctional radiation monitoring instrument based on PLC technology

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhu Yuye; Zhuang Min

    2007-01-01

    This eight-channel multifunctional Radiation Monitoring Instrument is developed by making use of the built-in high-speed counters and the powerful instruction system of the SIEMES SIMATICS S7 series Programmable Logic Controllers (PLC) to record and process the pulse signal output by the detectors. The instrument with functions, such as analog and digital display, digital storage of digital data, pulse signal generator, network communication, can connect various types of pulse detectors. The initial process can be translated between Graduation Apparatus method and Formula method. the logicality of the high-dosage warning system is processed itself. The signal output will drive the alarm lights and bell directly. This paper mainly describes the configuration, programming and feature of the instrument. (authors)

  3. Low power adder based auditory filter architecture.

    Science.gov (United States)

    Rahiman, P F Khaleelur; Jayanthi, V S

    2014-01-01

    Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT) based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%.

  4. Low Power Adder Based Auditory Filter Architecture

    Directory of Open Access Journals (Sweden)

    P. F. Khaleelur Rahiman

    2014-01-01

    Full Text Available Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%.

  5. A family of quantization based piecewise linear filter networks

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    1992-01-01

    A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization...

  6. Multifunctional fiber-optic microwave links based on remote heterodyne detection

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Nielsen, Søren Nørskov

    1998-01-01

    The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implement...

  7. Nanowire-based multifunctional antireflection coatings for solar cells

    Science.gov (United States)

    Hiralal, Pritesh; Chien, Chihtao; Lal, Niraj N.; Abeygunasekara, Waranatha; Kumar, Abhishek; Butt, Haider; Zhou, Hang; Unalan, Husnu Emrah; Baumberg, Jeremy J.; Amaratunga, Gehan A. J.

    2014-11-01

    Organic (P3HT/PCBM) solar cells are coated with ZnO nanowires as antireflection coatings and show up to 36% enhancement in efficiency. The improvement is ascribed to an effective refractive index which results in Fabry-Perot absorption bands which match the polymer band-gap. The effect is particularly pronounced at high light incidence angles. Simultaneously, the coating is used as a UV-barrier, demonstrating a 50% reduction in the rate of degradation of the polymers under accelerated lifetime testing. The coating also allows the surface of the solar cell to self-clean via two distinct routes. On one hand, photocatalytic degradation of organic material on ZnO is enhanced by the high surface area of the nanowires and quantified by dye degradation measurements. On the other, the surface of the nanowires can be functionalized to tune the water contact angle from superhydrophilic (16°) to superhydrophobic (152°), resulting in self-cleaning via the Lotus effect. The multifunctional ZnO nanowires are grown by a low cost, low temperature hydrothermal method, compatible with process limitations of organic solar cells.Organic (P3HT/PCBM) solar cells are coated with ZnO nanowires as antireflection coatings and show up to 36% enhancement in efficiency. The improvement is ascribed to an effective refractive index which results in Fabry-Perot absorption bands which match the polymer band-gap. The effect is particularly pronounced at high light incidence angles. Simultaneously, the coating is used as a UV-barrier, demonstrating a 50% reduction in the rate of degradation of the polymers under accelerated lifetime testing. The coating also allows the surface of the solar cell to self-clean via two distinct routes. On one hand, photocatalytic degradation of organic material on ZnO is enhanced by the high surface area of the nanowires and quantified by dye degradation measurements. On the other, the surface of the nanowires can be functionalized to tune the water contact angle

  8. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  9. Calcium fluoride based multifunctional nanoparticles for multimodal imaging

    Directory of Open Access Journals (Sweden)

    Marion Straßer

    2017-07-01

    Full Text Available New multifunctional nanoparticles (NPs that can be used as contrast agents (CA in different imaging techniques, such as photoluminescence (PL microscopy and magnetic resonance imaging (MRI, open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+ NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5–10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg−1·s−1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL−1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+ NPs are suitable for medical imaging.

  10. Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation.

    Science.gov (United States)

    Yu, Yuan; Xu, Enming; Dong, Jianji; Zhou, Lina; Li, Xiang; Zhang, Xinliang

    2010-11-22

    We propose and demonstrate a novel switchable microwave photonic filter based on phase modulation. Both a microwave high Q bandpass filter and a microwave notch filter with flat passband are achieved respectively. And the switchability between them by tuning the two tunable optical bandpass filters is demonstrated. We also present a theoretical model and analytical expression for the proposed scheme. A frequency response of a high Q bandpass filter with a Q factor of 327 and a rejection ratio of exceeding 42 dB, and a frequency response of a notch filter with flat passband with a rejection ratio exceeding 34 dB are experimentally obtained. The operation frequency of microwave photonic filter is around 20 GHz.

  11. Metallo-supramolecular Architectures based on Multifunctional N-Donor Ligands

    OpenAIRE

    Tanh Jeazet, Harold Brice

    2010-01-01

    Self-assembly processes were used to construct supramolecular architectures based on metal-ligand interactions. The structures formed strongly depend on the used metal ion, the ligand type, the chosen counter ion and solvent as well as on the experimental conditions. The focus of the studies was the design of multifunctional N-donor ligands and the characterization of their complexing and structural properties. This work was divided into three distinct main parts: The bis(2-pyridylimine), the...

  12. A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays

    Science.gov (United States)

    Wang, Wei; Meng, Zhao; Liang, Ruisheng; Chen, Shijie; Ding, Li; Wang, Faqiang; Liu, Hongzhan; Meng, Hongyun; Wei, Zhongchao

    2018-05-01

    Dynamically tunable plasmonic multi-functional is particularly desirable for various nanotechnological applications. In this paper, graphene nano-sheet pair arrays separated by a substrate, which can act as a dynamically tunable plasmonic band stop filter with transmission at resonance wavelength lower than 1%, a high sensitivity refractive index sensor with sensitivity up to 4879 nm/RIU, figure of merit of 40.66 and a two circuit optical switch with the modulation depth up to 0.998, are proposed and numerically investigated. These excellent optical performances are calculated by using FDTD numerical modeling and theoretical deduction. Simulation results show that a slight variation of chemical potential of the graphene nano-sheet can achieve significant resonance wavelength shifts. In additional, the resonance wavelength and transmission of this plasmonic device can be tuned easily by two voltages owing to the simple patterned graphene. These studies may have great potential in fabrication of multi-functional and dynamically tunable optoelectronic integrated devices.

  13. Information Filtering Based on Users' Negative Opinions

    Science.gov (United States)

    Guo, Qiang; Li, Yang; Liu, Jian-Guo

    2013-05-01

    The process of heat conduction (HC) has recently found application in the information filtering [Zhang et al., Phys. Rev. Lett.99, 154301 (2007)], which is of high diversity but low accuracy. The classical HC model predicts users' potential interested objects based on their interesting objects regardless to the negative opinions. In terms of the users' rating scores, we present an improved user-based HC (UHC) information model by taking into account users' positive and negative opinions. Firstly, the objects rated by users are divided into positive and negative categories, then the predicted interesting and dislike object lists are generated by the UHC model. Finally, the recommendation lists are constructed by filtering out the dislike objects from the interesting lists. By implementing the new model based on nine similarity measures, the experimental results for MovieLens and Netflix datasets show that the new model considering negative opinions could greatly enhance the accuracy, measured by the average ranking score, from 0.049 to 0.036 for Netflix and from 0.1025 to 0.0570 for Movielens dataset, reduced by 26.53% and 44.39%, respectively. Since users prefer to give positive ratings rather than negative ones, the negative opinions contain much more information than the positive ones, the negative opinions, therefore, are very important for understanding users' online collective behaviors and improving the performance of HC model.

  14. Multifunctional Biomaterial Coating Based on Bio-Inspired Polyphosphate and Lysozyme Supramolecular Nanofilm.

    Science.gov (United States)

    Xu, Xinyuan; Zhang, Dongyue; Gao, Shangwei; Shiba, Toshikazu; Yuan, Quan; Cheng, Kai; Tan, Hong; Li, Jianshu

    2018-02-19

    Current implant materials have widespread clinical applications together with some disadvantages, the majority of which are the ease with which infections are induced and difficulty in exhibiting biocompatibility. For the efficient improvement of their properties, the development of interface multifunctional modification in a simple, universal, and environmently benign approach becomes a critical challenge and has acquired the attention of numerous scientists. In this study, a lysozyme-polyphosphate composite coating was fabricated for titanium(Ti)-based biomaterial to obtain a multifunctional surface. This coating was easily formed by sequentially soaking the substrate in reduced-lysozyme and polyphosphate solution. Such a composite coating has shown predominant antibacterial activity against Gram-negative bacteria (E. coli) and improved cell adhesion, proliferation, and differentiation, which are much better than those of the pure substrate. This facile modification endows the biomaterial with anti-infective and potential bone-regenerative performance for clinical applications of biomaterial implants.

  15. Blocking Detection Based on Synoptic Filters

    Directory of Open Access Journals (Sweden)

    Bernd Schalge

    2011-01-01

    minimum zonal width, and (iii a persistence filter to extract events with a minimum duration. Practical filter application is analysed in two case studies and the blocking climatologies for the Northern and the Southern Hemisphere.

  16. Vision-Based Position Estimation Utilizing an Extended Kalman Filter

    Science.gov (United States)

    2016-12-01

    POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER by Joseph B. Testa III December 2016 Thesis Advisor: Vladimir Dobrokhodov Co...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE VISION-BASED POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER 5. FUNDING...spots” and network relay between the boarding team and ship. 14. SUBJECT TERMS UAV, ROS, extended Kalman filter , Matlab

  17. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics

    Directory of Open Access Journals (Sweden)

    Seong-Chul Hong

    2017-03-01

    Full Text Available Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.

  18. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  19. Correlation-based nonlinear composite filters applied to image recognition

    Science.gov (United States)

    Martínez-Díaz, Saúl

    2010-08-01

    Correlation-based pattern recognition has been an area of extensive research in the past few decades. Recently, composite nonlinear correlation filters invariants to translation, rotation, and scale were proposed. The design of the filters is based on logical operations and nonlinear correlation. In this work nonlinear filters are designed and applied to non-homogeneously illuminated images acquired with an optical microscope. Images are embedded into cluttered background, non-homogeneously illuminated and corrupted by random noise, which makes difficult the recognition task. Performance of nonlinear composite filters is compared with performance of other composite correlation filters, in terms discrimination capability.

  20. Digitally tunable optical filter based on DWDM thin film filters and semiconductor optical amplifiers.

    Science.gov (United States)

    Li, Xinwan; Chen, Jianping; Wu, Guiling; Ye, Ailun

    2005-02-21

    We demonstrate a novel digitally tunable optical filter, which is based on dense wavelength division multiplexed (DWDM) thin film filters and semiconductor optical amplifiers (SOA). It has the advantages of fast tuning speed, large tuning range, good temperature stability, simple control mechanism. It is also scalable without bringing additional insertion loss. The passband wavelengths are in consistency with those suggested by ITUT.

  1. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy.

    Science.gov (United States)

    Wu, Cuichen; Han, Da; Chen, Tao; Peng, Lu; Zhu, Guizhi; You, Mingxu; Qiu, Liping; Sefah, Kwame; Zhang, Xiaobing; Tan, Weihong

    2013-12-11

    The ability to self-assemble one-dimensional DNA building blocks into two- and three-dimensional nanostructures via DNA/RNA nanotechnology has led to broad applications in bioimaging, basic biological mechanism studies, disease diagnosis, and drug delivery. However, the cellular uptake of most nucleic acid nanostructures is dependent on passive delivery or the enhanced permeability and retention effect, which may not be suitable for certain types of cancers, especially for treatment in vivo. To meet this need, we have constructed a multifunctional aptamer-based DNA nanoassembly (AptNA) for targeted cancer therapy. In particular, we first designed various Y-shaped functional DNA domains through predesigned base pair hybridization, including targeting aptamers, intercalated anticancer drugs, and therapeutic antisense oligonucleotides. Then these functional DNA domains were linked to an X-shaped DNA core connector, termed a building unit, through the complementary sequences in the arms of functional domains and connector. Finally, hundreds (~100-200) of these basic building units with 5'-modification of acrydite groups were further photo-cross-linked into a multifunctional and programmable aptamer-based nanoassembly structure able to take advantage of facile modular design and assembly, high programmability, excellent biostability and biocompatibility, as well as selective recognition and transportation. With these properties, AptNAs were demonstrated to have specific cytotoxic effect against leukemia cells. Moreover, the incorporation of therapeutic antisense oligonucleotides resulted in the inhibition of P-gp expression (a drug efflux pump to increase excretion of anticancer drugs) as well as a decrease in drug resistance. Therefore, these multifunctional and programmable aptamer-based DNA nanoassemblies show promise as candidates for targeted drug delivery and cancer therapy.

  2. A Digital Image Denoising Algorithm Based on Gaussian Filtering and Bilateral Filtering

    Directory of Open Access Journals (Sweden)

    Piao Weiying

    2018-01-01

    Full Text Available Bilateral filtering has been applied in the area of digital image processing widely, but in the high gradient region of the image, bilateral filtering may generate staircase effect. Bilateral filtering can be regarded as one particular form of local mode filtering, according to above analysis, an mixed image de-noising algorithm is proposed based on Gaussian filter and bilateral filtering. First of all, it uses Gaussian filter to filtrate the noise image and get the reference image, then to take both the reference image and noise image as the input for range kernel function of bilateral filter. The reference image can provide the image’s low frequency information, and noise image can provide image’s high frequency information. Through the competitive experiment on both the method in this paper and traditional bilateral filtering, the experimental result showed that the mixed de-noising algorithm can effectively overcome staircase effect, and the filtrated image was more smooth, its textural features was also more close to the original image, and it can achieve higher PSNR value, but the amount of calculation of above two algorithms are basically the same.

  3. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers.

    Science.gov (United States)

    Henke, Helena; Brüggemann, Oliver; Teasdale, Ian

    2017-02-01

    This feature article briefly highlights some of the recent advances in polymers in which phosphorus is an integral part of the backbone, with a focus on the preparation of functional, highly branched, soluble polymers. A comparison is made between the related families of materials polyphosphazenes, phosphazene/phosphorus-based dendrimers and polyphosphoesters. The work described herein shows this to be a rich and burgeoning field, rapidly catching up with organic chemistry in terms of the macromolecular synthetic control and variety of available macromolecular architectures, whilst offering unique property combinations not available with carbon backbones, such as tunable degradation rates, high multi-valency and facile post-polymerization functionalization. As an example of their use in advanced applications, we highlight some investigations into their use as water-soluble drug carriers, whereby in particular the degradability in combination with multivalent nature has made them useful materials, as underlined by some of the recent studies in this area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A multifunctional molecularly imprinted polymer-based biosensor for direct detection of doxycycline in food samples

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Sun, Yi

    2018-01-01

    doxycycline-dependent fluorescence quenching in an aqueous environment. Good linearity ranging from 0.2 to 6 μM was achieved, and the limit of detection was determined to be 117 nM. The biosensor also showed good selectivity towards doxycycline when compared to other common antibiotic residues....... The multifunctional MIP composites were used to directly extract doxycycline from spiked pig plasma samples and quantify the antibiotics based on the quenched fluorescence signals. Recoveries of doxycycline were found in the range of 88–107%....

  5. Design, control, and implementation of LCL-filter-based shunt active power filters

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2011-01-01

    superior switching harmonic suppression with much reduced size of passive filtering elements. This allows SAPF to generate high slew rate output currents that can closely track the targeted reference. Moreover, smaller inductance directly translates into less harmonic voltage drop on the passive output......This paper concentrates on the design, control and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate harmonic currents produced by nonlinear loads in a three-phase three-wire power system. The use of LCL-filter at the output end of SAPF offers...... filter, which can minimize the possibility of over modulation, especially for relatively low dc-link voltage (or high modulation index) of SAPF. Some critical issues, like selection of LCL parameters, interactions between resonance damping and harmonic compensation, bandwidth design of closed...

  6. Elongation-based fiber optic tunable filter

    Science.gov (United States)

    Pérez-Sánchez, G. G.; Mejia-Islas, J. A.; Andrade-González, E. A.; Pérez-Torres, J. R.

    2017-09-01

    This paper focuses on introducing the results of a model using a control system for an optical filter that can be tuned, using a solution that employs both, an elongation control system and a fiber Bragg grating. At the first stage, the optical characterization of the filter was made, then the stepper motors were chosen for the desired wavelength selection with a couple of pulleys which produce the grating elongation and, as a consequence, the wavelength shifting. The pulleys diameters were calculated to produce 0.8 nm shift for each filtering wavelength using a control program.

  7. Multifunctional Solar Systems Based On Two-Stage Regeneration Absorbent Solution

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-04-01

    Full Text Available The concepts of multifunctional dehumidification solar systems, heat supply, cooling, and air conditioning based on the open absorption cycle with direct absorbent regeneration developed. The solar systems based on preliminary drainage of current of air and subsequent evaporated cooling. The solar system using evaporative coolers both types (direct and indirect. The principle of two-stage regeneration of absorbent used in the solar systems, it used as the basis of liquid and gas-liquid solar collectors. The main principle solutions are designed for the new generation of gas-liquid solar collectors. Analysis of the heat losses in the gas-liquid solar collectors, due to the mechanism of convection and radiation is made. Optimal cost of gas and liquid, as well as the basic dimensions and configuration of the working channel of the solar collector identified. Heat and mass transfer devices, belonging to the evaporative cooling system based on the interaction between the film and the gas stream and the liquid therein. Multichannel structure of the polymeric materials used to create the tip. Evaporative coolers of water and air both types (direct and indirect are used in the cooling of the solar systems. Preliminary analysis of the possibilities of multifunctional solar absorption systems made reference to problems of cooling media and air conditioning on the basis of experimental data the authors. Designed solar systems feature low power consumption and environmental friendliness.

  8. Compact Spectrometers Based on Linear Variable Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate a linear-variable spectrometer with an H2RG array. Linear Variable Filter (LVF) spectrometers provide attractive resource benefits – high optical...

  9. Low Power Systolic Array Based Digital Filter for DSP Applications

    Directory of Open Access Journals (Sweden)

    S. Karthick

    2015-01-01

    Full Text Available Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures.

  10. A magnetorheological fluid-based multifunctional haptic device for vehicular instrument controls

    International Nuclear Information System (INIS)

    Han, Young-Min; Kim, Chan-Jung; Choi, Seung-Bok

    2009-01-01

    This paper presents control performances of a magnetorheological (MR) fluid-based multifunctional haptic device which is applicable to vehicular instrument controls. By combining in-vehicle functions into a single device, the proposed haptic device can transmit various reflection forces for each comfort function to a driver without requiring the driver's visual attention. As a multifunctional haptic device, a MR knob is proposed in this work and then devised to be capable of both rotary and push motions with a single knob. Under consideration of the spatial limitations of vehicle dashboards, design parameters are optimally determined by finite element analysis, and the objective function is to maximize a relative control torque. The proposed haptic device is then manufactured, and in-vehicle comfort functions are constructed in a virtual environment which makes the functions to communicate with the haptic device. Subsequently, a feed-forward controller using torque/force maps is formulated for the force tracking control. Control performances such as reflection force of the haptic device are experimentally evaluated via the torque/force map-based feed-forward controller

  11. Avoiding the Use of Exhausted Drinking Water Filters: A Filter-Clock Based on Rusting Iron

    Directory of Open Access Journals (Sweden)

    Arnaud Igor Ndé-Tchoupé

    2018-05-01

    Full Text Available Efficient but affordable water treatment technologies are currently sought to solve the prevalent shortage of safe drinking water. Adsorption-based technologies are in the front-line of these efforts. Upon proper design, universally applied materials (e.g., activated carbons, bone chars, metal oxides are able to quantitatively remove inorganic and organic pollutants as well as pathogens from water. Each water filter has a defined removal capacity and must be replaced when this capacity is exhausted. Operational experience has shown that it may be difficult to convince some low-skilled users to buy new filters after a predicted service life. This communication describes the quest to develop a filter-clock to encourage all users to change their filters after the designed service life. A brief discussion on such a filter-clock based on rusting of metallic iron (Fe0 is presented. Integrating such filter-clocks in the design of water filters is regarded as essential for safeguarding public health.

  12. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    Science.gov (United States)

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  13. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  14. Scattering property based contextual PolSAR speckle filter

    Science.gov (United States)

    Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred

    2017-12-01

    Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.

  15. Digital Modem Design Based on Multirate Filter Banks

    Science.gov (United States)

    Sadr, R.; Raphaeli, D.; Hinedi, S.

    1994-01-01

    A new approach for the architecture of an all digital modem design is presented. The key feature is a lower processing rate than that of the Nyquist rate (the input sampling rate) and even the symbol rate. The lower processing rate is achieved by the use of a parallel structure, based on multirate filter banks concepts. In this proposed scheme, matched filtering is implemented in the subbands of an analysis/synthesis filter bank.

  16. Track inspection data filtering based on EMD

    Science.gov (United States)

    Wang, YiJun; Liang, Guangzhu

    2017-04-01

    In order to reduce the influence of the coarse error noise in the original data acquired by railway inspection instrument, we propose that filtering the original data by Empirical Mode Decomposition combine with ROR criterion. The ROR criterion is used to identify and eliminate the coarse error in the first layer of original data which is IMF1 obtained by empirical mode decomposition, and then we can get the signal after removal of noise by inverse operation of empirical mode decomposition. The mean square error and the signal-to-noise ratio are used to analyze and evaluate the effect of recursive median method and proposed method on filtering noise, the advantage of proposed method in dealing with nonlinear nonstationary signals is verified. The example shows that the method proposed in this paper can effectively identify the coarse error in the signal and eliminate the noise, and get the ideal filtering result.

  17. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    Mill, A.J.; Harvey, J.R.

    1980-01-01

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10 -3 eV up to 10 7 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  18. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    Science.gov (United States)

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  19. A new mixed-mode filter based on MDDCCs

    Science.gov (United States)

    Wang, Lixue; Wang, Chunyue; Zhang, Junru; Liang, Xiao; Jiang, Shuangshuang

    2015-12-01

    A new mixed mode filter based on MDDCC (Modify Differential Difference Current Conveyor) is proposed, the structure of filter is simple, the circuit consist of only three active MDDCCs, five resistors and three grounded capacitors. The filter can realize the filter of current mode and voltage mode, which can realize the function of low pass biquad, band pass biquad and high pass biquad simultaneously. The computer simulation of PSPICE uses 0.18μm TSMC CMOS and the theoretical results are validated the proposed circuit.

  20. Wideband metasurface filter based on complementary split-ring resonators

    Science.gov (United States)

    Zhang, Tong; Zhang, Jiameng; Xu, Jianchun; Wang, Qingmin; Zhao, Ruochen; Liu, Hao; Dong, Guoyan; Hao, Yanan; Bi, Ke

    2017-08-01

    A wideband metasurface filter based on complementary split-ring resonators (CSRR) has been prepared. The frequency and transmission bandwidth of the metasurface filters with different split widths are discussed. After analyzing the mechanism of the metasurface, the proposed metasurface filters are fabricated. The electromagnetic properties of the metasurface are measured by a designed test system. The measured results are in good agreement with the simulated ones, which shows that the metasurface filter has a wideband property. As the split width of the CSRR increases, the frequency of the passband shifts to higher frequency regions and the transmission bandwidth decreases.

  1. Miniature Microwave Bandpass Filter Based on EBG Structures

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Meincke, Peter

    2006-01-01

    as compared to stepped-impedance hairpin (SIH) resonators with similar response. The new bandpass filter has a reduced footprint and can be fabricated in standard thick-film manufacturing technology. Measured and simulated results exhibit good agreement. The measured results show improvement in the filter......A new design of a planar microwave filter, based on rejection band properties of an electrically small electromagnetic bandgap (EBG) structure, is proposed. The proposed EBG structure demonstrates effective impedance manipulation, exhibits a simple analysis, and is about three times smaller...... characteristics in comparison to existing SIH filter design....

  2. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene ...

  3. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    WEI SU

    2017-08-16

    Aug 16, 2017 ... Abstract. A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing ...

  4. 3D Wavelet-Based Filter and Method

    Science.gov (United States)

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  5. Hyperconnected Attribute Filters Based on k-Flat Zones

    NARCIS (Netherlands)

    Ouzounis, Georgios K.; Wilkinson, Michael H.F.

    In this paper, we present a new method for attribute filtering, combining contrast and structural information. Using hyperconnectivity based on k-flat zones, we improve the ability of attribute filters to retain internal details in detected objects. Simultaneously, we improve the suppression of

  6. Cost-Based Domain Filtering for Stochastic Constraint Programming

    NARCIS (Netherlands)

    Rossi, R.; Tarim, S.A.; Hnich, B.; Prestwich, S.

    2008-01-01

    Cost-based filtering is a novel approach that combines techniques from Operations Research and Constraint Programming to filter from decision variable domains values that do not lead to better solutions [7]. Stochastic Constraint Programming is a framework for modeling combinatorial optimization

  7. Particle filter based MAP state estimation: A comparison

    NARCIS (Netherlands)

    Saha, S.; Boers, Y.; Driessen, J.N.; Mandal, Pranab K.; Bagchi, Arunabha

    2009-01-01

    MAP estimation is a good alternative to MMSE for certain applications involving nonlinear non Gaussian systems. Recently a new particle filter based MAP estimator has been derived. This new method extracts the MAP directly from the output of a running particle filter. In the recent past, a Viterbi

  8. Indigenous plant based coagulants/disinfectants and sand filter ...

    African Journals Online (AJOL)

    An Evaluation of plant- based coagulants and disinfectant-sand filter medium for surface water treatment in Bamenda, Cameroon using bacterial analyses and turbidity were carried out. 100L of very turbid surface water (Turbidity approx. 500NTU) was pretreated with 100 seeds of Moringa oleifera, and further filtered ...

  9. Contourlet Filter Design Based on Chebyshev Best Uniform Approximation

    Directory of Open Access Journals (Sweden)

    Ming Hou

    2010-01-01

    Full Text Available The contourlet transform can deal effectively with images which have directional information such as contour and texture. In contrast to wavelets for which there exists many good filters, the contourlet filter design for image processing applications is still an ongoing work. Therefore, this paper presents an approach for designing the contourlet filter based on the Chebyshev best uniform approximation for achieving an efficient image denoising applications using hidden Markov tree models in the contourlet domain. Here, we design both the optimal 9/7 wavelet filter banks with rational coefficients and new pkva 12 filter. In this paper, the Laplacian pyramid followed by the direction filter banks decomposition in the contourlet transform using the two filter banks above and the image denoising applications in the contourlet hidden Markov tree model are implemented, respectively. The experimental results show that the denoising performance of the test image Zelda in terms of peak signal-to-noise ratio is improved by 0.33 dB than using CDF 9/7 filter banks with irrational coefficients on the JPEG2000 standard and standard pkva 12 filter, and visual effects are as good as compared with the research results of Duncan D.-Y. Po and Minh N. Do.

  10. Contourlet Filter Design Based on Chebyshev Best Uniform Approximation

    Directory of Open Access Journals (Sweden)

    Fang Xiaofeng

    2010-01-01

    Full Text Available Abstract The contourlet transform can deal effectively with images which have directional information such as contour and texture. In contrast to wavelets for which there exists many good filters, the contourlet filter design for image processing applications is still an ongoing work. Therefore, this paper presents an approach for designing the contourlet filter based on the Chebyshev best uniform approximation for achieving an efficient image denoising applications using hidden Markov tree models in the contourlet domain. Here, we design both the optimal 9/7 wavelet filter banks with rational coefficients and new pkva 12 filter. In this paper, the Laplacian pyramid followed by the direction filter banks decomposition in the contourlet transform using the two filter banks above and the image denoising applications in the contourlet hidden Markov tree model are implemented, respectively. The experimental results show that the denoising performance of the test image Zelda in terms of peak signal-to-noise ratio is improved by 0.33 dB than using CDF 9/7 filter banks with irrational coefficients on the JPEG2000 standard and standard pkva 12 filter, and visual effects are as good as compared with the research results of Duncan D.-Y. Po and Minh N. Do.

  11. Variable Step Size Maximum Correntropy Criteria Based Adaptive Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    S. Radhika

    2016-04-01

    Full Text Available Maximum correntropy criterion (MCC based adaptive filters are found to be robust against impulsive interference. This paper proposes a novel MCC based adaptive filter with variable step size in order to obtain improved performance in terms of both convergence rate and steady state error with robustness against impulsive interference. The optimal variable step size is obtained by minimizing the Mean Square Deviation (MSD error from one iteration to the other. Simulation results in the context of a highly impulsive system identification scenario show that the proposed algorithm has faster convergence and lesser steady state error than the conventional MCC based adaptive filters.

  12. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  13. Log-Gabor filters for image-based vehicle verification.

    Science.gov (United States)

    Arróspide, Jon; Salgado, Luis

    2013-06-01

    Vehicle detection based on image analysis has attracted increasing attention in recent years due to its low cost, flexibility, and potential toward collision avoidance. In particular, vehicle verification is especially challenging on account of the heterogeneity of vehicles in color, size, pose, etc. Image-based vehicle verification is usually addressed as a supervised classification problem. Specifically, descriptors using Gabor filters have been reported to show good performance in this task. However, Gabor functions have a number of drawbacks relating to their frequency response. The main contribution of this paper is the proposal and evaluation of a new descriptor based on the alternative family of log-Gabor functions for vehicle verification, as opposed to existing Gabor filter-based descriptors. These filters are theoretically superior to Gabor filters as they can better represent the frequency properties of natural images. As a second contribution, and in contrast to existing approaches, which transfer the standard configuration of filters used for other applications to the vehicle classification task, an in-depth analysis of the required filter configuration by both Gabor and log-Gabor descriptors for this particular application is performed for fair comparison. The extensive experiments conducted in this paper confirm that the proposed log-Gabor descriptor significantly outperforms the standard Gabor filter for image-based vehicle verification.

  14. Development of antimicrobial multifunctional coatings based on Ag-Ti(C,N) =

    Science.gov (United States)

    Carvalho, Isabel Soares de

    The development of new multifunctional coatings to apply on medical biomaterials continues to be required, since materials commonly used in hip prostheses are still presenting failures. Multifunctionality is the result of a synergy, on the nanoscale level, of good corrosion resistance, mechanical and tribological properties. Additionally, a biomaterial must always be biocompatible. Besides these properties, the major challenge would be to get a material with antimicrobial activity. Thus, the aim of this project was the development of advanced materials with the ability to present these properties. Ceramic coatings, based on carbonitrides of transition metals, such as Ti(C,N), which may favour these properties, were used in this study. As innovative approach, silver nanoclusters were added, in order to improve the prevention of microbial adhesion and biofilm formation on these biomaterials, one of the major causes of hip joint failure. Different Ag-Ti(C,N) thin films were prepared by reactive magnetron sputtering, obtained by varying the density of the current applied to each magnetron and the chemical composition of the mixed Ti + Ag target (silver pellets were placed in the preferential erosion area of one Ti target resulting in a relative Ag sputtering areas of 15 % for atomic ratio Ag/Ti ≤ 0.20 and 37 % for atomic ratio Ag/Ti ≤ 0.37). The physical, chemical, structural, morphological/topographical, mechanical and tribological properties of these coatings were evaluated, respectively, by ball crater tests, X-ray diffraction (XRD), scanning electron microscopy (SEM)/ atomic force microscopy (AFM), Raman spectroscopy and X-ray photon spectroscopy (XPS). Mechanical properties of the films were studied by nanoindentation and the tribological tests were performed in the presence of Fetal Bovine Serum (FBS), in order to simulate the tribochemical conditions of the use of an artificial implant. Cytotoxicity of the developed coatings was also determined and assessed

  15. Optimum filter-based discrimination of neutrons and gamma rays

    International Nuclear Information System (INIS)

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-01-01

    An optimum filter-based method for discrimination of neutrons and gamma-rays in a mixed radiation field is presented. The existing filter-based implementations of discriminators require sample pulse responses in advance of the experiment run to build the filter coefficients, which makes them less practical. Our novel technique creates the coefficients during the experiment and improves their quality gradually. Applied to several sets of mixed neutron and photon signals obtained through different digitizers using stilbene scintillator, this approach is analyzed and its discrimination quality is measured. (authors)

  16. Low-power adaptive filter based on RNS components

    DEFF Research Database (Denmark)

    Bernocchi, Gian Luca; Cardarilli, Gian Carlo; Del Re, Andrea

    2007-01-01

    In this paper a low-power implementation of an adaptive FIR filter is presented. The filter is designed to meet the constraints of channel equalization for fixed wireless communications that typically requires a large number of taps, but a serial updating of the filter coefficients, based...... on the least mean squares (LMS) algorithm, is allowed. Previous work showed that the use of the residue number system (RNS) for the variable FIR filter grants advantages both in area and power consumption. On the other hand, the use of a binary serial implementation of the adaptation algorithm eliminates...... the need for complex scaling circuits in RNS. The advantages in terms of area and speed of the presented filter, with respect to its two's complement counterpart, are evaluated for implementations in standard cells....

  17. Energy Based Clutter Filtering for Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Jensen, Jonas; Ewertsen, Caroline

    2017-01-01

    To obtain accurate blood flow velocity estimates it is important to remove the clutter signal originating from tissue. Conventionally, the clutter signal has been separated from the blood signal based on the difference of their spectral frequencies. However, this approach is not enough...... spectrum function to a predetermined threshold. The effect of the clutter filtering is evaluated on a plane wave (PW) scan sequence in combination with transverse oscillation (TO) and directional beamforming (DB) for velocity estimation. The performance of the filter is assessed by comparison...... of the velocity estimates of the proposed filter against a conventional moving average clutter filter. The effect of tissue motion is investigated using a Field II simulation of a straight vessel with moving wall, while the direct effect of the filter on the velocity estimates is evaluated on a CFD model...

  18. A Siren Detection System based on Mechanical Resonant Filters

    Directory of Open Access Journals (Sweden)

    John N. Avaritsiotis

    2001-09-01

    Full Text Available A system based on mechanical resonant filters is proposed that can be used for the detection of acoustical signals the frequency components of which vary according to specific periodic patterns. Usually, signals of this category produced by the siren of an emergency vehicle. The device essentially implements a mechanical narrow filter bank that covers the frequency range of a typical siren sound. Signal detection is obtained by measuring the time delay between successive activation of the filters of the bank. The whole analysis reveals how a set of simple, low-cost mechanical resonant filters can replace an electronic analog or digital system for the implementation of a filter bank. Moreover, a scaling down procedure is proposed so that a microsystem may be developed.

  19. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites.

    Science.gov (United States)

    Zhang, Xianpeng; Lan, Pinjun; Lu, Yuehui; Li, Jia; Xu, Hua; Zhang, Jing; Lee, YoungPak; Rhee, Joo Yull; Choy, Kwang-Leong; Song, Weijie

    2014-02-12

    Antireflection (AR) coatings that exhibit multifunctional characteristics, including high transparency, robust resistance to moisture, high hardness, and antifogging properties, were developed based on hollow silica-silica nanocomposites. These novel nanocomposite coatings with a closed-pore structure, consisting of hollow silica nanospheres (HSNs) infiltrated with an acid-catalyzed silica sol (ACSS), were fabricated using a low-cost sol-gel dip-coating method. The refractive index of the nanocomposite coatings was tailored by controlling the amount of ACSS infiltrated into the HSNs during synthesis. Photovoltaic transmittance (TPV) values of 96.86-97.34% were obtained over a broad range of wavelengths, from 300 to 1200 nm; these values were close to the theoretical limit for a lossy single-layered AR coating (97.72%). The nanocomposite coatings displayed a stable TPV, with degradation values of less than 4% and 0.1% after highly accelerated temperature and humidity stress tests, and abrasion tests, respectively. In addition, the nanocomposite coatings had a hardness of approximately 1.6 GPa, while the porous silica coatings with an open-pore structure showed more severe degradation and had a lower hardness. The void fraction and surface roughness of the nanocomposite coatings could be controlled, which gave rise to near-superhydrophilic and antifogging characteristics. The promising results obtained in this study suggest that the nanocomposite coatings have the potential to be of benefit for the design, fabrication, and development of multifunctional AR coatings with both omnidirectional broadband transmission and long-term durability that are required for demanding outdoor applications in energy harvesting and optical instrumentation in extreme climates or humid conditions.

  20. Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires

    Science.gov (United States)

    Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.

    2018-04-01

    We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.

  1. Tunable plasmonic filter based on graphene-layered waveguide

    Science.gov (United States)

    Feng, Yuncai; Liu, Youwen; Shi, Yaoyao; Teng, Jinghua

    2018-03-01

    We propose a tunable band-stop plasmonic filter based on monolayer graphene with different thickness of structure, and the corresponding transmission characteristic is numerically investigated by using finite-difference time-domain (FDTD) method. The results show that the proposed filter can achieve a broad stopband that can be tuned by various physical parameters such as the chemical potential of graphene, the thickness of packing layers and so on. Our studies may be important for designing tunable optical filter, the fabrication of nano-integrated plasmonic circuits and the refractive index sensitive sensors.

