WorldWideScience

Sample records for based molecular markers

  1. NABIC marker database: A molecular markers information network of agricultural crops.

    Science.gov (United States)

    Kim, Chang-Kug; Seol, Young-Joo; Lee, Dong-Jun; Jeong, In-Seon; Yoon, Ung-Han; Lee, Gang-Seob; Hahn, Jang-Ho; Park, Dong-Suk

    2013-01-01

    In 2013, National Agricultural Biotechnology Information Center (NABIC) reconstructs a molecular marker database for useful genetic resources. The web-based marker database consists of three major functional categories: map viewer, RSN marker and gene annotation. It provides 7250 marker locations, 3301 RSN marker property, 3280 molecular marker annotation information in agricultural plants. The individual molecular marker provides information such as marker name, expressed sequence tag number, gene definition and general marker information. This updated marker-based database provides useful information through a user-friendly web interface that assisted in tracing any new structures of the chromosomes and gene positional functions using specific molecular markers. The database is available for free at http://nabic.rda.go.kr/gere/rice/molecularMarkers/

  2. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding.

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  3. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2017-07-01

    Full Text Available Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  4. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  5. Gliomatosis cerebri: Prognosis based on current molecular markers.

    Science.gov (United States)

    Maharaj, Monish M; Phan, Kevin; Xu, Joshua; Fairhall, Jacob; Reddy, Rajesh; Rao, Prashanth J V

    2017-09-01

    This study aims to review the literature and identify key molecular markers affecting the prognosis of Gliomatosis cerebri (2) to evaluate the level of evidence and identify outstanding markers requiring further study. A literature search was conducted across 5 major databases using the key terms: "Molecular markers" AND "Gliomatosis cerebri" OR "diffuse astrocytoma." Critical appraisal and data presentation was performed inline with the PRISMA guidelines. Following search strategy implementation, 11 studies were included in the final review process. Our data demonstrates significant prognostic value associated with IDH1 132H mutation and variable evidence surrounding the role of INA expression, MGMT promoter methylation and other factors. However, there are significant limitations in the level of evidence obtained. As the genetic basis for the pathogenesis of Gliomatosis cerebri continues to widen, there is little data on markers aside from IDH1 mutation available. IDH1 132H mutation has been demonstrated to have significant effect on survival, particularly in patients with Gliomatosis cerebri type 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Prospects of molecular markers in Fusarium species diversity

    DEFF Research Database (Denmark)

    Nayaka, S. Chandra; Wulff, Ednar Gadelha; Udayashankar, A.C.

    2011-01-01

    focuses of various molecular-based techniques employed to study the diversity of Fusarium species causing diseases in major food crops. An introduction of fusarial diseases and their mycotoxins and molecular-marker-based methods for detection introduce the concept of marker application. Various well...... for generation of probes and their use in phylogeny of Fusarium spp. are also presented. The concluding part emphasizes the value of molecular markers for assessing genetic variability and reveals that molecular tools are indispensable for providing information not only of one Fusarium species but on whole......-known molecular techniques such as random amplified polymorphic DNA, amplification fragment length polymorphism, etc. to more modern ones such as DNA microarrays, DNA barcoding, and pyrosequencing and their application form the core of the review. Target regions in the genome which can be potential candidates...

  7. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  8. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    Science.gov (United States)

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  9. DNA-based molecular markers as tools for the discovery of γ-induced mutants in cereals and soybean

    International Nuclear Information System (INIS)

    Bondarenco, E.; Bondarenco, V.; Barbacar, N.; Coretchi, L.

    2009-01-01

    γ-induced mutagenesis is one of the present techniques effective in producing crops with enhanced quality and novel properties. The fast detection of mutants can be nowadays assured by the employment of DNA-based molecular markers. Different kinds of molecular markers are being widely used all over the world to monitor DNA sequence variation and identification of desired traits. In the given paper we present a short overview of the types of molecular markers and the first steps of the attempt of their use for mutants' characterization in the Republic of Moldova (authors)

  10. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  11. Trends in plant research using molecular markers.

