WorldWideScience

Sample records for based motion-sensorless vector

  1. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2009-01-01

    This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using th...... electrical degrees in less than 2 ms test time....

  2. I-F starting method with smooth transition to EMF based motion-sensorless vector control of PM synchronous motor/generator

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Fatu, M.

    2008-01-01

    This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents with the r......This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents......-adaptive compensator to eliminate dc-offset and phase-delay. Digital simulations for PMSM start-up with full load torque are presented for different initial rotor-positions. The transitions from I-f to emf motion-sensorless vector control and back as well, at very low-speeds, are fully validated by experimental...

  3. IPMSM Motion-Sensorless Direct Torque and Flux Control

    DEFF Research Database (Denmark)

    Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede

    2005-01-01

    The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...... provides for a smooth current waveform even at 1 rpm. The paper demonstrates through ample experiments a 1750 rpm 1 1 rpm speed range full-loaded with sensorless DTFC-SVM....

  4. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

    DEFF Research Database (Denmark)

    Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

  5. Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines

    DEFF Research Database (Denmark)

    Fatu, Marius; Lascu, Cristian; Andreescu, Gheorghe-Daniel

    2007-01-01

    This paper describes a variable-speed motion-sensorless permanent magnet synchronous generator (PMSG) control system for wind energy generation. The proposed system contains a PMSG connected to the grid by a back-to-back PWM inverter with bidirectional power flow, a line filter, and a transformer....... The control system employs PI current controllers with crosscoupling decoupling for both inverters, an active power controller, and a DC link voltage controller. The PMSG rotor speed without using emf integration, and the line voltage frequency are estimated by two PLL based observers. A Dmodule filter...

  6. Grid to Standalone Transition Motion-Sensorless Dual-Inverter Control of PMSG With Asymmetrical Grid Voltage Sags and Harmonics Filtering

    DEFF Research Database (Denmark)

    Fatu, M.; Blaabjerg, Frede; Boldea, I.

    2014-01-01

    This paper describes a variable-speed motion-sensorless control system for permanent-magnet synchronous generator (PMSG) connected to grid via back-to-back inverters for wind energy generation. The grid-side inverter control system employs proportional-integral (PI) current controllers with cross...... and automatic seamless transfer method from grid connected to stand alone and vice versa. In stand-alone mode, a voltage control scheme with selective harmonic compensation is employed. The PMSG motion-sensorless control system uses an active power controller and a PLL-based observer to estimate the rotor...... and voltage harmonics compensation. While some of the aforementioned issues have been treated rather individually in previous conference publications of the authors, the present paper integrates them into a comprehensive control system of PMSG....

  7. VectorBase

    Data.gov (United States)

    U.S. Department of Health & Human Services — VectorBase is a Bioinformatics Resource Center for invertebrate vectors. It is one of four Bioinformatics Resource Centers funded by NIAID to provide web-based...

  8. Motion Sensorless Control of BLDC PM Motor with Offline FEM Info Assisted State Observer

    DEFF Research Database (Denmark)

    Stirban, Alin; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2010-01-01

    This paper describes a new offline FEM assisted position and speed observer, for brushless dc (BLDC) PM motor drive sensorless control, based on the line-to-line PM flux linkage estimation. The zero-crossing of the line-to-line PM flux linkage occurs right in the middle of two commutation points...... identification. Digital simulations and experimental results are shown, demonstrating the reliability of the FEM assisted position and speed observer for BLDC PM motor sensorless control operation....

  9. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarliţă, Sorin-Cristian; Boldea, I.; Blaabjerg, Frede

    2011-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  10. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  11. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  12. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    Science.gov (United States)

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  13. Image Coding Based on Address Vector Quantization.

    Science.gov (United States)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  14. I-f Starting and Active Flux Based Sensorless Vector Control of Reluctance Synchronous Motors, with Experiments

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Christian; Fatu, M.; Tutelea, L. N.

    2010-01-01

    This paper presents a novel, hybrid, motion sensorless control of an axially laminated anisotropic (ALA) reluctance synchronous machine (RSM). By separately controlling Id and Iq currents with the reference currents Id*, Iq* being held constant, and ramping the reference frequency, the motor starts...

  15. Cluster Based Vector Attribute Filtering

    NARCIS (Netherlands)

    Kiwanuka, Fred N.; Wilkinson, Michael H.F.

    2016-01-01

    Morphological attribute filters operate on images based on properties or attributes of connected components. Until recently, attribute filtering was based on a single global threshold on a scalar property to remove or retain objects. A single threshold struggles in case no single property or

  16. Automated Vectorization of Decision-Based Algorithms

    Science.gov (United States)

    James, Mark

    2006-01-01

    Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.

  17. Risk based surveillance for vector borne diseases

    DEFF Research Database (Denmark)

    Bødker, Rene

    of samples and hence early detection of outbreaks. Models for vector borne diseases in Denmark have demonstrated dramatic variation in outbreak risk during the season and between years. The Danish VetMap project aims to make these risk based surveillance estimates available on the veterinarians smart phones...... in Northern Europe. This model approach may be used as a basis for risk based surveillance. In risk based surveillance limited resources for surveillance are targeted at geographical areas most at risk and only when the risk is high. This makes risk based surveillance a cost effective alternative...... sample to a diagnostic laboratory. Risk based surveillance models may reduce this delay. An important feature of risk based surveillance models is their ability to continuously communicate the level of risk to veterinarians and hence increase awareness when risk is high. This is essential for submission...

  18. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo

    2017-01-01

    should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined......This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...

  19. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  20. A Subdivision-Based Representation for Vector Image Editing.

    Science.gov (United States)

    Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou

    2012-11-01

    Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.

  1. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  2. Great Ellipse Route Planning Based on Space Vector

    Directory of Open Access Journals (Sweden)

    LIU Wenchao

    2015-07-01

    Full Text Available Aiming at the problem of navigation error caused by unified earth model in great circle route planning using sphere model and modern navigation equipment using ellipsoid mode, a method of great ellipse route planning based on space vector is studied. By using space vector algebra method, the vertex of great ellipse is solved directly, and description of great ellipse based on major-axis vector and minor-axis vector is presented. Then calculation formulas of great ellipse azimuth and distance are deduced using two basic vectors. Finally, algorithms of great ellipse route planning are studied, especially equal distance route planning algorithm based on Newton-Raphson(N-R method. Comparative examples show that the difference of route planning between great circle and great ellipse is significant, using algorithms of great ellipse route planning can eliminate the navigation error caused by the great circle route planning, and effectively improve the accuracy of navigation calculation.

  3. Comparison of four support-vector based function approximators

    NARCIS (Netherlands)

    de Kruif, B.J.; de Vries, Theodorus J.A.

    2004-01-01

    One of the uses of the support vector machine (SVM), as introduced in V.N. Vapnik (2000), is as a function approximator. The SVM and approximators based on it, approximate a relation in data by applying interpolation between so-called support vectors, being a limited number of samples that have been

  4. Density Based Support Vector Machines for Classification

    OpenAIRE

    Zahra Nazari; Dongshik Kang

    2015-01-01

    Support Vector Machines (SVM) is the most successful algorithm for classification problems. SVM learns the decision boundary from two classes (for Binary Classification) of training points. However, sometimes there are some less meaningful samples amongst training points, which are corrupted by noises or misplaced in wrong side, called outliers. These outliers are affecting on margin and classification performance, and machine should better to discard them. SVM as a popular and widely used cl...

  5. LandSat-Based Land Use-Land Cover (Vector)

    Data.gov (United States)

    Minnesota Department of Natural Resources — Vector-based land cover data set derived from classified 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source...

  6. A stable RNA virus-based vector for citrus trees

    International Nuclear Information System (INIS)

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe; Dawson, William O.

    2007-01-01

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees

  7. Coal demand prediction based on a support vector machine model

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Cun-liang; Wu, Hai-shan; Gong, Dun-wei [China University of Mining & Technology, Xuzhou (China). School of Information and Electronic Engineering

    2007-01-15

    A forecasting model for coal demand of China using a support vector regression was constructed. With the selected embedding dimension, the output vectors and input vectors were constructed based on the coal demand of China from 1980 to 2002. After compared with lineal kernel and Sigmoid kernel, a radial basis function(RBF) was adopted as the kernel function. By analyzing the relationship between the error margin of prediction and the model parameters, the proper parameters were chosen. The support vector machines (SVM) model with multi-input and single output was proposed. Compared the predictor based on RBF neural networks with test datasets, the results show that the SVM predictor has higher precision and greater generalization ability. In the end, the coal demand from 2003 to 2006 is accurately forecasted. l0 refs., 2 figs., 4 tabs.

  8. Ebolavirus Classification Based on Natural Vectors

    Science.gov (United States)

    Zheng, Hui; Yin, Changchuan; Hoang, Tung; He, Rong Lucy; Yang, Jie

    2015-01-01

    According to the WHO, ebolaviruses have resulted in 8818 human deaths in West Africa as of January 2015. To better understand the evolutionary relationship of the ebolaviruses and infer virulence from the relationship, we applied the alignment-free natural vector method to classify the newest ebolaviruses. The dataset includes three new Guinea viruses as well as 99 viruses from Sierra Leone. For the viruses of the family of Filoviridae, both genus label classification and species label classification achieve an accuracy rate of 100%. We represented the relationships among Filoviridae viruses by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phylogenetic trees and found that the filoviruses can be separated well by three genera. We performed the phylogenetic analysis on the relationship among different species of Ebolavirus by their coding-complete genomes and seven viral protein genes (glycoprotein [GP], nucleoprotein [NP], VP24, VP30, VP35, VP40, and RNA polymerase [L]). The topology of the phylogenetic tree by the viral protein VP24 shows consistency with the variations of virulence of ebolaviruses. The result suggests that VP24 be a pharmaceutical target for treating or preventing ebolaviruses. PMID:25803489

  9. Hybrid I-f starting and observer-based Ssnsorless control of single-phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Iepure, Liviu Ioan; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    A motion sensorless control for single-phase permanent magnet brushless dc motor based on an I-f starting sequence and a real-time permanent magnet flux estimation is proposed here. The special calculation for extracting the position and speed used here implies the generating of an orthogonal flux...... system, the atan2 trigonometric function, and a phase-locked loop observer. The influence of the permanent magnet flux harmonic content is presented by analytical expressions and digital simulations. The proposed sensorless control is validated by complete experimental results on a commercial small high......-speed blower-motor (40 W, 10 krpm, 12 Vdc)....

  10. Product Quality Modelling Based on Incremental Support Vector Machine

    International Nuclear Information System (INIS)

    Wang, J; Zhang, W; Qin, B; Shi, W

    2012-01-01

    Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.

  11. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  12. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  13. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  14. Digital video steganalysis using motion vector recovery-based features.

    Science.gov (United States)

    Deng, Yu; Wu, Yunjie; Zhou, Linna

    2012-07-10

    As a novel digital video steganography, the motion vector (MV)-based steganographic algorithm leverages the MVs as the information carriers to hide the secret messages. The existing steganalyzers based on the statistical characteristics of the spatial/frequency coefficients of the video frames cannot attack the MV-based steganography. In order to detect the presence of information hidden in the MVs of video streams, we design a novel MV recovery algorithm and propose the calibration distance histogram-based statistical features for steganalysis. The support vector machine (SVM) is trained with the proposed features and used as the steganalyzer. Experimental results demonstrate that the proposed steganalyzer can effectively detect the presence of hidden messages and outperform others by the significant improvements in detection accuracy even with low embedding rates.

  15. Virus Database and Online Inquiry System Based on Natural Vectors.

    Science.gov (United States)

    Dong, Rui; Zheng, Hui; Tian, Kun; Yau, Shek-Chung; Mao, Weiguang; Yu, Wenping; Yin, Changchuan; Yu, Chenglong; He, Rong Lucy; Yang, Jie; Yau, Stephen St

    2017-01-01

    We construct a virus database called VirusDB (http://yaulab.math.tsinghua.edu.cn/VirusDB/) and an online inquiry system to serve people who are interested in viral classification and prediction. The database stores all viral genomes, their corresponding natural vectors, and the classification information of the single/multiple-segmented viral reference sequences downloaded from National Center for Biotechnology Information. The online inquiry system serves the purpose of computing natural vectors and their distances based on submitted genomes, providing an online interface for accessing and using the database for viral classification and prediction, and back-end processes for automatic and manual updating of database content to synchronize with GenBank. Submitted genomes data in FASTA format will be carried out and the prediction results with 5 closest neighbors and their classifications will be returned by email. Considering the one-to-one correspondence between sequence and natural vector, time efficiency, and high accuracy, natural vector is a significant advance compared with alignment methods, which makes VirusDB a useful database in further research.

  16. Link-Based Similarity Measures Using Reachability Vectors

    Directory of Open Access Journals (Sweden)

    Seok-Ho Yoon

    2014-01-01

    Full Text Available We present a novel approach for computing link-based similarities among objects accurately by utilizing the link information pertaining to the objects involved. We discuss the problems with previous link-based similarity measures and propose a novel approach for computing link based similarities that does not suffer from these problems. In the proposed approach each target object is represented by a vector. Each element of the vector corresponds to all the objects in the given data, and the value of each element denotes the weight for the corresponding object. As for this weight value, we propose to utilize the probability of reaching from the target object to the specific object, computed using the “Random Walk with Restart” strategy. Then, we define the similarity between two objects as the cosine similarity of the two vectors. In this paper, we provide examples to show that our approach does not suffer from the aforementioned problems. We also evaluate the performance of the proposed methods in comparison with existing link-based measures, qualitatively and quantitatively, with respect to two kinds of data sets, scientific papers and Web documents. Our experimental results indicate that the proposed methods significantly outperform the existing measures.

  17. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  18. Learning word vector representations based on acoustic counts

    OpenAIRE

    Ribeiro, Sam; Watts, Oliver; Yamagishi, Junichi

    2017-01-01

    This paper presents a simple count-based approach to learning word vector representations by leveraging statistics of cooccurrences between text and speech. This type of representation requires two discrete sequences of units defined across modalities. Two possible methods for the discretization of an acoustic signal are presented, which are then applied to fundamental frequency and energy contours of a transcribed corpus of speech, yielding a sequence of textual objects (e.g. words, syllable...

  19. A new generation of pPRIG-based retroviral vectors

    Directory of Open Access Journals (Sweden)

    Boulukos Kim E

    2007-11-01

    Full Text Available Abstract Background Retroviral vectors are valuable tools for gene transfer. Particularly convenient are IRES-containing retroviral vectors expressing both the protein of interest and a marker protein from a single bicistronic mRNA. This coupled expression increases the relevance of tracking and/or selection of transduced cells based on the detection of a marker protein. pAP2 is a retroviral vector containing eGFP downstream of a modified IRES element of EMCV origin, and a CMV enhancer-promoter instead of the U3 region of the 5'LTR, which increases its efficiency in transient transfection. However, pAP2 contains a limited multicloning site (MCS and shows weak eGFP expression, which previously led us to engineer an improved version, termed pPRIG, harboring: i the wild-type ECMV IRES sequence, thereby restoring its full activity; ii an optimized MCS flanked by T7 and SP6 sequences; and iii a HA tag encoding sequence 5' of the MCS (pPRIG HAa/b/c. Results The convenience of pPRIG makes it a good basic vector to generate additional derivatives for an extended range of use. Here we present several novel pPRIG-based vectors (collectively referred to as PRIGs in which : i the HA tag sequence was inserted in the three reading frames 3' of the MCS (3'HA PRIGs; ii a functional domain (ER, VP16 or KRAB was inserted either 5' or 3' of the MCS (« modular » PRIGs; iii eGFP was replaced by either eCFP, eYFP, mCherry or puro-R (« single color/resistance » PRIGs; and iv mCherry, eYFP or eGFP was inserted 5' of the MCS of the IRES-eGFP, IRES-eCFP or IRES-Puro-R containing PRIGs, respectively (« dual color/selection » PRIGs. Additionally, some of these PRIGs were also constructed in a pMigR MSCV background which has been widely used in pluripotent cells. Conclusion These novel vectors allow for straightforward detection of any expressed protein (3'HA PRIGs, for functional studies of chimeric proteins (« modular » PRIGs, for multiple transductions and

  20. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Science.gov (United States)

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. SAM: Support Vector Machine Based Active Queue Management

    International Nuclear Information System (INIS)

    Shah, M.S.

    2014-01-01

    Recent years have seen an increasing interest in the design of AQM (Active Queue Management) controllers. The purpose of these controllers is to manage the network congestion under varying loads, link delays and bandwidth. In this paper, a new AQM controller is proposed which is trained by using the SVM (Support Vector Machine) with the RBF (Radial Basis Function) kernal. The proposed controller is called the support vector based AQM (SAM) controller. The performance of the proposed controller has been compared with three conventional AQM controllers, namely the Random Early Detection, Blue and Proportional Plus Integral Controller. The preliminary simulation studies show that the performance of the proposed controller is comparable to the conventional controllers. However, the proposed controller is more efficient in controlling the queue size than the conventional controllers. (author)

  2. Virtual-vector-based space vector pulse width modulation of the DC-AC multilevel-clamped multilevel converter (MLC2)

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Busquets-Monge, Sergio; Blaabjerg, Frede

    2011-01-01

    This work presents the development of the space vector pulse width modulation (SVPWM) of a new multi-level converter topology. First, the proposed converter and its natural space vector diagram are presented. Secondly, a modified space vector diagram based on the virtual-vectors technique is show...

  3. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz

    2014-03-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. These geometric metrics do not consider the flow magnitude, an important physical property of the flow. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness, which provides a complementary view on flow structure compared to the traditional topological-skeleton-based approaches. Robustness enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory, has fewer boundary restrictions, and so can handle more general cases. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. © 2014 IEEE.

  4. Energy Based Clutter Filtering for Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Jensen, Jonas; Ewertsen, Caroline

    2017-01-01

    for obtaining vector flow measurements, since the spectra overlaps at high beam-to-flow angles. In this work a distinct approach is proposed, where the energy of the velocity spectrum is used to differentiate among the two signals. The energy based method is applied by limiting the amplitude of the velocity...... spectrum function to a predetermined threshold. The effect of the clutter filtering is evaluated on a plane wave (PW) scan sequence in combination with transverse oscillation (TO) and directional beamforming (DB) for velocity estimation. The performance of the filter is assessed by comparison...

  5. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  6. Optical vector network analyzer based on double-sideband modulation.

    Science.gov (United States)

    Jun, Wen; Wang, Ling; Yang, Chengwu; Li, Ming; Zhu, Ning Hua; Guo, Jinjin; Xiong, Liangming; Li, Wei

    2017-11-01

    We report an optical vector network analyzer (OVNA) based on double-sideband (DSB) modulation using a dual-parallel Mach-Zehnder modulator. The device under test (DUT) is measured twice with different modulation schemes. By post-processing the measurement results, the response of the DUT can be obtained accurately. Since DSB modulation is used in our approach, the measurement range is doubled compared with conventional single-sideband (SSB) modulation-based OVNA. Moreover, the measurement accuracy is improved by eliminating the even-order sidebands. The key advantage of the proposed scheme is that the measurement of a DUT with bandpass response can also be simply realized, which is a big challenge for the SSB-based OVNA. The proposed method is theoretically and experimentally demonstrated.

  7. A support vector machine (SVM) based voltage stability classifier

    Energy Technology Data Exchange (ETDEWEB)

    Dosano, R.D.; Song, H. [Kunsan National Univ., Kunsan, Jeonbuk (Korea, Republic of); Lee, B. [Korea Univ., Seoul (Korea, Republic of)

    2007-07-01

    Power system stability has become even more complex and critical with the advent of deregulated energy markets and the growing desire to completely employ existing transmission and infrastructure. The economic pressure on electricity markets forces the operation of power systems and components to their limit of capacity and performance. System conditions can be more exposed to instability due to greater uncertainty in day to day system operations and increase in the number of potential components for system disturbances potentially resulting in voltage stability. This paper proposed a support vector machine (SVM) based power system voltage stability classifier using local measurements of voltage and active power of load. It described the procedure for fast classification of long-term voltage stability using the SVM algorithm. The application of the SVM based voltage stability classifier was presented with reference to the choice of input parameters; input data preconditioning; moving window for feature vector; determination of learning samples; and other considerations in SVM applications. The paper presented a case study with numerical examples of an 11-bus test system. The test results for the feasibility study demonstrated that the classifier could offer an excellent performance in classification with time-series measurements in terms of long-term voltage stability. 9 refs., 14 figs.

  8. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  9. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    Science.gov (United States)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  10. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    induction motor (IM) drives. The control design, based on synchronously rotating d-q frame model of the machine, has a simple structure that combines the proportional portion of a conventional PI control and output of the observer. The observer is predicted to estimate the disturbances caused by parameters...... coupling effects and increase robustness against parameters change without requiring any other compensation strategies. The experimental implementation results are provided to demonstrate validity and performance of the proposed control scheme.......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...

  11. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  12. Parallel Kalman filter track fit based on vector classes

    Energy Technology Data Exchange (ETDEWEB)

    Kisel, Ivan [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Kretz, Matthias [Kirchhoff-Institut fuer Physik, Ruprecht-Karls Universitaet, Heidelberg (Germany); Kulakov, Igor [Goethe-Universitaet, Frankfurt am Main (Germany); National Taras Shevchenko University, Kyiv (Ukraine)

    2010-07-01

    Modern high energy physics experiments have to process terabytes of input data produced in particle collisions. The core of the data reconstruction in high energy physics is the Kalman filter. Therefore, developing the fast Kalman filter algorithm, which uses maximum available power of modern processors, is important, in particular for initial selection of events interesting for the new physics. One of processors features, which can speed up the algorithm, is a SIMD instruction set, which allows to pack several data items in one register and operate on all of them in one go, thus achieving more operations per clock cycle. Therefore a flexible and useful interface, which uses the SIMD instruction set on different CPU and GPU processors architectures, has been realized as a vector classes library. The Kalman filter based track fitting algorithm has been implemented with use of the vector classes. Fitting quality tests show good results with the residuals equal to 49 {mu}m and 44 {mu}m for x and y track parameters and relative momentum resolution of 0.7%. The fitting time of 0.053 {mu}s per track has been achieved on Intel Xeon X5550 with 8 cores at 2.6 GHz by using in addition Intel Threading Building Blocks.

  13. Image Jacobian Matrix Estimation Based on Online Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Shangqin Mao

    2012-10-01

    Full Text Available Research into robotics visual servoing is an important area in the field of robotics. It has proven difficult to achieve successful results for machine vision and robotics in unstructured environments without using any a priori camera or kinematic models. In uncalibrated visual servoing, image Jacobian matrix estimation methods can be divided into two groups: the online method and the offline method. The offline method is not appropriate for most natural environments. The online method is robust but rough. Moreover, if the images feature configuration changes, it needs to restart the approximating procedure. A novel approach based on an online support vector regression (OL-SVR algorithm is proposed which overcomes the drawbacks and combines the virtues just mentioned.

  14. BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    V. Dheepa

    2012-07-01

    Full Text Available Along with the great increase of internet and e-commerce, the use of credit card is an unavoidable one. Due to the increase of credit card usage, the frauds associated with this have also increased. There are a lot of approaches used to detect the frauds. In this paper, behavior based classification approach using Support Vector Machines are employed and efficient feature extraction method also adopted. If any discrepancies occur in the behaviors transaction pattern then it is predicted as suspicious and taken for further consideration to find the frauds. Generally credit card fraud detection problem suffers from a large amount of data, which is rectified by the proposed method. Achieving finest accuracy, high fraud catching rate and low false alarms are the main tasks of this approach.

  15. Support vector machine based battery model for electric vehicles

    International Nuclear Information System (INIS)

    Wang Junping; Chen Quanshi; Cao Binggang

    2006-01-01

    The support vector machine (SVM) is a novel type of learning machine based on statistical learning theory that can map a nonlinear function successfully. As a battery is a nonlinear system, it is difficult to establish the relationship between the load voltage and the current under different temperatures and state of charge (SOC). The SVM is used to model the battery nonlinear dynamics in this paper. Tests are performed on an 80Ah Ni/MH battery pack with the Federal Urban Driving Schedule (FUDS) cycle to set up the SVM model. Compared with the Nernst and Shepherd combined model, the SVM model can simulate the battery dynamics better with small amounts of experimental data. The maximum relative error is 3.61%

  16. A three-axis SQUID-based absolute vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. [Department of Quantum Detection, Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Zakosarenko, V.; Meyer, M. [Supracon AG, An der Lehmgrube 11, Jena 07751 (Germany)

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  17. Vector and Raster Data Storage Based on Morton Code

    Science.gov (United States)

    Zhou, G.; Pan, Q.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Liu, X.

    2018-05-01

    Even though geomatique is so developed nowadays, the integration of spatial data in vector and raster formats is still a very tricky problem in geographic information system environment. And there is still not a proper way to solve the problem. This article proposes a method to interpret vector data and raster data. In this paper, we saved the image data and building vector data of Guilin University of Technology to Oracle database. Then we use ADO interface to connect database to Visual C++ and convert row and column numbers of raster data and X Y of vector data to Morton code in Visual C++ environment. This method stores vector and raster data to Oracle Database and uses Morton code instead of row and column and X Y to mark the position information of vector and raster data. Using Morton code to mark geographic information enables storage of data make full use of storage space, simultaneous analysis of vector and raster data more efficient and visualization of vector and raster more intuitive. This method is very helpful for some situations that need to analyse or display vector data and raster data at the same time.

  18. Traditional and robust vector selection methods for use with similarity based models

    International Nuclear Information System (INIS)

    Hines, J. W.; Garvey, D. R.

    2006-01-01

    Vector selection, or instance selection as it is often called in the data mining literature, performs a critical task in the development of nonparametric, similarity based models. Nonparametric, similarity based modeling (SBM) is a form of 'lazy learning' which constructs a local model 'on the fly' by comparing a query vector to historical, training vectors. For large training sets the creation of local models may become cumbersome, since each training vector must be compared to the query vector. To alleviate this computational burden, varying forms of training vector sampling may be employed with the goal of selecting a subset of the training data such that the samples are representative of the underlying process. This paper describes one such SBM, namely auto-associative kernel regression (AAKR), and presents five traditional vector selection methods and one robust vector selection method that may be used to select prototype vectors from a larger data set in model training. The five traditional vector selection methods considered are min-max, vector ordering, combination min-max and vector ordering, fuzzy c-means clustering, and Adeli-Hung clustering. Each method is described in detail and compared using artificially generated data and data collected from the steam system of an operating nuclear power plant. (authors)

  19. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...

  20. Construction of an expression vector for Lactococcus lactis based on ...

    African Journals Online (AJOL)

    To construct an expression vector for Lactococcus lactis, the EmPMT fragment which contained the erythromycin resistance gene, P32 promoter, multiple cloning site (MCS) and terminator (T) was subcloned into the small cryptic plasmid pAR141. The resulting vector, designated as pAR1411, was found to be stably ...

  1. Space vector-based analysis of overmodulation in triangle ...

    Indian Academy of Sciences (India)

    methods such as vector control or field oriented control are used for fast dynamic response .... This average voltage vector falls in sector-I as shown in figure 5 for .... The dwell times T1, T2 and Tz can be derived using volt-second balance.

  2. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  3. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz; Wang, Bei; Chen, Guoning; Rosen, Paul

    2014-01-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification

  4. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  5. EVE: Explainable Vector Based Embedding Technique Using Wikipedia

    OpenAIRE

    Qureshi, M. Atif; Greene, Derek

    2017-01-01

    We present an unsupervised explainable word embedding technique, called EVE, which is built upon the structure of Wikipedia. The proposed model defines the dimensions of a semantic vector representing a word using human-readable labels, thereby it readily interpretable. Specifically, each vector is constructed using the Wikipedia category graph structure together with the Wikipedia article link structure. To test the effectiveness of the proposed word embedding model, we consider its usefulne...

  6. DNS Tunneling Detection Method Based on Multilabel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Ahmed Almusawi

    2018-01-01

    Full Text Available DNS tunneling is a method used by malicious users who intend to bypass the firewall to send or receive commands and data. This has a significant impact on revealing or releasing classified information. Several researchers have examined the use of machine learning in terms of detecting DNS tunneling. However, these studies have treated the problem of DNS tunneling as a binary classification where the class label is either legitimate or tunnel. In fact, there are different types of DNS tunneling such as FTP-DNS tunneling, HTTP-DNS tunneling, HTTPS-DNS tunneling, and POP3-DNS tunneling. Therefore, there is a vital demand to not only detect the DNS tunneling but rather classify such tunnel. This study aims to propose a multilabel support vector machine in order to detect and classify the DNS tunneling. The proposed method has been evaluated using a benchmark dataset that contains numerous DNS queries and is compared with a multilabel Bayesian classifier based on the number of corrected classified DNS tunneling instances. Experimental results demonstrate the efficacy of the proposed SVM classification method by obtaining an f-measure of 0.80.

  7. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    Science.gov (United States)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  8. Explaining Support Vector Machines: A Color Based Nomogram.

    Directory of Open Access Journals (Sweden)

    Vanya Van Belle

    Full Text Available Support vector machines (SVMs are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models.In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables.Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant. When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable.This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method.

  9. 3D Model Retrieval Based on Vector Quantisation Index Histograms

    International Nuclear Information System (INIS)

    Lu, Z M; Luo, H; Pan, J S

    2006-01-01

    This paper proposes a novel technique to retrieval 3D mesh models using vector quantisation index histograms. Firstly, points are sampled uniformly on mesh surface. Secondly, to a point five features representing global and local properties are extracted. Thus feature vectors of points are obtained. Third, we select several models from each class, and employ their feature vectors as a training set. After training using LBG algorithm, a public codebook is constructed. Next, codeword index histograms of the query model and those in database are computed. The last step is to compute the distance between histograms of the query and those of the models in database. Experimental results show the effectiveness of our method

  10. Genetic modification of lymphocytes by retrovirus-based vectors.

    Science.gov (United States)

    Suerth, Julia D; Schambach, Axel; Baum, Christopher

    2012-10-01

    The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use. Copyright © 2012. Published by Elsevier Ltd.

  11. Entropy-Based Video Steganalysis of Motion Vectors

    Directory of Open Access Journals (Sweden)

    Elaheh Sadat Sadat

    2018-04-01

    Full Text Available In this paper, a new method is proposed for motion vector steganalysis using the entropy value and its combination with the features of the optimized motion vector. In this method, the entropy of blocks is calculated to determine their texture and the precision of their motion vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low texture, while the membership function of each block to a high texture class indicates the texture of that block. These membership functions are used to weight the effective features that are extracted by reconstructing the motion estimation equations. Characteristics of the results indicate that the use of entropy and the irregularity of each block increases the precision of the final video classification into cover and stego classes.

  12. Development and applications of VSV vectors based on cell tropism

    Directory of Open Access Journals (Sweden)

    Hideki eTani

    2012-01-01

    Full Text Available Viral vectors have been available in various fields such as medical and biological research or gene therapy applications. Targeting vectors pseudotyped with distinct viral envelope proteins that influence cell tropism and transfection efficiency is a useful tool not only for examining entry mechanisms or cell tropisms but also for vaccine vector development. Vesicular stomatitis virus (VSV is an excellent candidate for development as a pseudotype vector. A recombinant VSV lacking its own envelope (G gene has been used to produce a pseudotype or recombinant VSV possessing the envelope proteins of heterologous viruses. These viruses possess a reporter gene instead of a VSV G gene in their genome, and therefore it is easy to evaluate their infectivity in the study of viral entry, including identification of viral receptors. Furthermore, advantage can be taken of a property of the pseudotype VSV, which is competence for single-round infection, in handling many different viruses that are either difficult to amplify in cultured cells or animals or that require specialized containment facilities. Here we describe procedures for producing pseudotype or recombinant VSVs and a few of the more prominent examples from among envelope viruses, such as hepatitis C virus, Japanese encephalitis virus, baculovirus, and hemorrhagic fever viruses.

  13. Community based vector control in Malindi, Kenya | Kibe | African ...

    African Journals Online (AJOL)

    Results: Nineteen of 34 community groups (56%) registered at social services reported intended malaria vector control activities such as treating ditches, making and selling insecticide-treated mosquito nets, draining stagnant water, organizing clean-ups, making and selling neem soap, and the organization of campaigns ...

  14. A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering.

    Directory of Open Access Journals (Sweden)

    Anne Mathilde Lund

    Full Text Available A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors.

  15. Spatio-temporal Rich Model Based Video Steganalysis on Cross Sections of Motion Vector Planes.

    Science.gov (United States)

    Tasdemir, Kasim; Kurugollu, Fatih; Sezer, Sakir

    2016-05-11

    A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.

  16. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  17. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  18. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  19. Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval

    Science.gov (United States)

    Jiexian, Zeng; Xiupeng, Liu

    2014-01-01

    Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416

  20. Development of new USER-based cloning vectors for multiple genes expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg; Maury, Jerome

    2013-01-01

    auxotrophic and dominant markers for convenience of use. Our vector set also contains both integrating and multicopy vectors for stability of protein expression and high expression level. We will make the new vector system available to the yeast community and provide a comprehensive protocol for cloning...... the production strain with the proper phenotype and product yield. However, the sequential number of metabolic engineering is time-consuming. Furthermore, the number of available selectable markers is also limiting the number of genetic modifications. To overcome these limitations, we have developed a new set...... of shuttle vectors for convenience of use for high-throughput cloning and selectable marker recycling. The new USER-based cloning vectors consist of a unique USER site and a CRE-loxP-mediated marker recycling system. The USER site allows insertion of genes of interest along with a bidirectional promoter...

  1. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  2. Learning Algorithms for Audio and Video Processing: Independent Component Analysis and Support Vector Machine Based Approaches

    National Research Council Canada - National Science Library

    Qi, Yuan

    2000-01-01

    In this thesis, we propose two new machine learning schemes, a subband-based Independent Component Analysis scheme and a hybrid Independent Component Analysis/Support Vector Machine scheme, and apply...

  3. Automatic SIMD vectorization of SSA-based control flow graphs

    CERN Document Server

    Karrenberg, Ralf

    2015-01-01

    Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a v

  4. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  5. Fault trend prediction of device based on support vector regression

    International Nuclear Information System (INIS)

    Song Meicun; Cai Qi

    2011-01-01

    The research condition of fault trend prediction and the basic theory of support vector regression (SVR) were introduced. SVR was applied to the fault trend prediction of roller bearing, and compared with other methods (BP neural network, gray model, and gray-AR model). The results show that BP network tends to overlearn and gets into local minimum so that the predictive result is unstable. It also shows that the predictive result of SVR is stabilization, and SVR is superior to BP neural network, gray model and gray-AR model in predictive precision. SVR is a kind of effective method of fault trend prediction. (authors)

  6. Kernel method for clustering based on optimal target vector

    International Nuclear Information System (INIS)

    Angelini, Leonardo; Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-01-01

    We introduce Ising models, suitable for dichotomic clustering, with couplings that are (i) both ferro- and anti-ferromagnetic (ii) depending on the whole data-set and not only on pairs of samples. Couplings are determined exploiting the notion of optimal target vector, here introduced, a link between kernel supervised and unsupervised learning. The effectiveness of the method is shown in the case of the well-known iris data-set and in benchmarks of gene expression levels, where it works better than existing methods for dichotomic clustering

  7. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.

    Science.gov (United States)

    Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J

    2012-08-14

    Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible

  8. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  9. A Core Set Based Large Vector-Angular Region and Margin Approach for Novelty Detection

    Directory of Open Access Journals (Sweden)

    Jiusheng Chen

    2016-01-01

    Full Text Available A large vector-angular region and margin (LARM approach is presented for novelty detection based on imbalanced data. The key idea is to construct the largest vector-angular region in the feature space to separate normal training patterns; meanwhile, maximize the vector-angular margin between the surface of this optimal vector-angular region and abnormal training patterns. In order to improve the generalization performance of LARM, the vector-angular distribution is optimized by maximizing the vector-angular mean and minimizing the vector-angular variance, which separates the normal and abnormal examples well. However, the inherent computation of quadratic programming (QP solver takes O(n3 training time and at least O(n2 space, which might be computational prohibitive for large scale problems. By (1+ε  and  (1-ε-approximation algorithm, the core set based LARM algorithm is proposed for fast training LARM problem. Experimental results based on imbalanced datasets have validated the favorable efficiency of the proposed approach in novelty detection.

  10. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    Science.gov (United States)

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-09-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells.