  2. An operator model-based filtering scheme

    International Nuclear Information System (INIS)

    Sawhney, R.S.; Dodds, H.L.; Schryer, J.C.

    1990-01-01

    This paper presents a diagnostic model developed at Oak Ridge National Laboratory (ORNL) for off-normal nuclear power plant events. The diagnostic model is intended to serve as an embedded module of a cognitive model of the human operator, one application of which could be to assist control room operators in correctly responding to off-normal events by providing a rapid and accurate assessment of alarm patterns and parameter trends. The sequential filter model is comprised of two distinct subsystems --- an alarm analysis followed by an analysis of interpreted plant signals. During the alarm analysis phase, the alarm pattern is evaluated to generate hypotheses of possible initiating events in order of likelihood of occurrence. Each hypothesis is further evaluated through analysis of the current trends of state variables in order to validate/reject (in the form of increased/decreased certainty factor) the given hypothesis. 7 refs., 4 figs

  3. A review of issues in ensemble-based Kalman filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ehrendorfer, M. [Dept. of Meteorology and Geophysics, The Univ. of Reading (United Kingdom)

    2007-12-15

    Ensemble-based data assimilation methods related to the fundamental theory of Kalman filtering have been explored in a variety of mostly non-operational data assimilation contexts over the past decade with increasing intensity. While promising properties have been reported, a number of issues that arise in the development and application of ensemble-based data assimilation techniques, such as in the basic form of the ensemble Kalman filter (EnKF), still deserve particular attention. The necessity of employing an ensemble of small size represents a fundamental issue which in turn leads to several related points that must be carefully considered. In particular, the need to correct for sampling noise in the covariance structure estimated from the finite ensemble must be mentioned. Covariance inflation, localization through a Schur/Hadamard product, preventing the occurrence of filter divergence and inbreeding, as well as the loss of dynamical balances, are all issues directly related to the use of small ensemble sizes. Attempts to reduce effectively the sampling error due to small ensembles and at the same time maintaining an ensemble spread that realistically describes error structures have given rise to the development of variants of the basic form of the EnKF. These include, for example, the Ensemble Adjustment Kalman Filter (EAKF), the Ensemble Transform Kalman Filter (ETKF), the Ensemble Square-Root Filter (EnSRF), and the Local Ensemble Kalman Filter (LEKF). Further important considerations within ensemble-based Kalman filtering concern issues such as the treatment of model error, stochastic versus deterministic updating algorithms, the case of implementation and computational cost, serial processing of observations, avoiding the appearance of undesired dynamic imbalances, and the treatment of non-Gaussianity and nonlinearity. The discussion of the above issues within ensemble-based Kalman filtering forms the central topic of this article, that starts out with a

  4. Seismic noise filtering based on Generalized Regression Neural Networks

    Science.gov (United States)

    Djarfour, Nouredine; Ferahtia, Jalal; Babaia, Foudel; Baddari, Kamel; Said, El-adj; Farfour, Mohammed

    2014-08-01

    This paper deals with the application of Generalized Regression Neural Networks to the seismic data filtering. The proposed system is a class of neural networks widely used for the continuous function mapping. They are based on the well known nonparametric kernel statistical estimators. The main advantages of this neural network include adaptability, simplicity and rapid training. Several synthetic tests are performed in order to highlight the merit of the proposed topology of neural network. In this work, the filtering strategy has been applied to remove random noises as well as source-related noises from real seismic data extracted from a field in the South of Algeria. The obtained results are very promising and indicate the high performance of the proposed filter in comparison to the well known frequency-wavenumber filter.

  5. Synthesis of Cascadable DDCC-Based Universal Filter Using NAM

    Directory of Open Access Journals (Sweden)

    Huu-Duy Tran

    2015-08-01

    Full Text Available A novel systematic approach for synthesizing DDCC-based voltage-mode biquadratic universal filters is proposed. The DDCCs are described by infinity-variables’ models of nullor-mirror elements which can be used in the nodal admittance matrix expansion process. Applying the proposed method, the obtained 12 equivalent filters offer the following features: multi-input and two outputs, realization of all five standard filter functions, namely lowpass, bandpass, highpass, notch and allpass, high-input impedance, employing only grounded capacitors and resistors, orthogonal controllability between pole frequency and quality factor, and cascadable, low active and passive sensitivities. The workability of some synthesized filters is verified by HSPICE simulations to demonstrate the feasibility of the proposed method.

  6. Fractional fourier-based filter for denoising elastograms.

    Science.gov (United States)

    Subramaniam, Suba R; Hon, Tsz K; Georgakis, Apostolos; Papadakis, George

    2010-01-01

    In ultrasound elastography, tissue axial strains are obtained through the differentiation of axial displacements. However, the application of the gradient operator amplifies the noise present in the displacement rendering unreadable axial strains. In this paper a novel denoising scheme based on repeated filtering in consecutive fractional Fourier transform domains is proposed for the accurate estimation of axial strains. The presented method generates a time-varying cutoff threshold that can accommodate the discrete non-stationarities present in the displacement signal. This is achieved by means of a filter circuit which is composed of a small number of ordinary linear low-pass filters and appropriate fractional Fourier transforms. We show that the proposed method can improve the contrast-to-noise ratio (CNR(e)) of the elastogram outperforming conventional low-pass filters.

  7. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    Science.gov (United States)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  8. Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Wan, C.H., E-mail: wancaihua@iphy.ac.cn; Yuan, Z.H.; Fang, C.; Kong, W.J.; Wu, H.; Zhang, Q.T.; Tao, B.S.; Han, X.F., E-mail: xfhan@iphy.ac.cn

    2017-04-15

    Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices. - Highlights: • Experimental demonstration of spin logic cell based on spin Hall effect. • Five logic functions are realized in a single logic cell. • The logic cell is reprogrammable. • Information in the cell is symmetry-protected. • The logic cell can be easily expanded to logic gate array.

  9. Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics.

    Science.gov (United States)

    Rehan, Mohamed; El-Naggar, Mehrez E; Mashaly, H M; Wilken, Ralph

    2018-02-15

    The present work addresses an innovative approach for benign development of environmentally synthesis of chitosan-based nanocomposite. The synthesis involves the inclusion via interaction of AgNPs and clay with chitosan (Cs) giving rise to Cs/AgNPs and Cs/AgNPs/clay nanocomposites which when applied independently induce super functionalities. Comparison is made among the two nanocomposites with respect to their intimate association with the in depth cotton fibre-fabric surfaces and the onset of this on the multi-functionalization of cotton fabrics. It is as well to emphasize that Cs/AgNPs/clay nanocomposites prove unequivocally that its use in one-step treatment process for cotton fabrics results in imparting very appreciable good technical properties which, in turn, are reflected on all the gained functionalities of cotton fabrics. Of these functional performance properties, mention is made of cotton fabrics which exhibit high strength, uniform morphology, increased thermal stability, successful deposition of the composite on the surface of cotton fabrics, high water absorption, antimicrobial activity, flame retardant, controlled release of fragrance and UV protection. The obtained data indicate that the treatment for cotton fabrics with these nanocomposite is stable against washing even after 20 washing cycles. Based on encourage data, the environmental benign synthesis of Cs/AgNPs/clay nanocomposites is considered as a promising nanocomposite for the multifunctional finishing textiles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. BLOOM: BLoom filter based oblivious outsourced matchings.

    Science.gov (United States)

    Ziegeldorf, Jan Henrik; Pennekamp, Jan; Hellmanns, David; Schwinger, Felix; Kunze, Ike; Henze, Martin; Hiller, Jens; Matzutt, Roman; Wehrle, Klaus

    2017-07-26

    Whole genome sequencing has become fast, accurate, and cheap, paving the way towards the large-scale collection and processing of human genome data. Unfortunately, this dawning genome era does not only promise tremendous advances in biomedical research but also causes unprecedented privacy risks for the many. Handling storage and processing of large genome datasets through cloud services greatly aggravates these concerns. Current research efforts thus investigate the use of strong cryptographic methods and protocols to implement privacy-preserving genomic computations. We propose FHE-BLOOM and PHE-BLOOM, two efficient approaches for genetic disease testing using homomorphically encrypted Bloom filters. Both approaches allow the data owner to securely outsource storage and computation to an untrusted cloud. FHE-BLOOM is fully secure in the semi-honest model while PHE-BLOOM slightly relaxes security guarantees in a trade-off for highly improved performance. We implement and evaluate both approaches on a large dataset of up to 50 patient genomes each with up to 1000000 variations (single nucleotide polymorphisms). For both implementations, overheads scale linearly in the number of patients and variations, while PHE-BLOOM is faster by at least three orders of magnitude. For example, testing disease susceptibility of 50 patients with 100000 variations requires only a total of 308.31 s (σ=8.73 s) with our first approach and a mere 0.07 s (σ=0.00 s) with the second. We additionally discuss security guarantees of both approaches and their limitations as well as possible extensions towards more complex query types, e.g., fuzzy or range queries. Both approaches handle practical problem sizes efficiently and are easily parallelized to scale with the elastic resources available in the cloud. The fully homomorphic scheme, FHE-BLOOM, realizes a comprehensive outsourcing to the cloud, while the partially homomorphic scheme, PHE-BLOOM, trades a slight relaxation of security

  11. Discrete Sine Transform-Based Interpolation Filter for Video Compression

    Directory of Open Access Journals (Sweden)

    MyungJun Kim

    2017-11-01

    Full Text Available Fractional pixel motion compensation in high-efficiency video coding (HEVC uses an 8-point filter and a 7-point filter, which are based on the discrete cosine transform (DCT, for the 1/2-pixel and 1/4-pixel interpolations, respectively. In this paper, discrete sine transform (DST-based interpolation filters (DST-IFs are proposed for fractional pixel motion compensation in terms of coding efficiency improvement. Firstly, a performance of the DST-based interpolation filters (DST-IFs using 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations is compared with that of the DCT-based IFs (DCT-IFs using 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively, for fractional pixel motion compensation. Finally, the DST-IFs using 12-point and 11-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively, are proposed only for bi-directional motion compensation in terms of the coding efficiency. The 8-point and 7-point DST-IF methods showed average Bjøntegaard Delta (BD-rate reductions of 0.7% and 0.3% in the random access (RA and low delay B (LDB configurations, respectively, in HEVC. The 12-point and 11-point DST-IF methods showed average BD-rate reductions of 1.4% and 1.2% in the RA and LDB configurations for the Luma component, respectively, in HEVC.

  12. Particle filter-based prognostic approach for railway track geometry

    Science.gov (United States)

    Mishra, Madhav; Odelius, Johan; Thaduri, Adithya; Nissen, Arne; Rantatalo, Matti

    2017-11-01

    Track degradation of ballasted railway track systems has to be measured on a regular basis, and these tracks must be maintained by tamping. Tamping aims to restore the geometry to its original shape to ensure an efficient, comfortable and safe transportation system. To minimize the disturbance introduced by tamping, this action has to be planned in advance. Track degradation forecasts derived from regression methods are used to predict when the standard deviation of a specific track section will exceed a predefined maintenance or safety limit. This paper proposes a particle filter-based prognostic approach for railway track degradation; this approach is demonstrated by examining different railway switches. The standard deviation of the longitudinal track degradation is studied, and forecasts of the maintenance limit intersection are derived. The particle filter-based prognostic results are compared with the standard regression method results for four railway switches, and the particle filter method shows similar or better result for the four cases. For longer prediction times, the error of the proposed method is equal to or smaller than that of the regression method. The main advantage of the particle filter-based prognostic approach is its ability to generate a probabilistic result based on input parameters with uncertainties. The distributions of the input parameters propagate through the filter, and the remaining useful life is presented using a particle distribution.

  13. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    International Nuclear Information System (INIS)

    Wu, Huan-ling; Bremner, David H.; Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu; Zhu, Li-min

    2016-01-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  14. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan-ling [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Jiuzhou College of Pharmacy, Yancheng Institute of Industry Technology, Yancheng 224005 (China); Bremner, David H. [School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland (United Kingdom); Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Li-min, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2016-05-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  15. PARTICLE FILTER BASED VEHICLE TRACKING APPROACH WITH IMPROVED RESAMPLING STAGE

    Directory of Open Access Journals (Sweden)

    Wei Leong Khong

    2014-02-01

    Full Text Available Optical sensors based vehicle tracking can be widely implemented in traffic surveillance and flow control. The vast development of video surveillance infrastructure in recent years has drawn the current research focus towards vehicle tracking using high-end and low cost optical sensors. However, tracking vehicles via such sensors could be challenging due to the high probability of changing vehicle appearance and illumination, besides the occlusion and overlapping incidents. Particle filter has been proven as an approach which can overcome nonlinear and non-Gaussian situations caused by cluttered background and occlusion incidents. Unfortunately, conventional particle filter approach encounters particle degeneracy especially during and after the occlusion. Particle filter with sampling important resampling (SIR is an important step to overcome the drawback of particle filter, but SIR faced the problem of sample impoverishment when heavy particles are statistically selected many times. In this work, genetic algorithm has been proposed to be implemented in the particle filter resampling stage, where the estimated position can converge faster to hit the real position of target vehicle under various occlusion incidents. The experimental results show that the improved particle filter with genetic algorithm resampling method manages to increase the tracking accuracy and meanwhile reduce the particle sample size in the resampling stage.

  16. Hyperconnected attribute filters based on k-flat zones.

    Science.gov (United States)

    Ouzounis, Georgios K; Wilkinson, Michael H F

    2011-02-01

    In this paper, we present a new method for attribute filtering, combining contrast and structural information. Using hyperconnectivity based on k-flat zones, we improve the ability of attribute filters to retain internal details in detected objects. Simultaneously, we improve the suppression of small, unwanted detail in the background. We extend the theory of attribute filters to hyperconnectivity and provide a fast algorithm to implement the new method. The new version is only marginally slower than the standard Max-Tree algorithm for connected attribute filters, and linear in the number of pixels or voxels. It is two orders of magnitude faster than anisotropic diffusion. The method is implemented in the form of a filtering rule suitable for handling both increasing (size) and nonincreasing (shape) attributes. We test this new framework on nonincreasing shape filters on both 2D images from astronomy, document processing, and microscopy, and 3D CT scans, and show increased robustness to noise while maintaining the advantages of previous methods.

  17. Video tracking based on sequential particle filtering on graphs.

    Science.gov (United States)

    Pan, Pan; Schonfeld, Dan

    2011-06-01

    In this paper, we develop a novel solution for particle filtering on general graphs. We provide an exact solution for particle filtering on directed cycle-free graphs. The proposed approach relies on a partial-order relation in an antichain decomposition that forms a high-order Markov chain over the partitioned graph. We subsequently derive a closed-form sequential updating scheme for conditional density propagation using particle filtering on directed cycle-free graphs. We also provide an approximate solution for particle filtering on general graphs by splitting graphs with cycles into multiple directed cycle-free subgraphs. We then use the sequential updating scheme by alternating among the directed cycle-free subgraphs to obtain an estimate of the density propagation. We rely on the proposed method for particle filtering on general graphs for two video tracking applications: 1) object tracking using high-order Markov chains; and 2) distributed multiple object tracking based on multi-object graphical interaction models. Experimental results demonstrate the improved performance of the proposed approach to particle filtering on graphs compared with existing methods for video tracking.

  18. Unilateral NMR investigation of multifunctional treatments on stones based on colloidal inorganic and organic nanoparticles.

    Science.gov (United States)

    Di Tullio, Valeria; Cocca, Mariacristina; Avolio, Roberto; Gentile, Gennaro; Proietti, Noemi; Ragni, Pietro; Errico, Maria Emanuela; Capitani, Donatella; Avella, Maurizio

    2015-01-01

    Consolidation and protection are among the most important treatments usually carried out in conservation of stone artifacts and monuments. In this paper, portable unilateral NMR and conventional techniques were used for investigating new multifunctional treatments based on tetraethoxysilane, silica, and polytetrafluoroethylene nanoparticles. The study was carried out on a very complex and heterogeneous porous stone such as tuff. NMR study allowed to obtain detailed information on the penetration depth of treatments, the hydrophobic effect, and changes in the open porosity caused by treatments. Physical and chemical inhomogeneities between the impregnated layers of tuff and the layers underneath were also detected. The average pores radius and pores interconnection obtained from NMR diffusion measurements were used for the first time to compare effects of different consolidating and/or protective treatments on stone. Because unilateral NMR technique is neither destructive nor invasive, investigation of treatments can be also carried out and optimized directly on buildings and monuments of interest for Cultural Heritage. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Smart tetrazole-based antibacterial nanoparticles as multifunctional drug carriers for cancer combination therapy.

    Science.gov (United States)

    Zakerzadeh, Elham; Salehi, Roya; Mahkam, Mehrdad

    2017-12-01

    Due to multidrug resistance of cancer tissues and immune-suppression of cancerous patients during chemotherapy in one hand and the use of tetrazole derivatives in medicine because of its anticancer, antifungal, and antiviral properties, on the other, we were encouraged to design novel smart antibacterial nanocomposites-based polymer of tetrazole as dual anticancer drug delivery systems. The structures of nanocomposites characterized by FTIR, 1 H NMR, FESEM-EDX, and TGA analyzes and antibacterial activity of smart carriers were evaluated by determination of minimum inhibitory concentration (MIC) values against some bacteria and fungi. Then, the pH-responsive manner of both nanocomposites was proved by checking their release profiles at pH of the physiological environment (pH 7.4) and pH of tumor tissues (mildly acidic). Finally, the potential antitumoral activity of these nanocomposite systems against MCF7 cell lines was evaluated by MTT assay and cell cycle studies. The results demonstrated that the novel developed nanocomposites not only meet our expectations about simultaneous release of two anticancer drugs according to the predicted profile but also showed antibacterial and anticancer properties in vitro experimental. Moreover, it was proved that these carriers have tremendous potential in multifunctional drug delivery in cancer therapy.

  20. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  1. The Singular Value Filter: A General Filter Design Strategy for PCA-Based Signal Separation in Medical Ultrasound Imaging

    Science.gov (United States)

    Lin, Dan; Hossack, John A.

    2012-01-01

    A general filtering method, called the singular value filter (SVF), is presented as a framework for principal component analysis (PCA) based filter design in medical ultrasound imaging. The SVF approach operates by projecting the original data onto a new set of bases determined from PCA using singular value decomposition (SVD). The shape of the SVF weighting function, which relates the singular value spectrum of the input data to the filtering coefficients assigned to each basis function, is designed in accordance with a signal model and statistical assumptions regarding the underlying source signals. In this paper, we applied SVF for the specific application of clutter artifact rejection in diagnostic ultrasound imaging. SVF was compared to a conventional PCA-based filtering technique, which we refer to as the blind source separation (BSS) method, as well as a simple frequency-based finite impulse response (FIR) filter used as a baseline for comparison. The performance of each filter was quantified in simulated lesion images as well as experimental cardiac ultrasound data. SVF was demonstrated in both simulation and experimental results, over a wide range of imaging conditions, to outperform the BSS and FIR filtering methods in terms of contrast-to-noise ratio (CNR) and motion tracking performance. In experimental mouse heart data, SVF provided excellent artifact suppression with an average CNR improvement of 1.8 dB (P filtering was achieved using complex pulse-echo received data and non-binary filter coefficients. PMID:21693416

  2. Connected Filtering on Tree-Based Shape-Spaces.

    Science.gov (United States)

    Xu, Yongchao; Geraud, Thierry; Najman, Laurent

    2016-06-01

    Connected filters are well-known for their good contour preservation property. A popular implementation strategy relies on tree-based image representations: for example, one can compute an attribute characterizing the connected component represented by each node of the tree and keep only the nodes for which the attribute is sufficiently high. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is performed not in the space of the image, but in the space of shapes built from the image. Such a processing of shape-space filtering is a generalization of the existing tree-based connected operators. Indeed, the framework includes the classical existing connected operators by attributes. It also allows us to propose a class of novel connected operators from the leveling family, based on non-increasing attributes. Finally, we also propose a new class of connected operators that we call morphological shapings. Some illustrations and quantitative evaluations demonstrate the usefulness and robustness of the proposed shape-space filters.

  3. Multifunctional Analysis of CD4+ T-Cell Response as Immune-Based Model for Tuberculosis Detection

    Directory of Open Access Journals (Sweden)

    Miriam Lichtner

    2015-01-01

    Full Text Available Mono- and multifunctional specific CD4+ and CD8+ T-cell responses were evaluated to improve the immune-based detection of active tuberculosis (TB and latent infection (LTBI. We applied flow cytometry to investigate cytokines profile (IFN-γ, TNF-α, and IL-2 of T cells after stimulation with TB antigens in 28 TB-infected subjects (18 active TB and 10 LTBI and 10 uninfected controls. Cytokines production by CD4+ T cells at single-cell levels was higher in TB-infected subjects than uninfected controls P0.45%, it was possible to differentiate TB-infected (>0.45% by uninfected subjects (0.182%. The magnitude of CD8+ T-cell responses showed no differences between active TB and LTBI. Multifunctional CD4+ T-cell responses could have the potential to identify at single time point subjects without TB infection and patients having active or latent TB.

  4. The designing principle and implementation of multi-channel intelligence isotope thickness gauge based on multifunction card PCI-1710

    International Nuclear Information System (INIS)

    Zhang Bin; Zhao Shujun; Guo Maotian; He Jintian

    2006-01-01

    The designing principle, the constitution of system and the implementation of multi-channel intelligence isotope thickness gauge are introduced in the paper in detail, which are based on multifunction card PCI-1710. The paper also discusses the primaryprinciple of isotope thickness gauge, correct factor in measurement and complication of calibration. In the following, the whole frame of multi-channel intelligence isotope thickness gauge is given. The functions, the characteristics and the usage of multifunction card PCI-1710 are described. Furthermore, the developing process and the function modules of software are presented. Finally, the real prototype of multi-channel intelligence isotope thickness gauge is introduced, using 241 Am as a radioactive element. (authors)

  5. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  6. Tunable reflecting terahertz filter based on chirped metamaterial structure

    Science.gov (United States)

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  7. Plasmonic Colour Filters Based on Coaxial Holes in Aluminium.

    Science.gov (United States)

    Rajasekharan Unnithan, Ranjith; Sun, Miao; He, Xin; Balaur, Eugeniu; Minovich, Alexander; Neshev, Dragomir N; Skafidas, Efstratios; Roberts, Ann

    2017-04-04

    Aluminum is an alternative plasmonic material in the visible regions of the spectrum due to its attractive properties such as low cost, high natural abundance, ease of processing, and complementary metal-oxide-semiconductor (CMOS) and liquid crystal display (LCD) compatibility. Here, we present plasmonic colour filters based on coaxial holes in aluminium that operate in the visible range. Using both computational and experimental methods, fine-tuning of resonance peaks through precise geometric control of the coaxial holes is demonstrated. These results will lay the basis for the development of filters in high-resolution liquid crystal displays, RGB-spatial light modulators, liquid crystal over silicon devices and novel displays.

  8. Optical supervised filtering technique based on Hopfield neural network

    Science.gov (United States)

    Bal, Abdullah

    2004-11-01

    Hopfield neural network is commonly preferred for optimization problems. In image segmentation, conventional Hopfield neural networks (HNN) are formulated as a cost-function-minimization problem to perform gray level thresholding on the image histogram or the pixels' gray levels arranged in a one-dimensional array [R. Sammouda, N. Niki, H. Nishitani, Pattern Rec. 30 (1997) 921-927; K.S. Cheng, J.S. Lin, C.W. Mao, IEEE Trans. Med. Imag. 15 (1996) 560-567; C. Chang, P. Chung, Image and Vision comp. 19 (2001) 669-678]. In this paper, a new high speed supervised filtering technique is proposed for image feature extraction and enhancement problems by modifying the conventional HNN. The essential improvement in this technique is to use 2D convolution operation instead of weight-matrix multiplication. Thereby, neural network based a new filtering technique has been obtained that is required just 3 × 3 sized filter mask matrix instead of large size weight coefficient matrix. Optical implementation of the proposed filtering technique is executed easily using the joint transform correlator. The requirement of non-negative data for optical implementation is provided by bias technique to convert the bipolar data to non-negative data. Simulation results of the proposed optical supervised filtering technique are reported for various feature extraction problems such as edge detection, corner detection, horizontal and vertical line extraction, and fingerprint enhancement.

  9. Estimation of Sideslip Angle Based on Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Yupeng Huang

    2017-01-01

    Full Text Available The sideslip angle plays an extremely important role in vehicle stability control, but the sideslip angle in production car cannot be obtained from sensor directly in consideration of the cost of the sensor; it is essential to estimate the sideslip angle indirectly by means of other vehicle motion parameters; therefore, an estimation algorithm with real-time performance and accuracy is critical. Traditional estimation method based on Kalman filter algorithm is correct in vehicle linear control area; however, on low adhesion road, vehicles have obvious nonlinear characteristics. In this paper, extended Kalman filtering algorithm had been put forward in consideration of the nonlinear characteristic of the tire and was verified by the Carsim and Simulink joint simulation, such as the simulation on the wet cement road and the ice and snow road with double lane change. To test and verify the effect of extended Kalman filtering estimation algorithm, the real vehicle test was carried out on the limit test field. The experimental results show that the accuracy of vehicle sideslip angle acquired by extended Kalman filtering algorithm is obviously higher than that acquired by Kalman filtering in the area of the nonlinearity.

  10. Adaptive Rate Sampling and Filtering Based on Level Crossing Sampling

    Directory of Open Access Journals (Sweden)

    Saeed Mian Qaisar

    2009-01-01

    Full Text Available The recent sophistications in areas of mobile systems and sensor networks demand more and more processing resources. In order to maintain the system autonomy, energy saving is becoming one of the most difficult industrial challenges, in mobile computing. Most of efforts to achieve this goal are focused on improving the embedded systems design and the battery technology, but very few studies target to exploit the input signal time-varying nature. This paper aims to achieve power efficiency by intelligently adapting the processing activity to the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting a non conventional sampling scheme and adaptive rate filtering. The proposed approach, based on the LCSS (Level Crossing Sampling Scheme presents two filtering techniques, able to adapt their sampling rate and filter order by online analyzing the input signal variations. Indeed, the principle is to intelligently exploit the signal local characteristics—which is usually never considered—to filter only the relevant signal parts, by employing the relevant order filters. This idea leads towards a drastic gain in the computational efficiency and hence in the processing power when compared to the classical techniques.

  11. IR Microspectrometers based on Linear-Variable Optical Filters

    NARCIS (Netherlands)

    Emadi, A.; Wu, H.; De Graaf, G.; Wolffenbuttel, R.F.

    2013-01-01

    This paper presents the design, fabrication and characterization of Infra-Red (IR) Linear Variable Optical Filter (LVOF)-based micro-spectrometers. Two LVOF microspectrometer designs have been realized: one for operating in the 1400 nm to 2500 nm wavelength range and another between 3000 nm and 5000

  12. POF based glucose sensor incorporating grating wavelength filters

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Aasmul, Søren; Bang, Ole

    2014-01-01

    AND RESEARCH IN POLYMER OPTICAL DEVICES; TRIPOD. Within the domain of TRIPOD, research is conducted on "Plastic Optical Fiber based Glucose Sensors Incorporating Grating Wavelength Filters". Research will be focused to optimized fiber tips for better coupling efficiency, reducing the response time of sensor...

  13. Color-blob-based COSFIRE filters for object recognition

    NARCIS (Netherlands)

    Gecer, Baris; Azzopardi, George; Petkov, Nicolai

    Most object recognition methods rely on contour-defined features obtained by edge detection or region segmentation. They are not robust to diffuse region boundaries. Furthermore, such methods do not exploit region color information. We propose color-blob-based COSFIRE (Combination of Shifted Filter

  14. Indigenous plant based coagulants/disinfectants and sand filter ...

    African Journals Online (AJOL)

    Jane

    2011-08-10

    Aug 10, 2011 ... An Evaluation of plant- based coagulants and disinfectant-sand filter medium for surface water treatment in Bamenda, Cameroon using bacterial analyses and turbidity were carried out. 100L of very turbid surface water (Turbidity approx. 500NTU) was pretreated with 100 seeds of Moringa oleifera, and.

  15. Texture Segmentation Based on Gabor Filters and Neutrosophic Graph Cut

    OpenAIRE

    Akbulut, Y.; Sengur, Abdulkadir; Yanhui, Guo

    2015-01-01

    Image segmentation is the first step of image processing and image analysis. Texture segmentation is a challenging task in image segmentation applications. Neutrosophy hasanaturalabilitytohandletheindeterminateinformation.In this work, we investigate the texture image segmentation based on Gabor filters (GFs) and neutrosophic graph cut (NGC).

  16. A new iterative speech enhancement scheme based on Kalman filtering

    DEFF Research Database (Denmark)

    Li, Chunjian; Andersen, Søren Vang

    2005-01-01

    A new iterative speech enhancement scheme that can be seen as an approximation to the Expectation-Maximization (EM) algorithm is proposed. The algorithm employs a Kalman filter that models the excitation source as a spectrally white process with a rapidly time-varying variance, which calls...... for a high temporal resolution estimation of this variance. A Local Variance Estimator based on a Prediction Error Kalman Filter is designed for this high temporal resolution variance estimation. To achieve fast convergence and avoid local maxima of the likelihood function, a Weighted Power Spectral...... Subtraction filter is introduced as an initialization procedure. Iterations are then made sequential inter-frame, exploiting the fact that the AR model changes slowly between neighboring frames. The proposed algorithm is computationally more efficient than a baseline EM algorithm due to its fast convergence...

  17. Narrow bandpass tunable terahertz filter based on photonic crystal cavity.

    Science.gov (United States)

    He, Jinglong; Liu, Pingan; He, Yalan; Hong, Zhi

    2012-02-20

    We have fabricated a very narrow bandpass tunable terahertz (THz) filter based on a one-dimensional photonic crystal cavity. Since the filter consists of silicon wafers and air spacers, it has a very high quality factor of about 1500. The full width at half maximum (FWHM) of the passband is only about 200 MHz, and the peak transmission is higher than -4 dB. Besides, the central frequency can be tuned rapidly over the entire bandgap with the length of cavity adjusted by a motorized linear stage. Further analytical calculations indicate that a high-Q tunable filter with both high peak transmission and wide tunable range is possible if thinner silicon layers are used. © 2012 Optical Society of America

  18. MEMS Based SINS/OD Filter for Land Vehicles’ Applications

    Directory of Open Access Journals (Sweden)

    Huisheng Liu

    2017-01-01

    Full Text Available A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU, the magnetometer (MAG, and the velocity measurement from odometer (OD. First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF. It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.

  19. Multifunctional nanoparticles: analytical prospects.

    Science.gov (United States)

    de Dios, Alejandro Simón; Díaz-García, Marta Elena

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifunctional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges. 2010 Elsevier B.V. All rights reserved.

  20. Collaborative Filtering Fusing Label Features Based on SDAE

    DEFF Research Database (Denmark)

    Huo, Huan; Liu, Xiufeng; Zheng, Deyuan

    2017-01-01

    problem, auxiliary information such as labels are utilized. Another approach of recommendation system is content-based model which can’t be directly integrated with CF-based model due to its inherent characteristics. Considering that deep learning algorithms are capable of extracting deep latent features......Collaborative filtering (CF) is successfully applied to recommendation system by digging the latent features of users and items. However, conventional CF-based models usually suffer from the sparsity of rating matrices which would degrade model’s recommendation performance. To address this sparsity......, this paper applies Stack Denoising Auto Encoder (SDAE) to content-based model and proposes LCF(Deep Learning for Collaborative Filtering) algorithm by combing CF-based model which fuses label features. Experiments on real-world data sets show that DLCF can largely overcome the sparsity problem...

  1. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Vannucci, Luca; Falvo, E.; Fornara, M.; Di Micco, P.; Benada, Oldřich; Křižan, Jiří; Svoboda, Jan; Huliková, Katarína; Morea, V.; Boffi, A.; Ceci, P.

    2012-01-01

    Roč. 7, č. 2012 (2012), s. 1489-1509 E-ISSN 1178-2013 Institutional research plan: CEZ:AV0Z50200510 Keywords : multifunctional nanoparticles * ferritin * nanoplatform Subject RIV: EC - Immunology Impact factor: 3.463, year: 2012

  2. Acoustic wave filter based on periodically poled lithium niobate.

    Science.gov (United States)

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  3. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  4. Image Recommendation Algorithm Using Feature-Based Collaborative Filtering

    Science.gov (United States)

    Kim, Deok-Hwan

    As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.

  5. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  6. Widely Tunable 4th Order Switched Gm -C Band-Pass Filter Based on N-Path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Klumperink, Eric A.M.; Nauta, Bram

    2012-01-01

    Abstract—A widely tunable 4th order BPF based on the subtraction of two 2nd order 4-path passive-mixer filters with slightly different center frequencies is proposed. The center frequency of each 4-path filter is slightly shifted relative to its clock frequency (one upward and the other one

  7. Modeling of memristor-based chaotic systems using nonlinear Wiener adaptive filters based on backslash operator

    International Nuclear Information System (INIS)

    Zhao, Yibo; Jiang, Yi; Feng, Jiuchao; Wu, Lifu

    2016-01-01

    Highlights: • A novel nonlinear Wiener adaptive filters based on the backslash operator are proposed. • The identification approach to the memristor-based chaotic systems using the proposed adaptive filters. • The weight update algorithm and convergence characteristics for the proposed adaptive filters are derived. - Abstract: Memristor-based chaotic systems have complex dynamical behaviors, which are characterized as nonlinear and hysteresis characteristics. Modeling and identification of their nonlinear model is an important premise for analyzing the dynamical behavior of the memristor-based chaotic systems. This paper presents a novel nonlinear Wiener adaptive filtering identification approach to the memristor-based chaotic systems. The linear part of Wiener model consists of the linear transversal adaptive filters, the nonlinear part consists of nonlinear adaptive filters based on the backslash operator for the hysteresis characteristics of the memristor. The weight update algorithms for the linear and nonlinear adaptive filters are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics. Comparing with the adaptive nonlinear polynomial filters, the proposed nonlinear adaptive filters have less identification error.

  8. Efficient Kernel-Based Ensemble Gaussian Mixture Filtering

    KAUST Repository

    Liu, Bo

    2015-11-11

    We consider the Bayesian filtering problem for data assimilation following the kernel-based ensemble Gaussian-mixture filtering (EnGMF) approach introduced by Anderson and Anderson (1999). In this approach, the posterior distribution of the system state is propagated with the model using the ensemble Monte Carlo method, providing a forecast ensemble that is then used to construct a prior Gaussian-mixture (GM) based on the kernel density estimator. This results in two update steps: a Kalman filter (KF)-like update of the ensemble members and a particle filter (PF)-like update of the weights, followed by a resampling step to start a new forecast cycle. After formulating EnGMF for any observational operator, we analyze the influence of the bandwidth parameter of the kernel function on the covariance of the posterior distribution. We then focus on two aspects: i) the efficient implementation of EnGMF with (relatively) small ensembles, where we propose a new deterministic resampling strategy preserving the first two moments of the posterior GM to limit the sampling error; and ii) the analysis of the effect of the bandwidth parameter on contributions of KF and PF updates and on the weights variance. Numerical results using the Lorenz-96 model are presented to assess the behavior of EnGMF with deterministic resampling, study its sensitivity to different parameters and settings, and evaluate its performance against ensemble KFs. The proposed EnGMF approach with deterministic resampling suggests improved estimates in all tested scenarios, and is shown to require less localization and to be less sensitive to the choice of filtering parameters.

  9. Multi-functional Chassis-based Antennas Using Characteristic Mode Theory

    Science.gov (United States)

    Kishor, Krishna Kumar

    operation in two frequency bands along with an additional port for CA in the third band. The four designs have been experimentally verified, validating the use of TCM as a versatile tool to design multi-functional chassis-based antennas.

  10. Multiway Filtering Based on Fourth-Order Cumulants

    Directory of Open Access Journals (Sweden)

    Salah Bourennane

    2005-05-01

    Full Text Available We propose a new multiway filtering based on fourth-order cumulants for the denoising of noisy data tensor with correlated Gaussian noise. The classical multiway filtering is based on the TUCKALS3 algorithm that computes a lower-rank tensor approximation. The presented method relies on the statistics of the analyzed multicomponent signal. We first recall how the well-known lower rank-(K1,…,KN tensor approximation processed by TUCKALS3 alternating least square algorithm exploits second-order statistics. Then, we propose to introduce the fourth-order statistics in the TUCKALS3-based method. Indeed, the use of fourth-order cumulants enables to remove the Gaussian components of an additive noise. In the presented method the estimation of the n-mode projector on the n-mode signal subspace are built from the eigenvectors associated with the largest eigenvalues of a fourth-order cumulant slice matrix instead of a covariance matrix. Each projector is applied by means of the n-mode product operator on the n-mode of the data tensor. The qualitative results of the improved multiway TUCKALS3-based filterings are shown for the case of noise reduction in a color image and multicomponent seismic data.