    Science.gov (United States)

    Garrido-Cardenas, Jose Antonio; Mesa-Valle, Concepción; Manzano-Agugliaro, Francisco

    2018-03-01

    A deep bibliometric analysis has been carried out, obtaining valuable parameters that facilitate the understanding around the research in plant using molecular markers. The evolution of the improvement in the field of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifically, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplified polymorphic DNA, amplified fragment length polymorphism, microsatellites, and single-nucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this field of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top five countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its efforts in their main crops as the US for wheat or maize, while China and India for wheat and rice.

  12. Molecular markers for use in plant molecular breeding and germplasm evaluation

    International Nuclear Information System (INIS)

    Edwards, J.D.; McCouch, S.R.

    2007-01-01

    A number of molecular marker technologies exist, each with different advantages and disadvantages. When available, genome sequence allows for the development of greater numbers and higher quality molecular markers. When genome sequence is limited in the organism of interest, related species may serve as sources of molecular markers. Some molecular marker technologies combine the discovery and assay of DNA sequence variations, and therefore can be used in species without the need for prior sequence information and up-front investment in marker development. As a prerequisite for marker-assisted selection (MAS), there must be a known association between genetic markers and genes affecting the phenotype to be modified. Comparative databases can facilitate the transfer of knowledge of genetic marker-phenotype association across species so that discoveries in one species may be applied to many others. Further genomics research and reductions in the costs associated with molecular markers will continue to provide new opportunities to employ MAS. (author)

  13. Promise and pitfalls of molecular markers of thyroid nodules

    Science.gov (United States)

    Jadhav, S.; Lila, Anurag; Bandgar, Tushar; Shah, Nalini

    2012-01-01

    Thyroid nodules are common in the general population with a prevalence of 5-7% The initial evaluation of thyroid nodules commonly involves thyroid function tests, an ultrasound (USG) and fine needle aspiration biopsy (FNAB). The optimal management of patients with thyroid nodules with indeterminate cytology is plagued by the lack of highly sensitive and specific diagnostic modalities In this article we attempt to review the available literature on the molecular markers which are increasingly being studied for their diagnostic utility in assessing thyroid nodules. The various molecular markers consist of gene mutations, gene re arrangements, RNA based assays and immunohistochemical markers. The molecular markers definitely would help to optimise the management of such patients. PMID:23565369

  14. Promise and pitfalls of molecular markers of thyroid nodules

    Directory of Open Access Journals (Sweden)

    S Jadhav

    2012-01-01

    Full Text Available Thyroid nodules are common in the general population with a prevalence of 5-7% The initial evaluation of thyroid nodules commonly involves thyroid function tests, an ultrasound (USG and fine needle aspiration biopsy (FNAB. The optimal management of patients with thyroid nodules with indeterminate cytology is plagued by the lack of highly sensitive and specific diagnostic modalities In this article we attempt to review the available literature on the molecular markers which are increasingly being studied for their diagnostic utility in assessing thyroid nodules. The various molecular markers consist of gene mutations, gene re arrangements, RNA based assays and immunohistochemical markers. The molecular markers definitely would help to optimise the management of such patients.

  15. Molecular performance of commercial MTG variety oil palm based on RAPD markers

    Science.gov (United States)

    Putri, L. A. P.; Setyo, I. E.; Basyuni, M.; Bayu, E. S.; Setiado, H.; Reynaldi, N. F.; Laia, H.; Puteri, S. A. K.; Arifiyanto, D.; Syahputra, I.

    2018-02-01

    The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. This research is conducted by taking individual tree sample of commercial MTG variety germplasm oil palm one years old. The purpose of this research is to analyse molecular performance of some oil palm MTG variety based on RAPD markers. In this experiment, the DNA profile diversity was assessed using markers of oil palm’s random RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11). A total of 15 trees commercial MTG oil palm variety were used for analysis. The results of the experiment indicated out of 4 RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11) showed polymorphic of PCR product. These preliminary results demonstrated RAPD marker can be used to evaluate genetic relatedness among trees of commercial MTG variety oil palm and detecting either genetic variants or mislabelled.