  11. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Directory of Open Access Journals (Sweden)

    Bernardo Bañuelos-Hernández

    2017-06-01

    Full Text Available The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin, which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture, which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  12. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Science.gov (United States)

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins. PMID:28713333

  13. Heading-vector navigation based on head-direction cells and path integration.

    Science.gov (United States)

    Kubie, John L; Fenton, André A

    2009-05-01

    Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal

  14. A New Curve Tracing Algorithm Based on Local Feature in the Vectorization of Paper Seismograms

    Directory of Open Access Journals (Sweden)

    Maofa Wang

    2014-02-01

    Full Text Available History paper seismograms are very important information for earthquake monitoring and prediction. The vectorization of paper seismograms is an import problem to be resolved. Auto tracing of waveform curves is a key technology for the vectorization of paper seismograms. It can transform an original scanning image into digital waveform data. Accurately tracing out all the key points of each curve in seismograms is the foundation for vectorization of paper seismograms. In the paper, we present a new curve tracing algorithm based on local feature, applying to auto extraction of earthquake waveform in paper seismograms.

  15. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    Directory of Open Access Journals (Sweden)

    Carla Giles

    Full Text Available Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

  16. Availability of thermodynamic system with multiple performance parameters based on vector-universal generating function

    International Nuclear Information System (INIS)

    Cai Qi; Shang Yanlong; Chen Lisheng; Zhao Yuguang

    2013-01-01

    Vector-universal generating function was presented to analyze the availability of thermodynamic system with multiple performance parameters. Vector-universal generating function of component's performance was defined, the arithmetic model based on vector-universal generating function was derived for the thermodynamic system, and the calculation method was given for state probability of multi-state component. With the stochastic simulation of the degeneration trend of the multiple factors, the system availability with multiple performance parameters was obtained under composite factors. It is shown by an example that the results of the availability obtained by the binary availability analysis method are somewhat conservative, and the results considering parameter failure based on vector-universal generating function reflect the operation characteristics of the thermodynamic system better. (authors)

  17. Classification of e-government documents based on cooperative expression of word vectors

    Science.gov (United States)

    Fu, Qianqian; Liu, Hao; Wei, Zhiqiang

    2017-03-01

    The effective document classification is a powerful technique to deal with the huge amount of e-government documents automatically instead of accomplishing them manually. The word-to-vector (word2vec) model, which converts semantic word into low-dimensional vectors, could be successfully employed to classify the e-government documents. In this paper, we propose the cooperative expressions of word vector (Co-word-vector), whose multi-granularity of integration explores the possibility of modeling documents in the semantic space. Meanwhile, we also aim to improve the weighted continuous bag of words model based on word2vec model and distributed representation of topic-words based on LDA model. Furthermore, combining the two levels of word representation, performance result shows that our proposed method on the e-government document classification outperform than the traditional method.

  18. A sight on the current nanoparticle-based gene delivery vectors

    Science.gov (United States)

    Dizaj, Solmaz Maleki; Jafari, Samira; Khosroushahi, Ahmad Yari

    2014-05-01

    Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/ in vivo transformation efficiency.

  19. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  20. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    OpenAIRE

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with vari...

  1. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    OpenAIRE

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-01-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthe...

  2. Segmentation Based Video Steganalysis to Detect Motion Vector Modification

    Directory of Open Access Journals (Sweden)

    Peipei Wang

    2017-01-01

    Full Text Available This paper presents a steganalytic approach against video steganography which modifies motion vector (MV in content adaptive manner. Current video steganalytic schemes extract features from fixed-length frames of the whole video and do not take advantage of the content diversity. Consequently, the effectiveness of the steganalytic feature is influenced by video content and the problem of cover source mismatch also affects the steganalytic performance. The goal of this paper is to propose a steganalytic method which can suppress the differences of statistical characteristics caused by video content. The given video is segmented to subsequences according to block’s motion in every frame. The steganalytic features extracted from each category of subsequences with close motion intensity are used to build one classifier. The final steganalytic result can be obtained by fusing the results of weighted classifiers. The experimental results have demonstrated that our method can effectively improve the performance of video steganalysis, especially for videos of low bitrate and low embedding ratio.

  3. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  4. Conservative rigid body dynamics by convected base vectors with implicit constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2014-01-01

    of differential equations without additional algebraic constraints on the base vectors. A discretized form of the equations of motion is obtained by starting from a finite time increment of the Hamiltonian, and retracing the steps of the continuous formulation in discrete form in terms of increments and mean...... of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero...... values over each integration time increment. In this discrete form the Lagrange multipliers are given in terms of a representative value within the integration time interval, and the equations of motion are recast into a conservative mean-value and finite difference format. The Lagrange multipliers...

  5. Track Circuit Fault Diagnosis Method based on Least Squares Support Vector

    Science.gov (United States)

    Cao, Yan; Sun, Fengru

    2018-01-01

    In order to improve the troubleshooting efficiency and accuracy of the track circuit, track circuit fault diagnosis method was researched. Firstly, the least squares support vector machine was applied to design the multi-fault classifier of the track circuit, and then the measured track data as training samples was used to verify the feasibility of the methods. Finally, the results based on BP neural network fault diagnosis methods and the methods used in this paper were compared. Results shows that the track fault classifier based on least squares support vector machine can effectively achieve the five track circuit fault diagnosis with less computing time.

  6. Multiple image encryption scheme based on pixel exchange operation and vector decomposition

    Science.gov (United States)

    Xiong, Y.; Quan, C.; Tay, C. J.

    2018-02-01

    We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.

  7. Improved image retrieval based on fuzzy colour feature vector

    Science.gov (United States)

    Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.

    2013-03-01

    One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.

  8. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  9. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  10. A NEW METHOD OF CHANNEL FRICTION INVERSION BASED ON KALMAN FILTER WITH UNKNOWN PARAMETER VECTOR

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei-ping; MAO Gen-hai; LIU Guo-hua

    2005-01-01

    Channel friction is an important parameter in hydraulic analysis.A channel friction parameter inversion method based on Kalman Filter with unknown parameter vector is proposed.Numerical simulations indicate that when the number of monitoring stations exceeds a critical value, the solution is hardly affected.In addition, Kalman Filter with unknown parameter vector is effective only at unsteady state.For the nonlinear equations, computations of sensitivity matrices are time-costly.Two simplified measures can reduce computing time, but not influence the results.One is to reduce sensitivity matrix analysis time, the other is to substitute for sensitivity matrix.

  11. Design and simulation of MEMS vector hydrophone with reduced cross section based meander beams

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj; Dutta, S.; Pal, Ramjay; Jain, K. K.; Gupta, Sudha; Bhan, R. K. [Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi, India 110054 (India)

    2016-04-13

    MEMS based vector hydrophone is being one of the key device in the underwater communications. In this paper, we presented a bio-inspired MEMS vector hydrophone. The hydrophone structure consists of a proof mass suspended by four meander type beams with reduced cross-section. Modal patterns of the structure were studied. First three modal frequencies of the hydrophone structure were found to be 420 Hz, 420 Hz and 1646 Hz respectively. The deflection and stress of the hydrophone is found have linear behavior in the 1 µPa – 1Pa pressure range.

  12. Rigid Body Time Integration by Convected Base Vectors with Implicit Constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2013-01-01

    of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strain components of the base vectors. The particular form of the extended inertia tensor used here implies a set...

  13. Support-Vector-based Least Squares for learning non-linear dynamics

    NARCIS (Netherlands)

    de Kruif, B.J.; de Vries, Theodorus J.A.

    2002-01-01

    A function approximator is introduced that is based on least squares support vector machines (LSSVM) and on least squares (LS). The potential indicators for the LS method are chosen as the kernel functions of all the training samples similar to LSSVM. By selecting these as indicator functions the

  14. Analysis of vector wind change with respect to time for Vandenberg Air Force Base, California

    Science.gov (United States)

    Adelfang, S. I.

    1978-01-01

    A statistical analysis of the temporal variability of wind vectors at 1 km altitude intervals from 0 to 27 km altitude taken from a 10-year data sample of twice-daily rawinsode wind measurements over Vandenberg Air Force Base, California is presented.

  15. A Kalman Filter for SINS Self-Alignment Based on Vector Observation.

    Science.gov (United States)

    Xu, Xiang; Xu, Xiaosu; Zhang, Tao; Li, Yao; Tong, Jinwu

    2017-01-29

    In this paper, a self-alignment method for strapdown inertial navigation systems based on the q -method is studied. In addition, an improved method based on integrating gravitational apparent motion to form apparent velocity is designed, which can reduce the random noises of the observation vectors. For further analysis, a novel self-alignment method using a Kalman filter based on adaptive filter technology is proposed, which transforms the self-alignment procedure into an attitude estimation using the observation vectors. In the proposed method, a linear psuedo-measurement equation is adopted by employing the transfer method between the quaternion and the observation vectors. Analysis and simulation indicate that the accuracy of the self-alignment is improved. Meanwhile, to improve the convergence rate of the proposed method, a new method based on parameter recognition and a reconstruction algorithm for apparent gravitation is devised, which can reduce the influence of the random noises of the observation vectors. Simulations and turntable tests are carried out, and the results indicate that the proposed method can acquire sound alignment results with lower standard variances, and can obtain higher alignment accuracy and a faster convergence rate.

  16. Fuzzy-based multi-kernel spherical support vector machine for ...

    Indian Academy of Sciences (India)

    In the proposed classifier, we design a new multi-kernel function based on the fuzzy triangular membership function. Finally, a newly developed multi-kernel function is incorporated into the spherical support vector machine to enhance the performance significantly. The experimental results are evaluated and performance is ...

  17. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    Science.gov (United States)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  18. Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing

    Science.gov (United States)

    Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.

    2017-07-01

    Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).

  19. Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA and support vector machine (SVM is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap, the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.

  20. A support vector density-based importance sampling for reliability assessment

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zhang, Hao; Wang, Wei

    2012-01-01

    An importance sampling method based on the adaptive Markov chain simulation and support vector density estimation is developed in this paper for efficient structural reliability assessment. The methodology involves the generation of samples that can adaptively populate the important region by the adaptive Metropolis algorithm, and the construction of importance sampling density by support vector density. The use of the adaptive Metropolis algorithm may effectively improve the convergence and stability of the classical Markov chain simulation. The support vector density can approximate the sampling density with fewer samples in comparison to the conventional kernel density estimation. The proposed importance sampling method can effectively reduce the number of structural analysis required for achieving a given accuracy. Examples involving both numerical and practical structural problems are given to illustrate the application and efficiency of the proposed methodology.

  1. A Novel CSR-Based Sparse Matrix-Vector Multiplication on GPUs

    Directory of Open Access Journals (Sweden)

    Guixia He

    2016-01-01

    Full Text Available Sparse matrix-vector multiplication (SpMV is an important operation in scientific computations. Compressed sparse row (CSR is the most frequently used format to store sparse matrices. However, CSR-based SpMVs on graphic processing units (GPUs, for example, CSR-scalar and CSR-vector, usually have poor performance due to irregular memory access patterns. This motivates us to propose a perfect CSR-based SpMV on the GPU that is called PCSR. PCSR involves two kernels and accesses CSR arrays in a fully coalesced manner by introducing a middle array, which greatly alleviates the deficiencies of CSR-scalar (rare coalescing and CSR-vector (partial coalescing. Test results on a single C2050 GPU show that PCSR fully outperforms CSR-scalar, CSR-vector, and CSRMV and HYBMV in the vendor-tuned CUSPARSE library and is comparable with a most recently proposed CSR-based algorithm, CSR-Adaptive. Furthermore, we extend PCSR on a single GPU to multiple GPUs. Experimental results on four C2050 GPUs show that no matter whether the communication between GPUs is considered or not PCSR on multiple GPUs achieves good performance and has high parallel efficiency.

  2. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations

    KAUST Repository

    Smaili, Fatima Z.; Gao, Xin; Hoehndorf, Robert

    2018-01-01

    We propose the Onto2Vec method, an approach to learn feature vectors for biological entities based on their annotations to biomedical ontologies. Our method can be applied to a wide range of bioinformatics research problems such as similarity-based prediction of interactions between proteins, classification of interaction types using supervised learning, or clustering.

  3. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations

    KAUST Repository

    Smaili, Fatima Zohra

    2018-01-31

    We propose the Onto2Vec method, an approach to learn feature vectors for biological entities based on their annotations to biomedical ontologies. Our method can be applied to a wide range of bioinformatics research problems such as similarity-based prediction of interactions between proteins, classification of interaction types using supervised learning, or clustering.

  4. An Effective NoSQL-Based Vector Map Tile Management Approach

    Directory of Open Access Journals (Sweden)

    Lin Wan

    2016-11-01

    Full Text Available Within a digital map service environment, the rapid growth of Spatial Big-Data is driving new requirements for effective mechanisms for massive online vector map tile processing. The emergence of Not Only SQL (NoSQL databases has resulted in a new data storage and management model for scalable spatial data deployments and fast tracking. They better suit the scenario of high-volume, low-latency network map services than traditional standalone high-performance computer (HPC or relational databases. In this paper, we propose a flexible storage framework that provides feasible methods for tiled map data parallel clipping and retrieval operations within a distributed NoSQL database environment. We illustrate the parallel vector tile generation and querying algorithms with the MapReduce programming model. Three different processing approaches, including local caching, distributed file storage, and the NoSQL-based method, are compared by analyzing the concurrent load and calculation time. An online geological vector tile map service prototype was developed to embed our processing framework in the China Geological Survey Information Grid. Experimental results show that our NoSQL-based parallel tile management framework can support applications that process huge volumes of vector tile data and improve performance of the tiled map service.

  5. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    Science.gov (United States)

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  6. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Huiyan Jiang

    2012-01-01

    Full Text Available An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  7. A method for attitude measurement of a test vehicle based on the tracking of vectors

    International Nuclear Information System (INIS)

    Yang, Ning; Yang, Ming; Huo, Ju

    2015-01-01

    In the vehicle simulation test, in order to improve the measuring precision for the attitude of a test vehicle, a measuring method based on the vectors of light beams is presented, in which light beams are mounted on the test vehicle as the cooperation target, and the attitude of the test vehicle is calculated with the light beams’ vectors in the test vehicle’s coordinate system and the world coordinate system. Meanwhile, in order to expand the measuring range of the attitude parameters, cooperation targets and light beams in each cooperation target are increased. On this basis, the concept of an attitude calculation container is defined, and the selection method for the attitude calculation container that participates in the calculation is given. Simultaneously, the vectors of light beams are tracked so as to ensure the normal calculation of the attitude parameters. The experiments results show that this measuring method based on the tracking of vectors can achieve the high precision and wide range of measurement for the attitude of the test vehicle. (paper)

  8. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    International Nuclear Information System (INIS)

    Sun Li-Sha; Kang Xiao-Yun; Zhang Qiong; Lin Lan-Xin

    2011-01-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems. (general)

  9. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    Science.gov (United States)

    Sun, Li-Sha; Kang, Xiao-Yun; Zhang, Qiong; Lin, Lan-Xin

    2011-12-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.

  10. Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5–based Constructs

    Science.gov (United States)

    Alonso-Padilla, Julio; Papp, Tibor; Kaján, Győző L; Benkő, Mária; Havenga, Menzo; Lemckert, Angelique; Harrach, Balázs; Baker, Andrew H

    2016-01-01

    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes. PMID:26478249

  11. Time-frequency feature analysis and recognition of fission neutrons signal based on support vector machine

    International Nuclear Information System (INIS)

    Jin Jing; Wei Biao; Feng Peng; Tang Yuelin; Zhou Mi

    2010-01-01

    Based on the interdependent relationship between fission neutrons ( 252 Cf) and fission chain ( 235 U system), the paper presents the time-frequency feature analysis and recognition in fission neutron signal based on support vector machine (SVM) through the analysis on signal characteristics and the measuring principle of the 252 Cf fission neutron signal. The time-frequency characteristics and energy features of the fission neutron signal are extracted by using wavelet decomposition and de-noising wavelet packet decomposition, and then applied to training and classification by means of support vector machine based on statistical learning theory. The results show that, it is effective to obtain features of nuclear signal via wavelet decomposition and de-noising wavelet packet decomposition, and the latter can reflect the internal characteristics of the fission neutron system better. With the training accomplished, the SVM classifier achieves an accuracy rate above 70%, overcoming the lack of training samples, and verifying the effectiveness of the algorithm. (authors)

  12. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    Science.gov (United States)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  13. A terrestrial lidar-based workflow for determining three-dimensional slip vectors and associated uncertainties

    Science.gov (United States)

    Gold, Peter O.; Cowgill, Eric; Kreylos, Oliver; Gold, Ryan D.

    2012-01-01

    Three-dimensional (3D) slip vectors recorded by displaced landforms are difficult to constrain across complex fault zones, and the uncertainties associated with such measurements become increasingly challenging to assess as landforms degrade over time. We approach this problem from a remote sensing perspective by using terrestrial laser scanning (TLS) and 3D structural analysis. We have developed an integrated TLS data collection and point-based analysis workflow that incorporates accurate assessments of aleatoric and epistemic uncertainties using experimental surveys, Monte Carlo simulations, and iterative site reconstructions. Our scanning workflow and equipment requirements are optimized for single-operator surveying, and our data analysis process is largely completed using new point-based computing tools in an immersive 3D virtual reality environment. In a case study, we measured slip vector orientations at two sites along the rupture trace of the 1954 Dixie Valley earthquake (central Nevada, United States), yielding measurements that are the first direct constraints on the 3D slip vector for this event. These observations are consistent with a previous approximation of net extension direction for this event. We find that errors introduced by variables in our survey method result in <2.5 cm of variability in components of displacement, and are eclipsed by the 10–60 cm epistemic errors introduced by reconstructing the field sites to their pre-erosion geometries. Although the higher resolution TLS data sets enabled visualization and data interactivity critical for reconstructing the 3D slip vector and for assessing uncertainties, dense topographic constraints alone were not sufficient to significantly narrow the wide (<26°) range of allowable slip vector orientations that resulted from accounting for epistemic uncertainties.

  14. Research on intrusion detection based on Kohonen network and support vector machine

    Science.gov (United States)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  15. Predictions of malaria vector distribution in Belize based on multispectral satellite data.

    Science.gov (United States)

    Roberts, D R; Paris, J F; Manguin, S; Harbach, R E; Woodruff, R; Rejmankova, E; Polanco, J; Wullschleger, B; Legters, L J

    1996-03-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  16. Segmentation of Clinical Endoscopic Images Based on the Classification of Topological Vector Features

    Directory of Open Access Journals (Sweden)

    O. A. Dunaeva

    2013-01-01

    Full Text Available In this work, we describe a prototype of an automatic segmentation system and annotation of endoscopy images. The used algorithm is based on the classification of vectors of the topological features of the original image. We use the image processing scheme which includes image preprocessing, calculation of vector descriptors defined for every point of the source image and the subsequent classification of descriptors. Image preprocessing includes finding and selecting artifacts and equalizating the image brightness. In this work, we give the detailed algorithm of the construction of topological descriptors and the classifier creating procedure based on mutual sharing the AdaBoost scheme and a naive Bayes classifier. In the final section, we show the results of the classification of real endoscopic images.

  17. Comparative Visualization of Vector Field Ensembles Based on Longest Common Subsequence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Richen; Guo, Hanqi; Zhang, Jiang; Yuan, Xiaoru

    2016-04-19

    We propose a longest common subsequence (LCS) based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines passing through, the LCS distance defines the similarity among vector field ensembles by counting the number of sharing domain data blocks. Compared to the traditional methods (e.g. point-wise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outlier, data missing, and sampling rate of pathline timestep. Taking the advantages of smaller and reusable intermediate output, visualization based on the proposed LCS approach revealing temporal trends in the data at low storage cost, and avoiding tracing pathlines repeatedly. Finally, we evaluate our method on both synthetic data and simulation data, which demonstrate the robustness of the proposed approach.

  18. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner

    Science.gov (United States)

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  19. A Novel Approach to Asynchronous MVP Data Interpretation Based on Elliptical-Vectors

    Science.gov (United States)

    Kruglyakov, M.; Trofimov, I.; Korotaev, S.; Shneyer, V.; Popova, I.; Orekhova, D.; Scshors, Y.; Zhdanov, M. S.

    2014-12-01

    We suggest a novel approach to asynchronous magnetic-variation profiling (MVP) data interpretation. Standard method in MVP is based on the interpretation of the coefficients of linear relation between vertical and horizontal components of the measured magnetic field.From mathematical point of view this pair of linear coefficients is not a vector which leads to significant difficulties in asynchronous data interpretation. Our approach allows us to actually treat such a pair of complex numbers as a special vector called an ellipse-vector (EV). By choosing the particular definitions of complex length and direction, the basic relation of MVP can be considered as the dot product. This considerably simplifies the interpretation of asynchronous data. The EV is described by four real numbers: the values of major and minor semiaxes, the angular direction of the major semiaxis and the phase. The notation choice is motivated by historical reasons. It is important that different EV's components have different sensitivity with respect to the field sources and the local heterogeneities. Namely, the value of major semiaxis and the angular direction are mostly determined by the field source and the normal cross-section. On the other hand, the value of minor semiaxis and the phase are responsive to local heterogeneities. Since the EV is the general form of complex vector, the traditional Schmucker vectors can be explicitly expressed through its components.The proposed approach was successfully applied to interpretation the results of asynchronous measurements that had been obtained in the Arctic Ocean at the drift stations "North Pole" in 1962-1976.

  20. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields.

    Science.gov (United States)

    Skraba, Primoz; Bei Wang; Guoning Chen; Rosen, Paul

    2015-08-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  1. PGMA-Based Cationic Nanoparticles with Polyhydric Iodine Units for Advanced Gene Vectors.

    Science.gov (United States)

    Sun, Yue; Hu, Hao; Yu, Bingran; Xu, Fu-Jian

    2016-11-16

    It is crucial for successful gene delivery to develop safe, effective, and multifunctional polycations. Iodine-based small molecules are widely used as contrast agents for CT imaging. Herein, a series of star-like poly(glycidyl methacrylate) (PGMA)-based cationic vectors (II-PGEA/II) with abundant flanking polyhydric iodine units are prepared for multifunctional gene delivery systems. The proposed II-PGEA/II star vector is composed of one iohexol intermediate (II) core and five ethanolamine (EA) and II-difunctionalized PGMA arms. The amphipathic II-PGEA/II vectors readily self-assemble into well-defined cationic nanoparticles, where massive hydroxyl groups can establish a hydration shell to stabilize the nanoparticles. The II introduction improves cell viabilities of polycations. Moreover, by controlling the suitable amount of introduced II units, the resultant II-PGEA/II nanoparticles can produce fairly good transfection performances in different cell lines. Particularly, the II-PGEA/II nanoparticles induce much better in vitro CT imaging abilities in tumor cells than iohexol (one commonly used commercial CT contrast agent). The present design of amphipathic PGMA-based nanoparticles with CT contrast agents would provide useful information for the development of new multifunctional gene delivery systems.

  2. Vector magnetometer based on synchronous manipulation of nitrogen-vacancy centers in all crystal directions

    Science.gov (United States)

    Zhang, Chen; Yuan, Heng; Zhang, Ning; Xu, Lixia; Zhang, Jixing; Li, Bo; Fang, Jiancheng

    2018-04-01

    Negatively charged nitrogen vacancy (NV‑) centers in diamond have been extensively studied as high-sensitivity magnetometers, showcasing a wide range of applications. This study experimentally demonstrates a vector magnetometry scheme based on synchronous manipulation of NV‑ center ensembles in all crystal directions using double frequency microwaves (MWs) and multi-coupled-strip-lines (mCSL) waveguide. The application of the mCSL waveguide ensures a high degree of synchrony (99%) for manipulating NV‑ centers in multiple orientations in a large volume. Manipulation with double frequency MWs makes NV‑ centers of all four crystal directions involved, and additionally leads to an enhancement of the manipulation field. In this work, by monitoring the changes in the slope of the resonance line consisting of multi-axes NV‑ centers, measurement of the direction of the external field vector was demonstrated with a sensitivity of {{10}\\prime}/\\sqrt{Hz} . Based on the scheme, the fluorescence signal contrast was improved by four times higher and the sensitivity to the magnetic field strength was improved by two times. The method provides a more practical way of achieving vector sensors based on NV‑ center ensembles in diamond.

  3. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields

    KAUST Repository

    Skraba, Primoz

    2015-08-01

    © 2015 IEEE. Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  4. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields

    KAUST Repository

    Skraba, Primoz; Wang, Bei; Chen, Guoning; Rosen, Paul

    2015-01-01

    © 2015 IEEE. Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  5. A simple and robust vector-based shRNA expression system used for RNA interference.

    Science.gov (United States)

    Wang, Xue-jun; Li, Ying; Huang, Hai; Zhang, Xiu-juan; Xie, Pei-wen; Hu, Wei; Li, Dan-dan; Wang, Sheng-qi

    2013-01-01

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV) knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.

  6. A simple and robust vector-based shRNA expression system used for RNA interference.

    Directory of Open Access Journals (Sweden)

    Xue-jun Wang

    Full Text Available BACKGROUND: RNA interference (RNAi mediated by small interfering RNAs (siRNAs or short hairpin RNAs (shRNAs has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. RESULTS: In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. CONCLUSION: This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.

  7. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  8. Optical threshold secret sharing scheme based on basic vector operations and coherence superposition

    Science.gov (United States)

    Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen

    2015-04-01

    We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.

  9. Thai Language Sentence Similarity Computation Based on Syntactic Structure and Semantic Vector

    Science.gov (United States)

    Wang, Hongbin; Feng, Yinhan; Cheng, Liang

    2018-03-01

    Sentence similarity computation plays an increasingly important role in text mining, Web page retrieval, machine translation, speech recognition and question answering systems. Thai language as a kind of resources scarce language, it is not like Chinese language with HowNet and CiLin resources. So the Thai sentence similarity research faces some challenges. In order to solve this problem of the Thai language sentence similarity computation. This paper proposes a novel method to compute the similarity of Thai language sentence based on syntactic structure and semantic vector. This method firstly uses the Part-of-Speech (POS) dependency to calculate two sentences syntactic structure similarity, and then through the word vector to calculate two sentences semantic similarity. Finally, we combine the two methods to calculate two Thai language sentences similarity. The proposed method not only considers semantic, but also considers the sentence syntactic structure. The experiment result shows that this method in Thai language sentence similarity computation is feasible.

  10. Space vector-based modeling and control of a modular multilevel converter in HVDC applications

    DEFF Research Database (Denmark)

    Bonavoglia, M.; Casadei, G.; Zarri, L.

    2013-01-01

    Modular multilevel converter (MMC) is an emerging multilevel topology for high-voltage applications that has been developed in recent years. In this paper, the modeling and the control of MMCs are restated in terms of space vectors, which may allow a deeper understanding of the converter behavior....... As a result, a control scheme for three-phase MMCs based on the previous theoretical analysis is presented. Numerical simulations are used to test its feasibility.......Modular multilevel converter (MMC) is an emerging multilevel topology for high-voltage applications that has been developed in recent years. In this paper, the modeling and the control of MMCs are restated in terms of space vectors, which may allow a deeper understanding of the converter behavior...

  11. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors

    Directory of Open Access Journals (Sweden)

    Anne Louise Askou

    Full Text Available Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF. Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.

  12. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  13. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    Science.gov (United States)

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Directory of Open Access Journals (Sweden)

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  15. Construction of permanently inducible miRNA-based expression vectors using site-specific recombinases

    Directory of Open Access Journals (Sweden)

    Garwick-Coppens Sara E

    2011-11-01

    Full Text Available Abstract Background RNA interference (RNAi is a conserved gene silencing mechanism mediated by small inhibitory microRNAs (miRNAs. Promoter-driven miRNA expression vectors have emerged as important tools for delivering natural or artificially designed miRNAs to eukaryotic cells and organisms. Such systems can be used to query the normal or pathogenic functions of natural miRNAs or messenger RNAs, or to therapeutically silence disease genes. Results As with any molecular cloning procedure, building miRNA-based expression constructs requires a time investment and some molecular biology skills. To improve efficiency and accelerate the construction process, we developed a method to rapidly generate miRNA expression vectors using recombinases instead of more traditional cut-and-paste molecular cloning techniques. In addition to streamlining the construction process, our cloning strategy provides vectors with added versatility. In our system, miRNAs can be constitutively expressed from the U6 promoter, or inducibly expressed by Cre recombinase. We also engineered a built-in mechanism to destroy the vector with Flp recombinase, if desired. Finally, to further simplify the construction process, we developed a software package that automates the prediction and design of optimal miRNA sequences using our system. Conclusions We designed and tested a modular system to rapidly clone miRNA expression cassettes. Our strategy reduces the hands-on time required to successfully generate effective constructs, and can be implemented in labs with minimal molecular cloning expertise. This versatile system provides options that permit constitutive or inducible miRNA expression, depending upon the needs of the end user. As such, it has utility for basic or translational applications.

  16. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks.

    Science.gov (United States)

    Hartemink, Nienke; Vanwambeke, Sophie O; Purse, Bethan V; Gilbert, Marius; Van Dyck, Hans

    2015-11-01

    Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional habitat of vectors or hosts, and hence of the pathogen. Empirical-statistical methods do not explicitly incorporate biological mechanisms, whereas current mechanistic models are rarely spatially explicit; both methods ignore the way animals use the landscape (i.e. movement ecology). We argue that applying a functional concept for habitat, i.e. the resource-based habitat concept (RBHC), can solve these issues. The RBHC offers a framework to identify systematically the different ecological resources that are necessary for the completion of the transmission cycle and to relate these resources to (combinations of) landscape features and other environmental factors. The potential of the RBHC as a framework for identifying suitable habitats for vector-borne pathogens is explored and illustrated with the case of bluetongue virus, a midge-transmitted virus affecting ruminants. The concept facilitates the study of functional habitats of the interacting species (vectors as well as hosts) and provides new insight into spatial and temporal variation in transmission opportunities and exposure that ultimately determine disease risks. It may help to identify knowledge gaps and control options arising from changes in the spatial configuration of key resources across the landscape. The RBHC framework may act as a bridge between existing mechanistic and statistical modelling approaches. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  17. Development of expression vectors for Escherichia coli based on the pCR2 replicon

    Directory of Open Access Journals (Sweden)

    Deb J K

    2007-05-01

    Full Text Available Abstract Background Recent developments in metabolic engineering and the need for expanded compatibility required for co-expression studies, underscore the importance of developing new plasmid vectors with properties such as stability and compatibility. Results We utilized the pCR2 replicon of Corynebacterium renale, which harbours multiple plasmids, for constructing a range of expression vectors. Different antibiotic-resistance markers were introduced and the vectors were found to be 100% stable over a large number of generations in the absence of selection pressure. Compatibility of this plasmid was studied with different Escherichia coli plasmid replicons viz. pMB1 and p15A. It was observed that pCR2 was able to coexist with these E.coli plasmids for 60 generations in the absence of selection pressure. Soluble intracellular production was checked by expressing GFP under the lac promoter in an expression plasmid pCR2GFP. Also high level production of human IFNγ was obtained by cloning the h-IFNγ under a T7 promoter in the expression plasmid pCR2-IFNγ and using a dual plasmid heat shock system for expression. Repeated sub-culturing in the absence of selection pressure for six days did not lead to any fall in the production levels post induction, for both GFP and h-IFNγ, demonstrating that pCR2 is a useful plasmid in terms of stability and compatibility. Conclusion We have constructed a series of expression vectors based on the pCR2 replicon and demonstrated its high stability and sustained expression capacity, in the absence of selection pressure which will make it an efficient tool for metabolic engineering and co-expression studies, as well as for scale up of expression.

  18. Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogues for multimodality tumor imaging and therapy.

    Science.gov (United States)

    Abiraj, Keelara; Jaccard, Hugues; Kretzschmar, Martin; Helm, Lothar; Maecke, Helmut R

    2008-07-28

    Dimeric peptidic vectors, obtained by the divalent grafting of bombesin analogues on a newly synthesized DOTA-based prochelator, showed improved qualities as tumor targeted imaging probes in comparison to their monomeric analogues.

  19. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.

    Science.gov (United States)

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-08-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.

  20. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  1. A multi-label learning based kernel automatic recommendation method for support vector machine.

    Science.gov (United States)

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  2. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    Science.gov (United States)

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.

  3. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    Science.gov (United States)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  4. A Shellcode Detection Method Based on Full Native API Sequence and Support Vector Machine

    Science.gov (United States)

    Cheng, Yixuan; Fan, Wenqing; Huang, Wei; An, Jing

    2017-09-01

    Dynamic monitoring the behavior of a program is widely used to discriminate between benign program and malware. It is usually based on the dynamic characteristics of a program, such as API call sequence or API call frequency to judge. The key innovation of this paper is to consider the full Native API sequence and use the support vector machine to detect the shellcode. We also use the Markov chain to extract and digitize Native API sequence features. Our experimental results show that the method proposed in this paper has high accuracy and low detection rate.

  5. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    Science.gov (United States)

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  6. Parameter identification based synchronization for a class of chaotic systems with offset vectors

    International Nuclear Information System (INIS)

    Chen Cailian; Feng Gang; Guan Xinping

    2004-01-01

    Based on a parameter identification scheme, a novel synchronization method is presented for a class of chaotic systems with offset vectors which can be represented by the so-called T-S fuzzy model. It is shown that the slave system can synchronize the master system and the unknown parameters of the master system can be identified simultaneously. The delayed feedback technique is also developed in order to reduce the energy and time required for the identification and synchronization. Numerical simulations demonstrate the effectiveness of the proposed method

  7. A Support Vector Machine-Based Gender Identification Using Speech Signal

    Science.gov (United States)

    Lee, Kye-Hwan; Kang, Sang-Ick; Kim, Deok-Hwan; Chang, Joon-Hyuk

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  8. Modelling and Simulation of SVPWM Based Vector Controlled HVDC Light Systems

    Directory of Open Access Journals (Sweden)

    Ajay Kumar MOODADLA

    2012-11-01

    Full Text Available Recent upgrades in power electronics technology have lead to the improvements of insulated gate bipolar transistor (IGBT based Voltage source converter High voltage direct current (VSC HVDC transmission systems. These are also commercially known as HVDC Light systems, which are popular in renewable, micro grid, and electric power systems. Out of different pulse width modulation (PWM schemes, Space vector PWM (SVPWM control scheme finds growing importance in power system applications because of its better dc bus utilization. In this paper, modelling of the converter is described, and SVPWM scheme is utilized to control the HVDC Light system in order to achieve better DC bus utilization, harmonic reduction, and for reduced power fluctuations. The simulations are carried out in the MATLAB/SIMULINK environment and the results are provided for steady state and dynamic conditions. Finally, the performance of SVPWM based vector controlled HVDC Light transmission system is compared with sinusoidal pulse width modulation (SPWM based HVDC Light system in terms of output voltage and total harmonic distortion (THD.

