WorldWideScience

Sample records for based motion sensorless

  1. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2009-01-01

    This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using th...... electrical degrees in less than 2 ms test time....

  2. I-F starting method with smooth transition to EMF based motion-sensorless vector control of PM synchronous motor/generator

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Fatu, M.

    2008-01-01

    This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents with the r......This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents......-adaptive compensator to eliminate dc-offset and phase-delay. Digital simulations for PMSM start-up with full load torque are presented for different initial rotor-positions. The transitions from I-f to emf motion-sensorless vector control and back as well, at very low-speeds, are fully validated by experimental...

  3. IPMSM Motion-Sensorless Direct Torque and Flux Control

    DEFF Research Database (Denmark)

    Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede

    2005-01-01

    The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...... provides for a smooth current waveform even at 1 rpm. The paper demonstrates through ample experiments a 1750 rpm 1 1 rpm speed range full-loaded with sensorless DTFC-SVM....

  4. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

    DEFF Research Database (Denmark)

    Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

  5. Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines

    DEFF Research Database (Denmark)

    Fatu, Marius; Lascu, Cristian; Andreescu, Gheorghe-Daniel

    2007-01-01

    This paper describes a variable-speed motion-sensorless permanent magnet synchronous generator (PMSG) control system for wind energy generation. The proposed system contains a PMSG connected to the grid by a back-to-back PWM inverter with bidirectional power flow, a line filter, and a transformer....... The control system employs PI current controllers with crosscoupling decoupling for both inverters, an active power controller, and a DC link voltage controller. The PMSG rotor speed without using emf integration, and the line voltage frequency are estimated by two PLL based observers. A Dmodule filter...

  6. Motion Sensorless Control of BLDC PM Motor with Offline FEM Info Assisted State Observer

    DEFF Research Database (Denmark)

    Stirban, Alin; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2010-01-01

    This paper describes a new offline FEM assisted position and speed observer, for brushless dc (BLDC) PM motor drive sensorless control, based on the line-to-line PM flux linkage estimation. The zero-crossing of the line-to-line PM flux linkage occurs right in the middle of two commutation points...... identification. Digital simulations and experimental results are shown, demonstrating the reliability of the FEM assisted position and speed observer for BLDC PM motor sensorless control operation....

  7. Grid to Standalone Transition Motion-Sensorless Dual-Inverter Control of PMSG With Asymmetrical Grid Voltage Sags and Harmonics Filtering

    DEFF Research Database (Denmark)

    Fatu, M.; Blaabjerg, Frede; Boldea, I.

    2014-01-01

    This paper describes a variable-speed motion-sensorless control system for permanent-magnet synchronous generator (PMSG) connected to grid via back-to-back inverters for wind energy generation. The grid-side inverter control system employs proportional-integral (PI) current controllers with cross...... and automatic seamless transfer method from grid connected to stand alone and vice versa. In stand-alone mode, a voltage control scheme with selective harmonic compensation is employed. The PMSG motion-sensorless control system uses an active power controller and a PLL-based observer to estimate the rotor...... and voltage harmonics compensation. While some of the aforementioned issues have been treated rather individually in previous conference publications of the authors, the present paper integrates them into a comprehensive control system of PMSG....

  8. Optimal model-based sensorless adaptive optics for epifluorescence microscopy.

    Science.gov (United States)

    Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel

    2018-01-01

    We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.

  9. Sensorless load torque estimation and passivity based control of buck converter fed DC motor.

    Science.gov (United States)

    Kumar, S Ganesh; Thilagar, S Hosimin

    2015-01-01

    Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper.

  10. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarliţă, Sorin-Cristian; Boldea, I.; Blaabjerg, Frede

    2011-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  11. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  12. Contrast-based sensorless adaptive optics for retinal imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  13. An Approach to Sensorless Detection of Human Input Torque and Its Application to Power Assist Motion in Electric Wheelchair

    Science.gov (United States)

    Kaida, Yukiko; Murakami, Toshiyuki

    A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.

  14. Fault detection Based Bayesian network and MOEA/D applied to Sensorless Drive Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhou Qing

    2017-01-01

    Full Text Available Sensorless Drive Diagnosis can be used to assess the process data without the need for additional cost-intensive sensor technology, and you can understand the synchronous motor and connecting parts of the damaged state. Considering the number of features involved in the process data, it is necessary to perform feature selection and reduce the data dimension in the process of fault detection. In this paper, the MOEA / D algorithm based on multi-objective optimization is used to obtain the weight vector of all the features in the original data set. It is more suitable to classify or make decisions based on these features. In order to ensure the fastness and convenience sensorless drive diagnosis, in this paper, the classic Bayesian network learning algorithm-K2 algorithm is used to study the network structure of each feature in sensorless drive, which makes the fault detection and elimination process more targeted.

  15. I-f Starting and Active Flux Based Sensorless Vector Control of Reluctance Synchronous Motors, with Experiments

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Christian; Fatu, M.; Tutelea, L. N.

    2010-01-01

    This paper presents a novel, hybrid, motion sensorless control of an axially laminated anisotropic (ALA) reluctance synchronous machine (RSM). By separately controlling Id and Iq currents with the reference currents Id*, Iq* being held constant, and ramping the reference frequency, the motor starts...

  16. Design Methodology of a Brushless IPM Machine for a Zero Speed Injection Based Sensorless Control

    OpenAIRE

    Godbehere, Jonathan; Wrobel, Rafal; Drury, David; Mellor, Phil

    2015-01-01

    In this paper a design approach for a sensorless controlled, brushless, interior permanent magnet machine is attained. An initial study based on established electrical machine formulas provides the machine’s basic geometrical sizing. The next design stage combines a particle swarm optimisation (PSO) search routine with a magneto-static finite element (FE) solver to provide a more in depth optimisation. The optimisation system has been formulated to derive alternative machine design variants, ...

  17. Development of sensorless easy-to-use overhead crane system via simulation based control

    Science.gov (United States)

    Tagawa, Yasutaka; Mori, Yoshihito; Wada, Masaomi; Kawajiri, Eisaku; Nouzuka, Kazuma

    2016-09-01

    This paper describes the newly developed overhead crane which has a sensorless vibration control system. Generally, loads which are carried by the overhead cranes are easy to vibrate and only skilled people can operate the cranes. Therefore, a lot of studies have been done to solve this problem by using feedback control with vibration sensors. However vibration sensors often break down in severe industrial environment and more reliable control systems are required. For this reason, we have been developing sensorless control system for overhead cranes. In this paper, we firstly introduce basic idea of simulation based control which is called IDCS, then overview and modeling of the overhead crane is presented. Next, the control system design of the overhead crane is discussed, and experimental results are shown for real overhead crane with 2 axes.

  18. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  19. Analysis of influence on back-EMF based sensorless control of PMSM due to parameter variations and measurement errors

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    To achieve better performance of sensorless control of PMSM, a precise and stable estimation of rotor position and speed is required. Several parameter uncertainties and variable measurement errors may lead to estimation error, such as resistance and inductance variations due to temperature...... and flux saturation, current and voltage errors due to measurement uncertainties, and signal delay caused by hardwares. This paper reveals some inherent principles for the performance of the back-EMF based sensorless algorithm embedded in a surface mounted PMSM system adapting vector control strategy...

  20. Comparison of sensorless dimming control based on building modeling and solar power generation

    International Nuclear Information System (INIS)

    Lee, Naeun; Kim, Jonghun; Jang, Cheolyong; Sung, Yoondong; Jeong, Hakgeun

    2015-01-01

    Artificial lighting in office buildings accounts for about 30% of the total building energy consumption. Lighting energy is important to reduce building energy consumption since artificial lighting typically has a relatively large energy conversion factor. Therefore, previous studies have proposed a dimming control using daylight. When applied dimming control, method based on building modeling does not need illuminance sensors. Thus, it can be applied to existing buildings that do not have illuminance sensors. However, this method does not accurately reflect real-time weather conditions. On the other hand, solar power generation from a PV (photovoltaic) panel reflects real-time weather conditions. The PV panel as the sensor improves the accuracy of dimming control by reflecting disturbance. Therefore, we compared and analyzed two types of sensorless dimming controls: those based on the building modeling and those that based on solar power generation using PV panels. In terms of energy savings, we found that a dimming control based on building modeling is more effective than that based on solar power generation by about 6%. However, dimming control based on solar power generation minimizes the inconvenience to occupants and can also react to changes in solar radiation entering the building caused by dirty window. - Highlights: • We conducted sensorless dimming control based on solar power generation. • Dimming controls using building modeling and solar power generation were compared. • The real time weather conditions can be considered by using solar power generation. • Dimming control using solar power generation minimizes inconvenience to occupants

  1. Sensorless sliding mode torque control of an IPMSM drive based on active flux concept

    Directory of Open Access Journals (Sweden)

    A.A. Hassan

    2012-03-01

    Full Text Available This paper investigates a novel direct torque control of a sensorless interior permanent magnet synchronous motor based on a sliding mode technique. The speed and position of the interior permanent magnet synchronous motor are estimated online based on active flux concept. To overcome the large ripple content associated with the direct torque, a torque/flux sliding mode controller has been employed. Two integral surface functions are used to construct the sliding mode controller. The command voltage is estimated from the torque and flux errors based on the two switching functions. The idea of the total sliding mode is used to eliminate the problem of reaching phase stability. The space vector modulation is combined with the sliding mode controller to ensure minimum torque and flux ripples and provides high resolution voltage control. The proposed scheme has the advantages of simple implementation, and does not require an external signal injection. In addition, it combines the merits of the direct torque control, sliding mode controller, and space vector modulation besides to the sensorless control. Simulation works are carried out to demonstrate the ability of the proposed scheme at different operating conditions. The results confirm the high performance of the proposed scheme at standstill, low and high speeds including load disturbance and parameters variation.

  2. A Position Sensorless Control Method for SRM Based on Variation of Phase Inductance

    Science.gov (United States)

    Komatsuzaki, Akitomo; Miki, Ichiro

    Switched reluctance motor (SRM) drives are suitable for variable speed industrial applications because of the simple structure and high-speed capability. However, it is necessary to detect the rotor position with a position sensor attached to the motor shaft. The use of the sensor increases the cost of the drive system and machine size, and furthermore the reliability of the system is reduced. Therefore, several approaches to eliminate the position sensor have already been reported. In this paper, a position sensorless control method based on the variation of the phase inductance is described. The phase inductance regularly varies with the rotor position. The SRM is controlled without the position sensor using the de-fluxing period and the phase inductance. The turn-off timing is determined by computing the difference of angle between the sampling point and the aligned point and the variation of angle during the de-fluxing period. In the magnetic saturation region, the phase inductance at the current when the effect of the saturation starts is computed and the sensorless control can be carried out using this inductance. Experimental results show that the SRM is well controlled without the position sensor using the proposed method.

  3. A Robust Sensorless Direct Torque Control of Induction Motor Based on MRAS and Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Mustapha MESSAOUDI

    2008-06-01

    Full Text Available In this paper, the classical Direct Torque Control (DTC of Induction Motor (IM using an open loop pure integration suffers from the well-known problems of integration especially in the low speed operation range is detailed. To tackle this problem, the IM variables and parameters estimation is performed using a recursive non-linear observer known as EKF. This observer is used to estimate the stator currents, the rotor flux linkages, the rotor speed and the stator resistance. The main drawback of the EKF in this case is that the load dynamics has to be known which is not usually possible. Therefore, a new method based on the Model Reference Adaptive System (MRAS is used to estimate the rotor speed. The two different nonlinear observers applied to sensorless DTC of IM, are discussed and compared to each other. The rotor speed estimation in DTC technique is affected by parameter variations especially the stator resistance due to temperature particularly at low speeds. Therefore, it is necessary to compensate this parameter variation in sensorless induction motor drives using an online adaptation of the control algorithm by the estimated stator resistance. A simulation work leads to the selected results to support the study findings.

  4. Sensorless Control Technology for PMSG base on the Dead-time Compensation voltage

    Directory of Open Access Journals (Sweden)

    Yang Li-yong

    2015-01-01

    Full Text Available In order to improve the speed sensorless-control system of PMSG in low speed performance, this paper introduces a novel Dead-time compensation control method .Mathematical model is established according to the Dead-zone of the influence of the voltage source type inverter output voltage. At the same time, the given value of current regulator output voltage has been fixed based on the established model. Then the stator voltage after compensationed is applied to the flux estimation, which improves the performance of flux estimation. Finally, the position and speed of the rotor is estimated based on Back-Electromotive Force, which has Simple algorithm and good robustness. In order to verify the correctness of theoretical analysis, the experiment was done according to the new control method. The results proved the correctness and feasibility of this control method.

  5. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    Science.gov (United States)

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    A. BENNASSAR

    2016-01-01

    Full Text Available Many industrial applications require high performance speed sensorless operation and demand new control methods in order to obtain fast dynamic response and insensitive to external disturbances. The current research aims to present the performance of the sensorless direct torque control (DTC of an induction motor (IM using adaptive Luenberger observer (ALO with fuzzy logic controller (FLC for adaptation mechanism. The rotor speed is regulated by proportional integral (PI anti-windup controller. The proposed strategy is directed to reduce the ripple on the torque and the flux. Numerical simulation results show the good performance and effectiveness of the proposed sensorless control for different references of the speed even both low and high speeds.

  7. On Position Sensorless Control for Permanent Magnet Synchronous Motor Based on a New Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2014-10-01

    Full Text Available For the problems of buffeting and phase delay in traditional rotor detection in sensorless vector control of permanent magnet synchronous motor (PMSM, the Sigmoid function is proposed to replace sign function and the approach of piecewise linearization is proposed to compensate phase delay. To the problem that the output of traditional low pass filter contains high- order harmonic, two-stage filter including traditional low-pass filter and Kalman filter is proposed in this paper. Based on the output of traditional first-order low-pass filter, the Kalman filter is used to get modified back-EMF. The phase-locked loop control of rotor position is adopted to estimate motor position and speed. A Matlab/Simulink simulation model of PMSM position servo control system is established. The simulation analysis of the new sliding mode observer’s back-EMF detection, position and speed estimation, load disturbance and dynamic process are carried out respectively. Simulation results verify feasibility of the new sliding mode observer algorithm.

  8. Active-Flux-Based, V/f-with-Stabilizing-Loops Versus Sensorless Vector Control of IPMSM Drives

    DEFF Research Database (Denmark)

    Moldovan, Ana; Blaabjerg, Frede; Boldea, Ion

    2011-01-01

    . By this control strategy, a fast dynamic speed response, without steady state error and without speed or current regulators, for all AC machines is obtained. The second control method is a sensorless vector control strategy which also has been implemented and tested, just for comparison.......This paper proposes two control methods for Interior Permanent Magnet Synchronous Motor (IPMSM) Drives. The first one is a V/f control with two stabilizing loops: one loop based on active flux balance for voltage magnitude correction and a second, based on speed error, with voltage phase correction...

  9. Bi Input-extended Kalman filter based estimation technique for speed-sensorless control of induction motors

    International Nuclear Information System (INIS)

    Barut, Murat

    2010-01-01

    This study offers a novel extended Kalman filter (EKF) based estimation technique for the solution of the on-line estimation problem related to uncertainties in the stator and rotor resistances inherent to the speed-sensorless high efficiency control of induction motors (IMs) in the wide speed range as well as extending the limited number of states and parameter estimations possible with a conventional single EKF algorithm. For this aim, the introduced estimation technique in this work utilizes a single EKF algorithm with the consecutive execution of two inputs derived from the two individual extended IM models based on the stator resistance and rotor resistance estimation, differently from the other approaches in past studies, which require two separate EKF algorithms operating in a switching or braided manner; thus, it has superiority over the previous EKF schemes in this regard. The proposed EKF based estimation technique performing the on-line estimations of the stator currents, the rotor flux, the rotor angular velocity, and the load torque involving the viscous friction term together with the rotor and stator resistance is also used in the combination with the speed-sensorless direct vector control of IM and tested with simulations under the challenging 12 scenarios generated instantaneously via step and/or linear variations of the velocity reference, the load torque, the stator resistance, and the rotor resistance in the range of high and zero speed, assuming that the measured stator phase currents and voltages are available. Even under those variations, the performance of the speed-sensorless direct vector control system established on the novel EKF based estimation technique is observed to be quite good.

  10. Bi Input-extended Kalman filter based estimation technique for speed-sensorless control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Barut, Murat, E-mail: muratbarut27@yahoo.co [Nigde University, Department of Electrical and Electronics Engineering, 51245 Nigde (Turkey)

    2010-10-15

    This study offers a novel extended Kalman filter (EKF) based estimation technique for the solution of the on-line estimation problem related to uncertainties in the stator and rotor resistances inherent to the speed-sensorless high efficiency control of induction motors (IMs) in the wide speed range as well as extending the limited number of states and parameter estimations possible with a conventional single EKF algorithm. For this aim, the introduced estimation technique in this work utilizes a single EKF algorithm with the consecutive execution of two inputs derived from the two individual extended IM models based on the stator resistance and rotor resistance estimation, differently from the other approaches in past studies, which require two separate EKF algorithms operating in a switching or braided manner; thus, it has superiority over the previous EKF schemes in this regard. The proposed EKF based estimation technique performing the on-line estimations of the stator currents, the rotor flux, the rotor angular velocity, and the load torque involving the viscous friction term together with the rotor and stator resistance is also used in the combination with the speed-sensorless direct vector control of IM and tested with simulations under the challenging 12 scenarios generated instantaneously via step and/or linear variations of the velocity reference, the load torque, the stator resistance, and the rotor resistance in the range of high and zero speed, assuming that the measured stator phase currents and voltages are available. Even under those variations, the performance of the speed-sensorless direct vector control system established on the novel EKF based estimation technique is observed to be quite good.

  11. Artificial Inductance Concept to Compensate Nonlinear Inductance Effects in the Back EMF-Based Sensorless Control Method for PMSM

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Lei, Xiao; Blaabjerg, Frede

    2013-01-01

    The back EMF-based sensorless control method is very popular for permanent magnet synchronous machines (PMSMs) in the medium- to high-speed operation range due to its simple structure. In this speed range, the accuracy of the estimated position is mainly affected by the inductance, which varies...... at different loading conditions due to saturation effects. In this paper, a new concept of using a constant artificial inductance to replace the actual varying machine inductance for position estimation is introduced. This facilitates greatly the analysis of the influence of inductance variation...

  12. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer.

    Science.gov (United States)

    Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan

    2015-01-01

    This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Accurate torque-sensorless control approach for interior permanent-magnet synchronous machine based on cascaded sliding mode observer

    Directory of Open Access Journals (Sweden)

    Kai-Hui Zhao

    2017-06-01

    Full Text Available To improve the accuracy of torque control for vector control of interior permanent-magnet synchronous machine (IPMSM, this study proposes a torque-sensorless control method based on cascaded sliding mode observer (SMO. First, the active flux model is discussed, which converts the model of IPMSM into the equivalent model of surface-mounted permanent-magnet synchronous machine. Second, to reduce chattering caused by system parameters variations and external disturbances, the cascaded observer is designed, which is composed of a variable gain adaptive SMO and an active flux SMO. The variable gain adaptive SMO is designed to estimate the speed, rotor position and stator resistance in the d–q reference frame. The active flux SMO is designed to estimate the active flux and torque in the α–β reference frame. Global asymptotic stability of the observers is guaranteed by the Lyapunov stability analysis. Finally, simulations and experiments are carried out to verify the effectiveness of the proposed control scheme.

  14. A New Power-Factor-Based Vector Control Method for Sensorless Drive of Permanent-Magnet Synchronous Motors

    Science.gov (United States)

    Shinnaka, Shinji

    As a simple vector control method for sensorless drives of permanent-magnet synchronous motors, the so-called “Power-Factor-Based (PFB) Vector Control Method” has been proposed. The conventional PFB method directly estimates the phase of the quasi-optimal stator current through a control of the power factor phase, instead of the estimation of the rotor phase. The stator current is controlled in the current reference frame whose secondary axis phase is the same as the stator current phase. This paper proposes a new PEB method where the stator current is controlled in the voltage reference frame whose secondary axis phase is the same as the voltage phase rather than the current phase. It is shown that the similar quasi-optimal stator current control can be attained through the current control with appropriate current commands taking the power factor phase into account. This paper also shows a practical method for generating the current commands and a practical guideline for the design parameters of the new PFB method.

  15. Reduced Order Extended Luenberger Observer Based Sensorless Vector Control Fed by Matrix Converter with Non-linearity Modeling

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new...

  16. Very low speed performance of active flux based sensorless control: interior permanent magnet synchronous motor vector control versus direct torque and flux control

    DEFF Research Database (Denmark)

    Paicu, M. C.; Boldea, I.; Andreescu, G. D.

    2009-01-01

    This study is focused on very low speed performance comparison between two sensorless control systems based on the novel ‘active flux' concept, that is, the current/voltage vector control versus direct torque and flux control (DTFC) for interior permanent magnet synchronous motor (IPMSM) drives...... with space vector modulation (SVM), without signal injection. The active flux, defined as the flux that multiplies iq current in the dq-model torque expression of all ac machines, is easily obtained from the stator-flux vector and has the rotor position orientation. Therefore notable simplification...

  17. Simple Power Control for Sensorless Induction Motor Drives Fed by a Matrix Converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2008-01-01

    This paper presents a new and simple method for sensorless control of matrix converter drives using a power flowing to the motor. The proposed control algorithm is based on controlling the instantaneous real and imaginary powers into the induction motor. To improve low-speed sensorless performance...

  18. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Science.gov (United States)

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  19. The study on the Sensorless PMSM Control using the Superposition Theory

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Joung Pyo [Changwon National University, Changwon (Korea); Kwon, Soon Jae [Pukung National University, Seoul (Korea); Kim, Gyu Seob; Sohn, Mu Heon; Kim, Jong Dal [Dongmyung College, Pusan (Korea)

    2002-07-01

    This study presents a solution to control a Permanent Magnet Synchronous Motor without sensors. The control method is the presented superposition principle. This method of sensorless theory is very simple to compute estimated angle. Therefore computing time to estimate angle is shorter than other sensorless method. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased deficiency. A practical solution is described and results are given in this Study. The performance of a Sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in PMSM control applications whereby the focus will be the new controller without sensors and its applications. (author). 6 refs., 16 figs., 1 tab.

  20. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    Science.gov (United States)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  1. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    International Nuclear Information System (INIS)

    Dehkordi, Behzad Mirzaeian; Parsapoor, Amir; Moallem, Mehdi; Lucas, Caro

    2011-01-01

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  2. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    Energy Technology Data Exchange (ETDEWEB)

    Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Parsapoor, Amir, E-mail: amirparsapoor@yahoo.co [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.i [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Lucas, Caro, E-mail: lucas@ut.ac.i [Centre of Excellence for Control and Intelligent Processing, Electrical and Computer Engineering Faculty, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  3. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    Science.gov (United States)

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Sensorless Control of PM Synchronous Motors and Brushless DC Motors

    DEFF Research Database (Denmark)

    Montesinos, D.; Galceran, Samuel; Blaabjerg, Frede

    2005-01-01

    This paper provides a review of the literature addressing sensorless operation methods of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, those me...

  5. Low Cost Sensorless Control of Permanent Magnet Motors

    DEFF Research Database (Denmark)

    Montesinos, Daniel; Galceran, Samuel; Blaabjerg, Frede

    2005-01-01

    This paper provides a review of the literature addressing sensorless operation of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, and algebraic ma...

  6. Speed Sensorless Control of PMSM using Model Reference Adaptive System and RBFN

    OpenAIRE

    Wei Gao; Zhirong Guo

    2013-01-01

    In the speed sensorless vector control system, the amended method of estimating the rotor speed about model reference adaptive system (MRAS) based on radial basis function neural network (RBFN) for PMSM sensorless vector control system was presented. Based on the PI regulator, the radial basis function neural network which is more prominent learning efficiency and performance is combined with MRAS. The reference model and the adjust model are the PMSM itself and the PMSM current, respectively...

  7. Development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A. [Quebec Univ., Montreal, PQ (Canada). Dept. of Electrical Engineering

    2010-07-01

    Interest in renewable energy sources has grown in recent years in response to concerns of increasing pollution levels and depleting fossil fuels. Among renewable energy sources, wind energy generation is the fastest growing technology and one of the most cost-effective and environmental friendly means to generate electricity from renewable sources. Modern wind turbines are ready to be deployed in large scale as a result of recent developments in wind power technology. Variable speed permanent magnet synchronous generators (PMSG) based wind energy conversion systems (WECS) are becoming more popular. The use of a permanent magnet reduces size, cost and weight of overall WECS. In addition, the absence of field winding and its excitation system avoids heat dissipation in the rotor winding, thereby improving overall efficiency of the WECS. This type of configuration is more appropriate for remote locations, particularly for off-shore wind application, where the geared doubly fed induction generator usually requires regular maintenance due to tearing-wearing in brushes, windings and gear box. This presentation discussed the development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features. A novel adaptive network-based fuzzy inference system was used to estimate the speed and position of variable speed PMSG under fluctuating wind conditions. A novel control strategy was developed for the grid interfacing inverter incorporating power quality improvement features at point of common coupling.

  8. A Novel Sensorless Control Strategy for Brushless Direct Current Motor Based on the Estimation of Line Back Electro-Motive Force

    Directory of Open Access Journals (Sweden)

    Chengde Tong

    2017-09-01

    Full Text Available In this paper, a novel sensorless control strategy based on the estimation of line back electro-motive force (BEMF is proposed. According to the phase relationship between the ideal commutation points of the brushless direct current motor (BLDCM and the zero-crossing points (ZCPs of the line BEMF, the calculation formula of line BEMF is simplified properly and the commutation rule for different positions of the rotor is presented. The estimation error of line BEMF caused by the freewheeling current of silent phase is analyzed, and the solution is given. With the phase shift of the low-pass filter considered, a compensation method using “60°-α” and “120°-α” is studied in this paper to eliminate the error. Finally, the simulation and experimental results show that the rotor-position-detection error is reduced effectively and the motor driven by the accurate commutation signal can work well at low and high speed.

  9. Sensorless Characteristics of Hybrid PM Machines at Zero and Low Speed

    DEFF Research Database (Denmark)

    Matzen, Torben N.; Rasmussen, Peter Omand

    2009-01-01

    Sensorless methods for zero and low speed operation in drives with hybrid PM machines make use of the machine saliency to determine the rotor position in an indirect fashion. When integrating the position measurement in the electrical power supply to the machine, i.e. make the machine self......-sensing, the sensorless obtained position can be affected by the actual operation conditions of the machine e.g. the stator currents. This may deteriorate the machine self-sensing suitability using injection methods. In this paper an analysis method based on accurate knowledge of the machine flux linkages is proposed...... for analysing the suitability for sensorless control at zero and low speed. The method can be used to evaluate a particular machine design so the self-sensing characteristics for sensorless control of machine can be found. The characteristics can be obtained from finite element simulation data or experimental...

  10. Sensorless Sliding Mode Vector Control of Induction Motor Drives

    OpenAIRE

    Gouichiche Abdelmadjid; Boucherit Mohamed Seghir; Safa Ahmed; Messlem Youcef

    2012-01-01

    In this paper we present the design of sliding mode controllers for sensorless field oriented control of induction motor. In order to improve the performance of controllers, the motor speed is controlled by sliding mode regulator with integral sliding surface. The estimated rotor speed used in speed feedback loop is calculated by an adaptive observer based on MRAS (model reference adaptive system) technique .the validity of the proposed scheme is demonstrated by experimental results.

  11. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...

  12. Indirect sensorless speed control of a PMSG for wind application

    DEFF Research Database (Denmark)

    Diaz, S.A.; Silva, C.; Juliet, J.

    2009-01-01

    the method usually referred in the literature as indirect speed control (ISC). The principle of this method is the regulation of the generator torque as function of rotor speed such that the steady state operation is at the MPPT. This strategy normally requires the knowledge of the shaft speed to determinate...... in the whole wind generator system a sensorless scheme is proposed, thereby avoiding problems of electromagnetic interferences and failures in the position sensor. Usually, in wind drive system, the generator is not operated a very low speeds, therefore problems related to low back-emf for flux estimation...... the reference torque and rotor position for the orientation of the vector torque control of the PMSG. To achieve both, speed and position estimation, the sensorless technique based in back-emf estimation is proposed. Also in this paper, a laboratory set-up is described. The experimental bench is composed...

  13. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel high accurate sensorless dual-axis solar tracker. • It has the advantages of both sensor based and sensorless solar trackers. • It does not have the disadvantages of sensor based and sensorless solar trackers. • Tracking error of only 0.11° that is less than the tracking errors of others. • An increase of 28.8–43.6% depending on the seasons in the energy efficiency. - Abstract: In this study, a novel high accurate sensorless dual-axis solar tracker controlled by the maximum power point tracking unit available in almost all photovoltaic systems is proposed. The maximum power point tracking controller continuously calculates the maximum output power of the photovoltaic module/panel/array, and uses the altitude and azimuth angles deviations to track the sun direction where the greatest value of the maximum output power is extracted. Unlike all other sensorless solar trackers, the proposed solar tracking system is a closed loop system which means it uses the actual direction of the sun at any time to track the sun direction, and this is the contribution of this work. The proposed solar tracker has the advantages of both sensor based and sensorless dual-axis solar trackers, but it does not have their disadvantages. Other sensorless solar trackers all are open loop, i.e., they use offline estimated data about the sun path in the sky obtained from solar map equations, so low exactness, cloudy sky, and requiring new data for new location are their problems. A photovoltaic system has been built, and it is experimentally verified that the proposed solar tracking system tracks the sun direction with the tracking error of 0.11° which is less than the tracking errors of other both sensor based and sensorless solar trackers. An increase of 28.8–43.6% depending on the seasons in the energy efficiency is the main advantage of utilizing the proposed solar tracking system.

  14. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  15. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen

    2017-01-01

    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  16. Speed Sensorless Control of Permanent Magnet Synchronous Motors in Mine Electric Locomotive Drive

    Directory of Open Access Journals (Sweden)

    Yudong LI

    2014-04-01

    Full Text Available This paper presents a novel sensorless control method of permanent magnet synchronous motors a low speed based on a high-frequency voltage signal injection. The approach superimposes a persistent HF voltage signal into the estimated d-axis to get the rotor position error angle-related signal by detecting the corresponding voltage response and current response. Then the rotor position and motor speed are obtained. Theoretical analysis and simulation results demonstrate that the approach can achieve sensorless control of permanent magnet synchronous motors at zero and low speed, ensure good dynamic and static performances, and achieve effective control when applied to servo system. Finally, a test prototype system which used a digital signal processor and space vector pulse width modulation technology has been developed. Experimental results show that the system has better static, the effectiveness and dynamic performance of the adaptive test signals in a sensorless controlled surface-mounted permanent magnet synchronous machines.

  17. Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends

    Directory of Open Access Journals (Sweden)

    Jaime Gómez-Gil

    2010-07-01

    Full Text Available This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order and Artificial Neural Networks.

  18. A Very Low-Speed Sensorless Induction Motor Drive with Online Stator Resistance identification scheme

    Directory of Open Access Journals (Sweden)

    M. Zaky

    2008-03-01

    Full Text Available Recently, speed sensorless control of induction motor drives received great attention to avoid the different problems associated with direct speed sensors. However, low speed operation with robustness against parameter variations remains an area of research for sensorless systems. Stator resistance is of greatest importance for good operation of speed sensorless systems in low speed region. In this paper, a sliding mode current observer for an induction motor is presented. An estimation algorithm based on this observer in conjunction with Popov's hyper-stability theory is proposed to calculate the speed and stator resistance independently. The proposed speed observer with parallel stator resistance identification is firstly verified by simulation. Experimental results are included as well to demonstrate the good performance of the proposed observer and estimation algorithms at low speed.

  19. Sensorless SPMSM Position Estimation Using Position Estimation Error Suppression Control and EKF in Wide Speed Range

    Directory of Open Access Journals (Sweden)

    Zhanshan Wang

    2014-01-01

    Full Text Available The control of a high performance alternative current (AC motor drive under sensorless operation needs the accurate estimation of rotor position. In this paper, one method of accurately estimating rotor position by using both motor complex number model based position estimation and position estimation error suppression proportion integral (PI controller is proposed for the sensorless control of the surface permanent magnet synchronous motor (SPMSM. In order to guarantee the accuracy of rotor position estimation in the flux-weakening region, one scheme of identifying the permanent magnet flux of SPMSM by extended Kalman filter (EKF is also proposed, which formed the effective combination method to realize the sensorless control of SPMSM with high accuracy. The simulation results demonstrated the validity and feasibility of the proposed position/speed estimation system.