  16. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  17. Molecular markers for urothelial bladder cancer prognosis: toward implementation in clinical practice.

    Science.gov (United States)

    van Rhijn, Bas W G; Catto, James W; Goebell, Peter J; Knüchel, Ruth; Shariat, Shahrokh F; van der Poel, Henk G; Sanchez-Carbayo, Marta; Thalmann, George N; Schmitz-Dräger, Bernd J; Kiemeney, Lambertus A

    2014-10-01

    To summarize the current status of clinicopathological and molecular markers for the prediction of recurrence or progression or both in non-muscle-invasive and survival in muscle-invasive urothelial bladder cancer, to address the reproducibility of pathology and molecular markers, and to provide directions toward implementation of molecular markers in future clinical decision making. Immunohistochemistry, gene signatures, and FGFR3-based molecular grading were used as molecular examples focussing on prognostics and issues related to robustness of pathological and molecular assays. The role of molecular markers to predict recurrence is limited, as clinical variables are currently more important. The prediction of progression and survival using molecular markers holds considerable promise. Despite a plethora of prognostic (clinical and molecular) marker studies, reproducibility of pathology and molecular assays has been understudied, and lack of reproducibility is probably the main reason that individual prediction of disease outcome is currently not reliable. Molecular markers are promising to predict progression and survival, but not recurrence. However, none of these are used in the daily clinical routine because of reproducibility issues. Future studies should focus on reproducibility of marker assessment and consistency of study results by incorporating scoring systems to reduce heterogeneity of reporting. This may ultimately lead to incorporation of molecular markers in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Molecular markers in bladder cancer: Novel research frontiers.

    Science.gov (United States)

    Sanguedolce, Francesca; Cormio, Antonella; Bufo, Pantaleo; Carrieri, Giuseppe; Cormio, Luigi

    2015-01-01

    Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools

  19. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology.

    Science.gov (United States)

    Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi

    2018-05-01

    Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.

  20. Application of molecular markers to find out classificatory ...

    African Journals Online (AJOL)

    The present communication is aimed to find out determinants of molecular marker based classification of rice (Oryza sativa L) germplasm using the available data from an experiment conducted for development of molecular fingerprints of diverse varieties of Basmati and non Basmati rice adapted to irrigated and aerobic ...

  1. Molecular analysis of commercial date palm cultivars in Lybia using ISSR and SRAP PCR-based markers

    Directory of Open Access Journals (Sweden)

    Khalifa Noha S.

    2016-01-01

    Full Text Available Little is known about the molecular structure of the date palm (Phoenix dactylifera L. despite its importance as invaluable drought tolerant crop. Intervarietal variation and cultivar identification are crucial for breeding and gene bank conservation of this plant worldwide. In this work, two PCR based marker systems (ISSR and SRAP were applied on top quality eight commercial cultivars in Libya (Umfetity, Bekrary, Alhamraya, Sufeer Genab, Alsaeedy Show, Farag Barameel, Majhool Alheelo and Alkhadraya. DNA variations were explored using eleven ISSR and nine combinations of SRAP markers. All markers used generated polymorphic bands among the different cultivars that can be used as molecular markers for their differentiation. The genetic distance between cultivars was also estimated from banding patterns. Our results indicate that ISSR and SRAP systems can efficiently identify and differentiate between the selected cultivars. This work can be used as a model to establish a road map for all date palm cultivars worldwide.

  2. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  3. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ick Hyun Jo

    2017-10-01

    Full Text Available The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  4. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng).

    Science.gov (United States)

    Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan

    2017-10-01

    The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  5. Identification of molecular performance from oil palm clones based on SSR markers

    Science.gov (United States)

    Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.

    2018-03-01

    In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.