  9. Factors affecting learning of vector math from computer-based practice: Feedback complexity and prior knowledge

    Directory of Open Access Journals (Sweden)

    Andrew F. Heckler

    2016-06-01

    Full Text Available In experiments including over 450 university-level students, we studied the effectiveness and time efficiency of several levels of feedback complexity in simple, computer-based training utilizing static question sequences. The learning domain was simple vector math, an essential skill in introductory physics. In a unique full factorial design, we studied the relative effects of “knowledge of correct response” feedback and “elaborated feedback” (i.e., a general explanation both separately and together. A number of other factors were analyzed, including training time, physics course grade, prior knowledge of vector math, and student beliefs about both their proficiency in and the importance of vector math. We hypothesize a simple model predicting how the effectiveness of feedback depends on prior knowledge, and the results confirm this knowledge-by-treatment interaction. Most notably, elaborated feedback is the most effective feedback, especially for students with low prior knowledge and low course grade. In contrast, knowledge of correct response feedback was less effective for low-performing students, and including both kinds of feedback did not significantly improve performance compared to elaborated feedback alone. Further, while elaborated feedback resulted in higher scores, the learning rate was at best only marginally higher because the training time was slightly longer. Training time data revealed that students spent significantly more time on the elaborated feedback after answering a training question incorrectly. Finally, we found that training improved student self-reported proficiency and that belief in the importance of the learned domain improved the effectiveness of training. Overall, we found that computer based training with static question sequences and immediate elaborated feedback in the form of simple and general explanations can be an effective way to improve student performance on a physics essential skill

  10. vSmartMOM: A vector matrix operator method-based radiative transfer model linearized with respect to aerosol properties

    International Nuclear Information System (INIS)

    Sanghavi, Suniti; Davis, Anthony B.; Eldering, Annmarie

    2014-01-01

    In this paper, we build up on the scalar model smartMOM to arrive at a formalism for linearized vector radiative transfer based on the matrix operator method (vSmartMOM). Improvements have been made with respect to smartMOM in that a novel method of computing intensities for the exact viewing geometry (direct raytracing) without interpolation between quadrature points has been implemented. Also, the truncation method employed for dealing with highly peaked phase functions has been changed to a vector adaptation of Wiscombe's delta-m method. These changes enable speedier and more accurate radiative transfer computations by eliminating the need for a large number of quadrature points and coefficients for generalized spherical functions. We verify our forward model against the benchmarking results of Kokhanovsky et al. (2010) [22]. All non-zero Stokes vector elements are found to show agreement up to mostly the seventh significant digit for the Rayleigh atmosphere. Intensity computations for aerosol and cloud show an agreement of well below 0.03% and 0.05% at all viewing angles except around the solar zenith angle (60°), where most radiative models demonstrate larger variances due to the strongly forward-peaked phase function. We have for the first time linearized vector radiative transfer based on the matrix operator method with respect to aerosol optical and microphysical parameters. We demonstrate this linearization by computing Jacobian matrices for all Stokes vector elements for a multi-angular and multispectral measurement setup. We use these Jacobians to compare the aerosol information content of measurements using only the total intensity component against those using the idealized measurements of full Stokes vector [I,Q,U,V] as well as the more practical use of only [I,Q,U]. As expected, we find for the considered example that the accuracy of the retrieved parameters improves when the full Stokes vector is used. The information content for the full Stokes

  11. Kochen-Specker vectors

    International Nuclear Information System (INIS)

    Pavicic, Mladen; Merlet, Jean-Pierre; McKay, Brendan; Megill, Norman D

    2005-01-01

    We give a constructive and exhaustive definition of Kochen-Specker (KS) vectors in a Hilbert space of any dimension as well as of all the remaining vectors of the space. KS vectors are elements of any set of orthonormal states, i.e., vectors in an n-dimensional Hilbert space, H n , n≥3, to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such KS vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in R n , on algorithms that single out those diagrams on which algebraic (0)-(1) states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all four-dimensional KS vector systems containing up to 24 vectors were generated and described, all three-dimensional vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found

  12. Research on bearing life prediction based on support vector machine and its application

    International Nuclear Information System (INIS)

    Sun Chuang; Zhang Zhousuo; He Zhengjia

    2011-01-01

    Life prediction of rolling element bearing is the urgent demand in engineering practice, and the effective life prediction technique is beneficial to predictive maintenance. Support vector machine (SVM) is a novel machine learning method based on statistical learning theory, and is of advantage in prediction. This paper develops SVM-based model for bearing life prediction. The inputs of the model are features of bearing vibration signal and the output is the bearing running time-bearing failure time ratio. The model is built base on a few failed bearing data, and it can fuse information of the predicted bearing. So it is of advantage to bearing life prediction in practice. The model is applied to life prediction of a bearing, and the result shows the proposed model is of high precision.

  13. Settlement Prediction of Road Soft Foundation Using a Support Vector Machine (SVM Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Yu Huiling

    2016-01-01

    Full Text Available The suppor1t vector machine (SVM is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. SVM is a new machine learning method based on the statistical learning theory. A case study based on road foundation engineering project shows that the forecast results are in good agreement with the measured data. The SVM model is also compared with BP artificial neural network model and traditional hyperbola method. The prediction results indicate that the SVM model has a better prediction ability than BP neural network model and hyperbola method. Therefore, settlement prediction based on SVM model can reflect actual settlement process more correctly. The results indicate that it is effective and feasible to use this method and the nonlinear mapping relation between foundation settlement and its influence factor can be expressed well. It will provide a new method to predict foundation settlement.

  14. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  15. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    Science.gov (United States)

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  16. Framework and implementation for improving physics essential skills via computer-based practice: Vector math

    Science.gov (United States)

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-06-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.

  17. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    International Nuclear Information System (INIS)

    Xiao, Xiao; Gang, Yi; Wang, Honghong; Wang, Jiayin; Zhao, Lina; Xu, Li; Liu, Zhiguo

    2015-01-01

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity

  18. A Systematic Approach for Solving the Great Circle Track Problems based on Vector Algebra

    Directory of Open Access Journals (Sweden)

    Chen Chih-Li

    2016-04-01

    Full Text Available A systematic approach, based on multiple products of the vector algebra (S-VA, is proposed to derive the spherical triangle formulae for solving the great circle track (GCT problems. Because the mathematical properties of the geometry and algebra are both embedded in the S-VA approach, derivations of the spherical triangle formulae become more understandable and more straightforward as compared with those approaches which use the complex linear combination of a vector basis. In addition, the S-VA approach can handle all given initial conditions for solving the GCT problems simpler, clearer and avoid redundant formulae existing in the conventional approaches. With the technique of transforming the Earth coordinates system of latitudes and longitudes into the Cartesian one and adopting the relative longitude concept, the concise governing equations of the S-VA approach can be easily and directly derived. Owing to the advantage of the S-VA approach, it makes the practical navigator quickly adjust to solve the GCT problems. Based on the S-VA approach, a program namely GCTPro_VA is developed for friendly use of the navigator. Several validation examples are provided to show the S-VA approach is simple and versatile to solve the GCT problems.

  19. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiao [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Gang, Yi [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province (China); Wang, Honghong [No. 518 Hospital of Chinese People’s Liberation Army, Xi’an 710043, Shaanxi Province (China); Wang, Jiayin [The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 (United States); Zhao, Lina [Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Xu, Li, E-mail: lxuhelen@163.com [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Liu, Zhiguo, E-mail: liuzhiguo@fmmu.edu.cn [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China)

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.

  20. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    Energy Technology Data Exchange (ETDEWEB)

    Miltiadis Alamaniotis; Vivek Agarwal

    2014-10-01

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.

  1. Engineered XcmI cassette-containing vector for PCR-based ...

    Indian Academy of Sciences (India)

    Unknown

    A simple and general method is described to construct a new vector bearing a synthetic XcmI cassette for direct cloning of PCR-amplified genes of interest. Cleavage of the vector with XcmI generates a linearized molecule with a single thymidine (T) overhang at the 3′ ends (T-vector) that facilitates TA cloning of PCR ...

  2. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    Science.gov (United States)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  3. Bearing Degradation Process Prediction Based on the Support Vector Machine and Markov Model

    Directory of Open Access Journals (Sweden)

    Shaojiang Dong

    2014-01-01

    Full Text Available Predicting the degradation process of bearings before they reach the failure threshold is extremely important in industry. This paper proposed a novel method based on the support vector machine (SVM and the Markov model to achieve this goal. Firstly, the features are extracted by time and time-frequency domain methods. However, the extracted original features are still with high dimensional and include superfluous information, and the nonlinear multifeatures fusion technique LTSA is used to merge the features and reduces the dimension. Then, based on the extracted features, the SVM model is used to predict the bearings degradation process, and the CAO method is used to determine the embedding dimension of the SVM model. After the bearing degradation process is predicted by SVM model, the Markov model is used to improve the prediction accuracy. The proposed method was validated by two bearing run-to-failure experiments, and the results proved the effectiveness of the methodology.

  4. Support-vector-based emergent self-organising approach for emotional understanding

    Science.gov (United States)

    Nguwi, Yok-Yen; Cho, Siu-Yeung

    2010-12-01

    This study discusses the computational analysis of general emotion understanding from questionnaires methodology. The questionnaires method approaches the subject by investigating the real experience that accompanied the emotions, whereas the other laboratory approaches are generally associated with exaggerated elements. We adopted a connectionist model called support-vector-based emergent self-organising map (SVESOM) to analyse the emotion profiling from the questionnaires method. The SVESOM first identifies the important variables by giving discriminative features with high ranking. The classifier then performs the classification based on the selected features. Experimental results show that the top rank features are in line with the work of Scherer and Wallbott [(1994), 'Evidence for Universality and Cultural Variation of Differential Emotion Response Patterning', Journal of Personality and Social Psychology, 66, 310-328], which approached the emotions physiologically. While the performance measures show that using the full features for classifications can degrade the performance, the selected features provide superior results in terms of accuracy and generalisation.

  5. Aging Detection of Electrical Point Machines Based on Support Vector Data Description

    Directory of Open Access Journals (Sweden)

    Jaewon Sa

    2017-11-01

    Full Text Available Electrical point machines (EPM must be replaced at an appropriate time to prevent the occurrence of operational safety or stability problems in trains resulting from aging or budget constraints. However, it is difficult to replace EPMs effectively because the aging conditions of EPMs depend on the operating environments, and thus, a guideline is typically not be suitable for replacing EPMs at the most timely moment. In this study, we propose a method of classification for the detection of an aging effect to facilitate the timely replacement of EPMs. We employ support vector data description to segregate data of “aged” and “not-yet-aged” equipment by analyzing the subtle differences in normalized electrical signals resulting from aging. Based on the before and after-replacement data that was obtained from experimental studies that were conducted on EPMs, we confirmed that the proposed method was capable of classifying machines based on exhibited aging effects with adequate accuracy.

  6. Towards artificial intelligence based diesel engine performance control under varying operating conditions using support vector regression

    Directory of Open Access Journals (Sweden)

    Naradasu Kumar Ravi

    2013-01-01

    Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.

  7. Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony.

    Science.gov (United States)

    Gao, Lingyun; Ye, Mingquan; Wu, Changrong

    2017-11-29

    Intelligent optimization algorithms have advantages in dealing with complex nonlinear problems accompanied by good flexibility and adaptability. In this paper, the FCBF (Fast Correlation-Based Feature selection) method is used to filter irrelevant and redundant features in order to improve the quality of cancer classification. Then, we perform classification based on SVM (Support Vector Machine) optimized by PSO (Particle Swarm Optimization) combined with ABC (Artificial Bee Colony) approaches, which is represented as PA-SVM. The proposed PA-SVM method is applied to nine cancer datasets, including five datasets of outcome prediction and a protein dataset of ovarian cancer. By comparison with other classification methods, the results demonstrate the effectiveness and the robustness of the proposed PA-SVM method in handling various types of data for cancer classification.

  8. Pipeline leakage recognition based on the projection singular value features and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wei; Zhang, Laibin; Mingda, Wang; Jinqiu, Hu [College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, (China)

    2010-07-01

    The negative wave pressure method is one of the processes used to detect leaks on oil pipelines. The development of new leakage recognition processes is difficult because it is practically impossible to collect leakage pressure samples. The method of leakage feature extraction and the selection of the recognition model are also important in pipeline leakage detection. This study investigated a new feature extraction approach Singular Value Projection (SVP). It projects the singular value to a standard basis. A new pipeline recognition model based on the multi-class Support Vector Machines was also developed. It was found that SVP is a clear and concise recognition feature of the negative pressure wave. Field experiments proved that the model provided a high recognition accuracy rate. This approach to pipeline leakage detection based on the SVP and SVM has a high application value.

  9. Graphic Design Of “Green Mission” Education Game Using Software Based On Vector

    Directory of Open Access Journals (Sweden)

    Nur Yanti

    2018-01-01

    Full Text Available Educational game is a digital game in its design using the elements of education and in it support teaching and learning by using technology that is interactive media. Generally an educational game has a fun look, an easy-to-use menu, as well as color combinations that are used that are GUI-based (Graphic User Interface so as to create appeal to users. Because it is undeniable that the human brain tends to more quickly capture learning through visual images rather than writings. Therefore, graphic design of an educational game becomes one of the important points. Software applications become one of the solutions in making game design, one of which is a vector-based software applications. There are various software that can be used in accordance with the function and usefulness of each. But in general the way the software works almost same.

  10. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  11. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    Science.gov (United States)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  12. Acoustical contribution calculation and analysis of compressor shell based on acoustic transfer vector method

    Science.gov (United States)

    Chen, Xiaol; Guo, Bei; Tuo, Jinliang; Zhou, Ruixin; Lu, Yang

    2017-08-01

    Nowadays, people are paying more and more attention to the noise reduction of household refrigerator compressor. This paper established a sound field bounded by compressor shell and ISO3744 standard field points. The Acoustic Transfer Vector (ATV) in the sound field radiated by a refrigerator compressor shell were calculated which fits the test result preferably. Then the compressor shell surface is divided into several parts. Based on Acoustic Transfer Vector approach, the sound pressure contribution to the field points and the sound power contribution to the sound field of each part were calculated. To obtain the noise radiation in the sound field, the sound pressure cloud charts were analyzed, and the contribution curves in different frequency of each part were acquired. Meanwhile, the sound power contribution of each part in different frequency was analyzed, to ensure those parts where contributes larger sound power. Through the analysis of acoustic contribution, those parts where radiate larger noise on the compressor shell were determined. This paper provides a credible and effective approach on the structure optimal design of refrigerator compressor shell, which is meaningful in the noise and vibration reduction.

  13. Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System

    Directory of Open Access Journals (Sweden)

    NAMMALVAR, P.

    2018-02-01

    Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.

  14. The development of vector based 2.5D print methods for a painting machine

    Science.gov (United States)

    Parraman, Carinna

    2013-02-01

    Through recent trends in the application of digitally printed decorative finishes to products, CAD, 3D additive layer manufacturing and research in material perception, [1, 2] there is a growing interest in the accurate rendering of materials and tangible displays. Although current advances in colour management and inkjet printing has meant that users can take for granted high-quality colour and resolution in their printed images, digital methods for transferring a photographic coloured image from screen to paper is constrained by pixel count, file size, colorimetric conversion between colour spaces and the gamut limits of input and output devices. This paper considers new approaches to applying alternative colour palettes by using a vector-based approach through the application of paint mixtures, towards what could be described as a 2.5D printing method. The objective is to not apply an image to a textured surface, but where texture and colour are integral to the mark, that like a brush, delineates the contours in the image. The paper describes the difference between the way inks and paints are mixed and applied. When transcribing the fluid appearance of a brush stroke, there is a difference between a halftone printed mark and a painted mark. The issue of surface quality is significant to subjective qualities when studying the appearance of ink or paint on paper. The paper provides examples of a range of vector marks that are then transcribed into brush stokes by the painting machine.

  15. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    Science.gov (United States)

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

  16. Face Recognition Performance Improvement using a Similarity Score of Feature Vectors based on Probabilistic Histograms

    Directory of Open Access Journals (Sweden)

    SRIKOTE, G.

    2016-08-01

    Full Text Available This paper proposes an improved performance algorithm of face recognition to identify two face mismatch pairs in cases of incorrect decisions. The primary feature of this method is to deploy the similarity score with respect to Gaussian components between two previously unseen faces. Unlike the conventional classical vector distance measurement, our algorithms also consider the plot of summation of the similarity index versus face feature vector distance. A mixture of Gaussian models of labeled faces is also widely applicable to different biometric system parameters. By comparative evaluations, it has been shown that the efficiency of the proposed algorithm is superior to that of the conventional algorithm by an average accuracy of up to 1.15% and 16.87% when compared with 3x3 Multi-Region Histogram (MRH direct-bag-of-features and Principal Component Analysis (PCA-based face recognition systems, respectively. The experimental results show that similarity score consideration is more discriminative for face recognition compared to feature distance. Experimental results of Labeled Face in the Wild (LFW data set demonstrate that our algorithms are suitable for real applications probe-to-gallery identification of face recognition systems. Moreover, this proposed method can also be applied to other recognition systems and therefore additionally improves recognition scores.

  17. Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases

    International Nuclear Information System (INIS)

    Hall, Joanne L; Rao, Asha

    2010-01-01

    Mutually unbiased bases (MUBs) are important in quantum information theory. While constructions of complete sets of d + 1 MUBs in C d are known when d is a prime power, it is unknown if such complete sets exist in non-prime power dimensions. It has been conjectured that complete sets of MUBs only exist in C d if a maximal set of mutually orthogonal Latin squares (MOLS) of side length d also exists. There are several constructions (Roy and Scott 2007 J. Math. Phys. 48 072110; Paterek, Dakic and Brukner 2009 Phys. Rev. A 79 012109) of complete sets of MUBs from specific types of MOLS, which use Galois fields to construct the vectors of the MUBs. In this paper, two known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350-354; Wootters and Fields 1989 Ann. Phys. 191 363-381), both of which use polynomials over a Galois field, are used to construct complete sets of MOLS in the odd prime case. The MOLS come from the inner products of pairs of vectors in the MUBs.

  18. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali

    2018-03-01

    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  19. Normal mammogram detection based on local probability difference transforms and support vector machines

    International Nuclear Information System (INIS)

    Chiracharit, W.; Kumhom, P.; Chamnongthai, K.; Sun, Y.; Delp, E.J.; Babbs, C.F

    2007-01-01

    Automatic detection of normal mammograms, as a ''first look'' for breast cancer, is a new approach to computer-aided diagnosis. This approach may be limited, however, by two main causes. The first problem is the presence of poorly separable ''crossed-distributions'' in which the correct classification depends upon the value of each feature. The second problem is overlap of the feature distributions that are extracted from digitized mammograms of normal and abnormal patients. Here we introduce a new Support Vector Machine (SVM) based method utilizing with the proposed uncrossing mapping and Local Probability Difference (LPD). Crossed-distribution feature pairs are identified and mapped into a new features that can be separated by a zero-hyperplane of the new axis. The probability density functions of the features of normal and abnormal mammograms are then sampled and the local probability difference functions are estimated to enhance the features. From 1,000 ground-truth-known mammograms, 250 normal and 250 abnormal cases, including spiculated lesions, circumscribed masses or microcalcifications, are used for training a support vector machine. The classification results tested with another 250 normal and 250 abnormal sets show improved testing performances with 90% sensitivity and 89% specificity. (author)

  20. Faults Classification Of Power Electronic Circuits Based On A Support Vector Data Description Method

    Directory of Open Access Journals (Sweden)

    Cui Jiang

    2015-06-01

    Full Text Available Power electronic circuits (PECs are prone to various failures, whose classification is of paramount importance. This paper presents a data-driven based fault diagnosis technique, which employs a support vector data description (SVDD method to perform fault classification of PECs. In the presented method, fault signals (e.g. currents, voltages, etc. are collected from accessible nodes of circuits, and then signal processing techniques (e.g. Fourier analysis, wavelet transform, etc. are adopted to extract feature samples, which are subsequently used to perform offline machine learning. Finally, the SVDD classifier is used to implement fault classification task. However, in some cases, the conventional SVDD cannot achieve good classification performance, because this classifier may generate some so-called refusal areas (RAs, and in our design these RAs are resolved with the one-against-one support vector machine (SVM classifier. The obtained experiment results from simulated and actual circuits demonstrate that the improved SVDD has a classification performance close to the conventional one-against-one SVM, and can be applied to fault classification of PECs in practice.

  1. Support Vector Regression-Based Adaptive Divided Difference Filter for Nonlinear State Estimation Problems

    Directory of Open Access Journals (Sweden)

    Hongjian Wang

    2014-01-01

    Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.

  2. Fault Diagnosis of a Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elangovan

    2017-10-01

    Full Text Available As robots begin to perform jobs autonomously, with minimal or no human intervention, a new challenge arises: robots also need to autonomously detect errors and recover from faults. In this paper, we present a Support Vector Machine (SVM-based fault diagnosis system for a bio-inspired reconfigurable robot named Scorpio. The diagnosis system needs to detect and classify faults while Scorpio uses its crawling and rolling locomotion modes. Specifically, we classify between faulty and non-faulty conditions by analyzing onboard Inertial Measurement Unit (IMU sensor data. The data capture nine different locomotion gaits, which include rolling and crawling modes, at three different speeds. Statistical methods are applied to extract features and to reduce the dimensionality of original IMU sensor data features. These statistical features were given as inputs for training and testing. Additionally, the c-Support Vector Classification (c-SVC and nu-SVC models of SVM, and their fault classification accuracies, were compared. The results show that the proposed SVM approach can be used to autonomously diagnose locomotion gait faults while the reconfigurable robot is in operation.

  3. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    Science.gov (United States)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

  4. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    Science.gov (United States)

    Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S

    2017-02-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  5. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    Directory of Open Access Journals (Sweden)

    Kayla G Barnes

    2017-02-01

    Full Text Available Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  6. Engineering web maps with gradual content zoom based on streaming vector data

    Science.gov (United States)

    Huang, Lina; Meijers, Martijn; Šuba, Radan; van Oosterom, Peter

    2016-04-01

    Vario-scale data structures have been designed to support gradual content zoom and the progressive transfer of vector data, for use with arbitrary map scales. The focus to date has been on the server side, especially on how to convert geographic data into the proposed vario-scale structures by means of automated generalisation. This paper contributes to the ongoing vario-scale research by focusing on the client side and communication, particularly on how this works in a web-services setting. It is claimed that these functionalities are urgently needed, as many web-based applications, both desktop and mobile, require gradual content zoom, progressive transfer and a high performance level. The web-client prototypes developed in this paper make it possible to assess the behaviour of vario-scale data and to determine how users will actually see the interactions. Several different options of web-services communication architectures are possible in a vario-scale setting. These options are analysed and tested with various web-client prototypes, with respect to functionality, ease of implementation and performance (amount of transmitted data and response times). We show that the vario-scale data structure can fit in with current web-based architectures and efforts to standardise map distribution on the internet. However, to maximise the benefits of vario-scale data, a client needs to be aware of this structure. When a client needs a map to be refined (by means of a gradual content zoom operation), only the 'missing' data will be requested. This data will be sent incrementally to the client from a server. In this way, the amount of data transferred at one time is reduced, shortening the transmission time. In addition to these conceptual architecture aspects, there are many implementation and tooling design decisions at play. These will also be elaborated on in this paper. Based on the experiments conducted, we conclude that the vario-scale approach indeed supports gradual

  7. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine

    Science.gov (United States)

    Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei

    2018-01-01

    Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.

  8. Generalization of concurrence vectors

    International Nuclear Information System (INIS)

    Yu Changshui; Song Heshan

    2004-01-01

    In this Letter, based on the generalization of concurrence vectors for bipartite pure state with respect to employing tensor product of generators of the corresponding rotation groups, we generalize concurrence vectors to the case of mixed states; a new criterion of separability of multipartite pure states is given out, for which we define a concurrence vector; we generalize the vector to the case of multipartite mixed state and give out a good measure of free entanglement

  9. DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells.

    Science.gov (United States)

    Silva, J P Neves; Oliveira, A C N; Casal, M P P A; Gomes, A C; Coutinho, P J G; Coutinho, O P; Oliveira, M E C D Real

    2011-10-01

    DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine™ LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the

  10. Towards human behavior recognition based on spatio temporal features and support vector machines

    Science.gov (United States)

    Ghabri, Sawsen; Ouarda, Wael; Alimi, Adel M.

    2017-03-01

    Security and surveillance are vital issues in today's world. The recent acts of terrorism have highlighted the urgent need for efficient surveillance. There is indeed a need for an automated system for video surveillance which can detect identity and activity of person. In this article, we propose a new paradigm to recognize an aggressive human behavior such as boxing action. Our proposed system for human activity detection includes the use of a fusion between Spatio Temporal Interest Point (STIP) and Histogram of Oriented Gradient (HoG) features. The novel feature called Spatio Temporal Histogram Oriented Gradient (STHOG). To evaluate the robustness of our proposed paradigm with a local application of HoG technique on STIP points, we made experiments on KTH human action dataset based on Multi Class Support Vector Machines classification. The proposed scheme outperforms basic descriptors like HoG and STIP to achieve 82.26% us an accuracy value of classification rate.

  11. Forecasting systems reliability based on support vector regression with genetic algorithms

    International Nuclear Information System (INIS)

    Chen, K.-Y.

    2007-01-01

    This study applies a novel neural-network technique, support vector regression (SVR), to forecast reliability in engine systems. The aim of this study is to examine the feasibility of SVR in systems reliability prediction by comparing it with the existing neural-network approaches and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model, SVR's parameters must be set carefully. This study proposes a novel approach, known as GA-SVR, which searches for SVR's optimal parameters using real-value genetic algorithms, and then adopts the optimal parameters to construct the SVR models. A real reliability data for 40 suits of turbochargers were employed as the data set. The experimental results demonstrate that SVR outperforms the existing neural-network approaches and the traditional ARIMA models based on the normalized root mean square error and mean absolute percentage error

  12. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.; Yan, K.; Zhou, Y. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Xu, L. X., E-mail: xulixin@ustc.edu.cn; Gu, C. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China); Zhan, Q. W. [Electro-Optics Program, University of Dayton, Dayton, Ohio 45469 (United States)

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  13. Modulation transfer function (MTF) measurement method based on support vector machine (SVM)

    Science.gov (United States)

    Zhang, Zheng; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2016-03-01

    An imaging system's spatial quality can be expressed by the system's modulation spread function (MTF) as a function of spatial frequency in terms of the linear response theory. Methods have been proposed to assess the MTF of an imaging system using point, slit or edge techniques. The edge method is widely used for the low requirement of targets. However, the traditional edge methods are limited by the edge angle. Besides, image noise will impair the measurement accuracy, making the measurement result unstable. In this paper, a novel measurement method based on the support vector machine (SVM) is proposed. Image patches with different edge angles and MTF levels are generated as the training set. Parameters related with MTF and image structure are extracted from the edge images. Trained with image parameters and the corresponding MTF, the SVM classifier can assess the MTF of any edge image. The result shows that the proposed method has an excellent performance on measuring accuracy and stability.

  14. Constructing Support Vector Machine Ensembles for Cancer Classification Based on Proteomic Profiling

    Institute of Scientific and Technical Information of China (English)

    Yong Mao; Xiao-Bo Zhou; Dao-Ying Pi; You-Xian Sun

    2005-01-01

    In this study, we present a constructive algorithm for training cooperative support vector machine ensembles (CSVMEs). CSVME combines ensemble architecture design with cooperative training for individual SVMs in ensembles. Unlike most previous studies on training ensembles, CSVME puts emphasis on both accuracy and collaboration among individual SVMs in an ensemble. A group of SVMs selected on the basis of recursive classifier elimination is used in CSVME, and the number of the individual SVMs selected to construct CSVME is determined by 10-fold cross-validation. This kind of SVME has been tested on two ovarian cancer datasets previously obtained by proteomic mass spectrometry. By combining several individual SVMs, the proposed method achieves better performance than the SVME of all base SVMs.

  15. Process service quality evaluation based on Dempster-Shafer theory and support vector machine.

    Science.gov (United States)

    Pei, Feng-Que; Li, Dong-Bo; Tong, Yi-Fei; He, Fei

    2017-01-01

    Human involvement influences traditional service quality evaluations, which triggers an evaluation's low accuracy, poor reliability and less impressive predictability. This paper proposes a method by employing a support vector machine (SVM) and Dempster-Shafer evidence theory to evaluate the service quality of a production process by handling a high number of input features with a low sampling data set, which is called SVMs-DS. Features that can affect production quality are extracted by a large number of sensors. Preprocessing steps such as feature simplification and normalization are reduced. Based on three individual SVM models, the basic probability assignments (BPAs) are constructed, which can help the evaluation in a qualitative and quantitative way. The process service quality evaluation results are validated by the Dempster rules; the decision threshold to resolve conflicting results is generated from three SVM models. A case study is presented to demonstrate the effectiveness of the SVMs-DS method.

  16. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  17. Process service quality evaluation based on Dempster-Shafer theory and support vector machine.

    Directory of Open Access Journals (Sweden)

    Feng-Que Pei

    Full Text Available Human involvement influences traditional service quality evaluations, which triggers an evaluation's low accuracy, poor reliability and less impressive predictability. This paper proposes a method by employing a support vector machine (SVM and Dempster-Shafer evidence theory to evaluate the service quality of a production process by handling a high number of input features with a low sampling data set, which is called SVMs-DS. Features that can affect production quality are extracted by a large number of sensors. Preprocessing steps such as feature simplification and normalization are reduced. Based on three individual SVM models, the basic probability assignments (BPAs are constructed, which can help the evaluation in a qualitative and quantitative way. The process service quality evaluation results are validated by the Dempster rules; the decision threshold to resolve conflicting results is generated from three SVM models. A case study is presented to demonstrate the effectiveness of the SVMs-DS method.

  18. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors

    Directory of Open Access Journals (Sweden)

    Maria R. Mendoza

    2017-11-01

    Full Text Available Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV referred to as TG, and Tobacco mosaic virus (TMV annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  19. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Science.gov (United States)

    Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob

    2009-01-01

    Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915

  20. Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs

    International Nuclear Information System (INIS)

    Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun

    2010-01-01

    In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method

  1. A novel improved fuzzy support vector machine based stock price trend forecast model

    OpenAIRE

    Wang, Shuheng; Li, Guohao; Bao, Yifan

    2018-01-01

    Application of fuzzy support vector machine in stock price forecast. Support vector machine is a new type of machine learning method proposed in 1990s. It can deal with classification and regression problems very successfully. Due to the excellent learning performance of support vector machine, the technology has become a hot research topic in the field of machine learning, and it has been successfully applied in many fields. However, as a new technology, there are many limitations to support...

  2. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  3. Structural analysis of online handwritten mathematical symbols based on support vector machines

    Science.gov (United States)

    Simistira, Foteini; Papavassiliou, Vassilis; Katsouros, Vassilis; Carayannis, George

    2013-01-01

    Mathematical expression recognition is still a very challenging task for the research community mainly because of the two-dimensional (2d) structure of mathematical expressions (MEs). In this paper, we present a novel approach for the structural analysis between two on-line handwritten mathematical symbols of a ME, based on spatial features of the symbols. We introduce six features to represent the spatial affinity of the symbols and compare two multi-class classification methods that employ support vector machines (SVMs): one based on the "one-against-one" technique and one based on the "one-against-all", in identifying the relation between a pair of symbols (i.e. subscript, numerator, etc). A dataset containing 1906 spatial relations derived from the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2012 training dataset is constructed to evaluate the classifiers and compare them with the rule-based classifier of the ILSP-1 system participated in the contest. The experimental results give an overall mean error rate of 2.61% for the "one-against-one" SVM approach, 6.57% for the "one-against-all" SVM technique and 12.31% error rate for the ILSP-1 classifier.

  4. A Personalized Electronic Movie Recommendation System Based on Support Vector Machine and Improved Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Xibin; Luo, Fengji; Qian, Ying; Ranzi, Gianluca

    2016-01-01

    With the rapid development of ICT and Web technologies, a large an amount of information is becoming available and this is producing, in some instances, a condition of information overload. Under these conditions, it is difficult for a person to locate and access useful information for making decisions. To address this problem, there are information filtering systems, such as the personalized recommendation system (PRS) considered in this paper, that assist a person in identifying possible products or services of interest based on his/her preferences. Among available approaches, collaborative Filtering (CF) is one of the most widely used recommendation techniques. However, CF has some limitations, e.g., the relatively simple similarity calculation, cold start problem, etc. In this context, this paper presents a new regression model based on the support vector machine (SVM) classification and an improved PSO (IPSO) for the development of an electronic movie PRS. In its implementation, a SVM classification model is first established to obtain a preliminary movie recommendation list based on which a SVM regression model is applied to predict movies' ratings. The proposed PRS not only considers the movie's content information but also integrates the users' demographic and behavioral information to better capture the users' interests and preferences. The efficiency of the proposed method is verified by a series of experiments based on the MovieLens benchmark data set.

  5. Determinants of Health Service Responsiveness in Community-Based Vector Surveillance for Chagas Disease in Guatemala, El Salvador, and Honduras

    Science.gov (United States)

    Hashimoto, Ken; Zúniga, Concepción; Romero, Eduardo; Morales, Zoraida; Maguire, James H.

    2015-01-01

    Background Central American countries face a major challenge in the control of Triatoma dimidiata, a widespread vector of Chagas disease that cannot be eliminated. The key to maintaining the risk of transmission of Trypanosoma cruzi at lowest levels is to sustain surveillance throughout endemic areas. Guatemala, El Salvador, and Honduras integrated community-based vector surveillance into local health systems. Community participation was effective in detection of the vector, but some health services had difficulty sustaining their response to reports of vectors from the population. To date, no research has investigated how best to maintain and reinforce health service responsiveness, especially in resource-limited settings. Methodology/Principal Findings We reviewed surveillance and response records of 12 health centers in Guatemala, El Salvador, and Honduras from 2008 to 2012 and analyzed the data in relation to the volume of reports of vector infestation, local geography, demography, human resources, managerial approach, and results of interviews with health workers. Health service responsiveness was defined as the percentage of households that reported vector infestation for which the local health service provided indoor residual spraying of insecticide or educational advice. Eight potential determinants of responsiveness were evaluated by linear and mixed-effects multi-linear regression. Health service responsiveness (overall 77.4%) was significantly associated with quarterly monitoring by departmental health offices. Other potential determinants of responsiveness were not found to be significant, partly because of short- and long-term strategies, such as temporary adjustments in manpower and redistribution of tasks among local participants in the effort. Conclusions/Significance Consistent monitoring within the local health system contributes to sustainability of health service responsiveness in community-based vector surveillance of Chagas disease. Even with

  6. Determinants of Health Service Responsiveness in Community-Based Vector Surveillance for Chagas Disease in Guatemala, El Salvador, and Honduras.

    Science.gov (United States)

    Hashimoto, Ken; Zúniga, Concepción; Romero, Eduardo; Morales, Zoraida; Maguire, James H

    2015-01-01

    Central American countries face a major challenge in the control of Triatoma dimidiata, a widespread vector of Chagas disease that cannot be eliminated. The key to maintaining the risk of transmission of Trypanosoma cruzi at lowest levels is to sustain surveillance throughout endemic areas. Guatemala, El Salvador, and Honduras integrated community-based vector surveillance into local health systems. Community participation was effective in detection of the vector, but some health services had difficulty sustaining their response to reports of vectors from the population. To date, no research has investigated how best to maintain and reinforce health service responsiveness, especially in resource-limited settings. We reviewed surveillance and response records of 12 health centers in Guatemala, El Salvador, and Honduras from 2008 to 2012 and analyzed the data in relation to the volume of reports of vector infestation, local geography, demography, human resources, managerial approach, and results of interviews with health workers. Health service responsiveness was defined as the percentage of households that reported vector infestation for which the local health service provided indoor residual spraying of insecticide or educational advice. Eight potential determinants of responsiveness were evaluated by linear and mixed-effects multi-linear regression. Health service responsiveness (overall 77.4%) was significantly associated with quarterly monitoring by departmental health offices. Other potential determinants of responsiveness were not found to be significant, partly because of short- and long-term strategies, such as temporary adjustments in manpower and redistribution of tasks among local participants in the effort. Consistent monitoring within the local health system contributes to sustainability of health service responsiveness in community-based vector surveillance of Chagas disease. Even with limited resources, countries can improve health service

  7. Support vector machine based diagnostic system for breast cancer using swarm intelligence.

    Science.gov (United States)

    Chen, Hui-Ling; Yang, Bo; Wang, Gang; Wang, Su-Jing; Liu, Jie; Liu, Da-You

    2012-08-01

    Breast cancer is becoming a leading cause of death among women in the whole world, meanwhile, it is confirmed that the early detection and accurate diagnosis of this disease can ensure a long survival of the patients. In this paper, a swarm intelligence technique based support vector machine classifier (PSO_SVM) is proposed for breast cancer diagnosis. In the proposed PSO-SVM, the issue of model selection and feature selection in SVM is simultaneously solved under particle swarm (PSO optimization) framework. A weighted function is adopted to design the objective function of PSO, which takes into account the average accuracy rates of SVM (ACC), the number of support vectors (SVs) and the selected features simultaneously. Furthermore, time varying acceleration coefficients (TVAC) and inertia weight (TVIW) are employed to efficiently control the local and global search in PSO algorithm. The effectiveness of PSO-SVM has been rigorously evaluated against the Wisconsin Breast Cancer Dataset (WBCD), which is commonly used among researchers who use machine learning methods for breast cancer diagnosis. The proposed system is compared with the grid search method with feature selection by F-score. The experimental results demonstrate that the proposed approach not only obtains much more appropriate model parameters and discriminative feature subset, but also needs smaller set of SVs for training, giving high predictive accuracy. In addition, Compared to the existing methods in previous studies, the proposed system can also be regarded as a promising success with the excellent classification accuracy of 99.3% via 10-fold cross validation (CV) analysis. Moreover, a combination of five informative features is identified, which might provide important insights to the nature of the breast cancer disease and give an important clue for the physicians to take a closer attention. We believe the promising result can ensure that the physicians make very accurate diagnostic decision in

  8. Fruit fly optimization based least square support vector regression for blind image restoration

    Science.gov (United States)

    Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei

    2014-11-01

    The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and

  9. Support vector machine-based facial-expression recognition method combining shape and appearance

    Science.gov (United States)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  10. A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Petersen, Maja Borup Kjær

    2014-01-01

    , in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors....