  20. A grid-voltage-sensorless resistive active power filter with series LC-filter

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Voltage-sensorless control has been investigated for Voltage Source Inverters (VSIs) for many years due to the reduced system cost and potentially improved system reliability. The VSI based Resistive Active Power Filters (R-APFs) are now widely used to prevent the harmonic resonance in power...... distribution network, for which the voltage sensors are needed in order to obtain the current reference. In this paper a grid-voltage-sensorless control strategy is proposed for the R-APF with series LC-filter. Unlike the traditional resistance emulation method, this proposed control method re...

  1. A Grid-Voltage-Sensorless Resistive Active Power Filter with Series LC-Filter

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    Voltage-sensorless control has been investigated for Voltage Source Inverters (VSIs) for many years due to the reduced system cost and potentially improved system reliability. The VSI based Resistive Active Power Filters (R-APFs) are now widely used to prevent the harmonic resonance in power...... distribution network, for which the voltage sensors are needed in order to obtain the current reference. In this paper a grid-voltage-sensorless control strategy is proposed for the R-APF with series LC-filter. Unlike the traditional resistance emulation method, this proposed control method re...

  2. Example-based human motion denoising.

    Science.gov (United States)

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  3. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    Science.gov (United States)

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller

    Directory of Open Access Journals (Sweden)

    F. Naceri

    2010-01-01

    Full Text Available This paper presents a new sensorless direct torque control method for voltage inverter – fed PMSM. The control methodis used a modified Direct Torque Control scheme with constant inverter switching frequency using Space Vector Modulation(DTC-SVM. The variation of stator and rotor resistance due to changes in temperature or frequency deteriorates theperformance of DTC-SVM controller by introducing errors in the estimated flux linkage and the electromagnetic torque.As a result, this approach will not be suitable for high power drives such as those used in tractions, as they require goodtorque control performance at considerably lower frequency. A novel stator resistance estimator is proposed. The estimationmethod is implemented using the Extended Kalman Filter. Finally extensive simulation results are presented to validate theproposed technique. The system is tested at different speeds and a very satisfactory performance has been achieved.

  5. Sensorless Control of IPMSM by Voltage Injection

    DEFF Research Database (Denmark)

    Matzen, Torben N.; Bech, Michael Møller

    2006-01-01

    In this paper a sensorless discrete current control of an Interior Permanent Magnet Synchrouns Motor (IPMSM) by voltage injection is designed and tested. The whole controller is operating in the dq-frame and for this reason the rotor position is essential to know, to transform between the station......In this paper a sensorless discrete current control of an Interior Permanent Magnet Synchrouns Motor (IPMSM) by voltage injection is designed and tested. The whole controller is operating in the dq-frame and for this reason the rotor position is essential to know, to transform between...... the stationary frame and the rotor xed dq-frame. To obtain the position even at standstill a sensorless scheme using voltage injection is added to the current controller....

  6. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  7. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  8. Sensorless soft starters for loaded induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Chrisanov, V.I.; Konovalov, Y.N. [Power Plearonics Department, State University of Telecommunication, St. Petersburg (Russian Federation)

    1997-12-31

    The paper is devoted to the research and design of sensorless thyristor soft starters for loaded induction motors (IM) with short circuited squirrel case rotors. It is shown that the applied direct converter topology depends on the output power and consists of a small number of thyristors with special algorithm of switching to realize voltage - frequency control of IM drive systems at low speeds of starting. Sensorless control is realized from the both sides when neither direct converter nor drive system consists of any additional transducers for soft starting operation. (orig.) 4 refs.

  9. Speed Sensorless mixed sensitivity linear parameter variant H_inf control of the induction motor

    NARCIS (Netherlands)

    Toth, R.; Fodor, D.

    2004-01-01

    The paper shows the design of a robust control structure for the speed sensorless vector control of the IM, based on the mixed sensitivity (MS) linear parameter variant (LPV) H8 control theory. The controller makes possible the direct control of the flux and speed of the motor with torque adaptation

  10. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor

  11. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    Electrical machines for traction in electric vehicles are an essential component which attract attention with respect to machine design and control as a part of the emerging renewable industry. For the hybrid electric machine to replace the familiar behaviour of the combustion engine torque......, control seems necessary to implement. For hybrid permanent magnet (PM) machines torque control in an indirect fashion using dq-current control is frequently done. This approach requires knowledge about the machine shaft position which may be obtained sensorless. In this article a method based on accurate...

  12. Hybrid I-f starting and observer-based Ssnsorless control of single-phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Iepure, Liviu Ioan; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    A motion sensorless control for single-phase permanent magnet brushless dc motor based on an I-f starting sequence and a real-time permanent magnet flux estimation is proposed here. The special calculation for extracting the position and speed used here implies the generating of an orthogonal flux...... system, the atan2 trigonometric function, and a phase-locked loop observer. The influence of the permanent magnet flux harmonic content is presented by analytical expressions and digital simulations. The proposed sensorless control is validated by complete experimental results on a commercial small high......-speed blower-motor (40 W, 10 krpm, 12 Vdc)....

  13. Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs

    International Nuclear Information System (INIS)

    Barut, Murat; Bogosyan, Seta; Gokasan, Metin

    2007-01-01

    High performance speed sensorless control of induction motors (IMs) calls for estimation and control schemes that offer solutions to parameter uncertainties as well as to difficulties involved with accurate flux/velocity estimation at very low and zero speed. In this study, a new EKF based estimation algorithm is proposed for the solution of both problems and is applied in combination with speed sensorless direct vector control (DVC). The technique is based on the consecutive execution of two EKF algorithms, by switching from one algorithm to another at every n sampling periods. The number of sampling periods, n, is determined based on the desired system performance. The switching EKF approach, thus applied, provides an accurate estimation of an increased number of parameters than would be possible with a single EKF algorithm. The simultaneous and accurate estimation of rotor, R r ' and stator, R s resistances, both in the transient and steady state, is an important challenge in speed sensorless IM control and reported studies achieving satisfactory results are few, if any. With the proposed technique in this study, the sensorless estimation of R r ' and R s is achieved in transient and steady state and in both high and low speed operation while also estimating the unknown load torque, velocity, flux and current components. The performance demonstrated by the simulation results at zero speed, as well as at low and high speed operation is very promising when compared with individual EKF algorithms performing either R r ' or R s estimation or with the few other approaches taken in past studies, which require either signal injection and/or a change of algorithms based on the speed range. The results also motivate utilization of the technique for multiple parameter estimation in a variety of control methods

  14. Sensorless-adaptive DTC of double star induction motor

    International Nuclear Information System (INIS)

    Khedher, Adel; Faouzi Mimouni, Mohamed

    2010-01-01

    This paper presents a study of extension of the Direct Torque Control approach (DTC) developed by Takahashi for a double star induction motor (DSIM) and a new DTC-Space vector modulation (DTC-SVM) strategy around two dead-beat controllers. The suggested control is performed by using a sliding mode stator flux observer (SMSFO). This last allow to estimating the mechanical speed and the electromagnetic torque. To adapt in real time the rotor resistance variations according to temperature effect, the sensorless method is performed by using an adaptive algorithm which is based on the Lyapunov stability theory. Moreover, this paper treats the study of the system stability under the new suggested control. The simulation results for various scenarios operation show the high performances of the proposed control in terms of piloting effectiveness, precision, rapidity and stability for the high powers DSIM operating at variable speeds.

  15. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  16. A Novel Method for Sensorless Speed Detection of Brushed DC Motors

    Directory of Open Access Journals (Sweden)

    Ernesto Vazquez-Sanchez

    2016-12-01

    Full Text Available Many motor applications require accurate speed measurement. For brushed dc motors, speed can be measured with conventional observers or sensorless observers. Sensorless observers have the advantage of not requiring any external devices to be attached to the motor. Instead, voltage and/or current are measured and used to estimate the speed. The sensorless observers are usually divided into two groups: those based on the dynamic model, and those based on the ripple component. This paper proposes a method that measures the current of brushed dc motors and analyses the position of its spectral components. From these spectral components, the method estimates the motor speed. Three tests, performed each with the speeds ranging from 2000 to 3000 rpm either at constant-speed, at slowly changing speeds, or at rapidly changing speeds, showed that the average error was below 1 rpm and that the deviation error was below 1.5 rpm. The proposed method: (i is a novel method that is not based on either the dynamic model or on the ripple component; (ii requires only the measurement of the current for the speed estimation; (iii can be used for brushed dc (direct current motors with a large number of coils; and (iv achieves a low error in the speed estimation.

  17. Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel sensorless MPPT technique without drawbacks of other sensor/sensorless methods. • Tracking the actual MPP of WECSs, no tracking the MPP of their wind turbines. • Actually extracting the highest output power from WECSs. • Novel MPPT technique having the MPPT efficiency more than 98.5% for WECSs. • Novel MPPT technique having short convergence time for WECSs. - Abstract: In this study, a novel high accurate sensorless maximum power point tracking (MPPT) method is proposed. The technique tracks the actual maximum power point of a wind energy conversion system (WECS) at which maximum output power is extracted from the system, not the maximum power point of its wind turbine at which maximum mechanical power is obtained from the turbine, so it actually extracts the highest output power from the system. The technique only uses input voltage and current of the converter used in the system, and neither needs any speed sensors (anemometer and tachometer) nor has the drawbacks of other sensor/sensorless based MPPT methods. The technique has been implemented as a MPPT controller by constructing a WECS. Theoretical results, the technique performance, and its advantages are validated by presenting real experimental results. The real static-dynamic response of the MPPT controller is experimentally obtained that verifies the proposed MPPT technique high accurately extracts the highest instant power from wind energy conversion systems with the MPPT efficiency of more than 98.5% and a short convergence time that is only 25 s for the constructed system having a total inertia and friction coefficient of 3.93 kg m 2 and 0.014 N m s, respectively.

  18. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Directory of Open Access Journals (Sweden)

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  19. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.; Besier, T.; Delp, S.

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  20. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.

    2009-05-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  1. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  2. Control algorithms and applications of the wavefront sensorless adaptive optics

    Science.gov (United States)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  3. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  4. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    Science.gov (United States)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  5. Sensorless control of induction machine

    OpenAIRE

    Kılıç, Bahadır; Kilic, Bahadir

    2004-01-01

    AC drives based on fully digital control have reached the status of a maturing technology in a broad range of applications ranging from the low cost to high performance systems. Continuing research has concentrated on the removal of the sensors measuring the mechanical coordinates (e.g. tachogenerators, encoders) while maintaining the cost and performance of the control system. Speed estimation is an issue of particular interest with induction motor electrical drives as the rotor speed is gen...

  6. Chattering-free sliding mode observer for speed sensorless control of PMSM

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gaballah

    2017-07-01

    Full Text Available This article presents a new speed observer based on fuzzy logic for speed sensorless control applications of permanent magnet synchronous motor “PMSM”. The switch function in traditional Sliding Mode Observer “SMO” is replaced by a rule based fuzzy logic system. The proposed observer not only improves the system dynamic performance during disturbances or parameter variations, but also has a high accuracy tracking performance with sufficient chattering reduction. The validity of the new observer corroborated through experimental results using TMS320F28069M Digital Signal Processor “DSP”.

  7. Speed Sensorless Field Oriented Control of an Induction Motor at zero speed with identification of inverter parameters

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2002-01-01

    Using adaptive Lyapunov design a new approach for the design of an observer for speed sensorless control is developed. The resulting scheme leads to a nonlinear full order observer for the motor states and for the motor and inverter parameters including the rotor speed. Assuming motor parameters ...... known the design achieves stability with guaranteed region of attraction. Experiments demonstrate high dynamic performance even at zero rotor speed based only on the slip frequency caused by the load torque....

  8. Sensorless control of interior permanent-magnet synchronous motors with compressor load

    DEFF Research Database (Denmark)

    Huang, Shoudao; Gao, Jian; Xiao, Lei

    2013-01-01

    This paper analyzes the mathematical model of the interior permanent-magnet synchronous motors (IPMSM). Through the mathematical deformation, the paper proposes the new sensorless method based on sliding mode observer for a IPMSM. The model is only associated with the q-axis inductance, and without...... the d-axis inductance. Dual filter is set series to extract the electromotive force information, and then filter phase shift is measured real-time at different speeds for angle compensation. An I-F strategy is adopted to start the IPMSM with compressor load. Finally, the experimental proves the validity...

  9. Improved state observers for sensorless single phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Lepure, Liviu L.; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    Two methods of extracting the rotor position and speed for a sensorless single phase BLDC-PM motor drive by measuring only the phase current are presented here. Both methods are based on a generated orthogonal flux system. The first method extracts the position information by using the tan−1...... function and then an improved observer is created by adding a 4th order harmonic term in the estimated position, while the second method uses a phase locked loop structure. The proposed state observers are detailed using simulation results and then validated by experimental results....

  10. Sensorless adaptive optics for isoSTED nanoscopy

    Science.gov (United States)

    Antonello, Jacopo; Hao, Xiang; Allgeyer, Edward S.; Bewersdorf, Joerg; Rittscher, Jens; Booth, Martin J.

    2018-02-01

    The presence of aberrations is a major concern when using fluorescence microscopy to image deep inside tissue. Aberrations due to refractive index mismatch and heterogeneity of the specimen under investigation cause severe reduction in the amount of fluorescence emission that is collected by the microscope. Furthermore, aberrations adversely affect the resolution, leading to loss of fine detail in the acquired images. These phenomena are particularly troublesome for super-resolution microscopy techniques such as isotropic stimulated-emission-depletion microscopy (isoSTED), which relies on accurate control of the shape and co-alignment of multiple excitation and depletion foci to operate as expected and to achieve the super-resolution effect. Aberrations can be suppressed by implementing sensorless adaptive optics techniques, whereby aberration correction is achieved by maximising a certain image quality metric. In confocal microscopy for example, one can employ the total image brightness as an image quality metric. Aberration correction is subsequently achieved by iteratively changing the settings of a wavefront corrector device until the metric is maximised. This simplistic approach has limited applicability to isoSTED microscopy where, due to the complex interplay between the excitation and depletion foci, maximising the total image brightness can lead to introducing aberrations in the depletion foci. In this work we first consider the effects that different aberration modes have on isoSTED microscopes. We then propose an iterative, wavelet-based aberration correction algorithm and evaluate its benefits.

  11. Combined Flux Observer With Signal Injection Enhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Andreescu, G.-D.; Pitic, C.I.

    2008-01-01

    voltage-current model with PI compensator for low-speed operations. As speed increases, the observer switches gradually to a PI compensated closed-loop voltage model, which is solely used at high speeds. High-frequency rotating-voltage injection with a single D-module bandpass vector filter and a phase......This paper proposes a motion-sensorless control system using direct torque control with space vector modulation for interior permanent magnet synchronous motor (IPMSM) drives, for wide speed range operation, including standstill. A novel stator flux observer with variable structure uses a combined...

  12. Sensorless Control of Interior Permanent Magnet Synchronous Motor in Low-Speed Region Using Novel Adaptive Filter

    Directory of Open Access Journals (Sweden)

    Lisi Tian

    2016-12-01

    Full Text Available This paper presents a novel position and speed estimation method for low-speed sensorless control of interior permanent-magnet synchronous machines (IPMSMs. The parameter design of the position and speed estimator is based on the sampled current rather than the motor electrical parameters. The proposed method not only simplifies the parameter design, it enables the estimator to work normally even in the condition that the electrical parameters are uncertain or varied. The adaptive filters are adopted to extract the desired high frequency current. The structure and corresponding transfer function are analyzed. To address the shortage of insufficient stop-band attenuation, the structure of the adaptive filter is modified to provide suitable bandwidth and stop-band attenuation simultaneously. The effectiveness of the proposed sensorless control strategy has been verified by simulations and experiments.

  13. Applications of Phase-Based Motion Processing

    Science.gov (United States)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  14. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Jose. M. Gutierrez-Villalobos

    2015-06-01

    Full Text Available Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.

  15. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vector. Additionally, a state estimation-based control loop is implemented using the Unscented Kalman Filter. Moreover, state estimation-based control is developed for the induction motor model using a nonlinear flatness-based controller and the state estimation that is provided by the Extended Kalman Filter. Unlike field oriented control, in the latter approach there is no assumption about decoupling between the rotor speed dynamics and the magnetic flux dynamics. The efficiency of the Kalman Filter-based control schemes, for both the DC and induction motor models, is evaluated through simulation experiments.

  16. Energy optimal control strategies for electro motors; low-cost and sensorless PWM-VSI based induction motor control. Vol. 1: Main report, appendix and annex

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, F

    1998-02-01

    When variable speed induction motor drives are used in applications that run at low load for long periods, energy can be saved by reducing the motor flux at low load. In this report the efficiency of 2.2 kW standard and high-efficiency motor drives are investigated experimentally with efficiency optimized and constant flux control, with sinusoidal and PWM voltage supply and with varying switching frequency. Steady-state motor models are developed and verified experimentally, and are used to analyze and develop efficiency optimizing control strategies. Four energy optimal control strategies are tested experimentally: cos({phi}) control, model-based control, off-line calculated airgap flux control and stator current/input power minimising search control. Their dynamical properties and their ability to reject load disturbances are analysed. Their ability to save energy is tested on a water pump system. For a typical predefined test-cycle the energy optimal control reduces the energy consumption with 10% compared with classical constant V/Hz control. (au)

  17. FPGA-Based Embedded Motion Estimation Sensor

    Directory of Open Access Journals (Sweden)

    Zhaoyi Wei

    2008-01-01

    Full Text Available Accurate real-time motion estimation is very critical to many computer vision tasks. However, because of its computational power and processing speed requirements, it is rarely used for real-time applications, especially for micro unmanned vehicles. In our previous work, a FPGA system was built to process optical flow vectors of 64 frames of 640×480 image per second. Compared to software-based algorithms, this system achieved much higher frame rate but marginal accuracy. In this paper, a more accurate optical flow algorithm is proposed. Temporal smoothing is incorporated in the hardware structure which significantly improves the algorithm accuracy. To accommodate temporal smoothing, the hardware structure is composed of two parts: the derivative (DER module produces intermediate results and the optical flow computation (OFC module calculates the final optical flow vectors. Software running on a built-in processor on the FPGA chip is used in the design to direct the data flow and manage hardware components. This new design has been implemented on a compact, low power, high performance hardware platform for micro UV applications. It is able to process 15 frames of 640×480 image per second and with much improved accuracy. Higher frame rate can be achieved with further optimization and additional memory space.

  18. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  19. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo

    2011-01-01

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  20. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  1. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    Science.gov (United States)

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  2. Sensorless control of low-cost single-phase hybrid switched reluctance motor drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2013-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special Hybrid Switched Reluctance Motor (HSRM). The proposed sensorless control method utilizes beneficially the stator side permanent magnet field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive...

  3. Sensorless Control of Low-cost Single-phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, and variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special hybrid switched reluctance motor. The proposed sensorless control method beneficially utilizes the stator side PM field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive system, is demonstrated...

  4. Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive

    Science.gov (United States)

    Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.

    2017-01-01

    This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.

  5. A sensorless method for measuring the point mobility of mechanical structures

    Science.gov (United States)

    Boulandet, R.; Michau, M.; Herzog, P.; Micheau, P.; Berry, A.

    2016-09-01

    This paper presents a convenient and cost-effective experimental tool for measuring the mobility characteristics of a mechanical structure. The objective is to demonstrate that the point mobility measurement can be performed using only an electrodynamic inertial exciter. Unlike previous work based on voice coil actuators, no load cell or accelerometer is needed. Instead, it is theoretically shown that the mobility characteristics of the structure can be estimated from variations in the electrical input impedance of the actuator fixed onto it, provided that the electromechanical parameters of the actuator are known. The proof of concept is made experimentally using a cheap commercially available actuator on a simply supported plate, leading to a good dynamic range from 100 Hz to 1 kHz. The methodology to assess the basic parameters of the actuator is also given. Measured data are compared to a standard shaker testing and the strengths and weaknesses of the sensorless mobility measuring device are discussed. It is believed that this sensorless mobility measuring device can be a convenient experimental tool to determine the dynamic characteristics of a wide range of mechanical structures.

  6. Speed sensorless direct torque control of IMs with rotor resistance estimation

    International Nuclear Information System (INIS)

    Barut, Murat; Bogosyan, Seta; Gokasan, Metin

    2005-01-01

    Direct torque control (DTC) of induction motors (IMs) requires an accurate knowledge on the amplitude and angular position of the controlled flux in addition to the information related to angular velocity for velocity control applications. However, unknown load torque and uncertainties related to stator/rotor resistances due to operating conditions constitute major challenges for the performance of such systems. The determination of stator resistance can be performed by measurements, but methods must be developed for estimation and identification of rotor resistance and load torque. In this study, an EKF based solution is sought for determination of the rotor resistance and load torque as well as the above mentioned states required for DTC. The EKF algorithm used in conjunction with the speed sensorless DTC is tested under eleven scenarios comprised of various changes made in the velocity reference beside the load torque and rotor resistance values assigned in the model. With no a priori information in the estimated states and parameters, it has been demonstrated that the EKF estimation and sensorless DTC perform quite well in spite of the uncertainties and variations imposed on the system

  7. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.

    Science.gov (United States)

    Sano, Hiroshi; Wada, Takahiro

    2017-12-01

    Previous research has shown that the effective use of inertial motion (i.e., less or no torque input at the knee joint) plays an important role in achieving a smooth gait of transfemoral prostheses in the swing phase. In our previous research, a method for generating a timed knee trajectory close to able-bodied individuals, which leads to sufficient clearance between the foot and the floor and the knee extension, was proposed using the inertial motion. Limb motions are known to correlate with each other during walking. This phenomenon is called kinematic synergy. In this paper, we measure gaits in level walking of able-bodied individuals with a wide range of walking velocities. We show that this kinematic synergy also exists between the motions of the intact limbs and those of the knee as determined by the inertial motion technique. We then propose a new method for generating the motion of the knee joint using its inertial motion close to the able-bodied individuals in mid-swing based on its kinematic synergy, such that the method can adapt to the changes in the motion velocity. The numerical simulation results show that the proposed method achieves prosthetic walking similar to that of able-bodied individuals with a wide range of constant walking velocities and termination of walking from steady-state walking. Further investigations have found that a kinematic synergy also exists at the start of walking. Overall, our method successfully achieves knee motion generation from the initiation of walking through steady-state walking with different velocities until termination of walking.

  8. Experimental study for sensorless broken bar detection in induction motors

    International Nuclear Information System (INIS)

    Calis, Hakan; Cakir, Abduelkadir

    2008-01-01

    This study presents experimental results of sensorless broken bar detection in induction motors based on fluctuations of the stator current zero crossing instants before actual breakdown occurs. These fluctuations are sensed by a microcontroller (μC), and transferred to a computer for monitoring the amplitude changes on specific frequency components using fast Fourier transformation algorithms. The motor current signal is also monitored for verification purposes. The main reasons of rotor faults are broken bars, end ring faults and bearing faults. Most recent efforts are focusing on current spectrum analysis, as the current signal is easily accessible for all induction motors. Instead of sampling motor current with a high resolution analog to digital converter, zero crossing instants are recorded as the waveforms cross zero. Fluctuations in the intervals between successive zero crossings of the three phase current waveforms are analyzed in the frequency domain. Broken bars and end ring breakages, supply unbalances, rotor eccentricities and shaft misalignment faults are distinguished by monitoring amplitude changes of the 2sf, f r , and 2f spectral components, where s is the motor slip, f is supply frequency and f r is rotor speed. Appearance of only the 2sf component in zero crossing times (ZCT) of the signal spectrum implies rotor faults. The 2f component occurs only when supply is unbalanced or in the case of stator winding faults. Separation of these two faults is implemented by monitoring both components. In addition, when there is additional rotor eccentricity due to bearing deterioration or shaft misalignment, it is also necessary to monitor the f r fault signature component to distinguish mixed faults. It may be necessary to include additional signals such as motor vibration or temperature to extend the reliability of the fault detection system for critical machines

  9. Analyzing locomotion synthesis with feature-based motion graphs.

    Science.gov (United States)

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  10. The Toggle Local Planner for sampling-based motion planning

    KAUST Repository

    Denny, Jory; Amato, Nancy M.

    2012-01-01

    Sampling-based solutions to the motion planning problem, such as the probabilistic roadmap method (PRM), have become commonplace in robotics applications. These solutions are the norm as the dimensionality of the planning space grows, i.e., d > 5

  11. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    Science.gov (United States)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  12. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  13. Automatic Video-based Analysis of Human Motion

    DEFF Research Database (Denmark)

    Fihl, Preben

    The human motion contains valuable information in many situations and people frequently perform an unconscious analysis of the motion of other people to understand their actions, intentions, and state of mind. An automatic analysis of human motion will facilitate many applications and thus has...... received great interest from both industry and research communities. The focus of this thesis is on video-based analysis of human motion and the thesis presents work within three overall topics, namely foreground segmentation, action recognition, and human pose estimation. Foreground segmentation is often...... the first important step in the analysis of human motion. By separating foreground from background the subsequent analysis can be focused and efficient. This thesis presents a robust background subtraction method that can be initialized with foreground objects in the scene and is capable of handling...

  14. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    Directory of Open Access Journals (Sweden)

    Li Hai Xia

    2016-01-01

    Full Text Available This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  15. Scattered Data Processing Approach Based on Optical Facial Motion Capture

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2013-01-01

    Full Text Available In recent years, animation reconstruction of facial expressions has become a popular research field in computer science and motion capture-based facial expression reconstruction is now emerging in this field. Based on the facial motion data obtained using a passive optical motion capture system, we propose a scattered data processing approach, which aims to solve the common problems of missing data and noise. To recover missing data, given the nonlinear relationships among neighbors with the current missing marker, we propose an improved version of a previous method, where we use the motion of three muscles rather than one to recover the missing data. To reduce the noise, we initially apply preprocessing to eliminate impulsive noise, before our proposed three-order quasi-uniform B-spline-based fitting method is used to reduce the remaining noise. Our experiments showed that the principles that underlie this method are simple and straightforward, and it delivered acceptable precision during reconstruction.

  16. Portable DMFC system with methanol sensor-less control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Liu, D.H.; Huang, C.L.; Chang, C.L. [Institute of Nuclear Energy Research (INER), No. 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546 (China)

    2007-05-15

    This work develops a prototype 20 W portable DMFC by system integration of stack, condenser, methanol sensor-less control and start-up characteristics. The effects of these key components and control schemes on the performance are also discussed. To expedite the use of portable DMFC in electronic applications, the system utilizes a novel methanol sensor-less control method, providing improved fuel efficiency, durability, miniaturization and cost reduction. The operating characteristics of the DMFC stack are applied to control the fuel ejection time and period, enabling the system to continue operating even when the MEAs of the stack are deteriorated. The portable system is also designed with several features including water balance and quick start-up (in 5 min). Notably, the proposed system using methanol sensor-less control with injection of pure methanol can power the DVD player and notebook PC. The system specific energy and energy density following three days of operation are 362 Wh kg{sup -1} and 335 Wh L{sup -1}, respectively, which are better than those of lithium batteries ({proportional_to}150 Wh kg{sup -1} and {proportional_to}250 Wh L{sup -}). This good energy storage feature demonstrates that the portable DMFC is likely to be valuable in computer, communication and consumer electronic (3C) markets. (author)

  17. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  18. Trained neurons-based motion detection in optical camera communications

    Science.gov (United States)

    Teli, Shivani; Cahyadi, Willy Anugrah; Chung, Yeon Ho

    2018-04-01

    A concept of trained neurons-based motion detection (TNMD) in optical camera communications (OCC) is proposed. The proposed TNMD is based on neurons present in a neural network that perform repetitive analysis in order to provide efficient and reliable motion detection in OCC. This efficient motion detection can be considered another functionality of OCC in addition to two traditional functionalities of illumination and communication. To verify the proposed TNMD, the experiments were conducted in an indoor static downlink OCC, where a mobile phone front camera is employed as the receiver and an 8 × 8 red, green, and blue (RGB) light-emitting diode array as the transmitter. The motion is detected by observing the user's finger movement in the form of centroid through the OCC link via a camera. Unlike conventional trained neurons approaches, the proposed TNMD is trained not with motion itself but with centroid data samples, thus providing more accurate detection and far less complex detection algorithm. The experiment results demonstrate that the TNMD can detect all considered motions accurately with acceptable bit error rate (BER) performances at a transmission distance of up to 175 cm. In addition, while the TNMD is performed, a maximum data rate of 3.759 kbps over the OCC link is obtained. The OCC with the proposed TNMD combined can be considered an efficient indoor OCC system that provides illumination, communication, and motion detection in a convenient smart home environment.

  19. High-performance sensorless nonlinear power control of a flywheel energy storage system

    International Nuclear Information System (INIS)

    Amodeo, S.J.; Chiacchiarini, H.G.; Solsona, J.A.; Busada, C.A.

    2009-01-01

    The flywheel energy storage systems (FESS) can be used to store and release energy in high power pulsed systems. Based on the use of a homopolar synchronous machine in a FESS, a high performance model-based power flow control law is developed using the feedback linearization methodology. This law is based on the voltage space vector reference frame machine model. To reduce the magnetic losses, a pulse amplitude modulation driver for the armature is more adequate. The restrictions in amplitude and phase imposed by the driver are also included. A full order Luenberger observer for the torque angle and rotor speed is developed to implement a sensorless control strategy. Simulation results are presented to illustrate the performance.

  20. Base response arising from free-field motions

    International Nuclear Information System (INIS)

    Whitley, J.R.; Morgan, J.R.; Hall, W.J.; Newmark, N.M.

    1977-01-01

    A procedure is illustrated in this paper for deriving (estimating) from a free-field record the horizontal base motions of a building, including horizontal rotation and translation. More specifically the goal was to compare results of response calculations based on derived accelerations with the results of calculations based on recorded accelerations. The motions are determined by assuming that an actual recorded ground wave transits a rigid base of a given dimension. Calculations given in the paper were made employing the earthquake acceleration time histories of the Hollywood storage building and the adjacent P.E. lot for the Kern County (1952) and San Fernando (1971) earthquakes. (Auth.)

  1. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

    Science.gov (United States)

    Smoczek, Jaroslaw

    2014-05-01

    Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

  2. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  3. A motion sensing-based framework for robotic manipulation.

    Science.gov (United States)

    Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing

    2016-01-01

    To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.

  4. On a PCA-based lung motion model

    Energy Technology Data Exchange (ETDEWEB)

    Li Ruijiang; Lewis, John H; Jia Xun; Jiang, Steve B [Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92037-0843 (United States); Zhao Tianyu; Wuenschel, Sara; Lamb, James; Yang Deshan; Low, Daniel A [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Pl, St. Louis, MO 63110-1093 (United States); Liu Weifeng, E-mail: sbjiang@ucsd.edu [Amazon.com Inc., 701 5th Ave. Seattle, WA 98104 (United States)

    2011-09-21

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  5. On a PCA-based lung motion model.

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B

    2011-09-21

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  6. On a PCA-based lung motion model

    International Nuclear Information System (INIS)

    Li Ruijiang; Lewis, John H; Jia Xun; Jiang, Steve B; Zhao Tianyu; Wuenschel, Sara; Lamb, James; Yang Deshan; Low, Daniel A; Liu Weifeng

    2011-01-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  7. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  8. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    Science.gov (United States)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  9. Sensorless Control of IM for Limp-Home Mode EV Applications

    DEFF Research Database (Denmark)

    Dehghan-Azad, Ehsan; Gadoue, Shady; Atkinson, David

    2017-01-01

    in electric vehicle (EV) applications. The proposed scheme was experimentally tested on a laboratory dynamometer using a 19-kW IM and a 29-kW controller, which are both currently used in the automotive industry for EV applications. The scheme was also implemented on an electric golf buggy which was equipped......This paper presents a novel speed estimation scheme for induction motors (IMs) based on back electromotive-force model reference adaptive system (back-EMF MRAS). The scheme is employed for the purpose of sensorless fault-Tolerant torque-controlled drives used in a limp-home mode operation...... investigated for vehicle starting from standstill, wide speed range including field weakening region, and hill-starting operations. The proposed scheme is computationally easy to implement, robust against sensitivity to parameters variations, inverter nonlinearity and errors due to digitization in the field...