  6. Application of molecular markers for variety protection of ryegrass (Lolium perenne L.)

    DEFF Research Database (Denmark)

    Jensen, Louise Bach; Deneken, Gerhard; Roulund, N

    2008-01-01

    registration systems. Although DUS testing currently employs mostly visually observable characteristics that are expressions of the phenotype of a variety, there is much interest in the use of molecular markers. The overall objective of this project is to examine the potential use of molecular markers...... with 140 alleles gives the same level of information. Furthermore, number of genotypes per variety can be reduced to 20 compared to the original dataset containing 60 genotypes when using all 18 SSR markers but not when using only six SSR markers. Significant association was found between the molecular...... on the morphological characterization from the DUS trial. 18 SSR markers were selected based on their genome distribution, reproducibility, level of information and ease of scoring. It was found, that for variety discrimination, reducing the number of SSR markers from 18 SSR markers with 262 alleles to six SSR markers...

  7. Preoperative Molecular Markers in Thyroid Nodules.

    Science.gov (United States)

    Sahli, Zeyad T; Smith, Philip W; Umbricht, Christopher B; Zeiger, Martha A

    2018-01-01

    The need for distinguishing benign from malignant thyroid nodules has led to the pursuit of differentiating molecular markers. The most common molecular tests in clinical use are Afirma ® Gene Expression Classifier (GEC) and Thyroseq ® V2. Despite the rapidly developing field of molecular markers, several limitations exist. These challenges include the recent introduction of the histopathological diagnosis "Non-Invasive Follicular Thyroid neoplasm with Papillary-like nuclear features", the correlation of genetic mutations within both benign and malignant pathologic diagnoses, the lack of follow-up of molecular marker negative nodules, and the cost-effectiveness of molecular markers. In this manuscript, we review the current published literature surrounding the diagnostic value of Afirma ® GEC and Thyroseq ® V2. Among Afirma ® GEC studies, sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV) ranged from 75 to 100%, 5 to 53%, 13 to 100%, and 20 to 100%, respectively. Among Thyroseq ® V2 studies, Se, Sp, PPV, and NPV ranged from 40 to 100%, 56 to 93%, 13 to 90%, and 48 to 97%, respectively. We also discuss current challenges to Afirma ® GEC and Thyroseq ® V2 utility and clinical application, and preview the future directions of these rapidly developing technologies.

  8. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  9. Molecular markers of neuropsychological functioning and Alzheimer's disease.

    Science.gov (United States)

    Edwards, Melissa; Balldin, Valerie Hobson; Hall, James; O'Bryant, Sid

    2015-03-01

    The current project sought to examine molecular markers of neuropsychological functioning among elders with and without Alzheimer's disease (AD) and determine the predictive ability of combined molecular markers and select neuropsychological tests in detecting disease presence. Data were analyzed from 300 participants (n = 150, AD and n = 150, controls) enrolled in the Texas Alzheimer's Research and Care Consortium. Linear regression models were created to examine the link between the top five molecular markers from our AD blood profile and neuropsychological test scores. Logistical regressions were used to predict AD presence using serum biomarkers in combination with select neuropsychological measures. Using the neuropsychological test with the least amount of variance overlap with the molecular markers, the combined neuropsychological test and molecular markers was highly accurate in detecting AD presence. This work provides the foundation for the generation of a point-of-care device that can be used to screen for AD.

  10. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  11. [Prognostic and predictive molecular markers for urologic cancers].

    Science.gov (United States)

    Hartmann, A; Schlomm, T; Bertz, S; Heinzelmann, J; Hölters, S; Simon, R; Stoehr, R; Junker, K

    2014-04-01

    Molecular prognostic factors and genetic alterations as predictive markers for cancer-specific targeted therapies are used today in the clinic for many malignancies. In recent years, many molecular markers for urogenital cancers have also been identified. However, these markers are not clinically used yet. In prostate cancer, novel next-generation sequencing methods revealed a detailed picture of the molecular changes. There is growing evidence that a combination of classical histopathological and validated molecular markers could lead to a more precise estimation of prognosis, thus, resulting in an increasing number of patients with active surveillance as a possible treatment option. In patients with urothelial carcinoma, histopathological factors but also the proliferation of the tumor, mutations in oncogenes leading to an increasing proliferation rate and changes in genes responsible for invasion and metastasis are important. In addition, gene expression profiles which could distinguish aggressive tumors with high risk of metastasis from nonmetastasizing tumors have been recently identified. In the future, this could potentially allow better selection of patients needing systemic perioperative treatment. In renal cell carcinoma, many molecular markers that are associated with metastasis and survival have been identified. Some of these markers were also validated as independent prognostic markers. Selection of patients with primarily organ-confined tumors and increased risk of metastasis for adjuvant systemic therapy could be clinically relevant in the future.