  11. Scattering angle base filtering of the inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.

  12. A learning curve-based method to implement multifunctional work teams in the Brazilian footwear sector.

    Science.gov (United States)

    Guimarães, L B de M; Anzanello, M J; Renner, J S

    2012-05-01

    This paper presents a method for implementing multifunctional work teams in a footwear company that followed the Taylor/Ford system for decades. The suggested framework first applies a Learning Curve (LC) modeling to assess whether rotation between tasks of different complexities affects workers' learning rate and performance. Next, the Macroergonomic Work Analysis (MA) method (Guimarães, 1999, 2009) introduces multifunctional principles in work teams towards workers' training and resources improvement. When applied to a pilot line consisting of 100 workers, the intervention-reduced work related accidents in 80%, absenteeism in 45.65%, and eliminated work related musculoskeletal disorders (WMSD), medical consultations, and turnover. Further, the output rate of the multifunctional team increased average 3% compared to the production rate of the regular lines following the Taylor/Ford system (with the same shoe model being manufactured), while the rework and spoilage rates were reduced 85% and 69%, respectively. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  14. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles

    International Nuclear Information System (INIS)

    Roso, Martina; Modesti, Michele; Sundarrajan, Subramanian; Pliszka, Damian; Ramakrishna, Seeram

    2008-01-01

    A multicomponent membrane based on polysulfone nanofibers and titanium dioxide nanoparticles is produced by the coupling of electrospinning and electrospraying techniques. The manufactured product can satisfy a number of conflicting requirements begetting its technical and functional versatility as well as the reliability of the process. As nanoparticle dispersion is a critical issue in nanoparticle technology, their distribution and morphology have been extensively studied before and after electrospraying, and process optimization has been carried out to obtain nanoparticles uniformly spread over electrospun nanofibers. These membranes have been proved to be a good candidate for supported catalysis due to the photocatalytic activity of TiO 2 , tested for degradation of CEPS, a mustard agent simulant. At the same time, an effective improvement in filtering properties in terms of pressure drop has also been studied

  15. Supervised Filter Learning for Representation Based Face Recognition.

    Directory of Open Access Journals (Sweden)

    Chao Bi

    Full Text Available Representation based classification methods, such as Sparse Representation Classification (SRC and Linear Regression Classification (LRC have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  16. Supervised Filter Learning for Representation Based Face Recognition.

    Science.gov (United States)

    Bi, Chao; Zhang, Lei; Qi, Miao; Zheng, Caixia; Yi, Yugen; Wang, Jianzhong; Zhang, Baoxue

    2016-01-01

    Representation based classification methods, such as Sparse Representation Classification (SRC) and Linear Regression Classification (LRC) have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances) in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP) features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  17. An active damping method based on biquad digital filter for parallel grid-interfacing inverters with LCL filters

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    with parallel interfacing inverters, the resonance analysis should be expanded due to the parallel configuration of the LCL-filters. In this paper, the resonance phenomenon of the renewable energy system with multiple LCL-filters is studied. The frequency domain characteristics of the parallel LCL...... to the conventional active damping approaches, the biquad filter based active damping method does not require additional sensors and control loops. Meanwhile, the multiple instable closed-loop poles of the parallel inverter system can be moved to the stable region simultaneously. Real-time simulations based on d...

  18. An Adaptive Filtering Method Based on Crowdsourced Big Trace Data

    Directory of Open Access Journals (Sweden)

    TANG Luliang

    2016-12-01

    Full Text Available Vehicles' GPS traces collected by crowds have being as a new kind of big data and are widely applied to mine urban geographic information with low-cost, quick-update and rich-informative. However, the growing volume of vehicles' GPS traces has caused difficulties in data processing and their low quality adds uncertainty when information mining. Thus, it is a hot topic to extract high-quality GPS data from the crowdsourced traces based on the expected accuracy. In this paper, we propose an efficient partition-and-filter model to filter trajectories with expected accuracy according to the spatial feature of high-precision GPS data and the error rule of GPS data. First, the proposed partition-and-filter model to partition a trajectory into sub-trajectories based on the constrained distance and angle, which are chosen as the basic unit for the next processing step. Secondly, the proposed method collects high-quality GPS data from each sub-trajectory according to the similarity between GPS tracking points and the reference baselines constructed using random sample consensus algorithm. Experimental results demonstrate that the proposed method can effectively pick up high quality GPS data from crowdsourced trace data sets with the expected accuracy.

  19. Integrated reconfigurable photonic filters based on interferometric fractional Hilbert transforms.

    Science.gov (United States)

    Sima, C; Cai, B; Liu, B; Gao, Y; Yu, Y; Gates, J C; Zervas, M N; Smith, P G R; Liu, D

    2017-10-01

    In this paper, we present integrated reconfigurable photonic filters using fractional Hilbert transformers (FrHTs) and optical phase tuning structure within the silica-on-silicon platform. The proposed structure, including grating-based FrHTs, an X-coupler, and a pair of thermal tuning filaments, is fabricated through the direct UV grating writing technique. The thermal tuning effect is realized by the controllable microheaters located on the two arms of the X-coupler. We investigate the 200 GHz maximum bandwidth photonic FrHTs based on apodized planar Bragg gratings, and analyze the reflection spectrum responses. Through device integration and thermal modulation, the device could operate as photonic notch filters with 5 GHz linewidth and controllable single sideband suppression filters with measured 12 dB suppression ratio. A 50 GHz instantaneous frequency measuring system using this device is also schematically proposed and analyzed with potential 3 dB measurement improvement. The device could be configured with these multiple functions according to need. The reconfigurable structure has great potential in ultrafast all-optical signal processing fields.

  20. Spacial gyroscope calibration algorithm base on fusion filter

    Science.gov (United States)

    Xu, Fan; You, Taihua; Guo, Kang

    2017-10-01

    When space homing aerocraft long term flighting on orbit, the accuracy and rapidity of its attitude and orientation are the key factors for its combat effectiveness and survivability. Fiber optic gyro is suitable for the navigation requirements of space vehicles, but in the long run, it is necessary to calibrate the fog. Aiming at the problem, A self calibration method based on fusion filter is presented. According to the observation of the star sensor, the gyro drift and the four part number vector of the attitude are used as the state estimation by UKF. The gyro axis misalignment error and scale factor error are used as the model error to be estimated by the prediction filter. This method can guarantee the precision, decrease the computation and improve the algorithm speed.

  1. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-02

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  2. Plasmonic Colour Filters Based on Coaxial Holes in Aluminium

    Directory of Open Access Journals (Sweden)

    Ranjith Rajasekharan Unnithan

    2017-04-01

    Full Text Available Aluminum is an alternative plasmonic material in the visible regions of the spectrum due to its attractive properties such as low cost, high natural abundance, ease of processing, and complementary metal-oxide-semiconductor (CMOS and liquid crystal display (LCD compatibility. Here, we present plasmonic colour filters based on coaxial holes in aluminium that operate in the visible range. Using both computational and experimental methods, fine-tuning of resonance peaks through precise geometric control of the coaxial holes is demonstrated. These results will lay the basis for the development of filters in high-resolution liquid crystal displays, RGB-spatial light modulators, liquid crystal over silicon devices and novel displays.

  3. Microstrip Cross-coupled Interdigital SIR Based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    R. K. Maharjan

    2012-09-01

    Full Text Available A simple and compact 4.9 GHz bandpass filter for C-band applications is proposed. This paper presents a novel microstrip cross-coupled interdigital half-wavelength stepped impedance resonator (SIR based bandpass filter (BPF.The designed structure is similar to that of a combination of two parallel interdigital capacitors. The scattering parameters of the structure are measured using vector network analyzer (VNA. The self generated capacitive and inductive reactances within the interdigital resonators exhibited in a resonance frequency of 4.9 GHz. The resonant frequency and bandwidth of the capacitive cross-coupled resonator is directly optimized from the physical arrangement of the resonators. The measured insertion loss (S21 and return loss (S11 were 0.3 dB and 28 dB, respectively, at resonance frequency which were almost close to the simulation results.

  4. Performance-Based Technology Selection Filter description report

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL)

  5. Dynamic reconstruction algorithm of temperature field based on Kalman filter

    Science.gov (United States)

    Li, Yanqiu; Liu, Shi; Han, Ren

    2017-05-01

    Development of temperature reconstruction algorithm plays an important role in the application of temperature field measurement by acoustic tomography. A dynamic model of temperature field reconstruction by acoustic tomography is established. A dynamic reconstruction algorithm based on Kalman Filter (KF) is proposed considering both acoustic measurement and the dynamic evolution information. An objective function fusing space constrain with dynamic evolution information is designed. Simulation results of three temperature field distribution models show that the reconstruction quality of dynamic reconstruction method based on KF is better than those of static reconstruction methods.

  6. Performance-Based Technology Selection Filter description report

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  7. Information filtering based on corrected redundancy-eliminating mass diffusion.

    Science.gov (United States)

    Zhu, Xuzhen; Yang, Yujie; Chen, Guilin; Medo, Matus; Tian, Hui; Cai, Shi-Min

    2017-01-01

    Methods used in information filtering and recommendation often rely on quantifying the similarity between objects or users. The used similarity metrics often suffer from similarity redundancies arising from correlations between objects' attributes. Based on an unweighted undirected object-user bipartite network, we propose a Corrected Redundancy-Eliminating similarity index (CRE) which is based on a spreading process on the network. Extensive experiments on three benchmark data sets-Movilens, Netflix and Amazon-show that when used in recommendation, the CRE yields significant improvements in terms of recommendation accuracy and diversity. A detailed analysis is presented to unveil the origins of the observed differences between the CRE and mainstream similarity indices.

  8. A framework for retinal vasculature segmentation based on matched filters.

    Science.gov (United States)

    Meng, Xianjing; Yin, Yilong; Yang, Gongping; Han, Zhe; Yan, Xiaowei

    2015-10-24

    Automatic fundus image processing plays a significant role in computer-assisted retinopathy diagnosis. As retinal vasculature is an important anatomical structure in ophthalmic images, recently, retinal vasculature segmentation has received considerable attention from researchers. A segmentation method usually consists of three steps: preprocessing, segmentation, post-processing. Most of the existing methods emphasize on the segmentation step. In our opinion, the vessels and background can be easily separable when suitable preprocessing exists. This paper represents a new matched filter-based vasculature segmentation method for 2-D retinal images. First of all, a raw segmentation is acquired by thresholding the images preprocessed using weighted improved circular gabor filter and multi-directional multi-scale second derivation of Gaussian. After that, the raw segmented image is fine-tuned by a set of novel elongating filters. Finally, we eliminate the speckle like regions and isolated pixels, most of which are non-vessel noises and miss-classified fovea or pathological regions. The performance of the proposed method is examined on two popularly used benchmark databases: DRIVE and STARE. The accuracy values are 95.29 and 95.69 %, respectively, without a significant degradation of specificity and sensitivity. The performance of the proposed method is significantly better than almost all unsupervised methods, in addition, comparable to most of the existing supervised vasculature segmentation methods.

  9. Design of multi-function sensor detection system in coal mine based on ARM

    Science.gov (United States)

    Ge, Yan-Xiang; Zhang, Quan-Zhu; Deng, Yong-Hong

    2017-06-01

    The traditional coal mine sensor in the specific measurement points, the number and type of channel will be greater than or less than the number of monitoring points, resulting in a waste of resources or cannot meet the application requirements, in order to enable the sensor to adapt to the needs of different occasions and reduce the cost, a kind of multi-functional intelligent sensor multiple sensors and ARM11 the S3C6410 processor is used to design and realize the dust, gas, temperature and humidity sensor functions together, and has storage, display, voice, pictures, data query, alarm and other new functions.

  10. Multifunctional Material Structures Based on Laser-Etched Carbon Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Aline Emplit

    2014-09-01

    Full Text Available High-power electronics in the transportation and aerospace sectors need size and weight reduction. Multifunctional and multistructured materials are currently being developed to couple electromagnetic (EM and thermal properties, i.e., shielding against electromagnetic impulsions, and thermal management across the thermal interface material (TIM. In this work, we investigate laser-machined patterned carbon nanotube (CNT micro-brushes as an alternative to metallic structures for driving simultaneously EM and heat propagation. The thermal and electromagnetic response of the CNT array is expected to be sensitive to the micro-structured pattern etched in the CNT brush.

  11. New multifunctional lightweight materials based on cellular metals - manufacturing, properties and applications

    International Nuclear Information System (INIS)

    Stephani, Guenter; Quadbeck, Peter; Andersen, Olaf

    2009-01-01

    Cellular metallic materials are a new class of materials which have been the focus of numerous scientific studies over the past few years. The increasing interest in cellular metals is due to the fact that the introduction of pores into the materials significantly lowers the density. These highly porous materials also possess combinations of properties which are not possible to achieve with other materials. Besides the drastic weight and material savings that arise from the cell structure, there are also other application-specific benefits such as noise and energy absorption, heat insulation, mechanical damping, filtration effects and also catalytic properties. Cellular metallic materials are hence multi-functional lightweight materials.

  12. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  13. Structural Composites with Intrinsic Multifunctionality, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a multifunctional, structural material for applications in terrestrial and space-based platforms used for instrumentation in earth observation is...

  14. Structural Composites with Intrinsic Multifunctionality, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of multifunctional, structural materials for applications in terrestrial and space-based platforms is proposed. The principle innovation is the...

  15. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    Science.gov (United States)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  16. A multi-function IEC 61850 packet generator based on FPGA

    Science.gov (United States)

    Wei, Wei; Li, Hong-bin; Cheng, Han-miao

    2016-07-01

    An IEC 61850 packet generator is used to produce IEC 61850-9-2 packets by simulating the merging unit and testing the IEC 61850 digital device. While the existing IEC packet generator can produce ideal digital without any noise, it does not take into account the fact that the merging unit output signal packets will be inevitably superimposed with noise. Since the International Electrical Commission standard of the electronic current transformer specifies the minimum output signal-to-noise ratio of the merging unit to be 30 dB, and the signal superimposed with noise will influence the operation performance of the digital device, it is necessary to design a multi-function IEC 61850-9-2 packet generator for a digital device test. Therefore, in this paper, a multi-function IEC 61850 packet generator has been developed, which not only can output various IEC 61850-9-2 packets, but also can add white Gaussian noise to the signal for digital device testing. By testing three digital electricity meters from different manufacturers, we showed that the error of the digital electricity meter is significantly larger when the signal packet is superimposed with noise. Also when the signal-to-noise ration is 30 dB, the error of one of the meters exceeds the allowed range of the accuracy class. This indicates that the noise testing and the noise setting function of the system has an important role in the testing of a digital device.

  17. A multi-function IEC 61850 packet generator based on FPGA

    International Nuclear Information System (INIS)

    Wei, Wei; Li, Hong-bin; Cheng, Han-miao

    2016-01-01

    An IEC 61850 packet generator is used to produce IEC 61850-9-2 packets by simulating the merging unit and testing the IEC 61850 digital device. While the existing IEC packet generator can produce ideal digital without any noise, it does not take into account the fact that the merging unit output signal packets will be inevitably superimposed with noise. Since the International Electrical Commission standard of the electronic current transformer specifies the minimum output signal-to-noise ratio of the merging unit to be 30 dB, and the signal superimposed with noise will influence the operation performance of the digital device, it is necessary to design a multi-function IEC 61850-9-2 packet generator for a digital device test. Therefore, in this paper, a multi-function IEC 61850 packet generator has been developed, which not only can output various IEC 61850-9-2 packets, but also can add white Gaussian noise to the signal for digital device testing. By testing three digital electricity meters from different manufacturers, we showed that the error of the digital electricity meter is significantly larger when the signal packet is superimposed with noise. Also when the signal-to-noise ration is 30 dB, the error of one of the meters exceeds the allowed range of the accuracy class. This indicates that the noise testing and the noise setting function of the system has an important role in the testing of a digital device. (paper)

  18. Detail Enhancement for Infrared Images Based on Propagated Image Filter

    Directory of Open Access Journals (Sweden)

    Yishu Peng

    2016-01-01

    Full Text Available For displaying high-dynamic-range images acquired by thermal camera systems, 14-bit raw infrared data should map into 8-bit gray values. This paper presents a new method for detail enhancement of infrared images to display the image with a relatively satisfied contrast and brightness, rich detail information, and no artifacts caused by the image processing. We first adopt a propagated image filter to smooth the input image and separate the image into the base layer and the detail layer. Then, we refine the base layer by using modified histogram projection for compressing. Meanwhile, the adaptive weights derived from the layer decomposition processing are used as the strict gain control for the detail layer. The final display result is obtained by recombining the two modified layers. Experimental results on both cooled and uncooled infrared data verify that the proposed method outperforms the method based on log-power histogram modification and bilateral filter-based detail enhancement in both detail enhancement and visual effect.

  19. Vehicle Detection Based on Probability Hypothesis Density Filter

    Directory of Open Access Journals (Sweden)

    Feihu Zhang

    2016-04-01

    Full Text Available In the past decade, the developments of vehicle detection have been significantly improved. By utilizing cameras, vehicles can be detected in the Regions of Interest (ROI in complex environments. However, vision techniques often suffer from false positives and limited field of view. In this paper, a LiDAR based vehicle detection approach is proposed by using the Probability Hypothesis Density (PHD filter. The proposed approach consists of two phases: the hypothesis generation phase to detect potential objects and the hypothesis verification phase to classify objects. The performance of the proposed approach is evaluated in complex scenarios, compared with the state-of-the-art.

  20. Scattering angle-based filtering via extension in velocity

    KAUST Repository

    Kazei, Vladimir

    2016-09-06

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  1. Transmissive/Reflective Structural Color Filters: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2014-01-01

    Full Text Available Structural color filters, which obtain color selection by varying structures, have attracted extensive research interest in recent years due to the advantages of compactness, stability, multifunctions, and so on. In general, the mechanisms of structural colors are based on the interaction between light and structures, including light diffraction, cavity resonance, and surface plasmon resonance. This paper reviews recent progress of various structural color techniques and the integration applications of structural color filters in CMOS image sensors, solar cells, and display.

  2. Spatial filters on demand based on aperiodic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gailevicius, Darius; Purlys, Vytautas; Peckus, Martynas; Gadonas, Roaldas [Laser Research Center, Department of Quantum Electronics, Vilnius University (Lithuania); Staliunas, Kestutis [DONLL, Departament de Fisica, Universitat Politecnica de Catalunya (UPC), Terrassa (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2017-08-15

    Photonic Crystal spatial filters, apart from stand-alone spatial filtering function, can also suppress multi-transverse-mode operation in laser resonators. Here it is shown that such photonic crystals can be designed by solving the inverse problem: for a given spatial filtering profile. Optimized Photonic Crystal filters were fabricated in photosensitive glass. Experiments have shown that such filters provide a more pronounced filtering effect for total and partial transmissivity conditions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Automated Dimension Determination for NMF-based Incremental Collaborative Filtering

    Directory of Open Access Journals (Sweden)

    Xiwei Wang

    2015-12-01

    Full Text Available The nonnegative matrix factorization (NMF based collaborative filtering t e chniques h a ve a c hieved great success in product recommendations. It is well known that in NMF, the dimensions of the factor matrices have to be determined in advance. Moreover, data is growing fast; thus in some cases, the dimensions need to be changed to reduce the approximation error. The recommender systems should be capable of updating new data in a timely manner without sacrificing the prediction accuracy. In this paper, we propose an NMF based data update approach with automated dimension determination for collaborative filtering purposes. The approach can determine the dimensions of the factor matrices and update them automatically. It exploits the nearest neighborhood based clustering algorithm to cluster users and items according to their auxiliary information, and uses the clusters as the constraints in NMF. The dimensions of the factor matrices are associated with the cluster quantities. When new data becomes available, the incremental clustering algorithm determines whether to increase the number of clusters or merge the existing clusters. Experiments on three different datasets (MovieLens, Sushi, and LibimSeTi were conducted to examine the proposed approach. The results show that our approach can update the data quickly and provide encouraging prediction accuracy.

  4. Multifunctional Structural Composite Batteries

    Science.gov (United States)

    2007-09-01

    Conference held in Dallas, Texas on 6-9 November 2006. We are developing structural polymeric composites that both carry structural loads and store...structural polymeric composites that both carry structural loads and store electrochemical energy. These multifunctional batteries could replace inert...solid-state goal, and is compatible with our PEO -based resin electrolytes . The metal substrate provides structural support while acting as a

  5. Self-collimation-based photonic crystal notch filters

    International Nuclear Information System (INIS)

    Lee, Sun-Goo; Kim, Seong-Han; Kee, Chul-Sik; Kim, Kap-Joong

    2017-01-01

    We introduce a design concept of an optical notch filter (NF) utilizing two perfectly reflecting mirrors and a beam splitter. Based on the new design concept, a photonic crystal (PC)-NF based on the self-collimation phenomenon in a two-dimensional PC is proposed and studied through finite-difference time-domain simulations and experimental measurements in a microwave region. The transmission properties of the self-collimation-based PC-NF were demonstrated to be controlled by adjusting the values of parameters such as the radius of rods in the line-defect beam splitter, distance between the two perfectly reflecting mirrors, and radius of rods on the outermost surface of the perfectly reflecting mirrors. Our results indicate that the proposed design concept could provide a new approach to manipulate light propagation, and the PC-NF could increase the applicability of the self-collimation phenomenon in a PC. (paper)

  6. Chemical rule-based filtering of MS/MS spectra.

    Science.gov (United States)

    Reiz, Beáta; Kertész-Farkas, Attila; Pongor, Sándor; Myers, Michael P

    2013-04-01

    Identification of proteins by mass spectrometry-based proteomics requires automated interpretation of peptide tandem mass spectrometry spectra. The effectiveness of peptide identification can be greatly improved by filtering out extraneous noise peaks before the subsequent database searching steps. Here we present a novel chemical rule-based filtering algorithm, termed CRF, which makes use of the predictable patterns (rules) of collision-induced peptide fragmentation. The algorithm selects peak pairs that obey the common fragmentation rules within plausible limits of mass tolerance as well as peak intensity and produces spectra that can be subsequently submitted to any search engine. CRF increases the positive predictive value and decreases the number of random matches and thus improves performance by 15-20% in terms of peptide annotation using search engines, such as X!Tandem. Importantly, the algorithm also achieves data compression rates of ∼75%. The MATLAB source code and a web server are available at http://hydrax.icgeb.trieste.it/CRFilter/. Supplementary data are available at Bioinformatics online.

  7. RSSI based indoor tracking in sensor networks using Kalman filters

    DEFF Research Database (Denmark)

    Tøgersen, Frede Aakmann; Skjøth, Flemming; Munksgaard, Lene

    2010-01-01

    We propose an algorithm for estimating positions of devices in a sensor network using Kalman filtering techniques. The specific area of application is monitoring the movements of cows in a barn. The algorithm consists of two filters. The first filter enhances the signal-to-noise ratio of the obse...

  8. Hemicellulose-based multifunctional macroinitiator for single-electron-transfer mediated living radical polymerization.

    Science.gov (United States)

    Voepel, Jens; Edlund, Ulrica; Albertsson, Ann-Christine; Percec, Virgil

    2011-01-10

    A multifunctional macroinitiator for single-electron-transfer mediated living radical polymerization (SET-LRP) was designed from acetylated galactoglucomannan (AcGGM) by α-bromoisobutyric acid functionalization of the anomeric hydroxyl groups on the heteropolysaccharide backbone. This macroinitiator, with a degree of substitution of 0.15, was used in the SET-LRP of methyl acrylate, catalyzed by Cu(0)/Me(6)-TREN in DMSO, DMF, or DMSO/H(2)O in various concentrations. Kinetic analyses confirm high conversions of up to 99.98% and a living behavior of the SET-LRP process providing high molecular weight hemicelluloses/methyl acrylate hybrid copolymers with a brush-like architecture.

  9. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  10. Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons

    Science.gov (United States)

    Liu, Y. S.; Dong, Y. J.; Zhang, J.; Yu, H. L.; Feng, J. F.; Yang, X. F.

    2018-03-01

    Zigzag silicene nanoribbons (ZSiNRs) in the ferromagnetic edge ordering have a metallic behavior, which limits their applications in spintronics. Here a robustly half-metallic property is achieved by the boron substitution doping at the edge of ZSiNRs. When the impurity atom is replaced by the aluminum atom, the doped ZSiNRs possess a spin semiconducting property. Its band gap is suppressed with the increase of ribbon’s width, and a pure thermal spin current is achieved by modulating ribbon’s width. Moreover, a negative differential thermoelectric resistance in the thermal charge current appears as the temperature gradient increases, which originates from the fact that the spin-up and spin-down thermal charge currents have diverse increasing rates at different temperature gradient regions. Our results put forward a promising route to design multi-functional spintronic devices which may be applied in future low-power-consumption technologies.

  11. Nanotechnology Based Green Energy Conversion Devices with Multifunctional Materials at Low Temperatures.

    Science.gov (United States)

    Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen

    2017-07-10

    Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Improving the segmentation for weed recognition applications based on standard RGB cameras using optical filters

    DEFF Research Database (Denmark)

    Stigaard Laursen, Morten; Jørgensen, Rasmus Nyholm; Midtiby, Henrik

    -filter following a rectangular function. However the filter in place is selected for best mimicking the spectral sensitivity of the human vision, the cut-off is therefore neither sharp nor blocks completely. In this work we show that by replacing the IR filter with a more carefully selected IR filter matched....... This method utilizes that most vegetation reflects more green light than blue and red. As silicon based image sensors is also sensitive to near-infrared light a typical rgb-camera will have a filter in place to block the near-infrared light. When using excess green the ideal filter would be a sinc...

  13. A single multifunctional nanoplatform based on upconversion luminescence and gold nanorods

    Science.gov (United States)

    Huang, Yue; Rosei, Federico; Vetrone, Fiorenzo

    2015-03-01

    Lanthanide-doped upconverting nanoparticles (UCNPs), which convert near-infrared (NIR) light to higher energy light have been intensively studied for theranostic applications. Here, we developed a hybrid core/shell nanocomposite with multifunctional properties using a multistep strategy consisting of a gold nanorod (GNR) core with an upconverting NaYF4:Er3+, Yb3+ shell (GNR@NaYF4:Er3+, Yb3+). To use a single excitation beam, the GNR plasmon was tuned to ~650 nm, which is resonant with the upconverted red Er3+ emission emanating from the 4F9/2 excited state. Thus, under laser irradiation at 980 nm, the intensity ratio of the upconverted green emission (arising from the 2H11/2 and 4S3/2 excited states of Er3+) showed a remarkable thermal sensitivity, which was used to calculate the temperature change due to rapid heat conversion from the GNR core. The red upconversion emission of the GNR@NaYF4:Er3+, Yb3+ core/shell nanocomposite decreased compared with the NaYF4:Er3+, Yb3+ nanoshell structure (without a GNR core), which indicates that energy transfer from NaYF4:Er3+, Yb3+ to the GNR takes place, subsequently causing a photothermal effect. The anticancer drug, doxorubicin, was loaded into the GNR@NaYF4:Er3+, Yb3+ nanocomposites and the drug release profile was evaluated. In particular, the release of doxorubicin was significantly enhanced at lower pH and higher temperature caused by the photothermal effect. This multifunctional nanocomposite, which is suitable for local heating and controlled drug release, shows strong potential for use in cancer therapy.

  14. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization.

    Science.gov (United States)

    Wu, Huan-ling; Bremner, David H; Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu; Zhu, Li-min

    2016-05-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed "kidney" shape with a height of 50-100 μm and width of 100-200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  16. The PV Corrosion Fault Prognosis Based on Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Radouane Ouladsine

    2017-01-01

    Full Text Available The degradation of photovoltaic (PV modules remains a major concern on the control and the development of the photovoltaic field, particularly, in regions with difficult climatic conditions. The main degradation modes of the PV modules are corrosion, discoloration, glass breaks, and cracks of cells. However, corrosion and discoloration remain the predominant degradation modes that still require further investigations. In this paper, a model-based PV corrosion prognostic approach, based on an ensemble Kalman filter (EnKF, is introduced to identify the PV corrosion parameters and then estimate the remaining useful life (RUL. Simulations have been conducted using measured data set, and results are reported to show the efficiency of the proposed approach.

  17. Information filtering based on corrected redundancy-eliminating mass diffusion.

    Directory of Open Access Journals (Sweden)

    Xuzhen Zhu

    Full Text Available Methods used in information filtering and recommendation often rely on quantifying the similarity between objects or users. The used similarity metrics often suffer from similarity redundancies arising from correlations between objects' attributes. Based on an unweighted undirected object-user bipartite network, we propose a Corrected Redundancy-Eliminating similarity index (CRE which is based on a spreading process on the network. Extensive experiments on three benchmark data sets-Movilens, Netflix and Amazon-show that when used in recommendation, the CRE yields significant improvements in terms of recommendation accuracy and diversity. A detailed analysis is presented to unveil the origins of the observed differences between the CRE and mainstream similarity indices.

  18. Nuclear counting filter based on a centered Skellam test and a double exponential smoothing

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, Romain; Kondrasovs, Vladimir; Dumazert, Jonathan; Rohee, Emmanuel; Normand Stephane [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette, (France)

    2015-07-01

    Online nuclear counting represents a challenge due to the stochastic nature of radioactivity. The count data have to be filtered in order to provide a precise and accurate estimation of the count rate, this with a response time compatible with the application in view. An innovative filter is presented in this paper addressing this issue. It is a nonlinear filter based on a Centered Skellam Test (CST) giving a local maximum likelihood estimation of the signal based on a Poisson distribution assumption. This nonlinear approach allows to smooth the counting signal while maintaining a fast response when brutal change activity occur. The filter has been improved by the implementation of a Brown's double Exponential Smoothing (BES). The filter has been validated and compared to other state of the art smoothing filters. The CST-BES filter shows a significant improvement compared to all tested smoothing filters. (authors)

  19. Development and evaluation of evidence-based nursing (EBN) filters and related databases.

    Science.gov (United States)

    Lavin, Mary A; Krieger, Mary M; Meyer, Geralyn A; Spasser, Mark A; Cvitan, Tome; Reese, Cordie G; Carlson, Judith H; Perry, Anne G; McNary, Patricia

    2005-01-01

    Difficulties encountered in the retrieval of evidence-based nursing (EBN) literature and recognition of terminology, research focus, and design differences between evidence-based medicine and nursing led to the realization that nursing needs its own filter strategies for evidence-based practice. This article describes the development and evaluation of filters that facilitate evidence-based nursing searches. An inductive, multistep methodology was employed. A sleep search strategy was developed for uniform application to all filters for filter development and evaluation purposes. An EBN matrix was next developed as a framework to illustrate conceptually the placement of nursing-sensitive filters along two axes: horizontally, an adapted nursing process, and vertically, levels of evidence. Nursing diagnosis, patient outcomes, and primary data filters were developed recursively. Through an interface with the PubMed search engine, the EBN matrix filters were inserted into a database that executes filter searches, retrieves citations, and stores and updates retrieved citations sets hourly. For evaluation purposes, the filters were subjected to sensitivity and specificity analyses and retrieval set comparisons. Once the evaluation was complete, hyperlinks providing access to any one or a combination of completed filters to the EBN matrix were created. Subject searches on any topic may be applied to the filters, which interface with PubMed. Sensitivity and specificity for the combined nursing diagnosis and primary data filter were 64% and 99%, respectively; for the patient outcomes filter, the results were 75% and 71%, respectively. Comparisons were made between the EBN matrix filters (nursing diagnosis and primary data) and PubMed's Clinical Queries (diagnosis and sensitivity) filters. Additional comparisons examined publication types and indexing differences. Review articles accounted for the majority of the publication type differences, because "review" was accepted by

  20. Low Power Adder Based Digital Filter for QRS Detector

    Directory of Open Access Journals (Sweden)

    L. Murali

    2014-01-01

    Full Text Available Most of the Biomedical applications use dedicated processors for the implementation of complex signal processing. Among them, sensor network is also a type, which has the constraint of low power consumption. Since the processing elements are the most copiously used operations in the signal processors, the power consumption of this has the major impact on the system level application. In this paper, we introduce low power concept of transistor stacking to reduce leakage power; and new architectures based on stacking to implement the full adder and its significance at the digital filter level for QRS detector are implemented. The proposed concept has lesser leakage power at the adder as well as filter level with trade-off in other quality metrics of the design. This enabled the design to be dealt with as the low-power corner and can be made adaptable to any level of hierarchical abstractions as per the requirement of the application. The proposed architectures are designed, modeled at RTL level using the Verilog-HDL, and synthesized in Synopsys Design Compiler by mapping the design to 65 nm technology library standard cells.

  1. Multi-Functional Magnetic Photoluminescent Photocatalytic Polystyrene-Based Micro- and Nano-Fibers Obtained by Electrospinning

    Directory of Open Access Journals (Sweden)

    Michel Schaer

    2014-02-01

    Full Text Available This work reports on the implementation of electrospinning (ES as a facile route to encapsulate nano-engineered materials in a polystyrene (PS matrix. We applied ES to co-encapsulate two kinds of nanoparticles, i.e., upconversion nanophosphors (UCNPs and superparamagnetic iron oxide nanoparticles (SPIONs, in polystyrene (PS-based micro- and nano-fibers (PSFs. This approach made it possible to integrate near-infrared (NIR light-sensitive 500-nm β-NaYF4:Yb, Er UCNPs with 10-nm γ-Fe2O3 SPIONs in PS fibers. During the ES process, PSFs were additionally loaded with a well-established singlet oxygen (1∆g photosensitizer, rose bengal (RB. The thus obtained PSFs revealed the promising features of prospective multi-functional magnetic photoluminescent photocatalytic nano-constructs.

  2. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  3. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  4. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  5. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  6. Multirate Digital Filters Based on FPGA and Its Applications

    International Nuclear Information System (INIS)

    Sharaf El-Din, R.M.A.

    2013-01-01

    Digital Signal Processing (DSP) is one of the fastest growing techniques in the electronics industry. It is used in a wide range of application fields such as, telecommunications, data communications, image enhancement and processing, video signals, digital TV broadcasting, and voice synthesis and recognition. Field Programmable Gate Array (FPGA) offers good solution for addressing the needs of high performance DSP systems. The focus of this thesis is on one of the basic DSP functions, namely filtering signals to remove unwanted frequency bands. Multi rate Digital Filters (MDFs) are the main theme here. Theory and implementation of MDF, as a special class of digital filters, will be discussed. Multi rate digital filters represent a class of digital filters having a number of attractive features like, low requirements for the coefficient word lengths, significant saving in computation and storage requirements results in a significant reduction in its dynamic power consumption. This thesis introduces an efficient FPGA realization of a multi rate decimation filter with narrow pass-band and narrow transition band to reduce the frequency sample rate by factor of 64 for noise thermometer applications. The proposed multi rate decimation filter is composed of three stages; the first stage is a Cascaded Integrator Comb (CIC) decimation filter, the second stage is a two-coefficient Half-Band (HB) filter and the last stage is a sharper transition HB filter. The frequency responses of individual stages as well as the overall filter response have been demonstrated with full simulation using MATLAB. The design and implementation of the proposed MDF on FPGA (XILINX Virtex XCV800 BG432-4), using VHSIC Hardware Description Language (VHDL), has been introduced. The implementation areas of the proposed filter stages are compared. Using CIC-HB technique saves 18% of the design area, compared to using six stages HB decimation filters.

  7. An optical tunable filter array based on LCOS phase grating

    Science.gov (United States)

    Feng, Dong; Wan, Zhujun; Chen, Xu; Yan, Shijia; Luo, Zhixiang

    2018-01-01

    This paper reports an optical tunable filter array (TFA) based on a LCOS (liquid crystal on silicon) chip. The input broadband optical beam is first dispersed by a bulk grating and then incident on the LCOS chip. The LCOS chip is phase-only modulated and constructed as a dynamic reflective phase grating. The phase modulation is adjusted to meet the Littrow angle for a specified passband wavelength and thus the optical beam corresponding to this wavelength is steered to the output. The input/output optical beams are coupled to optical fibers with a dual-fiber collimator. Four dualfiber collimators are vertically aligned as the inputs/outputs and the pixels of the LCOS chip are vertically allocated as four independent zones. Thus the device can act as a 4-channel TFA, which is assembled and functionally demonstrated.