  10. Sensorless speed detection of squirrel-cage induction machines using stator neutral point voltage harmonics

    Science.gov (United States)

    Petrovic, Goran; Kilic, Tomislav; Terzic, Bozo

    2009-04-01

    In this paper a sensorless speed detection method of induction squirrel-cage machines is presented. This method is based on frequency determination of the stator neutral point voltage primary slot harmonic, which is dependent on rotor speed. In order to prove method in steady state and dynamic conditions the simulation and experimental study was carried out. For theoretical investigation the mathematical model of squirrel cage induction machines, which takes into consideration actual geometry and windings layout, is used. Speed-related harmonics that arise from rotor slotting are analyzed using digital signal processing and DFT algorithm with Hanning window. The performance of the method is demonstrated over a wide range of load conditions.

  11. A sensorless control method for capacitor voltage balance and circulating current suppression of modular multilevel converter

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang

    2015-01-01

    There are several problems in the Modular Multilevel Converter (MMC), such as the appearance of circulating current, capacitor voltage unbalance and the requirement for a high number of sensors. All these problems will decrease the reliability and raise the cost/uncertainty of using MMC solutions....... As a result, a sensorless control method is proposed in this paper, which targets to improve the performances of MMC in respect to the above mentioned disadvantages: To decrease the cost and simplify the physical implementation, a state observer is proposed and designed to estimate both the capacitor voltages...... and the circulating currents in order to replace the high numbers of sensors. Furthermore, a control method combining the circulating current suppression and the capacitor voltage balancing is conducted based on the proposed state observer. It is concluded that the proposed state observer and control method can...

  12. Unsupervised motion-based object segmentation refined by color

    Science.gov (United States)

    Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris

    2003-06-01

    For various applications, such as data compression, structure from motion, medical imaging and video enhancement, there is a need for an algorithm that divides video sequences into independently moving objects. Because our focus is on video enhancement and structure from motion for consumer electronics, we strive for a low complexity solution. For still images, several approaches exist based on colour, but these lack in both speed and segmentation quality. For instance, colour-based watershed algorithms produce a so-called oversegmentation with many segments covering each single physical object. Other colour segmentation approaches exist which somehow limit the number of segments to reduce this oversegmentation problem. However, this often results in inaccurate edges or even missed objects. Most likely, colour is an inherently insufficient cue for real world object segmentation, because real world objects can display complex combinations of colours. For video sequences, however, an additional cue is available, namely the motion of objects. When different objects in a scene have different motion, the motion cue alone is often enough to reliably distinguish objects from one another and the background. However, because of the lack of sufficient resolution of efficient motion estimators, like the 3DRS block matcher, the resulting segmentation is not at pixel resolution, but at block resolution. Existing pixel resolution motion estimators are more sensitive to noise, suffer more from aperture problems or have less correspondence to the true motion of objects when compared to block-based approaches or are too computationally expensive. From its tendency to oversegmentation it is apparent that colour segmentation is particularly effective near edges of homogeneously coloured areas. On the other hand, block-based true motion estimation is particularly effective in heterogeneous areas, because heterogeneous areas improve the chance a block is unique and thus decrease the

  13. Group-based Motion Detection for Energy-Efficient Localisation

    Directory of Open Access Journals (Sweden)

    Alban Cotillon

    2012-10-01

    Full Text Available Long-term outdoor localization remains challenging due to the high energy profiles of GPS modules. Duty cycling the GPS module combined with inertial sensors can improve energy consumption. However, inertial sensors that are kept active all the time can also drain mobile node batteries. This paper proposes duty cycling strategies for inertial sensors to maintain a target position accuracy and node lifetime. We present a method for duty cycling motion sensors according to features of movement events, and evaluate its energy and accuracy profile for an empirical data trace of cattle movement. We further introduce the concept of group-based duty cycling, where nodes that cluster together can share the burden of motion detection to reduce their duty cycles. Our evaluation shows that both variants of motion sensor duty cycling yield up to 78% improvement in overall node power consumption, and that the group-based method yields an additional 20% power reduction during periods of low mobility.

  14. Sensorless Vector Control of AC Induction Motor Using Sliding-Mode Observer

    Directory of Open Access Journals (Sweden)

    Phuc Thinh Doan

    2013-06-01

    Full Text Available This paper develops a sensorless vector controlled method for AC induction motor using sliding-mode observer. For developing the control algorithm, modeling of AC induction motor is presented. After that, a sliding mode observer is proposed to estimate the motor speed, the rotor flux, the angular position of the rotor flux and the motor torque from monitored stator voltages and currents. The use of the nonlinear sliding mode observer provides very good performance for both low and high speed motor operation. Furthermore, the proposed system is robust in motor losses and load variations. The convergence of the proposed observer is obtained using the Lyapunov theory. Hardware and software for simulation and experiment of the AC induction motor drive are introduced. The hardware consists of a 1.5kw AC induction motor connected in series with a torque sensor and a powder brake. A controller is developed based on DSP TMS320F28355. The simulation and experimental results illustrate that fast torque and speed response with small torque ripples can be achieved. The proposed control scheme is suitable to the application fields that require high performance of torque response such as electric vehicles. doi:http://dx.doi.org/10.12777/ijse.4.2.2013.39-43 [How to cite this article: Doan, P. T., Nguyen, T. T., Jeong, S. K., Oh, S. J., & Kim, S. B. (2013. Sensorless Vector Control of AC Induction Motor Using Sliding-Mode Observer. INTERNATIONAL JOURNAL OF SCIENCE AND ENGINEERING, 4(2, 39-43; doi: http://dx.doi.org/10.12777/ijse.4.2.2013.39-43

  15. Gating treatment delivery QA based on a surrogate motion analysis

    International Nuclear Information System (INIS)

    Chojnowski, J.; Simpson, E.

    2011-01-01

    Full text: To develop a methodology to estimate intrafractional target position error during a phase-based gated treatment. Westmead Cancer Care Centre is using respiratory correlated phase-based gated beam delivery in the treatment of lung cancer. The gating technique is managed by the Varian Real-time Position Management (RPM) system, version 1.7.5. A 6-dot block is placed on the abdomen of the patient and acts as a surrogate for the target motion. During a treatment session, the motion of the surrogate can be recorded by RPM application. Analysis of the surrogate motion file by in-house developed software allows the intrafractional error of the treatment session to be computed. To validate the computed error, a simple test that involves the introduction of deliberate errors is performed. Errors of up to 1.1 cm are introduced to a metal marker placed on a surrogate using the Varian Breathing Phantom. The moving marker was scanned in prospective mode using a GE Lightspeed 16 CT scanner. Using the CT images, a difference of the marker position with and without introduced errors is compared to the calculated errors based on the surrogate motion. The average and standard deviation of a difference between calculated target position errors and measured introduced artificial errors of the marker position is 0.02 cm and 0.07 cm respectively. Conclusion The calculated target positional error based on surrogate motion analysis provides a quantitative measure of intrafractional target positional errors during treatment. Routine QA for gated treatment using surrogate motion analysis is relatively quick and simple.

  16. Magnetic sensorless control experiment without drift problem on HT-7

    International Nuclear Information System (INIS)

    Nakamura, K.; Luo, J.R.; Wang, H.Z.; Ji, Z.S.; Wang, H.; Wang, F.; Qi, N.; Sato, K.N.; Hanada, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.

    2006-01-01

    Magnetic sensorless control experiments of the plasma horizontal position have been carried out in the superconducting tokamak HT-7. Previously the horizontal position was calculated from the vertical field coil current and voltage without using signals of magnetic sensors like magnetic coils and flux loops placed near the plasma. The calculations are made focusing on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem of integrator of magnetic sensors. Two kinds of experiments were carried out, to keep the position constant and swing the position in a triangular waveform

  17. Vision-based human motion analysis: An overview

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2007-01-01

    Markerless vision-based human motion analysis has the potential to provide an inexpensive, non-obtrusive solution for the estimation of body poses. The significant research effort in this domain has been motivated by the fact that many application areas, including surveillance, Human-Computer

  18. Design and Evaluation of Accelerometer based Motional Feedback

    DEFF Research Database (Denmark)

    Schneider, Henrik; Pranjic, Emilio; Agerkvist, Finn T.

    2015-01-01

    and enable radical design changes in the loudspeaker which can lead to efficiency improvements. In combination this has motivated a revisit of the accelerometer based motional feedback technique. Experimental results on a 8 inch subwoofer show that the total harmonic distortion can be significantly reduced...

  19. A Situated Cultural Festival Learning System Based on Motion Sensing

    Science.gov (United States)

    Chang, Yi-Hsing; Lin, Yu-Kai; Fang, Rong-Jyue; Lu, You-Te

    2017-01-01

    A situated Chinese cultural festival learning system based on motion sensing is developed in this study. The primary design principle is to create a highly interactive learning environment, allowing learners to interact with Kinect through natural gestures in the designed learning situation to achieve efficient learning. The system has the…

  20. Ego-motion based on EM for bionic navigation

    Science.gov (United States)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  1. Analysis, design and implementation of sensorless V/f control in a ...

    Indian Academy of Sciences (India)

    SOURABH PAITANDI

    Keywords. Surface-mounted PMSM; V/f control; sensorless control; stabilisation of PMSM; efficiency optimisation. ..... The power balance equation can be written as, pe ¼ Pe ю .... loading the actual speed falls for a very short transient period.

  2. Comparison of sensorless FOC and SVM-DTFC of PMSM for low-speed applications

    DEFF Research Database (Denmark)

    Basar, M. Sertug; Bech, Michael Møller; Andersen, Torben Ole

    2013-01-01

    This article presents the performance analysis of Field Oriented Control (FOC) and Space Vector Modulation (SVM) Direct Torque and Flux Control (DTFC) of a Non-Salient Permanent Magnet Synchronous Machine (PMSM) under sensorless control within low speed region. The high-frequency alternating...... with a commercially available PMSM machine. Both controllers show satisfactory sensorless performance. FOC provides smoother and more accurate response while SVM-DTFC has the advantage of faster control....

  3. Comparison of sensorless FOC and SVM-DTFC of PMSM for low-speed applications

    DEFF Research Database (Denmark)

    Basar, Mehmet Sertug

    2016-01-01

    This article presents the performance analysis of Field Oriented Control (FOC) and Space Vector Modulation (SVM) Direct Torque and Flux Control (DTFC) of a Non-Salient Permanent Magnet Synchronous Machine (PMSM) under sensorless control within low speed region. The high-frequency alternating...... with a commercially available PMSM machine. Both controllers show satisfactory sensorless performance. FOC provides smoother and more accurate response while SVM-DTFC has the advantage of faster control....

  4. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  5. Proposition for sensorless self-excitation by a piezoelectric device

    Science.gov (United States)

    Tanaka, Y.; Kokubun, Y.; Yabuno, H.

    2018-04-01

    In this paper, we propose a method to realize self-excitation in an oscillator actuated by a piezoelectric device without a sensor. In general, the positive feedback associated with the oscillator velocity causes the self-excitation. Instead of measuring the velocity with a sensor, we utilize the electro-mechanical coupling effect in the oscillator and piezoelectric device. We drive the piezoelectric device with a current proportional to the linear combination of the voltage across the terminals of the piezoelectric device and its differential voltage signal. Then, the oscillator with the piezoelectric device behaves like a third-order system, which has three eigenvalues. The self-excitation can be realized because appropriate feedback gains can set two of the eigenvalues to be conjugate complex roots with a positive real part and the other eigenvalue to be a negative real root. To confirm the validity of the proposed method, we experimentally demonstrated the sensorless self-excitation and, as an application example, carried out mass sensing in a sensorless self-excited macrocantilever.

  6. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  7. Gaussian particle filter based pose and motion estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry.A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the particle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.

  8. Software for project-based learning of robot motion planning

    Science.gov (United States)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-12-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.

  9. ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES

    OpenAIRE

    Brouard , Olivier; Delannay , Fabrice; Ricordel , Vincent; Barba , Dominique

    2007-01-01

    4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...

  10. Motion based parsing for video from observational psychology

    Science.gov (United States)

    Kokaram, Anil; Doyle, Erika; Lennon, Daire; Joyeux, Laurent; Fuller, Ray

    2006-01-01

    In Psychology it is common to conduct studies involving the observation of humans undertaking some task. The sessions are typically recorded on video and used for subjective visual analysis. The subjective analysis is tedious and time consuming, not only because much useless video material is recorded but also because subjective measures of human behaviour are not necessarily repeatable. This paper presents tools using content based video analysis that allow automated parsing of video from one such study involving Dyslexia. The tools rely on implicit measures of human motion that can be generalised to other applications in the domain of human observation. Results comparing quantitative assessment of human motion with subjective assessment are also presented, illustrating that the system is a useful scientific tool.

  11. A low cost PSD-based monocular motion capture system

    Science.gov (United States)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  12. Fish tracking by combining motion based segmentation and particle filtering

    Science.gov (United States)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  13. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  14. Adaptive Human aware Navigation based on Motion Pattern Analysis

    DEFF Research Database (Denmark)

    Tranberg, Søren; Svenstrup, Mikael; Andersen, Hans Jørgen

    2009-01-01

    Respecting people’s social spaces is an important prerequisite for acceptable and natural robot navigation in human environments. In this paper, we describe an adaptive system for mobile robot navigation based on estimates of whether a person seeks to interact with the robot or not. The estimates...... are based on run-time motion pattern analysis compared to stored experience in a database. Using a potential field centered around the person, the robot positions itself at the most appropriate place relative to the person and the interaction status. The system is validated through qualitative tests...

  15. Base response arising from free-field motions

    International Nuclear Information System (INIS)

    Whitley, J.R.; Morgan, J.R.; Hall, W.J.; Newmark, N.M.

    1977-01-01

    A procedure is illustrated in this paper for deriving (estimating) from a free-field record the horizontal base motions of a building, including horizontal rotation and translation. More specifically the goal was to compare results of response calculations based on derived accelerations with the results of calculations based on recorded accelerations. The motions are determined by assuming that an actual recorded ground wave transits a rigid base of a given dimension. Calculations given in the paper were made employing the earthquake acceleration time histories of the Hollywood storage building and the adjacent P.E. lot for the Kern County (1952) and San Fernando (1971) earthquakes. For the Kern County earthquake the derived base corner accelerations, including the effect of rotation show generally fair agreement with the spectra computed from the Hollywood storage corner record. For the San Fernando earthquake the agreement between the spectra computed from derived base corner accelerations and that computed from the actual basement corner record is not as good as that for the Kern County earthquake. These limited studies admittedly are hardly a sufficient basis on which to form a judgment, but these differences noted probably can be attributed in part to foundation distortion, building feedback, distance between measurement points, and soil structure interaction; it was not possible to take any of these factors into account in these particular calculations

  16. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    International Nuclear Information System (INIS)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-01-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV max ) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV max up to 25% and reduce the diameter of the 50% SUV max volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions

  17. An Improved DTC-SVM Method for Sensorless Matrix Converter Drives Using an Overmodulation Strategy and a Simple Nonlinearity Compensation

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blaabjerg, Frede

    2007-01-01

    In this paper, an improved direct torque control (DTC) method for sensorless matrix converter drives is proposed, which is characterized by minimal torque ripple, unity input power factor, and good sensorless speed-control performance in the low-speed operation, while maintaining constant switchi...

  18. A respiratory monitoring device based on clavicular motion

    International Nuclear Information System (INIS)

    Pitts, D G; Aspinall, R; Patel, M K; Lang, P-O; Sinclair, A J

    2013-01-01

    Respiratory rate is one of the key vital signs yet unlike temperature, heart rate or blood pressure, there is no simple and low cost measurement device for medical use. Here we discuss the development of a respiratory sensor based upon clavicular motion and the findings of a pilot study comparing respiratory rate readings derived from clavicular and thoracic motion with an expiratory breath flow reference sensor. Simultaneously sampled data from resting volunteers (n = 8) was analysed to determine the location of individual breaths in the data set and from these, breath periods and frequency were calculated. Clavicular sensor waveforms were found to be more consistent and of greater amplitude than those from the thoracic device, demonstrating good alignment with the reference waveform. On comparing breath by breath periods a close agreement was observed with the reference, with mean clavicular respiratory rate R 2 values of 0.89 (lateral) and 0.98 (longitudinal-axis). This pilot study demonstrates the viability of clavicular respiratory sensing. The sensor is unobtrusive, unaffected by bioelectrical or electrode problems and easier to determine and more consistent than thoracic motion sensing. With relatively basic signal conditioning and processing requirements, it could provide an ideal platform for a low-cost respiratory monitor. (note)

  19. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  20. Digital video steganalysis using motion vector recovery-based features.

    Science.gov (United States)

    Deng, Yu; Wu, Yunjie; Zhou, Linna

    2012-07-10

    As a novel digital video steganography, the motion vector (MV)-based steganographic algorithm leverages the MVs as the information carriers to hide the secret messages. The existing steganalyzers based on the statistical characteristics of the spatial/frequency coefficients of the video frames cannot attack the MV-based steganography. In order to detect the presence of information hidden in the MVs of video streams, we design a novel MV recovery algorithm and propose the calibration distance histogram-based statistical features for steganalysis. The support vector machine (SVM) is trained with the proposed features and used as the steganalyzer. Experimental results demonstrate that the proposed steganalyzer can effectively detect the presence of hidden messages and outperform others by the significant improvements in detection accuracy even with low embedding rates.

  1. Torque capability improvement of sensorless FOC induction machine in field weakening for propulsion purposes

    Directory of Open Access Journals (Sweden)

    Nisha G.K.

    2017-05-01

    Full Text Available An electric propulsion system is generally based on torque controlled electric drive and DC series motors are traditionally used for propulsion system. Induction machines, which are reliable, low cost and have less maintenance, satisfy the characteristics of the propulsion and reinstating the DC series motor. Field oriented control (FOC of induction machines can decouple its torque control from field control which allows the induction motor to act like a separately excited DC motor. In this paper, the characteristic control of induction motor is achieved through appropriate design modification of induction motor by varying magnetizing current to produce maximum torque in field weakening (FW region. Thus to improve the torque capability of induction machine in FW region by varying machine parameters. The sensorless operation of the induction motor is carried out by adopting model reference adaptive system (MRAS using sliding mode control (SMC and a FW algorithm based on the voltage and current constraints. The simulation of the induction motor drive models based on the design options have been carried out and analyzed the simulation results.

  2. Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification

    Science.gov (United States)

    Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman

    2018-05-01

    Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition

  3. Smart sensorless prediction diagnosis of electric drives

    Science.gov (United States)

    Kruglova, TN; Glebov, NA; Shoshiashvili, ME

    2017-10-01

    In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.

  4. Research on NC motion controller based on SOPC technology

    Science.gov (United States)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  5. Software for Project-Based Learning of Robot Motion Planning

    Science.gov (United States)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-01-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…

  6. Analysis of sensorless control of brushless DC motor using unknown input observer with different gains

    Science.gov (United States)

    Astik, Mitesh B.; Bhatt, Praghnesh; Bhalja, Bhavesh R.

    2017-03-01

    A sensorless control scheme based on an unknown input observer is presented in this paper in which back EMF of the Brushless DC Motor (BLDC) is continuously estimated from available line voltages and currents. During negative rotation of motor, actual and estimated speed fail to track the reference speed and if the corrective action is not taken by the observer, the motor goes into saturation. To overcome this problem, the speed estimation algorithm has been implemented in this paper to control the dynamic behavior of the motor during negative rotation. The Ackermans method was used to calculate the gains of an unknown input observer which is based on the appropriate choice of the eigenvalues in advance. The criteria to choose eigenvalue is to obtain a balance between faster convergence rate and the least noise level. Simulations have been carried out for different disturbances such as step changes in motor reference speed and load torque. The comparative simulation results clearly depict that the disturbance effects in actual and estimated responses minimizes as observer gain setting increases.

  7. A comparative study between three sensorless control strategies for PMSG in wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Brahmi, Jemaa; Krichen, Lotfi; Ouali, Abderrazak [Advanced Control and Energy Management Research Unit ENIS, Department of Electrical Engineering, University of Sfax, 3038 Sfax (Tunisia)

    2009-09-15

    This paper presents a comparative study of sliding mode, artificial neural network and model reference adaptive speed observers for a speed sensorless permanent magnet synchronous generator (PMSG) in wind energy conversion system (WECS). Wind velocity and position sensorless operating methods for wind generation system using observer are proposed only by measuring phase voltages and currents. Maximum wind energy extraction is achieved by running the wind turbine generator in variable-speed mode. In addition the three speed observers are compared to verify the robustness against parameter variations. (author)

  8. Speed-Sensorless DTC-SVM for Matrix Converter Drives With Simple Nonlinearity Compensation

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blaabjerg, Frede; Yoon, Tae-Woong

    2007-01-01

    This paper presents a new method to improve the sensorless performance of matrix converter drives using a parameter estimation scheme. To improve low-speed sensorless performance, the nonlinearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching de...... compensation method is applied for high performance induction motor drives using a 3-kW matrix converter system without a speed sensor. Experimental results are shown to illustrate the feasibility of the proposed strategy....

  9. Speed-Sensorless DTC-SVM for Matrix Converter Drives With Simple Non-Linearity Compensation

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede; Yoon, Tae-Woong

    2005-01-01

    This paper presents a new method to improve sensorless performance of matrix converter drives using a parameter estimation scheme. To improve low-speed sensorless performance, the non-Iinearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching devic...... method is applied for high performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Experimental results are shown to illustrate the feasibility of the proposed strategy....

  10. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time....

  11. Magnetic sensorless control of plasma position and shape in a tokamak

    International Nuclear Information System (INIS)

    Nakamura, K.; Luo, J.R.; Wang, H.Z.

    2005-01-01

    Magnetic sensorless sensing and control experiments of the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made focusing on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem of integrator of magnetic sensors. Two kinds of control experiments were carried out, to keep the position constant and swing the position in a triangular waveform. And magnetic sensorless sensing of plasma shape is discussed. (author)

  12. Minimum-Voltage Vector Injection Method for Sensorless Control of PMSM for Low-Speed Operations

    DEFF Research Database (Denmark)

    Xie, Ge; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2016-01-01

    In this paper, a simple signal injection method is proposed for sensorless control of PMSM at low speed, which ideally requires one voltage vector only for position estimation. The proposed method is easy to implement resulting in low computation burden. No filters are needed for extracting...... may also be further developed to inject two opposite voltage vectors to reduce the effects of inverter voltage error on the position estimation accuracy. The effectiveness of the proposed method is demonstrated by comparing with other sensorless control method. Theoretical analysis and experimental...

  13. Simulation and Implementation of Sensorless Control in Multi-Motors Electric Drives with High Dynamics

    Directory of Open Access Journals (Sweden)

    Marcel Nicola

    2017-05-01

    Full Text Available In this article we’ll tackle the control of multi-motors electric drives with high dynamic, with rapid changes in torque and speed, with rigid or flexible coupling of motors, where the control strategy is FOC (Field Oriented Control for each drives and the distributed control in local network using the CANopen protocol. In the surface mining industry, from which the electric drive application for this article is selected, the general trend is toward using asynchronous motors with short-circuit rotor, due to the advantages of this motor both in terms of design and operation. In order to achieve the variable speed, must be used the static frequency converters with sensorless control, where speed is estimated using a Model References Adaptive Control Estimator. The global control system proposed in this paper contain this type of MRAC estimator together with PI-control based, who ensures a good dynamic performance but in a lower complexity of structure such that are properly to implement in real time in a distributed control system with DSP in local network using the CANopen protocol with advantages in terms of software technology, as well as control cost and flexibility of use. Following these directions a functional application was implemented and tested in practice.

  14. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  15. Maximum torque per ampere control of sensorless induction motor drives with dc offset and parameter compensation

    International Nuclear Information System (INIS)

    Markadeh, Gholamreza Arab; Hajian, Masood; Soltani, Jafar; Hosseinia, Saeed

    2010-01-01

    Field orientation control of induction machine (IM) drives is a well-known strategy which has a fast dynamic response. In this paper, the direct rotor flux field orientation control of speed sensorless IM drive is presented. A two level space vector modulation inverter is employed to generate the command stator voltage. In proposed control scheme, a maximum torque per ampere strategy is achieved using a so-called fast flux search method. Based on this method, for a given load torque and rotor speed, the magnitude of rotor reference flux is adjusted step by step until the effective value of stator current becomes minimized finally. In addition, using the IM fifth order model in the stationary reference frame, a nonlinear rotor flux observer is developed which is also capable of motor resistances and rotor speed simultaneously estimation. Moreover, a useful method is introduced for dc offset compensation which is a major problem of ac drives especially at low speeds. The proposed control idea is experimentally implemented in real time using a CPLD board synchronized with a personal computer. Simulation and experimental results are finally presented to confirm the validity and effectiveness of the proposed method.

  16. Sliding-Mode Observer for Speed and Position Sensorless Control of Linear-PMSM

    Directory of Open Access Journals (Sweden)

    Kazraji Saeed Masoumi

    2014-05-01

    Full Text Available The paper presents a sliding-mode observer that utilizes sigmoid function for speed and position sensorless control of permanent-magnet linear synchronous motor (PMLSM. In conventional sliding mode observer method there are the chattering phenomenon and the phase lag. Thus, in order to avoid the usage of the low pass filter and the phase compensator based on back EMF, in this paper a sliding mode observer with sigmoid function for detecting the back EMF in a PMLSM is designed to estimate the speed and the position of the rotor. Most of conventional sliding mode observers use sign or saturation functions which need low pass filter in order to detect back electromotive force (back EMF. In this paper a sigmoid function is used instead of discontinuous sign function to decrease undesirable chattering phenomenon. By reducing the chattering, detecting of the back EMF can be made directly from switching signal without any low pass filter. Thus the delay time in the proposed observer is eliminated because of the low pass filter. Furthermore, there is no need to compensate phase fault in position and speed estimating of linear-PMSM. Advantages of the proposed observer have been shown by simulation with MATLAB software.

  17. A Force Sensorless Method for CFRP/Ti Stack Interface Detection during Robotic Orbital Drilling Operations

    Directory of Open Access Journals (Sweden)

    Qiang Fang

    2015-01-01

    Full Text Available Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.

  18. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    Science.gov (United States)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  19. Visibility-based optimal path and motion planning

    CERN Document Server

    Wang, Paul Keng-Chieh

    2015-01-01

    This monograph deals with various visibility-based path and motion planning problems motivated by real-world applications such as exploration and mapping planetary surfaces, environmental surveillance using stationary or mobile robots, and imaging of global air/pollutant circulation. The formulation and solution of these problems call for concepts and methods from many areas of applied mathematics including computational geometry, set-covering, non-smooth optimization, combinatorial optimization and optimal control. Emphasis is placed on the formulation of new problems and methods of approach to these problems. Since geometry and visualization play important roles in the understanding of these problems, intuitive interpretations of the basic concepts are presented before detailed mathematical development. The development of a particular topic begins with simple cases illustrated by specific examples, and then progresses forward to more complex cases. The intended readers of this monograph are primarily studen...

  20. Frame based Motion Detection for real-time Surveillance

    OpenAIRE

    Brajesh Patel; Neelam Patel

    2012-01-01

    In this paper a series of algorithm has been formed to track the feature of motion detection under surveillance system. In the proposed work a pixel variant plays a vital role in detection of moving object of a particular clip. If there is a little bit motion in a frame then it is detected very easily by calculating pixel variance. This algorithm detects the zero variation only when there is no motion in a real-time video sequence. It is simple and easier for motion detection in the fames of ...

  1. A review of vision-based motion analysis in sport.

    Science.gov (United States)

    Barris, Sian; Button, Chris

    2008-01-01

    Efforts at player motion tracking have traditionally involved a range of data collection techniques from live observation to post-event video analysis where player movement patterns are manually recorded and categorized to determine performance effectiveness. Due to the considerable time required to manually collect and analyse such data, research has tended to focus only on small numbers of players within predefined playing areas. Whilst notational analysis is a convenient, practical and typically inexpensive technique, the validity and reliability of the process can vary depending on a number of factors, including how many observers are used, their experience, and the quality of their viewing perspective. Undoubtedly the application of automated tracking technology to team sports has been hampered because of inadequate video and computational facilities available at sports venues. However, the complex nature of movement inherent to many physical activities also represents a significant hurdle to overcome. Athletes tend to exhibit quick and agile movements, with many unpredictable changes in direction and also frequent collisions with other players. Each of these characteristics of player behaviour violate the assumptions of smooth movement on which computer tracking algorithms are typically based. Systems such as TRAKUS, SoccerMan, TRAKPERFORMANCE, Pfinder and Prozone all provide extrinsic feedback information to coaches and athletes. However, commercial tracking systems still require a fair amount of operator intervention to process the data after capture and are often limited by the restricted capture environments that can be used and the necessity for individuals to wear tracking devices. Whilst some online tracking systems alleviate the requirements of manual tracking, to our knowledge a completely automated system suitable for sports performance is not yet commercially available. Automatic motion tracking has been used successfully in other domains outside

  2. Example-Based Automatic Music-Driven Conventional Dance Motion Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Songhua [ORNL; Fan, Rukun [University of North Carolina, Chapel Hill; Geng, Weidong [Zhejiang University

    2011-04-21

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  3. Example-based automatic music-driven conventional dance motion synthesis.

    Science.gov (United States)

    Fan, Rukun; Xu, Songhua; Geng, Weidong

    2012-03-01

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  4. Evaluation of motion management strategies based on required margins

    International Nuclear Information System (INIS)

    Sawkey, D; Svatos, M; Zankowski, C

    2012-01-01

    Strategies for delivering radiation to a moving lesion each require a margin to compensate for uncertainties in treatment. These motion margins have been determined here by separating the total uncertainty into components. Probability density functions for the individual sources of uncertainty were calculated for ten motion traces obtained from the literature. Motion margins required to compensate for the center of mass motion of the clinical treatment volume were found by convolving the individual sources of uncertainty. For measurements of position at a frequency of 33 Hz, system latency was the dominant source of positional uncertainty. Averaged over the ten motion traces, the motion margin for tracking with a latency of 200 ms was 4.6 mm. Gating with a duty cycle of 33% required a mean motion margin of 3.2–3.4 mm, and tracking with a latency of 100 ms required a motion margin of 3.1 mm. Feasible reductions in the effects of the sources of uncertainty, for example by using a simple prediction algorithm to anticipate the lesion position at the end of the latency period, resulted in a mean motion margin of 1.7 mm for tracking with a latency of 100 ms, 2.4 mm for tracking with a latency of 200 ms, and 2.1–2.2 mm for the gating strategies with duty cycles of 33%. A crossover tracking latency of 150 ms was found, below which tracking strategies could take advantage of narrower motion margins than gating strategies. The methods described here provide a means to guide selection of a motion management strategy for a given patient. (paper)

  5. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  6. Music recommendation according to human motion based on kernel CCA-based relationship

    Science.gov (United States)

    Ohkushi, Hiroyuki; Ogawa, Takahiro; Haseyama, Miki

    2011-12-01

    In this article, a method for recommendation of music pieces according to human motions based on their kernel canonical correlation analysis (CCA)-based relationship is proposed. In order to perform the recommendation between different types of multimedia data, i.e., recommendation of music pieces from human motions, the proposed method tries to estimate their relationship. Specifically, the correlation based on kernel CCA is calculated as the relationship in our method. Since human motions and music pieces have various time lengths, it is necessary to calculate the correlation between time series having different lengths. Therefore, new kernel functions for human motions and music pieces, which can provide similarities between data that have different time lengths, are introduced into the calculation of the kernel CCA-based correlation. This approach effectively provides a solution to the conventional problem of not being able to calculate the correlation from multimedia data that have various time lengths. Therefore, the proposed method can perform accurate recommendation of best matched music pieces according to a target human motion from the obtained correlation. Experimental results are shown to verify the performance of the proposed method.