  12. MOLECULAR MARKERS FOR METASTATIC PROSTATE ADENOCARCINOMA

    Directory of Open Access Journals (Sweden)

    I. S. Kunin

    2012-01-01

    Full Text Available The search of molecular markers of metastasing and prognosis in prostate cancer remains an urgent task. In this study, we investigated the relationship of gene expression heparanase-1 (HPSE1 and D-glucuronil C5-epimerase (GLCE with early disease relapse and metastasis of a 2,5−3 years after diagnosis. It was shown that the ratio of the expression levels of genes HPSE1/GLCE > 1 may serve as a prognostic relapse marker and trends of the tumour to metastasis. The data obtained suggest to use this option as a molecular marker for the diagnostics of metastatic process and the disease prognosis.

  13. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    Science.gov (United States)

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  14. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  15. The role of molecular markers and marker assisted selection in breeding for organic agriculture

    DEFF Research Database (Denmark)

    Lammerts van Bueren, E.T.; Backes, G.; de Vriend, H.

    2010-01-01

    markers is not self-evident and is often debated. Organic and low-input farming conditions require breeding for robust and flexible varieties, which may be hampered by too much focus on the molecular level. Pros and contras for application of molecular markers in breeding for organic agriculture...... was the topic of a recent European plant breeding workshop. The participants evaluated strengths, weaknesses, opportunities, and threats of the use of molecular markers and we formalized their inputs into breeder’s perspectives and perspectives seen from the organic sector’s standpoint. Clear strengths were...

  16. Variable expression of molecular markers in juvenile nasopharyngeal angiofibroma.

    Science.gov (United States)

    Mishra, A; Pandey, A; Mishra, S C

    2017-09-01

    Molecular categorisation may explain the wide variation in the clinical characteristics of juvenile nasopharyngeal angiofibroma. Variations in molecular markers in juvenile nasopharyngeal angiofibroma in an Indian population were investigated and compared with global reports. Variable molecular marker expression was demonstrated at the regional and global levels. A wide variation in molecular characteristics is evident. Molecular data have been reported for only 11 countries, indicating a clear geographical bias. Only 58 markers have been studied, and most are yet to be validated. Research into the molecular epidemiology of juvenile nasopharyngeal angiofibroma is still in its infancy. Although the molecular variation is not well understood, data obtained so far have prompted important research questions. Hence, multicentre collaborative molecular studies are needed to establish the aetiopathogenesis and establish molecular surrogates for clinical characteristics.

  17. The role of Molecular Markers in Improvement of Fruit Crops

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2010-06-01

    Full Text Available Markers have been used over the years for the classification of plants. Markers are any trait of an organism that can be identified with confidence and relative easy, and can be followed in a mapping population on another hand markers be defined as heritable entities associated with the economically important trait under the control of polygenes. Morphological markers can be detected with naked eye (naked eye polymorphism or as difference in physical or chemical properties of the macromolecules. In other words, there are two types of genetic markers viz. morphological markers or naked eye polymorphism and non-morphological markers or molecular markers. Morphological markers include traits such as plant height, disease response, photoperiod, sensitivity, shape or colour of flowers, fruits or seeds etc. Molecular markers include biochemical constituents. Morphological markers have many limitations for being used as markers particularly in fruit crops because of long generation time and large size of fruit trees besides being influenced by environment. Consequently, molecular markers could be appropriate choice to study and preserve the diversity in any germplasm. Molecular markers have diverse applications in fruit crop improvement, particularly in the areas of genetic diversity and varietal identification studies, gene tagging, disease diagnostics, pedigree analysis, hybrid detection, sex differentiation and marker assisted selection.

  18. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences.

    Science.gov (United States)

    Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2017-09-20

    Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.