  8. Performance reliability prediction for thermal aging based on kalman filtering

    International Nuclear Information System (INIS)

    Ren Shuhong; Wen Zhenhua; Xue Fei; Zhao Wensheng

    2015-01-01

    The performance reliability of the nuclear power plant main pipeline that failed due to thermal aging was studied by the performance degradation theory. Firstly, through the data obtained from the accelerated thermal aging experiments, the degradation process of the impact strength and fracture toughness of austenitic stainless steel material of the main pipeline was analyzed. The time-varying performance degradation model based on the state space method was built, and the performance trends were predicted by using Kalman filtering. Then, the multi-parameter and real-time performance reliability prediction model for the main pipeline thermal aging was developed by considering the correlation between the impact properties and fracture toughness, and by using the stochastic process theory. Thus, the thermal aging performance reliability and reliability life of the main pipeline with multi-parameter were obtained, which provides the scientific basis for the optimization management of the aging maintenance decision making for nuclear power plant main pipelines. (authors)

  9. Ultra compact triplexing filters based on SOI nanowire AWGs

    Science.gov (United States)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  10. Ultra compact triplexing filters based on SOI nanowire AWGs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiashun; An Junming; Zhao Lei; Song Shijiao; Wang Liangliang; Li Jianguang; Wang Hongjie; Wu Yuanda; Hu Xiongwei, E-mail: junming@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2011-04-15

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion. (semiconductor devices)

  11. Noise Robust Voice Activity Detection Based on Switching Kalman Filter

    Science.gov (United States)

    Fujimoto, Masakiyo; Ishizuka, Kentaro

    This paper addresses the problem of voice activity detection (VAD) in noisy environments. The VAD method proposed in this paper is based on a statistical model approach, and estimates statistical models sequentially without a priori knowledge of noise. Namely, the proposed method constructs a clean speech/silence state transition model beforehand, and sequentially adapts the model to the noisy environment by using a switching Kalman filter when a signal is observed. In this paper, we carried out two evaluations. In the first, we observed that the proposed method significantly outperforms conventional methods as regards voice activity detection accuracy in simulated noise environments. Second, we evaluated the proposed method on a VAD evaluation framework, CENSREC-1-C. The evaluation results revealed that the proposed method significantly outperforms the baseline results of CENSREC-1-C as regards VAD accuracy in real environments. In addition, we confirmed that the proposed method helps to improve the accuracy of concatenated speech recognition in real environments.

  12. Public-channel cryptography based on mutual chaos pass filters.

    Science.gov (United States)

    Klein, Einat; Gross, Noam; Kopelowitz, Evi; Rosenbluh, Michael; Khaykovich, Lev; Kinzel, Wolfgang; Kanter, Ido

    2006-10-01

    We study the mutual coupling of chaotic lasers and observe both experimentally and in numeric simulations that there exists a regime of parameters for which two mutually coupled chaotic lasers establish isochronal synchronization, while a third laser coupled unidirectionally to one of the pair does not synchronize. We then propose a cryptographic scheme, based on the advantage of mutual coupling over unidirectional coupling, where all the parameters of the system are public knowledge. We numerically demonstrate that in such a scheme the two communicating lasers can add a message signal (compressed binary message) to the transmitted coupling signal and recover the message in both directions with high fidelity by using a mutual chaos pass filter procedure. An attacker, however, fails to recover an errorless message even if he amplifies the coupling signal.

  13. Dynamic Mode Decomposition based on Kalman Filter for Parameter Estimation

    Science.gov (United States)

    Shibata, Hisaichi; Nonomura, Taku; Takaki, Ryoji

    2017-11-01

    With the development of computational fluid dynamics, large-scale data can now be obtained. In order to model physical phenomena from such data, it is required to extract features of flow field. Dynamic mode decomposition (DMD) is a method which meets the request. DMD can compute dominant eigenmodes of flow field by approximating system matrix. From this point of view, DMD can be considered as parameter estimation of system matrix. To estimate such parameters, we propose a novel method based on Kalman filter. Our numerical experiments indicated that the proposed method can estimate the parameters more accurately if it is compared with standard DMD methods. With this method, it is also possible to improve the parameter estimation accuracy if characteristics of noise acting on the system is given.

  14. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  15. Long-period-fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kulishov, M.; Park, Y.; Azana, J.

    2009-01-01

    Roč. 34, č. 7 (2009), s. 1045-1047 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GA102/07/0999; GA AV ČR KJB200670601 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.059, year: 2009

  16. A multifunction editor for programming control sequences for a robot based radiopharmaceutical synthesis system

    International Nuclear Information System (INIS)

    Appelquist, G.; Bohm, C.

    1990-01-01

    A Multifunction Editor is a development tool for building control sequences for a robotized production system for positron emitting radiopharmaceuticals. This system consists of SCARA robot and a PC-AT personal computer as a controller together with general and synthesis specific chemistry equipment. The general equipment, which is common for many synthesis, is fixed to the wall of the hotcell, while the specific equipment, dedicated to the given synthesis, is located on a removable tray. The program recognizes commands to move the robot, to control valves and to control the computer screen. From within the editor it is possible to run the control sequence forward or backward to test it and to use the single step feature to debug. The editor commands include insert, replace and delete of commands in the sequence. When programming or editing robot movements the robot may be controlled by the mouse, from the keyboard or from a remote control box. The robot control sequence consists of a succession of stored robot positions. The screen control is used to display dynamic flowchart diagrams. This is achieved by displaying a modified picture on the screen whenever the system state has been changed significantly

  17. An Advanced Multifunctional Hydrogel-Based Dressing for Wound Monitoring and Drug Delivery.

    Science.gov (United States)

    Mirani, Bahram; Pagan, Erik; Currie, Barbara; Siddiqui, Mohammad Ali; Hosseinzadeh, Reihaneh; Mostafalu, Pooria; Zhang, Yu Shrike; Ghahary, Aziz; Akbari, Mohsen

    2017-10-01

    Wound management is a major global challenge and poses a significant financial burden to the healthcare system due to the rapid growth of chronic diseases such as diabetes, obesity, and aging population. The ability to detect pathogenic infections and release drug at the wound site is of the utmost importance to expedient patient care. Herein, this study presents an advanced multifunctional dressing (GelDerm) capable of colorimetric measurement of pH, an indicator of bacterial infection, and release of antibiotic agents at the wound site. This study demonstrates the ability of GelDerm to detect bacterial infections using in vitro and ex vivo tests with accuracies comparable to the commercially available systems. Wireless interfaces to digital image capture hardware such as smartphones serve as a means for quantitation and enable the patient to record the wound condition at home and relay the information to the healthcare personnel for following treatment strategies. Additionally, the dressing is integrated within commercially available patches and can be placed on the wound without chemical or physical irritation. This study demonstrates the ability of GelDerm to eradicate bacteria by the sustained release of antibiotics. The proposed technology holds great promise in managing chronic and acute injuries caused by trauma, surgery, or diabetes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CDBA-Based Universal Biquad Filter and Quadrature Oscillator

    Directory of Open Access Journals (Sweden)

    Worapong Tangsrirat

    2008-01-01

    Full Text Available The voltage-mode universal biquadratic filter and sinusoidal quadrature oscillator based on the use of current differencing buffered amplifiers (CDBAs as active components have been proposed in this paper. All the proposed configurations employ only two CDBAs and six passive components. The first proposed CDBA-based biquad configuration can realize all the standard types of the biquadratic functions, that is, lowpass, bandpass, highpass, bandstop, and allpass, from the same topology, and can also provide orthogonal tuning of the natural angular frequency (ωo and the bandwidth (BW through separate virtually grounded passive components. By slight modification of the first proposed configuration, the new CDBA-based sinusoidal quadrature oscillator is easily obtained. The oscillation condition and the oscillation frequency are independently adjustable by different virtually grounded resistors. The sensitivity analysis of all proposed circuit configurations is shown to be low. PSPICE simulations and experimental results based upon commercially available AD844-type CFAs are included, which confirm the workability of the proposed circuits.

  19. A novel method for EMG decomposition based on matched filters

    Directory of Open Access Journals (Sweden)

    Ailton Luiz Dias Siqueira Júnior

    Full Text Available Introduction Decomposition of electromyography (EMG signals into the constituent motor unit action potentials (MUAPs can allow for deeper insights into the underlying processes associated with the neuromuscular system. The vast majority of the methods for EMG decomposition found in the literature depend on complex algorithms and specific instrumentation. As an attempt to contribute to solving these issues, we propose a method based on a bank of matched filters for the decomposition of EMG signals. Methods Four main units comprise our method: a bank of matched filters, a peak detector, a motor unit classifier and an overlapping resolution module. The system’s performance was evaluated with simulated and real EMG data. Classification accuracy was measured by comparing the responses of the system with known data from the simulator and with the annotations of a human expert. Results The results show that decomposition of non-overlapping MUAPs can be achieved with up to 99% accuracy for signals with up to 10 active motor units and a signal-to-noise ratio (SNR of 10 dB. For overlapping MUAPs with up to 10 motor units per signal and a SNR of 20 dB, the technique allows for correct classification of approximately 71% of the MUAPs. The method is capable of processing, decomposing and classifying a 50 ms window of data in less than 5 ms using a standard desktop computer. Conclusion This article contributes to the ongoing research on EMG decomposition by describing a novel technique capable of delivering high rates of success by means of a fast algorithm, suggesting its possible use in future real-time embedded applications, such as myoelectric prostheses control and biofeedback systems.

  20. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure

    Science.gov (United States)

    2018-01-01

    ARL-TR-8271 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter... Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure by Kwok F Tom Sensors and Electron Devices...September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure 5a

  1. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    Science.gov (United States)

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  2. Stability Analysis and Active Damping for LLCL-filter-Based Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    A higher-order passive power filter (LLCL-filter) for the grid-connected inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known resonance problems of the LLCL-filter, it is requested...... to use either passive or active damping methods. This paper analyzes the stability of the LLCL-filter based grid-connected inverter and identifies a critical resonant frequency for the LLCL-filter when sampling and transport delays are considered. In a high resonant frequency region the active damping...... is not required but in a low resonant frequency region the active damping is necessary. The basic LLCL resonance damping properties of different feedback states based on a notch filter concept are also studied. Then an active damping method which is using the capacitor current feedback for LLCL-filter...

  3. Phage-based biomolecular filter for the capture of bacterial pathogens in liquid streams

    Science.gov (United States)

    Du, Songtao; Chen, I.-Hsuan; Horikawa, Shin; Lu, Xu; Liu, Yuzhe; Wikle, Howard C.; Suh, Sang Jin; Chin, Bryan A.

    2017-05-01

    This paper investigates a phage-based biomolecular filter that enables the evaluation of large volumes of liquids for the presence of small quantities of bacterial pathogens. The filter is a planar arrangement of phage-coated, strip-shaped magnetoelastic (ME) biosensors (4 mm × 0.8 mm × 0.03 mm), magnetically coupled to a filter frame structure, through which a liquid of interest flows. This "phage filter" is designed to capture specific bacterial pathogens and allow non-specific debris to pass, eliminating the common clogging issue in conventional bead filters. ANSYS Maxwell was used to simulate the magnetic field pattern required to hold ME biosensors densely and to optimize the frame design. Based on the simulation results, a phage filter structure was constructed, and a proof-in-concept experiment was conducted where a Salmonella solution of known concentration were passed through the filter, and the number of captured Salmonella was quantified by plate counting.

  4. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    WEI SU

    2017-08-16

    Aug 16, 2017 ... filter without changing the structural parameters. Fur- thermore, the structure is highly sensitive to different surrounding mediums, showing its potential to be a biosensor. Our proposed structure can decrease the dimensions of the plasmonic filter and so can be used to design plasmonic integrated circuits.

  5. Robotic fish tracking method based on suboptimal interval Kalman filter

    Science.gov (United States)

    Tong, Xiaohong; Tang, Chao

    2017-11-01

    Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.

  6. Laser Rate Equation Based Filtering for Carrier Recovery in Characterization and Communication

    DEFF Research Database (Denmark)

    Piels, Molly; Iglesias Olmedo, Miguel; Xue, Weiqi

    2015-01-01

    We formulate a semiconductor laser rate equationbased approach to carrier recovery in a Bayesian filtering framework. Filter stability and the effect of model inaccuracies (unknown or un-useable rate equation coefficients) are discussed. Two potential application areas are explored: laser...... characterization and carrier recovery in coherent communication. Two rate equation based Bayesian filters, the particle filter and extended Kalman filter, are used in conjunction with a coherent receiver to measure frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber...

  7. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  8. Transistor-based filter for inhibiting load noise from entering a power supply

    Science.gov (United States)

    Taubman, Matthew S

    2013-07-02

    A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

  9. Active Structural Fibers for Multifunctional Composite Materials

    Science.gov (United States)

    2012-07-31

    thickness from ~500nm to 20mm •Other perovskite compositions can be synthesized 2q Henry A Sodano – AFOSR Mech. of Multifunctional and...films Henry A Sodano – AFOSR Mech. of Multifunctional and Microsystems Review – July 31, 2012 ZnO Growth on Carbon Fibers • Solution based growth

  10. Single-Phase LLCL-Filter-based Grid-Tied Inverter with Low-Pass Filter Based Capacitor Current Feedback Active damper

    DEFF Research Database (Denmark)

    Liu, Yuan; Wu, Weimin; Li, Yun

    2016-01-01

    . In this paper, a low pass filter is proposed to be inserted in the capacitor current feedback loop op LLCL-filter based grid-tied inverter together with a digital proportional and differential compensator. The detailed theoretical analysis is given. For verification, simulations on a 2kW/220V/10kHz LLCL......The capacitor-current-feedback active damping method is attractive for high-order-filter-based high power grid-tied inverter when the grid impedance varies within a wide range. In order to improve the system control bandwidth and attenuate the high order grid background harmonics by using the quasi...

  11. Restoration filtering based on projection power spectrum for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Kubo, Naoki

    1995-01-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)

  12. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    Science.gov (United States)

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  13. Spectral characteristics preserving image fusion based on Fourier domain filtering

    Science.gov (United States)

    Ehlers, Manfred

    2004-10-01

    Data fusion methods are usually classified into three levels: pixel level (ikonic), feature level (symbolic) and knowledge or decision level. Here, we will focus on the development of ikonic techniques for image fusion. Image transforms such as the Intensity-Hue-Saturation (IHS) or Principal Component (PC) transform are widely used to fuse panchromatic images of high spatial resolution with multispectral images of lower resolution. These techniques create multispectral images of higher spatial resolution but usually at the cost that these transforms do not preserve the original color or spectral characteristics of the input image data. In this study, a new method for image fusion will be presented that is based on filtering in the Fourier domain. This method preserves the spectral characteristics of the lower resolution mul-tispectral images. Examples are presented for SPOT and Ikonos panchromatic images fused with Landsat TM and Iko-nos multispectral data. Comparison with existing fusion techniques such as IHS, PC or Brovey transform prove the su-periority of the new method. While in principle based on the IHS transform (which usually only works for three bands), the method is extended to any arbitrary number of spectral bands. Using this approach, this method can be applied to sharpen hyperspectral images without changing their spectral behavior.

  14. A Series-LC-Filtered Active Damper for AC Power Electronics Based Power Systems

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    This paper proposes an active damper with a series LC-filter for suppressing resonances in an ac power electronics based power system. The added filter capacitor helps to lower the voltage stress of the converter to be used for implementing the damper. Unlike active filters for the compensation...... is built, where the damper is integrated into a grid-connected converter. The results obtained from the experiments demonstrate the stability enhancement of ac power electronics based power systems by the active damper....

  15. Multi-functional energy plantation; Multifunktionella bioenergiodlingar

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)

    2002-02-01

    future if this problem will be valued differently. The value of increased carbon accumulation in mineral soils and reduced carbon dioxide emissions from organic soils is estimated to be equivalent to a few percent and half the production cost in conventional Salix plantations, respectively. These values may also change in the future if carbon sinks in agriculture will be included as an approved mitigation option within the Kyoto agreement. Based on an analysis of possible combinations of environmental services achieved in specific plantations, it is estimated that biomass can be produced to an negative cost in around 100,000 hectares of multi-functional energy plantations, when the value of the environmental services is included. The production cost in another 250,000 hectares of plantations is estimated to be halved. This is equivalent to around 6 and 11 TWh biomass per year, respectively. Economic incentives also exist for municipal wastewater plants for utilising vegetation filters for wastewater and sewage sludge treatment. Cadmium removal and increased soil fertility will give a minor increase in the income for the farmer. However, cadmium removal will result in increased costs later in the Salix fuel chain, due to increased costs of flue gas cleaning during combustion. Thus, to overcome this economic barrier, subsidies will probably be needed to heating plants utilising cadmium-contaminated biomass. The possibilities of achieving an income from increased soil carbon accumulation will depend on if this option will be an approved mechanism. Today, the Swedish greenhouse gas mitigation policy does not include this option. Some of the potential multi-functional energy plantations (e.g. buffer strips for reducing nutrient leaching and vegetation filters for treatment of polluted drainage water) results in increased cultivation costs for the farmer, thus increased economic barriers. Examples of measures to overcome such barriers are dedicated subsidies for multi-functional

  16. Harmonic Active Filtering and Impedance-based Stability Analysis in Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Dhua, Debasish; Yang, Guangya; Zhang, Zhe

    2017-01-01

    Nowadays, to eliminate harmonics injected by the wind turbines in offshore wind power plants there is a need to install passive filters. Moreover, the passive filters are not adaptive to harmonic profile changes due to topology changes, grid loading etc. Therefore, active filters in wind turbines...... installation and provides effectively similar functionality as passive filters. This work is focused on harmonic propagation studies in wind power plants, power quality evaluation at the point of connection and harmonic mitigation by active filtering. Finally, an impedance-based stability analysis...... are proposed as a flexible harmonic mitigation measure. The motivation of this study is to explore the possibility of embedding active filtering in wind turbine grid-side converters without having to change the system electrical infrastructure. The active filtering method can prevent additional equipment...

  17. Fuzzy Logic-Based Filter for Removing Additive and Impulsive Noise from Color Images

    Science.gov (United States)

    Zhu, Yuhong; Li, Hongyang; Jiang, Huageng

    2017-12-01

    This paper presents an efficient filter method based on fuzzy logics for adaptively removing additive and impulsive noise from color images. The proposed filter comprises two parts including noise detection and noise removal filtering. In the detection part, the fuzzy peer group concept is applied to determine what type of noise is added to each pixel of the corrupted image. In the filter part, the impulse noise is deducted by the vector median filter in the CIELAB color space and an optimal fuzzy filter is introduced to reduce the Gaussian noise, while they can work together to remove the mixed Gaussian-impulse noise from color images. Experimental results on several color images proves the efficacy of the proposed fuzzy filter.

  18. Tunable metamaterial bandstop filter based on ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Qingmin Wang

    2015-07-01

    Full Text Available Tunable wideband microwave bandstop filters have been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance frequency which can be influenced by the demagnetization factor of the ferrite rods. For the filter composed of two ferrite rods with different size, it exhibits a -3 db stop bandwidth as large as 500 MHz, peak absorption of -40 db and an out-of-stopband insertion loss of -1.5 db. This work provides a new way to fabricate the microwave bandstop filters.

  19. Beam filter and splitter based on surface plasmon propagation in ...

    Indian Academy of Sciences (India)

    BS) constructed using metal ... devices such as filters, splitters, resonators, sensors, optical switches, and so on. Keywords. Surface ... features a high demand of optical passive components such as power splitters, vari- able attenuators and ...

  20. On the Systematic Synthesis of OTA-Based KHN Filters

    Directory of Open Access Journals (Sweden)

    Y.A. Li

    2014-04-01

    Full Text Available According to the nullor-mirror descriptions of OTA, the NAM expansion method for three different types of KHN filters employing OTAs is considered. The type-A filters employing five OTAs have 32 different forms, the type-B filters employing four OTAs have 32 different forms, and the type-C filters employing three OTAs have eight different forms. At last a total of 72 circuits are received. Having used canonic number of components, the circuits are easy to be integrated and both pole frequency and Q-factor can be tuned electronically through tuning bias currents of the OTAs. The MULTISIM simulation results have been included to verify the workability of the derived circuit.

  1. Research of spatial filtering algorithms based on MATLAB

    Science.gov (United States)

    Wu, Fuxi; Li, Chuanjun; Li, Xingcheng

    2017-10-01

    In order to solve the problem that the satellite signal power is very weak and susceptible to interference, try to use the spatial filtering algorithm to produce a deeper null in the direction of the interference signal, so as to suppress the interference. In this paper, we will compare the least mean square (LMS), normalized LMS (NLMS) and Recursive least square (RLS) adaptive algorithms for spatial filtering. Finally, the content of the study will be verified by simulation.

  2. New Collaborative Filtering Algorithms Based on SVD++ and Differential Privacy

    OpenAIRE

    Xian, Zhengzheng; Li, Qiliang; Li, Gai; Li, Lei

    2017-01-01

    Collaborative filtering technology has been widely used in the recommender system, and its implementation is supported by the large amount of real and reliable user data from the big-data era. However, with the increase of the users’ information-security awareness, these data are reduced or the quality of the data becomes worse. Singular Value Decomposition (SVD) is one of the common matrix factorization methods used in collaborative filtering, which introduces the bias information of users a...

  3. Stable and efficient cubature-based filtering in dynamical systems

    CERN Document Server

    Ballreich, Dominik

    2017-01-01

    The book addresses the problem of calculation of d-dimensional integrals (conditional expectations) in filter problems. It develops new methods of deterministic numerical integration, which can be used to speed up and stabilize filter algorithms. With the help of these methods, better estimates and predictions of latent variables are made possible in the fields of economics, engineering and physics. The resulting procedures are tested within four detailed simulation studies.

  4. Fast rail corrugation detection based on texture filtering

    Science.gov (United States)

    Xiao, Jie; Lu, Kaixia

    2018-02-01

    The condition detection of rails in high-speed railway is one of the important means to ensure the safety of railway transportation. In order to replace the traditional manual inspection, save manpower and material resources, and improve the detection speed and accuracy, it is of great significance to develop a machine vision system for locating and identifying defects on rails automatically. Rail defects exhibit different properties and are divided into various categories related to the type and position of flaws on the rail. Several kinds of interrelated factors cause rail defects such as type of rail, construction conditions, and speed and/or frequency of trains using the rail. Rail corrugation is a particular kind of defects that produce an undulatory deformation on the rail heads. In high speed train, the corrugation induces harmful vibrations on wheels and its components and reduces the lifetime of rails. This type of defects should be detected to avoid rail fractures. In this paper, a novel method for fast rail corrugation detection based on texture filtering was proposed.

  5. Paris law parameter identification based on the Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Melgar M.

    2016-01-01

    Full Text Available Aircraft structures are commonly subjected to repeated loading cycles leading to fatigue damage. Fatigue data can be extrapolated by fatigue models which are adopted to describe the fatigue damage behaviour. Such models depend on their parameters for accurate prediction of the fatigue life. Therefore, several methods have been developed for estimating the model parameters for both linear and nonlinear systems. It is useful for a broad class of parameter identification problems when the dynamic model is not known. In this paper, the Paris law is used as fatigue-crack-length growth model on a metallic component under loading cycles. The Extended Kalman Filter (EKF is proposed as estimation method. Simulated crack length data is used to validate the estimation method. Based on experimental data obtained from fatigue experiment, the crack length and model parameters are estimated. Accurate model parameters allow a more realistic prediction of the fatigue life, consequently, the remaining useful life (RUL of component can be accurately computed. In this sense, maintenance performance could be improved.

  6. Emotion Recognition of Speech Signals Based on Filter Methods

    Directory of Open Access Journals (Sweden)

    Narjes Yazdanian

    2016-10-01

    Full Text Available Speech is the basic mean of communication among human beings.With the increase of transaction between human and machine, necessity of automatic dialogue and removing human factor has been considered. The aim of this study was to determine a set of affective features the speech signal is based on emotions. In this study system was designs that include three mains sections, features extraction, features selection and classification. After extraction of useful features such as, mel frequency cepstral coefficient (MFCC, linear prediction cepstral coefficients (LPC, perceptive linear prediction coefficients (PLP, ferment frequency, zero crossing rate, cepstral coefficients and pitch frequency, Mean, Jitter, Shimmer, Energy, Minimum, Maximum, Amplitude, Standard Deviation, at a later stage with filter methods such as Pearson Correlation Coefficient, t-test, relief and information gain, we came up with a method to rank and select effective features in emotion recognition. Then Result, are given to the classification system as a subset of input. In this classification stage, multi support vector machine are used to classify seven type of emotion. According to the results, that method of relief, together with multi support vector machine, has the most classification accuracy with emotion recognition rate of 93.94%.

  7. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    Science.gov (United States)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  8. High-Precision Attitude Estimation Method of Star Sensors and Gyro Based on Complementary Filter and Unscented Kalman Filter

    Science.gov (United States)

    Guo, C.; Tong, X.; Liu, S.; Liu, S.; Lu, X.; Chen, P.; Jin, Y.; Xie, H.

    2017-07-01

    Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite's attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF) and Unscented Kalman Filter (UKF). In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  9. HIGH-PRECISION ATTITUDE ESTIMATION METHOD OF STAR SENSORS AND GYRO BASED ON COMPLEMENTARY FILTER AND UNSCENTED KALMAN FILTER

    Directory of Open Access Journals (Sweden)

    C. Guo

    2017-07-01

    Full Text Available Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite’s attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF and Unscented Kalman Filter (UKF. In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  10. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  11. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter.......We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter....

  12. Dynamic Mode Decomposition based on Bootstrapping Extended Kalman Filter Application to Noisy data

    Science.gov (United States)

    Nonomura, Taku; Shibata, Hisaichi; Takaki, Ryoji

    2017-11-01

    In this study, dynamic mode decomposition (DMD) based on bootstrapping extended Kalman filter is proposed for time-series data. In this framework, state variables (x and y) are filtered as well as the parameter estimation (aij) which is conducted in the conventional DMD and the standard Kalman-filter-based DMD. The filtering process of state variables enables us to obtain highly accurate eigenvalue of the system with strong noise. In the presentation, formulation, advantages and disadvantages are discussed. This research is partially supported by Presto, JST (JPMJPR1678).

  13. LC Filter Design for Wide Band Gap Device Based Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Vadstrup, Casper; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    the LC filter with a higher cut off frequency and without damping resistors. The selection of inductance and capacitance is chosen based on capacitor voltage ripple and current ripple. The filter adds a base load to the inverter, which increases the inverter losses. It is shown how the modulation index...

  14. Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.

    2005-01-01

    We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....

  15. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Li K

    2013-07-01

    Full Text Available Kangan Li,1,4,5,* Shihui Wen,2,* Andrew C Larson,4,5 Mingwu Shen,2 Zhuoli Zhang,4,5 Qian Chen,3 Xiangyang Shi,2,3 Guixiang Zhang1 1Department of Radiology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 3State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People’s Republic of China; 4Departments of Radiology and Biomedical Engineering, Northwestern University, Chicago, IL, USA; 5Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA *These authors contributed equally to this work Abstract: Development of dual-mode or multi-mode imaging contrast agents is important for accurate and self-confirmatory diagnosis of cancer. We report a new multifunctional, dendrimer-based gold nanoparticle (AuNP as a dual-modality contrast agent for magnetic resonance (MR/computed tomography (CT imaging of breast cancer cells in vitro and in vivo. In this study, amine-terminated generation 5 poly(amidoamine dendrimers modified with gadolinium chelate (DOTA-NHS and polyethylene glycol monomethyl ether were used as templates to synthesize AuNPs, followed by Gd(III chelation and acetylation of the remaining dendrimer terminal amine groups; multifunctional dendrimer-entrapped AuNPs (Gd-Au DENPs were formed. The formed Gd-Au DENPs were used for both in vitro and in vivo MR/CT imaging of human MCF-7 cancer cells. Both MR and CT images demonstrate that MCF-7 cells and the xenograft tumor model can be effectively imaged. The Gd-Au DENPs uptake, mainly in the cell cytoplasm, was confirmed by transmission electron microscopy. The cell cytotoxicity assay, cell morphology observation, and flow cytometry show that the developed Gd-Au DENPs have good biocompatibility in the given concentration range. Our results

  16. Multifunction system service students and staff of higher education institutions by the example of ENGECON based on solutions IT -Card

    Directory of Open Access Journals (Sweden)

    Kulakova Ekaterina Yurevna

    2011-03-01

    Full Text Available This work is devoted to the creation of multifunctional system service students and staff of universities based on smart card using the concept of electronic "purse." Experience of other countries with a similar solution shows that the system allows the university to significantly reduce maintenance costs of its activities and at the same time improve the quality of services provided. Also in this paper present my vision of the problem and its solution in our university - ENGECON.

  17. Preparation of a multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids-bases resistance by electrospinning

    Science.gov (United States)

    Wang, Shuai; Liu, Qingwen; Zhang, Yang; Wang, Shaodan; Li, Yaoxian; Yang, Qingbiao; Song, Yan

    2013-08-01

    A multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids-bases resistance was developed from the bead-on-string PVDF and Fe3O4@SiO2@POTS nanoparticles by electrospinning in this work. The Fe3O4@SiO2@POTS nanoparticles which have excellent superparamagnetism were successfully prepared and subsequently introduced into PVDF precursor solution. Through electrospinning, Fe3O4@SiO2@POTS nanoparticles irregularly distributed in the membrane to not only make a dual-scale roughness which is beneficial to obtain a superhydrophobic surface but also stimulate the material turns to superparamagnetic for wider use in different fields. More importantly, the film shows stable superhydrophobicity even for many corrosive solutions, such as acidic or basic solutions over a wide pH range and remarkable mechanical stability. The composition and surface structure of the film are the two critical factors that induce such unusual properties. The weight ratio of Fe3O4@SiO2@POTS/PVDF can strongly influence the superhydrophobicity and mechanical properties of the composite films.

  18. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations.

    Science.gov (United States)

    Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping

    2017-03-19

    The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.

  19. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations

    Directory of Open Access Journals (Sweden)

    Jian Ou

    2017-03-01

    Full Text Available The extensive applications of multi-function radars (MFRs have presented a great challenge to the technologies of radar countermeasures (RCMs and electronic intelligence (ELINT. The recently proposed cognitive electronic warfare (CEW provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR. With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.

  20. Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning

    Science.gov (United States)

    Xing, Chenyang; Guan, Jipeng; Chen, Zhouli; Zhu, Yu; Zhang, Bowu; Li, Yongjin; Li, Jingye

    2015-03-01

    Novel antibacterial, anti-electrostatic, and hydrophilic nanofibers based on a blend containing thermoplastic polyurethane (TPU) and a room-temperature ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], were fabricated by electrospinning. We investigated the effect of the IL on the morphology and the physical properties of the TPU nanofibers. Nanofibers with a ‘bead-on-string’ morphology were obtained by electrospinning from a neat TPU solution. The incorporation of the IL, at levels as low as 1 wt%, largely suppressed the formation of beads during electrospinning, and homogeneous nanofibers were obtained. The as-spun TPU/IL composite nanofibers showed significant activity against both Escherichia coli (E coli) and Staphylococcus aureus (S. aureus), with antibacterial activities of more than four and three, respectively. This means that the antibacterial efficiencies of TPU/IL composite nanofibers toward E coli and S. aureus are 99.99% and 99.9%, respectively. Moreover, nonwoven fabrics derived from the electrospun TPU/IL composite nanofibers exhibit better stretchability, elasticity, and higher electrical conductivity compared to those made using neat TPU without an IL. Additionally, the incorporation of the IL leads to a hydrophilic surface for the TPU/IL composite nanofibers compared to hydrophobic neat TPU nanofibers. These multifunctional nanofibers with excellent antibacterial, anti-electrostatic, and mechanical properties and improved hydrophilicity are promising candidates for biomedical and wastewater treatment applications.

  1. Diffraction-based optical filtering: Theory and implementation with MEMS

    Science.gov (United States)

    Belikov, Ruslan

    An important functionality in many optical systems is to manipulate the spectral content of light. Diffractive optics has been used widely for this purpose. Typically, in such systems a diffractive element essentially acts as an optical filter on the incident beam of light. However, no comprehensive theory of this type of filtering existed. Furthermore, recent advances in MEMS technology have enabled reconfigurable diffractive optical elements, which make it possible to create programmable spectral filters. Such devices can lead to significant advances in many applications and enable new classes of optical instruments and systems. Hence, a need arose to develop an understanding of the capabilities and limitations of such devices. The theory presented in this work answers three main questions: (1) how does one synthesize a diffractive optical element (DOE) for a desired filter; (2) what are the capabilities and limitations on such filters; and (3) what is the best device to use? We present two analytical algorithms to compute the DOE for any complex-valued linear filter, and thus answer question 1. The theory also leads to an understanding that there are fundamental trade-offs between filter complexity, power, error, and spectral range, which answers question 2. We then show that a fully arbitrary DOE is very redundant as a filter, and that we can maintain full functionality by a much simpler device, answering question 3. We then apply the theory to existing devices, which leads to the understanding of their capabilites and limitations. Furthermore, the theory led to the discovery that some well-known MEMS devices, such as the Texas Instruments DMD array, can be used as arbitrary spectral filters. Using the DMD, we demonstrate three applications that can benefit from this technology: correlation spectroscopy, femtosecond pulseshaping, and tunable lasers. In all three applications, we enable functionality never achieved before. The most significant achievement is our

  2. BPSK Receiver Based on Recursive Adaptive Filter with Remodulation

    Directory of Open Access Journals (Sweden)

    N. Milosevic

    2011-12-01

    Full Text Available This paper proposes a new binary phase shift keying (BPSK signal receiver intended for reception under conditions of significant carrier frequency offsets. The recursive adaptive filter with least mean squares (LMS adaptation is used. The proposed receiver has a constant, defining the balance between the recursive and the nonrecursive part of the filter, whose proper choice allows a simple construction of the receiver. The correct choice of this parameter could result in unitary length of the filter. The proposed receiver has performance very close to the performance of the BPSK receiver with perfect frequency synchronization, in a wide range of frequency offsets (plus/minus quarter of the signal bandwidth. The results obtained by the software simulation are confirmed by the experimental results measured on the receiver realized with the universal software radio peripheral (USRP, with the baseband signal processing at personal computer (PC.

  3. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Science.gov (United States)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  4. Interference suppression using a SAW-based adaptive filter

    Science.gov (United States)

    Saulnier, Gary J.; Grant, Calvin J.; Das, Pankaj K.

    The structure and performance of a transversal filter interference suppressor that has been constructed using a surface acoustic wave (SAW) delay line are described. The delay line operates at a center frequency of 300 MHz and has eight equally spaced taps with an intertap delay of 150 ns. In the programmable mode, the tap weights are externally controllable, and in the adaptive mode, the tap weights are adjusted using the Widrow-Hoff least-mean-squared algorithm. Experimental results are provided that illustrate the performance of the filter in both the adaptive and programmable modes. Filter responses obtained in the adaptive mode are shown, along with spectra demonstrating the corresponding interference suppression. Bit-error-rate performance results for a single-tone jammer interfering with a direct sequence spread spectrum signal are presented.

  5. An Adjoint-Based Adaptive Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2013-10-01

    A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

  6. Development of active porous medium filters based on plasma textiles

    Science.gov (United States)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath ("plasma shield") that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  7. Development of active porous medium filters based on plasma textiles

    International Nuclear Information System (INIS)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-01-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  8. Development of active porous medium filters based on plasma textiles

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren [Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695 (United States)

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  9. Single VDTA Based Dual Mode Single Input Multioutput Biquad Filter

    Directory of Open Access Journals (Sweden)

    Rajeshwari Pandey

    2016-01-01

    Full Text Available This paper presents a dual mode, single input multioutput (SIMO biquad filter configuration using single voltage differencing transconductance amplifier (VDTA, three capacitors, and a grounded resistor. The proposed topology can be used to synthesize low pass (LP, high pass (HP, and band pass (BP filter functions. It can be configured as voltage mode (VM or current mode (CM structure with appropriate input excitation choice. The angular frequency (ω0 of the proposed structure can be controlled independently of quality factor (Q0. Workability of the proposed biquad configuration is demonstrated through PSPICE simulations using 0.18 μm TSMC CMOS process parameters.

  10. Design of Absorbing Wave Maker based on Digital Filters

    DEFF Research Database (Denmark)

    Christensen, Morten; Frigaard, Peter

    An absorbing wave maker operated by means of on-line signals from digital FIR filters is presented. Surface elevations are measured in two positions in front of the wave maker. The reflected wave train is seperated by the sum of the incident and reflected wave trains by means of digital filtering...... and subsequent superposition of the measured surface elevations. The motion of the wave paddle required to absorb reflected waves is determined and added to the original wave paddle control signal. Irregular wave tests involving test structures with different degrees of reflection show that excellent absorption...