  11. Is outdoor vector control needed for malaria elimination? An individual-based modelling study.

    Science.gov (United States)

    Zhu, Lin; Müller, Günter C; Marshall, John M; Arheart, Kristopher L; Qualls, Whitney A; Hlaing, WayWay M; Schlein, Yosef; Traore, Sekou F; Doumbia, Seydou; Beier, John C

    2017-07-03

    Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the

  12. Support vector machine based estimation of remaining useful life: current research status and future trends

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Wang, Hai Kun; Li, Yan Feng; Zhang, Longlong; Liu, Zhiliang

    2015-01-01

    Estimation of remaining useful life (RUL) is helpful to manage life cycles of machines and to reduce maintenance cost. Support vector machine (SVM) is a promising algorithm for estimation of RUL because it can easily process small training sets and multi-dimensional data. Many SVM based methods have been proposed to predict RUL of some key components. We did a literature review related to SVM based RUL estimation within a decade. The references reviewed are classified into two categories: improved SVM algorithms and their applications to RUL estimation. The latter category can be further divided into two types: one, to predict the condition state in the future and then build a relationship between state and RUL; two, to establish a direct relationship between current state and RUL. However, SVM is seldom used to track the degradation process and build an accurate relationship between the current health condition state and RUL. Based on the above review and summary, this paper points out that the ability to continually improve SVM, and obtain a novel idea for RUL prediction using SVM will be future works.

  13. Development and evaluation of a biomedical search engine using a predicate-based vector space model.

    Science.gov (United States)

    Kwak, Myungjae; Leroy, Gondy; Martinez, Jesse D; Harwell, Jeffrey

    2013-10-01

    Although biomedical information available in articles and patents is increasing exponentially, we continue to rely on the same information retrieval methods and use very few keywords to search millions of documents. We are developing a fundamentally different approach for finding much more precise and complete information with a single query using predicates instead of keywords for both query and document representation. Predicates are triples that are more complex datastructures than keywords and contain more structured information. To make optimal use of them, we developed a new predicate-based vector space model and query-document similarity function with adjusted tf-idf and boost function. Using a test bed of 107,367 PubMed abstracts, we evaluated the first essential function: retrieving information. Cancer researchers provided 20 realistic queries, for which the top 15 abstracts were retrieved using a predicate-based (new) and keyword-based (baseline) approach. Each abstract was evaluated, double-blind, by cancer researchers on a 0-5 point scale to calculate precision (0 versus higher) and relevance (0-5 score). Precision was significantly higher (psearching than keywords, laying the foundation for rich and sophisticated information search. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. MAPPING LOCAL CLIMATE ZONES WITH A VECTOR-BASED GIS METHOD

    Directory of Open Access Journals (Sweden)

    E. Lelovics

    2013-03-01

    Full Text Available In this study we determined Local Climate Zones in a South-Hungarian city, using vector-based and raster-based databases. We calculated seven of the originally proposed ten physical (geometric, surface cover and radiative properties for areas which are based on the mobile temperature measurement campaigns earlier carried out in this city.As input data we applied 3D building database (earlier created with photogrammetric methods, 2D road database, topographic map, aerial photographs, remotely sensed reflectance information from RapidEye satellite image and our local knowledge about the area. The values of the properties were calculated by GIS methods developed for this purpose.We derived for the examined areas and applied for classification sky view factor, mean building height, terrain roughness class, building surface fraction, pervious surface fraction, impervious surface fraction and albedo.Six built and one land cover LCZ classes could be detected with this method on our study area. From each class one circle area was selected, which is representative for that class. Their thermal reactions were examined with the application of mobile temperature measurement dataset. The comparison was made in cases, when the weather was clear and calm and the surface was dry. We found that compact built-in types have more temperature surplus than open ones, and midrise types also have more than lowrise ones. According to our primary results, these categories provide a useful opportunity for intra- and inter-urban comparisons.

  15. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI

    International Nuclear Information System (INIS)

    Magnin, Benoit; Mesrob, Lilia; Kinkingnehun, Serge; Pelegrini-Issac, Melanie; Colliot, Olivier; Sarazin, Marie; Dubois, Bruno; Lehericy, Stephane; Benali, Habib

    2009-01-01

    We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer's disease (AD) and elderly control subjects. We studied 16 patients with AD [mean age ± standard deviation (SD)=74.1 ±5.2 years, mini-mental score examination (MMSE) = 23.1 ± 2.9] and 22 elderly controls (72.3±5.0 years, MMSE=28.5± 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results. We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%). Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD. (orig.)

  16. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  17. Predictive based monitoring of nuclear plant component degradation using support vector regression

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-01-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  18. Reference Function Based Spatiotemporal Fuzzy Logic Control Design Using Support Vector Regression Learning

    Directory of Open Access Journals (Sweden)

    Xian-Xia Zhang

    2013-01-01

    Full Text Available This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR learning. The concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF, which enhance the capability of the 3D FLC to cope with more kinds of MFs. The nonlinear mathematical expression of the reference function based 3D FLC is derived, and spatial fuzzy basis functions are defined. Via relating spatial fuzzy basis functions of a 3D FLC to kernel functions of an SVR, an equivalence relationship between a 3D FLC and an SVR is established. Therefore, a 3D FLC can be constructed using the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation results have verified its effectiveness.

  19. Smart DNA vectors based on cyclodextrin polymers: compaction and endosomal release.

    Science.gov (United States)

    Wintgens, Véronique; Leborgne, Christian; Baconnais, Sonia; Burckbuchler, Virginie; Le Cam, Eric; Scherman, Daniel; Kichler, Antoine; Amiel, Catherine

    2012-02-01

    Neutral β-cyclodextrin polymers (polyβCD) associated with cationic adamantyl derivatives (Ada) can be used to deliver plasmid DNA into cells. In absence of an endosomolytic agent, transfection efficiency remains low because most complexes are trapped in the endosomal compartment. We asked whether addition of an imidazole-modified Ada can increase efficiency of polyβCD/cationic Ada-based delivery system. We synthesized two adamantyl derivatives: Ada5, which has a spacer arm between the Ada moiety and a bi-cationic polar head group, and Ada6, which presents an imidazole group. Strength of association between polyβCD and Ada derivatives was evaluated by fluorimetric titration. Gel mobility shift assay, zeta potential, and dark field transmission electron microscopy experiments demonstrated the system allowed for efficient DNA compaction. In vitro transfection experiments performed on HepG2 and HEK293 cells revealed the quaternary system polyβCD/Ada5/Ada6/DNA has efficiency comparable to cationic lipid DOTAP. We successfully designed fine-tuned DNA vectors based on cyclodextrin polymers combined with two new adamantyl derivatives, leading to significant transfection associated with low toxicity.

  20. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine

    Science.gov (United States)

    Yan, Jian-Jun; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing

    2014-01-01

    This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered. PMID:24883068

  1. Predicting Taxi-Out Time at Congested Airports with Optimization-Based Support Vector Regression Methods

    Directory of Open Access Journals (Sweden)

    Guan Lian

    2018-01-01

    Full Text Available Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial Neural Network method and two improved Support Vector Regression (SVR approaches based on swarm intelligence algorithm optimization, which include Particle Swarm Optimization (PSO and Firefly Algorithm. In order to improve the global searching ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series of specific dynamic analyses, a case study of Beijing International Airport (PEK is tested with historical data. The performance measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA optimization-based SVR method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but also can achieve a better predictive performance when dealing with abnormal taxi-out time states.

  2. BoHV-4-based vector delivering Ebola virus surface glycoprotein

    Directory of Open Access Journals (Sweden)

    Alfonso Rosamilia

    2016-11-01

    Full Text Available Abstract Background Ebola virus (EBOV is a Category A pathogen that is a member of Filoviridae family that causes hemorrhagic fever in humans and non-human primates. Unpredictable and devastating outbreaks of disease have recently occurred in Africa and current immunoprophylaxis and therapies are limited. The main limitation of working with pathogens like EBOV is the need for costly containment. To potentiate further and wider opportunity for EBOV prophylactics and therapies development, innovative approaches are necessary. Methods In the present study, an antigen delivery platform based on a recombinant bovine herpesvirus 4 (BoHV-4, delivering a synthetic EBOV glycoprotein (GP gene sequence, BoHV-4-syEBOVgD106ΔTK, was generated. Results EBOV GP was abundantly expressed by BoHV-4-syEBOVgD106ΔTK transduced cells without decreasing viral replication. BoHV-4-syEBOVgD106ΔTK immunized goats produced high titers of anti-EBOV GP antibodies and conferred a long lasting (up to 6 months, detectable antibody response. Furthermore, no evidence of BoHV-4-syEBOVgD106ΔTK viremia and secondary localization was detected in any of the immunized animals. Conclusions The BoHV-4-based vector approach described here, represents: an alternative antigen delivery system for vaccination and a proof of principle study for anti-EBOV antibodies generation in goats for potential immunotherapy applications.

  3. Geographic Distribution of Chagas Disease Vectors in Brazil Based on Ecological Niche Modeling

    Directory of Open Access Journals (Sweden)

    Rodrigo Gurgel-Gonçalves

    2012-01-01

    Full Text Available Although Brazil was declared free from Chagas disease transmission by the domestic vector Triatoma infestans, human acute cases are still being registered based on transmission by native triatomine species. For a better understanding of transmission risk, the geographic distribution of Brazilian triatomines was analyzed. Sixteen out of 62 Brazilian species that both occur in >20 municipalities and present synanthropic tendencies were modeled based on their ecological niches. Panstrongylus geniculatus and P. megistus showed broad ecological ranges, but most of the species sort out by the biome in which they are distributed: Rhodnius pictipes and R. robustus in the Amazon; R. neglectus, Triatoma sordida, and T. costalimai in the Cerrado; R. nasutus, P. lutzi, T. brasiliensis, T. pseudomaculata, T. melanocephala, and T. petrocchiae in the Caatinga; T. rubrovaria in the southern pampas; T. tibiamaculata and T. vitticeps in the Atlantic Forest. Although most occurrences were recorded in open areas (Cerrado and Caatinga, our results show that all environmental conditions in the country are favorable to one or more of the species analyzed, such that almost nowhere is Chagas transmission risk negligible.

  4. Point-based warping with optimized weighting factors of displacement vectors

    Science.gov (United States)

    Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas

    2000-06-01

    The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.

  5. Support vector machine-based open crop model (SBOCM: Case of rice production in China

    Directory of Open Access Journals (Sweden)

    Ying-xue Su

    2017-03-01

    Full Text Available Existing crop models produce unsatisfactory simulation results and are operationally complicated. The present study, however, demonstrated the unique advantages of statistical crop models for large-scale simulation. Using rice as the research crop, a support vector machine-based open crop model (SBOCM was developed by integrating developmental stage and yield prediction models. Basic geographical information obtained by surface weather observation stations in China and the 1:1000000 soil database published by the Chinese Academy of Sciences were used. Based on the principle of scale compatibility of modeling data, an open reading frame was designed for the dynamic daily input of meteorological data and output of rice development and yield records. This was used to generate rice developmental stage and yield prediction models, which were integrated into the SBOCM system. The parameters, methods, error resources, and other factors were analyzed. Although not a crop physiology simulation model, the proposed SBOCM can be used for perennial simulation and one-year rice predictions within certain scale ranges. It is convenient for data acquisition, regionally applicable, parametrically simple, and effective for multi-scale factor integration. It has the potential for future integration with extensive social and economic factors to improve the prediction accuracy and practicability.

  6. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  7. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  8. Zn(II)-dipicolylamine-based metallo-lipids as novel non-viral gene vectors.

    Science.gov (United States)

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zhao, Zhi-Gang

    2017-08-01

    In this study, a series of Zn(II)-dipicolylamine (Zn-DPA) based cationic lipids bearing different hydrophobic tails (long chains, α-tocopherol, cholesterol or diosgenin) were synthesized. Structure-activity relationship (SAR) of these lipids was studied in detail by investigating the effects of several structural aspects including the type of hydrophobic tails, the chain length and saturation degree. In addition, several assays were used to study their interactions with plasmid DNA, and results reveal that these lipids could condense DNA into nanosized particles with appropriate size and zeta-potentials. MTT-based cell viability assays showed that lipoplexes 5 had low cytotoxicity. The in vitro gene transfection studies showed the hydrophobic tails clearly affected the TE, and hexadecanol-containing lipid 5b gives the best TE, which was 2.2 times higher than bPEI 25k in the presence of 10% serum. The results not only demonstrate that these lipids might be promising non-viral gene vectors, but also afford us clues for further optimization of lipidic gene delivery materials.

  9. Stokes vector based interpolation method to improve the efficiency of bio-inspired polarization-difference imaging in turbid media

    Science.gov (United States)

    Guan, Jinge; Ren, Wei; Cheng, Yaoyu

    2018-04-01

    We demonstrate an efficient polarization-difference imaging system in turbid conditions by using the Stokes vector of light. The interaction of scattered light with the polarizer is analyzed by the Stokes-Mueller formalism. An interpolation method is proposed to replace the mechanical rotation of the polarization axis of the analyzer theoretically, and its performance is verified by the experiment at different turbidity levels. We show that compared with direct imaging, the Stokes vector based imaging method can effectively reduce the effect of light scattering and enhance the image contrast.

  10. Use of a simian virus 40-based shuttle vector to analyze enhanced mutagenesis in mitomycin C-treated monkey cells

    International Nuclear Information System (INIS)

    Roilides, E.; Munson, P.J.; Levine, A.S.; Dixon, K.

    1988-01-01

    When monkey cells were treated with mitomycin C 24 h before transfection with UV-irradiated pZ189 (a simian virus 40-based shuttle vector), there was a twofold increase in the frequency of mutations in the supF gene of the vector. These results suggest the existence of an enhancible mutagenesis pathway in mammalian cells. However, DNA sequence analysis of the SupF- mutants suggested no dramatic changes in the mechanisms of mutagenesis due to mitomycin C treatment of the cells

  11. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    Science.gov (United States)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  12. Influence of the velocity vector base relocation to the center of mass of the interrogation area on PIV accuracy

    Directory of Open Access Journals (Sweden)

    Kouba Jan

    2014-03-01

    Full Text Available This paper is aimed at modification of calculation algorithm used in data processing from PIV (Particle Image Velocimetry method. The modification of standard Multi-step correlation algorithm is based on imaging the centre of mass of the interrogation area to define the initial point of the respective vector, instead of the geometrical centre. This paper describes the principle of initial point-vector assignment, the corresponding data processing methodology including the test track analysis. Both approaches are compared within the framework of accuracy in the conclusion. The accuracy test is performed using synthetic and real data.

  13. Development and assessment of plant-based synthetic odor baits for surveillance and control of Malaria vectors

    Science.gov (United States)

    Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based syntheti...

  14. hERG classification model based on a combination of support vector machine method and GRIND descriptors

    DEFF Research Database (Denmark)

    Li, Qiyuan; Jorgensen, Flemming Steen; Oprea, Tudor

    2008-01-01

    and diverse library of 495 compounds. The models combine pharmacophore-based GRIND descriptors with a support vector machine (SVM) classifier in order to discriminate between hERG blockers and nonblockers. Our models were applied at different thresholds from 1 to 40 mu m and achieved an overall accuracy up...

  15. Active damage detection method based on support vector machine and impulse response

    International Nuclear Information System (INIS)

    Taniguchi, Ryuta; Mita, Akira

    2004-01-01

    An active damage detection method was proposed to characterize damage in bolted joints. The purpose of this study is to propose a damage detection method that can obtain the detailed information of the damage by creating feature vectors for pattern recognition. In the proposed method, the wavelet transform is applied to the sensor signals, and the feature vectors are defined by second power average of the amplitude. The feature vectors generated by experiments were successfully used as the training data for Support Vector Machine (SVM). By applying the wavelet transform to time-frequency analysis, the accuracy of pattern recognition was raised in both correlation coefficient and SVM applications. Moreover, the SVM could identify the damage with very strong discernment capability than others. Applicability of the proposed method was successfully demonstrated. (author)

  16. IntelliGO: a new vector-based semantic similarity measure including annotation origin

    Directory of Open Access Journals (Sweden)

    Devignes Marie-Dominique

    2010-12-01

    Full Text Available Abstract Background The Gene Ontology (GO is a well known controlled vocabulary describing the biological process, molecular function and cellular component aspects of gene annotation. It has become a widely used knowledge source in bioinformatics for annotating genes and measuring their semantic similarity. These measures generally involve the GO graph structure, the information content of GO aspects, or a combination of both. However, only a few of the semantic similarity measures described so far can handle GO annotations differently according to their origin (i.e. their evidence codes. Results We present here a new semantic similarity measure called IntelliGO which integrates several complementary properties in a novel vector space model. The coefficients associated with each GO term that annotates a given gene or protein include its information content as well as a customized value for each type of GO evidence code. The generalized cosine similarity measure, used for calculating the dot product between two vectors, has been rigorously adapted to the context of the GO graph. The IntelliGO similarity measure is tested on two benchmark datasets consisting of KEGG pathways and Pfam domains grouped as clans, considering the GO biological process and molecular function terms, respectively, for a total of 683 yeast and human genes and involving more than 67,900 pair-wise comparisons. The ability of the IntelliGO similarity measure to express the biological cohesion of sets of genes compares favourably to four existing similarity measures. For inter-set comparison, it consistently discriminates between distinct sets of genes. Furthermore, the IntelliGO similarity measure allows the influence of weights assigned to evidence codes to be checked. Finally, the results obtained with a complementary reference technique give intermediate but correct correlation values with the sequence similarity, Pfam, and Enzyme classifications when compared to

  17. A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo

    Science.gov (United States)

    Lehto, Taavi; Simonson, Oscar E; Mäger, Imre; Ezzat, Kariem; Sork, Helena; Copolovici, Dana-Maria; Viola, Joana R; Zaghloul, Eman M; Lundin, Per; Moreno, Pedro MD; Mäe, Maarja; Oskolkov, Nikita; Suhorutšenko, Julia; Smith, CI Edvard; Andaloussi, Samir EL

    2011-01-01

    Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice. PMID:21343913

  18. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Balachandran Manavalan

    2018-03-01

    Full Text Available Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  19. Rotor Resistance Online Identification of Vector Controlled Induction Motor Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2014-01-01

    Full Text Available Rotor resistance identification has been well recognized as one of the most critical factors affecting the theoretical study and applications of AC motor’s control for high performance variable frequency speed adjustment. This paper proposes a novel model for rotor resistance parameters identification based on Elman neural networks. Elman recurrent neural network is capable of performing nonlinear function approximation and possesses the ability of time-variable characteristic adaptation. Those influencing factors of specified parameter are analyzed, respectively, and various work states are covered to ensure the completeness of the training samples. Through signal preprocessing on samples and training dataset, different input parameters identifications with one network are compared and analyzed. The trained Elman neural network, applied in the identification model, is able to efficiently predict the rotor resistance in high accuracy. The simulation and experimental results show that the proposed method owns extensive adaptability and performs very well in its application to vector controlled induction motor. This identification method is able to enhance the performance of induction motor’s variable-frequency speed regulation.

  20. Support vector machine based fault detection approach for RFT-30 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Young Bae, E-mail: ybkong@kaeri.re.kr; Lee, Eun Je; Hur, Min Goo; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-10-21

    An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.

  1. Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code

    International Nuclear Information System (INIS)

    Yi, Bingqi; Huang, Xin; Yang, Ping; Baum, Bryan A.; Kattawar, George W.

    2014-01-01

    In this study, a full-vector, adding–doubling radiative transfer model is used to investigate the influence of the polarization state on cloud property retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. Two sets of lookup tables (LUTs) are developed for the retrieval purposes, both of which provide water cloud and ice cloud reflectivity functions at two wavelengths in various sun-satellite viewing geometries. However, only one of the LUTs considers polarization. The MODIS reflectivity observations at 0.65 μm (band 1) and 2.13 μm (band 7) are used to infer the cloud optical thickness and particle effective diameter, respectively. Results indicate that the retrievals for both water cloud and ice cloud show considerable sensitivity to polarization. The retrieved water and ice cloud effective diameter and optical thickness differences can vary by as much as ±15% due to polarization state considerations. In particular, the polarization state has more influence on completely smooth ice particles than on severely roughened ice particles. - Highlights: • Impact of polarization on satellite-based retrieval of water/ice cloud properties is studied. • Inclusion of polarization can change water/ice optical thickness and effective diameter values by up to ±15%. • Influence of polarization on cloud property retrievals depends on sun-satellite viewing geometries

  2. Power Load Event Detection and Classification Based on Edge Symbol Analysis and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2012-01-01

    Full Text Available Energy signature analysis of power appliance is the core of nonintrusive load monitoring (NILM where the detailed data of the appliances used in houses are obtained by analyzing changes in the voltage and current. This paper focuses on developing an automatic power load event detection and appliance classification based on machine learning. In power load event detection, the paper presents a new transient detection algorithm. By turn-on and turn-off transient waveforms analysis, it can accurately detect the edge point when a device is switched on or switched off. The proposed load classification technique can identify different power appliances with improved recognition accuracy and computational speed. The load classification method is composed of two processes including frequency feature analysis and support vector machine. The experimental results indicated that the incorporation of the new edge detection and turn-on and turn-off transient signature analysis into NILM revealed more information than traditional NILM methods. The load classification method has achieved more than ninety percent recognition rate.

  3. A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine

    Science.gov (United States)

    Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong

    2015-08-01

    Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.

  4. GPR identification of voids inside concrete based on the support vector machine algorithm

    International Nuclear Information System (INIS)

    Xie, Xiongyao; Li, Pan; Qin, Hui; Liu, Lanbo; Nobes, David C

    2013-01-01

    Voids inside reinforced concrete, which affect structural safety, are identified from ground penetrating radar (GPR) images using a completely automatic method based on the support vector machine (SVM) algorithm. The entire process can be characterized into four steps: (1) the original SVM model is built by training synthetic GPR data generated by finite difference time domain simulation and after data preprocessing, segmentation and feature extraction. (2) The classification accuracy of different kernel functions is compared with the cross-validation method and the penalty factor (c) of the SVM and the coefficient (σ2) of kernel functions are optimized by using the grid algorithm and the genetic algorithm. (3) To test the success of classification, this model is then verified and validated by applying it to another set of synthetic GPR data. The result shows a high success rate for classification. (4) This original classifier model is finally applied to a set of real GPR data to identify and classify voids. The result is less than ideal when compared with its application to synthetic data before the original model is improved. In general, this study shows that the SVM exhibits promising performance in the GPR identification of voids inside reinforced concrete. Nevertheless, the recognition of shape and distribution of voids may need further improvement. (paper)

  5. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.

    Science.gov (United States)

    Manavalan, Balachandran; Shin, Tae H; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  6. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    Directory of Open Access Journals (Sweden)

    Daqing Zhang

    2015-01-01

    Full Text Available Blood-brain barrier (BBB is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration.

  7. Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2016-03-01

    Full Text Available The definition, diagnosis and classification of Diabetes Mellitus and its complications are very important. First of all, the World Health Organization (WHO and other societies, as well as scientists have done lots of studies regarding this subject. One of the most important research interests of this subject is the computer supported decision systems for diagnosing diabetes. In such systems, Artificial Intelligence techniques are often used for several disease diagnostics to streamline the diagnostic process in daily routine and avoid misdiagnosis. In this study, a diabetes diagnosis system, which is formed via both Support Vector Machines (SVM and Cognitive Development Optimization Algorithm (CoDOA has been proposed. Along the training of SVM, CoDOA was used for determining the sigma parameter of the Gauss (RBF kernel function, and eventually, a classification process was made over the diabetes data set, which is related to Pima Indians. The proposed approach offers an alternative solution to the field of Artificial Intelligence-based diabetes diagnosis, and contributes to the related literature on diagnosis processes.

  8. Modeling and control of PEMFC based on least squares support vector machines

    International Nuclear Information System (INIS)

    Li Xi; Cao Guangyi; Zhu Xinjian

    2006-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most important power supplies. The operating temperature of the stack is an important controlled variable, which impacts the performance of the PEMFC. In order to improve the generating performance of the PEMFC, prolong its life and guarantee safety, credibility and low cost of the PEMFC system, it must be controlled efficiently. A nonlinear predictive control algorithm based on a least squares support vector machine (LS-SVM) model is presented for a family of complex systems with severe nonlinearity, such as the PEMFC, in this paper. The nonlinear off line model of the PEMFC is built by a LS-SVM model with radial basis function (RBF) kernel so as to implement nonlinear predictive control of the plant. During PEMFC operation, the off line model is linearized at each sampling instant, and the generalized predictive control (GPC) algorithm is applied to the predictive control of the plant. Experimental results demonstrate the effectiveness and advantages of this approach

  9. Large-scale ligand-based predictive modelling using support vector machines.

    Science.gov (United States)

    Alvarsson, Jonathan; Lampa, Samuel; Schaal, Wesley; Andersson, Claes; Wikberg, Jarl E S; Spjuth, Ola

    2016-01-01

    The increasing size of datasets in drug discovery makes it challenging to build robust and accurate predictive models within a reasonable amount of time. In order to investigate the effect of dataset sizes on predictive performance and modelling time, ligand-based regression models were trained on open datasets of varying sizes of up to 1.2 million chemical structures. For modelling, two implementations of support vector machines (SVM) were used. Chemical structures were described by the signatures molecular descriptor. Results showed that for the larger datasets, the LIBLINEAR SVM implementation performed on par with the well-established libsvm with a radial basis function kernel, but with dramatically less time for model building even on modest computer resources. Using a non-linear kernel proved to be infeasible for large data sizes, even with substantial computational resources on a computer cluster. To deploy the resulting models, we extended the Bioclipse decision support framework to support models from LIBLINEAR and made our models of logD and solubility available from within Bioclipse.

  10. Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches

    Directory of Open Access Journals (Sweden)

    Maggi Kelly

    2013-08-01

    Full Text Available Light detection and ranging (lidar data is increasingly being used for ecosystem monitoring across geographic scales. This work concentrates on delineating individual trees in topographically-complex, mixed conifer forest across the California’s Sierra Nevada. We delineated individual trees using vector data and a 3D lidar point cloud segmentation algorithm, and using raster data with an object-based image analysis (OBIA of a canopy height model (CHM. The two approaches are compared to each other and to ground reference data. We used high density (9 pulses/m2, discreet lidar data and WorldView-2 imagery to delineate individual trees, and to classify them by species or species types. We also identified a new method to correct artifacts in a high-resolution CHM. Our main focus was to determine the difference between the two types of approaches and to identify the one that produces more realistic results. We compared the delineations via tree detection, tree heights, and the shape of the generated polygons. The tree height agreement was high between the two approaches and the ground data (r2: 0.93–0.96. Tree detection rates increased for more dominant trees (8–100 percent. The two approaches delineated tree boundaries that differed in shape: the lidar-approach produced fewer, more complex, and larger polygons that more closely resembled real forest structure.

  11. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2017-01-01

    Full Text Available Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM. Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA, while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA, the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM is of great value, indicating the feasibility of digitalized tongue diagnosis.

  12. Video Waterscrambling: Towards a Video Protection Scheme Based on the Disturbance of Motion Vectors

    Science.gov (United States)

    Bodo, Yann; Laurent, Nathalie; Laurent, Christophe; Dugelay, Jean-Luc

    2004-12-01

    With the popularity of high-bandwidth modems and peer-to-peer networks, the contents of videos must be highly protected from piracy. Traditionally, the models utilized to protect this kind of content are scrambling and watermarking. While the former protects the content against eavesdropping (a priori protection), the latter aims at providing a protection against illegal mass distribution (a posteriori protection). Today, researchers agree that both models must be used conjointly to reach a sufficient level of security. However, scrambling works generally by encryption resulting in an unintelligible content for the end-user. At the moment, some applications (such as e-commerce) may require a slight degradation of content so that the user has an idea of the content before buying it. In this paper, we propose a new video protection model, called waterscrambling, whose aim is to give such a quality degradation-based security model. This model works in the compressed domain and disturbs the motion vectors, degrading the video quality. It also allows embedding of a classical invisible watermark enabling protection against mass distribution. In fact, our model can be seen as an intermediary solution to scrambling and watermarking.

  13. Video Waterscrambling: Towards a Video Protection Scheme Based on the Disturbance of Motion Vectors

    Directory of Open Access Journals (Sweden)

    Yann Bodo

    2004-10-01

    Full Text Available With the popularity of high-bandwidth modems and peer-to-peer networks, the contents of videos must be highly protected from piracy. Traditionally, the models utilized to protect this kind of content are scrambling and watermarking. While the former protects the content against eavesdropping (a priori protection, the latter aims at providing a protection against illegal mass distribution (a posteriori protection. Today, researchers agree that both models must be used conjointly to reach a sufficient level of security. However, scrambling works generally by encryption resulting in an unintelligible content for the end-user. At the moment, some applications (such as e-commerce may require a slight degradation of content so that the user has an idea of the content before buying it. In this paper, we propose a new video protection model, called waterscrambling, whose aim is to give such a quality degradation-based security model. This model works in the compressed domain and disturbs the motion vectors, degrading the video quality. It also allows embedding of a classical invisible watermark enabling protection against mass distribution. In fact, our model can be seen as an intermediary solution to scrambling and watermarking.

  14. Chaos characteristics and least squares support vector machines based online pipeline small leakages detection

    International Nuclear Information System (INIS)

    Liu, Jinhai; Su, Hanguang; Ma, Yanjuan; Wang, Gang; Wang, Yuan; Zhang, Kun

    2016-01-01

    Small leakages are severe threats to the long distance pipeline transportation. An online small leakage detection method based on chaos characteristics and Least Squares Support Vector Machines (LS-SVMs) is proposed in this paper. For the first time, the relationship between the chaos characteristics of pipeline inner pressures and the small leakages is investigated and applied in the pipeline detection method. Firstly, chaos in the pipeline inner pressure is found. Relevant chaos characteristics are estimated by the nonlinear time series analysis package (TISEAN). Then LS-SVM with a hybrid kernel is built and named as hybrid kernel LS-SVM (HKLS-SVM). It is applied to analyze the chaos characteristics and distinguish the negative pressure waves (NPWs) caused by small leaks. A new leak location method is also expounded. Finally, data of the chaotic Logistic-Map system is used in the simulation. A comparison between HKLS-SVM and other methods, in terms of the identification accuracy and computing efficiency, is made. The simulation result shows that HKLS-SVM gets the best performance and is effective in error analysis of chaotic systems. When real pipeline data is used in the test, the ultimate identification accuracy of HKLS-SVM reaches 97.38% and the position accuracy is 99.28%, indicating that the method proposed in this paper has good performance in detecting and locating small pipeline leaks.

  15. Fault diagnosis of direct-drive wind turbine based on support vector machine

    International Nuclear Information System (INIS)

    An, X L; Jiang, D X; Li, S H; Chen, J

    2011-01-01

    A fault diagnosis method of direct-drive wind turbine based on support vector machine (SVM) and feature selection is presented. The time-domain feature parameters of main shaft vibration signal in the horizontal and vertical directions are considered in the method. Firstly, in laboratory scale five experiments of direct-drive wind turbine with normal condition, wind wheel mass imbalance fault, wind wheel aerodynamic imbalance fault, yaw fault and blade airfoil change fault are carried out. The features of five experiments are analyzed. Secondly, the sensitive time-domain feature parameters in the horizontal and vertical directions of vibration signal in the five conditions are selected and used as feature samples. By training, the mapping relation between feature parameters and fault types are established in SVM model. Finally, the performance of the proposed method is verified through experimental data. The results show that the proposed method is effective in identifying the fault of wind turbine. It has good classification ability and robustness to diagnose the fault of direct-drive wind turbine.

  16. A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a "soft-start" approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment.

  17. A replicating plasmid-based vector for GFP expression in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Ishag, H Z A; Liu, M J; Yang, R S; Xiong, Q Y; Feng, Z X; Shao, G Q

    2016-04-28

    Mycoplasma hyopneumoniae (M. hyopneumoniae) causes porcine enzootic pneumonia (PEP) that significantly affects the pig industry worldwide. Despite the availability of the whole genome sequence, studies on the pathogenesis of this organism have been limited due to the lack of a genetic manipulation system. Therefore, the aim of the current study was to generate a general GFP reporter vector based on a replicating plasmid. Here, we describe the feasibility of GFP reporter expression in M. hyopneumoniae (strain 168L) controlled by the p97 gene promoter of this mycoplasma. An expression plasmid (pMD18-TOgfp) containing the p97 gene promoter, and origin of replication (oriC) of M. hyopneumoniae, tetracycline resistant marker (tetM), and GFP was constructed and used to transform competent M. hyopneumoniae cells. We observed green fluorescence in M. hyopneumoniae transformants under fluorescence microscopy, which indicates that there was expression of the GFP reporter that was driven by the p97 gene promoter. Additionally, an electroporation method for M. hyopneumoniae with an efficiency of approximately 1 x 10(-6) transformants/μg plasmid DNA was optimized and is described herein. In conclusion, our data demonstrate the susceptibility of M. hyopneumoniae to genetic manipulation whereby foreign genes are expressed. This work may encourage the development of genetic tools to manipulate the genome of M. hyopneumoniae for functional genomic analyses.

  18. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    Science.gov (United States)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  19. Analysis of Vector Quantizers Using Transformed Codebooks with Application to Feedback-Based Multiple Antenna Systems

    Directory of Open Access Journals (Sweden)

    Bhaskar D. Rao

    2008-07-01

    Full Text Available Transformed codebooks are obtained by a transformation of a given codebook to best match the statistical environment at hand. The procedure, though suboptimal, has recently been suggested for feedback of channel state information (CSI in multiple antenna systems with correlated channels because of their simplicity and effectiveness. In this paper, we first consider the general distortion analysis of vector quantizers with transformed codebooks. Bounds on the average system distortion of this class of quantizers are provided. It exposes the effects of two kinds of suboptimality introduced by the transformed codebook, namely, the loss caused by suboptimal point density and the loss caused by mismatched Voronoi shape. We then focus our attention on the application of the proposed general framework to providing capacity analysis of a feedback-based MISO system over spatially correlated fading channels. In particular, with capacity loss as an objective function, upper and lower bounds on the average distortion of MISO systems with transformed codebooks are provided and compared to that of the optimal channel quantizers. The expressions are examined to provide interesting insights in the high and low SNR regime. Numerical and simulation results are presented which confirm the tightness of the distortion bounds.

  20. In-situ, In-Memory Stateful Vector Logic Operations based on Voltage Controlled Magnetic Anisotropy.

    Science.gov (United States)

    Jaiswal, Akhilesh; Agrawal, Amogh; Roy, Kaushik

    2018-04-10

    Recently, the exponential increase in compute requirements demanded by emerging applications like artificial intelligence, Internet of things, etc. have rendered the state-of-art von-Neumann machines inefficient in terms of energy and throughput owing to the well-known von-Neumann bottleneck. A promising approach to mitigate the bottleneck is to do computations as close to the memory units as possible. One extreme possibility is to do in-situ Boolean logic computations by using stateful devices. Stateful devices are those that can act both as a compute engine and storage device, simultaneously. We propose such stateful, vector, in-memory operations using voltage controlled magnetic anisotropy (VCMA) effect in magnetic tunnel junctions (MTJ). Our proposal is based on the well known manufacturable 1-transistor - 1-MTJ bit-cell and does not require any modifications in the bit-cell circuit or the magnetic device. Instead, we leverage the very physics of the VCMA effect to enable stateful computations. Specifically, we exploit the voltage asymmetry of the VCMA effect to construct stateful IMP (implication) gate and use the precessional switching dynamics of the VCMA devices to propose a massively parallel NOT operation. Further, we show that other gates like AND, OR, NAND, NOR, NIMP (complement of implication) can be implemented using multi-cycle operations.