  7. Discriminative Vision-Based Recovery and Recognition of Human Motion

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2009-01-01

    The automatic analysis of human motion from images opens up the way for applications in the domains of security and surveillance, human-computer interaction, animation, retrieval and sports motion analysis. In this dissertation, the focus is on robust and fast human pose recovery and action

  8. Visual complexity, player experience, performance and physical exertion in motion-based games for older adults

    OpenAIRE

    Smeddinck, Jan D.; Gerling, Kathrin M.; Tiemkeo, Saranat

    2013-01-01

    Motion-based video games can have a variety of benefits for the players and are increasingly applied in physical therapy, rehabilitation and prevention for older adults. However, little is known about how this audience experiences playing such games, how the player experience affects the way older adults interact with motion-based games, and how this can relate to therapy goals. In our work, we decompose the player experience of older adults engaging with motion-based games, focusing on the e...

  9. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  10. Simulation of spatiotemporal CT data sets using a 4D MRI-based lung motion model.

    Science.gov (United States)

    Marx, Mirko; Ehrhardt, Jan; Werner, René; Schlemmer, Heinz-Peter; Handels, Heinz

    2014-05-01

    Four-dimensional CT imaging is widely used to account for motion-related effects during radiotherapy planning of lung cancer patients. However, 4D CT often contains motion artifacts, cannot be used to measure motion variability, and leads to higher dose exposure. In this article, we propose using 4D MRI to acquire motion information for the radiotherapy planning process. From the 4D MRI images, we derive a time-continuous model of the average patient-specific respiratory motion, which is then applied to simulate 4D CT data based on a static 3D CT. The idea of the motion model is to represent the average lung motion over a respiratory cycle by cyclic B-spline curves. The model generation consists of motion field estimation in the 4D MRI data by nonlinear registration, assigning respiratory phases to the motion fields, and applying a B-spline approximation on a voxel-by-voxel basis to describe the average voxel motion over a breathing cycle. To simulate a patient-specific 4D CT based on a static CT of the patient, a multi-modal registration strategy is introduced to transfer the motion model from MRI to the static CT coordinates. Differences between model-based estimated and measured motion vectors are on average 1.39 mm for amplitude-based binning of the 4D MRI data of three patients. In addition, the MRI-to-CT registration strategy is shown to be suitable for the model transformation. The application of our 4D MRI-based motion model for simulating 4D CT images provides advantages over standard 4D CT (less motion artifacts, radiation-free). This makes it interesting for radiotherapy planning.

  11. Experimental Study of Low Speed Sensorless Control of PMSM Drive Using High Frequency Signal Injection

    Directory of Open Access Journals (Sweden)

    Jyoti Agrawal

    2016-01-01

    Full Text Available Conventional techniques for sensorless control of permanent magnet synchronous motor drive (PMSM, which requires information on rotor position, are reviewed, and recent developments in this area are introduced in this paper along with their inherent advantages and drawbacks. The paper presents an improved method for sensorless speed control of PMSM drive with emphasis placed on signal injection method. This signal injection method examines the control performance of sensorless PMSM drive by injecting signal externally and thereby sensing the rotor position. The main objective of this drive system is to have speed control at standstill and low speed regions. Several tests are carried out to demonstrate the ability of proposed models at different operating conditions with the help of simulation results in Matlab/Simulink environment. Simulation results confirm that the proposed sensorless control approach of PMSM can achieve high performance at standstill and low speeds but not at very high speeds. An experimental setup is implemented using a 1HP surface mounted (SM PMSM and DsPICDEM^TM MCHV-2 development board, to check the validity of simulation results.

  12. A polynomial-time algorithm to design push plans for sensorless parts sorting

    NARCIS (Netherlands)

    Berg, de M.; Goaoc, X.; van der Stappen, A.F.

    2005-01-01

    We consider the efficient computation of sequences of push actions that simultaneously orient two different polygons. Our motivation for studying this problem comes from the observation that appropriately oriented parts admit simple sensorless sorting. We study the sorting of two polygonal parts by

  13. A novel unified DTC-SVM for sensorless induction motor drives fed by a matrix converter

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    In this paper, a simple direct torque control (DTC) method for sensorless matrix converter drives is proposed, which is characterized by a simple structure, minimal torque ripple and unity input power factor. It is possible to combine the advantages of matrix converters with the advantages of the...

  14. Method and apparatus for sensorless operation of brushless permanent magnet motors

    Science.gov (United States)

    Sriram, T.V.

    1998-04-14

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle. 23 figs.

  15. Method and apparatus for sensorless operation of brushless permanent magnet motors

    Science.gov (United States)

    Sriram, Tillasthanam V.

    1998-01-01

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.

  16. Sensorless Speed Control including zero speed of Non Salient PM Synchronous Drives

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states...

  17. Sensorless Speed Control including zero speed of Non Salient PM Synchronous Drives

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2005-01-01

    This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states...

  18. Sensorless speed Control including Zero Speed on Non Salient PM Synchronous Drives

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2006-01-01

    This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states...

  19. Facial motion parameter estimation and error criteria in model-based image coding

    Science.gov (United States)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  20. PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking

    Science.gov (United States)

    White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders

    2010-01-01

    Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635

  1. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    Science.gov (United States)

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Constrained motion estimation-based error resilient coding for HEVC

    Science.gov (United States)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  3. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NARCIS (Netherlands)

    Tangelder, J.W.H.; Lebert, E.; Burghouts, G.J.; Zon, K. van; Den Uyl, M.J.

    2014-01-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is

  4. The Toggle Local Planner for sampling-based motion planning

    KAUST Repository

    Denny, Jory

    2012-05-01

    Sampling-based solutions to the motion planning problem, such as the probabilistic roadmap method (PRM), have become commonplace in robotics applications. These solutions are the norm as the dimensionality of the planning space grows, i.e., d > 5. An important primitive of these methods is the local planner, which is used for validation of simple paths between two configurations. The most common is the straight-line local planner which interpolates along the straight line between the two configurations. In this paper, we introduce a new local planner, Toggle Local Planner (Toggle LP), which extends local planning to a two-dimensional subspace of the overall planning space. If no path exists between the two configurations in the subspace, then Toggle LP is guaranteed to correctly return false. Intuitively, more connections could be found by Toggle LP than by the straight-line planner, resulting in better connected roadmaps. As shown in our results, this is the case, and additionally, the extra cost, in terms of time or storage, for Toggle LP is minimal. Additionally, our experimental analysis of the planner shows the benefit for a wide array of robots, with DOF as high as 70. © 2012 IEEE.

  5. Activity-based exploitation of Full Motion Video (FMV)

    Science.gov (United States)

    Kant, Shashi

    2012-06-01

    Video has been a game-changer in how US forces are able to find, track and defeat its adversaries. With millions of minutes of video being generated from an increasing number of sensor platforms, the DOD has stated that the rapid increase in video is overwhelming their analysts. The manpower required to view and garner useable information from the flood of video is unaffordable, especially in light of current fiscal restraints. "Search" within full-motion video has traditionally relied on human tagging of content, and video metadata, to provision filtering and locate segments of interest, in the context of analyst query. Our approach utilizes a novel machine-vision based approach to index FMV, using object recognition & tracking, events and activities detection. This approach enables FMV exploitation in real-time, as well as a forensic look-back within archives. This approach can help get the most information out of video sensor collection, help focus the attention of overburdened analysts form connections in activity over time and conserve national fiscal resources in exploiting FMV.

  6. An ISVD-based Euclidian structure from motion for smartphones

    Science.gov (United States)

    Masiero, A.; Guarnieri, A.; Vettore, A.; Pirotti, F.

    2014-06-01

    The development of Mobile Mapping systems over the last decades allowed to quickly collect georeferenced spatial measurements by means of sensors mounted on mobile vehicles. Despite the large number of applications that can potentially take advantage of such systems, because of their cost their use is currently typically limited to certain specialized organizations, companies, and Universities. However, the recent worldwide diffusion of powerful mobile devices typically embedded with GPS, Inertial Navigation System (INS), and imaging sensors is enabling the development of small and compact mobile mapping systems. More specifically, this paper considers the development of a 3D reconstruction system based on photogrammetry methods for smartphones (or other similar mobile devices). The limited computational resources available in such systems and the users' request for real time reconstructions impose very stringent requirements on the computational burden of the 3D reconstruction procedure. This work takes advantage of certain recently developed mathematical tools (incremental singular value decomposition) and of photogrammetry techniques (structure from motion, Tomasi-Kanade factorization) to access very computationally efficient Euclidian 3D reconstruction of the scene. Furthermore, thanks to the presence of instrumentation for localization embedded in the device, the obtained 3D reconstruction can be properly georeferenced.

  7. Entropy-Based Video Steganalysis of Motion Vectors

    Directory of Open Access Journals (Sweden)

    Elaheh Sadat Sadat

    2018-04-01

    Full Text Available In this paper, a new method is proposed for motion vector steganalysis using the entropy value and its combination with the features of the optimized motion vector. In this method, the entropy of blocks is calculated to determine their texture and the precision of their motion vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low texture, while the membership function of each block to a high texture class indicates the texture of that block. These membership functions are used to weight the effective features that are extracted by reconstructing the motion estimation equations. Characteristics of the results indicate that the use of entropy and the irregularity of each block increases the precision of the final video classification into cover and stego classes.

  8. Mitigation of motion artifacts in CBCT of lung tumors based on tracked tumor motion during CBCT acquisition

    International Nuclear Information System (INIS)

    Lewis, John H; Li Ruijiang; Jia Xun; Watkins, W Tyler; Song, William Y; Jiang, Steve B; Lou, Yifei

    2011-01-01

    An algorithm capable of mitigating respiratory motion blurring artifacts in cone-beam computed tomography (CBCT) lung tumor images based on the motion of the tumor during the CBCT scan is developed. The tumor motion trajectory and probability density function (PDF) are reconstructed from the acquired CBCT projection images using a recently developed algorithm Lewis et al (2010 Phys. Med. Biol. 55 2505-22). Assuming that the effects of motion blurring can be represented by convolution of the static lung (or tumor) anatomy with the motion PDF, a cost function is defined, consisting of a data fidelity term and a total variation regularization term. Deconvolution is performed through iterative minimization of this cost function. The algorithm was tested on digital respiratory phantom, physical respiratory phantom and patient data. A clear qualitative improvement is evident in the deblurred images as compared to the motion-blurred images for all cases. Line profiles show that the tumor boundaries are more accurately and clearly represented in the deblurred images. The normalized root-mean-squared error between the images used as ground truth and the motion-blurred images are 0.29, 0.12 and 0.30 in the digital phantom, physical phantom and patient data, respectively. Deblurring reduces the corresponding values to 0.13, 0.07 and 0.19. Application of a -700 HU threshold to the digital phantom results in tumor dimension measurements along the superior-inferior axis of 2.8, 1.8 and 1.9 cm in the motion-blurred, ground truth and deblurred images, respectively. Corresponding values for the physical phantom are 3.4, 2.7 and 2.7 cm. A threshold of -500 HU applied to the patient case gives measurements of 3.1, 1.6 and 1.7 cm along the SI axis in the CBCT, 4DCT and deblurred images, respectively. This technique could provide more accurate information about a lung tumor's size and shape on the day of treatment.

  9. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  10. FPGA-Based Real-Time Motion Detection for Automated Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2016-03-01

    Full Text Available Design of automated video surveillance systems is one of the exigent missions in computer vision community because of their ability to automatically select frames of interest in incoming video streams based on motion detection. This research paper focuses on the real-time hardware implementation of a motion detection algorithm for such vision based automated surveillance systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion detection scheme. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, has been implemented on Xilinx ML510 (Virtex-5 FX130T FPGA platform. The prototyped system robustly detects the relevant motion in real-time in live PAL (720 × 576 resolution video streams directly coming from the camera.

  11. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  12. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  13. A video-based system for hand-driven stop-motion animation.

    Science.gov (United States)

    Han, Xiaoguang; Fu, Hongbo; Zheng, Hanlin; Liu, Ligang; Wang, Jue

    2013-01-01

    Stop-motion is a well-established animation technique but is often laborious and requires craft skills. A new video-based system can animate the vast majority of everyday objects in stop-motion style, more flexibly and intuitively. Animators can perform and capture motions continuously instead of breaking them into increments and shooting one still picture per increment. More important, the system permits direct hand manipulation without resorting to rigs, achieving more natural object control for beginners. The system's key component is two-phase keyframe-based capturing and processing, assisted by computer vision techniques. With this system, even amateurs can generate high-quality stop-motion animations.

  14. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  15. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    Science.gov (United States)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  16. Motion-Based pH Sensing Based on the Cartridge-Case-like Micromotor.

    Science.gov (United States)

    Su, Yajun; Ge, Ya; Liu, Limei; Zhang, Lina; Liu, Mei; Sun, Yunyu; Zhang, Hui; Dong, Bin

    2016-02-17

    In this paper, we report a novel cartridge-case-like micromotor. The micromotor, which is fabricated by the template synthesis method, consists of a gelatin shell with platinum nanoparticles decorating its inner surface. Intriguingly, the resulting cartridge-case-like structure exhibits a pH-dependent "open and close" feature, which originates from the pH responsiveness of the gelatin material. On the basis of the catalytic activity of the platinum nanoparticle inside the gelatin shell, the resulting cartridge-case-like structure is capable of moving autonomously in the aqueous solution containing the hydrogen peroxide fuel. More interestingly, we find out that the micromotor can be utilized as a motion-based pH sensor over the whole pH range. The moving velocity of the micromotor increases monotonically with the increase of pH of the analyte solution. Three different factors are considered to be responsible for the proportional relation between the motion speed and pH of the analyte solution: the peroxidase-like and oxidase-like catalytic behavior of the platinum nanoparticle at low and high pH, the volumetric decomposition of the hydrogen peroxide under the basic condition and the pH-dependent catalytic activity of the platinum nanoparticle caused by the swelling/deswelling behavior of the gelatin material. The current work highlights the impact of the material properties on the motion behavior of a micromotor, thus paving the way toward its application in the motion-based sensing field.

  17. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-01-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes. (technical note)

  18. An EM based approach for motion segmentation of video sequence

    NARCIS (Netherlands)

    Zhao, Wei; Roos, Nico; Pan, Zhigeng; Skala, Vaclav

    2016-01-01

    Motions are important features for robot vision as we live in a dynamic world. Detecting moving objects is crucial for mobile robots and computer vision systems. This paper investigates an architecture for the segmentation of moving objects from image sequences. Objects are represented as groups of

  19. Hand based visual intent recognition algorithm for wheelchair motion

    CSIR Research Space (South Africa)

    Luhandjula, T

    2010-05-01

    Full Text Available This paper describes an algorithm for a visual human-machine interface that infers a person’s intention from the motion of the hand. Work in progress shows a proof of concept tested on static images. The context for which this solution is intended...

  20. Vision based motion control for a humanoid head

    NARCIS (Netherlands)

    Visser, L.C.; Carloni, Raffaella; Stramigioli, Stefano

    2009-01-01

    This paper describes the design of a motion control algorithm for a humanoid robotic head, which consists of a neck with four degrees of freedom and two eyes (a stereo pair system) that tilt on a common axis and rotate sideways freely. The kinematic and dynamic properties of the head are analyzed

  1. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    International Nuclear Information System (INIS)

    Glide-Hurst, C.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  2. TU-F-BRB-00: MRI-Based Motion Management for RT

    International Nuclear Information System (INIS)

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  3. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C. [Henry Ford Health System (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  4. TU-F-BRB-00: MRI-Based Motion Management for RT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  5. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2012-05-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots. To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  6. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  7. The instantaneous linear motion information measurement method based on inertial sensors for ships

    Science.gov (United States)

    Yang, Xu; Huang, Jing; Gao, Chen; Quan, Wei; Li, Ming; Zhang, Yanshun

    2018-05-01

    Ship instantaneous line motion information is the important foundation for ship control, which needs to be measured accurately. For this purpose, an instantaneous line motion measurement method based on inertial sensors is put forward for ships. By introducing a half-fixed coordinate system to realize the separation between instantaneous line motion and ship master movement, the instantaneous line motion acceleration of ships can be obtained with higher accuracy. Then, the digital high-pass filter is applied to suppress the velocity error caused by the low frequency signal such as schuler period. Finally, the instantaneous linear motion displacement of ships can be measured accurately. Simulation experimental results show that the method is reliable and effective, and can realize the precise measurement of velocity and displacement of instantaneous line motion for ships.

  8. Optimisation-based wavefront sensorless adaptive optics for microscopy

    NARCIS (Netherlands)

    Antonello, J.

    2014-01-01

    Microscopy is an essential tool for life sciences. Thanks to the development of confocal and multiphoton microscopy, scientists are able to obtain high-resolution 3D views of biological specimens. Nevertheless, spatial variations in the index of refraction within specimens cause aberrations that

  9. Event-based motion correction for PET transmission measurements with a rotating point source

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Meikle, Steven R; Fulton, Roger

    2011-01-01

    Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR). As a result, the motion-corrected transmission LOR may record a combination of events originally detected on different LORs. To ensure that the corresponding blank LOR records events from the same combination of contributing LORs, the list mode blank data are spatially transformed event-by-event based on the same motion information. The number of counts recorded on the resulting blank LOR is then equivalent to the number of counts that would have been recorded on the corresponding motion-corrected transmission LOR in the absence of any attenuating object. The proposed method has been verified in phantom studies with both stepwise movements and continuous motion. We found that attenuation maps derived from motion-corrected transmission and blank data agree well with those of the stationary phantom and are significantly better than uncorrected attenuation data.

  10. Ship motion-based wave estimation using a spectral residual-calculation

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; H. Brodtkorb, Astrid

    2018-01-01

    This paper presents a study focused on a newly developed procedure for wave spectrum estimation using wave-induced motion recordings from a ship. The particular procedure stands out from other existing, similar ship motion-based pro-cedures by its computational efficiency and - at the same time- ...

  11. Segmentation Based Video Steganalysis to Detect Motion Vector Modification

    Directory of Open Access Journals (Sweden)

    Peipei Wang

    2017-01-01

    Full Text Available This paper presents a steganalytic approach against video steganography which modifies motion vector (MV in content adaptive manner. Current video steganalytic schemes extract features from fixed-length frames of the whole video and do not take advantage of the content diversity. Consequently, the effectiveness of the steganalytic feature is influenced by video content and the problem of cover source mismatch also affects the steganalytic performance. The goal of this paper is to propose a steganalytic method which can suppress the differences of statistical characteristics caused by video content. The given video is segmented to subsequences according to block’s motion in every frame. The steganalytic features extracted from each category of subsequences with close motion intensity are used to build one classifier. The final steganalytic result can be obtained by fusing the results of weighted classifiers. The experimental results have demonstrated that our method can effectively improve the performance of video steganalysis, especially for videos of low bitrate and low embedding ratio.

  12. Motion direction estimation based on active RFID with changing environment

    Science.gov (United States)

    Jie, Wu; Minghua, Zhu; Wei, He

    2018-05-01

    The gate system is used to estimate the direction of RFID tags carriers when they are going through the gate. Normally, it is difficult to achieve and keep a high accuracy in estimating motion direction of RFID tags because the received signal strength of tag changes sharply according to the changing electromagnetic environment. In this paper, a method of motion direction estimation for RFID tags is presented. To improve estimation accuracy, the machine leaning algorithm is used to get the fitting function of the received data by readers which are deployed inside and outside gate respectively. Then the fitted data are sampled to get the standard vector. We compare the stand vector with template vectors to get the motion direction estimation result. Then the corresponding template vector is updated according to the surrounding environment. We conducted the simulation and implement of the proposed method and the result shows that the proposed method in this work can improve and keep a high accuracy under the condition of the constantly changing environment.

  13. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133 (Italy); Peroni, Marta [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Paul Scherrer Institut, Zentrum für Protonentherapie, WMSA/C15, CH-5232 Villigen PSI (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, Pavia 27100 (Italy)

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  14. Influence of parameters detuning on induction motor NFO shaft-sensorless scheme

    Directory of Open Access Journals (Sweden)

    KULIC, F.

    2010-11-01

    Full Text Available In this paper, the parameter sensitivity analysis of shaft-sensorless induction motor drive with natural field orientation (NFO scheme is performed. NFO scheme calculates rotor flux position using the rotor flux vector reference only, does not require significant processor power and therefore it is suitable for low cost shaft sensorless drives. This concept also eliminates the need for sensitive stator voltage vector integration and it is usable in low rotor speed range. However, low speeds are coupled with low stator voltage amplitudes, which inflate the NFO scheme sensitivity to an error in stator resistance parameter. Similar problems can also take place if mutual inductance parameter is detuned, but this time in whole speed range. This paper investigates the influence of each parameter error on the NFO control steady state characteristics and dynamic performance.

  15. A Rotor Flux and Speed Observer for Sensorless Single-Phase Induction Motor Applications

    Directory of Open Access Journals (Sweden)

    Massimo Caruso

    2012-01-01

    Full Text Available It is usual to find single-phase induction motor (SPIM in several house, office, shopping, farm, and industry applications, which are become each time more sophisticated and requiring the development of efficient alternatives to improve the operational performance of this machine. Although the rotor flux and rotational speed are essential variables in order to optimize the operation of a SPIM, the use of conventional sensors to measure them is not a viable option. Thus, the adoption of sensorless strategies is the more reasonable proposal for these cases. This paper presents a rotor flux and rotational speed observer for sensorless applications involving SPIMs. Computer simulations and the experimental results are used to verify the performance of the proposed observer.

  16. Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2013-02-01

    Full Text Available A robotic tool can enable a surgeon to conduct off-pump coronary artery graft bypass surgery on a beating heart. The robotic tool actively alleviates the relative motion between the point of interest (POI on the heart surface and the surgical tool and allows the surgeon to operate as if the heart were stationary. Since the beating heart's motion is relatively high-band, with nonlinear and nonstationary characteristics, it is difficult to follow. Thus, precise beating heart motion prediction is necessary for the tracking control procedure during the surgery. In the research presented here, we first observe that Electrocardiography (ECG signal contains the causal phase information on heart motion and non-stationary heart rate dynamic variations. Then, we investigate the relationship between ECG signal and beating heart motion using Granger Causality Analysis, which describes the feasibility of the improved prediction of heart motion. Next, we propose a nonlinear time-varying multivariate vector autoregressive (MVAR model based adaptive prediction method. In this model, the significant correlation between ECG and heart motion enables the improvement of the prediction of sharp changes in heart motion and the approximation of the motion with sufficient detail. Dual Kalman Filters (DKF estimate the states and parameters of the model, respectively. Last, we evaluate the proposed algorithm through comparative experiments using the two sets of collected vivo data.

  17. A research on motion design for APP's loading pages based on time perception

    Science.gov (United States)

    Cao, Huai; Hu, Xiaoyun

    2018-04-01

    Due to restrictions caused by objective reasons like network bandwidth, hardware performance and etc., waiting is still an inevitable phenomenon that appears in our using mobile-terminal products. Relevant researches show that users' feelings in a waiting scenario can affect their evaluations on the whole product and services the product provides. With the development of user experience and inter-facial design subjects, the role of motion effect in the interface design has attracted more and more scholars' attention. In the current studies, the research theory of motion design in a waiting scenario is imperfect. This article will use the basic theory and experimental research methods of cognitive psychology to explore the motion design's impact on user's time perception when users are waiting for loading APP pages. Firstly, the article analyzes the factors that affect waiting experience of loading APP pages based on the theory of time perception, and then discusses motion design's impact on the level of time-perception when loading pages and its design strategy. Moreover, by the operation analysis of existing loading motion designs, the article classifies the existing loading motions and designs an experiment to verify the impact of different types of motions on the user's time perception. The result shows that the waiting time perception of mobile's terminals' APPs is related to the loading motion types, the combination type of loading motions can effectively shorten the waiting time perception as it scores a higher mean value in the length of time perception.

  18. Spatio-temporal Rich Model Based Video Steganalysis on Cross Sections of Motion Vector Planes.

    Science.gov (United States)

    Tasdemir, Kasim; Kurugollu, Fatih; Sezer, Sakir

    2016-05-11

    A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.

  19. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion.

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Herfarth, Klaus; Debus, Jürgen; Parodi, Katia

    2016-02-01

    Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.

  20. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    International Nuclear Information System (INIS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Herfarth, Klaus; Debus, Jürgen; Richter, Daniel; Parodi, Katia

    2016-01-01

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the

  1. Residual Motion and Duty Time in Respiratory Gating Radiotherapy Using Individualized or Population-Based Windows

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Asada, Yoshihiro; Numano, Masumi; Yamashita, Haruo; Nishimura, Tetsuo; Hashimoto, Takayuki; Harada, Hideyuki; Asakura, Hirofumi; Murayama, Shigeyuki

    2009-01-01

    Purpose: The efficiency and precision of respiratory gated radiation therapy for tumors is affected by variations in respiration-induced tumor motion. We evaluated the use of individualized and population-based parameters for such treatment. Methods and Materials: External respiratory signal records and images of respiration-induced tumor motion were obtained from 42 patients undergoing respiratory gated radiation therapy for liver tumors. Gating window widths were calculated for each patient, with 2, 4, and 10 mm of residual motion, and the mean was defined as the population-based window width. Residual motions based on population-based and predefined window widths were compared. Duty times based on whole treatment sessions, at various window levels, were calculated. The window level giving the longest duty time was defined as the individualized most efficient level (MEL). MELs were also calculated based on the first 10 breathing cycles. The duty times for population-based MELs (defined as mean MELs) and individualized MELs were compared. Results: Tracks of respiration-induced tumor motion ranged from 3 to 50 mm. Half of the patients had larger actual residual motions than the assigned residual motions. Duty times were greater when based on individualized, rather than population-based, window widths. The MELs established during whole treatment sessions for 2 mm and 4 mm of residual motion gave significantly increased duty times, whereas those calculated using the first 10 breathing cycles showed only marginal increases. Conclusions: Using individualized window widths and levels provided more precise and efficient respiratory gated radiation therapy. However, methods for predicting individualized window levels before treatment remain to be explored.

  2. The Evaluation of a Motion Base Driving Simulator in a Cave at TACOM

    National Research Council Canada - National Science Library

    Mollenhauer, M. A; Romano, R. A; Brumm, B

    2004-01-01

    The purpose of this presentation is to describe the highlights of a research program designed to investigate the feasibility of creating a motion base driving simulator in a Cave Automatic Virtual Environment (CAVE...

  3. MRAS speed estimator with fuzzy and PI stator resistance adaptation for sensorless induction motor drives using RT-lab

    Directory of Open Access Journals (Sweden)

    S. Mohan Krishna

    2016-09-01

    Full Text Available This paper presents a real-time simulation study of Model Reference Adaptive System based rotor speed estimator with parallel stator resistance adaptation mechanism for speed sensorless induction motor drive. Both, the traditional Proportional Integral and Fuzzy logic based control mechanisms are utilised for stator resistance adaptation, while, the rotor speed is estimated parallely by means of Proportional Integral based mechanism. The estimator's response to dynamic changes in Load perturbation and doubling of the nominal value of the actual stator resistance of the motor is observed. The superiority of the fuzzy based stator resistance adaptation in the Model Reference Adaptive System estimator is proved through results validated in real-time. The purpose of employing a fairly new real-time platform is to reduce the test and prototype time. The model is initially built using Matlab/Simulink blocksets and the results are validated in real time using RT-Lab. The RT-lab blocksets are integrated into the Simulink model and then executed in real-time using the OP-4500 target developed by Opal-RT. The real-time simulation results are observed in the workstation.

  4. Model-based respiratory motion compensation for emission tomography image reconstruction

    International Nuclear Information System (INIS)

    Reyes, M; Malandain, G; Koulibaly, P M; Gonzalez-Ballester, M A; Darcourt, J

    2007-01-01

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data

  5. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

    Directory of Open Access Journals (Sweden)

    Hu Ke-bin

    2015-02-01

    Full Text Available Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR images. The autofocus Back Projection (BP algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

  6. A scheme for PET data normalization in event-based motion correction

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Fulton, Roger; Meikle, Steven R

    2009-01-01

    Line of response (LOR) rebinning is an event-based motion-correction technique for positron emission tomography (PET) imaging that has been shown to compensate effectively for rigid motion. It involves the spatial transformation of LORs to compensate for motion during the scan, as measured by a motion tracking system. Each motion-corrected event is then recorded in the sinogram bin corresponding to the transformed LOR. It has been shown previously that the corrected event must be normalized using a normalization factor derived from the original LOR, that is, based on the pair of detectors involved in the original coincidence event. In general, due to data compression strategies (mashing), sinogram bins record events detected on multiple LORs. The number of LORs associated with a sinogram bin determines the relative contribution of each LOR. This paper provides a thorough treatment of event-based normalization during motion correction of PET data using LOR rebinning. We demonstrate theoretically and experimentally that normalization of the corrected event during LOR rebinning should account for the number of LORs contributing to the sinogram bin into which the motion-corrected event is binned. Failure to account for this factor may cause artifactual slice-to-slice count variations in the transverse slices and visible horizontal stripe artifacts in the coronal and sagittal slices of the reconstructed images. The theory and implementation of normalization in conjunction with the LOR rebinning technique is described in detail, and experimental verification of the proposed normalization method in phantom studies is presented.

  7. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.

    Science.gov (United States)

    Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup

    2017-02-01

    We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.

  8. Numerical analysis of viscous effect on ship rolling motions based on CFD

    Directory of Open Access Journals (Sweden)

    LUO Tian

    2017-03-01

    Full Text Available During the ship design procedure, the analysis of ship rolling motions is of great significance because the rolling motions have extraordinary effects on the sea-keeping, maneuverability and stability of a ship. It is difficult to simulate rolling motions due to the effect of viscosity, which causes many nonlinear components in computation. As such, the potential theory used for other ship motions cannot be used for rolling motions. This paper simulates the rolling motions of the DTMB 5512 ship model and the ship transverse section of the S60 ship model with a naoe-FOAM-SJTU solver using the Reynolds Averaged Navier Stokes(RANSmethod based on the OpenFOAM. The results of rolling motions are compared with the experimental data, which confirms the reliability of the meshes and results. For the ship transverse section of the S60 ship model, the damping coefficient is divided into three parts with the Euler and RANS methods:friction, vorticity and wave parts. For the DTMB 5512 ship model, the damping coefficient is also respectively analyzed, including the friction, vorticity, wave and bilge keel parts. The results in this paper show that the vorticity part accounts for the greatest proportion, while the friction part accounts for the least, and the bilge keels reduces the damping moment to a certain extent which shows the effect of rolling parameters on rolling motions and moments.

  9. Automatic Motion Generation for Robotic Milling Optimizing Stiffness with Sample-Based Planning

    Directory of Open Access Journals (Sweden)

    Julian Ricardo Diaz Posada

    2017-01-01

    Full Text Available Optimal and intuitive robotic machining is still a challenge. One of the main reasons for this is the lack of robot stiffness, which is also dependent on the robot positioning in the Cartesian space. To make up for this deficiency and with the aim of increasing robot machining accuracy, this contribution describes a solution approach for optimizing the stiffness over a desired milling path using the free degree of freedom of the machining process. The optimal motion is computed based on the semantic and mathematical interpretation of the manufacturing process modeled on its components: product, process and resource; and by configuring automatically a sample-based motion problem and the transition-based rapid-random tree algorithm for computing an optimal motion. The approach is simulated on a CAM software for a machining path revealing its functionality and outlining future potentials for the optimal motion generation for robotic machining processes.

  10. Active contour-based visual tracking by integrating colors, shapes, and motions.

    Science.gov (United States)

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  11. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements

    KAUST Repository

    Agha-mohammadi, A.-a.; Chakravorty, S.; Amato, N. M.

    2013-01-01

    In this paper we present feedback-based information roadmap (FIRM), a multi-query approach for planning under uncertainty which is a belief-space variant of probabilistic roadmap methods. The crucial feature of FIRM is that the costs associated with the edges are independent of each other, and in this sense it is the first method that generates a graph in belief space that preserves the optimal substructure property. From a practical point of view, FIRM is a robust and reliable planning framework. It is robust since the solution is a feedback and there is no need for expensive replanning. It is reliable because accurate collision probabilities can be computed along the edges. In addition, FIRM is a scalable framework, where the complexity of planning with FIRM is a constant multiplier of the complexity of planning with PRM. In this paper, FIRM is introduced as an abstract framework. As a concrete instantiation of FIRM, we adopt stationary linear quadratic Gaussian (SLQG) controllers as belief stabilizers and introduce the so-called SLQG-FIRM. In SLQG-FIRM we focus on kinematic systems and then extend to dynamical systems by sampling in the equilibrium space. We investigate the performance of SLQG-FIRM in different scenarios. © The Author(s) 2013.