  11. Microwave Bandpass Filter Based on Mie-Resonance Extraordinary Transmission.

    Science.gov (United States)

    Pan, Xiaolong; Wang, Haiyan; Zhang, Dezhao; Xun, Shuang; Ouyang, Mengzhu; Fan, Wentao; Guo, Yunsheng; Wu, Ye; Huang, Shanguo; Bi, Ke; Lei, Ming

    2016-01-01

    Microwave bandpass filter structure has been designed and fabricated by filling the periodically metallic apertures with dielectric particles. The microwave cannot transmit through the metallic subwavelength apertures. By filling the metallic apertures with dielectric particles, a transmission passband with insertion loss 2 dB appears at the frequency of 10-12 GHz. Both simulated and experimental results show that the passband is induced by the Mie resonance of the dielectric particles. In addition, the passband frequency can be tuned by the size and the permittivity of the dielectric particles. This approach is suitable to fabricate the microwave bandpass filters.

  12. Microwave Bandpass Filter Based on Mie-Resonance Extraordinary Transmission.

    Directory of Open Access Journals (Sweden)

    Xiaolong Pan

    Full Text Available Microwave bandpass filter structure has been designed and fabricated by filling the periodically metallic apertures with dielectric particles. The microwave cannot transmit through the metallic subwavelength apertures. By filling the metallic apertures with dielectric particles, a transmission passband with insertion loss 2 dB appears at the frequency of 10-12 GHz. Both simulated and experimental results show that the passband is induced by the Mie resonance of the dielectric particles. In addition, the passband frequency can be tuned by the size and the permittivity of the dielectric particles. This approach is suitable to fabricate the microwave bandpass filters.

  13. Robust single-trial ERP estimation based on spatiotemporal filtering.

    Science.gov (United States)

    Li, Ruijiang; Principe, Jose C; Bradley, Margaret; Ferrari, Vera

    2007-01-01

    Most spatiotemporal filtering methods for the problem of single-trial event-related potentials (ERP) estimation relies on the analysis of the second-order statistics (SOS) of electroencephalograph (EEG) data. Due to the noisy nature of EEG, these methods often suffer from the outliers in EEG. We combine a recently proposed spatiotemporal filtering method with the maximum correntropy criterion (MCC) for the single-trial estimation of the ERP amplitude. Study with real cognitive ERP data shows the robustness of the method with reduced estimation variance.

  14. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  15. Modelling of the modified-LLCL-filter-based single-phase grid-tied Aalborg inverter

    DEFF Research Database (Denmark)

    Liu, Zifa; Wu, Huiyun; Liu, Yuan

    2017-01-01

    Owing to less conduction and switching power losses, the recently proposed Aalborg inverter has high efficiency within a wide range of input DC voltage for single-phase DC/AC power conversion. In theory, the conduction power losses can be further decreased, if an LLCL-filter is adopted instead....... In this study, the small signal analysis for the modified-LLCL-filter-based Aalborg inverter is addressed. Through the modelling, it can be proven that compared with the LCL-filter, the modified-LLCL-filter causes no extra control challenge for the Aalborg inverter, and therefore more inductance in the power...... of an LCL-filter for a voltage source inverter, mainly due to the reduced inductance. The Aalborg inverter shows the characteristic of a current source inverter, when working in the `boost' state. Whether the LLCL-filter can meet the control requirement of this type inverter needs to be further explored...

  16. Second-order all-fiber comb filter based on polarization-diversity loop configuration.

    Science.gov (United States)

    Lee, Yong Wook; Kim, Hyun-Tak; Lee, Yong Wan

    2008-03-17

    By concatenating three birefringence loops in series, a second-order all-fiber comb filter based on a polarization-diversity loop configuration is newly proposed. The proposed filter consists of one polarization beam splitter, polarization-maintaining fibers, and two halfwave plates. The effect of a second-order structure of polarization-maintaining fiber loops on a bandwidth of the filter passband was theoretically analyzed and experimentally demonstrated. Transmission output of the second-order filter (flat-top and narrow-band transmission spectra) could be obtained by adjusting two half-wave plates. 1 and 3 dB bandwidths of the proposed filter in flat-top and narrow-band operations were greater by approximately 102.9 and 44.3 % and smaller by approximately 47.9 and 47.1 % than those of a conventional Sagnac birefringence filter, respectively.

  17. Design and control of an LCL-filter-based three-phase active rectifier

    DEFF Research Database (Denmark)

    Liserre, Marco; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    This paper proposes a step-by-step procedure for designing the LCL filter of a front-end three-phase active rectifier. The primary goal is to reduce the switching frequency ripple at a reasonable cost, while at the same time achieving a high-performance front-end rectifier (as characterized...... by a rapid dynamic response and good stability margin). An example LCL filter design is reported and a filter has been built and tested using the values obtained from this design. The experimental results demonstrate the performance of the design procedure both for the LCL filter and for the rectifier...... a powerful tool to design an LCL-filter-based active rectifier while avoiding trial-and-error procedures that can result in having to build several filter prototypes....

  18. MEMS optical tunable filter based on free-standing subwavelength silicon layers

    Science.gov (United States)

    Omran, Haitham; Sabry, Yasser M.; Sadek, Mohamed; Hassan, Khaled; Shalaby, Mohamed Y.; Khalil, Diaa

    2014-03-01

    We report a MEMS optical tunable filter based on high-aspect-ratio etching of sub-wavelength silicon layers on a silicon- on-insulator wafer. The reported filter has measured free-spectral and filter-tuning ranges of approximately 100 nm and a finesse of about 20 around a wavelength of 1550 nm, enabled by the use of 1000 nm-thick silicon layers and a balanced tilt-free motion using a lithographically-aligned electrostatic actuator. The average insertion loss of the filter is about 12 dB with a superior wavelength-dependent loss of about 1.5 dB. The filter has an out-of-band to in-band wavelength rejection ratio that is better than 20 dB. The reported filter experimental characteristics and its integrability are suitable for the production of integrated swept sources for optical coherence tomography application and miniaturized spectrometers.

  19. FIR Filter Implementation Based on the RNS with Diminished-1 Encoded Channel

    Directory of Open Access Journals (Sweden)

    Dragana Uros Zivaljevic

    2013-03-01

    Full Text Available A technique, based on the residue number system (RNS with diminished-1 encoded channel, has being used for implementing a finite impulse response (FIR digital filter. The proposed RNS architecture of the filter consists of three main blocks: forward and reverse converter and arithmetic processor for each channel. Architecture for residue to binary (reverse convertor with diminished-1 encoded channel has been proposed. Besides, for all RNS channels, the systolic design is used for the efficient  realization of FIR filter. A numerical example illustrates the principles of diminished-1 residue arithmetic, signal processing, and decoding for FIR filters.

  20. Optical micro-multi-racetrack resonator filter based on SOI waveguides

    Science.gov (United States)

    Malka, Dror; Cohen, Moshik; Turkiewicz, Jarek; Zalevsky, Zeev

    2015-08-01

    In this paper, we present a new design of optical Finite Impulse Response (FIR) filter based on combination of multi-racetrack resonators realized with Silicon waveguides. Numerical investigations were carried out on the spectral response of the proposed filters design, in order to obtain FIR band-pass filter around the photonic carrier wavelength of 1.55 μm. The proposed FIR filter was fabricated using electron beam lithography (EBL). The device was preliminary experimentally examined by a combination of scanning electron microscopy (SEM) and atomic force microscopy (AFM).

  1. Hellinger Distance-Based Parameter Tuning for ɛ-Filter

    Science.gov (United States)

    Suetake, Noriaki; Tanaka, Go; Hashii, Hayato; Uchino, Eiji

    In this letter, we propose a new tuning method of ɛ value, which is a parameter in the ɛ-filter, using a metric between signal distributions, i.e., Hellinger distance. The difference between the input and output signals is evaluated using Hellinger distance and used for the parameter tuning in the proposed method.

  2. Measurement-based local quantum filters and their ability to ...

    Indian Academy of Sciences (India)

    Debmalya Das

    Berhampur (Transit Campus), National Highway 59, Berhampur 760 010, India. ∗. Corresponding author. E-mail: arvind@iisermohali.ac.in. MS received 29 July 2016; revised 21 October 2016; accepted 16 December 2016; published online 30 May 2017. Abstract. We introduce local filters as a means to detect the ...

  3. Linear variable optical filter-based ultraviolet microspectrometer

    NARCIS (Netherlands)

    Emadi, A.; Wu, H.; De Graaf, G.; Enoksson, P.; Higino Correia, J.; Wolffenbuttel, R.

    2012-01-01

    An IC-compatible linear variable optical filter (LVOF) for application in the UV spectral range between 310 and 400 nm has been fabricated using resist reflow and an optimized dry-etching. The LVOF is mounted on the top of a commercially available CMOS camera to result in a UV microspectrometer. A

  4. Single CFTA Based Current-Mode Universal Biquad Filter

    Directory of Open Access Journals (Sweden)

    S.V. Singh

    2016-12-01

    Full Text Available This paper introduces a new current-mode (CM universal biquad filter structure with optimum number of active and passive elements. In the design, the proposed circuit uses a single active element namely, current follower trans-conductance amplifier (CFTA and two grounded capacitors as passive elements. The main feature of the proposed circuit is that it can realize all five standard filtering functions such as low pass (LP, band pass (BP, high pass (HP, band stop (BS and all pass (AP responses across an explicit high impedance output terminal through the appropriate selection of three inputs. In addition, the same circuit is also capable to simultaneously realize three filtering functions (LP, BP and HP by the use of single current input signal. Moreover, the proposed structure is suited for low voltage, low power operations and offers the feature of electronic tunability of pole-frequency and quality factor. Further to extend the utility of the proposed circuit block higher order current-mode filters are also realized through direct cascading. A detailed non-ideal and parasitic study is also included. The performance of the circuits has been examined using standard 0.25 μ m CMOS parameters from TSMC.

  5. DSP based adaptive hysteresis-band current controlled active filter ...

    African Journals Online (AJOL)

    The use of non-linear loads critically affects the quality of supply by drawing harmonic currents and reactive power from the electrical distribution system. Active power filters are the most viable solution for solving such power quality problems in compliance with the harmonic standards. This article presents a digital signal ...

  6. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    In addition, by introducing narrow gaps in the rectangular ring resonators, it shows the single frequency filtering effect. Moreover, the structure also shows high sensitivity fordifferent surrounding mediums. This work provides a novel method for designing all-optical integrated components in optical communication.

  7. Molecular filter-based diagnostics in high speed flows

    Science.gov (United States)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  8. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We propose a novel approach for all optical RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal using a simple phase filter implemented by a commercial optical waveshaper....

  9. Proposing Wavelet-Based Low-Pass Filter and Input Filter to Improve Transient Response of Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-08-01

    Full Text Available Available photovoltaic (PV systems show a prolonged transient response, when integrated into the power grid via active filters. On one hand, the conventional low-pass filter, employed within the integrated PV system, works with a large delay, particularly in the presence of system’s low-order harmonics. On the other hand, the switching of the DC (direct current–DC converters within PV units also prolongs the transient response of an integrated system, injecting harmonics and distortion through the PV-end current. This paper initially develops a wavelet-based low-pass filter to improve the transient response of the interconnected PV systems to grid lines. Further, a damped input filter is proposed within the PV system to address the raised converter’s switching issue. Finally, Matlab/Simulink simulations validate the effectiveness of the proposed wavelet-based low-pass filter and damped input filter within an integrated PV system.

  10. Multifunctional, Micropipette-based Method for Incorporation And Stimulation of Bacterial Mechanosensitive Ion Channels in Droplet Interface Bilayers.

    Science.gov (United States)

    Najem, Joseph S; Dunlap, Myles D; Yasmann, Anthony; Freeman, Eric C; Grant, John W; Sukharev, Sergei; Leo, Donald J

    2015-11-19

    MscL, a large conductance mechanosensitive channel (MSC), is a ubiquitous osmolyte release valve that helps bacteria survive abrupt hypo-osmotic shocks. It has been discovered and rigorously studied using the patch-clamp technique for almost three decades. Its basic role of translating tension applied to the cell membrane into permeability response makes it a strong candidate to function as a mechanoelectrical transducer in artificial membrane-based biomolecular devices. Serving as building blocks to such devices, droplet interface bilayers (DIBs) can be used as a new platform for the incorporation and stimulation of MscL channels. Here, we describe a micropipette-based method to form DIBs and measure the activity of the incorporated MscL channels. This method consists of lipid-encased aqueous droplets anchored to the tips of two opposing (coaxially positioned) borosilicate glass micropipettes. When droplets are brought into contact, a lipid bilayer interface is formed. This technique offers control over the chemical composition and the size of each droplet, as well as the dimensions of the bilayer interface. Having one of the micropipettes attached to a harmonic piezoelectric actuator provides the ability to deliver a desired oscillatory stimulus. Through analysis of the shapes of the droplets during deformation, the tension created at the interface can be estimated. Using this technique, the first activity of MscL channels in a DIB system is reported. Besides MS channels, activities of other types of channels can be studied using this method, proving the multi-functionality of this platform. The method presented here enables the measurement of fundamental membrane properties, provides a greater control over the formation of symmetric and asymmetric membranes, and is an alternative way to stimulate and study mechanosensitive channels.

  11. Accelerometer North Finding System Based on the Wavelet Packet De-noising Algorithm and Filtering Circuit

    Directory of Open Access Journals (Sweden)

    LU Yongle

    2014-07-01

    Full Text Available This paper demonstrates a method and system for north finding with a low-cost piezoelectricity accelerometer based on the Coriolis acceleration principle. The proposed setup is based on the choice of an accelerometer with residual noise of 35 ng•Hz-1/2. The plane of the north finding system is aligned parallel to the local level, which helps to eliminate the effect of plane error. The Coriolis acceleration caused by the earth’s rotation and the acceleration’s instantaneous velocity is much weaker than the g-sensitivity acceleration. To get a high accuracy and a shorter time for north finding system, in this paper, the Filtering Circuit and the wavelet packet de-nosing algorithm are used as the following. First, the hardware is designed as the alternating currents across by filtering circuit, so the DC will be isolated and the weak AC signal will be amplified. The DC is interfering signal generated by the earth's gravity. Then, we have used a wavelet packet to filter the signal which has been done through the filtering circuit. Finally, compare the north finding results measured by wavelet packet filtering with those measured by a low-pass filter. Wavelet filter de-noise data shows that wavelet packet filtering and wavelet filter measurement have high accuracy. Wavelet Packet filtering has stronger ability to remove burst noise and higher engineering environment adaptability than that of Wavelet filtering. Experimental results prove the effectiveness and project implementation of the accelerometer north finding method based on wavelet packet de-noising algorithm.

  12. Cascaded chirped narrow bandpass filter with flat-top based on two-dimensional photonic crystals.

    Science.gov (United States)

    Zhuang, Yuyang; Chen, Heming; Ji, Ke

    2017-05-10

    We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.

  13. APPLICATION OF RANKING BASED ATTRIBUTE SELECTION FILTERS TO PERFORM AUTOMATED EVALUATION OF DESCRIPTIVE ANSWERS THROUGH SEQUENTIAL MINIMAL OPTIMIZATION MODELS

    Directory of Open Access Journals (Sweden)

    C. Sunil Kumar

    2014-10-01

    Full Text Available In this paper, we study the performance of various models for automated evaluation of descriptive answers by using rank based feature selection filters for dimensionality reduction. We quantitatively analyze the best feature selection technique from amongst the five rank based feature selection techniques, namely Chi squared filter, Information gain filter, Gain ratio filter, Relief filter and Symmetrical uncertainty filter. We use Sequential Minimal Optimization with Polynomial kernel to build models and we evaluate the models across various parameters such as Accuracy, Time to build models, Kappa, Mean Absolute Error and Root Mean Squared Error. Except with Relief filter, for all other filters applied models, the accuracies obtained are at least 4% better than accuracies obtained with models with no filters applied. The accuracies recorded are same across Chi squared filter, Information gain filter, Gain ratio filter and Symmetrical Uncertainty filter. Therefore accuracy alone is not the determinant in selecting the best filter. The time taken to build models, Kappa, Mean absolute error and Root Mean Squared Error played a major role in determining the effectiveness of the filters. The overall rank aggregation metric of Symmetrical uncertainty filter is 45 and this is better by 1 rank than the rank aggregation metric of information gain attribute evaluation filter, the nearest contender to Symmetric attribute evaluation filter. Symmetric uncertainty rank aggregation metric is better by 3, 6, 112 ranks respectively when compared to rank aggregation metrics of Chi squared filter, Gain ratio filter and Relief filters. Through these quantitative measurements, we conclude that Symmetrical uncertainty attribute evaluation is the overall best performing rank based feature selection algorithm applicable for auto evaluation of descriptive answers.

  14. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... variation throughout the laminate. The filters replace the layerwise density variables with a single continuous through-the-thickness design variable. Consequently, the filters eliminate the need for having explicit constraints for preventing intermediate void through the thickness of the laminate....... Therefore, the filters reduce both the number of constraints and design variables in the optimization problem. Based upon a continuous approximation of a unit step function, the thickness filters are capable of projecting discrete 0/1 values to the underlying layerwise or ”physical” density variables which...

  15. Adaptive-Fuzzy Controller Based Shunt Active Filter for Power Line Conditioners

    Directory of Open Access Journals (Sweden)

    KamalaKanta Mahapatra

    2011-08-01

    Full Text Available This paper presents a novel Fuzzy Logic Controller (FLC in conjunction with Phase Locked Loop (PLL based shunt active filter for Power Line Conditioners (PLCs to improve the power quality in the distribution system. The active filter is implemented with current controlled Voltage Source Inverter (VSI for compensating current harmonics and reactive power at the point of common coupling. The VSI gate control switching pulses are derived from proposed Adaptive-Fuzzy-Hysteresis Current Controller (HCC and this method calculates the hysteresis bandwidth effectively using fuzzy logic. The bandwidth can be adjusted based on compensation current variation, which is used to optimize the required switching frequency and improves active filter substantially. These shunt active power filter system is investigated and verified under steady and transient-state with non-linear load conditions. This shunt active filter is in compliance with IEEE 519 and IEC 61000-3 recommended harmonic standards.

  16. A Fresh Phase Unwrapping Method Based on Modified Embedded Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    DAI Gaoxing

    2017-12-01

    Full Text Available A phase unwrapping algorithm is proposed that based on modified embedded cubature Kalman filter for interferometric fringes.The algorithm is the result through combining an embedded cubature Kalman filter modified by a Levenberg-Marquardt method,a robust phase gradient estimator based on amended matrix pencil model,and a quantization path-following strategy.This method can accurately estimate unambiguous unwrapped phase of interferometric fringes by applying the modified embedded cubature Kalman filter to perform phase unwrapping and noise suppress simultaneously along the path routed by the quantization path-following strategy,which is beneficial to simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure,and even can remove the pre-filtering procedure.Results obtained with synthetic data and real data show more acceptable solutions with the proposed method,compared with some of the most used algorithms.

  17. Multifunctional monomers based on vinyl sulfonates and vinyl sulfonamides for crosslinking thiol-Michael polymerizations: monomer reactivity and mechanical behavior.

    Science.gov (United States)

    Sinha, Jasmine; Podgórski, Maciej; Huang, Sijia; Bowman, Christopher N

    2018-03-25

    Multifunctional vinyl sulfonates and vinyl sulfonamides were conveniently synthesized and assessed in thiol-Michael crosslinking polymerizations. The monomer reactivities, mechanical behavior and hydrolytic properties were analyzed and compared with those of analogous thiol-acrylate polymerizations. Materials with a broad range of mechanical properties and diverse hydrolytic stabilities were obtained.

  18. Integrating public demands into model-based design for multifunctional agriculture: An application to intensive dutch dairy landscapes

    NARCIS (Netherlands)

    Parra-López, C.; Groot, J.C.J.; Carmona-Torres, C.; Rossing, W.A.H.

    2008-01-01

    The contribution of agriculture to the welfare of society is determined by its economic, social and environmental performance. Although theoretical discussions can be found in the literature, few reports exist that integrate the social demand for multifunctional agriculture in the evaluation of the

  19. Fractional Resonance-Based RLβCα Filters

    Directory of Open Access Journals (Sweden)

    Todd J. Freeborn

    2013-01-01

    Full Text Available We propose the use of a fractional order capacitor and fractional order inductor with orders 0≤α,  β≤1, respectively, in a fractional RLβCα series circuit to realize fractional-step lowpass, highpass, bandpass, and bandreject filters. MATLAB simulations of lowpass and highpass responses having orders of (α+β=1.1, 1.5, and 1.9 and bandpass and bandreject responses having orders of 1.5 and 1.9 are given as examples. PSPICE simulations of 1.1, 1.5, and 1.9 order lowpass and 1.0 and 1.4 order bandreject filters using approximated fractional order capacitors and fractional order inductors verify the implementations.

  20. Learning based particle filtering object tracking for visible-light systems

    OpenAIRE

    Sun, Wei

    2015-01-01

    We propose a novel object tracking framework based on online learning scheme that can work robustly in challenging scenarios. Firstly, a learning-based particle filter is proposed with color and edge-based features. We train a. support vector machine (SVM) classifier with object and background information and map the outputs into probabilities, then the weight of particles in a particle filter can be calculated by the probabilistic outputs to estimate the state of the object. Secondly, the tr...

  1. Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Li Guangxu

    2015-01-01

    Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.

  2. Passive ranging using a filter-based non-imaging method based on oxygen absorption.

    Science.gov (United States)

    Yu, Hao; Liu, Bingqi; Yan, Zongqun; Zhang, Yu

    2017-10-01

    To solve the problem of poor real-time measurement caused by a hyperspectral imaging system and to simplify the design in passive ranging technology based on oxygen absorption spectrum, a filter-based non-imaging ranging method is proposed. In this method, three bandpass filters are used to obtain the source radiation intensities that are located in the oxygen absorption band near 762 nm and the band's left and right non-absorption shoulders, and a photomultiplier tube is used as the non-imaging sensor of the passive ranging system. Range is estimated by comparing the calculated values of band-average transmission due to oxygen absorption, τ O 2 , against the predicted curve of τ O 2 versus range. The method is tested under short-range conditions. Accuracy of 6.5% is achieved with the designed experimental ranging system at the range of 400 m.

  3. Detail enhancement for high-dynamic-range infrared images based on guided image filter

    Science.gov (United States)

    Liu, Ning; Zhao, Dongxue

    2014-11-01

    Detail enhancement and noise reduction play crucial roles in high dynamic range infrared image processing. The main focuses are to compress the high dynamic range images with an effective way to display on lower dynamic range monitors, enhance the perceptibility of small details, and reduce the noises without causing artifacts. In this paper, we propose a new method for detail enhancement and noise reduction of high dynamic range infrared images. We first apply a guided image filter to smooth the input image and separate the image into the base component and the detail component. This process also gives us an adaptive weighting coefficient associated with the details generated by the filter kernel. After the filtering process, we compress the base component into the display range by our modified histogram projection and enhance the detail component using the gain mask of the filter weighting coefficient. At last, we recombine the two parts and quantize the result to 8-bit domain. Our method is significantly better than those based on histogram equalization (HE), and it also has better visual effect than bilateral filter-based methods. Furthermore, our proposed method is much faster, non-approximate and suffers much less gradient flipping artifacts compared to the bilateral filter-based methods because the guided image filter uses the local linear model. We demonstrate that our method is both effective and efficient in a great variety of applications. Experimental verification and detailed analysis are shown in this paper.

  4. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Directory of Open Access Journals (Sweden)

    Rahimi Eesa

    2018-02-01

    Full Text Available Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse’s spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  5. Improvement of QR Code Recognition Based on Pillbox Filter Analysis

    Directory of Open Access Journals (Sweden)

    Jia-Shing Sheu

    2013-04-01

    Full Text Available The objective of this paper is to perform the innovation design for improving the recognition of a captured QR code image with blur through the Pillbox filter analysis. QR code images can be captured by digital video cameras. Many factors contribute to QR code decoding failure, such as the low quality of the image. Focus is an important factor that affects the quality of the image. This study discusses the out-of-focus QR code image and aims to improve the recognition of the contents in the QR code image. Many studies have used the pillbox filter (circular averaging filter method to simulate an out-of-focus image. This method is also used in this investigation to improve the recognition of a captured QR code image. A blurred QR code image is separated into nine levels. In the experiment, four different quantitative approaches are used to reconstruct and decode an out-of-focus QR code image. These nine reconstructed QR code images using methods are then compared. The final experimental results indicate improvements in identification.

  6. Improved hybrid information filtering based on limited time window

    Science.gov (United States)

    Song, Wen-Jun; Guo, Qiang; Liu, Jian-Guo

    2014-12-01

    Adopting the entire collecting information of users, the hybrid information filtering of heat conduction and mass diffusion (HHM) (Zhou et al., 2010) was successfully proposed to solve the apparent diversity-accuracy dilemma. Since the recent behaviors are more effective to capture the users' potential interests, we present an improved hybrid information filtering of adopting the partial recent information. We expand the time window to generate a series of training sets, each of which is treated as known information to predict the future links proven by the testing set. The experimental results on one benchmark dataset Netflix indicate that by only using approximately 31% recent rating records, the accuracy could be improved by an average of 4.22% and the diversity could be improved by 13.74%. In addition, the performance on the dataset MovieLens could be preserved by considering approximately 60% recent records. Furthermore, we find that the improved algorithm is effective to solve the cold-start problem. This work could improve the information filtering performance and shorten the computational time.

  7. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  8. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches.

    Science.gov (United States)

    Kudarha, Ritu R; Sawant, Krutika K

    2017-12-01

    Albumin is a versatile protein used as a carrier system for cancer therapeutics. As a carrier it can provide tumor specificity, reduce drug related toxicity, maintain therapeutic concentration of the active moiety like drug, gene, peptide, protein etc. for long period of time and also reduce drug related toxicities. Apart from cancer therapy, it is also utilized in the imaging and multimodal therapy of cancer. This review highlights the important properties, structure and types of albumin based nanocarriers with regards to their use for cancer targeting. It also provides brief discussion on methods of preparation of these nanocarriers and their surface modification. Applications of albumin nanocarriers for cancer therapy, gene delivery, imaging, phototherapy and multimodal therapy have also been discussed. This review also provides brief discussion about albumin based marketed nano formulations and those under clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biomedical applications of gold nanorod-based multifunctional nano-carriers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Shao, Mingqian; Zhang, Song; Liu, Xinli, E-mail: vip.lxl@163.com [QiLu University of Technology, Shandong Provincial Key Laboratory of Microbial Engineering (China)

    2013-09-15

    Due to the good biocompatibility, ease of modification and unique optical properties, gold nanorods (AuNRs) have attracted more and more attentions in biomedical fields. In particular, through surface functionalization, AuNRs can be used as nano-carriers for drugs, probes, nucleic acids, and proteins in cancer treatment. In this review, we summarize the latest progress in biomedical applications of AuNRs-based nano-carriers including those in detection, biocatalysis, imaging, drug, and gene delivery. We also discuss the bioeffects of AuNRs such as in vivo distribution, translocation, localization, metabolism, and toxicity. Finally, we highlight some challenges in future biomedical applications of AuNRs-based nano-carriers.

  10. Biomedical applications of gold nanorod-based multifunctional nano-carriers

    International Nuclear Information System (INIS)

    Wang, Xin; Shao, Mingqian; Zhang, Song; Liu, Xinli

    2013-01-01

    Due to the good biocompatibility, ease of modification and unique optical properties, gold nanorods (AuNRs) have attracted more and more attentions in biomedical fields. In particular, through surface functionalization, AuNRs can be used as nano-carriers for drugs, probes, nucleic acids, and proteins in cancer treatment. In this review, we summarize the latest progress in biomedical applications of AuNRs-based nano-carriers including those in detection, biocatalysis, imaging, drug, and gene delivery. We also discuss the bioeffects of AuNRs such as in vivo distribution, translocation, localization, metabolism, and toxicity. Finally, we highlight some challenges in future biomedical applications of AuNRs-based nano-carriers

  11. Biomedical applications of gold nanorod-based multifunctional nano-carriers

    Science.gov (United States)

    Wang, Xin; Shao, Mingqian; Zhang, Song; Liu, Xinli

    2013-09-01

    Due to the good biocompatibility, ease of modification and unique optical properties, gold nanorods (AuNRs) have attracted more and more attentions in biomedical fields. In particular, through surface functionalization, AuNRs can be used as nano-carriers for drugs, probes, nucleic acids, and proteins in cancer treatment. In this review, we summarize the latest progress in biomedical applications of AuNRs-based nano-carriers including those in detection, biocatalysis, imaging, drug, and gene delivery. We also discuss the bioeffects of AuNRs such as in vivo distribution, translocation, localization, metabolism, and toxicity. Finally, we highlight some challenges in future biomedical applications of AuNRs-based nano-carriers.

  12. Flame based growth of ZnO nano- and microstructures for advanced optical, multifunctional devices, and biomedical applications (Conference Presentation)

    Science.gov (United States)

    Mishra, Yogendra K.; Gröttrup, Jorit; Smazna, Daria; Hölken, Iris; Hoppe, Mathias; Sindushree, Sindushree; Kaps, Sören; Lupan, Oleg; Seidel, Jan; Monteiro, Teresa; Tiginyanu, Ion M.; Kienle, Lorenz; Ronning, Carsten; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    The recent flame based growth strategy offers a simple and versatile fabrication of various (one, two, and three-dimensional) nano- and microstructures from different metal oxides (ZnO, SnO2, Fe2O3, etc.) in a desired manner.[1] ZnO structures ranging from nanoscales wires to macroscopic and highly porous 3D interconnected tetrapod networks have been successfully synthesized, characterized and utilized for various applications. The ZnO micro- and nanoneedles grown at walls in silicon trenches showed excellent whispering gallery mode resonances and photocatalytic properties.[2] Using the same strategy, large polycrystalline micro- and nanostructured ZnO platelets can be grown with grains interconnected together via grain boundaries and these grain boundaries exhibit a higher conductivity as compared to individual grains.[3] This flame transport synthesis (FTS) approach offers the growth of a large amount of ZnO tetrapods which have shown interesting applications because of their 3D spatial shape and micro-and nanoscale size, for example, interconnected tetrapods based devices for UV-detection and gas sensing.[4-5] Because of their complex 3D shape, ZnO tetrapods can be used as efficient filler particles for designing self-reporting,[6] and other interesting composites. The nanostructured materials exhibit an important role with respect to advanced biomedical applications as grown ZnO structures have shown strong potentials for antiviral applications.[7] Being mechanically strong and micro-and nanoscale in dimensions, these ZnO tetrapods can be easily doped with other elements or hybridized with various nanoparticles in form of hybrid ZnO tetrapods which are suitable for various multifunctional applications, for example, these hybrid tetrapods showed improved gas sensing properties.[8] The sacrificial nature of ZnO allows the for growth of new tetrapods and 3D network materials for various advanced applications, for example, highly porous and ultra light carbon based

  13. Constant-coefficient FIR filters based on residue number system arithmetic

    Directory of Open Access Journals (Sweden)

    Stamenković Negovan

    2012-01-01

    Full Text Available In this paper, the design of a Finite Impulse Response (FIR filter based on the residue number system (RNS is presented. We chose to implement it in the (RNS, because the RNS offers high speed and low power dissipation. This architecture is based on the single RNS multiplier-accumulator (MAC unit. The three moduli set {2n+1,2n,2n-1}, which avoids 2n+1 modulus, is used to design FIR filter. A numerical example illustrates the principles of residue encoding, residue arithmetic, and residue decoding for FIR filters.

  14. Making Fe0-Based Filters a Universal Solution for Safe Drinking Water Provision

    Directory of Open Access Journals (Sweden)

    Elham Naseri

    2017-07-01

    Full Text Available Metallic iron (Fe0-based filtration systems have the potential to significantly contribute to the achievement of the United Nations (UN Sustainable Development Goals (SDGs of substantially improving the human condition by 2030 through the provision of clean water. Recent knowledge on Fe0-based safe drinking water filters is addressed herein. They are categorized into two types: Household and community filters. Design criteria are recalled and operational details are given. Scientists are invited to co-develop knowledge enabling the exploitation of the great potential of Fe0 filters for sustainable safe drinking water provision (and sanitation.

  15. Multi-target Particle Filter Tracking Algorithm Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liu Hong-Xia

    2014-05-01

    Full Text Available In order to improve the multi-target tracking efficiency for wireless sensor networks and solve the problem of data transmission, analyzed existing particle filter tracking algorithm, ensure that one of the core technology for wireless sensor network performance. In this paper, from the basic theory of target tracking, in-depth analysis on the basis of the principle of particle filter, based on dynamic clustering, proposed the multi-target Kalman particle filter (MEPF algorithm, through the expansion of Calman filter (EKF to generate the proposal distribution, a reduction in the required number of particles to improve the particle filter accuracy at the same time, reduce the computational complexity of target tracking algorithm, thus reducing the energy consumption. Application results show that the MEPF in the proposed algorithm can achieve better tracking of target tracking and forecasting, in a small number of particles still has good tracking accuracy.

  16. A User-Oriented Splog Filtering Based on a Machine Learning

    Science.gov (United States)

    Yoshinaka, Takayuki; Ishii, Soichi; Fukuhara, Tomohiro; Masuda, Hidetaka; Nakagawa, Hiroshi

    A method for filtering spam blogs (splogs) based on a machine learning technique, and its evaluation results are described. Today, spam blogs (splogs) became one of major issues on the Web. The problem of splogs is that values of blog sites are different by people. We propose a novel user-oriented splog filtering method that can adapt each user's preference for valuable blogs. We use the SVM(Support Vector Machine) for creating a personalized splog filter for each user. We had two experiments: (1) an experiment of individual splog judgement, and (2) an experiment for user oriented splog filtering. From the former experiment, we found existence of 'gray' blogs that are needed to treat by persons. From the latter experiment, we found that we can provide appropriate personalized filters by choosing the best feature set for each user. An overview of proposed method, and evaluation results are described.

  17. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide

    International Nuclear Information System (INIS)

    Yun Binfeng; Hu Guohua; Cui Yiping

    2010-01-01

    A compact and nanometric surface plasmon polariton (SPP) band-pass filter based on a rectangular ring resonator composed of metal-insulator-metal waveguides is proposed. Using the finite difference time domain method, the effects of the structure parameters on the transmission characteristics of this SPP band-pass filter are analysed in detail. The results show that the proposed SPP filter has narrow transmission peaks and the corresponding resonance wavelengths can be linearly tuned by altering the resonator's cavity length. Moreover, the transmission ratios of the pass bands can be tuned by changing the coupling gaps between the input/output MIM waveguides and the resonator. Also the metal loss and dispersion effects on the filter responses are included. The simple band-pass SPP filter is very promising for high-density SPP waveguide integrations.

  18. Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters

    Science.gov (United States)

    Sun, Tao; Xin, Ming

    2017-05-01

    Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.

  19. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    Science.gov (United States)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  20. Adaptive oriented PDEs filtering methods based on new controlling speed function for discontinuous optical fringe patterns

    Science.gov (United States)

    Zhou, Qiuling; Tang, Chen; Li, Biyuan; Wang, Linlin; Lei, Zhenkun; Tang, Shuwei

    2018-01-01

    The filtering of discontinuous optical fringe patterns is a challenging problem faced in this area. This paper is concerned with oriented partial differential equations (OPDEs)-based image filtering methods for discontinuous optical fringe patterns. We redefine a new controlling speed function to depend on the orientation coherence. The orientation coherence can be used to distinguish the continuous regions and the discontinuous regions, and can be calculated by utilizing fringe orientation. We introduce the new controlling speed function to the previous OPDEs and propose adaptive OPDEs filtering models. According to our proposed adaptive OPDEs filtering models, the filtering in the continuous and discontinuous regions can be selectively carried out. We demonstrate the performance of the proposed adaptive OPDEs via application to the simulated and experimental fringe patterns, and compare our methods with the previous OPDEs.

  1. Active-Varying Sampling-Based Fault Detection Filter Design for Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2014-01-01

    Full Text Available This paper is concerned with fault detection filter design for continuous-time networked control systems considering packet dropouts and network-induced delays. The active-varying sampling period method is introduced to establish a new discretized model for the considered networked control systems. The mutually exclusive distribution characteristic of packet dropouts and network-induced delays is made full use of to derive less conservative fault detection filter design criteria. Compared with the fault detection filter design adopting a constant sampling period, the proposed active-varying sampling-based fault detection filter design can improve the sensitivity of the residual signal to faults and shorten the needed time for fault detection. The simulation results illustrate the merits and effectiveness of the proposed fault detection filter design.