  1. Nighttime Fire/Smoke Detection System Based on a Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2013-01-01

    Full Text Available Currently, video surveillance-based early fire smoke detection is crucial to the prevention of large fires and the protection of life and goods. To overcome the nighttime limitations of video smoke detection methods, a laser light can be projected into the monitored field of view, and the returning projected light section image can be analyzed to detect fire and/or smoke. If smoke appears within the monitoring zone created from the diffusion or scattering of light in the projected path, the camera sensor receives a corresponding signal. The successive processing steps of the proposed real-time algorithm use the spectral, diffusing, and scattering characteristics of the smoke-filled regions in the image sequences to register the position of possible smoke in a video. Characterization of smoke is carried out by a nonlinear classification method using a support vector machine, and this is applied to identify the potential fire/smoke location. Experimental results in a variety of nighttime conditions demonstrate that the proposed fire/smoke detection method can successfully and reliably detect fires by identifying the location of smoke.

  2. Research on the factors influencing the price of commercial housing based on support vector machine (SVM)

    Science.gov (United States)

    Xiaoyang, Zhong; Hong, Ren; Jingxin, Gao

    2018-03-01

    With the gradual maturity of the real estate market in China, urban housing prices are also better able to reflect changes in market demand and the commodity property of commercial housing has become more and more obvious. Many scholars in our country have made a lot of research on the factors that affect the price of commercial housing in the city and the number of related research papers increased rapidly. These scholars’ research results provide valuable wealth to solve the problem of urban housing price changes in our country. However, due to the huge amount of literature, the vast amount of information is submerged in the library and cannot be fully utilized. Text mining technology has been widely concerned and developed in the field of Humanities and Social Sciences in recent years. But through the text mining technology to obtain the influence factors on the price of urban commercial housing is still relatively rare. In this paper, the research results of the existing scholars were excavated by text mining algorithm based on support vector machine in order to further make full use of the current research results and to provide a reference for stabilizing housing prices.

  3. LVQ-SMOTE - Learning Vector Quantization based Synthetic Minority Over-sampling Technique for biomedical data.

    Science.gov (United States)

    Nakamura, Munehiro; Kajiwara, Yusuke; Otsuka, Atsushi; Kimura, Haruhiko

    2013-10-02

    Over-sampling methods based on Synthetic Minority Over-sampling Technique (SMOTE) have been proposed for classification problems of imbalanced biomedical data. However, the existing over-sampling methods achieve slightly better or sometimes worse result than the simplest SMOTE. In order to improve the effectiveness of SMOTE, this paper presents a novel over-sampling method using codebooks obtained by the learning vector quantization. In general, even when an existing SMOTE applied to a biomedical dataset, its empty feature space is still so huge that most classification algorithms would not perform well on estimating borderlines between classes. To tackle this problem, our over-sampling method generates synthetic samples which occupy more feature space than the other SMOTE algorithms. Briefly saying, our over-sampling method enables to generate useful synthetic samples by referring to actual samples taken from real-world datasets. Experiments on eight real-world imbalanced datasets demonstrate that our proposed over-sampling method performs better than the simplest SMOTE on four of five standard classification algorithms. Moreover, it is seen that the performance of our method increases if the latest SMOTE called MWMOTE is used in our algorithm. Experiments on datasets for β-turn types prediction show some important patterns that have not been seen in previous analyses. The proposed over-sampling method generates useful synthetic samples for the classification of imbalanced biomedical data. Besides, the proposed over-sampling method is basically compatible with basic classification algorithms and the existing over-sampling methods.

  4. Advances in Viral Vector-Based TRAIL Gene Therapy for Cancer

    International Nuclear Information System (INIS)

    Norian, Lyse A.; James, Britnie R.; Griffith, Thomas S.

    2011-01-01

    Numerous biologic approaches are being investigated as anti-cancer therapies in an attempt to induce tumor regression while circumventing the toxic side effects associated with standard chemo- or radiotherapies. Among these, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown particular promise in pre-clinical and early clinical trials, due to its preferential ability to induce apoptotic cell death in cancer cells and its minimal toxicity. One limitation of TRAIL use is the fact that many tumor types display an inherent resistance to TRAIL-induced apoptosis. To circumvent this problem, researchers have explored a number of strategies to optimize TRAIL delivery and to improve its efficacy via co-administration with other anti-cancer agents. In this review, we will focus on TRAIL-based gene therapy approaches for the treatment of malignancies. We will discuss the main viral vectors that are being used for TRAIL gene therapy and the strategies that are currently being attempted to improve the efficacy of TRAIL as an anti-cancer therapeutic

  5. Vector analysis

    CERN Document Server

    Newell, Homer E

    2006-01-01

    When employed with skill and understanding, vector analysis can be a practical and powerful tool. This text develops the algebra and calculus of vectors in a manner useful to physicists and engineers. Numerous exercises (with answers) not only provide practice in manipulation but also help establish students' physical and geometric intuition in regard to vectors and vector concepts.Part I, the basic portion of the text, consists of a thorough treatment of vector algebra and the vector calculus. Part II presents the illustrative matter, demonstrating applications to kinematics, mechanics, and e

  6. About vectors

    CERN Document Server

    Hoffmann, Banesh

    1975-01-01

    From his unusual beginning in ""Defining a vector"" to his final comments on ""What then is a vector?"" author Banesh Hoffmann has written a book that is provocative and unconventional. In his emphasis on the unresolved issue of defining a vector, Hoffmann mixes pure and applied mathematics without using calculus. The result is a treatment that can serve as a supplement and corrective to textbooks, as well as collateral reading in all courses that deal with vectors. Major topics include vectors and the parallelogram law; algebraic notation and basic ideas; vector algebra; scalars and scalar p

  7. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    Science.gov (United States)

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  8. Near State Vector Selection-Based Model Predictive Control with Common Mode Voltage Mitigation for a Three-Phase Four-Leg Inverter

    Directory of Open Access Journals (Sweden)

    Abdul Mannan Dadu

    2017-12-01

    Full Text Available A high computational burden is required in conventional model predictive control, as all of the voltage vectors of a power inverter are used to predict the future behavior of the system. Apart from that, the common mode voltage (CMV of a three-phase four-leg inverter utilizes up to half of the DC-link voltage due to the use of all of the available voltage vectors. Thus, this paper proposes a near state vector selection-based model predictive control (NSV-MPC scheme to mitigate the CMV and reduce computational burden. In the proposed technique, only six active voltage vectors are used in the predictive model, and the vectors are selected based on the position of the future reference vector. In every sampling period, the position of the reference current is used to detect the voltage vectors surrounding the reference voltage vector. Besides the six active vectors, one of the zero vectors is also used. The proposed technique is compared with the conventional control scheme in terms of execution time, CMV variation, and load current ripple in both simulation and an experimental setup. The LabVIEW Field programmable gate array rapid prototyping controller is used to validate the proposed control scheme experimentally, and demonstrate that the CMV can be bounded within one-fourth of the DC-link voltage.

  9. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    Science.gov (United States)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  10. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    Science.gov (United States)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  11. Support vector machine learning-based fMRI data group analysis.

    Science.gov (United States)

    Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A

    2007-07-15

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

  12. Advanced signal processing based on support vector regression for lidar applications

    Science.gov (United States)

    Gelfusa, M.; Murari, A.; Malizia, A.; Lungaroni, M.; Peluso, E.; Parracino, S.; Talebzadeh, S.; Vega, J.; Gaudio, P.

    2015-10-01

    The LIDAR technique has recently found many applications in atmospheric physics and remote sensing. One of the main issues, in the deployment of systems based on LIDAR, is the filtering of the backscattered signal to alleviate the problems generated by noise. Improvement in the signal to noise ratio is typically achieved by averaging a quite large number (of the order of hundreds) of successive laser pulses. This approach can be effective but presents significant limitations. First of all, it implies a great stress on the laser source, particularly in the case of systems for automatic monitoring of large areas for long periods. Secondly, this solution can become difficult to implement in applications characterised by rapid variations of the atmosphere, for example in the case of pollutant emissions, or by abrupt changes in the noise. In this contribution, a new method for the software filtering and denoising of LIDAR signals is presented. The technique is based on support vector regression. The proposed new method is insensitive to the statistics of the noise and is therefore fully general and quite robust. The developed numerical tool has been systematically compared with the most powerful techniques available, using both synthetic and experimental data. Its performances have been tested for various statistical distributions of the noise and also for other disturbances of the acquired signal such as outliers. The competitive advantages of the proposed method are fully documented. The potential of the proposed approach to widen the capability of the LIDAR technique, particularly in the detection of widespread smoke, is discussed in detail.

  13. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    Science.gov (United States)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of

  14. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions.

    Science.gov (United States)

    Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S

    2018-04-30

    Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid

  15. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification

    Directory of Open Access Journals (Sweden)

    Wang Lily

    2008-07-01

    Full Text Available Abstract Background Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical deployment. Use of the most accurate classification algorithms available for microarray gene expression data is a critical ingredient in order to develop the best possible molecular signatures for patient care. As suggested by a large body of literature to date, support vector machines can be considered "best of class" algorithms for classification of such data. Recent work, however, suggests that random forest classifiers may outperform support vector machines in this domain. Results In the present paper we identify methodological biases of prior work comparing random forests and support vector machines and conduct a new rigorous evaluation of the two algorithms that corrects these limitations. Our experiments use 22 diagnostic and prognostic datasets and show that support vector machines outperform random forests, often by a large margin. Our data also underlines the importance of sound research design in benchmarking and comparison of bioinformatics algorithms. Conclusion We found that both on average and in the majority of microarray datasets, random forests are outperformed by support vector machines both in the settings when no gene selection is performed and when several popular gene selection methods are used.

  16. Internet-based biosurveillance methods for vector-borne diseases: Are they novel public health tools or just novelties?

    Science.gov (United States)

    Pollett, Simon; Althouse, Benjamin M; Forshey, Brett; Rutherford, George W; Jarman, Richard G

    2017-11-01

    Internet-based surveillance methods for vector-borne diseases (VBDs) using "big data" sources such as Google, Twitter, and internet newswire scraping have recently been developed, yet reviews on such "digital disease detection" methods have focused on respiratory pathogens, particularly in high-income regions. Here, we present a narrative review of the literature that has examined the performance of internet-based biosurveillance for diseases caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue, other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of settings, including low- and middle-income countries. The fundamental features, advantages, and drawbacks of each internet big data source are presented for those with varying familiarity of "digital epidemiology." We conclude with some of the challenges and future directions in using internet-based biosurveillance for the surveillance and control of VBD.

  17. Internet-based biosurveillance methods for vector-borne diseases: Are they novel public health tools or just novelties?

    Directory of Open Access Journals (Sweden)

    Simon Pollett

    2017-11-01

    Full Text Available Internet-based surveillance methods for vector-borne diseases (VBDs using "big data" sources such as Google, Twitter, and internet newswire scraping have recently been developed, yet reviews on such "digital disease detection" methods have focused on respiratory pathogens, particularly in high-income regions. Here, we present a narrative review of the literature that has examined the performance of internet-based biosurveillance for diseases caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue, other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of settings, including low- and middle-income countries. The fundamental features, advantages, and drawbacks of each internet big data source are presented for those with varying familiarity of "digital epidemiology." We conclude with some of the challenges and future directions in using internet-based biosurveillance for the surveillance and control of VBD.

  18. Rule-Based Design of Plant Expression Vectors Using GenoCAD.

    Science.gov (United States)

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2015-01-01

    Plant synthetic biology requires software tools to assist on the design of complex multi-genic expression plasmids. Here a vector design strategy to express genes in plants is formalized and implemented as a grammar in GenoCAD, a Computer-Aided Design software for synthetic biology. It includes a library of plant biological parts organized in structural categories and a set of rules describing how to assemble these parts into large constructs. Rules developed here are organized and divided into three main subsections according to the aim of the final construct: protein localization studies, promoter analysis and protein-protein interaction experiments. The GenoCAD plant grammar guides the user through the design while allowing users to customize vectors according to their needs. Therefore the plant grammar implemented in GenoCAD will help plant biologists take advantage of methods from synthetic biology to design expression vectors supporting their research projects.

  19. Implicit Real Vector Automata

    Directory of Open Access Journals (Sweden)

    Jean-François Degbomont

    2010-10-01

    Full Text Available This paper addresses the symbolic representation of non-convex real polyhedra, i.e., sets of real vectors satisfying arbitrary Boolean combinations of linear constraints. We develop an original data structure for representing such sets, based on an implicit and concise encoding of a known structure, the Real Vector Automaton. The resulting formalism provides a canonical representation of polyhedra, is closed under Boolean operators, and admits an efficient decision procedure for testing the membership of a vector.

  20. Robot Training With Vector Fields Based on Stroke Survivors' Individual Movement Statistics.

    Science.gov (United States)

    Wright, Zachary A; Lazzaro, Emily; Thielbar, Kelly O; Patton, James L; Huang, Felix C

    2018-02-01

    The wide variation in upper extremity motor impairments among stroke survivors necessitates more intelligent methods of customized therapy. However, current strategies for characterizing individual motor impairments are limited by the use of traditional clinical assessments (e.g., Fugl-Meyer) and simple engineering metrics (e.g., goal-directed performance). Our overall approach is to statistically identify the range of volitional movement capabilities, and then apply a robot-applied force vector field intervention that encourages under-expressed movements. We investigated whether explorative training with such customized force fields would improve stroke survivors' (n = 11) movement patterns in comparison to a control group that trained without forces (n = 11). Force and control groups increased Fugl-Meyer UE scores (average of 1.0 and 1.1, respectively), which is not considered clinically meaningful. Interestingly, participants from both groups demonstrated dramatic increases in their range of velocity during exploration following only six days of training (average increase of 166.4% and 153.7% for the Force and Control group, respectively). While both groups showed evidence of improvement, we also found evidence that customized forces affected learning in a systematic way. When customized forces were active, we observed broader distributions of velocity that were not present in the controls. Second, we found that these changes led to specific changes in unassisted motion. In addition, while the shape of movement distributions changed significantly for both groups, detailed analysis of the velocity distributions revealed that customized forces promoted a greater proportion of favorable changes. Taken together, these results provide encouraging evidence that patient-specific force fields based on individuals' movement statistics can be used to create new movement patterns and shape them in a customized manner. To the best of our knowledge, this paper is the first

  1. Diagnosing tuberculosis with a novel support vector machine-based artificial immune recognition system.

    Science.gov (United States)

    Saybani, Mahmoud Reza; Shamshirband, Shahaboddin; Golzari Hormozi, Shahram; Wah, Teh Ying; Aghabozorgi, Saeed; Pourhoseingholi, Mohamad Amin; Olariu, Teodora

    2015-04-01

    Tuberculosis (TB) is a major global health problem, which has been ranked as the second leading cause of death from an infectious disease worldwide. Diagnosis based on cultured specimens is the reference standard, however results take weeks to process. Scientists are looking for early detection strategies, which remain the cornerstone of tuberculosis control. Consequently there is a need to develop an expert system that helps medical professionals to accurately and quickly diagnose the disease. Artificial Immune Recognition System (AIRS) has been used successfully for diagnosing various diseases. However, little effort has been undertaken to improve its classification accuracy. In order to increase the classification accuracy of AIRS, this study introduces a new hybrid system that incorporates a support vector machine into AIRS for diagnosing tuberculosis. Patient epacris reports obtained from the Pasteur laboratory of Iran were used as the benchmark data set, with the sample size of 175 (114 positive samples for TB and 60 samples in the negative group). The strategy of this study was to ensure representativeness, thus it was important to have an adequate number of instances for both TB and non-TB cases. The classification performance was measured through 10-fold cross-validation, Root Mean Squared Error (RMSE), sensitivity and specificity, Youden's Index, and Area Under the Curve (AUC). Statistical analysis was done using the Waikato Environment for Knowledge Analysis (WEKA), a machine learning program for windows. With an accuracy of 100%, sensitivity of 100%, specificity of 100%, Youden's Index of 1, Area Under the Curve of 1, and RMSE of 0, the proposed method was able to successfully classify tuberculosis patients. There have been many researches that aimed at diagnosing tuberculosis faster and more accurately. Our results described a model for diagnosing tuberculosis with 100% sensitivity and 100% specificity. This model can be used as an additional tool for

  2. Mining protein function from text using term-based support vector machines

    Science.gov (United States)

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  3. A novel selection method of seismic attributes based on gray relational degree and support vector machine.

    Directory of Open Access Journals (Sweden)

    Yaping Huang

    Full Text Available The selection of seismic attributes is a key process in reservoir prediction because the prediction accuracy relies on the reliability and credibility of the seismic attributes. However, effective selection method for useful seismic attributes is still a challenge. This paper presents a novel selection method of seismic attributes for reservoir prediction based on the gray relational degree (GRD and support vector machine (SVM. The proposed method has a two-hierarchical structure. In the first hierarchy, the primary selection of seismic attributes is achieved by calculating the GRD between seismic attributes and reservoir parameters, and the GRD between the seismic attributes. The principle of the primary selection is that these seismic attributes with higher GRD to the reservoir parameters will have smaller GRD between themselves as compared to those with lower GRD to the reservoir parameters. Then the SVM is employed in the second hierarchy to perform an interactive error verification using training samples for the purpose of determining the final seismic attributes. A real-world case study was conducted to evaluate the proposed GRD-SVM method. Reliable seismic attributes were selected to predict the coalbed methane (CBM content in southern Qinshui basin, China. In the analysis, the instantaneous amplitude, instantaneous bandwidth, instantaneous frequency, and minimum negative curvature were selected, and the predicted CBM content was fundamentally consistent with the measured CBM content. This real-world case study demonstrates that the proposed method is able to effectively select seismic attributes, and improve the prediction accuracy. Thus, the proposed GRD-SVM method can be used for the selection of seismic attributes in practice.

  4. AUTOMATIC LUNG NODULE DETECTION BASED ON STATISTICAL REGION MERGING AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Elaheh Aghabalaei Khordehchi

    2017-06-01

    Full Text Available Lung cancer is one of the most common diseases in the world that can be treated if the lung nodules are detected in their early stages of growth. This study develops a new framework for computer-aided detection of pulmonary nodules thorough a fully-automatic analysis of Computed Tomography (CT images. In the present work, the multi-layer CT data is fed into a pre-processing step that exploits an adaptive diffusion-based smoothing algorithm in which the parameters are automatically tuned using an adaptation technique. After multiple levels of morphological filtering, the Regions of Interest (ROIs are extracted from the smoothed images. The Statistical Region Merging (SRM algorithm is applied to the ROIs in order to segment each layer of the CT data. Extracted segments in consecutive layers are then analyzed in such a way that if they intersect at more than a predefined number of pixels, they are labeled with a similar index. The boundaries of the segments in adjacent layers which have the same indices are then connected together to form three-dimensional objects as the nodule candidates. After extracting four spectral, one morphological, and one textural feature from all candidates, they are finally classified into nodules and non-nodules using the Support Vector Machine (SVM classifier. The proposed framework has been applied to two sets of lung CT images and its performance has been compared to that of nine other competing state-of-the-art methods. The considerable efficiency of the proposed approach has been proved quantitatively and validated by clinical experts as well.

  5. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shinohara

    Full Text Available Adeno-associated virus (AAV vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb were obtained by progressively deleting the original 2.0-kb promoter from the 5' end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength and 0.2-kb (70% astrocyte specificity promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity.

  6. A temporal subtraction method for thoracic CT images based on generalized gradient vector flow

    International Nuclear Information System (INIS)

    Miyake, Noriaki; Kim, H.; Maeda, Shinya; Itai, Yoshinori; Tan, J.K.; Ishikawa, Seiji; Katsuragawa, Shigehiko

    2010-01-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes (such as formation of new lesions and changes in existing abnormalities) on medical images by removing most of the normal structures. If image registration is incorrect, not only the interval changes but also the normal structures would be appeared as some artifacts on the temporal subtraction image. In a temporal subtraction technique for 2-D X-ray image, the effectiveness is shown through a lot of clinical evaluation experiments, and practical use is advancing. Moreover, the MDCT (Multi-Detector row Computed Tomography) can easily introduced on medical field, the development of a temporal subtraction for thoracic CT Images is expected. In our study, a temporal subtraction technique for thoracic CT Images is developed. As the technique, the vector fields are described by use of GGVF (Generalized Gradient Vector Flow) from the previous and current CT images. Afterwards, VOI (Volume of Interest) are set up on the previous and current CT image pairs. The shift vectors are calculated by using nearest neighbor matching of the vector fields in these VOIs. The search kernel on previous CT image is set up from the obtained shift vector. The previous CT voxel which resemble standard the current voxel is detected by voxel value and vector of the GGVF in the kernel. And, the previous CT image is transformed to the same coordinate of standard voxel. Finally, temporal subtraction image is made by subtraction of a warping image from a current one. To verify the proposal method, the result of application to 7 cases and the effectiveness are described. (author)

  7. Lithium-ion battery remaining useful life prediction based on grey support vector machines

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    2015-12-01

    Full Text Available In this article, an improved grey prediction model is proposed to address low-accuracy prediction issue of grey forecasting model. The first step is using a trigonometric function to transform the original data sequence to smooth the data, which is called smoothness of grey prediction model, and then a grey support vector machine model by integrating the improved grey model with support vector machine is introduced. At the initial stage of the model, trigonometric functions and accumulation generation operation can be used to preprocess the data, which enhances the smoothness of the data and reduces the associated randomness. In addition, support vector machine is implemented to establish a prediction model for the pre-processed data and select the optimal model parameters via genetic algorithms. Finally, the data are restored through the ‘regressive generate’ operation to obtain the forecasting data. To prove that the grey support vector machine model is superior to the other models, the battery life data from the Center for Advanced Life Cycle Engineering are selected, and the presented model is used to predict the remaining useful life of the battery. The predicted result is compared to that of grey model and support vector machines. For a more intuitive comparison of the three models, this article quantifies the root mean square errors for these three different models in the case of different ratio of training samples and prediction samples. The results show that the effect of grey support vector machine model is optimal, and the corresponding root mean square error is only 3.18%.

  8. Elementary vectors

    CERN Document Server

    Wolstenholme, E Œ

    1978-01-01

    Elementary Vectors, Third Edition serves as an introductory course in vector analysis and is intended to present the theoretical and application aspects of vectors. The book covers topics that rigorously explain and provide definitions, principles, equations, and methods in vector analysis. Applications of vector methods to simple kinematical and dynamical problems; central forces and orbits; and solutions to geometrical problems are discussed as well. This edition of the text also provides an appendix, intended for students, which the author hopes to bridge the gap between theory and appl

  9. An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives

    Directory of Open Access Journals (Sweden)

    Liang X

    2014-01-01

    Full Text Available Xuan Liang,1,* Xianyue Ren,2,* Zhenzhen Liu,1 Yingliang Liu,1 Jue Wang,2 Jingnan Wang,2 Li-Ming Zhang,1 David YB Deng,2 Daping Quan,1 Liqun Yang1 1Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China *Both these authors contributed equally to this work Background: The purpose of this study was to synthesize and evaluate hyperbranched cationic glycogen derivatives as an efficient nonviral gene-delivery vector. Methods: A series of hyperbranched cationic glycogen derivatives conjugated with 3-(dimethylamino-1-propylamine (DMAPA-Glyp and 1-(2-aminoethyl piperazine (AEPZ-Glyp residues were synthesized and characterized by Fourier-transform infrared and hydrogen-1 nuclear magnetic resonance spectroscopy. Their buffer capacity was assessed by acid–base titration in aqueous NaCl solution. Plasmid deoxyribonucleic acid (pDNA condensation ability and protection against DNase I degradation of the glycogen derivatives were assessed using agarose gel electrophoresis. The zeta potentials and particle sizes of the glycogen derivative/pDNA complexes were measured, and the images of the complexes were observed using atomic force microscopy. Blood compatibility and cytotoxicity were evaluated by hemolysis assay and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, respectively. pDNA transfection efficiency mediated by the cationic glycogen derivatives was evaluated by flow cytometry and fluorescence microscopy in the 293T (human embryonic kidney and the CNE2 (human nasopharyngeal carcinoma cell lines. In vivo delivery of pDNA in model animals (Sprague Dawley

  10. Permanent Magnet Flux Online Estimation Based on Zero-Voltage Vector Injection Method

    DEFF Research Database (Denmark)

    Xie, Ge; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2015-01-01

    In this paper, a simple signal injection method is proposed for sensorless control of PMSM at low speed, which ideally requires one voltage vector only for position estimation. The proposed method is easy to implement resulting in low computation burden. No filters are needed for extracting...

  11. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks

    NARCIS (Netherlands)

    Hartemink, N.; Vanwambeke, S.O.; Purse, B.V.; Gilbert, M.; Van Dyck, H.

    2015-01-01

    Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional

  12. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    Science.gov (United States)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  13. Metrics for vector quantization-based parametric speech enhancement and separation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2013-01-01

    Speech enhancement and separation algorithms sometimes employ a two-stage processing scheme, wherein the signal is first mapped to an intermediate low-dimensional parametric description after which the parameters are mapped to vectors in codebooks trained on, for exam- ple, individual noise...

  14. Neighboring block based disparity vector derivation for multiview compatible 3D-AVC

    Science.gov (United States)

    Kang, Jewon; Chen, Ying; Zhang, Li; Zhao, Xin; Karczewicz, Marta

    2013-09-01

    3D-AVC being developed under Joint Collaborative Team on 3D Video Coding (JCT-3V) significantly outperforms the Multiview Video Coding plus Depth (MVC+D) which simultaneously encodes texture views and depth views with the multiview extension of H.264/AVC (MVC). However, when the 3D-AVC is configured to support multiview compatibility in which texture views are decoded without depth information, the coding performance becomes significantly degraded. The reason is that advanced coding tools incorporated into the 3D-AVC do not perform well due to the lack of a disparity vector converted from the depth information. In this paper, we propose a disparity vector derivation method utilizing only the information of texture views. Motion information of neighboring blocks is used to determine a disparity vector for a macroblock, so that the derived disparity vector is efficiently used for the coding tools in 3D-AVC. The proposed method significantly improves a coding gain of the 3D-AVC in the multiview compatible mode about 20% BD-rate saving in the coded views and 26% BD-rate saving in the synthesized views on average.

  15. "Lollipop-shaped" high-sensitivity Microelectromechanical Systems vector hydrophone based on Parylene encapsulation

    Science.gov (United States)

    Liu, Yuan; Wang, Renxin; Zhang, Guojun; Du, Jin; Zhao, Long; Xue, Chenyang; Zhang, Wendong; Liu, Jun

    2015-07-01

    This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a "lollipop shape," which can considerably increase the sensing area. A mathematic model on the sensitivity of the "lollipop-shaped" MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to -183 dB (500 Hz 0dB at 1 V/ μPa ), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20-500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.

  16. Implementation of a vector-based tracking loop receiver in a pseudolite navigation system.

    Science.gov (United States)

    So, Hyoungmin; Lee, Taikjin; Jeon, Sanghoon; Kim, Chongwon; Kee, Changdon; Kim, Taehee; Lee, Sanguk

    2010-01-01

    We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near-far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage.

  17. Unit cell determination of epitaxial thin films based on reciprocal space vectors by high-resolution X-ray diffractometry

    OpenAIRE

    Yang, Ping; Liu, Huajun; Chen, Zuhuang; Chen, Lang; Wang, John

    2013-01-01

    A new approach, based on reciprocal space vectors (RSVs), is developed to determine Bravais lattice types and accurate lattice parameters of epitaxial thin films by high-resolution X-ray diffractometry (HR-XRD). The lattice parameters of single crystal substrates are employed as references to correct the systematic experimental errors of RSVs of thin films. The general procedure is summarized, involving correction of RSVs, derivation of raw unit cell, subsequent conversion to the Niggli unit ...

  18. Automated beam placement for breast radiotherapy using a support vector machine based algorithm

    International Nuclear Information System (INIS)

    Zhao Xuan; Kong, Dewen; Jozsef, Gabor; Chang, Jenghwa; Wong, Edward K.; Formenti, Silvia C.; Wang Yao

    2012-01-01

    Purpose: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). Methods: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. Results: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm 3 (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm 3 (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. Conclusions: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.

  19. SEBAL-based Daily Actual Evapotranspiration Forecasting using Wavelets Decomposition Analysis and Multivariate Relevance Vector Machines

    Science.gov (United States)

    Torres, A. F.

    2011-12-01

    Agricultural lands are sources of food and energy for population around the globe. These lands are vulnerable to the impacts of climate change including variations in rainfall regimes, weather patterns, and decreased availability of water for irrigation. In addition, it is not unusual that irrigated agriculture is forced to divert less water in order to make it available for other uses, e.g. human consumption and others. As part of implementation of better policies for water control and management, irrigation companies and water user associations have been implemented water conveyance and distribution monitoring systems along with soil moisture sensors networks in the last decades. These systems allow them to manage and distribute water among the users based on their requirements and water availability while collecting information about actual soil moisture conditions in representative crop fields. In spite of this, requested water deliveries by farmers/water users is based typically on total water share, traditions and past experience on irrigation, which in most cases do not correspond to the actual crop evapotranspiration, already affected by climate change. Therefore it is necessary to provide actual information about the crop water requirements to water users/managers, so they can better quantify the required vs. available water for the irrigation events along the irrigation season. To estimate the actual evapotranspiration in a spatial extent the Sensitivity Analysis of the Surface Energy Balance Algorithm for Land (SEBAL) algorithm has demonstrated its effectiveness using satellite or airborne data. Nonetheless the estimation is restricted to the day when the geospatial information was obtained. Without information of precise future daily water crop demand there is a continuous challenge for the implementation of better water distribution and management policies in the irrigation system. The purpose of this study is to investigate the plausibility of using

  20. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    Science.gov (United States)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  1. A PCR-Based Method to Construct Lentiviral Vector Expressing Double Tough Decoy for miRNA Inhibition.

    Directory of Open Access Journals (Sweden)

    Huiling Qiu

    Full Text Available DNA vector-encoded Tough Decoy (TuD miRNA inhibitor is attracting increased attention due to its high efficiency in miRNA suppression. The current methods used to construct TuD vectors are based on synthesizing long oligonucleotides (~90 mer, which have been costly and problematic because of mutations during synthesis. In this study, we report a PCR-based method for the generation of double Tough Decoy (dTuD vector in which only two sets of shorter oligonucleotides (< 60 mer were used. Different approaches were employed to test the inhibitory potency of dTuDs. We demonstrated that dTuD is the most efficient method in miRNA inhibition in vitro and in vivo. Using this method, a mini dTuD library against 88 human miRNAs was constructed and used for a high-throughput screening (HTS of AP-1 pathway-related miRNAs. Seven miRNAs (miR-18b-5p, -101-3p, -148b-3p, -130b-3p, -186-3p, -187-3p and -1324 were identified as candidates involved in AP-1 pathway regulation. This novel method allows for an accurate and cost-effective generation of dTuD miRNA inhibitor, providing a powerful tool for efficient miRNA suppression in vitro and in vivo.

  2. The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-01-01

    Full Text Available Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR. According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO, which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability.

  3. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells.

    Science.gov (United States)

    Xie, Yifang; Wang, Daqi; Lan, Feng; Wei, Gang; Ni, Ting; Chai, Renjie; Liu, Dong; Hu, Shijun; Li, Mingqing; Li, Dajin; Wang, Hongyan; Wang, Yongming

    2017-05-24

    Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal vector-based CRISPR/Cas9 system, which we called epiCRISPR, for highly efficient gene knockout in hPSCs. The epiCRISPR system enables generation of up to 100% Insertion/Deletion (indel) rates. In addition, the epiCRISPR system enables efficient double-gene knockout and genomic deletion. To minimize off-target cleavage, we combined the episomal vector technology with double-nicking strategy and recent developed high fidelity Cas9. Thus the epiCRISPR system offers a highly efficient platform for genetic analysis in hPSCs.

  4. CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics.

    Science.gov (United States)

    Kim, Jae-Young; Song, Ho-Jin; Yaita, Makoto; Hirata, Akihiko; Ajito, Katsuhiro

    2014-01-27

    We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB · Hz and 75 dB · Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.

  5. Neutron–gamma discrimination based on the support vector machine method

    International Nuclear Information System (INIS)

    Yu, Xunzhen; Zhu, Jingjun; Lin, ShinTed; Wang, Li; Xing, Haoyang; Zhang, Caixun; Xia, Yuxi; Liu, Shukui; Yue, Qian; Wei, Weiwei; Du, Qiang; Tang, Changjian

    2015-01-01

    In this study, the combination of the support vector machine (SVM) method with the moment analysis method (MAM) is proposed and utilized to perform neutron/gamma (n/γ) discrimination of the pulses from an organic liquid scintillator (OLS). Neutron and gamma events, which can be firmly separated on the scatter plot drawn by the charge comparison method (CCM), are detected to form the training data set and the test data set for the SVM, and the MAM is used to create the feature vectors for individual events in the data sets. Compared to the traditional methods, such as CCM, the proposed method can not only discriminate the neutron and gamma signals, even at lower energy levels, but also provide the corresponding classification accuracy for each event, which is useful in validating the discrimination. Meanwhile, the proposed method can also offer a predication of the classification for the under-energy-limit events

  6. Cloud field classification based upon high spatial resolution textural features. II - Simplified vector approaches

    Science.gov (United States)

    Chen, D. W.; Sengupta, S. K.; Welch, R. M.

    1989-01-01

    This paper compares the results of cloud-field classification derived from two simplified vector approaches, the Sum and Difference Histogram (SADH) and the Gray Level Difference Vector (GLDV), with the results produced by the Gray Level Cooccurrence Matrix (GLCM) approach described by Welch et al. (1988). It is shown that the SADH method produces accuracies equivalent to those obtained using the GLCM method, while the GLDV method fails to resolve error clusters. Compared to the GLCM method, the SADH method leads to a 31 percent saving in run time and a 50 percent saving in storage requirements, while the GLVD approach leads to a 40 percent saving in run time and an 87 percent saving in storage requirements.

  7. Integrated Storage and Management of Vector and Raster Data Based on Oracle Database

    Directory of Open Access Journals (Sweden)

    WU Zheng

    2017-05-01

    Full Text Available At present, there are many problems in the storage and management of multi-source heterogeneous spatial data, such as the difficulty of transferring, the lack of unified storage and the low efficiency. By combining relational database and spatial data engine technology, an approach for integrated storage and management of vector and raster data is proposed on the basis of Oracle in this paper. This approach establishes an integrated storage model on vector and raster data and optimizes the retrieval mechanism at first, then designs a framework for the seamless data transfer, finally realizes the unified storage and efficient management of multi-source heterogeneous data. By comparing experimental results with the international leading similar software ArcSDE, it is proved that the proposed approach has higher data transfer performance and better query retrieval efficiency.

  8. ROBUSTNESS OF A FACE-RECOGNITION TECHNIQUE BASED ON SUPPORT VECTOR MACHINES

    OpenAIRE

    Prashanth Harshangi; Koshy George

    2010-01-01

    The ever-increasing requirements of security concerns have placed a greater demand for face recognition surveillance systems. However, most current face recognition techniques are not quite robust with respect to factors such as variable illumination, facial expression and detail, and noise in images. In this paper, we demonstrate that face recognition using support vector machines are sufficiently robust to different kinds of noise, does not require image pre-processing, and can be used with...

  9. Performance monitoring for coherent DP-QPSK systems based on stokes vectors analysis

    Science.gov (United States)

    Louchet, Hadrien; Koltchanov, Igor; Richter, André

    2010-12-01

    We show how to estimate accurately the Jones matrix of the transmission line by analyzing the Stokes vectors of DP-QPSK signals. This method can be used to perform in-situ PMD measurement in dual-polarization QPSK systems, and in addition to the constant modulus algorithm (CMA) to mitigate polarization-induced impairments. The applicability of this method to other modulation formats is discussed.

  10. A histogram-based technique for rapid vector extraction from PIV photographs

    Science.gov (United States)

    Humphreys, William M., Jr.

    1991-01-01

    A new analysis technique, performed totally in the image plane, is proposed which rapidly extracts all available vectors from individual interrogation regions on PIV photographs. The technique avoids the need for using Fourier transforms with the associated computational burden. The data acquisition and analysis procedure is described, and results of a preliminary simulation study to evaluate the accuracy of the technique are presented. Recently obtained PIV photographs are analyzed.

  11. Vector for IS element entrapment and functional characterization based on turning on expression of distal promoterless genes.