  12. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements

    KAUST Repository

    Agha-mohammadi, A.-a.

    2013-11-15

    In this paper we present feedback-based information roadmap (FIRM), a multi-query approach for planning under uncertainty which is a belief-space variant of probabilistic roadmap methods. The crucial feature of FIRM is that the costs associated with the edges are independent of each other, and in this sense it is the first method that generates a graph in belief space that preserves the optimal substructure property. From a practical point of view, FIRM is a robust and reliable planning framework. It is robust since the solution is a feedback and there is no need for expensive replanning. It is reliable because accurate collision probabilities can be computed along the edges. In addition, FIRM is a scalable framework, where the complexity of planning with FIRM is a constant multiplier of the complexity of planning with PRM. In this paper, FIRM is introduced as an abstract framework. As a concrete instantiation of FIRM, we adopt stationary linear quadratic Gaussian (SLQG) controllers as belief stabilizers and introduce the so-called SLQG-FIRM. In SLQG-FIRM we focus on kinematic systems and then extend to dynamical systems by sampling in the equilibrium space. We investigate the performance of SLQG-FIRM in different scenarios. © The Author(s) 2013.

  13. Robust object tracking techniques for vision-based 3D motion analysis applications

    Science.gov (United States)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  14. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    International Nuclear Information System (INIS)

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Fiedler, F; Bert, C

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. (note)

  15. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    Science.gov (United States)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  16. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  17. Reliable selection of earthquake ground motions for performance-based design

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2016-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the superiority...

  18. Reflections on Students’ Projects with Motion Sensor Technologies in a Problem-Based Learning Environment

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga; Triantafyllidis, George

    2014-01-01

    Game-based learning (GBL) has been applied in many fields to enhance learning motivations. In recent years, motion sensor technologies have been also introduced in GBL with the aim of using active, physical modalities to facilitate the learning process, while fostering social development...... and collaboration (when these activities involve more than one student at a time). The approaches described in literature, which used motion sensors in GBL, cover a broad spectrum of educational fields. These approaches investigated the effect of learning games using motion sensors on the development of specific...... skills or on the learning experience. This paper presents our experiences on the educational use of motion sensor technologies. Our research was conducted at the department of Medialogy in Aalborg University Copenhagen. Aalborg University applies a problem-based, project-organized model of teaching...

  19. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  20. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  1. A Survey of Advances in Vision-Based Human Motion Capture and Analysis

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Hilton, Adrian; Krüger, Volker

    2006-01-01

    This survey reviews advances in human motion capture and analysis from 2000 to 2006, following a previous survey of papers up to 2000 Human motion capture continues to be an increasingly active research area in computer vision with over 350 publications over this period. A number of significant...... actions and behavior. This survey reviews recent trends in video based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement....

  2. A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data

    OpenAIRE

    Anne E. C. M. Saris; Stein Fekkes; Maartje M. Nillesen; Hendrik H. G. Hansen; Chris L. de Korte

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle tracking (ST) algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow...

  3. SU-F-J-119: Pilot Study On the Location-Based Lung Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, TK [Procure Proton Therapy Center, Oklahoma City, OK (United States); Ewald, A [McLaren Cancer Institute, Flint, MI (United States)

    2016-06-15

    Purpose: In most of lung treatment cases with various radiotherapy beam modalities, 4DCT images are obtained in order to define ITV. ITV is defined with the signal from motion monitoring system, e.g. RPM. However, the signal is not consistent with tumor motion because it varies with location, its size, age, gender, etc. In the present study, the location-based motion assessment is presented. Methods: 4DCT images of 70 patients were reviewed: 28-left-lung and 42-right-lung patients; 36-female and 34-male patients; the age range of 51.2–89.9; tumor-size range of 0.75–9.50cm with 25% of these adherent to bony-anatomy. Philips Big-Bore Simulation CT and RPM systems were used. The study was performed as follows. First, RPM signal and tumor motion in superior-inferior direction was compared. Second, the tumor size and its motion amplitude in all directions were measured at multiple locations. Third, the average tumor motion was calculated to assess general motion amplitudes at various locations. Results: RPM amplitude is not consistent with lung tumor motion amplitude. The tumors of similar sizes at similar location present various motion amplitude up to 1.1cm difference, but in average, the standard deviation was <0.5cm. Almost regardless of tumor sizes, the tumor motion was greatest at lower lobe location (>=1.0cm), and the smallest at upper lobe location and when adherent to bony-anatomy (<=0.5cm). Conclusion: The tumor size affects the motion amplitude less than does the tumor location. However, as the study results indicate that tumor motion has noticeable variation and so further study with more patient cases is needed. Also, for the same patient, the RPM signal presents instability of breathing, and clinically the patient with the instability of RPM breathing of <=10% is selected for respiratory-gated radiotherapy and ∼25% of patients under current study was treated. Patient-specific motion-uncertainty margins are considered to be added following further

  4. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Horvath, David J; Massiello, Alex L; Fumoto, Hideyuki; Horai, Tetsuya; Rao, Santosh; Golding, Leonard A R

    2010-01-01

    We are developing a very small, innovative, continuous-flow total artificial heart (CFTAH) that passively self-balances left and right pump flows and atrial pressures without sensors. This report details the CFTAH design concept and our initial in vitro data. System performance of the CFTAH was evaluated using a mock circulatory loop to determine the range of systemic and pulmonary vascular resistance (SVR and PVR) levels over which the design goal of a maximum absolute atrial pressure difference of 10 mm Hg is achieved for a steady-state flow condition. Pump speed was then modulated at 2,600 +/- 900 rpm to induce flow and arterial pressure pulsation to evaluate the effects of speed pulsations on the system performance. An automatic control mode was also evaluated. Using only passive self-regulation, pump flows were balanced and absolute atrial pressure differences were maintained at mode adjusted pump speed to achieve targeted pump flows based on sensorless calculations of SVR and CFTAH flow. The initial in vitro testing of the CFTAH with a single, valveless, continuous-flow pump demonstrated its passive self-regulation of flows and atrial pressures and a new automatic control mode. Copyright (c) 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  6. A computer-based biomechanical analysis of the three-dimensional motion of cementless hip prostheses.

    Science.gov (United States)

    Gilbert, J L; Bloomfeld, R S; Lautenschlager, E P; Wixson, R L

    1992-04-01

    A computer-based mathematical technique was developed to measure and completely describe the migration and micromotion of a femoral hip prosthesis relative to the femur. This technique utilized the mechanics of rigid-body motion analysis and apparatus of seven linear displacement transducers to measure and describe the complete three-dimensional motion of the prosthesis during cyclic loading. Computer acquisition of the data and custom analysis software allowed one to calculate the magnitude and direction of the motion of any point of interest on the prostheses from information about the motion of two points on the device. The data were also used to replay the tests using a computer animation technique, which allowed a magnified view of the three-dimensional motion of the prosthesis. This paper describes the mathematical development of the rigid-body motion analysis, the experimental method and apparatus for data collection, the technique used to animate the motion, the sources of error and the effect of the assumptions (rigid bodies) on the results. Selected results of individual test runs of uncemented and cemented prostheses are presented to demonstrate the efficacy of the method. The combined effect of the vibration and electrical noise resulted in a resolution of the system of about 3-5 microns motion for each transducer. Deformation effects appear to contribute about 3-15 microns to the measurement error. This measurement and analysis technique is a very sensitive and powerful means of assessing the effects of different design parameters on the migration and micromotion of total joint prostheses and can be applied to any other case (knee, dental implant) where three-dimensional relative motion between two bodies is important.

  7. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  8. Patient cloth with motion recognition sensors based on flexible piezoelectric materials.

    Science.gov (United States)

    Youngsu Cha; Kihyuk Nam; Doik Kim

    2017-07-01

    In this paper, we introduce a patient cloth for position monitoring using motion recognition sensors based on flexible piezoelectric materials. The motion recognition sensors are embedded in three parts, which are the knee, hip and back, in the patient cloth. We use polyvinylidene fluoride (PVDF) as the flexible piezoelectric material for the sensors. By using the piezoelectric effect of the PVDF, we detect electrical signals when the cloth is bent or extended. We analyze the sensing values for our human motions by processing the sensor outputs in a custom-made program. Specifically, we focus on the transitions between standing and sitting, and sitting knee extension and supine position, which are important motions for patient monitoring.

  9. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    International Nuclear Information System (INIS)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets

  10. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.

  11. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  12. Phase-based motion magnification video for monitoring of vital signals using the Hermite transform

    Science.gov (United States)

    Brieva, Jorge; Moya-Albor, Ernesto

    2017-11-01

    In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.

  13. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    Science.gov (United States)

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  14. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †

    Directory of Open Access Journals (Sweden)

    Sang-Woo Seo

    2018-04-01

    Full Text Available Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  15. Mode extraction on wind turbine blades via phase-based video motion estimation

    Science.gov (United States)

    Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu

    2017-04-01

    In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.

  16. Motion Transplantation Techniques: A Survey

    NARCIS (Netherlands)

    van Basten, Ben; Egges, Arjan

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  17. Sensorless control method of instant-heating module for a bidet

    Energy Technology Data Exchange (ETDEWEB)

    Jung, D. [Korea Polytechnic Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2006-07-01

    The three types of temperature control schemes for a bidet system are the mechanical type where both hot water and cold water are supplied to bidet system and users control the outlet water; hot water-tank type where temperature in outlet water is slowly controlled in the hot water tanks; and, instant-heating module type where temperature in outlet water is controlled by a ceramic heater and switching device. All types have advantages and disadvantages. This paper addressed the need for a sensor-less control scheme for an instant-heating module for a bidet, which can control water temperature effectively without using the flow-velocity sensor of the flowing water. The sensor-less control scheme is meant to reduce costs and improve reliability. In this study, a steady state model and simplified model of instant-heating module was developed. An estimation algorithm for the value of flow-velocity of water was also proposed. Experimental work performed under various operating conditions was presented to demonstrate the validity of the proposed sensor-less control scheme. The velocity of the flowing water was estimated by monitoring the changes in outlet water temperature and by analyzing the results against information of inlet water temperature and the switching command for Triac bridge circuit. This information can be readily acquired during the cleaning operation of a bidet system. It was concluded that the proposed method can be easily integrated with existing low-cost control schemes. Future work will focus on mass production of the system, such as developing reliable automatic tuning algorithm to apply the proposed scheme for commercial use. 3 refs., 1 tab., 6 figs.

  18. User-based motion sensing and fuzzy logic for automated fall detection in older adults

    DEFF Research Database (Denmark)

    Boissy, Patrice; Choquette, Stéphane; Hamel, Mathieu

    2007-01-01

    , and reduce complications from falls. The performance of a 2-stage fall detection algorithm using impact magnitudes and changes in trunk angles derived from user-based motion sensors was evaluated under laboratory conditions. Ten healthy participants were instrumented on the front and side of the trunk with 3...... fall conditions with a success rate of 93% and a false-positive rate of 29% during nonfall conditions. Despite a slightly superior identification performance for the accelerometer located on the front of the trunk, no significant differences were found between the two motion sensor locations. Automated...... detection of fall events based on user-based motion sensing and fuzzy logic shows promising results. Additional rules and optimization of the algorithm will be needed to decrease the false-positive rate....

  19. Bayesian approach to MSD-based analysis of particle motion in live cells.

    Science.gov (United States)

    Monnier, Nilah; Guo, Syuan-Ming; Mori, Masashi; He, Jun; Lénárt, Péter; Bathe, Mark

    2012-08-08

    Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection

    Directory of Open Access Journals (Sweden)

    Liangyi Gong

    2015-12-01

    Full Text Available With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR and long-term averaged variance ratio (LVR. We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  1. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  2. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  3. Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs

    Science.gov (United States)

    Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki

    This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.

  4. Sensorless direct voltage control of the stand-alone brushless doubly-fed generator

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Xiong, Fei

    2017-01-01

    The conventional stand-alone brushless doubly-fed generator (BDFG) control strategies need the feedback from the rotor position or speed sensors, which can reduce system reliability and increase the cost and axial volume of the machine. In this paper, a sensorless direct voltage control (DVC) str......) strategy is presented for the stand-alone BDFG. The satisfactory dynamic performance is verified by experimental results under four kinds of typical operation conditions. Besides, the proposed control strategy is robust due to no generator parameters being required....

  5. Performance Improvement of Sensorless Vector Control for Matrix Converter Drives Using PQR Transformation

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    This paper presents a new method to improve sensorless performance of matrix converter drives using PQR power transformation. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled...... using PQR transformation and compensated using a reference current control scheme. To eliminate the input current distortion due to the input voltage unbalance, a simple method using PQR transformation is also proposed. The proposed compensation method is applied for high performance induction motor...

  6. Very-low-speed variable-structure control of sensorless induction machine drives without signal injection

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2005-01-01

    A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller......, the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed...

  7. Performance improvement of sensorless vector control for matrix converter drives using PQR power theory

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blaabjerg, Frede

    2007-01-01

    This paper presents a new method to improve sensorless performance of matrix converter drives using PQR power transformation. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled...... using PQR transformation and compensated using a reference current control scheme. To eliminate the input current distortion due to the input voltage unbalance, a simple method using PQR transformation is also proposed. The proposed compensation method is applied for high performance induction motor...

  8. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  9. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    Science.gov (United States)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  10. Variable disparity-motion estimation based fast three-view video coding

    Science.gov (United States)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  11. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.

    2014-01-01

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  12. Sensor Based Motion Tracking and Recognition in Martial Arts Training

    OpenAIRE

    Agojo, Stephan

    2017-01-01

    In various martial arts, competitors are interested in quantifying and categorising techniques which are exercised during training. The implementation of embedded systems into training gear, especially a portable wireless body worn system, based on inertial sensors, facilitates the quantification and categorisation of forces and accelerations involved during the training of martial arts. The scope of this paper is to give a brief overview of contemporary technology and devices, describe key m...

  13. Angle-independent measure of motion for image-based gating in 3D coronary angiography

    International Nuclear Information System (INIS)

    Lehmann, Glen C.; Holdsworth, David W.; Drangova, Maria

    2006-01-01

    The role of three-dimensional (3D) image guidance for interventional procedures and minimally invasive surgeries is increasing for the treatment of vascular disease. Currently, most interventional procedures are guided by two-dimensional x-ray angiography, but computed rotational angiography has the potential to provide 3D geometric information about the coronary arteries. The creation of 3D angiographic images of the coronary arteries requires synchronization of data acquisition with respect to the cardiac cycle, in order to minimize motion artifacts. This can be achieved by inferring the extent of motion from a patient's electrocardiogram (ECG) signal. However, a direct measurement of motion (from the 2D angiograms) has the potential to improve the 3D angiographic images by ensuring that only projections acquired during periods of minimal motion are included in the reconstruction. This paper presents an image-based metric for measuring the extent of motion in 2D x-ray angiographic images. Adaptive histogram equalization was applied to projection images to increase the sharpness of coronary arteries and the superior-inferior component of the weighted centroid (SIC) was measured. The SIC constitutes an image-based metric that can be used to track vessel motion, independent of apparent motion induced by the rotational acquisition. To evaluate the technique, six consecutive patients scheduled for routine coronary angiography procedures were studied. We compared the end of the SIC rest period (ρ) to R-waves (R) detected in the patient's ECG and found a mean difference of 14±80 ms. Two simultaneous angular positions were acquired and ρ was detected for each position. There was no statistically significant difference (P=0.79) between ρ in the two simultaneously acquired angular positions. Thus we have shown the SIC to be independent of view angle, which is critical for rotational angiography. A preliminary image-based gating strategy that employed the SIC was

  14. Sensorless DTC-SVM for Induction Motor Driven by a Matrix Converter Using a Parameter Estimation Strategy

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo-Beum

    2008-01-01

    This paper presents a new direct torque controlled space vector modulated method to improve the sensorless performance of matrix converter drives using a parameter estimation scheme. The flux and torque error are geometrically combined in a new flux leakage vector to make a stator command voltage...

  15. Performance Improvement of Sensorless Vector Control for Induction Motor Drives Fed by Matrix Converter Using Nonlinear Model and Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with a non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by communication delay and on-state voltage drop in switching...

  16. Practical Wide-speed-range Sensorless Control System for Permanent Magnet Reluctance Synchronous Motor Drives via Active Flux Model

    DEFF Research Database (Denmark)

    Ancuti, Mihaela Codruta; Tutelea, Lucian; Andreescu, Gheorghe-Daniel

    2014-01-01

    This article introduces a control strategy to obtain near-maximum available torque in a wide speed range with sensorless operation via the active flux concept for permanent magnet-reluctance synchronous motor drives. A new torque dq current reference calculator is proposed, with reference torque...

  17. Operation characteristic analysis of a direct methanol fuel cell system using the methanol sensor-less control method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Chang, C.L. [Institute of Nuclear Energy Research (INER), Longtan Township, Taoyuan County (China); Sung, C.C. [National Taiwan University (China)

    2012-10-15

    The application of methanol sensor-less control in a direct methanol fuel cell (DMFC) system eliminates most of the problems encountered when using a methanol sensor and is one of the major solutions currently used in commercial DMFCs. This study focuses on analyzing the effect of the operating characteristics of a DMFC system on its performance under the methanol sensor-less control as developed by Institute of Nuclear Energy Research (INER). Notably, the influence of the dispersion of the methanol injected on the behavior of the system is investigated systematically. In addition, the mechanism of the methanol sensor-less control is investigated by varying factors such as the timing of the injection of methanol, the cathode flow rate, and the anode inlet temperature. These results not only provide insight into the mechanism of methanol sensor-less control but can also aid in the improvement and application of DMFC systems in portable and low-power transportation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  19. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  20. Patch-based frame interpolation for old films via the guidance of motion paths

    Science.gov (United States)

    Xia, Tianran; Ding, Youdong; Yu, Bing; Huang, Xi

    2018-04-01

    Due to improper preservation, traditional films will appear frame loss after digital. To deal with this problem, this paper presents a new adaptive patch-based method of frame interpolation via the guidance of motion paths. Our method is divided into three steps. Firstly, we compute motion paths between two reference frames using optical flow estimation. Then, the adaptive bidirectional interpolation with holes filled is applied to generate pre-intermediate frames. Finally, using patch match to interpolate intermediate frames with the most similar patches. Since the patch match is based on the pre-intermediate frames that contain the motion paths constraint, we show a natural and inartificial frame interpolation. We test different types of old film sequences and compare with other methods, the results prove that our method has a desired performance without hole or ghost effects.

  1. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    Science.gov (United States)

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  2. Research and development of a control system for multi axis cooperative motion based on PMAC

    Science.gov (United States)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  3. Surface EMG signals based motion intent recognition using multi-layer ELM

    Science.gov (United States)

    Wang, Jianhui; Qi, Lin; Wang, Xiao

    2017-11-01

    The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.

  4. Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: Motion and noise artifact removal.

    Science.gov (United States)

    Salehizadeh, S M A; Dao, Duy K; Chong, Jo Woon; McManus, David; Darling, Chad; Mendelson, Yitzhak; Chon, Ki H

    2014-11-01

    We introduce a new method to reconstruct motion and noise artifact (MNA) contaminated photoplethysmogram (PPG) data. A method to detect MNA corrupted data is provided in a companion paper. Our reconstruction algorithm is based on an iterative motion artifact removal (IMAR) approach, which utilizes the singular spectral analysis algorithm to remove MNA artifacts so that the most accurate estimates of uncorrupted heart rates (HRs) and arterial oxygen saturation (SpO2) values recorded by a pulse oximeter can be derived. Using both computer simulations and three different experimental data sets, we show that the proposed IMAR approach can reliably reconstruct MNA corrupted data segments, as the estimated HR and SpO2 values do not significantly deviate from the uncorrupted reference measurements. Comparison of the accuracy of reconstruction of the MNA corrupted data segments between our IMAR approach and the time-domain independent component analysis (TD-ICA) is made for all data sets as the latter method has been shown to provide good performance. For simulated data, there were no significant differences in the reconstructed HR and SpO2 values starting from 10 dB down to -15 dB for both white and colored noise contaminated PPG data using IMAR; for TD-ICA, significant differences were observed starting at 10 dB. Two experimental PPG data sets were created with contrived MNA by having subjects perform random forehead and rapid side-to-side finger movements show that; the performance of the IMAR approach on these data sets was quite accurate as non-significant differences in the reconstructed HR and SpO2 were found compared to non-contaminated reference values, in most subjects. In comparison, the accuracy of the TD-ICA was poor as there were significant differences in reconstructed HR and SpO2 values in most subjects. For non-contrived MNA corrupted PPG data, which were collected with subjects performing walking and stair climbing tasks, the IMAR significantly

  5. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    Science.gov (United States)

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  6. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    Science.gov (United States)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  7. Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms

    KAUST Repository

    Fidel, Adam; Jacobs, Sam Ade; Sharma, Shishir; Amato, Nancy M.; Rauchwerger, Lawrence

    2014-01-01

    Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. © 2014 IEEE.

  8. Non-Native Chinese Language Learners' Attitudes towards Online Vision-Based Motion Games

    Science.gov (United States)

    Hao, Yungwei; Hong, Jon-Chao; Jong, Jyh-Tsorng; Hwang, Ming-Yueh; Su, Chao-Ya; Yang, Jin-Shin

    2010-01-01

    Learning to write Chinese characters is often thought to be a very challenging and laborious task. However, new learning tools are being designed that might reduce learners' tedium. This study explores one such tool, an online program in which learners can learn Chinese characters through vision-based motion games. The learner's gestures are…

  9. Accelerometer Based Motional Feedback Integrated in a 2 3/4" Loudspeaker

    DEFF Research Database (Denmark)

    Bjerregaard, Ruben; Madsen, Anders Normann; Schneider, Henrik

    2016-01-01

    It is a well known fact that loudspeakers produce distortion when they are driven into large diaphragm displacements. Various methods exist to reduce distortion using forward compensation and feedback methods. Acceleration based motional feedback is one of these methods and was already thoroughly...

  10. Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms

    KAUST Repository

    Fidel, Adam

    2014-05-01

    Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. © 2014 IEEE.

  11. A PSF-shape-based beamforming strategy for robust 2D motion estimation in ultrafast data

    NARCIS (Netherlands)

    Saris, Anne E.C.M.; Fekkes, Stein; Nillesen, Maartje; Hansen, Hendrik H.G.; de Korte, Chris L.

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system's point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle

  12. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton, London SM2 5PT (United Kingdom)

    2016-01-15

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking

  13. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    International Nuclear Information System (INIS)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-01-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array

  14. Velocity and Motion Control of a Self-Balancing Vehicle Based on a Cascade Control Strategy

    Directory of Open Access Journals (Sweden)

    Miguel Velazquez

    2016-06-01

    Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.

  15. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  16. Nonlinear Model Predictive Control of a Cable-Robot-Based Motion Simulator

    DEFF Research Database (Denmark)

    Katliar, Mikhail; Fischer, Joerg; Frison, Gianluca

    2017-01-01

    In this paper we present the implementation of a model-predictive controller (MPC) for real-time control of a cable-robot-based motion simulator. The controller computes control inputs such that a desired acceleration and angular velocity at a defined point in simulator's cabin are tracked while...... satisfying constraints imposed by working space and allowed cable forces of the robot. In order to fully use the simulator capabilities, we propose an approach that includes the motion platform actuation in the MPC model. The tracking performance and computation time of the algorithm are investigated...

  17. Radiotherapy of tumors under respiratory motion. Estimation of the motional velocity field and dose accumulation based on 4D image data

    International Nuclear Information System (INIS)

    Werner, Rene

    2013-01-01

    belong to the most precise methods currently available. In clinical practice, however, there exists the problem that many medical facilities are not equipped with 4D imaging devices. Further, 4D images still offer only a snapshot of the patient-specific motion range and potential motion variability may limit the conclusions that can be drawn from them. To address these aspects, in the next part of the thesis - based on the optimized methods for motion field estimation in 4D CT image data and further including statistical motion information and models, respectively - model-based approaches for motion field estimation and prediction are developed. First, a novel approach for statistical modeling of lung motion in a patient collective is presented, and methods for adapting the model for prediction of patient-specific motion patterns are provided. The latter allow, for instance, the estimation of respiratory lung and lung tumor motion for radiation therapy treatment planning, if no temporally resolved image sequences are available for the patient; this use case is demonstrated. Further, techniques of multivariate statistics are applied to account for variations of motion patterns by integrating additional information provided by motion indicators used in 4D radiation therapy (e.g. abdominal belts or spirometer measurements) for a patient-specific, situation-related adaption of the motion fields computed using 4D images and the methods for motion field estimation described before. In the last part of the thesis, the developed methods are finally applied for assessing and analyzing the dosimetric impact of respiratory motion during radiation therapy of lung tumors. Both 3D conformal radiotherapy and intensity modulated radiotherapy are modeled as treatment modalities. In the case of intensity modulated radiotherapy, short delivery times for single radiation fields lead to the risk that the corresponding dose contributions are not only subject to a motion-induced dose blurring

  18. Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception.

    Science.gov (United States)

    Wittfoth, Matthias; Buck, Daniela; Fahle, Manfred; Herrmann, Manfred

    2006-08-15

    The present study aimed at characterizing the neural correlates of conflict resolution in two variations of the Simon effect. We introduced two different Simon tasks where subjects had to identify shapes on the basis of form-from-motion perception (FFMo) within a randomly moving dot field, while (1) motion direction (motion-based Simon task) or (2) stimulus location (location-based Simon task) had to be ignored. Behavioral data revealed that both types of Simon tasks induced highly significant interference effects. Using event-related fMRI, we could demonstrate that both tasks share a common cluster of activated brain regions during conflict resolution (pre-supplementary motor area (pre-SMA), superior parietal lobule (SPL), and cuneus) but also show task-specific activation patterns (left superior temporal cortex in the motion-based, and the left fusiform gyrus in the location-based Simon task). Although motion-based and location-based Simon tasks are conceptually very similar (Type 3 stimulus-response ensembles according to the taxonomy of [Kornblum, S., Stevens, G. (2002). Sequential effects of dimensional overlap: findings and issues. In: Prinz, W., Hommel., B. (Eds.), Common mechanism in perception and action. Oxford University Press, Oxford, pp. 9-54]) conflict resolution in both tasks results in the activation of different task-specific regions probably related to the different sources of task-irrelevant information. Furthermore, the present data give evidence those task-specific regions are most likely to detect the relationship between task-relevant and task-irrelevant information.

  19. A novel position-sensorless control method for brushless DC motors

    International Nuclear Information System (INIS)

    Zhang, X.Z.; Wang, Y.N.

    2011-01-01

    This paper presents the design and implementation of a high performance position-sensorless control scheme for the extensively used brushless DC (BLDC) motors. In the proposed method, with proper PWM strategy, instead of detecting the zero-crossing point (ZCP) of the nonexcited motor back electromagnetic force (EMF) or the average motor terminal to neutral voltage, the true zero-crossing points of back EMF are extracted directly from the difference of the specific average line-to-line voltages with simple RC circuits and comparators. In contrast to conventional methods, the neutral voltage is not needed and the diode freewheeling currents in the nonconducted phase are eliminated completely; therefore, the commutation signals are more accurate and insensitive to the common-mode noise. Moreover, 100% pulse-width-modulation (PWM) duty ratio control of BLDC motors is provided with the presented method. As a result, the proposed method makes it possible to achieve good motor performance over a wide speed range and to simplify the starting procedure. The detailed circuit model is analyzed and some experimental results obtained from a sensorless prototype are shown to verify the analysis and confirm the validity of the proposed method.

  20. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  1. The lucky image-motion prediction for simple scene observation based soft-sensor technology

    Science.gov (United States)

    Li, Yan; Su, Yun; Hu, Bin

    2015-08-01

    High resolution is important to earth remote sensors, while the vibration of the platforms of the remote sensors is a major factor restricting high resolution imaging. The image-motion prediction and real-time compensation are key technologies to solve this problem. For the reason that the traditional autocorrelation image algorithm cannot meet the demand for the simple scene image stabilization, this paper proposes to utilize soft-sensor technology in image-motion prediction, and focus on the research of algorithm optimization in imaging image-motion prediction. Simulations results indicate that the improving lucky image-motion stabilization algorithm combining the Back Propagation Network (BP NN) and support vector machine (SVM) is the most suitable for the simple scene image stabilization. The relative error of the image-motion prediction based the soft-sensor technology is below 5%, the training computing speed of the mathematical predication model is as fast as the real-time image stabilization in aerial photography.

  2. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  3. A Motion Planning Method for Omnidirectional Mobile Robot Based on the Anisotropic Characteristics

    Directory of Open Access Journals (Sweden)

    Chuntao Leng

    2008-11-01

    Full Text Available A more suitable motion planning method for an omni-directional mobile robot (OMR, an improved APF method (iAPF, is proposed in this paper by introducing the revolving factor into the artificial potential field (APF. Accordingly, the motion direction derived from traditional artificial potential field (tAPF is regulated. The maximum velocity, maximum acceleration and energy consumption of the OMR moving in different directions are analyzed, based on the kinematic and dynamic constraints of an OMR, and the anisotropy of OMR is presented in this paper. Then the novel concept of an Anisotropic-Function is proposed to indicate the quality of motion in different directions, which can make a very favorable trade-off between time-optimality, stability and efficacy-optimality. In order to obtain the optimal motion, the path that the robot can take in order to avoid the obstacle safely and reach the goal in a shorter path is deduced. Finally, simulations and experiments are carried out to demonstrate that the motion resulting from the iAPF is high-speed, highly stable and highly efficient when compared to the tAPF.

  4. Micro-motion Recognition of Spatial Cone Target Based on ISAR Image Sequences

    Directory of Open Access Journals (Sweden)

    Changyong Shu

    2016-04-01

    Full Text Available The accurate micro-motions recognition of spatial cone target is the foundation of the characteristic parameter acquisition. For this reason, a micro-motion recognition method based on the distinguishing characteristics extracted from the Inverse Synthetic Aperture Radar (ISAR sequences is proposed in this paper. The projection trajectory formula of cone node strong scattering source and cone bottom slip-type strong scattering sources, which are located on the spatial cone target, are deduced under three micro-motion types including nutation, precession, and spinning, and the correctness is verified by the electromagnetic simulation. By comparison, differences are found among the projection of the scattering sources with different micro-motions, the coordinate information of the scattering sources in the Inverse Synthetic Aperture Radar sequences is extracted by the CLEAN algorithm, and the spinning is recognized by setting the threshold value of Doppler. The double observation points Interacting Multiple Model Kalman Filter is used to separate the scattering sources projection of the nutation target or precession target, and the cross point number of each scattering source’s projection track is used to classify the nutation or precession. Finally, the electromagnetic simulation data are used to verify the effectiveness of the micro-motion recognition method.

  5. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  6. Dynamic vision based on motion-contrast: changes with age in adults.

    Science.gov (United States)

    Wist, E R; Schrauf, M; Ehrenstein, W H

    2000-10-01

    Data are presented for a computerized test of dynamic vision in a sample of 1006 healthy subjects aged between 20 and 85 years. The test employed a form-from-motion stimulus: i.e., within a random-dot display, Landolt rings of the same average luminance as their surroundings become visible only when the dots within the ring are moved briefly, while those of the surround remain stationary. Thus, detection of gap location is based upon motion contrast (form-from-motion) rather than luminance contrast. With the size and exposure duration of the centrally presented ring held constant, motion contrast was manipulated by varying the percentage (between 20 and 100%) of moving dots within the ring. Subjects reported gap location (left, right, top, bottom). A gradual decline of dynamic vision with age was found for all motion-contrast levels. Beyond 70 years of age, chance-level performance occurred in almost half of the subjects. The data provide the basis for applications including diagnostic screening for glaucoma, visual disturbances in brain-damaged patients, as well as assessment of the dynamic vision of drivers of motor vehicles and athletes.