  19. An overview of molecular marker methods for plants | Semagn ...

    African Journals Online (AJOL)

    The development and use of molecular markers for the detection and exploitation of DNA polymorphism is one of the most significant developments in the field of molecular genetics. The presence of various types of molecular markers, and differences in their principles, methodologies, and applications require careful ...

  20. Molecular markers: Implications for cytopathology and specimen collection.

    Science.gov (United States)

    VanderLaan, Paul A

    2015-08-01

    Cytologic specimens obtained through minimally invasive biopsy techniques are increasingly being used as principle diagnostic specimens for tumors arising in multiple sites. The number and scope of ancillary tests performed on these specimens have grown substantially over the past decade, including many molecular markers that not only can aid in formulating accurate and specific diagnoses but also can provide prognostic or therapeutic information to help direct clinical decisions. Thus, the cytopathologist needs to ensure that adequate material is collected and appropriately processed for the study of relevant molecular markers, many of which are specific to tumor site. This brief review covers considerations for effective cytologic specimen collection and processing to ensure diagnostic and testing success. In addition, a general overview is provided of molecular markers pertinent to tumors from a variety of sites. The recognition of these established and emerging molecular markers by cytopathologists is an important step toward realizing the promise of personalized medicine. © 2015 American Cancer Society.

  1. Optimization of ISSR Markers for Molecular DNA Fingerprinting in Aquilaria sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hanif Azhari; Siti Norhayati Ismail; Parween, K.S.A.S.

    2013-01-01

    Aquilaria sp. belongs to the Thymelaeaceae family and well distributed to Asia region. The species is a multipurpose use from root to shoot and becoming an economic important crop, which generates wide interest in understanding the genetic diversity of the species. Understanding of the effectiveness in differentiating DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. Polymerase Chain Reaction (PCR)-based approaches are in demanding as its simplicity and requirement for only small quantities of sample genomic DNA. Inter-simple sequence repeats (ISRR) requires no prior genomic information as anchor template in producing multi-loci markers of tandem repeats for polymorphic patterns by PCR amplification which becoming a key of advantageous of ISSR primers. ISSR markers have shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of standard resin quality for perfume and or pharmaceutical industries. In this paper, a total of 100 ISSR primers were optimized by using Aquilaria malaccensis. Primers optimization resulted, 38 ISSR primers affirmative for the polymorphism evaluation study, which encountered both from specific and degenerate ISSR primers. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Aquilaria sp from species to accessions and further will useful in identifying any mutant lines derived from nature and/or mutagenesis activities. (author)

  2. A molecular marker map for roses

    NARCIS (Netherlands)

    Debener, T.; Mattiesch, L.; Vosman, B.

    2001-01-01

    n addition to an existing core map for diploid roses which comprised 305 molecular markers 60 additional markers were mapped to extend the map. As a first application of the information contained in the map, the map position of a resistance gene from roses, Rdr1, was determined by identifying

  3. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    Science.gov (United States)

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  4. Suitability and use of two molecular markers to track race-specific ...

    African Journals Online (AJOL)

    Molecular markers linked to resistance to different races of S. gesneriodes have been identified. It was desirable to demonstrate the applicability and efficiency for use in ... The two marker data set were significantly correlated with the phenotypic data (r=0.95). Based on the tight linkage with the resistant locus, 61RM2 was ...

  5. Molecular markers for thyroid cancer

    International Nuclear Information System (INIS)

    Marrero Rodriguez, Maria Teresa; Sinconegui Gomez, Belkys; Cruz Cruz, Anaisa

    2015-01-01

    The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more accessible and potentially usable from a methodological viewpoint for diagnosis of the thyroid nodule before surgery. The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more

  6. Molecular markers in well-differentiated thyroid cancer.

    Science.gov (United States)

    D'Cruz, Anil K; Vaish, Richa; Vaidya, Abhishek; Nixon, Iain J; Williams, Michelle D; Vander Poorten, Vincent; López, Fernando; Angelos, Peter; Shaha, Ashok R; Khafif, Avi; Skalova, Alena; Rinaldo, Alessandra; Hunt, Jennifer L; Ferlito, Alfio