    Science.gov (United States)

    Szeverényi, I; Hodel, A; Arber, W; Olasz, F

    1996-09-26

    We constructed and characterized a novel trap vector for rapid isolation of insertion sequences. The strategy used for the isolation of IS elements is based on the ability of many IS elements to turn on the expression of otherwise silent genes distal to some sites of insertion. The simple transposition of an IS element can sometimes cause the constitutive expression of promoterless antibiotic resistance genes resulting in selectable phenotypes. The trap vector pAW1326 is based on a pBR322 replicon, it carries ampicillin and streptomycin resistance genes, and also silenced genes that confer chloramphenicol and kanamycin resistance once activated. The trap vector pAW1326 proved to be efficient and 85 percent of all isolated mutations were insertions. The majority of IS elements resident in the studied Escherichia coli strains tested became trapped, namely IS2, IS3, IS5, IS150, IS186 and Tn1000. We also encountered an insertion sequence, called IS10L/R-2, which is a hybrid of the two IS variants IS10L and IS10R. IS10L/R-2 is absent from most E. coli strains, but it is detectable in some strains such as JM109 which had been submitted to Tn10 mutagenesis. The distribution of the insertion sequences within the trap region was not random. Rather, the integration of chromosomal mobile genetic elements into the offered target sequence occurred in element-specific clusters. This is explained both by the target specificity and by the specific requirements for the activation of gene transcription by the DNA rearrangement. The employed trap vector pAW1326 proved to be useful for the isolation of mobile genetic elements, for a demonstration of their transposition activity as well as for the further characterization of some of the functional parameters of transposition.

  12. Vector analysis

    CERN Document Server

    Brand, Louis

    2006-01-01

    The use of vectors not only simplifies treatments of differential geometry, mechanics, hydrodynamics, and electrodynamics, but also makes mathematical and physical concepts more tangible and easy to grasp. This text for undergraduates was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into these subjects' manifold applications. The applications are developed to the extent that the uses of the potential function, both scalar and vector, are fully illustrated. Moreover, the basic postulates of vector analysis are brou

  13. Implementing Cargo Movement into Climate Based Risk Assessment of Vector-Borne Diseases

    Directory of Open Access Journals (Sweden)

    Stephanie Margarete Thomas

    2014-03-01

    Full Text Available During the last decades the disease vector Aedes albopictus (Asian tiger mosquito has rapidly spread around the globe. Global shipment of goods contributes to its permanent introduction. Invaded regions are facing novel and serious public health concerns, especially regarding the transmission of formerly non-endemic arboviruses such as dengue and chikungunya. The further development and potential spread to other regions depends largely on their climatic suitability. Here, we have developed a tool for identifying and prioritizing European areas at risk for the establishment of Aedes albopictus by taking into account, for the first time, the freight imports from this mosquito’s endemic countries and the climate suitability at harbors and their surrounding regions. In a second step we consider the further transport of containers by train and inland waterways because these types of transport can be well controlled. We identify European regions at risk, where a huge amount of transported goods meet climatically suitable conditions for the disease vector. The current and future suitability of the climate for Aedes albopictus was modeled by a correlative niche model approach and the Regional Climate Model COSMO-CLM. This risk assessment combines impacts of globalization and global warming to improve effective and proactive interventions in disease vector surveillance and control actions.

  14. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors

    International Nuclear Information System (INIS)

    Yokoo, Masako; Fujita, Ryosuke; Nakajima, Yumiko; Yoshimizu, Mamoru; Kasai, Hisae; Asano, Shin-ichiro; Bando, Hisanori

    2013-01-01

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells

  15. A virus vector based on Canine Herpesvirus for vaccine applications in canids.

    Science.gov (United States)

    Strive, T; Hardy, C M; Wright, J; Reubel, G H

    2007-01-31

    Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression.

  16. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Yokoo, Masako [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Fujita, Ryosuke [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213 (Japan); Yoshimizu, Mamoru; Kasai, Hisae [Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 (Japan); Asano, Shin-ichiro [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Bando, Hisanori, E-mail: hban@abs.agr.hokudai.ac.jp [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan)

    2013-09-13

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.

  17. Mass Spectrometry Based Proteomic Analysis of Salivary Glands of Urban Malaria Vector Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Sonam Vijay

    2014-01-01

    Full Text Available Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis, and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE, ion trap liquid chromatography mass spectrometry (LC/MS/MS, and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers, namely, MASCOT and OMSSA algorithms, identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialotranscriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins in concept of blood feeding, biting behavior, and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes.

  18. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Directory of Open Access Journals (Sweden)

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  19. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    OpenAIRE

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delive...

  20. Combined prediction model for supply risk in nuclear power equipment manufacturing industry based on support vector machine and decision tree

    International Nuclear Information System (INIS)

    Shi Chunsheng; Meng Dapeng

    2011-01-01

    The prediction index for supply risk is developed based on the factor identifying of nuclear equipment manufacturing industry. The supply risk prediction model is established with the method of support vector machine and decision tree, based on the investigation on 3 important nuclear power equipment manufacturing enterprises and 60 suppliers. Final case study demonstrates that the combination model is better than the single prediction model, and demonstrates the feasibility and reliability of this model, which provides a method to evaluate the suppliers and measure the supply risk. (authors)

  1. Active-Flux-Based, V/f-with-Stabilizing-Loops Versus Sensorless Vector Control of IPMSM Drives

    DEFF Research Database (Denmark)

    Moldovan, Ana; Blaabjerg, Frede; Boldea, Ion

    2011-01-01

    . By this control strategy, a fast dynamic speed response, without steady state error and without speed or current regulators, for all AC machines is obtained. The second control method is a sensorless vector control strategy which also has been implemented and tested, just for comparison.......This paper proposes two control methods for Interior Permanent Magnet Synchronous Motor (IPMSM) Drives. The first one is a V/f control with two stabilizing loops: one loop based on active flux balance for voltage magnitude correction and a second, based on speed error, with voltage phase correction...

  2. Synthesis and optimization of cholesterol-based diquaternary ammonium Gemini Surfactant (Chol-GS) as a new gene delivery vector.

    Science.gov (United States)

    Kim, Bieong-Kil; Doh, Kyung-Oh; Bae, Yun-Ui; Seu, Young-Bae

    2011-01-01

    Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-alpha- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]- N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.

  3. Fault Diagnosis of Plunger Pump in Truck Crane Based on Relevance Vector Machine with Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2013-01-01

    Full Text Available Promptly and accurately dealing with the equipment breakdown is very important in terms of enhancing reliability and decreasing downtime. A novel fault diagnosis method PSO-RVM based on relevance vector machines (RVM with particle swarm optimization (PSO algorithm for plunger pump in truck crane is proposed. The particle swarm optimization algorithm is utilized to determine the kernel width parameter of the kernel function in RVM, and the five two-class RVMs with binary tree architecture are trained to recognize the condition of mechanism. The proposed method is employed in the diagnosis of plunger pump in truck crane. The six states, including normal state, bearing inner race fault, bearing roller fault, plunger wear fault, thrust plate wear fault, and swash plate wear fault, are used to test the classification performance of the proposed PSO-RVM model, which compared with the classical models, such as back-propagation artificial neural network (BP-ANN, ant colony optimization artificial neural network (ANT-ANN, RVM, and support vectors, machines with particle swarm optimization (PSO-SVM, respectively. The experimental results show that the PSO-RVM is superior to the first three classical models, and has a comparative performance to the PSO-SVM, the corresponding diagnostic accuracy achieving as high as 99.17% and 99.58%, respectively. But the number of relevance vectors is far fewer than that of support vector, and the former is about 1/12–1/3 of the latter, which indicates that the proposed PSO-RVM model is more suitable for applications that require low complexity and real-time monitoring.

  4. Vector velocimeter

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a compact, reliable and low-cost vector velocimeter for example for determining velocities of particles suspended in a gas or fluid flow, or for determining velocity, displacement, rotation, or vibration of a solid surface, the vector velocimeter comprising a laser...

  5. Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters.

    Science.gov (United States)

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-10-01

    For many decades, visualization and evaluation of three-dimensional (3D) spinal deformities have only been possible by two-dimensional (2D) radiodiagnostic methods, and as a result, characterization and classification were based on 2D terminologies. Recent developments in medical digital imaging and 3D visualization techniques including surface 3D reconstructions opened a chance for a long-sought change in this field. Supported by a 3D Terminology on Spinal Deformities of the Scoliosis Research Society, an approach for 3D measurements and a new 3D classification of scoliosis yielded several compelling concepts on 3D visualization and new proposals for 3D classification in recent years. More recently, a new proposal for visualization and complete 3D evaluation of the spine by 3D vertebra vectors has been introduced by our workgroup, a concept, based on EOS 2D/3D, a groundbreaking new ultralow radiation dose integrated orthopedic imaging device with sterEOS 3D spine reconstruction software. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and vertebra vector-based 3D measurements in a routine clinical setting. Retrospective, nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4 and 117.5°. Analysis of accuracy and reliability of measurements was carried out on a group of all patients and in subgroups based on coronal plane deviation: 0 to 10° (Group 1; n=36), 10 to 25° (Group 2; n=25), 25 to 50° (Group 3; n=69), 50 to 75

  6. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria.

    Directory of Open Access Journals (Sweden)

    Frédéric Coutant

    Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.

  7. Discrete Spin Vector Approach for Monte Carlo-based Magnetic Nanoparticle Simulations

    Science.gov (United States)

    Senkov, Alexander; Peralta, Juan; Sahay, Rahul

    The study of magnetic nanoparticles has gained significant popularity due to the potential uses in many fields such as modern medicine, electronics, and engineering. To study the magnetic behavior of these particles in depth, it is important to be able to model and simulate their magnetic properties efficiently. Here we utilize the Metropolis-Hastings algorithm with a discrete spin vector model (in contrast to the standard continuous model) to model the magnetic hysteresis of a set of protected pure iron nanoparticles. We compare our simulations with the experimental hysteresis curves and discuss the efficiency of our algorithm.

  8. A fingerprint key binding algorithm based on vector quantization and error correction

    Science.gov (United States)

    Li, Liang; Wang, Qian; Lv, Ke; He, Ning

    2012-04-01

    In recent years, researches on seamless combination cryptosystem with biometric technologies, e.g. fingerprint recognition, are conducted by many researchers. In this paper, we propose a binding algorithm of fingerprint template and cryptographic key to protect and access the key by fingerprint verification. In order to avoid the intrinsic fuzziness of variant fingerprints, vector quantization and error correction technique are introduced to transform fingerprint template and then bind with key, after a process of fingerprint registration and extracting global ridge pattern of fingerprint. The key itself is secure because only hash value is stored and it is released only when fingerprint verification succeeds. Experimental results demonstrate the effectiveness of our ideas.

  9. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    Science.gov (United States)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  10. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  11. Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-01-01

    Full Text Available Accurate prediction of substation project cost is helpful to improve the investment management and sustainability. It is also directly related to the economy of substation project. Ensemble Empirical Mode Decomposition (EEMD can decompose variables with non-stationary sequence signals into significant regularity and periodicity, which is helpful in improving the accuracy of prediction model. Adding the Gauss perturbation to the traditional Cuckoo Search (CS algorithm can improve the searching vigor and precision of CS algorithm. Thus, the parameters and kernel functions of Support Vector Machines (SVM model are optimized. By comparing the prediction results with other models, this model has higher prediction accuracy.

  12. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  13. Generation of a Vero-Based Packaging Cell Line to Produce SV40 Gene Delivery Vectors for Use in Clinical Gene Therapy Studies

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2017-09-01

    Full Text Available Replication-defective (RD recombinant simian virus 40 (SV40-based gene delivery vectors hold a great potential for clinical applications because of their presumed non-immunogenicity and capacity to induce immune tolerance to the transgene products in humans. However, the clinical use of SV40 vectors has been hampered by the lack of a packaging cell line that produces replication-competent (RC free SV40 particles in the vector production process. To solve this problem, we have adapted the current SV40 vector genome used for the production of vector particles and generated a novel Vero-based packaging cell line named SuperVero that exclusively expresses the SV40 large T antigen. SuperVero cells produce similar numbers of SV40 vector particles compared to the currently used packaging cell lines, albeit in the absence of contaminating RC SV40 particles. Our unique SV40 vector platform named SVac paves the way to clinically test a whole new generation of SV40-based therapeutics for a broad range of important diseases.

  14. Support-Vector-Machine-Based Reduced-Order Model for Limit Cycle Oscillation Prediction of Nonlinear Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2012-01-01

    Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.

  15. Multi-class parkinsonian disorders classification with quantitative MR markers and graph-based features using support vector machines.

    Science.gov (United States)

    Morisi, Rita; Manners, David Neil; Gnecco, Giorgio; Lanconelli, Nico; Testa, Claudia; Evangelisti, Stefania; Talozzi, Lia; Gramegna, Laura Ludovica; Bianchini, Claudio; Calandra-Buonaura, Giovanna; Sambati, Luisa; Giannini, Giulia; Cortelli, Pietro; Tonon, Caterina; Lodi, Raffaele

    2018-02-01

    In this study we attempt to automatically classify individual patients with different parkinsonian disorders, making use of pattern recognition techniques to distinguish among several forms of parkinsonisms (multi-class classification), based on a set of binary classifiers that discriminate each disorder from all others. We combine diffusion tensor imaging, proton spectroscopy and morphometric-volumetric data to obtain MR quantitative markers, which are provided to support vector machines with the aim of recognizing the different parkinsonian disorders. Feature selection is used to find the most important features for classification. We also exploit a graph-based technique on the set of quantitative markers to extract additional features from the dataset, and increase classification accuracy. When graph-based features are not used, the MR markers that are most frequently automatically extracted by the feature selection procedure reflect alterations in brain regions that are also usually considered to discriminate parkinsonisms in routine clinical practice. Graph-derived features typically increase the diagnostic accuracy, and reduce the number of features required. The results obtained in the work demonstrate that support vector machines applied to multimodal brain MR imaging and using graph-based features represent a novel and highly accurate approach to discriminate parkinsonisms, and a useful tool to assist the diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A novel featureless approach to mass detection in digital mammograms based on support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Campanini, Renato [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Dongiovanni, Danilo [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Iampieri, Emiro [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Lanconelli, Nico [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Masotti, Matteo [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Palermo, Giuseppe [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Riccardi, Alessandro [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Roffilli, Matteo [Department of Computer Science, University of Bologna, Bologna (Italy)

    2004-03-21

    In this work, we present a novel approach to mass detection in digital mammograms. The great variability of the appearance of masses is the main obstacle to building a mass detection method. It is indeed demanding to characterize all the varieties of masses with a reduced set of features. Hence, in our approach we have chosen not to extract any feature, for the detection of the region of interest; in contrast, we exploit all the information available on the image. A multiresolution overcomplete wavelet representation is performed, in order to codify the image with redundancy of information. The vectors of the very-large space obtained are then provided to a first support vector machine (SVM) classifier. The detection task is considered here as a two-class pattern recognition problem: crops are classified as suspect or not, by using this SVM classifier. False candidates are eliminated with a second cascaded SVM. To further reduce the number of false positives, an ensemble of experts is applied: the final suspect regions are achieved by using a voting strategy. The sensitivity of the presented system is nearly 80% with a false-positive rate of 1.1 marks per image, estimated on images coming from the USF DDSM database.

  17. TALEN-based gene disruption in the dengue vector Aedes aegypti.

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w) mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector.

  18. A Cognitive Skill Classification Based on Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2013-09-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective XE "multi objective"  target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments employ 33 respondent players demonstrates that 61% of players have high trial and error, 21% have high carefully, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. 

  19. A Cognitive Skill Classification Based On Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2011-12-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments using 33 respondent players demonstrates that 61% of players have high trial and error cognitive skill, 21% have high carefully cognitive skill, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. Players have a high interest to finish the game if the player is emotionally stable. Interests in the players strongly support the procedural learning in a serious game.

  20. Predicting sumoylation sites using support vector machines based on various sequence features, conformational flexibility and disorder.

    Science.gov (United States)

    Yavuz, Ahmet Sinan; Sezerman, Osman Ugur

    2014-01-01

    Sumoylation, which is a reversible and dynamic post-translational modification, is one of the vital processes in a cell. Before a protein matures to perform its function, sumoylation may alter its localization, interactions, and possibly structural conformation. Abberations in protein sumoylation has been linked with a variety of disorders and developmental anomalies. Experimental approaches to identification of sumoylation sites may not be effective due to the dynamic nature of sumoylation, laborsome experiments and their cost. Therefore, computational approaches may guide experimental identification of sumoylation sites and provide insights for further understanding sumoylation mechanism. In this paper, the effectiveness of using various sequence properties in predicting sumoylation sites was investigated with statistical analyses and machine learning approach employing support vector machines. These sequence properties were derived from windows of size 7 including position-specific amino acid composition, hydrophobicity, estimated sub-window volumes, predicted disorder, and conformational flexibility. 5-fold cross-validation results on experimentally identified sumoylation sites revealed that our method successfully predicts sumoylation sites with a Matthew's correlation coefficient, sensitivity, specificity, and accuracy equal to 0.66, 73%, 98%, and 97%, respectively. Additionally, we have showed that our method compares favorably to the existing prediction methods and basic regular expressions scanner. By using support vector machines, a new, robust method for sumoylation site prediction was introduced. Besides, the possible effects of predicted conformational flexibility and disorder on sumoylation site recognition were explored computationally for the first time to our knowledge as an additional parameter that could aid in sumoylation site prediction.

  1. Breast cancer risk assessment and diagnosis model using fuzzy support vector machine based expert system

    Science.gov (United States)

    Dheeba, J.; Jaya, T.; Singh, N. Albert

    2017-09-01

    Classification of cancerous masses is a challenging task in many computerised detection systems. Cancerous masses are difficult to detect because these masses are obscured and subtle in mammograms. This paper investigates an intelligent classifier - fuzzy support vector machine (FSVM) applied to classify the tissues containing masses on mammograms for breast cancer diagnosis. The algorithm utilises texture features extracted using Laws texture energy measures and a FSVM to classify the suspicious masses. The new FSVM treats every feature as both normal and abnormal samples, but with different membership. By this way, the new FSVM have more generalisation ability to classify the masses in mammograms. The classifier analysed 219 clinical mammograms collected from breast cancer screening laboratory. The tests made on the real clinical mammograms shows that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and Laws texture features, the area under the Receiver operating characteristic curve reached .95, which corresponds to a sensitivity of 93.27% with a specificity of 87.17%. The results suggest that detecting masses using FSVM contribute to computer-aided detection of breast cancer and as a decision support system for radiologists.

  2. TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A. E.; Myles, Kevin M.; Adelman, Zach N.

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20–40% of fertile survivors produced kmo alleles that failed to complement an existing khw mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1–7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

  3. TALEN-based gene disruption in the dengue vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Azadeh Aryan

    Full Text Available In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector.

  4. Adaptive image denoising based on support vector machine and wavelet description

    Science.gov (United States)

    An, Feng-Ping; Zhou, Xian-Wei

    2017-12-01

    Adaptive image denoising method decomposes the original image into a series of basic pattern feature images on the basis of wavelet description and constructs the support vector machine regression function to realize the wavelet description of the original image. The support vector machine method allows the linear expansion of the signal to be expressed as a nonlinear function of the parameters associated with the SVM. Using the radial basis kernel function of SVM, the original image can be extended into a MEXICAN function and a residual trend. This MEXICAN represents a basic image feature pattern. If the residual does not fluctuate, it can also be represented as a characteristic pattern. If the residuals fluctuate significantly, it is treated as a new image and the same decomposition process is repeated until the residuals obtained by the decomposition do not significantly fluctuate. Experimental results show that the proposed method in this paper performs well; especially, it satisfactorily solves the problem of image noise removal. It may provide a new tool and method for image denoising.

  5. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  6. High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor

    Science.gov (United States)

    Azizbekyan, Hrayr; Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Movsisyan, Marina; Papoyan, Aram

    2017-07-01

    The magnetic-field-compensation optical vector magnetometer based on the nonlinear Hanle effect in alkali metal vapor allowing two-axis measurement operation has been further elaborated for three-axis performance, along with significant reduction of measurement time. The upgrade was achieved by implementing a two-beam resonant excitation configuration and a fast maximum searching algorithm. Results of the proof-of-concept experiments, demonstrating 1 μT B-field resolution, are presented. The applied interest and capability of the proposed technique is analyzed.

  7. Exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.; Yasue, M.

    1991-01-01

    An exotic composite vector boson V is introduced in two dynamical models of composite quarks, leptons, W, and Z. One is based on four-Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ, and V

  8. Cloning vector

    Science.gov (United States)

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  9. Cloning vector

    Science.gov (United States)

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  10. A novel minicircle vector based system for inhibting the replication and gene expression of enterovirus 71 and coxsackievirus A16.

    Science.gov (United States)

    Yang, Zhuo; Li, Guodong; Zhang, Yingqiu; Liu, Xiaoman; Tien, Po

    2012-11-01

    Enterovirus 71 (EV 71) and Coxsackievirus A16 (CA 16) are two major causative agents of hand, foot and mouth disease (HFMD). They have been associated with severe neurological and cardiological complications worldwide, and have caused significant mortalities during large-scale outbreaks in China. Currently, there are no effective treatments against EV 71 and CA 16 infections. We now describe the development of a novel minicircle vector based RNA interference (RNAi) system as a therapeutic approach to inhibiting EV 71 and CA 16 replication. Small interfering RNA (siRNA) molecules targeting the conserved regions of the 3C(pro) and 3D(pol) function gene of the EV 71 and CA 16 China strains were designed based on their nucleotide sequences available in GenBank. This RNAi system was found to effectively block the replication and gene expression of these viruses in rhabdomyosarcoma (RD) cells and virus-infected mice model. The inhibitory effects were confirmed by a corresponding decrease in viral RNA, viral protein, and progeny virus production. In addition, no significant adverse off-target silencing or cytotoxic effects were observed. These results demonstrated the potential and feasibility of this novel minicircle vector based RNAi system for antiviral therapy against EV 71 and CA 16 infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Muthu Subash Kavitha

    Full Text Available Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies. In this study, we developed a new model of vector-based convolutional neural network (V-CNN with respect to extracted features of the induced pluripotent stem cell (iPSC colony for distinguishing colony characteristics. A transfer function from the feature vectors to the virtual image was generated at the front of the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The robustness of the proposed V-CNN model in distinguishing colonies was compared with that of the competitive support vector machine (SVM classifier based on morphological, textural, and combined features. Additionally, five-fold cross-validation was used to investigate the performance of the V-CNN model. The precision, recall, and F-measure values of the V-CNN model were comparatively higher than those of the SVM classifier, with a range of 87-93%, indicating fewer false positives and false negative rates. Furthermore, for determining the quality of colonies, the V-CNN model showed higher accuracy values based on morphological (95.5%, textural (91.0%, and combined (93.2% features than those estimated with the SVM classifier (86.7, 83.3, and 83.4%, respectively. Similarly, the accuracy of the feature sets using five-fold cross-validation was above 90% for the V-CNN model, whereas that yielded by the SVM model was in the range of 75-77%. We thus concluded that the proposed V-CNN model outperforms the conventional SVM classifier, which strongly suggests that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a cost-effective quality recognition tool during culture and other experimental

  12. Very low speed performance of active flux based sensorless control: interior permanent magnet synchronous motor vector control versus direct torque and flux control

    DEFF Research Database (Denmark)

    Paicu, M. C.; Boldea, I.; Andreescu, G. D.

    2009-01-01

    This study is focused on very low speed performance comparison between two sensorless control systems based on the novel ‘active flux' concept, that is, the current/voltage vector control versus direct torque and flux control (DTFC) for interior permanent magnet synchronous motor (IPMSM) drives...... with space vector modulation (SVM), without signal injection. The active flux, defined as the flux that multiplies iq current in the dq-model torque expression of all ac machines, is easily obtained from the stator-flux vector and has the rotor position orientation. Therefore notable simplification...

  13. Linear and support vector regressions based on geometrical correlation of data

    Directory of Open Access Journals (Sweden)

    Kaijun Wang

    2007-10-01

    Full Text Available Linear regression (LR and support vector regression (SVR are widely used in data analysis. Geometrical correlation learning (GcLearn was proposed recently to improve the predictive ability of LR and SVR through mining and using correlations between data of a variable (inner correlation. This paper theoretically analyzes prediction performance of the GcLearn method and proves that GcLearn LR and SVR will have better prediction performance than traditional LR and SVR for prediction tasks when good inner correlations are obtained and predictions by traditional LR and SVR are far away from their neighbor training data under inner correlation. This gives the applicable condition of GcLearn method.

  14. Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine

    Science.gov (United States)

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380

  15. Error Concealment Method Based on Motion Vector Prediction Using Particle Filters

    Directory of Open Access Journals (Sweden)

    B. Hrusovsky

    2011-09-01

    Full Text Available Video transmitted over unreliable environment, such as wireless channel or in generally any network with unreliable transport protocol, is facing the losses of video packets due to network congestion and different kind of noises. The problem is becoming more important using highly effective video codecs. Visual quality degradation could propagate into subsequent frames due to redundancy elimination in order to obtain high compression ratio. Since the video stream transmission in real time is limited by transmission channel delay, it is not possible to retransmit all faulty or lost packets. It is therefore inevitable to conceal these defects. To reduce the undesirable effects of information losses, the lost data is usually estimated from the received data, which is generally known as error concealment problem. This paper discusses packet loss modeling in order to simulate losses during video transmission, packet losses analysis and their impacts on the motion vectors losses.

  16. Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Directory of Open Access Journals (Sweden)

    Mario Sansone

    2013-01-01

    Full Text Available Computer systems for Electrocardiogram (ECG analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units or in prompt detection of dangerous events (e.g., ventricular fibrillation. Together with clinical applications (arrhythmia detection and heart rate variability analysis, ECG is currently being investigated in biometrics (human identification, an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned.

  17. Nonlinear optimization method of ship floating condition calculation in wave based on vector

    Science.gov (United States)

    Ding, Ning; Yu, Jian-xing

    2014-08-01

    Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.

  18. Three-Component Decomposition Based on Stokes Vector for Compact Polarimetric SAR

    Directory of Open Access Journals (Sweden)

    Hanning Wang

    2015-09-01

    Full Text Available In this paper, a three-component decomposition algorithm is proposed for processing compact polarimetric SAR images. By using the correspondence between the covariance matrix and the Stokes vector, three-component scattering models for CTLR and DCP modes are established. The explicit expression of decomposition results is then derived by setting the contribution of volume scattering as a free parameter. The degree of depolarization is taken as the upper bound of the free parameter, for the constraint that the weighting factor of each scattering component should be nonnegative. Several methods are investigated to estimate the free parameter suitable for decomposition. The feasibility of this algorithm is validated by AIRSAR data over San Francisco and RADARSAT-2 data over Flevoland.

  19. Equivalent Vectors

    Science.gov (United States)

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  20. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines

    International Nuclear Information System (INIS)

    Li Jiazhong; Liu Huanxiang; Yao Xiaojun; Liu Mancang; Hu Zhide; Fan Botao

    2007-01-01

    The least-squares support vector machines (LS-SVMs), as an effective modified algorithm of support vector machine, was used to build structure-activity relationship (SAR) models to classify the oxindole-based inhibitors of cyclin-dependent kinases (CDKs) based on their activity. Each compound was depicted by the structural descriptors that encode constitutional, topological, geometrical, electrostatic and quantum-chemical features. The forward-step-wise linear discriminate analysis method was used to search the descriptor space and select the structural descriptors responsible for activity. The linear discriminant analysis (LDA) and nonlinear LS-SVMs method were employed to build classification models, and the best results were obtained by the LS-SVMs method with prediction accuracy of 100% on the test set and 90.91% for CDK1 and CDK2, respectively, as well as that of LDA models 95.45% and 86.36%. This paper provides an effective method to screen CDKs inhibitors

  1. Quantitative Assessment of Pap Smear Cells by PC-Based Cytopathologic Image Analysis System and Support Vector Machine

    Science.gov (United States)

    Huang, Po-Chi; Chan, Yung-Kuan; Chan, Po-Chou; Chen, Yung-Fu; Chen, Rung-Ching; Huang, Yu-Ruei

    Cytologic screening has been widely used for controlling the prevalence of cervical cancer. Errors from sampling, screening and interpretation, still concealed some unpleasant results. This study aims at designing a cellular image analysis system based on feasible and available software and hardware for a routine cytologic laboratory. Totally 1814 cellular images from the liquid-based cervical smears with Papanicolaou stain in 100x, 200x, and 400x magnification were captured by a digital camera. Cell images were reviewed by pathologic experts with peer agreement and only 503 images were selected for further study. The images were divided into 4 diagnostic categories. A PC-based cellular image analysis system (PCCIA) was developed for computing morphometric parameters. Then support vector machine (SVM) was used to classify signature patterns. The results show that the selected 13 morphometric parameters can be used to correctly differentiate the dysplastic cells from the normal cells (pgynecologic cytologic specimens.

  2. Frequent dual initiation of reverse transcription in murine leukemia virus-based vectors containing two primer-binding sites

    International Nuclear Information System (INIS)

    Voronin, Yegor A.; Pathak, Vinay K.

    2003-01-01

    Retroviruses package two copies of viral RNA into each virion. Although each RNA contains a primer-binding site for initiation of DNA synthesis, it is unknown whether reverse transcription is initiated on both RNAs. To determine whether a single virion is capable of initiating reverse transcription more than once, we constructed a murine leukemia virus-based vector containing a second primer-binding site (PBS) derived from spleen necrosis virus and inserted the green fluorescent protein gene (GFP) between the two PBSs. Initiation of reverse transcription at either PBS results in a provirus that expresses GFP. However, initiation at both PBSs can result in the deletion of GFP, which can be detected by flow cytometry and Southern blotting analysis. Approximately 22-29% of the proviruses formed deleted the GFP in a single replication cycle, indicating the minimum proportion of virions that initiated reverse transcription on both PBSs. These results show that a significant proportion of MLV-based vectors containing two PBSs have the capacity to initiate reverse transcription more than once

  3. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  4. Dynamic Price Vector Formation Model-Based Automatic Demand Response Strategy for PV-Assisted EV Charging Stations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qifang; Wang, Fei; Hodge, Bri-Mathias; Zhang, Jianhua; Li, Zhigang; Shafie-Khah, Miadreza; Catalao, Joao P. S.

    2017-11-01

    A real-time price (RTP)-based automatic demand response (ADR) strategy for PV-assisted electric vehicle (EV) Charging Station (PVCS) without vehicle to grid is proposed. The charging process is modeled as a dynamic linear program instead of the normal day-ahead and real-time regulation strategy, to capture the advantages of both global and real-time optimization. Different from conventional price forecasting algorithms, a dynamic price vector formation model is proposed based on a clustering algorithm to form an RTP vector for a particular day. A dynamic feasible energy demand region (DFEDR) model considering grid voltage profiles is designed to calculate the lower and upper bounds. A deduction method is proposed to deal with the unknown information of future intervals, such as the actual stochastic arrival and departure times of EVs, which make the DFEDR model suitable for global optimization. Finally, both the comparative cases articulate the advantages of the developed methods and the validity in reducing electricity costs, mitigating peak charging demand, and improving PV self-consumption of the proposed strategy are verified through simulation scenarios.

  5. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

    International Nuclear Information System (INIS)

    Chen, Kuilin; Yu, Jie

    2014-01-01

    Highlights: • A novel hybrid modeling method is proposed for short-term wind speed forecasting. • Support vector regression model is constructed to formulate nonlinear state-space framework. • Unscented Kalman filter is adopted to recursively update states under random uncertainty. • The new SVR–UKF approach is compared to several conventional methods for short-term wind speed prediction. • The proposed method demonstrates higher prediction accuracy and reliability. - Abstract: Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations

  6. EFFECTIVENESS OF HUANGLONGBING VECTOR (DIAPHORINA CITRI KUWAYAMA CONTROL IN CITRUS GROWER GROUP BASED IN SAMBAS REGENCY OF WEST KALIMANTAN, INDONESIA

    Directory of Open Access Journals (Sweden)

    Supriyanto A.

    2017-12-01

    Full Text Available The purpose of this study was to determine the effectiveness of Huanglongbing vector control based on Citrus Grower Group recommendation. Studies have been carried out in 2010 in Tebas Sungai village, Sambas district, with 11 tangerine groves owned by growers in the Citrus grower Association of Sambas district. The tangerine grove that been used are, one grower's orchard as a demonstration plot in a particular citrus grower group (orchard I; five other citrus orchards with different ownership at the same citrus grower Group (orchard II, as well as five other citrus orchard with different ownership which each of them spreads over five different citrus grower groups outside the farm demonstration plots (orchard III. The recommendation technology for controlling Huanglongbing vector which applied in this experiment, included bark painting by systemic insecticide of imidacloprid for two each 1.5-month and spray using contact insecticide with dimethoate to the plant crown which application time been alternated after bark painting application. The effectiveness of technology implementation is measured by a decrease psyllid populations found in citrus samples in adult stage, nymphs and eggs that were observed at regular intervals every two weeks during the flushing to the 14th week after the first treatment. The results showed that recommended treatment technology were absolutely proven to reduce Huanglongbing vector population in significant, namely in the orchard I, II, and III respectively at 95.3%, 84.7%, and 72% for stage adult; 97.3 %, 80%, and 100% for stage nymphs; and 98.5%, 100% and 100% for the egg stage.

  7. A support vector machine based test for incongruence between sets of trees in tree space

    Science.gov (United States)

    2012-01-01

    Background The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or horizontal gene transfer. Results Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees, results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore, it controlled false positive and false negative rates very well, indicating a high degree of accuracy. Conclusions The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional distributions. The

  8. Development of the system based code. v. 5. Method of margin exchange. pt. 2. Determination of quality assurance index based on a 'Vector Method'

    International Nuclear Information System (INIS)

    Asayama, Tai

    2003-03-01

    For the commercialization of fast breeder reactors, 'System Based Code', a completely new scheme of a code on structural integrity, is being developed. One of the distinguished features of the System Based Code is that it is able to determine a reasonable total margin on a structural of system, by allowing the exchanges of margins between various technical items. Detailed estimation of failure probability of a given combination of technical items and its comparison with a target value is one way to achieve this. However, simpler and easier methods that allow margin exchange without detailed calculation of failure probability are desirable in design. The authors have developed a simplified method such as a 'design factor method' from this viewpoint. This report describes a 'Vector Method', which was been newly developed. Following points are reported: 1) The Vector Method allows margin exchange evaluation on an 'equi-quality assurance plane' using vector calculation. Evaluation is easy and sufficient accuracy is achieved. The equi-quality assurance plane is obtained by a projection of an 'equi-failure probability surface in a n-dimensional space, which is calculated beforehand for typical combinations of design variables. 2) The Vector Method is considered to give the 'Quality Assurance Index Method' a probabilistic interpretation. 3) An algebraic method was proposed for the calculation of failure probabilities, which is necessary to obtain a equi-failure probability surface. This method calculates failure probabilities without using numerical methods such as Monte Carlo simulation or numerical integration. Under limited conditions, this method is quite effective compared to numerical methods. 4) An illustration of the procedure of margin exchange evaluation is given. It may be possible to use this method to optimize ISI plans; even it is not fully implemented in the System Based Code. (author)

  9. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Kun He

    2018-04-01

    Full Text Available Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM. An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44% was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers.

  10. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  11. Cloud Monitoring for Solar Plants with Support Vector Machine Based Fault Detection System

    Directory of Open Access Journals (Sweden)

    Hong-Chan Chang

    2014-01-01

    Full Text Available This study endeavors to develop a cloud monitoring system for solar plants. This system incorporates numerous subsystems, such as a geographic information system, an instantaneous power-consumption information system, a reporting system, and a failure diagnosis system. Visual C# was integrated with ASP.NET and SQL technologies for the proposed monitoring system. A user interface for database management system was developed to enable users to access solar power information and management systems. In addition, by using peer-to-peer (P2P streaming technology and audio/video encoding/decoding technology, real-time video data can be transmitted to the client end, providing instantaneous and direct information. Regarding smart failure diagnosis, the proposed system employs the support vector machine (SVM theory to train failure mathematical models. The solar power data are provided to the SVM for analysis in order to determine the failure types and subsequently eliminate failures at an early stage. The cloud energy-management platform developed in this study not only enhances the management and maintenance efficiency of solar power plants but also increases the market competitiveness of solar power generation and renewable energy.