  2. Slice image pretreatment for cone-beam computed tomography based on adaptive filter

    International Nuclear Information System (INIS)

    Huang Kuidong; Zhang Dinghua; Jin Yanfang

    2009-01-01

    According to the noise properties and the serial slice image characteristics in Cone-Beam Computed Tomography (CBCT) system, a slice image pretreatment for CBCT based on adaptive filter was proposed. The judging criterion for the noise is established firstly. All pixels are classified into two classes: adaptive center weighted modified trimmed mean (ACWMTM) filter is used for the pixels corrupted by Gauss noise and adaptive median (AM) filter is used for the pixels corrupted by impulse noise. In ACWMTM filtering algorithm, the estimated Gauss noise standard deviation in the current slice image with offset window is replaced by the estimated standard deviation in the adjacent slice image to the current with the corresponding window, so the filtering accuracy of the serial images is improved. The pretreatment experiment on CBCT slice images of wax model of hollow turbine blade shows that the method makes a good performance both on eliminating noises and on protecting details. (authors)

  3. Optimization of high speed pipelining in FPGA-based FIR filter design using genetic algorithm

    Science.gov (United States)

    Meyer-Baese, Uwe; Botella, Guillermo; Romero, David E. T.; Kumm, Martin

    2012-06-01

    This paper compares FPGA-based full pipelined multiplierless FIR filter design options. Comparison of Distributed Arithmetic (DA), Common Sub-Expression (CSE) sharing and n-dimensional Reduced Adder Graph (RAG-n) multiplierless filter design methods in term of size, speed, and A*T product are provided. Since DA designs are table-based and CSE/RAG-n designs are adder-based, FPGA synthesis design data are used for a realistic comparison. Superior results of a genetic algorithm based optimization of pipeline registers and non-output fundamental coefficients are shown. FIR filters (posted as open source by Kastner et al.) for filters in the length from 6 to 151 coefficients are used.

  4. Developing quantum dot absorptive filter array based miniaturized spectrometer for space applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to developing a miniaturized shortwave infrared (SWIR) spectrometer that is based on quantum dot absorptive filter array. The important features of the...

  5. FIR filters for hardware-based real-time multi-band image blending

    Science.gov (United States)

    Popovic, Vladan; Leblebici, Yusuf

    2015-02-01

    Creating panoramic images has become a popular feature in modern smart phones, tablets, and digital cameras. A user can create a 360 degree field-of-view photograph from only several images. Quality of the resulting image is related to the number of source images, their brightness, and the used algorithm for their stitching and blending. One of the algorithms that provides excellent results in terms of background color uniformity and reduction of ghosting artifacts is the multi-band blending. The algorithm relies on decomposition of image into multiple frequency bands using dyadic filter bank. Hence, the results are also highly dependant on the used filter bank. In this paper we analyze performance of the FIR filters used for multi-band blending. We present a set of five filters that showed the best results in both literature and our experiments. The set includes Gaussian filter, biorthogonal wavelets, and custom-designed maximally flat and equiripple FIR filters. The presented results of filter comparison are based on several no-reference metrics for image quality. We conclude that 5/3 biorthogonal wavelet produces the best result in average, especially when its short length is considered. Furthermore, we propose a real-time FPGA implementation of the blending algorithm, using 2D non-separable systolic filtering scheme. Its pipeline architecture does not require hardware multipliers and it is able to achieve very high operating frequencies. The implemented system is able to process 91 fps for 1080p (1920×1080) image resolution.

  6. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    Directory of Open Access Journals (Sweden)

    Yaqeen S Mezaal

    Full Text Available A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d. Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  7. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    Science.gov (United States)

    Mezaal, Yaqeen S; Eyyuboglu, Halil T

    2016-01-01

    A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  8. Airborne LiDAR Data Filtering Based on Geodesic Transformations of Mathematical Morphology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-10-01

    Full Text Available The capability of acquiring accurate and dense three-dimensional geospatial information that covers large survey areas rapidly enables airborne light detection and ranging (LiDAR has become a powerful technology in numerous fields of geospatial applications and analysis. LiDAR data filtering is the first and essential step for digital elevation model generation, land cover classification, and object reconstruction. The morphological filtering approaches have the advantages of simple concepts and easy implementation, which are able to filter non-ground points effectively. However, the filtering quality of morphological approaches is sensitive to the structuring elements that are the key factors for the filtering success of mathematical operations. Aiming to deal with the dependence on the selection of structuring elements, this paper proposes a novel filter of LiDAR point clouds based on geodesic transformations of mathematical morphology. In comparison to traditional morphological transformations, the geodesic transformations only use the elementary structuring element and converge after a finite number of iterations. Therefore, this algorithm makes it unnecessary to select different window sizes or determine the maximum window size, which can enhance the robustness and automation for unknown environments. Experimental results indicate that the new filtering method has promising and competitive performance for diverse landscapes, which can effectively preserve terrain details and filter non-ground points in various complicated environments.

  9. Transmissive/Reflective Structural Color Filters: Theory and Applications

    OpenAIRE

    Yan Yu; Long Wen; Shichao Song; Qin Chen

    2014-01-01

    Structural color filters, which obtain color selection by varying structures, have attracted extensive research interest in recent years due to the advantages of compactness, stability, multifunctions, and so on. In general, the mechanisms of structural colors are based on the interaction between light and structures, including light diffraction, cavity resonance, and surface plasmon resonance. This paper reviews recent progress of various structural color techniques and the integration appli...

  10. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  11. Electrically tunable bandpass filter based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds.......An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds....

  12. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  13. Metamaterial based embedded acoustic filters for structural applications

    Directory of Open Access Journals (Sweden)

    Hongfei Zhu

    2013-09-01

    Full Text Available We investigate the use of acoustic metamaterials to design structural materials with frequency selective characteristics. By exploiting the properties of acoustic metamaterials, we tailor the propagation characteristics of the host structure to effectively filter the constitutive harmonics of an incoming broadband excitation. The design approach exploits the characteristics of acoustic waveguides coupled by cavity modes. By properly designing the cavity we can tune the corresponding resonant mode and, therefore, coupling the waveguide at a prescribed frequency. This structural design can open new directions to develop broadband passive vibrations and noise control systems fully integrated in structural components.

  14. A valley-filtering switch based on strained graphene.

    Science.gov (United States)

    Zhai, Feng; Ma, Yanling; Zhang, Ying-Tao

    2011-09-28

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device.

  15. A valley-filtering switch based on strained graphene

    International Nuclear Information System (INIS)

    Zhai Feng; Ma Yanling; Zhang Yingtao

    2011-01-01

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device. (paper)

  16. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    Science.gov (United States)

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  17. Long-Term Homeostatic Properties Complementary to Hebbian Rules in CuPc-Based Multifunctional Memristor

    Science.gov (United States)

    Wang, Laiyuan; Wang, Zhiyong; Lin, Jinyi; Yang, Jie; Xie, Linghai; Yi, Mingdong; Li, Wen; Ling, Haifeng; Ou, Changjin; Huang, Wei

    2016-10-01

    Most simulations of neuroplasticity in memristors, which are potentially used to develop artificial synapses, are confined to the basic biological Hebbian rules. However, the simplex rules potentially can induce excessive excitation/inhibition, even collapse of neural activities, because they neglect the properties of long-term homeostasis involved in the frameworks of realistic neural networks. Here, we develop organic CuPc-based memristors of which excitatory and inhibitory conductivities can implement both Hebbian rules and homeostatic plasticity, complementary to Hebbian patterns and conductive to the long-term homeostasis. In another adaptive situation for homeostasis, in thicker samples, the overall excitement under periodic moderate stimuli tends to decrease and be recovered under intense inputs. Interestingly, the prototypes can be equipped with bio-inspired habituation and sensitization functions outperforming the conventional simplified algorithms. They mutually regulate each other to obtain the homeostasis. Therefore, we develop a novel versatile memristor with advanced synaptic homeostasis for comprehensive neural functions.

  18. Shaper-Based Filters for the compensation of the load cell response in dynamic mass measurement

    Science.gov (United States)

    Richiedei, Dario; Trevisani, Alberto

    2018-01-01

    This paper proposes a novel model-based signal filtering technique for dynamic mass measurement through load cells. Load cells are sensors with an underdamped oscillatory response which usually imposes a long settling time. Real-time filtering is therefore necessary to compensate for such a dynamics and to quickly retrieve the mass of the measurand (which is the steady state value of the load cell response) before the measured signal actually settles. This problem has a big impact on the throughput of industrial weighing machines. In this paper a novel solution to this problem is developed: a model-based filtering technique is proposed to ensure accurate, robust and rapid estimation of the mass of the measurand. The digital filters proposed are referred to as Shaper-Based Filters (SBFs) and are based on the convolution of the load cell output signal with a sequence of few impulses (typically, between 2 and 5). The amplitudes and the instants of application of such impulses are computed through the analytical development of the load cell step response, by imposing the admissible residual oscillation in the steady-state filtered signal and by requiring the desired sensitivity of the filter. The inclusion of robustness specifications tackles effectively the unavoidable uncertainty and variability in the load cell frequency and damping. The effectiveness of the proposed filters is proved experimentally through an industrial set up: the load-cell-instrumented weigh bucket of a multihead weighing machine for packaging. A performance comparison with other benchmark filters is provided and discussed too.

  19. Hierarchical multifunctional nanocomposites

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  20. Novel multifunctional composites based on carbon nanotube sheets and yarns: Synthesis, fabrication, properties and applications

    Science.gov (United States)

    Lepro Chavez, Xavier N.

    Multiwalled carbon nanotube (MWNT) aligned sheets directly drawn from forests and derived yarns have recently attracted wide attention because of their exhibited mechanical, electronic, photonic and optical properties. Unfortunately, the supply of drawable forests is currently limited since the set of experimental conditions required to obtain adequate forest morphology is rather narrow, thus restricting the advance towards large scale applications. This work starts by addressing this issue by showing that the correct preparation of alternative substrates, such as thin metallic sheets, can produce the forest morphology required for solid-state drawability and increase the attainable surface for forest harvesting without further enlargement of the currently used chemical vapor deposition (CVD) reactor chamber. Also, it explores suitable ways to quantify the alignment of MWNTs in forests and by comparing them with spinnable ones, provides a range of alignment distribution where forest drawability can be reasonably expected. Next, this work presents procedures that can add functionality to the MWNT free-standing sheets without strongly affecting their mechanical integrity, nanotube alignment or individual morphology. Proved examples, such as free-standing sheets of catalytic-active, highly capacity (39 F/g), aligned nitrogen-doped MWNTs and silicon-based ceramic conformationally coated MWNTs that can be easily twisted into yarns, are examined in different chapters. Moreover, we show that MWNT sheets can be used for templating materials other than carbon into nanostructured arrays by preparing sheets of aligned silicon oxide nanotubes. Similar to MWNT sheets, these nanotube based materials can be used as host to confine functional unspinnable materials (up to 95 wt.%) by twisting them together into biscrolled yarns, suitable for applications as superconductors, lithium-ion batteries, fuel cells catalysts and photocatalysis. Such biscrolled yarns have a twist

  1. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  2. Development of multifunctional fluoroelastomers based on nanocomposites; Desenvolvimento de elastomeros fluorados multifuncionais baseados em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto

    2015-07-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  3. RWE NUKEM's 'Living' Nuclear Compendium eNICE. An internet-based, multifunctional nuclear information platform

    International Nuclear Information System (INIS)

    Kwasny, R.; Max, A.

    2002-01-01

    Information has become a commodity particularly important to industry, science, and politics. Information becomes critical because of its rapid change. The basis and the catalyst of this change in information are the information technologies now available, and the Internet with its varied contents. This makes the Internet a new market place which, although it is open, can quickly turn into an information maze because of its sheer volume. Also the nuclear industry must find its way through this maze. eNICE was created in order to build a bridge between the flood of information in the Internet and the information really needed in a specific case. eNICE (e stands for electronic, and NICE stands for Nuclear Information Compendium Europe), a living Internet-based nuclear compendium in the English language, is a unique combination of a broad spectrum of information and data about the use of nuclear power in Europe. The information and data contained in eNICE are interconnected with the World Wide Web in such a way that structured searching for nuclear information is possible quickly and efficiently. This avoids the difficulties sometimes encountered in searches in the Internet as a consequence of the unstructured volume of information. A monthly update of eNICE ensures that the data available are up to date and reliable. eNICE also offers direct access to the library used by RWE NUKEM for internal purposes. (orig.) [de

  4. Multifunctional Material with Efficient Optoelectronic Integrated Molecular Switches Based on a Flexible Thin Film/Crystal.

    Science.gov (United States)

    Xu, Chang; Zhang, Wan-Ying; Ye, Qiong; Fu, Da-Wei

    2017-12-04

    Switchable materials, due to their potential applications in the fields of sensors, photonic devices, digital processing, etc., have been developed drastically. However, they still face great challenges in effectively inducing multiple molecular switching. Herein organic-inorganic hybrid compounds, an emerging class of hydrosoluble optoelectronic-active materials, welcome a new member with smart unique optical/electrical (fluorescence/dielectric) dual switches (switching ON/OFF), that is, [C 5 H 13 NBr][Cd 3 Br 7 ] (1) in the form of both a bulk crystal and an ultraflexible monodirectional thin film, which simultaneously exhibits fast dielectric/fluorescent dual switching triggered by an optical/thermal/electric signal with a high signal-to-noise ratio of 35 (the highest one in the known optical/dielectric dual molecular switches). Additionally, the exceptional stability/fatigue resistance as well as the fantastic extensibility/compactness of thin films (more than 10000 times folding over 90°), makes 1 an ideal candidate for single-molecule intelligent wearable devices and seamlessly integrated optoelectronic multiswitchable devices. This opens up a new route toward advanced light/electric high-performance switches/memories based on organic-inorganic hybrid compounds.

  5. Polylutidines: Multifunctional Surfaces through Vapor-Based Polymerization of Substituted Pyridinophanes.

    Science.gov (United States)

    Bally-Le Gall, Florence; Hussal, Christoph; Kramer, Joshua; Cheng, Kenneth; Kumar, Ramya; Eyster, Thomas; Baek, Amy; Trouillet, Vanessa; Nieger, Martin; Bräse, Stefan; Lahann, Joerg

    2017-09-27

    We report a new class of functionalized polylutidine polymers that are prepared by chemical vapor deposition polymerization of substituted [2](1,4)benzeno[2](2,5)pyridinophanes. To prepare sufficient amounts of monomer for CVD polymerization, a new synthesis route for ethynylpyridinophane has been developed in three steps with an overall yield of 59 %. Subsequent CVD polymerization yielded well-defined films of poly(2,5-lutidinylene-co-p-xylylene) and poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene). All polymers were characterized by infrared reflection-absorption spectroscopy, ellipsometry, contact angle studies, and X-ray photoelectron spectroscopy. Moreover, ζ-potential measurements revealed that polylutidine films have higher isoelectric points than the corresponding poly-xylylene surfaces owing to the nitrogen atoms in the polymer backbone. The availability of reactive alkyne groups on the surface of poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene) coatings was confirmed by spatially controlled surface modification by means of Huisgen 1,3-dipolar cycloaddition. Compared to the more hydrophobic poly-p-xylylyenes, the presence of the heteroatom in the polymer backbone of polylutidine polymers resulted in surfaces that supported an increased adhesion of primary human umbilical vein endothelial cells (HUVECs). Vapor-based polylutidine coatings are a new class of polymers that feature increased hydrophilicity and increased cell adhesion without limiting the flexibility in selecting appropriate functional side groups. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New Collaborative Filtering Algorithms Based on SVD++ and Differential Privacy

    Directory of Open Access Journals (Sweden)

    Zhengzheng Xian

    2017-01-01

    Full Text Available Collaborative filtering technology has been widely used in the recommender system, and its implementation is supported by the large amount of real and reliable user data from the big-data era. However, with the increase of the users’ information-security awareness, these data are reduced or the quality of the data becomes worse. Singular Value Decomposition (SVD is one of the common matrix factorization methods used in collaborative filtering, which introduces the bias information of users and items and is realized by using algebraic feature extraction. The derivative model SVD++ of SVD achieves better predictive accuracy due to the addition of implicit feedback information. Differential privacy is defined very strictly and can be proved, which has become an effective measure to solve the problem of attackers indirectly deducing the personal privacy information by using background knowledge. In this paper, differential privacy is applied to the SVD++ model through three approaches: gradient perturbation, objective-function perturbation, and output perturbation. Through theoretical derivation and experimental verification, the new algorithms proposed can better protect the privacy of the original data on the basis of ensuring the predictive accuracy. In addition, an effective scheme is given that can measure the privacy protection strength and predictive accuracy, and a reasonable range for selection of the differential privacy parameter is provided.

  7. Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms Based on Kalman Filter Estimation

    Science.gov (United States)

    Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.

  8. RF MEMS Based Tunable Bandpass Filter For X-Band Applications

    Science.gov (United States)

    Chaubey, Mahesh Kumar; Bhadauria, Avanish

    2018-03-01

    In this paper, we present the design and simulation of RF MEMS based Tunable combline band pass filters for X-band applications at different substrate thicknesses and studied the effect of thickness on tuning. The proposed filters are designed on high resistive silicon substrate of 500µm and 300 thicknesses. The tunability is achieved by using MEMS based varacter replaced with fix capacitor in conventional combline filter. First, the microstrip combline filter is designed at the centre frequency of 9.5 GHz and then tuning is achieved by varying the capacitance in the designed combline filters. The electromagnetic simulation has been carried out using HFSS v15 software based on finite element method (FEM). The tuning of the filter on silicon substrate of 500 μm is achieved by changing the capacitance value from 0.2035 pF to 0.4035 pF in the model in HFSS, which resulted the tuning in the frequency range of 7.85 to 10.35GHz. Insertion loss of design filter is in the range of 1dB within the tuning range. In case of substrate thickness 300 μm the tuning of the filter is achieved by changing the capacitance value from 0.293 pF to 0.403 pF in the model in HFSS, which resulted the tuning in the frequency range of 8.80 to 9.90 GHz. Insertion loss of design filter is in the range of ∼1.2dB within the tuning range.

  9. Analysis and implementation of a structural vibration control algorithm based on an IIR adaptive filter

    Science.gov (United States)

    Huang, Quanzhen; Luo, Jun; Li, Hengyu; Wang, Xiaohua

    2013-08-01

    With the wide application of large-scale flexible structures in spacecraft, vibration control problems in these structures have become important design issues. The filtered-X least mean square (FXLMS) algorithm is the most popular one in current active vibration control using adaptive filtering. It assumes that the source of interference can be measured and the interference source is considered as the reference signal input to the controller. However, in the actual control system, this assumption is not accurate, because it does not consider the impact of the reference signal on the output feedback signal. In this paper, an adaptive vibration active control algorithm based on an infinite impulse response (IIR) filter structure (FULMS, filtered-U least mean square) is proposed. The algorithm is based on an FXLMS algorithm framework, which replaces the finite impulse response (FIR) filter with an IIR filter. This paper focuses on the structural design of the controller, the process of the FULMS filtering control method, the design of the experimental model object, and the experimental platform construction for the entire control system. The comparison of the FXLMS algorithm with FULMS is theoretically analyzed and experimentally validated. The results show that the FULMS algorithm converges faster and controls better. The design of the FULMS controller is feasible and effective and has greater value in practical applications of aerospace engineering.

  10. Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution.

    Science.gov (United States)

    Hu, Chuangang; Dai, Liming

    2017-03-01

    Rationally designed N, S co-doped graphitic sheets with stereoscopic holes (SHG) act as effective tri-functional catalysts for the oxygen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction, simultaneously. The multifunctional electrocatalytic activities originate from a synergistic effect of the N, S heteroatom doping and unique SHG architecture, which provide a large surface area and efficient pathways for electron and electrolyte/reactant transports. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Samanta, Tapas; Kumar Pathak, Arjun [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Kazakov, Alexandr; Prudnikov, Valerii [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Zhukov, Arcady [IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2012-10-15

    resistivity in some In-based alloys are discussed.

  12. L70 life prediction for solid state lighting using Kalman Filter and Extended Kalman Filter based models

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Wei, Junchao; Davis, Lynn

    2013-08-08

    Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life

  13. Passivity-Based Stability Analysis and Damping Injection for Multiparalleled VSCs with LCL Filters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2017-01-01

    is decomposed into a passive filter output admittance in series with an active admittance which is dependent on the current controller and the time delay. The frequency-domain passivity theory is then applied to the active admittance for system stability analysis. It reveals that the stability region...... of the single-loop grid current control is not only dependent on the time delay, but affected also by the resonance frequency of the converter-side filter inductor and filter capacitor. Further on, the damping injection based on the discrete derivative controller is proposed to enhance the passivity...

  14. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  15. Ensemble neural network-based particle filtering for prognostics

    Science.gov (United States)

    Baraldi, P.; Compare, M.; Sauco, S.; Zio, E.

    2013-12-01

    Particle Filtering (PF) is used in prognostics applications by reason of its capability of robustly predicting the future behavior of an equipment and, on this basis, its Residual Useful Life (RUL). It is a model-driven approach, as it resorts to analytical models of both the degradation process and the measurement acquisition system. This prevents its applicability to the cases, very common in industry, in which reliable models are lacking. In this work, we propose an original method to extend PF to the case in which an analytical measurement model is not available whereas, instead, a dataset containing pairs «state-measurement» is available. The dataset is used to train a bagged ensemble of Artificial Neural Networks (ANNs) which is, then, embedded in the PF as empirical measurement model.

  16. Optimization of spectrally selective Si/SiO2 based filters for thermophotovoltaic devices

    Science.gov (United States)

    Khosroshahi, Farhad Kazemi; Ertürk, Hakan; Pınar Mengüç, M.

    2017-08-01

    Design of a spectrally selective filter based on one-dimensional Si/SiO2 layers is considered for improved performance of thermo-photovoltaic devices. Spectrally selective filters transmit only the convertible radiation from the emitter as non-convertible radiation leads to a reduction in cell efficiency due to heating. The presented Si/SiO2 based filter concept reflects the major part of the undesired range back to the emitter to minimize energy required for the process and it is adaptable to different types of cells and emitters with different temperatures since its cut-off wavelength can be tuned. While this study mainly focuses on InGaSb based thermo-photovoltaic cell, Si, GaSb, and Ga0.78In0.22As0.19Sb0.81 based cells are also examined. Transmittance of the structure is predicted by rigorous coupled wave approach. Genetic algorithm, which is a global optimization method, is used to find the best possible filter structure by considering the overall efficiency as an objective function that is maximized. The simulations show that significant enhancement in the overall system and device efficiency is possible by using such filters with TPV devices. The methodology described in this paper allows for an improved filter design procedure for selected applications.

  17. A Vondrak low pass filter for IMU sensor initial alignment on a disturbed base.

    Science.gov (United States)

    Li, Zengke; Wang, Jian; Gao, Jingxiang; Li, Binghao; Zhou, Feng

    2014-12-10

    The initial alignment of the Inertial Measurement Unit (IMU) is an important process of INS to determine the coordinate transformation matrix which is used in the integration of Global Positioning Systems (GPS) with Inertial Navigation Systems (INS). In this paper a novel alignment method for a disturbed base, such as a vehicle disturbed by wind outdoors, implemented with the aid of a Vondrak low pass filter, is proposed. The basic principle of initial alignment including coarse alignment and fine alignment is introduced first. The spectral analysis is processed to compare the differences between the characteristic error of INS force observation on a stationary base and on disturbed bases. In order to reduce the high frequency noise in the force observation more accurately and more easily, a Vondrak low pass filter is constructed based on the spectral analysis result. The genetic algorithms method is introduced to choose the smoothing factor in the Vondrak filter and the corresponding objective condition is built. The architecture of the proposed alignment method with the Vondrak low pass filter is shown. Furthermore, simulated experiments and actual experiments were performed to validate the new algorithm. The results indicate that, compared with the conventional alignment method, the Vondrak filter could eliminate the high frequency noise in the force observation and the proposed alignment method could improve the attitude accuracy. At the same time, only one parameter needs to be set, which makes the proposed method easier to implement than other low-pass filter methods.

  18. Prediction of Lumen Output and Chromaticity Shift in LEDs Using Kalman Filter and Extended Kalman Filter Based Models

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Wei, Junchao; Davis, J Lynn

    2014-06-24

    Abstract— Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have

  19. Accurate mask-based spatially regularized correlation filter for visual tracking

    Science.gov (United States)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  20. Machine learning of radial basis function neural network based on Kalman filter: Implementation

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available In this paper we test three new sequential machine learning algorithms for radial basis function (RBF neural network based on Kalman filter theory. Three new algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. Having introduced and derived mathematical model of each algorithm in the previous part of the paper, in this part we test and assess their performance using standard test sets from machine learning community. RBF neural network and three developed algorithms are implemented in MATLAB® programming environment. Experimental results obtained on real data sets as well as on real engineering problem show that developed algorithms result in more accurate models of the problem being investigated based on radial basis function neural network.

  1. Bloom Filter-Based Secure Data Forwarding in Large-Scale Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Siyu Lin

    2015-01-01

    Full Text Available Cyber-physical systems (CPSs connect with the physical world via communication networks, which significantly increases security risks of CPSs. To secure the sensitive data, secure forwarding is an essential component of CPSs. However, CPSs require high dimensional multiattribute and multilevel security requirements due to the significantly increased system scale and diversity, and hence impose high demand on the secure forwarding information query and storage. To tackle these challenges, we propose a practical secure data forwarding scheme for CPSs. Considering the limited storage capability and computational power of entities, we adopt bloom filter to store the secure forwarding information for each entity, which can achieve well balance between the storage consumption and query delay. Furthermore, a novel link-based bloom filter construction method is designed to reduce false positive rate during bloom filter construction. Finally, the effects of false positive rate on the performance of bloom filter-based secure forwarding with different routing policies are discussed.

  2. Research on the method of information system risk state estimation based on clustering particle filter

    Directory of Open Access Journals (Sweden)

    Cui Jia

    2017-05-01

    Full Text Available With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.

  3. Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor

    Science.gov (United States)

    Qinwen, XUE; Xiaohua, WANG; Chenglin, LIU; Youwen, LIU

    2018-03-01

    The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2) N /GaAs/(SiO2/Si) N /air is far higher than in asymmetric structure of air/(Si/SiO2) N /GaAs/(Si/SiO2) N /air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.

  4. Research on the method of information system risk state estimation based on clustering particle filter

    Science.gov (United States)

    Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua

    2017-05-01

    With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.

  5. Planning multifunctional green infrastructure for compact cities

    DEFF Research Database (Denmark)

    Hansen, Rieke; Olafsson, Anton Stahl; van der Jagt, Alexander P.N.

    2018-01-01

    Urban green infrastructure planning aims to develop green space networks on limited space in compact cities. Multifunctionality is considered key to achieving this goal as it supports planning practice that considers the ability of green spaces to provide multiple benefits concurrently. However, ....... These recommendations can also be instructive for research on ecosystem service assessments in order to develop approaches that more strongly correspond to the demands of planning practice.......Urban green infrastructure planning aims to develop green space networks on limited space in compact cities. Multifunctionality is considered key to achieving this goal as it supports planning practice that considers the ability of green spaces to provide multiple benefits concurrently. However......, multifunctionality is an elusive concept and little information is available on how it is perceived and actioned by planners. Therefore, this paper will examine the application of the multifunctionality concept in urban planning based on a semi-quantitative study, including interviews with chief planners...

  6. Filter unit

    International Nuclear Information System (INIS)

    Shiba, Kazuo; Nagao, Koji; Akiyama, Toshio; Tanaka, Fumikazu; Osumi, Akira; Hirao, Yasuhiro.

    1997-01-01

    The filter unit is used by attaching to a dustproof mask, and used in a radiation controlled area such as in a nuclear power plant. The filter unit comprises sheet-like front and back filtering members disposed vertically in parallel, a spacer for keeping the filtering members to a predetermined distance and front and back covering members for covering the two filtering members respectively. An electrostatic filter prepared by applying resin-fabrication to a base sheet comprising 100% by weight of organic fibers as fiber components, for example, wool felt, synthetic fiber non-woven fabric, wool and synthetic fiber blend non-woven fabric and then electrifying the resin is used for the filtering members. Then, residue of ashes can be eliminated substantially or completely after burning them. (I.N.)

  7. Filtering Based Recursive Least Squares Algorithm for Multi-Input Multioutput Hammerstein Models

    OpenAIRE

    Wang, Ziyun; Wang, Yan; Ji, Zhicheng

    2014-01-01

    This paper considers the parameter estimation problem for Hammerstein multi-input multioutput finite impulse response (FIR-MA) systems. Filtered by the noise transfer function, the FIR-MA model is transformed into a controlled autoregressive model. The key-term variable separation principle is used to derive a data filtering based recursive least squares algorithm. The numerical examples confirm that the proposed algorithm can estimate parameters more accurately and has a higher computational...

  8. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter.

    Science.gov (United States)

    Qiu, Lei; Liu, Bin; Yuan, Shenfang; Su, Zhongqing

    2016-01-01

    The spatial-wavenumber filtering technique is an effective approach to distinguish the propagating direction and wave mode of Lamb wave in spatial-wavenumber domain. Therefore, it has been gradually studied for damage evaluation in recent years. But for on-line impact monitoring in practical application, the main problem is how to realize the spatial-wavenumber filtering of impact signal when the wavenumber of high spatial resolution cannot be measured or the accurate wavenumber curve cannot be modeled. In this paper, a new model-independent spatial-wavenumber filter based impact imaging method is proposed. In this method, a 2D cross-shaped array constructed by two linear piezoelectric (PZT) sensor arrays is used to acquire impact signal on-line. The continuous complex Shannon wavelet transform is adopted to extract the frequency narrowband signals from the frequency wideband impact response signals of the PZT sensors. A model-independent spatial-wavenumber filter is designed based on the spatial-wavenumber filtering technique. Based on the designed filter, a wavenumber searching and best match mechanism is proposed to implement the spatial-wavenumber filtering of the frequency narrowband signals without modeling, which can be used to obtain a wavenumber-time image of the impact relative to a linear PZT sensor array. By using the two wavenumber-time images of the 2D cross-shaped array, the impact direction can be estimated without blind angle. The impact distance relative to the 2D cross-shaped array can be calculated by using the difference of time-of-flight between the frequency narrowband signals of two different central frequencies and the corresponding group velocities. The validations performed on a carbon fiber composite laminate plate and an aircraft composite oil tank show a good impact localization accuracy of the model-independent spatial-wavenumber filter based impact imaging method. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Laser-line rejection or transmission filters based on surface structures built on infrared transmitting materials

    Science.gov (United States)

    Hobbs, Douglas S.

    2005-05-01

    Night vision and related thermal imaging systems play a critical role in the protection of our nation's security. These systems record images using video cameras designed for operation in the infrared (IR) region of the light spectrum. As with any imaging system, increased functionality and new information is gained when discrete portions of the observed light spectrum are analyzed separately using optical filters. Highly discriminating filters are needed to increase the sensitivity of atmospheric chemical sensors, to enable multi-spectral imaging and secure laser communications links, and to protect imaging systems from damage due to attack by high power laser weapons. Today, the performance of IR light filters is inadequate for many applications. Filters capable of efficient rejection of multiple discrete wavelength bands, combined with high transmission for wavelengths outside the rejection bands, do not exist. A new type of narrow-band optical filter capable of protecting critical imaging systems from attack from laser weapons operating at multiple wavelengths, is being developed. Based on rugged surface-structure wave-guide resonant holograms, the new filters will be capable of rejecting better than 99% of IR light within each notch, while maintaining the same level of transmission outside each notch covering a broad range of the IR spectrum. The theory, design and fabrication of surface structure, laser-line rejection and transmission filters built upon infrared transmitting materials, will be described. Optical performance data for prototype structures will be presented.

  10. Geometric filters for protein–ligand complexes based on phenomenological molecular models

    Directory of Open Access Journals (Sweden)

    Sudakov O. O.

    2013-09-01

    Full Text Available Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of protein-ligand complex conformations. However, scoring functions used to estimate free energy of binding still lack accuracy. Aim. Development of computationally simple and rapid algorithms for ranking ligands based on docking results. Methods. Computational filters utilizing geometry of protein-ligand complex were designed. Efficiency of the filters was verified in a cross-docking study with QXP/Flo software using crystal structures of human serine proteases thrombin (F2 and factor Xa (F10 and two corresponding sets of known selective inhibitors. Results. Evaluation of filtering results in terms of ROC curves with varying filter threshold value has shown their efficiency. However, none of the filters outperformed QXP/Flo built-in scoring function Pi . Nevertheless, usage of the filters with optimized set of thresholds in combination with Pi achieved significant improvement in performance of ligand selection when compared to usage of Pi alone. Conclusions. The proposed geometric filters can be used as a complementary to traditional scoring functions in order to optimize ligand search performance and decrease usage of computational and human resources.

  11. Project Report: Reducing Color Rivalry in Imagery for Conjugated Multiple Bandpass Filter Based Stereo Endoscopy

    Science.gov (United States)

    Ream, Allen

    2011-01-01

    A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.

  12. Electrically Tunable Open-Stub Bandpass Filters Based on Nematic Liquid Crystals

    Science.gov (United States)

    Economou, E. C.; Lovejoy, J.; Harward, I.; Nobles, J. E.; Kula, P.; Herman, J.; Glushchenko, A.; Celinski, Z.

    2017-12-01

    Electrically tunable bandpass filters based on liquid crystals are designed, built, and characterized using a vector network analyzer. The filters are composed of half-wavelength open stubs and quarter-wavelength connecting lines in an inverted microstrip geometry. The filters are modeled using computational electromagnetics software utilizing the finite integration technique. Photolithography and thin-film deposition processes are employed, and standard liquid-crystal cell-assembly techniques are used to make the final filter structures. The three-stub filters with passband central frequencies of 30, 50, and 85 GHz are filled with the nematic liquid crystal, LC1917, and tested. 10% tuning of the central frequency is achieved with a 14-volt peak-to-peak ac bias across the 38 -μ m liquid-crystal layer (electric field of 0.19 V / μ m ). At 50 GHz, the insertion loss is -3.76 dB , while the return loss ranges from -9 to -25 dB , indicating a good impedance match for a proof-of-concept device. The passband widths of the 30-, 50-, and 85-GHz filters are 5, 9, and 14 GHz, respectively, resulting in a Q factor of 6. The filter devices presented in this study, although intended for microwave signal-processing applications, furnish an effective methodology for characterizing the dielectric properties of liquid-crystal materials (and fluids or solids in general) up to the terahertz frequency range.

  13. Designing metallic iron based water filters: Light from methylene blue discoloration.

    Science.gov (United States)

    Btatkeu-K, B D; Tchatchueng, J B; Noubactep, C; Caré, S

    2016-01-15

    Available water filtration systems containing metallic iron (Fe(0) filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe(0) filters. A science-based design relies on valuable information on processes within a Fe(0) filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe(0) filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe(0)/sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe(0), Fe(0)/sand, Fe(0)/pumice and Fe(0)/sand/pumice. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity. Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe(0) system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe(0) filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Steganalysis of content-adaptive JPEG steganography based on Gauss partial derivative filter bank

    Science.gov (United States)

    Zhang, Yi; Liu, Fenlin; Yang, Chunfang; Luo, Xiangyang; Song, Xiaofeng; Lu, Jicang

    2017-01-01

    A steganalysis feature extraction method based on Gauss partial derivative filter bank is proposed in this paper to improve the detection performance for content-adaptive JPEG steganography. Considering that the embedding changes of content-adaptive steganographic schemes are performed in the texture and edge regions, the proposed method generates filtered images comprising rich texture and edge information using Gauss partial derivative filter bank, and histograms of absolute values of filtered subimages are extracted as steganalysis features. Gauss partial derivative filter bank can represent texture and edge information in multiple orientations with less computation load than conventional methods and prevent redundancy in different filtered images. These two properties are beneficial in the extraction of low-complexity sensitive features. The results of experiments conducted on three selected modern JPEG steganographic schemes-uniform embedding distortion, JPEG universal wavelet relative distortion, and side-informed UNIWARD-indicate that the proposed feature set is superior to the prior art feature sets-discrete cosine transform residual, phase aware rich model, and Gabor filter residual.

  15. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  16. Cellulose-based filter aids increase the capacity of depth filters during the downstream processing of plant-derived biopharmaceutical proteins.