    2018-06-01

    Thyroid nodules are of common occurrence in the general population. About a fourth of these nodules are indeterminate on aspiration cytology placing many a patient at risk of unwanted surgery. The purpose of this review is to discuss various molecular markers described to date and place their role in proper perspective. This review covers the fundamental role of the signaling pathways and genetic changes involved in thyroid carcinogenesis. The current literature on the prognostic significance of these markers is also described. PubMed was used to search relevant articles. The key terms "thyroid nodules", "thyroid cancer papillary", "carcinoma papillary follicular", "carcinoma papillary", "adenocarcinoma follicular" were searched in MeSH, and "molecular markers", "molecular testing", mutation, BRAF, RAS, RET/PTC, PAX 8, miRNA, NIFTP in title and abstract fields. Multiple combinations were done and a group of experts in the subject from the International Head and Neck Scientific Group extracted the relevant articles and formulated the review. There has been considerable progress in the understanding of thyroid carcinogenesis and the emergence of numerous molecular markers in the recent years with potential to be used in the diagnostic algorithm of these nodules. However, their precise role in routine clinical practice continues to be a contentious issue. Majority of the studies in this context are retrospective and impact of these mutations is not independent of other prognostic factors making the interpretation difficult. The prevalence of these mutations in thyroid nodule is high and it is a continuously evolving field. Clinicians should stay informed as recommendation on the use of these markers is expected to evolve.

  7. Mutant germplasm characterization using molecular markers. A manual

    International Nuclear Information System (INIS)

    2002-01-01

    and PCR based DNA markers such as Sequence Characterized Amplified Regions (SCARs) or Sequence Tagged Sites (STS). These techniques help in direct selection of many desired characters simultaneously using F2 and back-cross populations, near isogenic lines, doubled haploids and recombinant inbred lines. During the last decade the world of classical Mendelian genetics has entered a new age, namely that of genomics, which means the study of structure of genes and their function. A great deal of DNA sequence information is now available in particular from model species such as rice and Arabidopsis, but the functions of the derived genes are mostly unknown. Concentrated research efforts are therefore being made to fill this so-called 'phenotypic gap'. Induced mutations combined with molecular marker technology are playing an important role in this field, leading to a reinforced demand for mutagenized plant material in which certain characters have been changed due to knockout mutations of the responsible genes. Using molecular and genetic tools a mutated character can then be associated with a DNA sequence of previously unknown function. Recent reports on the homology of genes and the gene order between for instance the grass genomes (synteny) suggest that the knowledge acquired will also be useful for identification and isolation of genes from under-utilised crops

  8. Prognostic molecular markers in early breast cancer

    International Nuclear Information System (INIS)

    Esteva, Francisco J; Hortobagyi, Gabriel N

    2004-01-01

    A multitude of molecules involved in breast cancer biology have been studied as potential prognostic markers. In the present review we discuss the role of established molecular markers, as well as potential applications of emerging new technologies. Those molecules used routinely to make treatment decisions in patients with early-stage breast cancer include markers of proliferation (e.g. Ki-67), hormone receptors, and the human epidermal growth factor receptor 2. Tumor markers shown to have prognostic value but not used routinely include cyclin D 1 and cyclin E, urokinase-like plasminogen activator/plasminogen activator inhibitor, and cathepsin D. The level of evidence for other molecular markers is lower, in part because most studies were retrospective and not adequately powered, making their findings unsuitable for choosing treatments for individual patients. Gene microarrays have been successfuly used to classify breast cancers into subtypes with specific gene expression profiles and to evaluate prognosis. RT-PCR has also been used to evaluate expression of multiple genes in archival tissue. Proteomics technologies are in development

  9. Validation of systems biology derived molecular markers of renal donor organ status associated with long term allograft function.