  12. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    Science.gov (United States)

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  13. Virtual-view PSNR prediction based on a depth distortion tolerance model and support vector machine.

    Science.gov (United States)

    Chen, Fen; Chen, Jiali; Peng, Zongju; Jiang, Gangyi; Yu, Mei; Chen, Hua; Jiao, Renzhi

    2017-10-20

    Quality prediction of virtual-views is important for free viewpoint video systems, and can be used as feedback to improve the performance of depth video coding and virtual-view rendering. In this paper, an efficient virtual-view peak signal to noise ratio (PSNR) prediction method is proposed. First, the effect of depth distortion on virtual-view quality is analyzed in detail, and a depth distortion tolerance (DDT) model that determines the DDT range is presented. Next, the DDT model is used to predict the virtual-view quality. Finally, a support vector machine (SVM) is utilized to train and obtain the virtual-view quality prediction model. Experimental results show that the Spearman's rank correlation coefficient and root mean square error between the actual PSNR and the predicted PSNR by DDT model are 0.8750 and 0.6137 on average, and by the SVM prediction model are 0.9109 and 0.5831. The computational complexity of the SVM method is lower than the DDT model and the state-of-the-art methods.

  14. Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms

    Directory of Open Access Journals (Sweden)

    Kuan-Cheng Lin

    2015-01-01

    Full Text Available Rapid advances in information and communication technology have made ubiquitous computing and the Internet of Things popular and practicable. These applications create enormous volumes of data, which are available for analysis and classification as an aid to decision-making. Among the classification methods used to deal with big data, feature selection has proven particularly effective. One common approach involves searching through a subset of the features that are the most relevant to the topic or represent the most accurate description of the dataset. Unfortunately, searching through this kind of subset is a combinatorial problem that can be very time consuming. Meaheuristic algorithms are commonly used to facilitate the selection of features. The artificial fish swarm algorithm (AFSA employs the intelligence underlying fish swarming behavior as a means to overcome optimization of combinatorial problems. AFSA has proven highly successful in a diversity of applications; however, there remain shortcomings, such as the likelihood of falling into a local optimum and a lack of multiplicity. This study proposes a modified AFSA (MAFSA to improve feature selection and parameter optimization for support vector machine classifiers. Experiment results demonstrate the superiority of MAFSA in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original FASA.

  15. Blood glucose level prediction based on support vector regression using mobile platforms.

    Science.gov (United States)

    Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M

    2016-08-01

    The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.

  16. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hazrati, Mehrnaz Khodam; Kalies, Kai-Uwe; Martinetz, Thomas

    2011-01-01

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  17. Searches for the Higgs Boson at the LHC based on its couplings to Vector Bosons

    CERN Document Server

    Hackstein, C

    One of the primary goals of the Large Hadron Collider (LHC) is the sea rch for the Higgs Boson. All Higgs searches rely heavily on Monte Carlo predic tions of both the signal and background processes. These simulations n ecessarily include models and assumptions not derived from first principles. Esp ecially the process of hadronization and the underlying event are only par tially un- derstood and differ strongly between different generators. As a r esult, the predictions can be wrong for special regions of phase space. Ther efore, pre- dictions by several programs should be compared to gain an estimat e of the uncertainty of the observables considered. In this work, two different Monte Carlo generators were compared in their pre- dictions for a Higgs search in the Vector Boson Fusion (VBF) Higgs pr oduction channel with subsequent decay into W bosons that decay leptonica lly in turn. A significant difference in the description of both signal and backgro und was found between the two generators. As the Monte...

  18. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

    Directory of Open Access Journals (Sweden)

    Tian Wang

    2013-12-01

    Full Text Available The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM, combined with its sparsified version (sparse online LS-OC-SVM. LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.

  19. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines

    Science.gov (United States)

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-01-01

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers. PMID:29690641

  20. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines.

    Science.gov (United States)

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-04-23

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers.

  1. Adaptive Digital Watermarking Scheme Based on Support Vector Machines and Optimized Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyi Zhou

    2018-01-01

    Full Text Available Digital watermarking is an effective solution to the problem of copyright protection, thus maintaining the security of digital products in the network. An improved scheme to increase the robustness of embedded information on the basis of discrete cosine transform (DCT domain is proposed in this study. The embedding process consisted of two main procedures. Firstly, the embedding intensity with support vector machines (SVMs was adaptively strengthened by training 1600 image blocks which are of different texture and luminance. Secondly, the embedding position with the optimized genetic algorithm (GA was selected. To optimize GA, the best individual in the first place of each generation directly went into the next generation, and the best individual in the second position participated in the crossover and the mutation process. The transparency reaches 40.5 when GA’s generation number is 200. A case study was conducted on a 256 × 256 standard Lena image with the proposed method. After various attacks (such as cropping, JPEG compression, Gaussian low-pass filtering (3,0.5, histogram equalization, and contrast increasing (0.5,0.6 on the watermarked image, the extracted watermark was compared with the original one. Results demonstrate that the watermark can be effectively recovered after these attacks. Even though the algorithm is weak against rotation attacks, it provides high quality in imperceptibility and robustness and hence it is a successful candidate for implementing novel image watermarking scheme meeting real timelines.

  2. Sensor network based solar forecasting using a local vector autoregressive ridge framework

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J. [Stony Brook Univ., NY (United States); Yoo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heiser, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalb, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-04

    The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations due to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.

  3. Particle swarm optimization-based least squares support vector regression for critical heat flux prediction

    International Nuclear Information System (INIS)

    Jiang, B.T.; Zhao, F.Y.

    2013-01-01

    Highlights: ► CHF data are collected from the published literature. ► Less training data are used to train the LSSVR model. ► PSO is adopted to optimize the key parameters to improve the model precision. ► The reliability of LSSVR is proved through parametric trends analysis. - Abstract: In view of practical importance of critical heat flux (CHF) for design and safety of nuclear reactors, accurate prediction of CHF is of utmost significance. This paper presents a novel approach using least squares support vector regression (LSSVR) and particle swarm optimization (PSO) to predict CHF. Two available published datasets are used to train and test the proposed algorithm, in which PSO is employed to search for the best parameters involved in LSSVR model. The CHF values obtained by the LSSVR model are compared with the corresponding experimental values and those of a previous method, adaptive neuro fuzzy inference system (ANFIS). This comparison is also carried out in the investigation of parametric trends of CHF. It is found that the proposed method can achieve the desired performance and yields a more satisfactory fit with experimental results than ANFIS. Therefore, LSSVR method is likely to be suitable for other parameters processing such as CHF

  4. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor.

    Science.gov (United States)

    Boonthum, Chatwalee; Namdee, Katawut; Boonrungsiman, Suwimon; Chatdarong, Kaywalee; Saengkrit, Nattika; Sajomsang, Warayuth; Ponglowhapan, Suppawiwat; Yata, Teerapong

    2017-02-10

    The main purpose of this study was to investigate the application of modified chitosan as a potential vector for gene delivery to gonadotropin-releasing hormone receptor (GnRHR)-expressing cells. Such design of gene carrier could be useful in particular for gene therapy for cancers related to the reproductive system, gene disorders of sexual development, and contraception and fertility control. In this study, a decapeptide GnRH was successfully conjugated to chitosan (CS) as confirmed by proton nuclear magnetic resonance spectroscopy ( 1 H NMR) and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The synthesized GnRH-conjugated chitosan (GnRH-CS) was able to condense DNA to form positively charged nanoparticles and specifically deliver plasmid DNA to targeted cells in both two-dimensional (2D) and three-dimensional (3D) cell cultures systems. Importantly, GnRH-CS exhibited higher transfection activity compared to unmodified CS. In conclusion, GnRH-conjugated chitosan can be a promising carrier for targeted DNA delivery to GnRHR-expressing cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel function, a hybrid kernel function combing merits of Gaussian kernel function and polynomial kernel function is constructed. To design optimal parameters of this kernel function, the particle swarm optimization (PSO algorithm is applied. The proposed modeling method is used to predict the value of cell concentration in the Lysine fermentation process. Simulation results show that the presented hybrid-kernel RVM model has a better accuracy and performance than the single kernel RVM model.

  6. Robust anti-synchronization of uncertain chaotic systems based on multiple-kernel least squares support vector machine modeling

    International Nuclear Information System (INIS)

    Chen Qiang; Ren Xuemei; Na Jing

    2011-01-01

    Highlights: Model uncertainty of the system is approximated by multiple-kernel LSSVM. Approximation errors and disturbances are compensated in the controller design. Asymptotical anti-synchronization is achieved with model uncertainty and disturbances. Abstract: In this paper, we propose a robust anti-synchronization scheme based on multiple-kernel least squares support vector machine (MK-LSSVM) modeling for two uncertain chaotic systems. The multiple-kernel regression, which is a linear combination of basic kernels, is designed to approximate system uncertainties by constructing a multiple-kernel Lagrangian function and computing the corresponding regression parameters. Then, a robust feedback control based on MK-LSSVM modeling is presented and an improved update law is employed to estimate the unknown bound of the approximation error. The proposed control scheme can guarantee the asymptotic convergence of the anti-synchronization errors in the presence of system uncertainties and external disturbances. Numerical examples are provided to show the effectiveness of the proposed method.

  7. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    Science.gov (United States)

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  8. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    Directory of Open Access Journals (Sweden)

    Anbang Zhao

    2017-02-01

    Full Text Available In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  9. Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings

    International Nuclear Information System (INIS)

    Hao, Rujiang; Chu, Fulei; Peng, Zhike; Feng, Zhipeng

    2011-01-01

    This paper presents a novel pattern classification approach for the fault diagnostics of rolling element bearings, which combines the morphological multi-scale analysis and the 'one to others' support vector machine (SVM) classifiers. The morphological pattern spectrum describes the shape characteristics of the inspected signal based on the morphological opening operation with multi-scale structuring elements. The pattern spectrum entropy and the barycenter scale location of the spectrum curve are extracted as the feature vectors presenting different faults of the bearing, which are more effective and representative than the kurtosis and the enveloping demodulation spectrum. The 'one to others' SVM algorithm is adopted to distinguish six kinds of fault signals which were measured in the experimental test rig under eight different working conditions. The recognition results of the SVM are ideal and more precise than those of the artificial neural network even though the training samples are few. The combination of the morphological pattern spectrum parameters and the 'one to others' multi-class SVM algorithm is suitable for the on-line automated fault diagnosis of the rolling element bearings. This application is promising and worth well exploiting

  10. Performance optimization of Sparse Matrix-Vector Multiplication for multi-component PDE-based applications using GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2016-05-23

    Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear systems. The standard solver is a preconditioned Krylov method. Along with application of the preconditioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block structure leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is proposed to balance the workload among thread blocks when there are large variations in the lengths of nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing state-of-the-art implementations using matrices with real structures from different applications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Controlling Aedes aegypti population as DHF vector with radiation based-sterile insect technique in Banjarnegara Regency, Central Java

    International Nuclear Information System (INIS)

    Siti Nurhayati; Bambang Yunianto; Tri Ramadhani; Bina Ikawati; Budi Santoso; Ali Rahayu

    2013-01-01

    The control program of dengue hemorrhagic fever (DHF) in Indonesia is still a problem due to the incomplete integrated handling. Sterile insect technique (SIT) for Aedes aegypti as DHF vector was considered as a potential strategy for controlling the DHF. A preliminary survey was carried out to determine the characteristic of A aegypti population in the study site before the implementation of SIT. The implementation of radiation based-SIT was carried out in Krandegan and Kutabanjar Villages of Banjarnegara Regency, Central Java which involved 99 houses. One hundred gamma rays irradiated male mosquitoes were released to each house up to five times. The eggs, larvae and adult mosquitoes were collected using ovitrap and weekly observed. The initial population density of A. aegypti in the studied area was obtained to be 6 mosquitoes per house with the mean index of house was 15.86% and the mean sterility of sterilized mosquitoes was 79.16%. The SIT effectively reduced A. aegypti population after the fifth release of irradiated mosquitoes into the houses. It can be assumed that the SIT was effective in controlling DHF vector in the studied area, nevertheless, it will be more effective if it is combined with other handling techniques. (author)

  12. Performance optimization of Sparse Matrix-Vector Multiplication for multi-component PDE-based applications using GPUs

    KAUST Repository

    Abdelfattah, Ahmad; Ltaief, Hatem; Keyes, David E.; Dongarra, Jack

    2016-01-01

    Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear systems. The standard solver is a preconditioned Krylov method. Along with application of the preconditioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block structure leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is proposed to balance the workload among thread blocks when there are large variations in the lengths of nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing state-of-the-art implementations using matrices with real structures from different applications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. A New Power-Factor-Based Vector Control Method for Sensorless Drive of Permanent-Magnet Synchronous Motors

    Science.gov (United States)

    Shinnaka, Shinji

    As a simple vector control method for sensorless drives of permanent-magnet synchronous motors, the so-called “Power-Factor-Based (PFB) Vector Control Method” has been proposed. The conventional PFB method directly estimates the phase of the quasi-optimal stator current through a control of the power factor phase, instead of the estimation of the rotor phase. The stator current is controlled in the current reference frame whose secondary axis phase is the same as the stator current phase. This paper proposes a new PEB method where the stator current is controlled in the voltage reference frame whose secondary axis phase is the same as the voltage phase rather than the current phase. It is shown that the similar quasi-optimal stator current control can be attained through the current control with appropriate current commands taking the power factor phase into account. This paper also shows a practical method for generating the current commands and a practical guideline for the design parameters of the new PFB method.

  14. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia.

    Science.gov (United States)

    Clennon, Julie A; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive; Glass, Gregory E

    2010-11-05

    Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM. The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal

  15. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia

    Directory of Open Access Journals (Sweden)

    Shiff Clive

    2010-11-01

    Full Text Available Abstract Background Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. Methods A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Results Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM digital elevation data (DEM were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER DEM. Conclusions The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight

  16. Construction of Various γ34.5 Deleted Fluorescent-Expressing Oncolytic herpes Simplex type 1 (oHSV) for Generation and Isolation of HSV-Based Vectors

    Science.gov (United States)

    Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan

    2017-07-01

    Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (Pidentification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.

  17. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    Science.gov (United States)

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  18. Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier.

    Science.gov (United States)

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Rao, A R

    2016-11-05

    DNA barcoding is a molecular diagnostic method that allows automated and accurate identification of species based on a short and standardized fragment of DNA. To this end, an attempt has been made in this study to develop a computational approach for identifying the species by comparing its barcode with the barcode sequence of known species present in the reference library. Each barcode sequence was first mapped onto a numeric feature vector based on k-mer frequencies and then Random forest methodology was employed on the transformed dataset for species identification. The proposed approach outperformed similarity-based, tree-based, diagnostic-based approaches and found comparable with existing supervised learning based approaches in terms of species identification success rate, while compared using real and simulated datasets. Based on the proposed approach, an online web interface SPIDBAR has also been developed and made freely available at http://cabgrid.res.in:8080/spidbar/ for species identification by the taxonomists. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  20. Evaluation of auto-assessment method for C-D analysis based on support vector machine

    International Nuclear Information System (INIS)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Kamihira, Hiroaki; Kishimoto, Tomonari; Goto, Hiroya

    2010-01-01

    Contrast-Detail (C-D) analysis is one of the visual quality assessment methods in medical imaging, and many auto-assessment methods for C-D analysis have been developed in recent years. However, for the auto-assessment method for C-D analysis, the effects of nonlinear image processing are not clear. So, we have made an auto-assessment method for C-D analysis using a support vector machine (SVM), and have evaluated its performance for the images processed with a noise reduction method. The feature indexes used in the SVM were the normalized cross correlation (NCC) coefficient on each signal between the noise-free and noised image, the contrast to noise ratio (CNR) on each signal, the radius of each signal, and the Student's t-test statistic for the mean difference between the signal and background pixel values. The results showed that the auto-assessment method for C-D analysis by using Student's t-test statistic agreed well with the visual assessment for the non-processed images, but disagreed for the images processed with the noise reduction method. Our results also showed that the auto-assessment method for C-D analysis by the SVM made of NCC and CNR agreed well with the visual assessment for the non-processed and noise-reduced images. Therefore, the auto-assessment method for C-D analysis by the SVM will be expected to have the robustness for the non-linear image processing. (author)

  1. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles.

    Science.gov (United States)

    Feres, Magda; Louzoun, Yoram; Haber, Simi; Faveri, Marcelo; Figueiredo, Luciene C; Levin, Liran

    2018-02-01

    The existence of specific microbial profiles for different periodontal conditions is still a matter of debate. The aim of this study was to test the hypothesis that 40 bacterial species could be used to classify patients, utilising machine learning, into generalised chronic periodontitis (ChP), generalised aggressive periodontitis (AgP) and periodontal health (PH). Subgingival biofilm samples were collected from patients with AgP, ChP and PH and analysed for their content of 40 bacterial species using checkerboard DNA-DNA hybridisation. Two stages of machine learning were then performed. First of all, we tested whether there was a difference between the composition of bacterial communities in PH and in disease, and then we tested whether a difference existed in the composition of bacterial communities between ChP and AgP. The data were split in each analysis to 70% train and 30% test. A support vector machine (SVM) classifier was used with a linear kernel and a Box constraint of 1. The analysis was divided into two parts. Overall, 435 patients (3,915 samples) were included in the analysis (PH = 53; ChP = 308; AgP = 74). The variance of the healthy samples in all principal component analysis (PCA) directions was smaller than that of the periodontally diseased samples, suggesting that PH is characterised by a uniform bacterial composition and that the bacterial composition of periodontally diseased samples is much more diverse. The relative bacterial load could distinguish between AgP and ChP. An SVC classifier using a panel of 40 bacterial species was able to distinguish between PH, AgP in young individuals and ChP. © 2017 FDI World Dental Federation.

  2. A novel vector-based method for exclusive overexpression of star-form microRNAs.

    Directory of Open Access Journals (Sweden)

    Bo Qu

    Full Text Available The roles of microRNAs (miRNAs as important regulators of gene expression have been studied intensively. Although most of these investigations have involved the highly expressed form of the two mature miRNA species, increasing evidence points to essential roles for star-form microRNAs (miRNA*, which are usually expressed at much lower levels. Owing to the nature of miRNA biogenesis, it is challenging to use plasmids containing miRNA coding sequences for gain-of-function experiments concerning the roles of microRNA* species. Synthetic microRNA mimics could introduce specific miRNA* species into cells, but this transient overexpression system has many shortcomings. Here, we report that specific miRNA* species can be overexpressed by introducing artificially designed stem-loop sequences into short hairpin RNA (shRNA overexpression vectors. By our prototypic plasmid, designed to overexpress hsa-miR-146b-3p, we successfully expressed high levels of hsa-miR-146b-3p without detectable change of hsa-miR-146b-5p. Functional analysis involving luciferase reporter assays showed that, like natural miRNAs, the overexpressed hsa-miR-146b-3p inhibited target gene expression by 3'UTR seed pairing. Our demonstration that this method could overexpress two other miRNAs suggests that the approach should be broadly applicable. Our novel strategy opens the way for exclusively stable overexpression of miRNA* species and analyzing their unique functions both in vitro and in vivo.

  3. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin.

    Science.gov (United States)

    Tian, Ye; Xu, Yue-Ping; Wang, Guoqing

    2018-05-01

    Drought can have a substantial impact on the ecosystem and agriculture of the affected region and does harm to local economy. This study aims to analyze the relation between soil moisture and drought and predict agricultural drought in Xiangjiang River basin. The agriculture droughts are presented with the Precipitation-Evapotranspiration Index (SPEI). The Support Vector Regression (SVR) model incorporating climate indices is developed to predict the agricultural droughts. Analysis of climate forcing including El Niño Southern Oscillation and western Pacific subtropical high (WPSH) are carried out to select climate indices. The results show that SPEI of six months time scales (SPEI-6) represents the soil moisture better than that of three and one month time scale on drought duration, severity and peaks. The key factor that influences the agriculture drought is the Ridge Point of WPSH, which mainly controls regional temperature. The SVR model incorporating climate indices, especially ridge point of WPSH, could improve the prediction accuracy compared to that solely using drought index by 4.4% in training and 5.1% in testing measured by Nash Sutcliffe efficiency coefficient (NSE) for three month lead time. The improvement is more significant for the prediction with one month lead (15.8% in training and 27.0% in testing) than that with three months lead time. However, it needs to be cautious in selection of the input parameters, since adding redundant information could have a counter effect in attaining a better prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Discrimination of types of polyacrylamide based on near infrared spectroscopy coupled with least square support vector machine].

    Science.gov (United States)

    Zhang, Hong-Guang; Yang, Qin-Min; Lu, Jian-Gang

    2014-04-01

    In this paper, a novel discriminant methodology based on near infrared spectroscopic analysis technique and least square support vector machine was proposed for rapid and nondestructive discrimination of different types of Polyacrylamide. The diffuse reflectance spectra of samples of Non-ionic Polyacrylamide, Anionic Polyacrylamide and Cationic Polyacrylamide were measured. Then principal component analysis method was applied to reduce the dimension of the spectral data and extract of the principal compnents. The first three principal components were used for cluster analysis of the three different types of Polyacrylamide. Then those principal components were also used as inputs of least square support vector machine model. The optimization of the parameters and the number of principal components used as inputs of least square support vector machine model was performed through cross validation based on grid search. 60 samples of each type of Polyacrylamide were collected. Thus a total of 180 samples were obtained. 135 samples, 45 samples for each type of Polyacrylamide, were randomly split into a training set to build calibration model and the rest 45 samples were used as test set to evaluate the performance of the developed model. In addition, 5 Cationic Polyacrylamide samples and 5 Anionic Polyacrylamide samples adulterated with different proportion of Non-ionic Polyacrylamide were also prepared to show the feasibilty of the proposed method to discriminate the adulterated Polyacrylamide samples. The prediction error threshold for each type of Polyacrylamide was determined by F statistical significance test method based on the prediction error of the training set of corresponding type of Polyacrylamide in cross validation. The discrimination accuracy of the built model was 100% for prediction of the test set. The prediction of the model for the 10 mixing samples was also presented, and all mixing samples were accurately discriminated as adulterated samples. The

  5. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  6. LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines.

    Science.gov (United States)

    Xu, Jingting; Hu, Hong; Dai, Yang

    The identification of enhancers is a challenging task. Various types of epigenetic information including histone modification have been utilized in the construction of enhancer prediction models based on a diverse panel of machine learning schemes. However, DNA methylation profiles generated from the whole genome bisulfite sequencing (WGBS) have not been fully explored for their potential in enhancer prediction despite the fact that low methylated regions (LMRs) have been implied to be distal active regulatory regions. In this work, we propose a prediction framework, LMethyR-SVM, using LMRs identified from cell-type-specific WGBS DNA methylation profiles and a weighted support vector machine learning framework. In LMethyR-SVM, the set of cell-type-specific LMRs is further divided into three sets: reliable positive, like positive and likely negative, according to their resemblance to a small set of experimentally validated enhancers in the VISTA database based on an estimated non-parametric density distribution. Then, the prediction model is obtained by solving a weighted support vector machine. We demonstrate the performance of LMethyR-SVM by using the WGBS DNA methylation profiles derived from the human embryonic stem cell type (H1) and the fetal lung fibroblast cell type (IMR90). The predicted enhancers are highly conserved with a reasonable validation rate based on a set of commonly used positive markers including transcription factors, p300 binding and DNase-I hypersensitive sites. In addition, we show evidence that the large fraction of the LMethyR-SVM predicted enhancers are not predicted by ChromHMM in H1 cell type and they are more enriched for the FANTOM5 enhancers. Our work suggests that low methylated regions detected from the WGBS data are useful as complementary resources to histone modification marks in developing models for the prediction of cell-type-specific enhancers.

  7. Fuzzy-based multi-kernel spherical support vector machine for ...

    Indian Academy of Sciences (India)

    A K Sampath

    2017-08-08

    Aug 8, 2017 ... design a new multi-kernel function based on the fuzzy triangular membership function. Finally .... This paper is structured as follows. Section 2 ..... analysis is compared with some existing systems based on the number of ...

  8. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/- Mice from Monkeypoxvirus Lethal Challenge.

    Directory of Open Access Journals (Sweden)

    Valentina Franceschi

    2015-06-01

    Full Text Available Monkeypox virus (MPXV is the etiological agent of human (MPX. It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV, and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4 vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/- mice

  9. Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening.

    Science.gov (United States)

    Heikamp, Kathrin; Bajorath, Jürgen

    2013-07-22

    The choice of negative training data for machine learning is a little explored issue in chemoinformatics. In this study, the influence of alternative sets of negative training data and different background databases on support vector machine (SVM) modeling and virtual screening has been investigated. Target-directed SVM models have been derived on the basis of differently composed training sets containing confirmed inactive molecules or randomly selected database compounds as negative training instances. These models were then applied to search background databases consisting of biological screening data or randomly assembled compounds for available hits. Negative training data were found to systematically influence compound recall in virtual screening. In addition, different background databases had a strong influence on the search results. Our findings also indicated that typical benchmark settings lead to an overestimation of SVM-based virtual screening performance compared to search conditions that are more relevant for practical applications.

  10. A least square support vector machine-based approach for contingency classification and ranking in a large power system

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Soni

    2016-12-01

    Full Text Available This paper proposes an effective supervised learning approach for static security assessment of a large power system. Supervised learning approach employs least square support vector machine (LS-SVM to rank the contingencies and predict the system severity level. The severity of the contingency is measured by two scalar performance indices (PIs: line MVA performance index (PIMVA and Voltage-reactive power performance index (PIVQ. SVM works in two steps. Step I is the estimation of both standard indices (PIMVA and PIVQ that is carried out under different operating scenarios and Step II contingency ranking is carried out based on the values of PIs. The effectiveness of the proposed methodology is demonstrated on IEEE 39-bus (New England system. The approach can be beneficial tool which is less time consuming and accurate security assessment and contingency analysis at energy management center.

  11. Establishment of the Credit Indicator System of Micro Enterprises Based on Support Vector Machine and R-Type Clustering

    Directory of Open Access Journals (Sweden)

    Zhanjiang Li

    2018-01-01

    Full Text Available The micro enterprises’ credit indicators with credit identification ability are selected by the two classification models of Support Vector Machine for the first round of indicator selection and then for the second round of indicator selection, deleting credit indicators with redundant information by clustering variables through the principle of minimum sum of deviation squares. This paper provides a screening model for credit evaluation indicators of micro enterprises and uses credit data of 860 micro enterprises samples in Inner Mongolia in western China for application analysis. The test results show that, first, the constructed final micro enterprises’ credit indicator system is in line with the 5C model; second, the validity test based on the ROC (Receiver Operating Characteristic curve reveals that each of the screened credit evaluation indicators is valid.

  12. Data-Based Control for Humanoid Robots Using Support Vector Regression, Fuzzy Logic, and Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Liyang Wang

    2016-01-01

    Full Text Available Time-varying external disturbances cause instability of humanoid robots or even tip robots over. In this work, a trapezoidal fuzzy least squares support vector regression- (TF-LSSVR- based control system is proposed to learn the external disturbances and increase the zero-moment-point (ZMP stability margin of humanoid robots. First, the humanoid states and the corresponding control torques of the joints for training the controller are collected by implementing simulation experiments. Secondly, a TF-LSSVR with a time-related trapezoidal fuzzy membership function (TFMF is proposed to train the controller using the simulated data. Thirdly, the parameters of the proposed TF-LSSVR are updated using a cubature Kalman filter (CKF. Simulation results are provided. The proposed method is shown to be effective in learning and adapting occasional external disturbances and ensuring the stability margin of the robot.

  13. Attitude Determination Algorithm based on Relative Quaternion Geometry of Velocity Incremental Vectors for Cost Efficient AHRS Design

    Science.gov (United States)

    Lee, Byungjin; Lee, Young Jae; Sung, Sangkyung

    2018-05-01

    A novel attitude determination method is investigated that is computationally efficient and implementable in low cost sensor and embedded platform. Recent result on attitude reference system design is adapted to further develop a three-dimensional attitude determination algorithm through the relative velocity incremental measurements. For this, velocity incremental vectors, computed respectively from INS and GPS with different update rate, are compared to generate filter measurement for attitude estimation. In the quaternion-based Kalman filter configuration, an Euler-like attitude perturbation angle is uniquely introduced for reducing filter states and simplifying propagation processes. Furthermore, assuming a small angle approximation between attitude update periods, it is shown that the reduced order filter greatly simplifies the propagation processes. For performance verification, both simulation and experimental studies are completed. A low cost MEMS IMU and GPS receiver are employed for system integration, and comparison with the true trajectory or a high-grade navigation system demonstrates the performance of the proposed algorithm.

  14. Support Vector Machine Based Monitoring of Cardio-Cerebrovascular Reserve during Simulated Hemorrhage

    Directory of Open Access Journals (Sweden)

    Björn J. P. van der Ster

    2018-01-01

    Full Text Available Introduction: In the initial phase of hypovolemic shock, mean blood pressure (BP is maintained by sympathetically mediated vasoconstriction rendering BP monitoring insensitive to detect blood loss early. Late detection can result in reduced tissue oxygenation and eventually cellular death. We hypothesized that a machine learning algorithm that interprets currently used and new hemodynamic parameters could facilitate in the detection of impending hypovolemic shock.Method: In 42 (27 female young [mean (sd: 24 (4 years], healthy subjects central blood volume (CBV was progressively reduced by application of −50 mmHg lower body negative pressure until the onset of pre-syncope. A support vector machine was trained to classify samples into normovolemia (class 0, initial phase of CBV reduction (class 1 or advanced CBV reduction (class 2. Nine models making use of different features were computed to compare sensitivity and specificity of different non-invasive hemodynamic derived signals. Model features included: volumetric hemodynamic parameters (stroke volume and cardiac output, BP curve dynamics, near-infrared spectroscopy determined cortical brain oxygenation, end-tidal carbon dioxide pressure, thoracic bio-impedance, and middle cerebral artery transcranial Doppler (TCD blood flow velocity. Model performance was tested by quantifying the predictions with three methods: sensitivity and specificity, absolute error, and quantification of the log odds ratio of class 2 vs. class 0 probability estimates.Results: The combination with maximal sensitivity and specificity for classes 1 and 2 was found for the model comprising volumetric features (class 1: 0.73–0.98 and class 2: 0.56–0.96. Overall lowest model error was found for the models comprising TCD curve hemodynamics. Using probability estimates the best combination of sensitivity for class 1 (0.67 and specificity (0.87 was found for the model that contained the TCD cerebral blood flow velocity

  15. Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines

    International Nuclear Information System (INIS)

    Cui Ying; Dy, Jennifer G; Alexander, Brian; Jiang, Steve B

    2008-01-01

    Various problems with the current state-of-the-art techniques for gated radiotherapy have prevented this new treatment modality from being widely implemented in clinical routine. These problems are caused mainly by applying various external respiratory surrogates. There might be large uncertainties in deriving the tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using template matching methods (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007b Phys. Med. Biol. 52 741-55). In this note, our main contribution is to provide a totally different new view of the gating problem by recasting it as a classification problem. Then, we solve this classification problem by a well-studied powerful classification method called a support vector machine (SVM). Note that the goal of an automated gating tool is to decide when to turn the beam ON or OFF. We treat ON and OFF as the two classes in our classification problem. We create our labeled training data during the patient setup session by utilizing the reference gating signal, manually determined by a radiation oncologist. We then pre-process these labeled training images and build our SVM prediction model. During treatment delivery, fluoroscopic images are continuously acquired, pre-processed and sent as an input to the SVM. Finally, our SVM model will output the predicted labels as gating signals. We test the proposed technique on five sequences of fluoroscopic images from five lung cancer patients against the reference gating signal as ground truth. We compare the performance of the SVM to our previous template matching method (Cui et al 2007b Phys. Med. Biol. 52 741-55). We find that the SVM is slightly more accurate on average (1-3%) than

  16. Support Vector Machine Based Monitoring of Cardio-Cerebrovascular Reserve during Simulated Hemorrhage.

    Science.gov (United States)

    van der Ster, Björn J P; Bennis, Frank C; Delhaas, Tammo; Westerhof, Berend E; Stok, Wim J; van Lieshout, Johannes J

    2017-01-01

    Introduction: In the initial phase of hypovolemic shock, mean blood pressure (BP) is maintained by sympathetically mediated vasoconstriction rendering BP monitoring insensitive to detect blood loss early. Late detection can result in reduced tissue oxygenation and eventually cellular death. We hypothesized that a machine learning algorithm that interprets currently used and new hemodynamic parameters could facilitate in the detection of impending hypovolemic shock. Method: In 42 (27 female) young [mean (sd): 24 (4) years], healthy subjects central blood volume (CBV) was progressively reduced by application of -50 mmHg lower body negative pressure until the onset of pre-syncope. A support vector machine was trained to classify samples into normovolemia (class 0), initial phase of CBV reduction (class 1) or advanced CBV reduction (class 2). Nine models making use of different features were computed to compare sensitivity and specificity of different non-invasive hemodynamic derived signals. Model features included : volumetric hemodynamic parameters (stroke volume and cardiac output), BP curve dynamics, near-infrared spectroscopy determined cortical brain oxygenation, end-tidal carbon dioxide pressure, thoracic bio-impedance, and middle cerebral artery transcranial Doppler (TCD) blood flow velocity. Model performance was tested by quantifying the predictions with three methods : sensitivity and specificity, absolute error, and quantification of the log odds ratio of class 2 vs. class 0 probability estimates. Results: The combination with maximal sensitivity and specificity for classes 1 and 2 was found for the model comprising volumetric features (class 1: 0.73-0.98 and class 2: 0.56-0.96). Overall lowest model error was found for the models comprising TCD curve hemodynamics. Using probability estimates the best combination of sensitivity for class 1 (0.67) and specificity (0.87) was found for the model that contained the TCD cerebral blood flow velocity derived

  17. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine.

    Science.gov (United States)

    Madero Orozco, Hiram; Vergara Villegas, Osslan Osiris; Cruz Sánchez, Vianey Guadalupe; Ochoa Domínguez, Humberto de Jesús; Nandayapa Alfaro, Manuel de Jesús

    2015-02-12

    Lung cancer is a leading cause of death worldwide; it refers to the uncontrolled growth of abnormal cells in the lung. A computed tomography (CT) scan of the thorax is the most sensitive method for detecting cancerous lung nodules. A lung nodule is a round lesion which can be either non-cancerous or cancerous. In the CT, the lung cancer is observed as round white shadow nodules. The possibility to obtain a manually accurate interpretation from CT scans demands a big effort by the radiologist and might be a fatiguing process. Therefore, the design of a computer-aided diagnosis (CADx) system would be helpful as a second opinion tool. The stages of the proposed CADx are: a supervised extraction of the region of interest to eliminate the shape differences among CT images. The Daubechies db1, db2, and db4 wavelet transforms are computed with one and two levels of decomposition. After that, 19 features are computed from each wavelet sub-band. Then, the sub-band and attribute selection is performed. As a result, 11 features are selected and combined in pairs as inputs to the support vector machine (SVM), which is used to distinguish CT images containing cancerous nodules from those not containing nodules. The clinical data set used for experiments consists of 45 CT scans from ELCAP and LIDC. For the training stage 61 CT images were used (36 with cancerous lung nodules and 25 without lung nodules). The system performance was tested with 45 CT scans (23 CT scans with lung nodules and 22 without nodules), different from that used for training. The results obtained show that the methodology successfully classifies cancerous nodules with a diameter from 2 mm to 30 mm. The total preciseness obtained was 82%; the sensitivity was 90.90%, whereas the specificity was 73.91%. The CADx system presented is competitive with other literature systems in terms of sensitivity. The system reduces the complexity of classification by not performing the typical segmentation stage of most CADx

  18. VECTOR INTEGRATION

    NARCIS (Netherlands)

    Thomas, E. G. F.

    2012-01-01

    This paper deals with the theory of integration of scalar functions with respect to a measure with values in a, not necessarily locally convex, topological vector space. It focuses on the extension of such integrals from bounded measurable functions to the class of integrable functions, proving

  19. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    International Nuclear Information System (INIS)

    Bricault, Christine A.; Perry, Keith L.

    2013-01-01

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majority of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility

  20. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bricault, Christine A. [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States); Perry, Keith L., E-mail: KLP3@cornell.edu [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States)

    2013-06-05

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majority of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.