    Science.gov (United States)

    Buyel, Johannes F; Opdensteinen, Patrick; Fischer, Rainer

    2015-04-01

    Downstream processing (DSP) is a major cost factor during the production of biopharmaceutical proteins. Clarification can account for ∼40% of these costs, especially when a large amount of dispersed particulate material is generated, such as during the extraction of intracellular proteins from plants. Filter capacity can be increased (and DSP costs reduced) by using flocculants. Here we show that cellulose-based filter aids can enhance the positive effect of flocculants by improving depth filter capacity even further. A design-of-experiments (DoE) approach was used to identify the optimal size and concentration of filter aids, at different values of pH and conductivity, for the clarification of tobacco leaf extracts during the production of a monoclonal antibody and a fluorescent protein. Filter aids ∼28 or ∼100 μm in length at concentrations of ∼10 and ∼5 g L(-1) respectively were most efficient in combination with a strong cationic flocculant, but were ineffective without the flocculant. The filter aids increased depth filter capacity by 35-fold compared to an additive-free extract reaching ∼1000 L m(-2) without affecting the target proteins. Thus, filter aids can be used to reduce production costs of plant-derived biopharmaceuticals while the DoE approach enabled the identification of robust process conditions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multi-UAV Doppler Information Fusion for Target Tracking Based on Distributed High Degrees Information Filters

    Directory of Open Access Journals (Sweden)

    Hamza Benzerrouk

    2018-03-01

    Full Text Available Multi-Unmanned Aerial Vehicle (UAV Doppler-based target tracking has not been widely investigated, specifically when using modern nonlinear information filters. A high-degree Gauss–Hermite information filter, as well as a seventh-degree cubature information filter (CIF, is developed to improve the fifth-degree and third-degree CIFs proposed in the most recent related literature. These algorithms are applied to maneuvering target tracking based on Radar Doppler range/range rate signals. To achieve this purpose, different measurement models such as range-only, range rate, and bearing-only tracking are used in the simulations. In this paper, the mobile sensor target tracking problem is addressed and solved by a higher-degree class of quadrature information filters (HQIFs. A centralized fusion architecture based on distributed information filtering is proposed, and yielded excellent results. Three high dynamic UAVs are simulated with synchronized Doppler measurement broadcasted in parallel channels to the control center for global information fusion. Interesting results are obtained, with the superiority of certain classes of higher-degree quadrature information filters.

  18. Discrete Kalman Filter based Sensor Fusion for Robust Accessibility Interfaces

    International Nuclear Information System (INIS)

    Ghersi, I; Miralles, M T; Mariño, M

    2016-01-01

    Human-machine interfaces have evolved, benefiting from the growing access to devices with superior, embedded signal-processing capabilities, as well as through new sensors that allow the estimation of movements and gestures, resulting in increasingly intuitive interfaces. In this context, sensor fusion for the estimation of the spatial orientation of body segments allows to achieve more robust solutions, overcoming specific disadvantages derived from the use of isolated sensors, such as the sensitivity of magnetic-field sensors to external influences, when used in uncontrolled environments. In this work, a method for the combination of image-processing data and angular-velocity registers from a 3D MEMS gyroscope, through a Discrete-time Kalman Filter, is proposed and deployed as an alternate user interface for mobile devices, in which an on-screen pointer is controlled with head movements. Results concerning general performance of the method are presented, as well as a comparative analysis, under a dedicated test application, with results from a previous version of this system, in which the relative-orientation information was acquired directly from MEMS sensors (3D magnetometer-accelerometer). These results show an improved response for this new version of the pointer, both in terms of precision and response time, while keeping many of the benefits that were highlighted for its predecessor, giving place to a complementary method for signal acquisition that can be used as an alternative-input device, as well as for accessibility solutions. (paper)

  19. Collaborating Filtering Community Image Recommendation System Based on Scene

    Directory of Open Access Journals (Sweden)

    He Tao

    2017-01-01

    Full Text Available With the advancement of smart city, the development of intelligent mobile terminal and wireless network, the traditional text information service no longer meet the needs of the community residents, community image service appeared as a new media service. “There are pictures of the truth” has become a community residents to understand and master the new dynamic community, image information service has become a new information service. However, there are two major problems in image information service. Firstly, the underlying eigenvalues extracted by current image feature extraction techniques are difficult for users to understand, and there is a semantic gap between the image content itself and the user’s understanding; secondly, in community life of the image data increasing quickly, it is difficult to find their own interested image data. Aiming at the two problems, this paper proposes a unified image semantic scene model to express the image content. On this basis, a collaborative filtering recommendation model of fusion scene semantics is proposed. In the recommendation model, a comprehensiveness and accuracy user interest model is proposed to improve the recommendation quality. The results of the present study have achieved good results in the pilot cities of Wenzhou and Yan'an, and it is applied normally.

  20. Robust and Adaptive Block Tracking Method Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-10-01

    Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.

  1. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering

    KAUST Repository

    Liu, Zhi

    2012-02-10

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. The Author(s) 2012. Published by Oxford University Press.

  2. Stability analysis and active damping for LLCL-filter based grid-connected inverters

    DEFF Research Database (Denmark)

    Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A higher order passive power filter (LLCL-filter) for the grid-tied inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known stability problems of the LLCL-filter it is requested to use...... either passive or active damping methods. This paper analyzes the stability when damping is required and when damping is not necessary considering sampling and transport delay. Basic LLCL resonance damping properties of different feedback states are also studied. Then an active damping method which...... is using the capacitor current feedback for LLCL-filter is introduced. Based on this method, a design procedure for the control method is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  3. Gas refractometry based on an all-fiber spatial optical filter.

    Science.gov (United States)

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  4. Iris image recognition wavelet filter-banks based iris feature extraction schemes

    CERN Document Server

    Rahulkar, Amol D

    2014-01-01

    This book provides the new results in wavelet filter banks based feature extraction, and the classifier in the field of iris image recognition. It provides the broad treatment on the design of separable, non-separable wavelets filter banks, and the classifier. The design techniques presented in the book are applied on iris image analysis for person authentication. This book also brings together the three strands of research (wavelets, iris image analysis, and classifier). It compares the performance of the presented techniques with state-of-the-art available schemes. This book contains the compilation of basic material on the design of wavelets that avoids reading many different books. Therefore, it provide an easier path for the new-comers, researchers to master the contents. In addition, the designed filter banks and classifier can also be effectively used than existing filter-banks in many signal processing applications like pattern classification, data-compression, watermarking, denoising etc.  that will...

  5. A Compact Quint-Band Bandpass Filter Based on Stub-Loaded Resonators

    Directory of Open Access Journals (Sweden)

    M. Farhat

    2017-06-01

    Full Text Available This paper presents a planar quant-band bandpass filter with a high out-of-band rejection. The filter is based on inter-coupled stub-loaded resonators, where pairs of resonators are electromagnetically coupled to each other and the feed lines. This results in excitation of passbands, where the first and the third passbands are generated by λ/4 stub-loaded resonators. The second and the fifth passbands are excited by λ/2 stub-loaded resonators. And the fourth passband is generated by λ/2 resonators. The proposed technique provides sufficient degree of freedom to control the center frequency and bandwidth of the five passbands. In addition, the seven transmission zeros created around the passbands results in a quant-band filter with high selectivity, sharp 3dB cut-off frequency, high isolation, and low passband insertion-loss. Design methodology and simulation results of the filter are provided.

  6. Miniaturized Wideband Bandpass Filter with Wide Stopband using Metamaterial-based Resonator and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    S. Chaimool

    2012-06-01

    Full Text Available This paper presents a miniaturized wideband bandpass filter with wide stopband performance. It is shown that the coupled metamaterial-based resonators (MBRs incorporating with the defected ground structure (DGS can significantly increase the coupling value to achieve wideband bandpass filter. This technique has been extended to realize wideband bandpass filter having fractional bandwidth of 63 % and low insertion loss in the passband. To further suppress the spurious harmonics and upper stopband, the combining of the zero-degree feed structure and embedded slot-loaded resonators in both input and output ports is introduced. The proposed filter has not only compact size but also good out-of-band response. The experimental results are demonstrated and discussed.

  7. Red lesion detection in retinal fundus images using Frangi-based filters.

    Science.gov (United States)

    Srivastava, Ruchir; Wong, Damon W K; Lixin Duan; Jiang Liu; Tien Yin Wong

    2015-08-01

    This paper presents a method to detect red lesions related to Diabetic Retinopathy (DR), namely Microaneurysms and Hemorrhages from retinal fundus images with robustness to the presence of blood vessels. Filters based on Frangi filters are used for the first time for this task. Green channel of the input image was decomposed into smaller sub images and proposed filters were applied to each sub image after initial preprocessing. Features were extracted from the filter response and used to train a Support Vector Machine classifier to predict whether a test image had lesions or not. Experiments were performed on a dataset of 143 retinal fundus and the proposed method achieved areas under the ROC curve equal to 0.97 and 0.87 for Microaneurysms and Hemorrhages respectively. Results show the effectiveness of the proposed method for detecting red lesions. This method can help significantly in automated detection of DR with fewer false positives.

  8. Multi-band transmission color filters for multi-color white LEDs based visible light communication

    Science.gov (United States)

    Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng

    2017-11-01

    Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.

  9. Measurement and modelling of a multifunctional solar plus heatpump system from Nilan

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Furbo, Simon

    A multifunctional solar and heat pump unit from Nilan has been installed in the Performance Test Facility (PTF) at DTU Byg Denmark. It is part of the IEA Task 44 cooperation. Multifunctional means in this case: Hot water, Air heating, Ventilation, Air heat recovery, Air filtering and Floor heating...

  10. Maximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements

    Science.gov (United States)

    Wang, Changyuan; Zhang, Jing; Mu, Jing

    2012-01-01

    A new filter named the maximum likelihood-based iterated divided difference filter (MLIDDF) is developed to improve the low state estimation accuracy of nonlinear state estimation due to large initial estimation errors and nonlinearity of measurement equations. The MLIDDF algorithm is derivative-free and implemented only by calculating the functional evaluations. The MLIDDF algorithm involves the use of the iteration measurement update and the current measurement, and the iteration termination criterion based on maximum likelihood is introduced in the measurement update step, so the MLIDDF is guaranteed to produce a sequence estimate that moves up the maximum likelihood surface. In a simulation, its performance is compared against that of the unscented Kalman filter (UKF), divided difference filter (DDF), iterated unscented Kalman filter (IUKF) and iterated divided difference filter (IDDF) both using a traditional iteration strategy. Simulation results demonstrate that the accumulated mean-square root error for the MLIDDF algorithm in position is reduced by 63% compared to that of UKF and DDF algorithms, and by 7% compared to that of IUKF and IDDF algorithms. The new algorithm thus has better state estimation accuracy and a fast convergence rate. PMID:23012525

  11. A nowcasting technique based on application of the particle filter blending algorithm

    Science.gov (United States)

    Chen, Yuanzhao; Lan, Hongping; Chen, Xunlai; Zhang, Wenhai

    2017-10-01

    To improve the accuracy of nowcasting, a new extrapolation technique called particle filter blending was configured in this study and applied to experimental nowcasting. Radar echo extrapolation was performed by using the radar mosaic at an altitude of 2.5 km obtained from the radar images of 12 S-band radars in Guangdong Province, China. The first bilateral filter was applied in the quality control of the radar data; an optical flow method based on the Lucas-Kanade algorithm and the Harris corner detection algorithm were used to track radar echoes and retrieve the echo motion vectors; then, the motion vectors were blended with the particle filter blending algorithm to estimate the optimal motion vector of the true echo motions; finally, semi-Lagrangian extrapolation was used for radar echo extrapolation based on the obtained motion vector field. A comparative study of the extrapolated forecasts of four precipitation events in 2016 in Guangdong was conducted. The results indicate that the particle filter blending algorithm could realistically reproduce the spatial pattern, echo intensity, and echo location at 30- and 60-min forecast lead times. The forecasts agreed well with observations, and the results were of operational significance. Quantitative evaluation of the forecasts indicates that the particle filter blending algorithm performed better than the cross-correlation method and the optical flow method. Therefore, the particle filter blending method is proved to be superior to the traditional forecasting methods and it can be used to enhance the ability of nowcasting in operational weather forecasts.

  12. Multifunctionality in molecular magnetism.

    Science.gov (United States)

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  13. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  14. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  15. Multifunctional Nanotechnology Research

    Science.gov (United States)

    2016-03-01

    MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH MARCH 2016 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN-HOUSE...H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.,” Nanotechnology , vol

  16. Noise pollution filters bird communities based on vocal frequency.

    Directory of Open Access Journals (Sweden)

    Clinton D Francis

    Full Text Available BACKGROUND: Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. METHODOLOGY/PRINCIPAL FINDINGS: Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are

  17. Noise pollution filters bird communities based on vocal frequency.

    Science.gov (United States)

    Francis, Clinton D; Ortega, Catherine P; Cruz, Alexander

    2011-01-01

    Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as

  18. Self-commissioning notch filter for active damping in three phase LCL-filter based grid converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    LCL-filters are used to mitigate the harmonic current content in grid converters. The LCL-filter resonance must be damped in order to avoid stability problems in the current control. Active damping avoids resistors at the expense of increased control complexity. Large grid impedance variations can...

  19. Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill

    International Nuclear Information System (INIS)

    Moussaoui, A. K.; Abbassi, H. A.; Bouazza, S.

    2008-01-01

    The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved

  20. A hybrid damping method for LLCL-filter based grid-tied inverter with a digital filter and an RC parallel passive damper

    DEFF Research Database (Denmark)

    Wu, Weimin; Lin, Zhe; Sun, Yunjie

    2013-01-01

    Grid-tied inverters have been widely used to inject the renewable energies into the distributed power generation systems. However, a large variation of the grid impedance challenges the stability of the high-order power filter based grid-tied inverter. Many passive and active damping methods have...... been proposed to overcome this issue. Recently, a composite passive damping method for a high-order power filter based grid-tied inverter with an RC parallel damper and an RL series damper was presented to eliminate this problem, but at the cost of more material and power losses. In this paper......, a hybrid damping method with a digital filter and an RC parallel damper is proposed. The design of the digital filter is developed using a normalized method. The validity is verified through the simulations and the experiments on a 500 W, 110 V/50 Hz prototype, while the grid inductance varies from 0.15 m...

  1. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    Science.gov (United States)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  2. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  3. A composite passive damping method of the LLCL-filter based grid-tied inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; Huang, Min; Sun, Yunjie

    2012-01-01

    This paper investigates the maximum and the minimum gain of the proportional resonant based grid current controller for a grid-tied inverter with a passive damped high-order power filter. It is found that the choice of the controller gain is limited to the local maximum amplitude determined by Q......-factor around the characteristic frequency of the filter and grid impedance. To obtain the Q-factor of a high-order system, an equivalent circuit analysis method is proposed and illustrated through several classical passive damped LCL- and LLCL-filters. It is shown that both the RC parallel damper...... that is in parallel with the capacitor of the LCL-filter or with the Lf-Cf resonant circuit of the LLCL-filter, and the RL series damper in series with the grid-side inductor have their own application limits. Thus, a composite passive damped LLCL-filter for the grid-tied inverter is proposed, which can effectively...

  4. Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials

    Directory of Open Access Journals (Sweden)

    H Pashaei Adl

    2015-01-01

    Full Text Available In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters

  5. Hybrid method for designing digital FIR filters based on fractional derivative constraints.

    Science.gov (United States)

    Baderia, Kuldeep; Kumar, Anil; Kumar Singh, Girish

    2015-09-01

    In this manuscript, a hybrid approach based on Lagrange multiplier method and cuckoo search (CS) optimization technique is proposed for the design of linear phase finite impulse response (FIR) filters using fractional derivative constraints. In the proposed method, FIR filter is designed by optimizing the integral squares in passband and stopband from ideal response such that the fractional derivatives of designed filter response become zero at a given frequency point. Lagrange multiplier method is exploited for finding the optimized filter coefficients. Optimal value of fractional derivative constraints for optimized filter coefficients are determined by minimizing the objective function constructed using a sum of maximum passband ripple and maximum stopband ripple in frequency domain using CS algorithm. Performance of the proposed method is evaluated by passband error (ϕ(p)), stopband error (ϕ(s)), stopband attenuation (A(s)), maximum passband ripple (MPR), maximum stopband ripple (MSR) and CPU time. A comparative study of the performance of particle swarm optimization (PSO) and artificial bee colony (ABC) for designing FIR filters using the proposed method is also made. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Design of quadrature mirror filter bank using Lagrange multiplier method based on fractional derivative constraints

    Directory of Open Access Journals (Sweden)

    B. Kuldeep

    2015-06-01

    Full Text Available Fractional calculus has recently been identified as a very important mathematical tool in the field of signal processing. Digital filters designed by fractional derivatives give more accurate frequency response in the prescribed frequency region. Digital filters are most important part of multi-rate filter bank systems. In this paper, an improved method based on fractional derivative constraints is presented for the design of two-channel quadrature mirror filter (QMF bank. The design problem is formulated as minimization of L2 error of filter bank transfer function in passband, stopband interval and at quadrature frequency, and then Lagrange multiplier method with fractional derivative constraints is applied to solve it. The proposed method is then successfully applied for the design of two-channel QMF bank with higher order filter taps. Performance of the QMF bank design is then examined through study of various parameters such as passband error, stopband error, transition band error, peak reconstruction error (PRE, stopband attenuation (As. It is found that, the good design can be obtained with the change of number and value of fractional derivative constraint coefficients.

  7. RSSI-Based Distance Estimation Framework Using a Kalman Filter for Sustainable Indoor Computing Environments

    Directory of Open Access Journals (Sweden)

    Yunsick Sung

    2016-11-01

    Full Text Available Given that location information is the key to providing a variety of services in sustainable indoor computing environments, it is required to obtain accurate locations. Locations can be estimated by three distances from three fixed points. Therefore, if the distance between two points can be measured or estimated accurately, the location in indoor environments can be estimated. To increase the accuracy of the measured distance, noise filtering, signal revision, and distance estimation processes are generally performed. This paper proposes a novel framework for estimating the distance between a beacon and an access point (AP in a sustainable indoor computing environment. Diverse types of received strength signal indications (RSSIs are used for WiFi, Bluetooth, and radio signals, and the proposed distance estimation framework is unique in that it is independent of the specific wireless signal involved, being based on the Bluetooth signal of the beacon. Generally, RSSI measurement, noise filtering, and revision are required for distance estimation using RSSIs. The employed RSSIs are first measured from an AP, with multiple APs sometimes used to increase the accuracy of the distance estimation. Owing to the inevitable presence of noise in the measured RSSIs, the application of noise filtering is essential, and further revision is used to address the inaccuracy and instability that characterizes RSSIs measured in an indoor environment. The revised RSSIs are then used to estimate the distance. The proposed distance estimation framework uses one AP to measure the RSSIs, a Kalman filter to eliminate noise, and a log-distance path loss model to revise the measured RSSIs. In the experimental implementation of the framework, both a RSSI filter and a Kalman filter were respectively used for noise elimination to comparatively evaluate the performance of the latter for the specific application. The Kalman filter was found to reduce the accumulated errors by 8

  8. Electronically Tunable Current-mode High-order Ladder Low-pass Filters Based on CMOS Technology

    Directory of Open Access Journals (Sweden)

    T. Kunto

    2015-12-01

    Full Text Available This paper describes the design of current mode low-pass ladder filters based on CMOS technology. The filters are derived from passive RLC ladder filter prototypes using new CMOS lossy and lossless integrators. The all-pole and Elliptic approximations are used in the proposed low-pass filter realizations. The proposed two types of filter can be electronically tuned between 10kHz and 100MHz through bias current from 0.03µA to 300µA. The proposed filters use 1.5 V power supply with 3 mW power consumption at 300 µA bias current. The proposed filters are resistorless, use grounded capacitors and are suitable for further integration. The total harmonic distortion (THD of the low-pass filters is less than 1% over the operating frequency range. PSPICE simulation results, obtained by using TSMC 0.18µm technology, confirm the presented theory.

  9. Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating.

    Science.gov (United States)

    Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin

    2017-11-01

    Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

  10. Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory.

    Science.gov (United States)

    Zhang, Lichuan; Wang, Tonghao; Zhang, Feihu; Xu, Demin

    2017-10-08

    Cooperative localization (CL) is considered a promising method for underwater localization with respect to multiple autonomous underwater vehicles (multi-AUVs). In this paper, we proposed a CL algorithm based on information entropy theory and the probability hypothesis density (PHD) filter, aiming to enhance the global localization accuracy of the follower. In the proposed framework, the follower carries lower cost navigation systems, whereas the leaders carry better ones. Meanwhile, the leaders acquire the followers' observations, including both measurements and clutter. Then, the PHD filters are utilized on the leaders and the results are communicated to the followers. The followers then perform weighted summation based on all received messages and obtain a final positioning result. Based on the information entropy theory and the PHD filter, the follower is able to acquire a precise knowledge of its position.

  11. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers.

    Science.gov (United States)

    Sancho, J; Primerov, N; Chin, S; Antman, Y; Zadok, A; Sales, S; Thévenaz, L

    2012-03-12

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS).

  12. Designing an Inverter-based Operational Transconductance Amplifier-capacitor Filter with Low Power Consumption for Biomedical Applications.

    Science.gov (United States)

    Yousefinezhad, Sajad; Kermani, Saeed; Hosseinnia, Saeed

    2018-01-01

    The operational transconductance amplifier-capacitor (OTA-C) filter is one of the best structures for implementing continuous-time filters. It is particularly important to design a universal OTA-C filter capable of generating the desired filter response via a single structure, thus reducing the filter circuit power consumption as well as noise and the occupied space on the electronic chip. In this study, an inverter-based universal OTA-C filter with very low power consumption and acceptable noise was designed with applications in bioelectric and biomedical equipment for recording biomedical signals. The very low power consumption of the proposed filter was achieved through introducing bias in subthreshold MOSFET transistors. The proposed filter is also capable of simultaneously receiving favorable low-, band-, and high-pass filter responses. The performance of the proposed filter was simulated and analyzed via HSPICE software (level 49) and 180 nm complementary metal-oxide-semiconductor technology. The rate of power consumption and noise obtained from simulations are 7.1 nW and 10.18 nA, respectively, so this filter has reduced noise as well as power consumption. The proposed universal OTA-C filter was designed based on the minimum number of transconductance blocks and an inverter circuit by three transconductance blocks (OTA).

  13. Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors.

    Science.gov (United States)

    Comanici, Maria I; Chen, Lawrence R; Kung, Peter

    2017-11-10

    Fiber optic sensors based on fiber Bragg gratings (FBGs) find potential use in condition monitoring because their spectral properties change according to external environmental and/or physical factors. We propose and demonstrate a technique for interrogating multiple FBG-based sensors based on microwave photonic (MWP) filtering. In particular, we exploit the spectrum-slicing properties of two different FBG Fabry-Perot cavities to implement a double passband MWP filter. Each sensor spectrum results in a unique MWP filter passband. As temperature is applied to a sensor, the corresponding MWP filter passband will shift in frequency; we track such shifts by monitoring the detected power at a fixed radio frequency. We discuss the use of a ratiometric approach for enhancing the sensitivity and the impact of cross-talk from the MWP filter responses in terms of simultaneous multi-sensor operation. Results show that we can monitor local temperatures at two (or multiple) different locations simultaneously and independently using a single measurement system.

  14. Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil

    Science.gov (United States)

    Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.

    2017-12-01

    The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.

  15. Pulse filtering and correction for CZT detectors using simple digital algorithms based on the wavelet transform

    International Nuclear Information System (INIS)

    Perez, J.M.; Garcia-Belmonte, G.

    1998-01-01

    The authors report an approach to double gaussian filtering used in classical works as dual parameter pulse processing. This technique has been implemented by creating a bank of gaussian-like digital filters based on wavelet transforms. A simple method to correct for the charge loss inherent to room temperature semiconductor gamma detectors has been developed. This method is based on multi-resolution signal analysis. Results are reported from tests of these algorithms on commercial CZT detectors and two trapped hole charge correction levels are compared. Finally, the advantages and limitations of this new approach to detector pulse processing are discussed

  16. The Kalman Filtering Blind Adaptive Multi-user Detector Based on Tracking Algorithm of Signal Subspace

    Directory of Open Access Journals (Sweden)

    Liqing Zhou

    2015-01-01

    Full Text Available Multi-user detection is an effective method to reduce multiple access interference in code division multiple access (CDMA systems. This paper discusses a signal subspace based blind adaptive multiuser detector and a Kalman filtering blind adaptive multiuser detector. Combining them together, a new Kalman filtering blind adaptive multiuser detector based on a tracking algorithm of the signal subspace is proposed. Analysis and simulation show that the proposed blind multiuser detector achieves better suppression of multiple access interference and has a higher convergence rate.

  17. Model-based Prognostics with Fixed-lag Particle Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics exploits domain knowl- edge of the system, its components, and how they fail by casting the underlying physical phenom- ena in a...

  18. Passivity-based design of robust passive damping for LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Passive damping is proven as a robust stabilizing technique for LCL-filtered voltage source converters. However, conventional design methods of passive dampers are based on the passive components only, while the inherent damping effect of time delay in the digital control system is overlooked....... In this paper, a frequency-domain passivity-based design approach is proposed, where the passive dampers are designed to eliminate the negative real part of the converter output admittance with closed-loop current control, rather than shaping the LCL-filter itself. Thus, the influence of time delay...... in the current control is included, which allows a relaxed design of the passive damper with the reduced power loss and improved stability robustness against grid parameters variations. Design procedures of two commonly used passive dampers with LCL-filtered VSCs are illustrated. Experimental results validate...

  19. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2015-12-01

    Full Text Available This paper presents a novel texture feature extraction method based on a Gabor filter and Three-Patch Local Binary Patterns (TPLBP for Synthetic Aperture Rader (SAR target recognition. First, SAR images are processed by a Gabor filter in different directions to enhance the significant features of the targets and their shadows. Then, the effective local texture features based on the Gabor filtered images are extracted by TPLBP. This not only overcomes the shortcoming of Local Binary Patterns (LBP, which cannot describe texture features for large scale neighborhoods, but also maintains the rotation invariant characteristic which alleviates the impact of the direction variations of SAR targets on recognition performance. Finally, we use an Extreme Learning Machine (ELM classifier and extract the texture features. The experimental results of MSTAR database demonstrate the effectiveness of the proposed method.

  20. Wavelet Transform Based Filter to Remove the Notches from Signal Under Harmonic Polluted Environment

    Science.gov (United States)

    Das, Sukanta; Ranjan, Vikash

    2017-12-01

    The work proposes to annihilate the notches present in the synchronizing signal required for converter operation appearing due to switching of semiconductor devices connected to the system in the harmonic polluted environment. The disturbances in the signal are suppressed by wavelet based novel filtering technique. In the proposed technique, the notches in the signal are determined and eliminated by the wavelet based multi-rate filter using `Daubechies4' (db4) as mother wavelet. The computational complexity of the adapted technique is very less as compared to any other conventional notch filtering techniques. The proposed technique is developed in MATLAB/Simulink and finally validated with dSPACE-1103 interface. The recovered signal, thus obtained, is almost free of the notches.

  1. Re-Investigation of Generalized Integrator Based Filters From a First-Order-System Perspective

    DEFF Research Database (Denmark)

    Xin, Zhen; Zhao, Rende; Mattavelli, Paolo

    2016-01-01

    The generalized integrator (GI)-based filters can be categorized into two types: one is related to quadrature signal generator (QSG), and the other is related to sequence filter (SF). The QSG is used for generating the in-quadrature sinusoidal signals and the SF works for extracting the symmetrical...... sequence components. The signals generated by QSG and SF are useful in many applications, such as grid synchronization and harmonic estimation. However, the principles of QSG and SF are usually explained by either differential equations or transfer functions, which are not appropriate for analyzing some...... extended structures and thus restrict their applications. To overcome the drawback, this paper uses the first-order-system concept to re-investigate the GI-based filters, with which their working principles can be intuitively understood and their structure correlations can be easily discovered. Moreover...

  2. Simulation and Hardware Implementation of Shunt Active Power Filter Based on Synchronous Reference Frame Theory

    Directory of Open Access Journals (Sweden)

    Karthikrjan Senthilnathan

    2018-02-01

    Full Text Available This paper describes about the Hybrid Shunt Active Power Filter (HSAPF for the elimination of the current harmonics in the line side of the three phase three wire systems. The Active Power Filter is based on the Voltage Source Converter (VSC topology. The control strategy for the converter is based on Synchronous Reference Frame (SRF theory. The compensation of harmonics is done by the APF which is connected in the shunt configuration to the system. The Shunt APF has the better compensation of current harmonics. The design and implementation of Shunt active power filter is done by MATLAB/Simulink. The real time implementation by using the ATMEGA 8 Microcontroller. The Simulation and Hardware results shows that the current harmonics are eliminated in the system

  3. A Simple Differential Mode EMI Suppressor for the LLCL-Filter-Based Single-Phase Grid-Tied Transformerless Inverter

    DEFF Research Database (Denmark)

    Ji, Junhao; Wu, Weimin; He, Yuanbin

    2015-01-01

    The single-phase power converter topologies evolving of photovoltaic applications are still including passive filters, like the LCLor LLCL-filter. Compared with the LCL-filter, the total inductance of the LLCL-filter can be reduced a lot. However, due to the resonant inductor in series...... with the bypass capacitor, the differential mode (DM) electromagnetic interference (EMI) noise attenuation of an LLCL-filter-based grid-tied inverter declines. Conventionally, a capacitor was inserted in parallel with the LC resonant circuit branch of the LLCL-filter to suppress the DM EMI noise. In order...... to achieve a small value of capacitor as well as to minimize the additional reactive power, a novel simple DM EMI suppressor for the LLCL-filter-based system is proposed. The characters of two kinds of DM EMI suppressor are analyzed and compared in detail. Simulations and experiments on a 0.5-kW 110-V/50-Hz...

  4. Design and evaluation of a filter-based chairside amalgam separation system

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Mark E. [Naval Institute for Dental and Biomedical Research, 310A B Street, Great Lakes, Illinois 60088 (United States)], E-mail: mark.stone@yahoo.com; Cohen, Mark E.; Berry, Denise L.; Ragain, James C. [Naval Institute for Dental and Biomedical Research, 310A B Street, Great Lakes, Illinois 60088 (United States)

    2008-06-15

    This study evaluated the ability of a chairside filtration system to remove particulate-based mercury (Hg) from dental-unit wastewater. Prototypes of the chairside filtration system were designed and fabricated using reusable filter chambers with disposable filter elements. The system was installed in five dental operatories utilizing filter elements with nominal pore sizes of 50{mu}m, 15{mu}m, 1{mu}m, 0.5{mu}m, or with no system installed (control). Daily chairside wastewater samples were collected on ten consecutive days from each room and brought to the laboratory for processing. After processing the wastewater samples, Hg concentrations were determined with cold vapor atomic absorption spectrometry (USEPA method 7470A). Filter systems were exchanged after ten samples were collected so that all five of the configurations were evaluated in each room (with assignment order balanced by a Latin Square). The numbers of surfaces of amalgam placed and removed per day were tracked in each room. In part two, new filter systems with the 0.5{mu}m filter elements were installed in the five dental operatories and vacuum levels at the high-velocity evacuation cannula tip were measured with a vacuum gauge. In part three of the study, the chairside filtration system utilizing 0.5{mu}m and 15{mu}m filter elements was evaluated utilizing the ISO 11143 testing protocol, a laboratory test of amalgam separator efficiency utilizing amalgam samples of known particle size distribution. Mean Hg per chair per day (no filter installed) was 1087.38mg (SD = 993.92mg). Mean Hg per chair per day for the 50{mu}m, 15{mu}m, 1{mu}m, 0.5{mu}m filter configurations was 79.13mg (SD = 71.40mg), 23.55mg (SD = 23.25mg), 17.68mg (SD = 17.35mg), and 4.25mg (SD = 6.35mg), respectively (n = 50 for all groups). Calculated removal efficiencies from the clinical samples were 92.7%, 97.8%, 98.4%, and 99.6%, respectively. ANCOVA on data from the four filter groups, with amalgam-surfaces-removed included as a

  5. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model

    Directory of Open Access Journals (Sweden)

    Chunsheng Guo

    2015-09-01

    Full Text Available Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  6. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.

    Science.gov (United States)

    Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na

    2015-09-03

    Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  7. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique.

    Science.gov (United States)

    Chan, Erwin H W

    2012-10-08

    A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated.

  8. A SLAM based on auxiliary marginalised particle filter and differential evolution

    Science.gov (United States)

    Havangi, R.; Nekoui, M. A.; Teshnehlab, M.; Taghirad, H. D.

    2014-09-01

    FastSLAM is a framework for simultaneous localisation and mapping (SLAM) using a Rao-Blackwellised particle filter. In FastSLAM, particle filter is used for the robot pose (position and orientation) estimation, and parametric filter (i.e. EKF and UKF) is used for the feature location's estimation. However, in the long term, FastSLAM is an inconsistent algorithm. In this paper, a new approach to SLAM based on hybrid auxiliary marginalised particle filter and differential evolution (DE) is proposed. In the proposed algorithm, the robot pose is estimated based on auxiliary marginal particle filter that operates directly on the marginal distribution, and hence avoids performing importance sampling on a space of growing dimension. In addition, static map is considered as a set of parameters that are learned using DE. Compared to other algorithms, the proposed algorithm can improve consistency for longer time periods and also, improve the estimation accuracy. Simulations and experimental results indicate that the proposed algorithm is effective.

  9. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  10. Multifunctional switching unit for add/drop, wavelength conversion, format conversion, and WDM multicast based on bidirectional LCoS and SOA-loop architecture.

    Science.gov (United States)

    Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo

    2014-09-08

    We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.

  11. Multifactor dimensionality reduction as a filter-based approach for genome wide association studies.

    Science.gov (United States)

    Oki, Noffisat O; Motsinger-Reif, Alison A

    2011-01-01

    Advances in genotyping technology and the multitude of genetic data available now provide a vast amount of data that is proving to be useful in the quest for a better understanding of human genetic diseases through the study of genetic variation. This has led to the development of approaches such as genome wide association studies (GWAS) designed specifically for interrogating variants across the genome for association with disease, typically by testing single locus, univariate associations. More recently it has been accepted that epistatic (interaction) effects may also be great contributors to these genetic effects, and GWAS methods are now being applied to find epistatic effects. The challenge for these methods still remain in prioritization and interpretation of results, as it has also become standard for initial findings to be independently investigated in replication cohorts or functional studies. This is motivating the development and implementation of filter-based approaches to prioritize variants found to be significant in a discovery stage for follow-up for replication. Such filters must be able to detect both univariate and interactive effects. In the current study we present and evaluate the use of multifactor dimensionality reduction (MDR) as such a filter, with simulated data and a wide range of effect sizes. Additionally, we compare the performance of the MDR filter to a similar filter approach using logistic regression (LR), the more traditional approach used in GWAS analysis, as well as evaporative cooling (EC)-another prominent machine learning filtering method. The results of our simulation study show that MDR is an effective method for such prioritization, and that it can detect main effects, and interactions with or without marginal effects. Importantly, it performed as well as EC and LR for main effect models. It also significantly outperforms LR for various two-locus epistatic models, while it has equivalent results as EC for the epistatic

  12. iDensity: an automatic Gabor filter-based algorithm for breast density assessment

    Science.gov (United States)

    Gamdonkar, Ziba; Tay, Kevin; Ryder, Will; Brennan, Patrick C.; Mello-Thoms, Claudia

    2015-03-01

    Abstract Although many semi-automated and automated algorithms for breast density assessment have been recently proposed, none of these have been widely accepted. In this study a novel automated algorithm, named iDensity, inspired by the human visual system is proposed for classifying mammograms into four breast density categories corresponding to the Breast Imaging Reporting and Data System (BI-RADS). For each BI-RADS category 80 cases were taken from the normal volumes of the Digital Database for Screening Mammography (DDSM). For each case only the left medio-lateral oblique was utilized. After image calibration using the provided tables of each scanner in the DDSM, the pectoral muscle and background were removed. Images were filtered by a median filter and down sampled. Images were then filtered by a filter bank consisting of Gabor filters in six orientations and 3 scales, as well as a Gaussian filter. Three gray level histogram-based features and three second order statistics features were extracted from each filtered image. Using the extracted features, mammograms were separated initially separated into two groups, low or high density, then in a second stage, the low density group was subdivided into BI-RADS I or II, and the high density group into BI-RADS III or IV. The algorithm achieved a sensitivity of 95% and specificity of 94% in the first stage, sensitivity of 89% and specificity of 95% when classifying BIRADS I and II cases, and a sensitivity of 88% and 91% specificity when classifying BI-RADS III and IV.