  7. FPGA-based architecture for motion recovering in real-time

    Science.gov (United States)

    Arias-Estrada, Miguel; Maya-Rueda, Selene E.; Torres-Huitzil, Cesar

    2002-03-01

    A key problem in the computer vision field is the measurement of object motion in a scene. The main goal is to compute an approximation of the 3D motion from the analysis of an image sequence. Once computed, this information can be used as a basis to reach higher level goals in different applications. Motion estimation algorithms pose a significant computational load for the sequential processors limiting its use in practical applications. In this work we propose a hardware architecture for motion estimation in real time based on FPGA technology. The technique used for motion estimation is Optical Flow due to its accuracy, and the density of velocity estimation, however other techniques are being explored. The architecture is composed of parallel modules working in a pipeline scheme to reach high throughput rates near gigaflops. The modules are organized in a regular structure to provide a high degree of flexibility to cover different applications. Some results will be presented and the real-time performance will be discussed and analyzed. The architecture is prototyped in an FPGA board with a Virtex device interfaced to a digital imager.

  8. Motion camera based on a custom vision sensor and an FPGA architecture

    Science.gov (United States)

    Arias-Estrada, Miguel

    1998-09-01

    A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.

  9. Smoke regions extraction based on two steps segmentation and motion detection in early fire

    Science.gov (United States)

    Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan

    2018-03-01

    Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.

  10. Attenuation relations of strong motion in Japan using site classification based on predominant period

    International Nuclear Information System (INIS)

    Toshimasa Takahashi; Akihiro Asano; Hidenobu Okada; Kojiro Irikura; Zhao, J.X.; Zhang Jian; Thio, H.K.; Somerville, P.G.; Yasuhiro Fukushima; Yoshimitsu Fukushima

    2005-01-01

    A spectral acceleration attenuation model for Japan is presented. The data set includes a very large number of strong ground motion records up to the end of 2003. Site class terms, instead of individual site correction terms, are used based on a recent study on site classification for strong motion recording stations in Japan. By using site class terms, tectonic source type effects are identified and accounted in the present model. Effects of faulting mechanism for crustal earthquakes are also accounted for. For crustal and interface earthquakes, a simple form of attenuation model is able to capture the main strong motion characteristics and achieves unbiased estimates. For subduction slab events, a simple distance modification factor is employed to achieve plausible and unbiased prediction. Effects of source depth, tectonic source type, and faulting mechanism for crustal earthquakes are significant. (authors)

  11. The Motion Planning of Overhead Crane Based on Suppressing Payload Residual Swing

    Directory of Open Access Journals (Sweden)

    Liu Hua-sen

    2016-01-01

    Full Text Available Since the overhead crane system is subject to under actuation system due to that overhead crane and payload are connected by flexibility wire rope. The payload generates residual swing when the overhead crane is accelerating/ decelerating the motions. This may cause trouble for the payload precise positioning and motion planning. Hence, an optimization input shaping control method is presented to reduce the under actuated overhead crane’s payload swing caused via the inertia force. The dynamic model of the overhead crane is proposed according to the physics structure of the crane. The input shaper based on the motion planning of the crane is used as the feed forward input to suppress payload residual swing. Simulation and experiment results indicate that the ZV input shaper and ZVD input shaper can reduce the payload swing of the overhead crane.

  12. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  13. Multi-story base-isolated buildings under a harmonic ground motion. Pt. 1

    International Nuclear Information System (INIS)

    Fan Fagung; Ahmadi, G.; Tadjbakhsh, I.G.

    1990-01-01

    The performances of several leading base-isolation devices (Pure-Friction/Sliding-Joint, Rubber Bearing, French System, New Zealand System, and Resilient-Friction) and a newly proposed system (Sliding Resilient-Friction) for a multi-story building subject to a horizontal harmonic ground motion are studied. The governing equations of motion of various systems and the criteria for stick-slip transition are described and a computational algorithm for obtaining their numerical solutions is developed. The responses of the structure with different base-isolation systems under various conditions are analyzed. The peak absolute acceleration, the maximum structural deflection, and the peak base-displacement responses are obtained. The effectiveness of various base isolators are studied and advantages and disadvantages of different systems are discussed. The results show that the base-isolation devices effectively reduce the column stresses and the acceleration transmitted to the superstructure. (orig.)

  14. MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning

    International Nuclear Information System (INIS)

    Blackall, J M; Ahmad, S; Miquel, M E; McClelland, J R; Landau, D B; Hawkes, D J

    2006-01-01

    Respiratory organ motion has a significant impact on the planning and delivery of radiotherapy (RT) treatment for lung cancer. Currently widespread techniques, such as 4D-computed tomography (4DCT), cannot be used to measure variability of this motion from one cycle to the next. In this paper, we describe the use of fast magnetic resonance imaging (MRI) techniques to investigate the intra- and inter-cycle reproducibility of respiratory motion and also to estimate the level of errors that may be introduced into treatment delivery by using various breath-hold imaging strategies during lung RT planning. A reference model of respiratory motion is formed to enable comparison of different breathing cycles at any arbitrary position in the respiratory cycle. This is constructed by using free-breathing images from the inhale phase of a single breathing cycle, then co-registering the images, and thereby tracking landmarks. This reference model is then compared to alternative models constructed from images acquired during the exhale phase of the same cycle and the inhale phase of a subsequent cycle, to assess intra- and inter-cycle variability ('hysteresis' and 'reproducibility') of organ motion. The reference model is also compared to a series of models formed from breath-hold data at exhale and inhale. Evaluation of these models is carried out on data from ten healthy volunteers and five lung cancer patients. Free-breathing models show good levels of intra- and inter-cycle reproducibility across the tidal breathing range. Mean intra-cycle errors in the position of organ surface landmarks of 1.5(1.4)-3.5(3.3) mm for volunteers and 2.8(1.8)-5.2(5.2) mm for patients. Equivalent measures of inter-cycle variability across this range are 1.7(1.0)-3.9(3.3) mm for volunteers and 2.8(1.8)-3.3(2.2) mm for patients. As expected, models based on breath-hold sequences do not represent normal tidal motion as well as those based on free-breathing data, with mean errors of 4

  15. Restoration of motion-blurred image based on border deformation detection: a traffic sign restoration model.

    Directory of Open Access Journals (Sweden)

    Yiliang Zeng

    Full Text Available Due to the rapid development of motor vehicle Driver Assistance Systems (DAS, the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently.

  16. A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding

    Directory of Open Access Journals (Sweden)

    Shailesh Kamble

    2016-12-01

    Full Text Available Fractal compression is the lossy compression technique in the field of gray/color image and video compression. It gives high compression ratio, better image quality with fast decoding time but improvement in encoding time is a challenge. This review paper/article presents the analysis of most significant existing approaches in the field of fractal based gray/color images and video compression, different block matching motion estimation approaches for finding out the motion vectors in a frame based on inter-frame coding and intra-frame coding i.e. individual frame coding and automata theory based coding approaches to represent an image/sequence of images. Though different review papers exist related to fractal coding, this paper is different in many sense. One can develop the new shape pattern for motion estimation and modify the existing block matching motion estimation with automata coding to explore the fractal compression technique with specific focus on reducing the encoding time and achieving better image/video reconstruction quality. This paper is useful for the beginners in the domain of video compression.

  17. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    Science.gov (United States)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  18. Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit.

    Science.gov (United States)

    Ramkumar, Prem N; Haeberle, Heather S; Navarro, Sergio M; Sultan, Assem A; Mont, Michael A; Ricchetti, Eric T; Schickendantz, Mark S; Iannotti, Joseph P

    2018-03-07

    Mobile technology offers the prospect of delivering high-value care with increased patient access and reduced costs. Advances in mobile health (mHealth) and telemedicine have been inhibited by the lack of interconnectivity between devices and software and inability to process consumer sensor data. The objective of this study was to preliminarily validate a motion-based machine learning software development kit (SDK) for the shoulder compared with a goniometer for 4 arcs of motion: (1) abduction, (2) forward flexion, (3) internal rotation, and (4) external rotation. A mobile application for the SDK was developed and "taught" 4 arcs of shoulder motion. Ten subjects without shoulder pain or prior shoulder surgery performed the arcs of motion for 5 repetitions. Each motion was measured by the SDK and compared with a physician-measured manual goniometer measurement. Angular differences between SDK and goniometer measurements were compared with univariate and power analyses. The comparison between the SDK and goniometer measurement detected a mean difference of less than 5° for all arcs of motion (P > .05), with a 94% chance of detecting a large effect size from a priori power analysis. Mean differences for the arcs of motion were: abduction, -3.7° ± 3.2°; forward flexion, -4.9° ± 2.5°; internal rotation, -2.4° ± 3.7°; and external rotation -2.6° ± 3.4°. The SDK has the potential to remotely substitute for a shoulder range of motion examination within 5° of goniometer measurements. An open-source motion-based SDK that can learn complex movements, including clinical shoulder range of motion, from consumer sensors offers promise for the future of mHealth, particularly in telemonitoring before and after orthopedic surgery. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  20. Knowledge-Oriented Physics-Based Motion Planning for Grasping Under Uncertainty

    OpenAIRE

    Ud Din, Muhayy; Akbari, Aliakbar; Rosell Gratacòs, Jan

    2017-01-01

    Grasping an object in unstructured and uncertain environments is a challenging task, particularly when a collision-free trajectory does not exits. High-level knowledge and reasoning processes, as well as the allowing of interaction between objects, can enhance the planning efficiency in such environments. In this direction, this study proposes a knowledge-oriented physics-based motion planning approach for a hand-arm system that uses a high-level knowledge-based reasoning to partition the wor...

  1. DETERMINING OPTIMAL CUBE FOR 3D-DCT BASED VIDEO COMPRESSION FOR DIFFERENT MOTION LEVELS

    Directory of Open Access Journals (Sweden)

    J. Augustin Jacob

    2012-11-01

    Full Text Available This paper proposes new three dimensional discrete cosine transform (3D-DCT based video compression algorithm that will select the optimal cube size based on the motion content of the video sequence. It is determined by finding normalized pixel difference (NPD values, and by categorizing the cubes as “low” or “high” motion cube suitable cube size of dimension either [16×16×8] or[8×8×8] is chosen instead of fixed cube algorithm. To evaluate the performance of the proposed algorithm test sequence with different motion levels are chosen. By doing rate vs. distortion analysis the level of compression that can be achieved and the quality of reconstructed video sequence are determined and compared against fixed cube size algorithm. Peak signal to noise ratio (PSNR is taken to measure the video quality. Experimental result shows that varying the cube size with reference to the motion content of video frames gives better performance in terms of compression ratio and video quality.

  2. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  3. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms

    Science.gov (United States)

    Clapuyt, Francois; Vanacker, Veerle; Van Oost, Kristof

    2016-05-01

    Combination of UAV-based aerial pictures and Structure-from-Motion (SfM) algorithm provides an efficient, low-cost and rapid framework for remote sensing and monitoring of dynamic natural environments. This methodology is particularly suitable for repeated topographic surveys in remote or poorly accessible areas. However, temporal analysis of landform topography requires high accuracy of measurements and reproducibility of the methodology as differencing of digital surface models leads to error propagation. In order to assess the repeatability of the SfM technique, we surveyed a study area characterized by gentle topography with an UAV platform equipped with a standard reflex camera, and varied the focal length of the camera and location of georeferencing targets between flights. Comparison of different SfM-derived topography datasets shows that precision of measurements is in the order of centimetres for identical replications which highlights the excellent performance of the SfM workflow, all parameters being equal. The precision is one order of magnitude higher for 3D topographic reconstructions involving independent sets of ground control points, which results from the fact that the accuracy of the localisation of ground control points strongly propagates into final results.

  4. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.

    Science.gov (United States)

    Makarava, Natallia; Menz, Stephan; Theves, Matthias; Huisinga, Wilhelm; Beta, Carsten; Holschneider, Matthias

    2014-10-01

    Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.

  5. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    Science.gov (United States)

    Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.

    2011-04-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.

  6. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    International Nuclear Information System (INIS)

    Rafelski, Susanne M; Keller, Lani C; Marshall, Wallace F; Alberts, Jonathan B

    2011-01-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713–22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed

  7. Bounds on the vibrational energy that can be harvested from random base motion

    Science.gov (United States)

    Langley, R. S.

    2015-03-01

    This paper is concerned with the development of upper bounds on the energy harvesting performance of a general multi-degree-of-freedom nonlinear electromechanical system that is subjected to random base motion and secondary applied periodic forces. The secondary forces are applied with the aim of enhancing the energy harvested from the base motion, and they may constitute direct excitation, or they may produce parametric terms in the equations of motion. It is shown that when the base motion has white noise acceleration then the power input by the base is always πS0 M / 2 where S0 is the single sided spectral density of the acceleration, and M is the mass of the system. This implies that although the secondary forces may enhance the energy harvested by causing a larger fraction of the power input from the base to be harvested rather than dissipated, there is an upper limit on the power that can be harvested. Attention is then turned to narrow band excitation, and it is found that in the absence of secondary forces a bound can be derived for a single degree of freedom system with linear damping and arbitrary nonlinear stiffness. The upper bound on the power input by the base is πM max [ S (ω) ] / 2, where S (ω) is the single sided base acceleration spectrum. The validity of this result for more general systems is found to be related to the properties of the first Wiener kernel, and this issue is explored analytically and by numerical simulation.

  8. Impact of subject head motion on quantitative brain 15O PET and its correction by image-based registration algorithm

    International Nuclear Information System (INIS)

    Matsubara, Keisuke; Ibaraki, Masanobu; Nakamura, Kazuhiro; Yamaguchi, Hiroshi; Umetsu, Atsushi; Kinoshita, Fumiko; Kinoshita, Toshibumi

    2013-01-01

    Subject head motion during sequential 15 O positron emission tomography (PET) scans can result in artifacts in cerebral blood flow (CBF) and oxygen metabolism maps. However, to our knowledge, there are no systematic studies examining this issue. Herein, we investigated the effect of head motion on quantification of CBF and oxygen metabolism, and proposed an image-based motion correction method dedicated to 15 O PET study, correcting for transmission-emission mismatch and inter-scan mismatch of emission scans. We analyzed 15 O PET data for patients with major arterial steno-occlusive disease (n=130) to determine the occurrence frequency of head motion during 15 O PET examination. Image-based motion correction without and with realignment between transmission and emission scans, termed simple and 2-step method, respectively, was applied to the cases that showed severe inter-scan motion. Severe inter-scan motion (>3 mm translation or >5deg rotation) was observed in 27 of 520 adjacent scan pairs (5.2%). In these cases, unrealistic values of oxygen extraction fraction (OEF) or cerebrovascular reactivity (CVR) were observed without motion correction. Motion correction eliminated these artifacts. The volume-of-interest (VOI) analysis demonstrated that the motion correction changed the OEF on the middle cerebral artery territory by 17.3% at maximum. The inter-scan motion also affected cerebral blood volume (CBV), cerebral metabolism rate of oxygen (CMRO 2 ) and CBF, which were improved by the motion correction. A difference of VOI values between the simple and 2-step method was also observed. These data suggest that image-based motion correction is useful for accurate measurement of CBF and oxygen metabolism by 15 O PET. (author)

  9. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  10. Real-time DSP implementation for MRF-based video motion detection.

    Science.gov (United States)

    Dumontier, C; Luthon, F; Charras, J P

    1999-01-01

    This paper describes the real time implementation of a simple and robust motion detection algorithm based on Markov random field (MRF) modeling, MRF-based algorithms often require a significant amount of computations. The intrinsic parallel property of MRF modeling has led most of implementations toward parallel machines and neural networks, but none of these approaches offers an efficient solution for real-world (i.e., industrial) applications. Here, an alternative implementation for the problem at hand is presented yielding a complete, efficient and autonomous real-time system for motion detection. This system is based on a hybrid architecture, associating pipeline modules with one asynchronous module to perform the whole process, from video acquisition to moving object masks visualization. A board prototype is presented and a processing rate of 15 images/s is achieved, showing the validity of the approach.

  11. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  12. Bio-inspired motion detection in an FPGA-based smart camera module

    International Nuclear Information System (INIS)

    Koehler, T; Roechter, F; Moeller, R; Lindemann, J P

    2009-01-01

    Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10 000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device

  13. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    Science.gov (United States)

    Xie, Weihong; Yu, Yang

    2017-01-01

    Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly. PMID:29124062

  14. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2017-01-01

    Full Text Available Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.

  15. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  16. Attenuation relation for strong motion in Eastern Java based on appropriate database and method

    Science.gov (United States)

    Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska

    2017-07-01

    The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.

  17. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Science.gov (United States)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  18. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei

    2012-08-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  19. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    International Nuclear Information System (INIS)

    Li Ruijiang; Xing Lei; Lewis, John H; Berbeco, Ross I

    2012-01-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  20. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jiaying Du

    2018-04-01

    Full Text Available Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  1. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    Science.gov (United States)

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  2. LAMI: A gesturally controlled three-dimensional stage Leap (Motion-based) Audio Mixing Interface

    OpenAIRE

    Wakefield, Jonathan P.; Dewey, Christopher; Gale, William

    2017-01-01

    Interface designers are increasingly exploring alternative approaches to user input/control. LAMI is a Leap (Motion-based) AMI which takes user’s hand gestures and maps these to a three-dimensional stage displayed on a computer monitor. Audio channels are visualised as spheres whose Y coordinate is spectral centroid and X and Z coordinates are controlled by hand position and represent pan and level respectively. Auxiliary send levels are controlled via wrist rotation and vertical hand positio...

  3. The Motion Path Study of Measuring Robot Based on Variable Universe Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Ma Guoqing

    2017-01-01

    Full Text Available For the problem of measuring robot requires a higher positioning, firstly learning about the error overview of the system, analysised the influence of attitude, speed and other factors on systematic errors. Then collected and analyzed the systematic error curve in the track to complete the planning process. The last adding fuzzy control in both cases, by comparing with the original system, can found that the method based on fuzzy control system can significantly reduce the error during the motion.

  4. Modelling, Simulation and Testing of a Reconfigurable Cable-Based Parallel Manipulator as Motion Aiding System

    Directory of Open Access Journals (Sweden)

    Gianni Castelli

    2010-01-01

    Full Text Available This paper presents results on the modelling, simulation and experimental tests of a cable-based parallel manipulator to be used as an aiding or guiding system for people with motion disabilities. There is a high level of motivation for people with a motion disability or the elderly to perform basic daily-living activities independently. Therefore, it is of great interest to design and implement safe and reliable motion assisting and guiding devices that are able to help end-users. In general, a robot for a medical application should be able to interact with a patient in safety conditions, i.e. it must not damage people or surroundings; it must be designed to guarantee high accuracy and low acceleration during the operation. Furthermore, it should not be too bulky and it should exert limited wrenches after close interaction with people. It can be advisable to have a portable system which can be easily brought into and assembled in a hospital or a domestic environment. Cable-based robotic structures can fulfil those requirements because of their main characteristics that make them light and intrinsically safe. In this paper, a reconfigurable four-cable-based parallel manipulator has been proposed as a motion assisting and guiding device to help people to accomplish a number of tasks, such as an aiding or guiding system to move the upper and lower limbs or the whole body. Modelling and simulation are presented in the ADAMS environment. Moreover, experimental tests are reported as based on an available laboratory prototype.

  5. A software-based tool for video motion tracking in the surgical skills assessment landscape

    OpenAIRE

    Ganni, S.; Botden, Sanne M.B.I.; Chmarra, M.K.; Goossens, R.H.M.; Jakimowicz, J.J.

    2018-01-01

    Background: The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine the possibility of using a software-based solution to extract the data. Methods: 6 expert and 23 novice participants performed a basic laparoscopic cholecystectomy procedure in the operating room. The...

  6. The Flash-Lag Effect as a Motion-Based Predictive Shift.

    Directory of Open Access Journals (Sweden)

    Mina A Khoei

    2017-01-01

    Full Text Available Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object's motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects. Although elucidating such mechanisms is crucial in our understanding of the dynamics of visual processing, a theory is still missing to explain the different facets of this visual illusion. Here, we reconsider several of the key aspects of the flash-lag effect in order to explore the role of motion upon neural coding of objects' position. First, we formalize the problem using a Bayesian modeling framework which includes a graded representation of the degree of belief about visual motion. We introduce a motion-based prediction model as a candidate explanation for the perception of coherent motion. By including the knowledge of a fixed delay, we can model the dynamics of sensory information integration by extrapolating the information acquired at previous instants in time. Next, we simulate the optimal estimation of object position with and without delay compensation and compared it with human perception under a broad range of different psychophysical conditions. Our computational study suggests that the explicit, probabilistic representation of velocity information is crucial in explaining position coding, and therefore the flash-lag effect. We discuss these theoretical results in light of the putative corrective mechanisms that can be used to cancel out the detrimental effects of neural

  7. Analysis of nematode motion using an improved light-scatter based system.

    Directory of Open Access Journals (Sweden)

    Chuck S Nutting

    2015-02-01

    Full Text Available The detailed assessment of nematode activity and viability still remains a relatively undeveloped area of biological and medical research. Computer-based approaches to assessing the motility of larger nematode stages have been developed, yet these lack the capability to detect and analyze the more subtle and important characteristics of the motion of nematodes. There is currently a need to improved methods of assessing the viability and health of parasitic worms.We describe here a system that converts the motion of nematodes through a light-scattering system into an electrical waveform, and allows for reproducible, and wholly non-subjective, assessment of alterations in motion, as well as estimation of the number of nematode worms of different forms and sizes. Here we have used Brugia sp. microfilariae (L1, infective larvae (L3 and adults, together with the free-living nematode Caenorhabditis elegans.The motion of worms in a small (200 ul volume can be detected, with the presence of immotile worms not interfering with the readings at practical levels (up to at least 500 L1 /200 ul. Alterations in the frequency of parasite movement following the application of the anti-parasitic drugs, (chloroquine and imatinib; the anti-filarial effect of the latter agent is the first demonstrated here for the first time. This system can also be used to estimate the number of parasites, and shortens the time required to estimate parasites numbers, and eliminates the need for microscopes and trained technicians to provide an estimate of microfilarial sample sizes up to 1000 parasites/ml. Alterations in the form of motion of the worms can also be depicted.This new instrument, named a "WiggleTron", offers exciting opportunities to further study nematode biology and to aid drug discovery, as well as contributing to a rapid estimate of parasite numbers in various biological samples.

  8. Hybrid task priority-based motion control of a redundant free-floating space robot

    Directory of Open Access Journals (Sweden)

    Cheng ZHOU

    2017-12-01

    Full Text Available This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot. The satellite attitude control task is defined as the primary task, while the least-squares-based non-strict task priority solution of the end-effector plus the multi-constraint task is viewed as the secondary task. Furthermore, a null-space task compensation strategy in the joint space is proposed to derive the combination of non-strict and strict task-priority motion planning, and this novel combination is termed hybrid task priority control. Thus, the secondary task is implemented in the primary task’s null-space. Besides, the transition of the state of multiple constraints between activeness and inactiveness will only influence the end-effector task without any effect on the primary task. A set of numerical experiments made in a real-time simulation system under Linux/RTAI shows the validity and feasibility of the proposed methodology. Keywords: Base attitude control, Hybrid task-priority, Motion planning, Multiple constraints, Redundant space robot

  9. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    Science.gov (United States)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  10. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  11. Sensorless Reserved Power Control Strategy for Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Due to still increasing penetration level of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A reserved power control, where the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the reserved power control for grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... to achieve the power reserve. In this method, the irradiance measurements that have been used in conventional control schemes to estimate the available PV power are not required, and thereby being a sensorless solution. Simulations and experimental tests have been performed on a 3-kW two-stage single...

  12. Sensorless displacement estimation of a shape memory alloy coil spring actuator using inductance

    International Nuclear Information System (INIS)

    Kim, Hongjip; Lee, Dae-young; Cho, Kyu-Jin; Han, Yongsu; Ha, Jung-Ik

    2013-01-01

    To measure the displacement of a shape memory alloy (SMA) coil spring actuator for feedback control, displacement sensors larger than the actuator are normally required. In this study, a novel method for estimating the displacement of an SMA coil spring actuator without a sensor is proposed. Instead of a sensor, coil inductance is used for estimating the displacement. Coil inductance is estimated by measuring the voltage and the transient response of the current. It has a one-to-one relationship with the displacement of the coil and is not affected by load. Previous methods for estimating displacement using resistance measurements are heavily affected by load variations. The experimental results herein show that displacement is estimated with reasonable accuracy under varying loads using coil inductance. This sensorless method of estimating the displacement of an SMA coil spring actuator can be used to build a compact feedback controller because there is no need for a bulky displacement sensor. (paper)

  13. Sensorless Speed Control of Permanent Magnet Synchronous Motors by Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2014-01-01

    Full Text Available The sliding mode control has the merits with respect to the variation of the disturbance and robustness. In this paper, the sensorless sliding-mode observer with least mean squared error approach for permanent magnet synchronous motor (PMSM to detect the rotor position by counter electromotive force and then compute motor speed is designed and implemented. In addition, the neural network control is also used to compensate the PI gain tuning to increase the speed accuracy without regarding the errors of the current measurement and motor noise. In this paper, a digital signal processor TMS320F2812 utilizes its high-speed ADC module to get current feedback information and thus to estimate the rotor position and takes advantage of the built-in modules to achieve SVPWM current control so that the senseless speed control will be accomplished. The correctness and effectiveness of the proposed control system will be verified from the experimental results.

  14. Sensorless Stator Field-Oriented Controlled IM Drive at Low Speed with Rr Estimator

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Pu

    2014-01-01

    Full Text Available This paper pertains to a technique of a sensorless indirect stator field-oriented induction motor control, which prevents the accumulative errors incurred by the integrator and the problem relating to the stability of the control system caused by the stator resistance susceptible to temperature variations while conducting the flux estimation directly and computing the synchronous rotary speed. The research adds an adaptive flux observer to estimate the speed of the rotor and uses the fixed trace algorithm (FTA to execute an online estimation of the slip difference, thereby improving the system of stability under the low rotary speed at regenerating mode and the influence of the rotor resistance on the slip angle. Finally, the paper conducts simulations by Simulink of MATLAB and practices to verify the correctness of the result the paper presents.

  15. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    . The transient fluctuation of the estimated rotor position error is around 20 degrees with a step load torque change from 0% to 100% of the rated torque. The position error in steady state is within ±2 electrical degrees for the best case. The proposed method may also be used for e.g. online machine parameter......The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances....... For reducing the cost and increasing the reliability of the drive system, eliminating the mechanical sensor brings a lot advantages to the PMSM drive system. Therefore, sensorless control was developed and has been increasingly used in different PMSM drive systems in the last 20 years. However, machine...

  16. A Two-stage Kalman Filter for Sensorless Direct Torque Controlled PM Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Boyu Yi

    2013-01-01

    Full Text Available This paper presents an optimal two-stage extended Kalman filter (OTSEKF for closed-loop flux, torque, and speed estimation of a permanent magnet synchronous motor (PMSM to achieve sensorless DTC-SVPWM operation of drive system. The novel observer is obtained by using the same transformation as in a linear Kalman observer, which is proposed by C.-S. Hsieh and F.-C. Chen in 1999. The OTSEKF is an effective implementation of the extended Kalman filter (EKF and provides a recursive optimum state estimation for PMSMs using terminal signals that may be polluted by noise. Compared to a conventional EKF, the OTSEKF reduces the number of arithmetic operations. Simulation and experimental results verify the effectiveness of the proposed OTSEKF observer for DTC of PMSMs.

  17. Robust motion control of oscillatory-base manipulators h∞-control and sliding-mode-control-based approaches

    CERN Document Server

    Toda, Masayoshi

    2016-01-01

    This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals, and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection. Researche...

  18. The Effects of Applying Game-Based Learning to Webcam Motion Sensor Games for Autistic Students' Sensory Integration Training

    Science.gov (United States)

    Li, Kun-Hsien; Lou, Shi-Jer; Tsai, Huei-Yin; Shih, Ru-Chu

    2012-01-01

    This study aims to explore the effects of applying game-based learning to webcam motion sensor games for autistic students' sensory integration training for autistic students. The research participants were three autistic students aged from six to ten. Webcam camera as the research tool wad connected internet games to engage in motion sensor…

  19. New sensorless, efficient optimized and stabilized v/f control for pmsm machines

    Science.gov (United States)

    Jafari, Seyed Hesam

    With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.

  20. Research on Coordinated Robotic Motion Control Based on Fuzzy Decoupling Method in Fluidic Environments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available The underwater recovery of autonomous underwater vehicles (AUV is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.

  1. VIDEO DENOISING USING SWITCHING ADAPTIVE DECISION BASED ALGORITHM WITH ROBUST MOTION ESTIMATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V. Jayaraj

    2010-08-01

    Full Text Available A Non-linear adaptive decision based algorithm with robust motion estimation technique is proposed for removal of impulse noise, Gaussian noise and mixed noise (impulse and Gaussian with edge and fine detail preservation in images and videos. The algorithm includes detection of corrupted pixels and the estimation of values for replacing the corrupted pixels. The main advantage of the proposed algorithm is that an appropriate filter is used for replacing the corrupted pixel based on the estimation of the noise variance present in the filtering window. This leads to reduced blurring and better fine detail preservation even at the high mixed noise density. It performs both spatial and temporal filtering for removal of the noises in the filter window of the videos. The Improved Cross Diamond Search Motion Estimation technique uses Least Median Square as a cost function, which shows improved performance than other motion estimation techniques with existing cost functions. The results show that the proposed algorithm outperforms the other algorithms in the visual point of view and in Peak Signal to Noise Ratio, Mean Square Error and Image Enhancement Factor.

  2. A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data

    Directory of Open Access Journals (Sweden)

    Anne E. C. M. Saris

    2018-03-01

    Full Text Available This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF. As a consequence, the cross-correlation functions (CCF used in the speckle tracking (ST algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow simulations together with rotating disk experiments using a Verasonics Vantage 256 are used for performance evaluation. Zero-degree plane wave data were acquired using an ATL L5-12 (fc = 9 MHz transducer for a range of pulse repetition frequencies (PRFs, resulting in 0–600 µm inter-frame displacements. The proposed methodology was compared to data beamformed on a conventionally spaced grid, combined with the commonly used 1D parabolic interpolation. The PSF-shape-based beamforming grid combined with 2D cubic interpolation showed the most accurate and stable performance with respect to the full range of inter-frame displacements, both for the assessment of blood flow and vessel wall dynamics. The proposed methodology can be used as a protocolled way to beamform ultrafast data and obtain accurate estimates of tissue motion.

  3. Correction of harmonic motion and Kepler orbit based on the minimal momentum uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Won Sang, E-mail: mimip4444@hanmail.net [Department of Physics and Research Institute of Natural Science, College of Natural Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Hassanabadi, Hassan, E-mail: h.hasanabadi@shahroodut.ac.ir [Physics Department, Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)

    2017-03-18

    In this paper we consider the deformed Heisenberg uncertainty principle with the minimal uncertainty in momentum which is called a minimal momentum uncertainty principle (MMUP). We consider MMUP in D-dimension and its classical analogue. Using these we investigate the MMUP effect for the harmonic motion and Kepler orbit. - Highlights: • We discussed minimal momentum uncertainty relation. • We considered MMUR in D-dimension and used the deformed Poisson bracket to find the classical mechanics based on the MMUR. • Using these we investigate the MMUR effect for the harmonic motion and Kepler orbit. • Especially, we computed the corrected precession angle for each case. • We found that the corrected precession angle is always positive.

  4. Simple Harmonics Motion experiment based on LabVIEW interface for Arduino

    Science.gov (United States)

    Tong-on, Anusorn; Saphet, Parinya; Thepnurat, Meechai

    2017-09-01

    In this work, we developed an affordable modern innovative physics lab apparatus. The ultrasonic sensor is used to measure the position of a mass attached on a spring as a function of time. The data acquisition system and control device were developed based on LabVIEW interface for Arduino UNO R3. The experiment was designed to explain wave propagation which is modeled by simple harmonic motion. The simple harmonic system (mass and spring) was observed and the motion can be realized using curve fitting to the wave equation in Mathematica. We found that the spring constants provided by Hooke’s law and the wave equation fit are 9.9402 and 9.1706 N/m, respectively.