  1. Short-term traffic flow prediction model using particle swarm optimization–based combined kernel function-least squares support vector machine combined with chaos theory

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    2016-08-01

    Full Text Available Short-term traffic flow prediction is an important part of intelligent transportation systems research and applications. For further improving the accuracy of short-time traffic flow prediction, a novel hybrid prediction model (multivariate phase space reconstruction–combined kernel function-least squares support vector machine based on multivariate phase space reconstruction and combined kernel function-least squares support vector machine is proposed. The C-C method is used to determine the optimal time delay and the optimal embedding dimension of traffic variables’ (flow, speed, and occupancy time series for phase space reconstruction. The G-P method is selected to calculate the correlation dimension of attractor which is an important index for judging chaotic characteristics of the traffic variables’ series. The optimal input form of combined kernel function-least squares support vector machine model is determined by multivariate phase space reconstruction, and the model’s parameters are optimized by particle swarm optimization algorithm. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. The experimental results suggest that the new proposed model yields better predictions compared with similar models (combined kernel function-least squares support vector machine, multivariate phase space reconstruction–generalized kernel function-least squares support vector machine, and phase space reconstruction–combined kernel function-least squares support vector machine, which indicates that the new proposed model exhibits stronger prediction ability and robustness.

  2. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants.

    Science.gov (United States)

    Kelloniemi, Jani; Mäkinen, Kristiina; Valkonen, Jari P T

    2006-05-01

    Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.

  3. Instruction-Based Clinical Eye-Tracking Study on the Visual Interpretation of Divergence: How Do Students Look at Vector Field Plots?

    Science.gov (United States)

    Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.

    2018-01-01

    Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux…

  4. An introduction to vectors, vector operators and vector analysis

    CERN Document Server

    Joag, Pramod S

    2016-01-01

    Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.

  5. Support Vector Machine and Parametric Wavelet-Based Texture Classification of Stem Cell Images

    National Research Council Canada - National Science Library

    Jeffreys, Christopher

    2004-01-01

    .... Since colony texture is a major discriminating feature in determining quality, we introduce a non-invasive, semi-automated texture-based stem cell colony classification methodology to aid researchers...

  6. Dengue knowledge, attitudes and practices and their impact on community-based vector control in rural Cambodia.

    Science.gov (United States)

    Kumaran, Emmanuelle; Doum, Dyna; Keo, Vanney; Sokha, Ly; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Liverani, Marco; Prasetyo, Didot Budi; Rachmat, Agus; Lopes, Sergio; Hii, Jeffrey; Rithea, Leang; Shafique, Muhammad; Hustedt, John

    2018-02-01

    Globally there are an estimated 390 million dengue infections per year, of which 96 million are clinically apparent. In Cambodia, estimates suggest as many as 185,850 cases annually. The World Health Organization global strategy for dengue prevention aims to reduce mortality rates by 50% and morbidity by 25% by 2020. The adoption of integrated vector management approach using community-based methods tailored to the local context is one of the recommended strategies to achieve these objectives. Understanding local knowledge, attitudes and practices is therefore essential to designing suitable strategies to fit each local context. A Knowledge, Attitudes and Practices survey in 600 randomly chosen households was administered in 30 villages in Kampong Cham which is one of the most populated provinces of Cambodia. KAP surveys were administered to a sub-sample of households where an entomology survey was conducted (1200 households), during which Aedes larval/pupae and adult female Aedes mosquito densities were recorded. Participants had high levels of knowledge regarding the transmission of dengue, Aedes breeding, and biting prevention methods; the majority of participants believed they were at risk and that dengue transmission is preventable. However, self-reported vector control practices did not match observed practices recorded in our surveys. No correlation was found between knowledge and observed practices either. An education campaign regarding dengue prevention in this setting with high knowledge levels is unlikely to have any significant effect on practices unless it is incorporated in a more comprehensive strategy for behavioural change, such a COMBI method, which includes behavioural models as well as communication and marketing theory and practice. ISRCTN85307778.

  7. Dengue knowledge, attitudes and practices and their impact on community-based vector control in rural Cambodia

    Science.gov (United States)

    Doum, Dyna; Keo, Vanney; Sokha, Ly; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Liverani, Marco; Prasetyo, Didot Budi; Rachmat, Agus; Lopes, Sergio; Hii, Jeffrey; Rithea, Leang; Shafique, Muhammad; Hustedt, John

    2018-01-01

    Background Globally there are an estimated 390 million dengue infections per year, of which 96 million are clinically apparent. In Cambodia, estimates suggest as many as 185,850 cases annually. The World Health Organization global strategy for dengue prevention aims to reduce mortality rates by 50% and morbidity by 25% by 2020. The adoption of integrated vector management approach using community-based methods tailored to the local context is one of the recommended strategies to achieve these objectives. Understanding local knowledge, attitudes and practices is therefore essential to designing suitable strategies to fit each local context. Methods and findings A Knowledge, Attitudes and Practices survey in 600 randomly chosen households was administered in 30 villages in Kampong Cham which is one of the most populated provinces of Cambodia. KAP surveys were administered to a sub-sample of households where an entomology survey was conducted (1200 households), during which Aedes larval/pupae and adult female Aedes mosquito densities were recorded. Participants had high levels of knowledge regarding the transmission of dengue, Aedes breeding, and biting prevention methods; the majority of participants believed they were at risk and that dengue transmission is preventable. However, self-reported vector control practices did not match observed practices recorded in our surveys. No correlation was found between knowledge and observed practices either. Conclusion An education campaign regarding dengue prevention in this setting with high knowledge levels is unlikely to have any significant effect on practices unless it is incorporated in a more comprehensive strategy for behavioural change, such a COMBI method, which includes behavioural models as well as communication and marketing theory and practice. Trial registration ISRCTN85307778. PMID:29451879

  8. Classification of Alzheimer's disease patients with hippocampal shape wrapper-based feature selection and support vector machine

    Science.gov (United States)

    Young, Jonathan; Ridgway, Gerard; Leung, Kelvin; Ourselin, Sebastien

    2012-02-01

    It is well known that hippocampal atrophy is a marker of the onset of Alzheimer's disease (AD) and as a result hippocampal volumetry has been used in a number of studies to provide early diagnosis of AD and predict conversion of mild cognitive impairment patients to AD. However, rates of atrophy are not uniform across the hippocampus making shape analysis a potentially more accurate biomarker. This study studies the hippocampi from 226 healthy controls, 148 AD patients and 330 MCI patients obtained from T1 weighted structural MRI images from the ADNI database. The hippocampi are anatomically segmented using the MAPS multi-atlas segmentation method, and the resulting binary images are then processed with SPHARM software to decompose their shapes as a weighted sum of spherical harmonic basis functions. The resulting parameterizations are then used as feature vectors in Support Vector Machine (SVM) classification. A wrapper based feature selection method was used as this considers the utility of features in discriminating classes in combination, fully exploiting the multivariate nature of the data and optimizing the selected set of features for the type of classifier that is used. The leave-one-out cross validated accuracy obtained on training data is 88.6% for classifying AD vs controls and 74% for classifying MCI-converters vs MCI-stable with very compact feature sets, showing that this is a highly promising method. There is currently a considerable fall in accuracy on unseen data indicating that the feature selection is sensitive to the data used, however feature ensemble methods may overcome this.

  9. Energy consumption-based accounts: A comparison of results using different energy extension vectors

    OpenAIRE

    Owen, A; Brockway, P; Brand-Correa, L; Bunse, L; Sakai, M; Barrett, J

    2017-01-01

    Increasing attention has been focussed on the use of consumption-based approaches to energy accounting via input-output (IO) methods. Of particular interest is the examination of energy supply chains, given the associated risks from supply-chain issues, including availability shocks, taxes on fossil fuels and fluctuating energy prices. Using a multiregional IO (MRIO) database to calculate energy consumption-based accounts (CBA) allows analysts to both determine the quantity and source of ener...

  10. A bovine papillomavirus-1 based vector restores the function of the low-density lipoprotein receptor in the receptor-deficient CHO-ldlA7 cell line

    Directory of Open Access Journals (Sweden)

    Ustav Mart

    2002-04-01

    Full Text Available Abstract Background The rationale of using bovine papillomavirus-1 (BPV-1 derived vectors in gene therapy protocols lies in their episomal maintenance at intermediate to high copy number, and stable, high-level expression of the gene products. We constructed the BPV-1 based vector harbouring the human low-density lipoprotein receptor (LDLR gene cDNA and tested its ability to restore the function of the LDLR in the receptor-deficient cell line CHO-ldlA7. Results The introduced vector p3.7LDL produced functionally active LDL receptors in the receptor-deficient cell line CHO-ldlA7 during the 32-week period of observation as determined by the internalisation assay with the labelled LDL particles. Conclusion Bovine papillomavirus type-1 (BPV-1-derived vectors could be suitable for gene therapy due to their episomal maintenance at intermediate to high copy number and stable, high-level expression of the gene products. The constructed BPV-1 based vector p3.7LDL produced functionally active LDL receptors in the LDLR-deficient cell line CHO-ldlA7 during the 32-week period of observation. In vivo experiments should reveal, whether 1–5% transfection efficiency obtained in the current work is sufficient to bring about detectable and clinically significant lowering of the amount of circulating LDL cholesterol particles.

  11. DOA and Polarization Estimation Using an Electromagnetic Vector Sensor Uniform Circular Array Based on the ESPRIT Algorithm.

    Science.gov (United States)

    Wu, Na; Qu, Zhiyu; Si, Weijian; Jiao, Shuhong

    2016-12-13

    In array signal processing systems, the direction of arrival (DOA) and polarization of signals based on uniform linear or rectangular sensor arrays are generally obtained by rotational invariance techniques (ESPRIT). However, since the ESPRIT algorithm relies on the rotational invariant structure of the received data, it cannot be applied to electromagnetic vector sensor arrays (EVSAs) featuring uniform circular patterns. To overcome this limitation, a fourth-order cumulant-based ESPRIT algorithm is proposed in this paper, for joint estimation of DOA and polarization based on a uniform circular EVSA. The proposed algorithm utilizes the fourth-order cumulant to obtain a virtual extended array of a uniform circular EVSA, from which the pairs of rotation invariant sub-arrays are obtained. The ESPRIT algorithm and parameter pair matching are then utilized to estimate the DOA and polarization of the incident signals. The closed-form parameter estimation algorithm can effectively reduce the computational complexity of the joint estimation, which has been demonstrated by numerical simulations.

  12. On POD-based Deflation Vectors for DPCG applied to porous media problems

    NARCIS (Netherlands)

    Diaz Cortes, G.B.; Vuik, C.; Jansen, J.D.

    2018-01-01

    We study fast and robust iterative solvers for large systems of linear equations resulting from simulation of flow trough strongly heterogeneous porous media. We propose the use of preconditioning and deflation techniques, based on information obtained frfrom the system, to reduce the time spent in

  13. Efficient transformation system for Propionibacterium freudenreichii based on a novel vector

    NARCIS (Netherlands)

    Jore, J.P.M.; Luijk, N. van; Luiten, R.G.M.; Werf, M.J. van der; Pouwels, P.H.

    2001-01-01

    A 3.6-kb endogenous plasmid was isolated from a Propionibacterium freudenreichii strain and sequenced completely. Based on homologies with plasmids from other bacteria, notably a plasmid from Mycobacterium, a region harboring putative replicative functions was defined. Outside this region two

  14. Predicting Hepatotoxicity of Drug Metabolites Via an Ensemble Approach Based on Support Vector Machine

    Science.gov (United States)

    Lu, Yin; Liu, Lili; Lu, Dong; Cai, Yudong; Zheng, Mingyue; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2017-11-20

    Drug-induced liver injury (DILI) is a major cause of drug withdrawal. The chemical properties of the drug, especially drug metabolites, play key roles in DILI. Our goal is to construct a QSAR model to predict drug hepatotoxicity based on drug metabolites. 64 hepatotoxic drug metabolites and 3,339 non-hepatotoxic drug metabolites were gathered from MDL Metabolite Database. Considering the imbalance of the dataset, we randomly split the negative samples and combined each portion with all the positive samples to construct individually balanced datasets for constructing independent classifiers. Then, we adopted an ensemble approach to make prediction based on the results of all individual classifiers and applied the minimum Redundancy Maximum Relevance (mRMR) feature selection method to select the molecular descriptors. Eventually, for the drugs in the external test set, a Bayesian inference method was used to predict the hepatotoxicity of a drug based on its metabolites. The model showed the average balanced accuracy=78.47%, sensitivity =74.17%, and specificity=82.77%. Five molecular descriptors characterizing molecular polarity, intramolecular bonding strength, and molecular frontier orbital energy were obtained. When predicting the hepatotoxicity of a drug based on all its metabolites, the sensitivity, specificity and balanced accuracy were 60.38%, 70.00%, and 65.19%, respectively, indicating that this method is useful for identifying the hepatotoxicity of drugs. We developed an in silico model to predict hepatotoxicity of drug metabolites. Moreover, Bayesian inference was applied to predict the hepatotoxicity of a drug based on its metabolites which brought out valuable high sensitivity and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy.

    Science.gov (United States)

    Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang

    2016-01-01

    For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.

  16. Structural health monitoring based on sensitivity vector fields and attractor morphing.

    Science.gov (United States)

    Yin, Shih-Hsun; Epureanu, Bogdan I

    2006-09-15

    The dynamic responses of a thermo-shielding panel forced by unsteady aerodynamic loads and a classical Duffing oscillator are investigated to detect structural damage. A nonlinear aeroelastic model is obtained for the panel by using third-order piston theory to model the unsteady supersonic flow, which interacts with the panel. To identify damage, we analyse the morphology (deformation and movement) of the attractor of the dynamics of the aeroelastic system and the Duffing oscillator. Damages of various locations, extents and levels are shown to be revealed by the attractor-based analysis. For the panel, the type of damage considered is a local reduction in the bending stiffness. For the Duffing oscillator, variations in the linear and nonlinear stiffnesses and damping are considered as damage. Present studies of such problems are based on linear theories. In contrast, the presented approach using nonlinear dynamics has the potential of enhancing accuracy and sensitivity of detection.

  17. Operational Mosquito and Vector-Borne Diseases Surveillance at Incirlik Air Base, Turkey

    Science.gov (United States)

    2017-05-23

    of Biological Diversity , Columbus, OH, or the - cies and tested for arboviruses. Pools ranged from 1-25 mosquitoes depending on submission numbers...Rickettsia felis (Rickett- - phonaptera: Pulicidae) in the Philippines . J Ento- mol Sci. 2012;47:95-96. Mosquito surveillance data from Incirlik Air Base...Taylor SJ, Durden LA, Foley EH, Reeves WK. The bat tick Carios azteci (Acari: Argasidae) from Be- lize, with an endosymbiotic Coxiellaceae. Speleo

  18. Well-defined polypeptide-based systems as non-viral vectors for cytosolic delivery

    OpenAIRE

    Niño Pariente, Amaya

    2017-01-01

    A convenient cytosolic drug delivery constitutes a very powerful tool for the treatment and/or prevention of several relevant human diseases. Along with recent advances in therapeutic technologies based on biomacromolecules (e.g. oligonucleotides or proteins), we also require the development of technologies which improve the transport of therapeutic molecules to the cell of choice. This has led to the emergence of a variety of promising methods over the last 20 years. Despite significant prog...

  19. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    Science.gov (United States)

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  20. Orthogonality-breaking sensing model based on the instantaneous Stokes vector and the Mueller calculus

    Science.gov (United States)

    Ortega-Quijano, Noé; Fade, Julien; Roche, Muriel; Parnet, François; Alouini, Mehdi

    2016-04-01

    Polarimetric sensing by orthogonality breaking has been recently proposed as an alternative technique for performing direct and fast polarimetric measurements using a specific dual-frequency dual-polarization (DFDP) source. Based on the instantaneous Stokes-Mueller formalism to describe the high-frequency evolution of the DFDP beam intensity, we thoroughly analyze the interaction of such a beam with birefringent, dichroic and depolarizing samples. This allows us to confirm that orthogonality breaking is produced by the sample diattenuation, whereas this technique is immune to both birefringence and diagonal depolarization. We further analyze the robustness of this technique when polarimetric sensing is performed through a birefringent waveguide, and the optimal DFDP source configuration for fiber-based endoscopic measurements is subsequently identified. Finally, we consider a stochastic depolarization model based on an ensemble of random linear diattenuators, which makes it possible to understand the progressive vanishing of the detected orthogonality breaking signal as the spatial heterogeneity of the sample increases, thus confirming the insensitivity of this method to diagonal depolarization. The fact that the orthogonality breaking signal is exclusively due to the sample dichroism is an advantageous feature for the precise decoupled characterization of such an anisotropic parameter in samples showing several simultaneous effects.

  1. Scaling up graph-based semisupervised learning via prototype vector machines.

    Science.gov (United States)

    Zhang, Kai; Lan, Liang; Kwok, James T; Vucetic, Slobodan; Parvin, Bahram

    2015-03-01

    When the amount of labeled data are limited, semisupervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via l1 -regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning.

  2. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    Science.gov (United States)

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  3. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  4. Cell Phone-Based System (Chaak) for Surveillance of Immatures of Dengue Virus Mosquito Vectors

    Science.gov (United States)

    LOZANO–FUENTES, SAUL; WEDYAN, FADI; HERNANDEZ–GARCIA, EDGAR; SADHU, DEVADATTA; GHOSH, SUDIPTO; BIEMAN, JAMES M.; TEP-CHEL, DIANA; GARCÍA–REJÓN, JULIÁN E.; EISEN, LARS

    2014-01-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, México, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network. PMID:23926788

  5. The Application of Vector Fitting to Eigenvalue-based Harmonic Stability Analysis

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Yoon, Changwoo; Hjerrild, Jesper

    2017-01-01

    Participation factor analysis is an interesting feature of the eigenvalue-based stability analysis in a power system, which enables the developers to identify the problematic elements in a multi-vendor project like in an offshore wind power plant. However, this method needs a full state space model...... of the elements that is not always possible to have in a competitive world due to confidentiality. In this paper, by using an identification method, the state space models for power converters are extracted from the provided data by the suppliers. Some uncertainties in the identification process are also...

  6. Cancer classification through filtering progressive transductive support vector machine based on gene expression data

    Science.gov (United States)

    Lu, Xinguo; Chen, Dan

    2017-08-01

    Traditional supervised classifiers neglect a large amount of data which not have sufficient follow-up information, only work with labeled data. Consequently, the small sample size limits the advancement of design appropriate classifier. In this paper, a transductive learning method which combined with the filtering strategy in transductive framework and progressive labeling strategy is addressed. The progressive labeling strategy does not need to consider the distribution of labeled samples to evaluate the distribution of unlabeled samples, can effective solve the problem of evaluate the proportion of positive and negative samples in work set. Our experiment result demonstrate that the proposed technique have great potential in cancer prediction based on gene expression.

  7. Computing the sparse matrix vector product using block-based kernels without zero padding on processors with AVX-512 instructions

    Directory of Open Access Journals (Sweden)

    Bérenger Bramas

    2018-04-01

    Full Text Available The sparse matrix-vector product (SpMV is a fundamental operation in many scientific applications from various fields. The High Performance Computing (HPC community has therefore continuously invested a lot of effort to provide an efficient SpMV kernel on modern CPU architectures. Although it has been shown that block-based kernels help to achieve high performance, they are difficult to use in practice because of the zero padding they require. In the current paper, we propose new kernels using the AVX-512 instruction set, which makes it possible to use a blocking scheme without any zero padding in the matrix memory storage. We describe mask-based sparse matrix formats and their corresponding SpMV kernels highly optimized in assembly language. Considering that the optimal blocking size depends on the matrix, we also provide a method to predict the best kernel to be used utilizing a simple interpolation of results from previous executions. We compare the performance of our approach to that of the Intel MKL CSR kernel and the CSR5 open-source package on a set of standard benchmark matrices. We show that we can achieve significant improvements in many cases, both for sequential and for parallel executions. Finally, we provide the corresponding code in an open source library, called SPC5.

  8. Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems

    International Nuclear Information System (INIS)

    Santos, P.J.; Martins, A.G.; Pires, A.J.

    2007-01-01

    The present trend to electricity market restructuring increases the need for reliable short-term load forecast (STLF) algorithms, in order to assist electric utilities in activities such as planning, operating and controlling electric energy systems. Methodologies such as artificial neural networks (ANN) have been widely used in the next hour load forecast horizon with satisfactory results. However, this type of approach has had some shortcomings. Usually, the input vector (IV) is defined in a arbitrary way, mainly based on experience, on engineering judgment criteria and on concern about the ANN dimension, always taking into consideration the apparent correlations within the available endogenous and exogenous data. In this paper, a proposal is made of an approach to define the IV composition, with the main focus on reducing the influence of trial-and-error and common sense judgments, which usually are not based on sufficient evidence of comparative advantages over previous alternatives. The proposal includes the assessment of the strictly necessary instances of the endogenous variable, both from the point of view of the contiguous values prior to the forecast to be made, and of the past values representing the trend of consumption at homologous time intervals of the past. It also assesses the influence of exogenous variables, again limiting their presence at the IV to the indispensable minimum. A comparison is made with two alternative IV structures previously proposed in the literature, also applied to the distribution sector. The paper is supported by a real case study at the distribution sector. (author)

  9. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    Directory of Open Access Journals (Sweden)

    Yu-Fei Gao

    2017-04-01

    Full Text Available This paper investigates a two-dimensional angle of arrival (2D AOA estimation algorithm for the electromagnetic vector sensor (EMVS array based on Type-2 block component decomposition (BCD tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD method.

  10. THE LOW BACKSCATTERING OBJECTS CLASSIFICATION IN POLSAR IMAGE BASED ON BAG OF WORDS MODEL USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    L. Yang

    2018-04-01

    Full Text Available Due to the forward scattering and block of radar signal, the water, bare soil, shadow, named low backscattering objects (LBOs, often present low backscattering intensity in polarimetric synthetic aperture radar (PolSAR image. Because the LBOs rise similar backscattering intensity and polarimetric responses, the spectral-based classifiers are inefficient to deal with LBO classification, such as Wishart method. Although some polarimetric features had been exploited to relieve the confusion phenomenon, the backscattering features are still found unstable when the system noise floor varies in the range direction. This paper will introduce a simple but effective scene classification method based on Bag of Words (BoW model using Support Vector Machine (SVM to discriminate the LBOs, without relying on any polarimetric features. In the proposed approach, square windows are firstly opened around the LBOs adaptively to determine the scene images, and then the Scale-Invariant Feature Transform (SIFT points are detected in training and test scenes. The several SIFT features detected are clustered using K-means to obtain certain cluster centers as the visual word lists and scene images are represented using word frequency. At last, the SVM is selected for training and predicting new scenes as some kind of LBOs. The proposed method is executed over two AIRSAR data sets at C band and L band, including water, bare soil and shadow scenes. The experimental results illustrate the effectiveness of the scene method in distinguishing LBOs.

  11. Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector

    Directory of Open Access Journals (Sweden)

    Tsung-Hsien Chen

    2017-05-01

    Full Text Available Japanese encephalitis virus (JEV is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP strategy based on bamboo mosaic virus (BaMV for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.

  12. Knowledge and practices related to dengue and its vector: a community-based study from Southeast Brazil.

    Science.gov (United States)

    Alves, Adorama Candido; Fabbro, Amaury Lelis Dal; Passos, Afonso Dinis Costa; Carneiro, Ariadne Fernanda Tesarin Mendes; Jorge, Tatiane Martins; Martinez, Edson Zangiacomi

    2016-04-01

    This study investigated the knowledge of users of primary healthcare services living in Ribeirão Preto, Brazil, about dengue and its vector. A cross-sectional survey of 605 people was conducted following a major dengue outbreak in 2013. Participants with higher levels of education were more likely to identify correctly the vector of the disease. The results emphasize the relevance of health education programs, the continuous promotion of educational campaigns in the media, the role of the television as a source of information, and the importance of motivating the population to control the vector.

  13. Knowledge and practices related to dengue and its vector: a community-based study from Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Adorama Candido Alves

    2016-04-01

    Full Text Available Abstract INTRODUCTION: This study investigated the knowledge of users of primary healthcare services living in Ribeirão Preto, Brazil, about dengue and its vector. METHODS: A cross-sectional survey of 605 people was conducted following a major dengue outbreak in 2013. RESULTS: Participants with higher levels of education were more likely to identify correctly the vector of the disease. CONCLUSIONS: The results emphasize the relevance of health education programs, the continuous promotion of educational campaigns in the media, the role of the television as a source of information, and the importance of motivating the population to control the vector.

  14. Satellite Fault Diagnosis Using Support Vector Machines Based on a Hybrid Voting Mechanism

    Science.gov (United States)

    Yang, Shuqiang; Zhu, Xiaoqian; Jin, Songchang; Wang, Xiang

    2014-01-01

    The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved. PMID:25215324

  15. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  16. Obfuscated RSUs Vector Based Signature Scheme for Detecting Conspiracy Sybil Attack in VANETs

    Directory of Open Access Journals (Sweden)

    Xia Feng

    2017-01-01

    Full Text Available Given the popularity of vehicular Ad hoc networks (VANETs in traffic management, a new challenging issue comes into traffic safety, that is, security of the networks, especially when the adversary breaks defence. Sybil attack, for example, is a potential security threat through forging several identities to carry out attacks in VANETs. At this point, the paper proposed a solution named DMON that is a Sybil attack detection method with obfuscated neighbor relationship of Road Side Units (RSUs. DMON presents a ring signature based identification scheme and replaces vehicles’ identities with their trajectory for the purpose of anonymity. Furthermore, the neighbor relationship of RSUs is obfuscated to achieve privacy preserving of locations. The proposed scheme has been formally proved in the views of security and performance. Simulation has also been implemented to validate the scheme, in which the findings reveal the lower computational overhead and higher detection rate comparing with other related solutions.

  17. Satellite Fault Diagnosis Using Support Vector Machines Based on a Hybrid Voting Mechanism

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved.

  18. Impact of Education Campaign on Community-Based Vector Control in Hastening the Process of Elimination of Lymphatic Filariasis in Tamil Nadu, South India

    Science.gov (United States)

    Nandha, B.; Krishnamoorthy, K.

    2012-01-01

    Globally mosquito-borne lymphatic filariasis (LF) is targeted for elimination by 2020. Towards this goal, the scope of community-based vector control as a supplementary strategy to mass drug administration (MDA) was assessed through an intensive education campaign and evaluated using pre- and post-educational surveys in an intervention and…

  19. A Matrix-Based Structure for Vario-Scale Vector Representation over a Wide Range of Map Scales : The Case of River Network Data

    NARCIS (Netherlands)

    Huang, L.; Ai, Tinghua; van Oosterom, P.J.M.; Yan, Xiongfeng; Yang, Min

    2017-01-01

    The representation of vector data at variable scales has been widely applied in geographic information systems and map-based services. When the scale changes across a wide range, a complex generalization that involves multiple operations is required to transform the data. To present such complex

  20. A Simple and High Performing Rate Control Initialization Method for H.264 AVC Coding Based on Motion Vector Map and Spatial Complexity at Low Bitrate

    Directory of Open Access Journals (Sweden)

    Yalin Wu

    2014-01-01

    Full Text Available The temporal complexity of video sequences can be characterized by motion vector map which consists of motion vectors of each macroblock (MB. In order to obtain the optimal initial QP (quantization parameter for the various video sequences which have different spatial and temporal complexities, this paper proposes a simple and high performance initial QP determining method based on motion vector map and temporal complexity to decide an initial QP in given target bit rate. The proposed algorithm produces the reconstructed video sequences with outstanding and stable quality. For any video sequences, the initial QP can be easily determined from matrices by target bit rate and mapped spatial complexity using proposed mapping method. Experimental results show that the proposed algorithm can show more outstanding objective and subjective performance than other conventional determining methods.

  1. Video Vectorization via Tetrahedral Remeshing.

    Science.gov (United States)

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  2. SUPPORT VECTOR MACHINE CLASSIFICATION OF OBJECT-BASED DATA FOR CROP MAPPING, USING MULTI-TEMPORAL LANDSAT IMAGERY

    Directory of Open Access Journals (Sweden)

    R. Devadas

    2012-07-01

    Full Text Available Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to develop robust remote sensing techniques, applicable across a large geographic extent, for state-wide mapping of cropping history in Queensland, Australia. In this context, traditional pixel-based classification was analysed in comparison with image object-based classification using advanced supervised machine-learning algorithms such as Support Vector Machine (SVM. For the Darling Downs region of southern Queensland we gathered a set of Landsat TM images from the 2010–2011 cropping season. Landsat data, along with the vegetation index images, were subjected to multiresolution segmentation to obtain polygon objects. Object-based methods enabled the analysis of aggregated sets of pixels, and exploited shape-related and textural variation, as well as spectral characteristics. SVM models were chosen after examining three shape-based parameters, twenty-three textural parameters and ten spectral parameters of the objects. We found that the object-based methods were superior to the pixel-based methods for classifying 4 major landuse/land cover classes, considering the complexities of within field spectral heterogeneity and spectral mixing. Comparative analysis clearly revealed that higher overall classification accuracy (95% was observed in the object-based SVM compared with that of traditional pixel-based classification (89% using maximum likelihood classifier (MLC. Object-based classification also resulted speckle-free images. Further, object-based SVM models were used to classify different broadacre crop types for summer and winter seasons. The influence of

  3. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.

    Science.gov (United States)

    Mazumder, Oishee; Kundu, Ananda Sankar; Lenka, Prasanna Kumar; Bhaumik, Subhasis

    2016-10-01

    Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a 'dendogram-based support vector machine' (DSVM) which can be used to control a lower-limb exoskeleton. A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities. The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Vectorization in quantum chemistry

    International Nuclear Information System (INIS)

    Saunders, V.R.

    1987-01-01

    It is argued that the optimal vectorization algorithm for many steps (and sub-steps) in a typical ab initio calculation of molecular electronic structure is quite strongly dependent on the target vector machine. Details such as the availability (or lack) of a given vector construct in the hardware, vector startup times and asymptotic rates must all be considered when selecting the optimal algorithm. Illustrations are drawn from: gaussian integral evaluation, fock matrix construction, 4-index transformation of molecular integrals, direct-CI methods, the matrix multiply operation. A cross comparison of practical implementations on the CDC Cyber 205, the Cray-IS and Cray-XMP machines is presented. To achieve portability while remaining optimal on a wide range of machines it is necessary to code all available algorithms in a machine independent manner, and to select the appropriate algorithm using a procedure which is based on machine dependent parameters. Most such parameters concern the timing of certain vector loop kernals, which can usually be derived from a 'bench-marking' routine executed prior to the calculation proper

  5. Bunyavirus-Vector Interactions

    Directory of Open Access Journals (Sweden)

    Kate McElroy Horne

    2014-11-01

    Full Text Available The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family.

  6. Duality in vector optimization

    CERN Document Server

    Bot, Radu Ioan

    2009-01-01

    This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. After a preliminary chapter dedicated to convex analysis and minimality notions of sets with respect to partial orderings induced by convex cones a chapter on scalar conjugate duality follows. Then investigations on vector duality based on scalar conjugacy are made. Weak, strong and converse duality statements are delivered and connections to classical results from the literature are emphasized. One chapter is exclusively consecrated to the s

  7. Particle swarm optimization based support vector machine for damage level prediction of non-reshaped berm breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, N.; Mandal, S.; Rao, S.; Patil, S.G.

    breakwater. Soft computing tools like Artificial Neural Network, Fuzzy Logic, Support Vector Machine (SVM), etc, are successfully used to solve complex problems. In the present study, SVM and hybrid of Particle Swarm Optimization (PSO) with SVM (PSO...

  8. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine].

    Science.gov (United States)

    Li, Wu; Hu, Bing; Wang, Ming-wei

    2014-12-01

    In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species

  9. Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling

    International Nuclear Information System (INIS)

    Che Jinxing; Wang Jianzhou

    2010-01-01

    In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.

  10. Field data-based mathematical modeling by Bode equations and vector fitting algorithm for renewable energy applications

    Science.gov (United States)

    W. Hasan, W. Z.

    2018-01-01

    The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system’s modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model. PMID:29351554

  11. A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine

    International Nuclear Information System (INIS)

    Zhou, Zhifang; Xiao, Tian; Chen, Xiaohong; Wang, Chang

    2016-01-01

    Chinese heavy-polluting industrial enterprises, especially petrochemical or chemical industry, labeled low carbon efficiency and high emission load, are facing the tremendous pressure of emission reduction under the background of global shortage of energy supply and constrain of carbon emission. However, due to the limited amount of theoretic and practical research in this field, problems like lacking prediction indicators or models, and the quantified standard of carbon risk remain unsolved. In this paper, the connotation of carbon risk and an assessment index system for Chinese heavy-polluting industrial enterprises (eg. coal enterprise, petrochemical enterprises, chemical enterprises et al.) based on support vector machine are presented. By using several heavy-polluting industrial enterprises’ related data, SVM model is trained to predict the carbon risk level of a specific enterprise, which allows the enterprise to identify and manage its carbon risks. The result shows that this method can predict enterprise’s carbon risk level in an efficient, accurate way with high practical application and generalization value.

  12. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    International Nuclear Information System (INIS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-01-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  13. Prediction of Antimicrobial Peptides Based on Sequence Alignment and Support Vector Machine-Pairwise Algorithm Utilizing LZ-Complexity

    Directory of Open Access Journals (Sweden)

    Xin Yi Ng

    2015-01-01

    Full Text Available This study concerns an attempt to establish a new method for predicting antimicrobial peptides (AMPs which are important to the immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time. Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is newly introduced to predict AMPs by integrating sequence alignment and support vector machine- (SVM- LZ complexity pairwise algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28% in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and 78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity.

  14. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    Science.gov (United States)

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  15. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    Science.gov (United States)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  16. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM with modified evolutionary particle swarm optimisation (EPSO algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO-Time Varying Acceleration Coefficient (TVAC technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  17. Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a developmental neuropsychiatric disorder with the cardinal symptoms of motor and vocal tics which emerges in early childhood and fluctuates in severity in later years. To date, the neural basis of TS is not fully understood yet and TS has a long-term prognosis that is difficult to accurately estimate. Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy children and TS children. Here we apply Tract-Based Spatial Statistics (TBSS) method to 44 TS children and 48 age and gender matched healthy children in order to extract the diffusion values from each voxel in the white matter (WM) skeleton, and a feature selection algorithm (ReliefF) was used to select the most salient voxels for subsequent classification with support vector machine (SVM). We use a nested cross validation to yield an unbiased assessment of the classification method and prevent overestimation. The accuracy (88.04%), sensitivity (88.64%) and specificity (87.50%) were achieved in our method as peak performance of the SVM classifier was achieved using the axial diffusion (AD) metric, demonstrating the potential of a joint TBSS and SVM pipeline for fast, objective classification of healthy and TS children. These results support that our methods may be useful for the early identification of subjects with TS, and hold promise for predicting prognosis and treatment outcome for individuals with TS.

  18. The employment of Support Vector Machine to classify high and low performance archers based on bio-physiological variables

    Science.gov (United States)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair

    2018-04-01

    The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.

  19. Inverse Modeling of Soil Hydraulic Parameters Based on a Hybrid of Vector-Evaluated Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2018-01-01

    Full Text Available The accurate estimation of soil hydraulic parameters (θs, α, n, and Ks of the van Genuchten–Mualem model has attracted considerable attention. In this study, we proposed a new two-step inversion method, which first estimated the hydraulic parameter θs using objective function by the final water content, and subsequently estimated the soil hydraulic parameters α, n, and Ks, using a vector-evaluated genetic algorithm and particle swarm optimization (VEGA-PSO method based on objective functions by cumulative infiltration and infiltration rate. The parameters were inversely estimated for four types of soils (sand, loam, silt, and clay under an in silico experiment simulating the tension disc infiltration at three initial water content levels. The results indicated that the method is excellent and robust. Because the objective function had multilocal minima in a tiny range near the true values, inverse estimation of the hydraulic parameters was difficult; however, the estimated soil water retention curves and hydraulic conductivity curves were nearly identical to the true curves. In addition, the proposed method was able to estimate the hydraulic parameters accurately despite substantial measurement errors in initial water content, final water content, and cumulative infiltration, proving that the method was feasible and practical for field application.

  20. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengjun, E-mail: wufengjun@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Cui, Yuan [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Hongbin [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Zhang, Huajian [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Bin [University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohui [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.