  13. Preliminary study of an angiographic and angio-tomographic technique based on K-edge filters

    Energy Technology Data Exchange (ETDEWEB)

    Golosio, Bruno; Brunetti, Antonio [Dipartimento POLCOMING, Istituto di Matematica e Fisica, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Oliva, Piernicola; Carpinelli, Massimo [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Luca Masala, Giovanni [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Meloni, Francesco [Unità operativa di Diagnostica per immagini Asl n. 1, Ospedale Civile SS Annunziata, 07100 Sassari (Italy); Battista Meloni, Giovanni [Istituto di Scienze Radiologiche, Università di Sassari, 07100 Sassari (Italy)

    2013-08-14

    Digital Subtraction Angiography is commonly affected by artifacts due to the patient movements during the acquisition of the images without and with the contrast medium. This paper presents a preliminary study on an angiographic and angio-tomographic technique based on the quasi-simultaneous acquisition of two images, obtained using two different filters at the exit of an X-ray tube. One of the two filters (K-edge filter) contains the same chemical element used as a contrast agent (gadolinium in this study). This filter absorbs more radiation with energy just above the so called K-edge energy of gadolinium than the radiation with energy just below it. The other filter (an aluminium filter in this study) is simply used to suppress the low-energy contribution to the spectrum. Using proper calibration curves, the two images are combined to obtain an image of the contrast agent distribution. In the angio-tomographic application of the proposed technique two images, corresponding to the two filter types, are acquired for each viewing angle of the tomographic scan. From the two tomographic reconstructions, it is possible to obtain a three-dimensional map of the contrast agent distribution. The technique was tested on a sample consisting of a rat skull placed inside a container filled with water. Six small cylinders with 4.7 mm internal diameter containing the contrast medium at different concentrations were placed inside the skull. In the plain angiographic application of the technique, five out of six cylinders were visible, with gadolinium concentration down to 0.96%. In the angio-tomographic application, all six cylinders were visible, with gadolinium concentration down to 0.49%. This preliminary study shows that the proposed technique can provide images of the contrast medium at low concentration without most of the artifacts that are present in images produced by conventional techniques. The results encourage further investigation on the feasibility of a clinical

  14. Learning based particle filtering object tracking for visible-light systems.

    Science.gov (United States)

    Sun, Wei

    2015-10-01

    We propose a novel object tracking framework based on online learning scheme that can work robustly in challenging scenarios. Firstly, a learning-based particle filter is proposed with color and edge-based features. We train a. support vector machine (SVM) classifier with object and background information and map the outputs into probabilities, then the weight of particles in a particle filter can be calculated by the probabilistic outputs to estimate the state of the object. Secondly, the tracking loop starts with Lucas-Kanade (LK) affine template matching and follows by learning-based particle filter tracking. Lucas-Kanade method estimates errors and updates object template in the positive samples dataset, and learning-based particle filter tracker will start if the LK tracker loses the object. Finally, SVM classifier evaluates every tracked appearance to update the training set or restart the tracking loop if necessary. Experimental results show that our method is robust to challenging light, scale and pose changing, and test on eButton image sequence also achieves satisfactory tracking performance.

  15. A two-step filtering-based iterative image reconstruction method for interior tomography.

    Science.gov (United States)

    Zhang, Hanming; Li, Lei; Yan, Bin; Wang, Linyuan; Cai, Ailong; Hu, Guoen

    2016-10-06

    The optimization-based method that utilizes the additional sparse prior of region-of-interest (ROI) image, such as total variation, has been the subject of considerable research in problems of interior tomography reconstruction. One challenge for optimization-based iterative ROI image reconstruction is to build the relationship between ROI image and truncated projection data. When the reconstruction support region is smaller than the original object, an unsuitable representation of data fidelity may lead to bright truncation artifacts in the boundary region of field of view. In this work, we aim to develop an iterative reconstruction method to suppress the truncation artifacts and improve the image quality for direct ROI image reconstruction. A novel reconstruction approach is proposed based on an optimization problem involving a two-step filtering-based data fidelity. Data filtering is achieved in two steps: the first takes the derivative of projection data; in the second step, Hilbert filtering is applied in the differentiated data. Numerical simulations and real data reconstructions have been conducted to validate the new reconstruction method. Both qualitative and quantitative results indicate that, as theoretically expected, the proposed method brings reasonable performance in suppressing truncation artifacts and preserving detailed features. The presented local reconstruction method based on the two-step filtering strategy provides a simple and efficient approach for the iterative reconstruction from truncated projections.

  16. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  17. Information filtering via a scaling-based function.

    Science.gov (United States)

    Qiu, Tian; Zhang, Zi-Ke; Chen, Guang

    2013-01-01

    Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.

  18. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter

    Science.gov (United States)

    Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin

    2018-02-01

    This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.

  19. ECG baseline wander correction based on mean-median filter and empirical mode decomposition.

    Science.gov (United States)

    Xin, Yi; Chen, Yu; Hao, Wei Tuo

    2014-01-01

    A novel approach of ECG baseline wander correction based on mean-median filter and empirical mode decomposition is presented in this paper. The low frequency parts of the original signals were removed by the mean median filter in a nonlinear way to obtain the baseline wander estimation, then its series of IMFs were sifted by t-test after empirical mode decomposition. The proposed method, tested by the ECG signals in MIT-BIH Arrhythmia database and European ST_T database, is more effective compared with other baseline wander removal methods.

  20. Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Passive damping is the most adopted method to guarantee the stability of LCL-filter-based grid converters. The method is simple and, if the switching and sampling frequencies are sufficiently high, the damping losses are negligible. This letter proposes the tuning of different passive damping...... methods and an analytical estimation of the damping losses allowing the choice of the minimum resistor value resulting in a stable current control and not compromising the LCL-filter effectiveness. Stability, including variations in the grid inductance, is studied through root locus analysis in the z...

  1. A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation.

    Science.gov (United States)

    Li, Song; Cao, Xupeng; Wang, Yan; Zhu, Zhen; Zhang, Haowei; Xue, Song; Tian, Jing

    2017-11-01

    With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.

  2. Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong

    2017-09-01

    In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.

  3. Filtering Based Recursive Least Squares Algorithm for Multi-Input Multioutput Hammerstein Models

    Directory of Open Access Journals (Sweden)

    Ziyun Wang

    2014-01-01

    Full Text Available This paper considers the parameter estimation problem for Hammerstein multi-input multioutput finite impulse response (FIR-MA systems. Filtered by the noise transfer function, the FIR-MA model is transformed into a controlled autoregressive model. The key-term variable separation principle is used to derive a data filtering based recursive least squares algorithm. The numerical examples confirm that the proposed algorithm can estimate parameters more accurately and has a higher computational efficiency compared with the recursive least squares algorithm.

  4. High-temperature Fabry-Perot-based strain sensor for ceramic barrier filters

    Science.gov (United States)

    Weinstein, Shmuel J.; Vuppala, Veerendra B.; Gunther, Michael F.; Wang, Anbo; Murphy, Kent A.; Claus, Richard O.

    1994-02-01

    We report results from a program to develop fiber-optic sensor-based instrumentation methods to allow the in-situ analysis of ceramic barrier filters. The sensor used was an extrinsic Fabry-Perot cavity created between the ends of two longitudinally aligned fibers. Filters instrumented with these fiber sensors were tested in a combustor simulator at the Westinghouse Science and Technology Center. These tests were performed using silica optical fibers capable of withstanding the high temperature and harsh chemical environment of the combustor. The single-ended approach of the reflective Fabry-Perot sensors is well suited for high thermal strain measurements. The results from several tests are presented.

  5. Noisy blind source separation based on CEEMD and Savitzky-Golay filter

    Science.gov (United States)

    Peng, Hua-Fu; Huang, Gao-Ming

    2017-09-01

    The standard independent component analysis (ICA) algorithm is difficult to extract signals in noise condition, a blind separation algorithm based on denoising pretreatment was proposed. Mixed signals firstly were decomposed into several stationary intrinsic mode components (IMF) using complementary ensemble empirical mode decomposition (CEEMD), and high frequency IMF components were filtered with Savitzky-Golay filtering, then using the whole components reconstructed the mixed signals, finally applying the fast independent component analysis(FastICA) to separate the reconstructed signals. Simulation results showed that the proposed method improved the effect of blind signal separation under low signal-to-noise ratio.

  6. Tunable Optical Filter Based on Mechanically Induced Cascaded Long Period Optical Fiber Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-01-01

    Full Text Available We have proposed and demonstrated experimentally a novel and simple tunable optical filter based on mechanically induced and cascaded long period optical fiber gratings. In this filter variable FWHM and center wavelength is provided by cascading long period and ultralong period optical fiber gratings with different periods in a novel fiber structure. We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings with periods up to several millimeters in novel multimode-single-mode-multimode fiber structure. We have obtained maximum loss peak of around 20 dB.

  7. Envelope analysis with a genetic algorithm-based adaptive filter bank for bearing fault detection.

    Science.gov (United States)

    Kang, Myeongsu; Kim, Jaeyoung; Choi, Byeong-Keun; Kim, Jong-Myon

    2015-07-01

    This paper proposes a fault detection methodology for bearings using envelope analysis with a genetic algorithm (GA)-based adaptive filter bank. Although a bandpass filter cooperates with envelope analysis for early identification of bearing defects, no general consensus has been reached as to which passband is optimal. This study explores the impact of various passbands specified by the GA in terms of a residual frequency components-to-defect frequency components ratio, which evaluates the degree of defectiveness in bearings and finally outputs an optimal passband for reliable bearing fault detection.

  8. Microwave photonic notch filter based on a dual-Sagnac-loop structure.

    Science.gov (United States)

    Wang, Xudong; Chan, Erwin H W; Minasian, Robert A

    2010-11-20

    A new single-wavelength, coherence-free microwave photonic notch filter is presented. The concept is based on a dual-Sagnac-loop structure that functions with a new principle in which the two loops operate with different free spectral ranges, and which generate noncommensurate taps. It has the ability to generate a narrow notch response and can operate to high frequencies. Experimental results demonstrate a notch filter with a narrow notch width, a flat passband, and high stop-band attenuation of over 40dB.

  9. Bandpass transmission filters based on phase shifted fiber Bragg gratings in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Ortega, Beatriz; Min, Rui; Sáez-Rodri­guez, David

    2017-01-01

    In this contribution we report on the fabrication of novel bandpass transmission filters based on PS-FBGs in microstructured polymer fibers at telecom wavelengths. The phase mask technique is employed to fabricate several superimposed gratings with slight different periods in order to form Moir......é structures with a single or various π phase shifts along the device. Simulations and experimental results are included in order to demonstrate very narrowband transmission filters. Experimental characterization under strain and temperature variations is provided in a non-annealed fiber and time stability...... of the fabricated devices has been also measured under different pre-strain conditions....

  10. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  11. Hankel-norm approximation of FIR filters: a descriptor-systems based approach

    Science.gov (United States)

    Halikias, George; Tsoulkas, Vasilis; Pantelous, Athanasios; Milonidis, Efstathios

    2010-09-01

    We propose a new method for approximating a matrix finite impulse response (FIR) filter by an infinite impulse response (IIR) filter of lower McMillan degree. This is based on a technique for approximating discrete-time descriptor systems and requires only standard linear algebraic routines, while avoiding altogether the solution of two matrix Lyapunov equations which is computationally expensive. Both the optimal and the suboptimal cases are addressed using a unified treatment. A detailed solution is developed in state-space or polynomial form, using only the Markov parameters of the FIR filter which is approximated. The method is finally applied to the design of scalar IIR filters with specified magnitude frequency-response tolerances and approximately linear-phase characteristics. A priori bounds on the magnitude and phase errors are obtained which may be used to select the reduced-order IIR filter order which satisfies the specified design tolerances. The effectiveness of the method is illustrated with a numerical example. Additional applications of the method are also briefly discussed.

  12. Area efficient decimation filter based on merged delay transformation for wireless applications

    International Nuclear Information System (INIS)

    Rashid, U.; Siddiq, F.; Muhammad, T.; Jamal, H.

    2013-01-01

    Expected by 2014 is the 4G standard for cellular wireless communications, which will improve bandwidth, connectivity and roaming for mobile and stationary devices, 4G and other wireless systems are currently hot topics of research and development in the communication field. In wireless technologies like Global System for Mobile (GSM), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi, decimation filters are essential part of transceivers being used. This paper describes a decimation filter which is efficient in terms of both the power consumption and the area used. The architecture is based upon Merged Delay Transformation (MDT). The existing Merged Delay Transformed Infinite Impulse Response (IIR) architecture is power efficient but requires larger area. The proposed and existing filters were implemented on Field-Programmable Gate Array (FPGA). The computational cost of the proposed filter is reduced to (3N/2 + 1) and M-1 times reduction in the number of multipliers in comparison to the existing FIR filter is achieved. The power consumption and speed remain nearly the same. (author)

  13. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.

    Science.gov (United States)

    Khodaee, M; Banakermani, M; Baghban, H

    2015-10-10

    Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34  THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.

  14. Wide Bandpass and Narrow Bandstop Microstrip Filters based on Hilbert fractal geometry: design and simulation results.

    Directory of Open Access Journals (Sweden)

    Yaqeen S Mezaal

    Full Text Available This paper presents new Wide Bandpass Filter (WBPF and Narrow Bandstop Filter (NBSF incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems.

  15. Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Weirich, Johannes

    2008-01-01

    A tunable and polarisation-maintaining all-in-fibre filter based on a liquid crystal photonic bandgap fibre is demonstrated. Its polarisation extinction ratio reaches 14 dB at 1550 nm wavelength. Its spectral tunability range spans over 250 nm in the temperature range 30–70°C. The measured...

  16. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    Science.gov (United States)

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  17. Kalman filter for speech enhancement in cocktail party scenarios using a codebook-based approach

    DEFF Research Database (Denmark)

    Kavalekalam, Mathew Shaji; Christensen, Mads Græsbøll; Gran, Fredrik

    2016-01-01

    Enhancement of speech in non-stationary background noise is a challenging task, and conventional single channel speech enhancement algorithms have not been able to improve the speech intelligibility in such scenarios. The work proposed in this paper investigates a single channel Kalman filter based...

  18. Low-cost domestic water filter: The case for a process-based ...

    African Journals Online (AJOL)

    Low-cost domestic water filter: The case for a process-based approach for the development of a rural technology product. ... Since the project aims at technology transfer to the rural poor for generating rural livelihoods, appropriate financial models and the general sustainability issues for such an activity are briefly discussed ...

  19. Coupled particle filtering : A new approach for P300-based analysis of mental fatigue

    NARCIS (Netherlands)

    Jarchi, Delaram; Sanei, Saeid; Mohseni, Hamid R.; Lorist, Monicque M.

    A new method for investigating mental fatigue based on P300 variability is presented here. In this approach a new coupled particle filtering for tracking variability of P300 subcomponents, i.e., P3a and P3b, across trials is developed. The latency, amplitude, and width of each subcomponent, as the

  20. The impact of sensor errors and building structures on particle filter-based inertial positioning

    DEFF Research Database (Denmark)

    Toftkjær, Thomas; Kjærgaard, Mikkel Baun

    2012-01-01

    Positioning systems that do not depend on in-building infrastructures are critical for enabling a range of applications within pervasive computing. Particle filter-based inertial positioning promises infrastructure-less positioning, but previous research has not provided an understanding of how t...

  1. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bingbing Gao

    2018-02-01

    Full Text Available This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system integrated navigation.

  2. Development and evaluation of a plant-based air filter system for ...

    African Journals Online (AJOL)

    Y. Choi

    2013-04-17

    Apr 17, 2013 ... plant based filter system on bacterial growth in aqueous media, the compressed air was fed to the system at a rate of 200 mL/min, and the exhaust gas from the system was supplied to a bacterial culture. In this experiment, we attempted to verify the inhibition activity of the gas on bacterial growth in aqueous ...

  3. Vapour HF release of airgap-based UV-visible optical filters

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design and CMOS-compatible fabrication of airgap-based optical filters in a surface micromachining process with sacrificial release using thevapour phase is presented. An airgap-dielectric layer combination offers a higher refractive index contrast, as compared to the conventional

  4. Development and evaluation of a plant-based air filter system for ...

    African Journals Online (AJOL)

    We investigated a novel plant-based air filter system for bacterial growth control. The volatile components released from the experimental plant (Cupressus macrocarpa) were used as the basis of the bacterial growth control and inhibition. We monitored the effect of light on the gas exhausted from the system, and we found ...

  5. A Spectrum Sensing Scheme Based on Subspace Filtering

    Science.gov (United States)

    Mu, Junsheng; Yang, Wei; Jing, Xiaojun; Huang, Hai

    2017-10-01

    Spectrum sensing (SS) has attracted much concern of researchers due to its significant contribution on the spectral efficiency. Energy Detection (ED) has been a critical method for Spectrum Sensing in Cognitive Radio Networks (CRNS) due to its low complexity and simple implement. However, noise uncertainty in ED greatly degrades the detection performance, especially under a low Signal-to-Noise Ratio (SNR). To remove noise uncertainty as much as possible, a scheme based on subspace decomposition is proposed for SS, where the received signal is decomposed into two parts: noise subspace and signal-plus-noise subspace. Then the closed-form solution of the detection and false alarm probabilities is given on the basis of the signal-plus-noise subspace in Rayleigh fading channel. The energy of the remainders after removal of noise subspace and noise contribution in signal-plus-noise subspace is used to decide whether the primary user (PU) exists by a comparison with a redesigned threshold. Eventually, some simulations based on MATLAB platform is made to validate the proposed method.

  6. Information filtering via a scaling-based function.

    Directory of Open Access Journals (Sweden)

    Tian Qiu

    Full Text Available Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.

  7. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.

    Science.gov (United States)

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J

    2017-03-03

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  8. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

    Directory of Open Access Journals (Sweden)

    Anthony Hoak

    2017-03-01

    Full Text Available We develop an interactive likelihood (ILH for sequential Monte Carlo (SMC methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL and TUD-Stadtmitte using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA and classification of events, activities and relationships for multi-object trackers (CLEAR MOT. In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  9. State space model-based trust evaluation over wireless sensor networks: an iterative particle filter approach

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2017-03-01

    Full Text Available In this study, the authors propose a state space modelling approach for trust evaluation in wireless sensor networks. In their state space trust model (SSTM, each sensor node is associated with a trust metric, which measures to what extent the data transmitted from this node would better be trusted by the server node. Given the SSTM, they translate the trust evaluation problem to be a non-linear state filtering problem. To estimate the state based on the SSTM, a component-wise iterative state inference procedure is proposed to work in tandem with the particle filter (PF, and thus the resulting algorithm is termed as iterative PF (IPF. The computational complexity of the IPF algorithm is theoretically linearly related with the dimension of the state. This property is desirable especially for high-dimensional trust evaluation and state filtering problems. The performance of the proposed algorithm is evaluated by both simulations and real data analysis.

  10. A narrowband filter based on 2D 8-fold photonic quasicrystal

    Science.gov (United States)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-04-01

    In this paper, a novel structure of narrowband filter based on 2D 8-fold photonic quasicrystal (PQC) is proposed and investigated. The structure size is 8 μm × 8 μm, which promises its applications in optical integrated circuits and communication devices. Finite Element Method (FEM) has been employed to investigate the band gap of the filter. The resonance wavelength, transmission coefficient and 3 dB bandwidth are analyzed by varying the parameters of the structure. By optimizing the parameters of the filter, two design formulas of resonance wavelength are obtained. Also, for its better linearity of the resonance, the structure with line-defect has also seen a large uptake in sensor design.

  11. Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures.

    Science.gov (United States)

    Golmohammadi, S; Moravvej-Farshi, M K; Rostami, A; Zarifkar, A

    2007-08-20

    In this paper, we propose a narrowband DWDM filter structure, whose reflection band characteristics, meets the ITU-T standard. The proposed filter structure is based on Fibonacci quasi-periodic structures composed of multilayers with large index differences. Studying the effects of the optical and geometrical parameters of Fibonacci quasi-periodic structures on its filtering properties, we have realized that to achieve the ITU-T standard, we need to cascade two successive structures both with the same generation numbers j=4 and orders n=25 and apodized refractive indices. The apodization process helps to minimize the stop band sidelobes. We have also demonstrated that beside Fibonacci's order, n, the layers dimensions, and their refractive index ratios are the main design parameters.

  12. Design of adaptive filter amplifier in UV communication based on DSP

    Science.gov (United States)

    Lv, Zhaoshun; Wu, Hanping; Li, Junyu

    2016-10-01

    According to the problem of the weak signal at receiving end in UV communication, we design a high gain, continuously adjustable adaptive filter amplifier. Based on proposing overall technical indicators and analyzing its working principle of the signal amplifier, we use chip LMH6629MF and two chips of AD797BN to achieve three-level cascade amplification. And apply hardware of DSP TMS320VC5509A to implement digital filtering. Design and verification by Multisim, Protel 99SE and CCS, the results show that: the amplifier can realize continuously adjustable amplification from 1000 to 10000 times without distortion. Magnification error is <=%4@1000 10000. And equivalent input noise voltage of amplification circuit is <=6 nV/ √Hz @30KHz 45KHz, and realizing function of adaptive filtering. The design provides theoretical reference and technical support for the UV weak signal processing.

  13. Comprehensive Utilization of Filter Residue from the Preparation Process of Zeolite-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2016-05-01

    Full Text Available A novel utilization method of filter residue from the preparation process of zeolite-based catalysts was investigated. Y zeolite and a fluid catalytic cracking (FCC catalyst were synthesized from filter residue. Compared to the Y zeolite synthesized by the conventional method, the Y zeolite synthesized from filter residue exhibited better thermal stability. The catalyst possessed wide-pore distribution. In addition, the pore volume, specific surface area, attrition resistance were superior to those of the reference catalyst. The yields of gasoline and light oil increased by 1.93 and 1.48 %, respectively. At the same time, the coke yield decreased by 0.41 %. The catalyst exhibited better gasoline and coke selectivity. The quality of the cracked gasoline had been improved.

  14. A novel metamaterial filter with stable passband performance based on frequency selective surface

    Directory of Open Access Journals (Sweden)

    C. Y. Fang

    2014-07-01

    Full Text Available In this paper, a novel metamaterial filter based on frequency selective surface (FSS is proposed. Using the mode matching method, we theoretically studied the transmission performance of the structure. Results show that, by rotating its neighboring elements 90 degree, the novel filter has a better stability to angle of incidence than traditional structures for TE and TM polarization. As the incident angles vary from 0 to 50 degrees, the metamaterial filter exhibits a transmittance higher than 0.98 and the center frequency slightly shifts downward (from 10 GHz to 0.96 GHz for TE polarization. For TM polarization, a transmittance of 0.98 is achieved and the center frequency retains 0.96 GHz with the varying of the incident angles. Furthermore, an experimental prototype fabricated was tested in a microwave chamber, and the measured results show good agreement with the simulated ones.

  15. LLCL-Filter Based Single-Phase Grid-Tied Aalborg Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; Feng, Shuangshuang; Ji, Junhao

    2014-01-01

    The Aalborg Inverter is a new type of high efficient DC/AC grid-tied inverter, where the input DC voltage can vary in a wide range. Compared with the LCL-filter, the LLCL-filter can save the total inductance for the conventional voltage source inverter. In this paper, an LLCL-filter based Aalborg...... Inverter is proposed and its character is illustrated through the small signal analysis in both “Buck” and “Buck-Boost” mode. From the modeling, it can be seen that the resonant inductor in the capacitor loop has not brought extra control difficulties, whereas more inductance in the power loop can be saved....... Simulation and experiments are carried out to verify the analysis and the design through an 220 V/50 Hz, 2000 W prototype....

  16. Identification of chaotic memristor systems based on piecewise adaptive Legendre filters

    International Nuclear Information System (INIS)

    Zhao, Yibo; Zhang, Xiuzai; Xu, Jin; Guo, Yecai

    2015-01-01

    Memristor is a nonlinear device, which plays an important role in the design and implementation of chaotic systems. In order to be able to understand in-depth the complex nonlinear dynamic behaviors in chaotic memristor systems, modeling or identification of its nonlinear model is very important premise. This paper presents a chaotic memristor system identification method based on piecewise adaptive Legendre filters. The threshold decomposition is carried out for the input vector, and also the input signal subintervals via decomposition satisfy the convergence condition of the adaptive Legendre filters. Then the adaptive Legendre filter structure and adaptive weight update algorithm are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics.

  17. Fault diagnosis for wind turbine planetary ring gear via a meshing resonance based filtering algorithm.

    Science.gov (United States)

    Wang, Tianyang; Chu, Fulei; Han, Qinkai

    2017-03-01

    Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Particle-Filter-Based Multisensor Fusion For Solving Low-Frequency Electromagnetic NDE Inverse Problems

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.; Ramuhalli, Pradeep; Dass, Sarat

    2011-06-30

    Flaw profile characterization from NDE measurements is a typical inverse problem. A novel transformation of this inverse problem into a tracking problem, and subsequent application of a sequential Monte Carlo method called particle filtering, has been proposed by the authors in an earlier publication [1]. In this study, the problem of flaw characterization from multi-sensor data is considered. The NDE inverse problem is posed as a statistical inverse problem and particle filtering is modified to handle data from multiple measurement modes. The measurement modes are assumed to be independent of each other with principal component analysis (PCA) used to legitimize the assumption of independence. The proposed particle filter based data fusion algorithm is applied to experimental NDE data to investigate its feasibility.

  19. Design and Hardware Verification of Canard Based Sounding Rocket Attitude Controller Using Adaptive Filter

    Science.gov (United States)

    Sawai, Shujiro; Matsuda, Seiji

    Canard based controller using an adaptive notch filter is proposed to control the attitude of launch vehicles including the ISAS's sounding rocket `S-520'. As the characteristics of launch vehicles are time variant in nature, conventional time invariant controller is not suitable for this purpose. Here, adaptive notch filter is proposed to treat the time variant nature. This adaptive filter acts to null out the structural bending mode, which often causes the instability of the attitude controller. The proposed adaptation law requires only limited calculation cost. It means that it is easy to install to the real flight system. The hardware module which aims to control the attitude of the sounding rocket `S-520' is designed and verified not only by the numerical simulations, but also by the hardware tests.

  20. Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    OpenAIRE

    Luo, Chen; Pang, Wei; Wang, Zhe

    2014-01-01

    Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can e...

  1. Tunable band (pass and stop) filters based on plasmonic structures using Kerr-type nonlinear rectangular nanocavity

    Science.gov (United States)

    Arianfard, Hamed; Khajeheian, Bahareh; Ghayour, Rahim

    2017-12-01

    We have proposed and numerically investigated two plasmonic structures for bandpass and band-stop filters. The bandpass filter is composed of two metal-insulator-metal (MIM) waveguides coupled to each other by a nonlinear rectangular nanocavity. The band-stop filter consists of an MIM waveguide side coupled to a Kerr-type nonlinear rectangular nanocavity. The optical filtering effect is verified by two-dimensional (2-D) finite-difference time-domain (FDTD) simulations. It is demonstrated that based on optical nonlinearity we can easily make the proposed filters tunable by properly adjusting the intensity of incident light without changing the dimensions of the structures. The simulation results revealed that within the transmission spectrum, the selected central wavelength and the bandwidth of the filter can be tuned by the input signal intensity. The proposed structures are suitable to be used as highly dense integrated optical circuits, where limitations on the dimensions of the filter structure are vital.

  2. Neural Online Filtering Based on Preprocessed Calorimeter Data

    CERN Document Server

    Torres, R C; The ATLAS collaboration; de Simas Filho, E F; De Seixas, J M

    2009-01-01

    Aiming at coping with LHC high event rate, the ATLAS collaboration has been designing a sophisticated three-level online triggering system. A significant number of interesting events decays into electrons, which have to be identified from a huge background noise. This work proposes a high-efficient L2 electron / jet discrimination algorithm based on artificial neural processing fed from preprocessed calorimeter information. The feature extraction part of the proposed system provides a ring structure for data description. Energy normalization is later applied to the rings, making the proposed system usable for a broad energy spectrum. Envisaging data compaction, Principal Component Analysis and Principal Component of Discrimination are compared in terms of both compaction rates and classification efficiency. For the pattern recognition section, an artificial neural network was employed. The proposed algorithm was able to achieve an electron detection efficiency of 96% for a false alarm of 7%.

  3. Care Farms in the Netherlands: An Underexplored Example of Multifunctional Agriculture--Toward an Empirically Grounded, Organization-Theory-Based Typology

    Science.gov (United States)

    Hassink, Jan; Hulsink, Willem; Grin, John

    2012-01-01

    For agricultural and rural development in Europe, multifunctionality is a leading concept that raises many questions. Care farming is a promising example of multifunctional agriculture that has so far received little attention. An issue that has not been examined thoroughly is the strategic mapping of different care farm organizations in this…

  4. Wafer-level fabrication of GaN-based vertical light-emitting diodes using a multi-functional bonding material system

    International Nuclear Information System (INIS)

    Lee, Sang Youl; Choi, Kwang Ki; Jeong, Hwan-Hee; Choi, Hee Seok; Oh, Tchang-Hun; Song, June O; Seong, Tae-Yeon

    2009-01-01

    We first report on the fabrication of 2 inch wafer-level GaN-based vertical light-emitting diodes (LEDs) by using a multi-functional bonding material system, which is composed of a thick Cu diffusion barrier and a bonding layer. The bonding material system superbly absorbs laser-induced stress and also effectively serves as a barrier to the indiffusion of Sn to the active region. Fully packaged vertical LEDs fabricated with indium tin oxide (ITO)/AgCu contact and the bonding material system give an operating voltage of 3.35 V at 350 mA. After over 1800 h, the operating voltages remain stable, and the reverse currents are in the range 3–8 × 10 −7 A at −5 V. (rapid communication)

  5. Multifunctional material based on ionic transition metal complexes and gold-silica nanoparticles: synthesis and photophysical characterization for application in imaging and therapy.

    Science.gov (United States)

    Ricciardi, Loredana; Martini, Matteo; Tillement, Olivier; Sancey, Lucie; Perriat, Pascal; Ghedini, Mauro; Szerb, Elisabeta I; Yadav, Yogesh J; La Deda, Massimo

    2014-11-01

    A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.

  6. Neural Online Filtering Based on Preprocessed Calorimeter Data

    CERN Document Server

    Torres, R C; The ATLAS collaboration; Simas Filho, E F; De Seixas, J M

    2009-01-01

    Among LHC detectors, ATLAS aims at coping with such high event rate by designing a three-level online triggering system. The first level trigger output will be ~75 kHz. This level will mark the regions where relevant events were found. The second level will validate LVL1 decision by looking only at the approved data using full granularity. At the level two output, the event rate will be reduced to ~2 kHz. Finally, the third level will look at full event information and a rate of ~200 Hz events is expected to be approved, and stored in persistent media for further offline analysis. Many interesting events decay into electrons, which have to be identified from the huge background noise (jets). This work proposes a high-efficient LVL2 electron / jet discrimination system based on neural networks fed from preprocessed calorimeter information. The feature extraction part of the proposed system performs a ring structure of data description. A set of concentric rings centered at the highest energy cell is generated ...

  7. File-Based Data Flow in the CMS Filter Farm

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.M.; et al.

    2015-12-23

    During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes are also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.

  8. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real

  9. Efficient and accurate optimal linear phase FIR filter design using opposition-based harmony search algorithm.

    Science.gov (United States)

    Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  10. Efficient and Accurate Optimal Linear Phase FIR Filter Design Using Opposition-Based Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. K. Saha

    2013-01-01

    Full Text Available In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  11. UltiMatch-NL: a Web service matchmaker based on multiple semantic filters.

    Science.gov (United States)

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters.

  12. Automatic speech signal segmentation based on the innovation adaptive filter

    Directory of Open Access Journals (Sweden)

    Makowski Ryszard

    2014-06-01

    Full Text Available Speech segmentation is an essential stage in designing automatic speech recognition systems and one can find several algorithms proposed in the literature. It is a difficult problem, as speech is immensely variable. The aim of the authors’ studies was to design an algorithm that could be employed at the stage of automatic speech recognition. This would make it possible to avoid some problems related to speech signal parametrization. Posing the problem in such a way requires the algorithm to be capable of working in real time. The only such algorithm was proposed by Tyagi et al., (2006, and it is a modified version of Brandt’s algorithm. The article presents a new algorithm for unsupervised automatic speech signal segmentation. It performs segmentation without access to information about the phonetic content of the utterances, relying exclusively on second-order statistics of a speech signal. The starting point for the proposed method is time-varying Schur coefficients of an innovation adaptive filter. The Schur algorithm is known to be fast, precise, stable and capable of rapidly tracking changes in second order signal statistics. A transfer from one phoneme to another in the speech signal always indicates a change in signal statistics caused by vocal track changes. In order to allow for the properties of human hearing, detection of inter-phoneme boundaries is performed based on statistics defined on the mel spectrum determined from the reflection coefficients. The paper presents the structure of the algorithm, defines its properties, lists parameter values, describes detection efficiency results, and compares them with those for another algorithm. The obtained segmentation results, are satisfactory.

  13. A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.

    Science.gov (United States)

    Chee, Adrian J Y; Yiu, Billy Y S; Yu, Alfred C H

    2017-01-01

    Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigendecompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel singular value decomposition), since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths was studied. Using our eigen-processing framework, real-time video-range throughput (24 frames/s) can be attained for CFI frames with full view in azimuth direction (128 scanlines), up to a scan depth of 5 cm ( λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that the GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.

  14. Multifactor dimensionality reduction as a filter based approach for genome wide association studies

    Directory of Open Access Journals (Sweden)

    Noffisat eOki

    2011-11-01

    Full Text Available Advances in genotyping technology and the multitude of data available now provide a vast amount of data that is proving to be useful in the quest for a better understanding of human genetic diseases. This has led to the development of approaches such as genome wide association studies (GWAS designed specifically for interrogating variants across the genome for association with disease, typically by testing single-locus, univariate associations. More recently it has been accepted that epistatic (interaction effects may also be great contributors to these genetic effects, and GWAS methods are now being applied to find epistatic effects. The challenge for these methods still remain in prioritization and interpretation of results, and it has also become standard for initial findings to be independently investigated in replication cohorts or functional studies. This is motivating the development and implementation of filter-based approaches to prioritize variants found to be significant in a discovery stage for follow-up for replication. Such filters must be able to detect both univariate and interactive effects. In the current study we present and evaluate the use of Multifactor Dimensionality Reduction (MDR as such a filter, with simulated data and a wide range of effect sizes. Additionally, we compare the performance of the MDR filter to a similar filter approach using logistic regression (LR, the more traditional approach used in GWAS analysis, as well as Evaporative Cooling (EC-another prominent machine learning filtering method. The results of our simulation study show that MDR is an effective method for such prioritization, and that it can detect main effects, and interactions with or without marginal effects. Importantly, it performed as well as EC and LR for main effect models. It also significantly outperforms LR for various two-locus epistatic models, while it has equivalent results as EC for the epistatic models.

  15. Particle Filter-Based Target Tracking Algorithm for Magnetic Resonance-Guided Respiratory Compensation : Robustness and Accuracy Assessment

    NARCIS (Netherlands)

    Bourque, Alexandra E; Bedwani, Stéphane; Carrier, Jean-François; Ménard, Cynthia; Borman, Pim; Bos, Clemens; Raaymakers, Bas W; Mickevicius, Nikolai; Paulson, Eric; Tijssen, Rob H N

    PURPOSE: To assess overall robustness and accuracy of a modified particle filter-based tracking algorithm for magnetic resonance (MR)-guided radiation therapy treatments. METHODS AND MATERIALS: An improved particle filter-based tracking algorithm was implemented, which used a normalized

  16. The use of GPS for Handling Lack of Indoor Constraints in Particle Filter-based Inertial Positioning

    DEFF Research Database (Denmark)

    Toftkjær, Thomas; Kjærgaard, Mikkel Baun

    of the layout of building structures on the positioning accuracy using a particle filter-based inertial positioning system named Pro-Position. We also consider methods for using GPS positioning with particle filter-based inertial positioningto improve accuracy in areas, where positioning is poor because of lack...

  17. Towards effective and robust list-based packet filter for signature-based network intrusion detection: an engineering approach

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam For

    2017-01-01

    Network intrusion detection systems (NIDSs) which aim to identify various attacks, have become an essential part of current security infrastructure. In particular, signature-based NIDSs are being widely implemented in industry due to their low rate of false alarms. However, the signature matching...... this problem, packet filtration is a promising solution to reduce unwanted traffic. Motivated by this, in this work, a list-based packet filter was designed and an engineering method of combining both blacklist and whitelist techniques was introduced. To further secure such filters against IP spoofing attacks...

  18. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  19. Moving Average Filter-Based Phase-Locked Loops: Performance Analysis and Design Guidelines

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ramezani, Malek; Guerrero, Josep M.

    2014-01-01

    this challenge, incorporating moving average filter(s) (MAF) into the PLL structure has been proposed in some recent literature. A MAF is a linear-phase finite impulse response filter which can act as an ideal low-pass filter, if certain conditions hold. The main aim of this paper is to present the control......, the PLL block diagram description is shown, the advantages and limitations are briefly discussed, and the tuning approach (if available) is evaluated. The paper then presents two systematic methods to design the control parameters of a typical MAF-based PLL: one for the case of using a proportional......-integral (PI) type loopfilter (LF) in the PLL, and the other for the case of using a proportional-integral-derivative (PID) type LF. Finally, the paper compares the performance of a well-tuned MAF-based PLL when using the PI-type LF with the results of using the PID-type LF, which provides useful insights...

  20. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    Science.gov (United States)

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.