  5. Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-01-01

    Full Text Available Motion planning is a crucial, basic issue in robotics, which aims at driving vehicles or robots towards to a given destination with various constraints, such as obstacles and limited resource. This paper presents a new version of rapidly exploring random trees (RRT, that is, liveness-based RRT (Li-RRT, to address autonomous underwater vehicles (AUVs motion problem. Different from typical RRT, we define an index of each node in the random searching tree, called “liveness” in this paper, to describe the potential effectiveness during the expanding process. We show that Li-RRT is provably probabilistic completeness as original RRT. In addition, the expected time of returning a valid path with Li-RRT is obviously reduced. To verify the efficiency of our algorithm, numerical experiments are carried out in this paper.

  6. Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2014-01-01

    Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.

  7. Content and structure of knowledge base used for virtual control of android arm motion in specified environment

    Science.gov (United States)

    Pritykin, F. N.; Nebritov, V. I.

    2018-01-01

    The paper presents the configuration of knowledge base necessary for intelligent control of android arm mechanism motion with different positions of certain forbidden regions taken into account. The present structure of the knowledge base characterizes the past experience of arm motion synthesis in the vector of velocities with due regard for the known obstacles. This structure also specifies its intrinsic properties. Knowledge base generation is based on the study of the arm mechanism instantaneous states implementations. Computational experiments connected with the virtual control of android arm motion with known forbidden regions using the developed knowledge base are introduced. Using the developed knowledge base to control virtually the arm motion reduces the time of test assignments calculation. The results of the research can be used in developing control systems of autonomous android robots in the known in advance environment.

  8. Motion state analysis of space target based on optical cross section

    Science.gov (United States)

    Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao

    2017-10-01

    In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.

  9. TH-CD-206-12: Image-Based Motion Estimation for Plaque Visualization in Coronary Computed Tomography Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X; Sisniega, A; Zbijewski, W; Stayman, J [Johns Hopkins University, Balitmore, MD (United States); Contijoch, F; McVeigh, E [University of California, San Diego, San Diego, CA (United States)

    2016-06-15

    Purpose: Visualization and quantification of coronary artery calcification and atherosclerotic plaque benefits from coronary artery motion (CAM) artifact elimination. This work applies a rigid linear motion model to a Volume of Interest (VoI) for estimating motion estimation and compensation of image degradation in Coronary Computed Tomography Angiography (CCTA). Methods: In both simulation and testbench experiments, translational CAM was generated by displacement of the imaging object (i.e. simulated coronary artery and explanted human heart) by ∼8 mm, approximating the motion of a main coronary branch. Rotation was assumed to be negligible. A motion degraded region containing a calcification was selected as the VoI. Local residual motion was assumed to be rigid and linear over the acquisition window, simulating motion observed during diastasis. The (negative) magnitude of the image gradient of the reconstructed VoI was chosen as the motion estimation objective and was minimized with Covariance Matrix Adaptation Evolution Strategy (CMAES). Results: Reconstruction incorporated the estimated CAM yielded signification recovery of fine calcification structures as well as reduced motion artifacts within the selected local region. The compensated reconstruction was further evaluated using two image similarity metrics, the structural similarity index (SSIM) and Root Mean Square Error (RMSE). At the calcification site, the compensated data achieved a 3% increase in SSIM and a 91.2% decrease in RMSE in comparison with the uncompensated reconstruction. Conclusion: Results demonstrate the feasibility of our image-based motion estimation method exploiting a local rigid linear model for CAM compensation. The method shows promising preliminary results for the application of such estimation in CCTA. Further work will involve motion estimation of complex motion corrupted patient data acquired from clinical CT scanner.

  10. Research of Block-Based Motion Estimation Methods for Video Compression

    Directory of Open Access Journals (Sweden)

    Tropchenko Andrey

    2016-08-01

    Full Text Available This work is a review of the block-based algorithms used for motion estimation in video compression. It researches different types of block-based algorithms that range from the simplest named Full Search to the fast adaptive algorithms like Hierarchical Search. The algorithms evaluated in this paper are widely accepted by the video compressing community and have been used in implementing various standards, such as MPEG-4 Visual and H.264. The work also presents a very brief introduction to the entire flow of video compression.

  11. An image encryption scheme based on three-dimensional Brownian motion and chaotic system

    International Nuclear Information System (INIS)

    Chai Xiu-Li; Yuan Ke; Gan Zhi-Hua; Lu Yang; Chen Yi-Ran

    2017-01-01

    At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional (3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion (BCB3DBM) is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system (LTS). Furthermore, block confusion based on position sequence group (BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed. (paper)

  12. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Directory of Open Access Journals (Sweden)

    Daungruthai Jarukanont

    Full Text Available Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We

  13. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Science.gov (United States)

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  14. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: First results.

    Science.gov (United States)

    Poulsen, Per Rugaard; Worm, Esben Schjødt; Hansen, Rune; Larsen, Lars Peter; Grau, Cai; Høyer, Morten

    2015-01-01

    Intrafraction motion may compromise the target dose in stereotactic body radiation therapy (SBRT) of tumors in the liver. Respiratory gating can improve the treatment delivery, but gating based on an external surrogate signal may be inaccurate. This is the first paper reporting on respiratory gating based on internal electromagnetic monitoring during liver SBRT. Two patients with solitary liver metastases were treated with respiratory-gated SBRT guided by three implanted electromagnetic transponders. The treatment was delivered in end-exhale with beam-on when the centroid of the three transponders deviated less than 3 mm [left-right (LR) and anterior-posterior (AP) directions] and 4mm [cranio-caudal (CC)] from the planned position. For each treatment fraction, log files were used to determine the transponder motion during beam-on in the actual gated treatments and in simulated treatments without gating. The motion was used to reconstruct the dose to the clinical target volume (CTV) with and without gating. The reduction in D95 (minimum dose to 95% of the CTV) relative to the plan was calculated for both treatment courses. With gating the maximum course mean (standard deviation) geometrical error in any direction was 1.2 mm (1.8 mm). Without gating the course mean error would mainly increase for Patient 1 [to -2.8 mm (1.6 mm) (LR), 7.1 mm (5.8 mm) (CC), -2.6 mm (2.8mm) (AP)] due to a large systematic cranial baseline drift at each fraction. The errors without gating increased only slightly for Patient 2. The reduction in CTV D95 was 0.5% (gating) and 12.1% (non-gating) for Patient 1 and 0.3% (gating) and 1.7% (non-gating) for Patient 2. The mean duty cycle was 55%. Respiratory gating based on internal electromagnetic motion monitoring was performed for two liver SBRT patients. The gating added robustness to the dose delivery and ensured a high CTV dose even in the presence of large intrafraction motion.

  15. Sensorless Control of Late-Stage Offshore DFIG-WT with FSTP Converters by Using EKF to Ride through Hybrid Faults

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-11-01

    Full Text Available A hybrid fault scenario in a late-stage offshore doubly-fed induction generator (DFIG-based wind turbine (DFIG-WT with converter open-circuit fault and position sensor failure is investigated in this paper. An extended Kalman filter (EKF-based sensorless control strategy is utilized to eliminate the encoder. Based on the detailed analysis of the seventh-order dynamic state space model of DFIG, along with the input voltage signals and measured current signals, the EKF algorithm for DFIG is designed to estimate the rotor speed and position. In addition, the bridge arm open circuit in the back-to-back (BTB power converter of DFIG is taken as a commonly-encountered fault due to the fragility of semiconductor switches. Four-switch three-phase (FSTP topology-based fault-tolerant converters are employed for post-fault operation by considering the minimization of switching losses and reducing the circuit complexity. Moreover, a simplified space vector pulse width modulation (SVPWM technique is proposed to reduce the computational burden, and a voltage balancing scheme is put forward to increase the DC-bus voltage utilization rate. Simulation studies are carried out in MATLAB/Simulink2017a (MathWorks, Natick, MA, USA to demonstrate the validity of the proposed hybrid fault-tolerant strategy for DFIG-WT, with the wind speed fluctuation, measurement noises and grid voltage sag taken into consideration.

  16. Virtual Character Animation Based on Affordable Motion Capture and Reconfigurable Tangible Interfaces.

    Science.gov (United States)

    Lamberti, Fabrizio; Paravati, Gianluca; Gatteschi, Valentina; Cannavo, Alberto; Montuschi, Paolo

    2018-05-01

    Software for computer animation is generally characterized by a steep learning curve, due to the entanglement of both sophisticated techniques and interaction methods required to control 3D geometries. This paper proposes a tool designed to support computer animation production processes by leveraging the affordances offered by articulated tangible user interfaces and motion capture retargeting solutions. To this aim, orientations of an instrumented prop are recorded together with animator's motion in the 3D space and used to quickly pose characters in the virtual environment. High-level functionalities of the animation software are made accessible via a speech interface, thus letting the user control the animation pipeline via voice commands while focusing on his or her hands and body motion. The proposed solution exploits both off-the-shelf hardware components (like the Lego Mindstorms EV3 bricks and the Microsoft Kinect, used for building the tangible device and tracking animator's skeleton) and free open-source software (like the Blender animation tool), thus representing an interesting solution also for beginners approaching the world of digital animation for the first time. Experimental results in different usage scenarios show the benefits offered by the designed interaction strategy with respect to a mouse & keyboard-based interface both for expert and non-expert users.

  17. Simulation-Based Analysis of Ship Motions in Short-Crested Irregular Seas

    Directory of Open Access Journals (Sweden)

    Kıvanç Ali ANIL

    2017-03-01

    Full Text Available Demonstration of the seakeeping calculation results other than polar diagrams and Cartesian plots is important during the initial and detail design stages of naval platforms due to the necessity of numerical simulations (time series data for the design and validation of the systems on board. These time series simulations are called as “real time computer experiments”. Similar simulation algorithms for ship motions and wave elevation are also used by ship-handling simulators for realistic visualization. The goal of this paper is to create a basis for the simulation-based analysis of ship motions and wave elevation for future design and validation studies for both the naval platform itself and the systems on board. The focus of this paper is the clarification of the theoretical background of this process, i.e. all formulations required to create and validate a ship motion and wave surface simulation are given in detail. The results of this study may also be used in ship-handling simulators or helicopter landing on ship simulations.

  18. Definition of Motion and Biophysical Indicators for Home-Based Rehabilitation through Serious Games

    Directory of Open Access Journals (Sweden)

    Matteo Morando

    2018-05-01

    Full Text Available In this paper, we describe Remote Monitoring Validation Engineering System (ReMoVES, a newly-developed platform for motion rehabilitation through serious games and biophysical sensors. The main features of the system are highlighted as follows: motion tracking capabilities through Microsoft Kinect V2 and Leap Motion are disclosed and compared with other solutions; the emotional state of the patient is evaluated with heart rate measurements and electrodermal activity monitored by Microsoft Band 2 during the execution of the functional exercises planned by the therapist. The ReMoVES platform is conceived for home-based rehabilitation after the hospitalisation period, and the system will deploy machine learning techniques to provide an automated evaluation of the patient performance during the training. The algorithms should deliver effective reports to the therapist about the training performance while the patient exercises on their own. The game features that will be described in this manuscript represent the input for the training set, while the feedback provided by the therapist is the output. To face this supervised learning problem, we are describing the most significant features to be used as key indicators of the patient’s performance along with the evaluation of their accuracy in discriminating between good or bad patient actions.

  19. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill

    Directory of Open Access Journals (Sweden)

    Jonghyun Kim

    2015-09-01

    Full Text Available Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject’s intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.

  20. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.

    Science.gov (United States)

    Lahanas, Vasileios; Loukas, Constantinos; Georgiou, Konstantinos; Lababidi, Hani; Al-Jaroudi, Dania

    2017-12-01

    The majority of the current surgical simulators employ specialized sensory equipment for instrument tracking. The Leap Motion controller is a new device able to track linear objects with sub-millimeter accuracy. The aim of this study was to investigate the potential of a virtual reality (VR) simulator for assessment of basic laparoscopic skills, based on the low-cost Leap Motion controller. A simple interface was constructed to simulate the insertion point of the instruments into the abdominal cavity. The controller provided information about the position and orientation of the instruments. Custom tools were constructed to simulate the laparoscopic setup. Three basic VR tasks were developed: camera navigation (CN), instrument navigation (IN), and bimanual operation (BO). The experiments were carried out in two simulation centers: MPLSC (Athens, Greece) and CRESENT (Riyadh, Kingdom of Saudi Arabia). Two groups of surgeons (28 experts and 21 novices) participated in the study by performing the VR tasks. Skills assessment metrics included time, pathlength, and two task-specific errors. The face validity of the training scenarios was also investigated via a questionnaire completed by the participants. Expert surgeons significantly outperformed novices in all assessment metrics for IN and BO (p assessment of basic laparoscopic skills. The proposed system allowed the evaluation of dexterity of the hand movements. Future work will involve comparison studies with validated simulators and development of advanced training scenarios on current Leap Motion controller.

  1. An evaluation method on seat comfort based on optical motion capture

    Directory of Open Access Journals (Sweden)

    Qing TAO

    2015-10-01

    Full Text Available To research the sitting posture comfort evaluation method, through the example of comfort evaluation of the ergonomic seat and standard office seat, a methodology is introduced to evaluate the sitting posture comfort combining ergonomics theory. The proposed method is based on optical motion capture system, pressure sensor and JACK software, and TRC file is acquired by using EVART real-time capture software for identifying the spatial motion trail of human body. Then MATLAB software is used to analyze the human body motion data, and the sitting posture angle difference data for human body in different seats is acquired. TRC file is loaded into JACK software, and with the TAT REPORTER of JACK software, muscle force, moment of force and fatigue data, etc. are output, which are compared with the actual measured data from experiments, and ergonomics method is used for the evaluation. The result shows that the method of considering joint angles combining JACK software for data output is effective for evaluating sitting comfort.

  2. Realistic modelling of the effects of asynchronous motion at the base of bridge piers

    International Nuclear Information System (INIS)

    Romanelli, F.; Panza, G.F.; Vaccari, F.

    2002-11-01

    Frequently long-span bridges provide deep valley crossings, which require special consideration due to the possibility of local amplification of the ground motion as a consequence of topographical irregularities and local soil conditions. This does in fact cause locally enhanced seismic input with the possibility for the bridge piers to respond asynchronously. This introduces special design requirements so that possible out-of-phase ground displacements and the associated large relative displacements of adjacent piers can be accommodated without excessive damage. Assessment of the local variability of the ground motion due to local lateral heterogeneities and to attenuation properties is thus crucial toward the realistic definition of the asynchronous motion at the base of the bridge piers. We illustrate the work done in the framework of a large international cooperation to assess the importance of non-synchronous seismic excitation of long structures. To accomplish this task we compute complete synthetic accelerograms using as input a set of parameters that describes, to the best of our knowledge, the geological structure and seismotectonic setting of the investigated area. (author)

  3. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  4. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation.

    Science.gov (United States)

    Kim, Kio; Habas, Piotr A; Rousseau, Francois; Glenn, Orit A; Barkovich, Anthony J; Studholme, Colin

    2010-01-01

    In recent years, postprocessing of fast multislice magnetic resonance imaging (MRI) to correct fetal motion has provided the first true 3-D MR images of the developing human brain in utero. Early approaches have used reconstruction based algorithms, employing a two-step iterative process, where slices from the acquired data are realigned to an approximate 3-D reconstruction of the fetal brain, which is then refined further using the improved slice alignment. This two step slice-to-volume process, although powerful, is computationally expensive in needing a 3-D reconstruction, and is limited in its ability to recover subvoxel alignment. Here, we describe an alternative approach which we term slice intersection motion correction (SIMC), that seeks to directly co-align multiple slice stacks by considering the matching structure along all intersecting slice pairs in all orthogonally planned slices that are acquired in clinical imaging studies. A collective update scheme for all slices is then derived, to simultaneously drive slices into a consistent match along their lines of intersection. We then describe a 3-D reconstruction algorithm that, using the final motion corrected slice locations, suppresses through-plane partial volume effects to provide a single high isotropic resolution 3-D image. The method is tested on simulated data with known motions and is applied to retrospectively reconstruct 3-D images from a range of clinically acquired imaging studies. The quantitative evaluation of the registration accuracy for the simulated data sets demonstrated a significant improvement over previous approaches. An initial application of the technique to studying clinical pathology is included, where the proposed method recovered up to 15 mm of translation and 30 degrees of rotation for individual slices, and produced full 3-D reconstructions containing clinically useful additional information not visible in the original 2-D slices.

  5. Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Beth Leigh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT* when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis

  6. Deep Tissue Wavefront Estimation for Sensorless Aberration Correction

    Directory of Open Access Journals (Sweden)

    Ibrahimovic Emina

    2015-01-01

    Full Text Available The multiple light scattering in biological tissues limits the measurement depth for traditional wavefront sensor. The attenuated ballistic light and the background noise caused by the diffuse light give low signal to noise ratio for wavefront measurement. To overcome this issue, we introduced a wavefront estimation method based on a ray tracing algorithm to overcome this issue. With the knowledge of the refractive index of the medium, the wavefront is estimated by calculating optical path length of rays from the target inside of the samples. This method can provide not only the information of spherical aberration from the refractive-index mismatch between the medium and biological sample but also other aberrations caused by the irregular interface between them. Simulations based on different configurations are demonstrated in this paper.

  7. "Active Flux" DTFC-SVM Sensorless Control of IPMSM

    DEFF Research Database (Denmark)

    Boldea, Ion; Codruta Paicu, Mihaela; Gheorghe-Daniel, Andreescu,

    2009-01-01

    This paper proposes an implementation of a motionsensorless control system in wide speed range based on "active flux" observer, and direct torque and flux control with space vector modulation (DTFC-SVM) for the interior permanent magnet synchronous motor (IPMSM), without signal injection....... The concept of "active flux" (or "torque producing flux") turns all the rotor salient-pole ac machines into fully nonsalient-pole ones. A new function for Lq inductance depending on torque is introduced to model the magnetic saturation. Notable simplification in the rotor position and speed estimation...

  8. Current sensorless quick charger for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2011-01-01

    An efficient, simple and low cost quick charger based on the double-loop controller is proposed for the charging of lithium-ion (Li-ion) batteries. With positive and negative feedback of the battery voltage, charging profile similar to the constant current and constant voltage (CC-CV) charging strategy can be performed without actually sensing the charging current. The charging time can easily be shortened by raising the level of saturation in the primary voltage control loop. Experimental results are included to demonstrate the effectiveness of the battery charger. The charger could be a low cost and high performance replacement for existing Li-ion battery chargers.

  9. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  10. Motion-compensated optical coherence tomography using envelope-based surface detection and Kalman-based prediction

    Science.gov (United States)

    Irsch, Kristina; Lee, Soohyun; Bose, Sanjukta N.; Kang, Jin U.

    2018-02-01

    We present an optical coherence tomography (OCT) imaging system that effectively compensates unwanted axial motion with micron-scale accuracy. The OCT system is based on a swept-source (SS) engine (1060-nm center wavelength, 100-nm full-width sweeping bandwidth, and 100-kHz repetition rate), with axial and lateral resolutions of about 4.5 and 8.5 microns respectively. The SS-OCT system incorporates a distance sensing method utilizing an envelope-based surface detection algorithm. The algorithm locates the target surface from the B-scans, taking into account not just the first or highest peak but the entire signature of sequential A-scans. Subsequently, a Kalman filter is applied as predictor to make up for system latencies, before sending the calculated position information to control a linear motor, adjusting and maintaining a fixed system-target distance. To test system performance, the motioncorrection algorithm was compared to earlier, more basic peak-based surface detection methods and to performing no motion compensation. Results demonstrate increased robustness and reproducibility, particularly noticeable in multilayered tissues, while utilizing the novel technique. Implementing such motion compensation into clinical OCT systems may thus improve the reliability of objective and quantitative information that can be extracted from OCT measurements.

  11. Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    OpenAIRE

    Gerling, Kathrin; Mandryk, Regan

    2014-01-01

    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview ...

  12. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  13. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  14. An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images

    Science.gov (United States)

    Ruan, Z.; Yan, S.; Liu, G.; LV, M.

    2017-12-01

    Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS

  15. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  16. MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated Accelerometers

    Directory of Open Access Journals (Sweden)

    Elisabetta Farella

    2007-01-01

    Full Text Available Human-computer interaction (HCI and virtual reality applications pose the challenge of enabling real-time interfaces for natural interaction. Gesture recognition based on body-mounted accelerometers has been proposed as a viable solution to translate patterns of movements that are associated with user commands, thus substituting point-and-click methods or other cumbersome input devices. On the other hand, cost and power constraints make the implementation of a natural and efficient interface suitable for consumer applications a critical task. Even though several gesture recognition solutions exist, their use in HCI context has been poorly characterized. For this reason, in this paper, we consider a low-cost/low-power wearable motion tracking system based on integrated accelerometers called motion capture with accelerometers (MOCA that we evaluated for navigation in virtual spaces. Recognition is based on a geometric algorithm that enables efficient and robust detection of rotational movements. Our objective is to demonstrate that such a low-cost and a low-power implementation is suitable for HCI applications. To this purpose, we characterized the system from both a quantitative point of view and a qualitative point of view. First, we performed static and dynamic assessment of movement recognition accuracy. Second, we evaluated the effectiveness of user experience using a 3D game application as a test bed.

  17. Biomechanical model-based displacement estimation in micro-sensor motion capture

    International Nuclear Information System (INIS)

    Meng, X L; Sun, S Y; Wu, J K; Zhang, Z Q; 3 Building, 21 Heng Mui Keng Terrace (Singapore))" data-affiliation=" (Department of Electrical and Computer Engineering, National University of Singapore (NUS), 02-02-10 I3 Building, 21 Heng Mui Keng Terrace (Singapore))" >Wong, W C

    2012-01-01

    In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework. (paper)

  18. FPSoC-Based Architecture for a Fast Motion Estimation Algorithm in H.264/AVC

    Directory of Open Access Journals (Sweden)

    Obianuju Ndili

    2009-01-01

    Full Text Available There is an increasing need for high quality video on low power, portable devices. Possible target applications range from entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption in practical implementations. In particular, motion estimation (ME, in H.264/AVC consumes the largest power in an H.264/AVC encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME algorithms and hardware acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip (FPSoC. Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on FPGAs.

  19. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors

    Directory of Open Access Journals (Sweden)

    Minglin Wu

    2016-10-01

    Full Text Available In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects.

  20. A material-independent cell–environment niche based on microreciprocating motion for cell growth enhancement

    International Nuclear Information System (INIS)

    Li, Ching-Wen; Wang, Gou-Jen

    2013-01-01

    In tissue engineering, cell–cell, cell–scaffold and cell–environment communication balances regulate how cell populations participate in tissue generation, maintenance and repair. These communication balances are called niches. In this study, an easily implemented and material-independent cell–environment niche based on microreciprocating motions is developed to enhance cell growth. A micropositioning piezoelectric lead zirconate titanate stage is used to provide precise microreciprocating shear stress motions. Various shear stresses were applied to bovine endothelial cells (BECs) that were cultured on the artificially synthesized materials to obtain the suitable shear stress for growth enhancement. It was found that the suitable shear stress for apparent enhancement of BEC growth ranges from 1.8 to 2.2 N m −2 . Biopolymers were further used to verify the feasibility of the proposed approach using the optimized shear stress obtained from the culture on artificially synthesized polymers. The results further confirmed that the growth of BECs was enhanced as expected under the calculated reciprocating frequencies based on the suitable shear stress. It is hoped that the proposed microshear-stress-based niche could be a more cost- and time-effective solution for the enhancement of cell growth in tissue engineering applications. (paper)

  1. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-01-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT-based

  2. A state-based probabilistic model for tumor respiratory motion prediction

    International Nuclear Information System (INIS)

    Kalet, Alan; Sandison, George; Schmitz, Ruth; Wu Huanmei

    2010-01-01

    This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more

  3. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue.

    Science.gov (United States)

    Wang, Yikun K; Nash, Martyn P; Pullan, Andrew J; Kieser, Jules A; Röhrle, Oliver

    2013-04-01

    Electromagnetic articulography (EMA) is designed to track facial and tongue movements. In practice, the EMA sensors for tracking the movement of the tongue's surface are placed heuristically. No recommendation exists. Within this paper, a model-based approach providing a mathematical analysis and a computational-based recommendation for the placement of sensors, which is based on the tongue's envelope of movement, is proposed. For this purpose, an anatomically detailed Finite Element (FE) model of the tongue has been employed to determine the envelope of motion for retraction and elongation using a forward simulation. Two optimality criteria have been proposed to identify a set of optimal sensor locations based on the pre-computed envelope of motion. The first one is based on the assumption that locations exhibiting large displacements contain the most information regarding the tongue's movement and are less susceptible to measurement errors. The second one selects sensors exhibiting each the largest displacements in the anterior-posterior, superior-inferior, medial-lateral and overall direction. The quality of the two optimality criteria is analysed based on their ability to deduce from the respective sensor locations the corresponding muscle activation parameters of the relevant muscle fibre groups during retraction and elongation by solving the corresponding inverse problem. For this purpose, a statistical analysis has been carried out, in which sensor locations for two different modes of deformation have been subjected to typical measurement errors. Then, for tongue retraction and elongation, the expectation value, the standard deviation, the averaged bias and the averaged coefficient of variation have been computed based on 41 different error-afflicted sensor locations. The results show that the first optimality criteria is superior to the second one and that the averaged bias and averaged coefficient of variation decrease when the number of sensors is

  4. AC machine control : robust and sensorless control by parameter independency

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, Dag Andreas Hals

    2009-06-15

    speed regions of the machine. The information was then combined to increase the dynamic performance of the sensor less operation of induction machines using the DTC algorithm, even under temperature variations. The scope of this thesis is to develop and test strategies for improving the performance of motor drive systems, when subjected to parameter variations in the machine. First, this is performed by modifying the controller towards a more robust controller, while later a special sampler is developed, in order to estimate machine parameters on-line. This development is shown in the following papers: In the first paper, a complete motor drive system is built, and an Hinfinity current controller is implemented, instead of a previously designed PI controller with decoupling. The results show that this controller is able to perform similar to a classical PI-controller, even when subjected to parameter variations, at the cost of increased computational demands. The second paper presents a form of robust decoupling for a PI-controller as an alternative to the higher-order Hinfinity controller from the first paper. Although there is no speed input to the decoupling network, rotor position feedback from a resolver is still needed for the FOC to work correctly. The special sampler is introduced in the third paper. Here the sampler is used to estimate the rotor flux angle, based on measurements of the derivative of the machine currents in specific parts of the PWM-period. The estimator shows good performance. The estimation principle is based on measurements during the zero-period of the inverter, though. This gives poor performance in the upper speed region, when the zero-period () of the inverter is small or non-existent. In the fourth paper, the zero-state as well as the two active states of the inverter are used to estimate the rotor speed in a machine. This gives the opportunity of estimating machine parameters in the whole speed region, except around standstill, and the

  5. Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Seregni, Matteo; Fattori, Giovanni [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Summers, Paul [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Bellomi, Massimo [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Department of Health Sciences, Università degli Studi di Milano, Milano (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

    2015-03-15

    Purpose: This study applied automatic feature detection on cine–magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each feature was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results: An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI

  6. Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Hee; Lee, Sang Kyu [Dept. of Radiation Oncology, Yensei Univesity Health System, Seoul (Korea, Republic of); Kim, Sei Joon [Dept. of Radiation Oncology,Yongdong Severance Hospital , Seoul (Korea, Republic of); Na, Soo Kyung [Dept. of Radiological Science, Gimcheon College, Gimcheon (Korea, Republic of)

    2007-09-15

    The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were

  7. Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy

    International Nuclear Information System (INIS)

    Cho, Jeong Hee; Lee, Sang Kyu; Kim, Sei Joon; Na, Soo Kyung

    2007-01-01

    The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the

  8. Validation of a photography-based goniometry method for measuring joint range of motion.

    Science.gov (United States)

    Blonna, Davide; Zarkadas, Peter C; Fitzsimmons, James S; O'Driscoll, Shawn W

    2012-01-01

    A critical component of evaluating the outcomes after surgery to restore lost elbow motion is the range of motion (ROM) of the elbow. This study examined if digital photography-based goniometry is as accurate and reliable as clinical goniometry for measuring elbow ROM. Instrument validity and reliability for photography-based goniometry were evaluated for a consecutive series of 50 elbow contractures by 4 observers with different levels of elbow experience. Goniometric ROM measurements were taken with the elbows in full extension and full flexion directly in the clinic (once) and from digital photographs (twice in a blinded random manner). Instrument validity for photography-based goniometry was extremely high (intraclass correlation coefficient: extension = 0.98, flexion = 0.96). For extension and flexion measurements by the expert surgeon, systematic error was negligible (0° and 1°, respectively). Limits of agreement were 7° (95% confidence interval [CI], 5° to 9°) and -7° (95% CI, -5° to -9°) for extension and 8° (95% CI, 6° to 10°) and -7° (95% CI, -5° to -9°) for flexion. Interobserver reliability for photography-based goniometry was better than that for clinical goniometry. The least experienced observer's photographic goniometry measurements were closer to the reference measurements than the clinical goniometry measurements. Photography-based goniometry is accurate and reliable for measuring elbow ROM. The photography-based method relied less on observer expertise than clinical goniometry. This validates an objective measure of patient outcome without requiring doctor-patient contact at a tertiary care center, where most contracture surgeries are done. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  9. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    Science.gov (United States)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  10. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade; Manavi, Kasra; Burgos, Juan; Denny, Jory; Thomas, Shawna; Amato, Nancy M.

    2012-01-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  11. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  12. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade

    2012-05-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  13. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  14. Combined fMRI- and eye movement-based decoding of bistable plaid motion perception.

    Science.gov (United States)

    Wilbertz, Gregor; Ketkar, Madhura; Guggenmos, Matthias; Sterzer, Philipp

    2018-05-01

    The phenomenon of bistable perception, in which perception alternates spontaneously despite constant sensory stimulation, has been particularly useful in probing the neural bases of conscious perception. The study of such bistability requires access to the observer's perceptual dynamics, which is usually achieved via active report. This report, however, constitutes a confounding factor in the study of conscious perception and can also be biased in the context of certain experimental manipulations. One approach to circumvent these problems is to track perceptual alternations using signals from the eyes or the brain instead of observers' reports. Here we aimed to optimize such decoding of perceptual alternations by combining eye and brain signals. Eye-tracking and functional magnetic resonance imaging (fMRI) was performed in twenty participants while they viewed a bistable visual plaid motion stimulus and reported perceptual alternations. Multivoxel pattern analysis (MVPA) for fMRI was combined with eye-tracking in a Support vector machine to decode participants' perceptual time courses from fMRI and eye-movement signals. While both measures individually already yielded high decoding accuracies (on average 86% and 88% correct, respectively) classification based on the two measures together further improved the accuracy (91% correct). These findings show that leveraging on both fMRI and eye movement data may pave the way for optimized no-report paradigms through improved decodability of bistable motion perception and hence for a better understanding of the neural correlates of consciousness. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A General Cognitive System Architecture Based on Dynamic Vision for Motion Control

    Directory of Open Access Journals (Sweden)

    Ernst D. Dickmanns

    2003-10-01

    Full Text Available Animation of spatio-temporal generic models for 3-D shape and motion of objects and subjects, based on feature sets evaluated in parallel from several image streams, is considered to be the core of dynamic vision. Subjects are a special kind of objects capable of sensing environmental parameters and of initiating own actions in combination with stored knowledge. Object / subject recognition and scene understanding are achieved on different levels and scales. Multiple objects are tracked individually in the image streams for perceiving their actual state ('here and now'. By analyzing motion of all relevant objects / subjects over a larger time scale on the level of state variables in the 'scene tree representation' known from computer graphics, the situation with respect to decision taking is assessed. Behavioral capabilities of subjects are represented explicitly on an abstract level for characterizing their potential behaviors. These are generated by stereotypical feed-forward and feedback control applications on a separate systems dynamics level with corresponding methods close to the actuator hardware. This dual representation on an abstract level (for decision making and on the implementation level allows for flexibility and easy adaptation or extension. Results are shown for road vehicle guidance based on three cameras on a gaze control platform.

  16. Validation of Energy Expenditure Prediction Models Using Real-Time Shoe-Based Motion Detectors.

    Science.gov (United States)

    Lin, Shih-Yun; Lai, Ying-Chih; Hsia, Chi-Chun; Su, Pei-Fang; Chang, Chih-Han

    2017-09-01

    This study aimed to verify and compare the accuracy of energy expenditure (EE) prediction models using shoe-based motion detectors with embedded accelerometers. Three physical activity (PA) datasets (unclassified, recognition, and intensity segmentation) were used to develop three prediction models. A multiple classification flow and these models were used to estimate EE. The "unclassified" dataset was defined as the data without PA recognition, the "recognition" as the data classified with PA recognition, and the "intensity segmentation" as the data with intensity segmentation. The three datasets contained accelerometer signals (quantified as signal magnitude area (SMA)) and net heart rate (HR net ). The accuracy of these models was assessed according to the deviation between physically measured EE and model-estimated EE. The variance between physically measured EE and model-estimated EE expressed by simple linear regressions was increased by 63% and 13% using SMA and HR net , respectively. The accuracy of the EE predicted from accelerometer signals is influenced by the different activities that exhibit different count-EE relationships within the same prediction model. The recognition model provides a better estimation and lower variability of EE compared with the unclassified and intensity segmentation models. The proposed shoe-based motion detectors can improve the accuracy of EE estimation and has great potential to be used to manage everyday exercise in real time.

  17. A New Motion Capture System For Automated Gait Analysis Based On Multi Video Sequence Analysis

    DEFF Research Database (Denmark)

    Jensen, Karsten; Juhl, Jens

    There is an increasing demand for assessing foot mal positions and an interest in monitoring the effect of treatment. In the last decades several different motion capture systems has been used. This abstract describes a new low cost motion capture system.......There is an increasing demand for assessing foot mal positions and an interest in monitoring the effect of treatment. In the last decades several different motion capture systems has been used. This abstract describes a new low cost motion capture system....

  18. A Simple Sensorless Scheme for Induction Motor Drives Fed by a Matrix Converter Using Constant Air-Gap Flux and PQR Transformation

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2007-01-01

    This paper presents a new and simple method for sensorless operation of matrix converter drives using a constant air-gap flux and the imaginary power flowing to the motor. To improve low-speed sensorless performance, the non-linearities of a matrix converter drive such as commutation delays, turn......-on and turn-off times of switching devices, and on-state switching device voltage drop are modeled using PQR transformation and compensated using a reference current control scheme. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system...

  19. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Keun, E-mail: ykkim@handong.edu [Department of Mechanical and Control Engineering, Handong Global University, Pohang (Korea, Republic of); Kim, Kyung-Soo [Department of Mechanical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  20. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    Science.gov (United States)

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  1. Linear Motor Motion Control Experiment System Design Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Cuixian He

    2018-01-01

    Full Text Available In order to meet the needs of experimental training of electrical information industry, a linear motor motion experiment system based on LabVIEW was developed. This system is based on the STM32F103ZET6 system processor controller, a state signal when the motor moves through the grating encoder feedback controller to form a closed loop, through the RS232 serial port communication with the host computer, the host computer is designed in the LabVIEW interactive environment monitoring software. Combined with the modular design concept proposed overall program, given the detailed hardware circuit, targeted for the software function design, to achieve man-machine interface. The system control of high accuracy, good stability, meet the training requirements for laboratory equipment, but also as a reference embodiment of the linear motor monitoring system.

  2. Human Classification Based on Gestural Motions by Using Components of PCA

    International Nuclear Information System (INIS)

    Aziz, Azri A; Wan, Khairunizam; Za'aba, S K; Shahriman A B; Asyekin H; Zuradzman M R; Adnan, Nazrul H

    2013-01-01

    Lately, a study of human capabilities with the aim to be integrated into machine is the famous topic to be discussed. Moreover, human are bless with special abilities that they can hear, see, sense, speak, think and understand each other. Giving such abilities to machine for improvement of human life is researcher's aim for better quality of life in the future. This research was concentrating on human gesture, specifically arm motions for differencing the individuality which lead to the development of the hand gesture database. We try to differentiate the human physical characteristic based on hand gesture represented by arm trajectories. Subjects are selected from different type of the body sizes, and then acquired data undergo resampling process. The results discuss the classification of human based on arm trajectories by using Principle Component Analysis (PCA)

  3. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.

  4. A Python-based interface to examine motions in time series of solar images

    Science.gov (United States)

    Campos-Rozo, J. I.; Vargas Domínguez, S.

    2017-10-01

    Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.

  5. 3D delivered dose assessment using a 4DCT-based motion model

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj, E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu; Lewis, John H., E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Seco, Joao [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  6. 3D delivered dose assessment using a 4DCT-based motion model

    International Nuclear Information System (INIS)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj; Lewis, John H.; Seco, Joao

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  7. Motion Intention Analysis-Based Coordinated Control for Amputee-Prosthesis Interaction

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2010-01-01

    Full Text Available To study amputee-prosthesis (AP interaction, a novel reconfigurable biped robot was designed and fabricated. In homogeneous configuration, two identical artificial legs (ALs were used to simulate the symmetrical lower limbs of a healthy person. Linear inverted pendulum model combining with ZMP stability criterion was used to generate the gait trajectories of ALs. To acquire interjoint coordination for healthy gait, rate gyroscopes were mounted on CoGs of thigh and shank of both legs. By employing principal component analysis, the measured angular velocities were processed and the motion synergy was obtained in the final. Then, one of two ALs was replaced by a bionic leg (BL, and the biped robot was changed into heterogeneous configuration to simulate the AP coupling system. To realize symmetrical stable walking, master/slave coordinated control strategy is proposed. According to information acquired by gyroscopes, BL recognized the motion intention of AL and reconstructed its kinematic variables based on interjoint coordination. By employing iterative learning control, gait tracking of BL to AL was archived. Real environment robot walking experiments validated the correctness and effectiveness of the proposed scheme.

  8. Motion-Base Simulator Evaluation of an Aircraft Using an External Vision System

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Arthur, J. J.; Rehfeld, Sherri A.; Harrison, Stephanie

    2012-01-01

    Twelve air transport-rated pilots participated as subjects in a motion-base simulation experiment to evaluate the use of eXternal Vision Systems (XVS) as enabling technologies for future supersonic aircraft without forward facing windows. Three head-up flight display concepts were evaluated -a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of AOA, display FOV, display collimation or whether peripheral cues were present. However, the data showed glide slope approach tracking appears to be affected by display size (i.e., FOV) and collimation. The monochrome, collimated HUD and color, uncollimated XVS with Full FOV display had (statistically equivalent) glide path performance improvements over the XVS with HUD FOV display. Approach path performance results indicated that collimation may not be a requirement for an XVS display if the XVS display is large enough and employs color. Subjective assessments of mental workload and situation awareness also indicated that an uncollimated XVS display may be feasible. Motion cueing appears to have improved localizer tracking and touchdown sink rate across all displays.

  9. High Performance Motion-Planner Architecture for Hardware-In-the-Loop System Based on Position-Based-Admittance-Control

    Directory of Open Access Journals (Sweden)

    Francesco La Mura

    2018-02-01

    Full Text Available This article focuses on a Hardware-In-the-Loop application developed from the advanced energy field project LIFES50+. The aim is to replicate, inside a wind gallery test facility, the combined effect of aerodynamic and hydrodynamic loads on a floating wind turbine model for offshore energy production, using a force controlled robotic device, emulating floating substructure’s behaviour. In addition to well known real-time Hardware-In-the-Loop (HIL issues, the particular application presented has stringent safety requirements of the HIL equipment and difficult to predict operating conditions, so that extra computational efforts have to be spent running specific safety algorithms and achieving desired performance. To meet project requirements, a high performance software architecture based on Position-Based-Admittance-Control (PBAC is presented, combining low level motion interpolation techniques, efficient motion planning, based on buffer management and Time-base control, and advanced high level safety algorithms, implemented in a rapid real-time control architecture.

  10. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.

    Science.gov (United States)

    Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen

    2017-11-23

    Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  11. Prediction of strong ground motion based on scaling law of earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1991-01-01

    In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)

  12. Two Simon tasks with different sources of conflict: an ERP study of motion- and location-based compatibility effects.

    Science.gov (United States)

    Galashan, Daniela; Wittfoth, Matthias; Fehr, Thorsten; Herrmann, Manfred

    2008-07-01

    Behavioral and electrophysiological correlates of two Simon tasks were examined using comparable stimuli but different task-irrelevant and conflict-inducing stimulus features. Whereas target shape was always the task-relevant stimulus attribute, either target location (location-based task) or motion direction within the target stimuli (motion-based task) was used as a source of conflict. Data from ten healthy participants who performed both tasks are presented. In the motion-based task the incompatible condition showed smaller P300 amplitudes at Pz than the compatible condition and the location-based task yielded a trend towards a reduced P300 amplitude in the incompatible condition. For both tasks, no P300 latency differences between the conditions were found at Pz. The results suggest that the motion-based task elicits behavioral and electrophysiological effects comparable with regular Simon tasks. As all stimuli in the motion-based Simon task were presented centrally the present data strongly argue against the attention-shifting account as an explanatory approach.

  13. Kernel density estimation-based real-time prediction for respiratory motion

    International Nuclear Information System (INIS)

    Ruan, Dan

    2010-01-01

    Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the

  14. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL

    2003-09-24

    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive

  15. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    Science.gov (United States)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  16. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism

    Directory of Open Access Journals (Sweden)

    Lizheng Pan

    2017-01-01

    Full Text Available Safety is one of the crucial issues for robot-aided neurorehabilitation exercise. When it comes to the passive rehabilitation training for stroke patients, the existing control strategies are usually just based on position control to carry out the training, and the patient is out of the controller. However, to some extent, the patient should be taken as a “cooperator” of the training activity, and the movement speed and range of the training movement should be dynamically regulated according to the internal or external state of the subject, just as what the therapist does in clinical therapy. This research presents a novel motion control strategy for patient-centered robot-aided passive neurorehabilitation exercise from the point of the safety. The safety-motion decision-making mechanism is developed to online observe and assess the physical state of training impaired-limb and motion performances and regulate the training parameters (motion speed and training rage, ensuring the safety of the supplied rehabilitation exercise. Meanwhile, position-based impedance control is employed to realize the trajectory tracking motion with interactive compliance. Functional experiments and clinical experiments are investigated with a healthy adult and four recruited stroke patients, respectively. The two types of experimental results demonstrate that the suggested control strategy not only serves with safety-motion training but also presents rehabilitation efficacy.

  17. A comparative analysis of signal processing methods for motion-based rate responsive pacing.

    Science.gov (United States)

    Greenhut, S E; Shreve, E A; Lau, C P

    1996-08-01

    Pacemakers that augment heart rate (HR) by sensing body motion have been the most frequently prescribed rate responsive pacemakers. Many comparisons between motion-based rate responsive pacemaker models have been published. However, conclusions regarding specific signal processing methods used for rate response (e.g., filters and algorithms) can be affected by device-specific features. To objectively compare commonly used motion sensing filters and algorithms, acceleration and ECG signals were recorded from 16 normal subjects performing exercise and daily living activities. Acceleration signals were filtered (1-4 or 15-Hz band-pass), then processed using threshold crossing (TC) or integration (IN) algorithms creating four filter/algorithm combinations. Data were converted to an acceleration indicated rate and compared to intrinsic HR using root mean square difference (RMSd) and signed RMSd. Overall, the filters and algorithms performed similarly for most activities. The only differences between filters were for walking at an increasing grade (1-4 Hz superior to 15-Hz) and for rocking in a chair (15-Hz superior to 1-4 Hz). The only differences between algorithms were for bicycling (TC superior to IN), walking at an increasing grade (IN superior to TC), and holding a drill (IN superior to TC). Performance of the four filter/algorithm combinations was also similar over most activities. The 1-4/IN (filter [Hz]/algorithm) combination performed best for walking at a grade, while the 15/TC combination was best for bicycling. However, the 15/TC combination tended to be most sensitive to higher frequency artifact, such as automobile driving, downstairs walking, and hand drilling. Chair rocking artifact was highest for 1-4/IN. The RMSd for bicycling and upstairs walking were large for all combinations, reflecting the nonphysiological nature of the sensor. The 1-4/TC combination demonstrated the least intersubject variability, was the only filter/algorithm combination

  18. Redox control of rotary motions in ferrocene-based elemental ball bearings.

    Science.gov (United States)

    Iordache, Adriana; Oltean, Mircea; Milet, Anne; Thomas, Fabrice; Baptiste, Benoît; Saint-Aman, Eric; Bucher, Christophe

    2012-02-08

    Rotational motions of ferrocene-based carousels have been achieved by electron transfer centered on π-dimerizable 4,4'-bipyridinium substituents introduced on both cyclopentadienyl rings through covalent linkers of different size, geometry, and flexibility. Detailed spectroscopic, electrochemical, and theoretical analyses demonstrate that rigid and fully conjugated linkers allow the quantitative formation of intramolecular π-dimers resulting from optimized orbital overlaps within the HOMO of the electrochemically generated bis-radical species. The tetra-cationic "charge-repelled" conformers, the self-assembled π-dimers, and their electron triggered interconversions have been investigated by UV-vis, NMR, and ESR spectroscopy, electrochemistry, X-ray diffraction analysis, and theoretical calculations. These studies support the conclusion that the rotation of both cyclopentadienyl rings in ferrocene can be controlled electrochemically using noncovalent reversible interactions arising from π-radical coupling processes.

  19. Measuring pilot workload in a motion base simulator. III - Synchronous secondary task

    Science.gov (United States)

    Kantowitz, Barry H.; Bortolussi, Michael R.; Hart, Sandra G.

    1987-01-01

    This experiment continues earlier research of Kantowitz et al. (1983) conducted in a GAT-1 motion-base trainer to evaluate choice-reaction secondary tasks as measures of pilot work load. The earlier work used an asynchronous secondary task presented every 22 sec regardless of flying performance. The present experiment uses a synchronous task presented only when a critical event occurred on the flying task. Both two- and four-choice visual secondary tasks were investigated. Analysis of primary flying-task results showed no decrement in error for altitude, indicating that the key assumption necessary for using a choice secondary task was satisfied. Reaction times showed significant differences between 'easy' and 'hard' flight scenarios as well as the ability to discriminate among flight tasks.

  20. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  1. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  2. A motion-planning method for dexterous hand operating a tool based on bionic analysis

    Directory of Open Access Journals (Sweden)

    Wei Bo

    2017-01-01

    Full Text Available In order to meet the needs of robot’s operating tools for different types and sizes, the dexterous hand is studied by many scientific research institutions. However, the large number of joints in a dexterous hand leads to the difficulty of motion planning. Aiming at this problem, this paper proposes a planning method abased on BPNN inspired by human hands. Firstly, this paper analyses the structure and function of the human hand and summarizes its typical strategy of operation. Secondly, based on the manual operation strategy, the tools are classified according to the shape and the operation mode of the dexterous hand is presented. Thirdly, the BPNN is used to train the humanoid operation, and then output the operation plan. Finally, the simulating experiments of grasping simple tools and operating complex tools are made by MATLAB and ADAMS. The simulation verifies the effectiveness of this method.

  3. Software design and implementation of ship heave motion monitoring system based on MBD method

    Science.gov (United States)

    Yu, Yan; Li, Yuhan; Zhang, Chunwei; Kang, Won-Hee; Ou, Jinping

    2015-03-01

    Marine transportation plays a significant role in the modern transport sector due to its advantage of low cost, large capacity. It is being attached enormous importance to all over the world. Nowadays the related areas of product development have become an existing hot spot. DSP signal processors feature micro volume, low cost, high precision, fast processing speed, which has been widely used in all kinds of monitoring systems. But traditional DSP code development process is time-consuming, inefficiency, costly and difficult. MathWorks company proposed Model-based Design (MBD) to overcome these defects. By calling the target board modules in simulink library to compile and generate the corresponding code for the target processor. And then automatically call DSP integrated development environment CCS for algorithm validation on the target processor. This paper uses the MDB to design the algorithm for the ship heave motion monitoring system. It proves the effectiveness of the MBD run successfully on the processor.

  4. The research of hourglass worm dynamic balancing simulation based on SolidWorks motion

    Science.gov (United States)

    Wang, Zhuangzhuang; Yang, Jie; Liu, Pingyi; Zhao, Junpeng

    2018-02-01

    Hourglass worm is extensively used in industry due to its characteristic of heavy-load and a large reduction ratio. Varying sizes of unbalanced mass distribution appeared in the design of a single head worm. With machines developing towards higher speed and precision, the vibration and shock caused by the unbalanced mass distribution of rotating parts must be considered. Therefore, the balance grade of these parts must meet higher requirements. A method based on theoretical analysis and SolidWorks motion software simulation is presented in this paper; the virtual dynamic balance simulation test of the hourglass worm was carried out during the design of the product, so as to ensure that the hourglass worm meet the requirements of dynamic balance in the design process. This can effectively support the structural design of the hourglass worm and provide a way of thinking and designing the same type of products.

  5. A neural-based remote eye gaze tracker under natural head motion.

    Science.gov (United States)

    Torricelli, Diego; Conforto, Silvia; Schmid, Maurizio; D'Alessio, Tommaso

    2008-10-01

    A novel approach to view-based eye gaze tracking for human computer interface (HCI) is presented. The proposed method combines different techniques to address the problems of head motion, illumination and usability in the framework of low cost applications. Feature detection and tracking algorithms have been designed to obtain an automatic setup and strengthen the robustness to light conditions. An extensive analysis of neural solutions has been performed to deal with the non-linearity associated with gaze mapping under free-head conditions. No specific hardware, such as infrared illumination or high-resolution cameras, is needed, rather a simple commercial webcam working in visible light spectrum suffices. The system is able to classify the gaze direction of the user over a 15-zone graphical interface, with a success rate of 95% and a global accuracy of around 2 degrees , comparable with the vast majority of existing remote gaze trackers.

  6. A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor

    Directory of Open Access Journals (Sweden)

    Diego González

    2012-09-01

    Full Text Available This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA and NIOS II microprocessor applying a C to Hardware (C2H acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system.

  7. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness.

    Science.gov (United States)

    Spering, Miriam; Carrasco, Marisa

    2012-05-30

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.

  8. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    Science.gov (United States)

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  9. Novel Sensorless Six-Step Communication Strategy for a Surface Permanent Magnet Synchronous Motor with DC Link Measurement

    DEFF Research Database (Denmark)

    Munteanu, A.; Agarlita, S. C.; Blaabjerg, Frede

    2012-01-01

    The present paper introduces a novel six-step commutation strategy for sensorless control applied for a surface permanent magnet synchronous motor that implies only dc link measurement (battery current and battery voltage). The control strategy makes use of a modified I-f starting procedure and t......-crossing of the back-emf are obtained from an observer that uses both current and battery voltage. The case study is represented by a surface permanent magnet synchronous motor prototype (6 /8 configuration), designed for the automotive air conditioning compressor drive....

  10. Sensorless State-Space Control of Elastic Two-Inertia Drive System Using a Minimum State Order Observer

    Directory of Open Access Journals (Sweden)

    V. Comnac

    2009-12-01

    Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.

  11. Test suite for image-based motion estimation of the brain and tongue

    Science.gov (United States)

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that

  12. A diffusion approximation based on renewal processes with applications to strongly biased run–tumble motion

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro

    2016-01-01

    We consider organisms which use a renewal strategy such as run–tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has ....... The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion....

  13. GND-PCA-based statistical modeling of diaphragm motion extracted from 4D MRI.

    Science.gov (United States)

    Swastika, Windra; Masuda, Yoshitada; Xu, Rui; Kido, Shoji; Chen, Yen-Wei; Haneishi, Hideaki

    2013-01-01

    We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.

  14. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    Science.gov (United States)

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  15. A computer-assisted test for the electrophysiological and psychophysical measurement of dynamic visual function based on motion contrast.

    Science.gov (United States)

    Wist, E R; Ehrenstein, W H; Schrauf, M; Schraus, M

    1998-03-13

    A new test is described that allows for electrophysiological and psychophysical measurement of visual function based on motion contrast. In a computer-generated random-dot display, completely camouflaged Landolt rings become visible only when dots within the target area are moved briefly while those of the background remain stationary. Thus, detection of contours and the location of the gap in the ring rely on motion contrast (form-from-motion) instead of luminance contrast. A standard version of this test has been used to assess visual performance in relation to age, in screening professional groups (truck drivers) and in clinical groups (glaucoma patients). Aside from this standard version, the computer program easily allows for various modifications. These include the option of a synchronizing trigger signal to allow for recording of time-locked motion-onset visual-evoked responses, the reversal of target and background motion, and the displacement of random-dot targets across stationary backgrounds. In all instances, task difficulty is manipulated by changing the percentage of moving dots within the target (or background). The present test offers a short, convenient method to probe dynamic visual functions relying on surprathreshold motion-contrast stimuli and complements other routine tests of form, contrast, depth, and color vision.

  16. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    Science.gov (United States)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of

  17. Dynamic trajectory-based couch motion for improvement of radiation therapy trajectories in cranial SRT

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Lee [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Thomas, Christopher G., E-mail: Chris.Thomas@cdha.nshealth.ca [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Medical Physics, Nova Scotia Cancer Centre, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia B3H 1V7 (Canada); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-05-15

    Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space, indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion

  18. Dynamic trajectory-based couch motion for improvement of radiation therapy trajectories in cranial SRT

    International Nuclear Information System (INIS)

    MacDonald, R. Lee; Thomas, Christopher G.

    2015-01-01

    Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space, indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion

  19. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2017-10-01

    Full Text Available Moving towards the more electric aircraft (MEA, a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA into primary flight control. In the hybrid actuation system (HAS, an electro-hydraulic servo actuator (EHSA and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  20. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Science.gov (United States)

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  1. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.

    Science.gov (United States)

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.

  2. Attenuation Tomography Based on Strong Motion Data: Case Study of Central Honshu Region, Japan

    Science.gov (United States)

    Kumar, Parveen; Joshi, A.; Verma, O. P.

    2013-12-01

    Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by H ashida and S himazaki (J Phys Earth. 32, 299-316, 1984) and has been used and modified by J oshi (Curr Sci. 90, 581-585, 2006; Nat Hazards. 43, 129-146, 2007) and J oshi et al. (J. Seismol. 14, 247-272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.

  3. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  4. Cost minimization analysis of different growth hormone pen devices based on time-and-motion simulations

    Directory of Open Access Journals (Sweden)

    Kim Jaewhan

    2010-04-01

    Full Text Available Abstract Background Numerous pen devices are available to administer recombinant Human Growth Hormone (rhGH, and both patients and health plans have varying issues to consider when selecting a particular product and device for daily use. Therefore, the present study utilized multi-dimensional product analysis to assess potential time involvement, required weekly administration steps, and utilization costs relative to daily rhGH administration. Methods Study objectives were to conduct 1 Time-and-Motion (TM simulations in a randomized block design that allowed time and steps comparisons related to rhGH preparation, administration and storage, and 2 a Cost Minimization Analysis (CMA relative to opportunity and supply costs. Nurses naïve to rhGH administration and devices were recruited to evaluate four rhGH pen devices (2 in liquid form, 2 requiring reconstitution via TM simulations. Five videotaped and timed trials for each product were evaluated based on: 1 Learning (initial use instructions, 2 Preparation (arrange device for use, 3 Administration (actual simulation manikin injection, and 4 Storage (maintain product viability between doses, in addition to assessment of steps required for weekly use. The CMA applied micro-costing techniques related to opportunity costs for caregivers (categorized as wages, non-drug medical supplies, and drug product costs. Results Norditropin® NordiFlex and Norditropin® NordiPen (NNF and NNP, Novo Nordisk, Inc., Bagsværd, Denmark took less weekly Total Time (p ® Pen (GTP, Pfizer, Inc, New York, New York or HumatroPen® (HTP, Eli Lilly and Company, Indianapolis, Indiana. Time savings were directly related to differences in new package Preparation times (NNF (1.35 minutes, NNP (2.48 minutes GTP (4.11 minutes, HTP (8.64 minutes, p Conclusions Time-and-motion simulation data used to support a micro-cost analysis demonstrated that the pen device with the greater time demand has highest net costs.

  5. Population-based respiratory 4D motion atlas construction and its application for VR simulations of liver punctures

    Science.gov (United States)

    Mastmeyer, Andre; Wilms, Matthias; Handels, Heinz

    2018-03-01

    Virtual reality (VR) training simulators of liver needle insertion in the hepatic area of breathing virtual patients often need 4D image data acquisitions as a prerequisite. Here, first a population-based breathing virtual patient 4D atlas is built and second the requirement of a dose-relevant or expensive acquisition of a 4D CT or MRI data set for a new patient can be mitigated by warping the mean atlas motion. The breakthrough contribution of this work is the construction and reuse of population-based, learned 4D motion models.

  6. Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle

    Directory of Open Access Journals (Sweden)

    Ewert Linder

    2016-06-01

    Full Text Available Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and “micro swimmers” of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the “vinegar eel.” The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as “diagnostic fingerprints.”

  7. Sensor-based balance training with motion feedback in people with mild cognitive impairment.

    Science.gov (United States)

    Schwenk, Michael; Sabbagh, Marwan; Lin, Ivy; Morgan, Pharah; Grewal, Gurtej S; Mohler, Jane; Coon, David W; Najafi, Bijan

    2016-01-01

    Some individuals with mild cognitive impairment (MCI) experience not only cognitive deficits but also a decline in motor function, including postural balance. This pilot study sought to estimate the feasibility, user experience, and effects of a novel sensor-based balance training program. Patients with amnestic MCI (mean age 78.2 yr) were randomized to an intervention group (IG, n = 12) or control group (CG, n = 10). The IG underwent balance training (4 wk, twice a week) that included weight shifting and virtual obstacle crossing. Real-time visual/audio lower-limb motion feedback was provided from wearable sensors. The CG received no training. User experience was measured by a questionnaire. Postintervention effects on balance (center of mass sway during standing with eyes open [EO] and eyes closed), gait (speed, variability), cognition, and fear of falling were measured. Eleven participants (92%) completed the training and expressed fun, safety, and helpfulness of sensor feedback. Sway (EO, p = 0.04) and fear of falling (p = 0.02) were reduced in the IG compared to the CG. Changes in other measures were nonsignificant. Results suggest that the sensor-based training paradigm is well accepted in the target population and beneficial for improving postural control. Future studies should evaluate the added value of the sensor-based training compared to traditional training.

  8. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  9. Vocal fold motion outcome based on excellent prognosis with laryngeal electromyography.

    Science.gov (United States)

    Smith, Libby J; Rosen, Clark A; Munin, Michael C

    2016-10-01

    As laryngeal electromyography (LEMG) becomes more refined, accurate predictions of vocal fold motion recovery are possible. Focus has been on outcomes for patients with poor prognosis for vocal fold motion recovery. Limited information is available regarding the expected rate of purposeful vocal fold motion recovery when there is good to normal motor recruitment, no signs of denervation, and no signs of synkinetic activity with LEMG, termed excellent prognosis. The objective of this study is to determine the rate of vocal fold motion recovery with excellent prognosis findings on LEMG after acute recurrent laryngeal nerve injury. Retrospective review. Patients undergoing a standardized LEMG protocol, consisting of qualitative (evaluation of motor recruitment, motor unit configuration, detection of fibrillations, presence of synkinesis) and quantitative (turns analysis) measurements were evaluated for purposeful vocal-fold motion recovery, calculated after at least 6 months since onset of injury. Twenty-three patients who underwent LEMG for acute vocal fold paralysis met the inclusion criteria of excellent prognosis. Eighteen patients (78.3%) recovered vocal fold motion, as determined by flexible laryngoscopy. Nearly 80% of patients determined to have excellent prognosis for vocal fold motion recovery experienced return of vocal fold motion. This information will help clinicians not only counsel their patients on expectations but will also help guide treatment. 4. Laryngoscope, 126:2310-2314, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  10. A method of meta-mechanism combination and replacement based on motion study

    Directory of Open Access Journals (Sweden)

    Yadong Fang

    2015-01-01

    Full Text Available Lacking the effective methods to reduce labor and cost, many small- and medium-sized assembly companies are facing with the problem of high cost for a long time. In order to reduce costs of manual operations, the method of meta-mechanism combination and replacement is studied. In this paper, we mainly discuss assembling motion analysis, workpieces position information acquisition, motion library construction, assembling motion analysis by Maynard’s operation sequence technique, meta-mechanism database establishment, and match of motion and mechanism. At the same time, the principle, process, and system realization framework of mechanism replacement are introduced. Lastly, problems for low-cost automation of the production line are basically resolved by operator motion analysis and meta-mechanism combination and match.

  11. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations

    International Nuclear Information System (INIS)

    Lamare, F; Carbayo, M J Ledesma; Cresson, T; Kontaxakis, G; Santos, A; Rest, C Cheze Le; Reader, A J; Visvikis, D

    2007-01-01

    Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations

  12. A Two-Level Sensorless MPPT Strategy Using SRF-PLL on a PMSG Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Amina Echchaachouai

    2017-01-01

    Full Text Available In this paper, a two-level sensorless Maximum Power Point Tracking (MPPT strategy is presented for a variable speed Wind Energy Conversion System (WECS. The proposed system is composed of a wind turbine, a direct-drive Permanent Magnet Synchronous Generator (PMSG and a three phase controlled rectifier connected to a DC load. The realised generator output power maximization analysis justifies the use of the Field Oriented Control (FOC giving the six Pulse Width Modulation (PWM signals to the active rectifier. The generator rotor speed and position required by the FOC and the sensorless MPPT are estimated using a Synchronous Reference Frame Phase Locked Loop (SRF-PLL. The MPPT strategy used consists of two levels, the first level is a power regulation loop and the second level is an extremum seeking bloc generating the coefficient gathering the turbine characteristics. Experimental results validated on a hardware test setup using a DSP digital board (dSPACE 1104 are presented. Figures illustrating the estimated speed and angle confirm that the SRF-PLL is able to give an estimated speed and angle which closely follow the real ones. Also, the power at the DC load and the power at the generator output indicate that the MPPT gives optimum extracted power. Finally, other results show the effectiveness of the adopted approach in real time applications.

  13. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Directory of Open Access Journals (Sweden)

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  14. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  15. The Technique of Changing the Drive Method of Micro Step Drive and Sensorless Drive for Hybrid Stepping Motor

    Science.gov (United States)

    Yoneda, Makoto; Dohmeki, Hideo

    The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.

  16. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    Science.gov (United States)

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  17. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    Science.gov (United States)

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-10-27

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  18. Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, J.S.; Abidi, M.A.

    1998-06-01

    A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.

  19. Systematic Design and Rapid Development of Motion-Based Touchless Games for Enhancing Students’ Thinking Skills

    Directory of Open Access Journals (Sweden)

    Ioannis Altanis

    2018-01-01

    Full Text Available During the last few years, there has been a growing interest in students getting engaged in digital game-making activities so as to enhance their thinking skills. The findings of studies that have examined the impact of such initiatives are quite positive, especially concerning the promotion of 21st century skills; however, many students seem to face difficulties in getting a deeper understanding of the game development life cycle. Additionally, students often have difficulties in meaningfully reusing and applying the concepts from various subjects, mainly mathematics and physics, into their game-making tasks or in understanding advanced programming commands while creating their games. The present study presents an innovative game-making teaching approach that suggests a series of steps for the systematic design and rapid development of motion-based touchless games, i.e., games that are based on natural user interaction technologies, like the Microsoft Kinect camera. Findings from evaluation studies in two (2 secondary schools indicate that this approach can increase student motivation, strengthen their computational thinking, enhance their understanding of geometric principles and improve their social skills.

  20. An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems

    Directory of Open Access Journals (Sweden)

    Masoud Shafiei

    2015-12-01

    Full Text Available In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams. The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, adaptive points are determined using the wavelet theory. This part is done employing the Deslauries-Dubuc (D-D wavelets. By solving the problem in the first step, the domain of the problem is discretized by the same cells taking into consideration the load and characteristics of the structure. After the first trial solution, the D-D interpolation shows the lack and redundancy of points in the domain. These points will be added or eliminated for the next solution. This process may be repeated for obtaining an adaptive mesh for each step. Also, the smoothing spline fit is used to eliminate the noisy portion of the solution. Finally, the results of the proposed method are compared with the results available in the literature. The comparison shows excellent agreement between the obtained results and those already reported.