    Science.gov (United States)

    Perco, Paul; Heinzel, Andreas; Leierer, Johannes; Schneeberger, Stefan; Bösmüller, Claudia; Oberhuber, Rupert; Wagner, Silvia; Engler, Franziska; Mayer, Gert

    2018-05-03

    Donor organ quality affects long term outcome after renal transplantation. A variety of prognostic molecular markers is available, yet their validity often remains undetermined. A network-based molecular model reflecting donor kidney status based on transcriptomics data and molecular features reported in scientific literature to be associated with chronic allograft nephropathy was created. Significantly enriched biological processes were identified and representative markers were selected. An independent kidney pre-implantation transcriptomics dataset of 76 organs was used to predict estimated glomerular filtration rate (eGFR) values twelve months after transplantation using available clinical data and marker expression values. The best-performing regression model solely based on the clinical parameters donor age, donor gender, and recipient gender explained 17% of variance in post-transplant eGFR values. The five molecular markers EGF, CD2BP2, RALBP1, SF3B1, and DDX19B representing key molecular processes of the constructed renal donor organ status molecular model in addition to the clinical parameters significantly improved model performance (p-value = 0.0007) explaining around 33% of the variability of eGFR values twelve months after transplantation. Collectively, molecular markers reflecting donor organ status significantly add to prediction of post-transplant renal function when added to the clinical parameters donor age and gender.

  10. Development and use of molecular markers: past and present.

    Science.gov (United States)

    Grover, Atul; Sharma, P C

    2016-01-01

    Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.

  11. Advance of molecular marker application in the tobacco research ...

    African Journals Online (AJOL)

    Tobacco (Nicotiana spp.) is one of the most important commercial crops in the world. During the last two decades, molecular markers have entered the scene of genetic improvement in different fields of agricultural research. The principles and characteristics of several molecular markers such as RFLP, RAPD, AFLP, ...

  12. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Science.gov (United States)

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  13. ROLE OF MOLECULAR MARKERS IN THYROID NODULE MANAGEMENT: THEN AND NOW.

    Science.gov (United States)

    Nikiforov, Yuri E

    2017-08-01

    To describe the evolution and clinical utility of molecular testing for thyroid nodules and cancer achieved over the last 2 decades. Scientific reports on thyroid cancer genetics and molecular diagnostics in thyroid nodules. Over the last 2 decades, our understanding of the genetic mechanisms of thyroid cancer has dramatically expanded, such that most thyroid cancers now have known gene driver events. This knowledge provides the basis for establishing and further improving molecular tests for thyroid nodules and cancer and for the introduction of new entities such as noninvasive follicular thyroid neoplasm with papillary-like nuclear features. The progress with molecular tests for thyroid nodules started in the 1990s from demonstrating feasibility of detecting various molecular alterations in fine-needle aspiration (FNA) material collected from thyroid nodules. It was followed by the introduction of the first single-gene mutational markers, such as BRAF, and a small mutational panel into clinical practice in the mid 2000s. Currently, several more advanced molecular tests are available for clinical use. They are based on multiple molecular markers and have increasing impact on the clinical management of patients with thyroid nodules. The evolution of molecular tests for thyroid nodules followed the discovery of various diagnostic and prognostic molecular markers of thyroid cancer that can be applied to thyroid FNA samples to inform more individualized management of these patients. FNA = fine-needle aspiration miRNA = micro RNA NGS = next-generation sequencing NIFTP = noninvasive follicular thyroid neoplasm with papillary-like nuclear features NPV = negative predictive value PPV = positive predictive value PTC = papillary thyroid carcinoma RAI = radioactive iodine.

  14. Reviewing and Updating the Major Molecular Markers for Stem Cells

    Science.gov (United States)

    Calloni, Raquel; Cordero, Elvira Alicia Aparicio; Henriques, João Antonio Pêgas

    2013-01-01

    Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells. PMID:23336433

  15. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  16. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  17. Molecular markers linked to apomixis in Panicum maximum Jacq ...

    African Journals Online (AJOL)

    Panicum maximum Jacq. is an important forage grass of African origin largely used in the tropics. The genetic breeding of this species is based on the hybridization of sexual and apomictic genotypes and selection of apomictic F1 hybrids. The objective of this work was to identify molecular markers linked to apomixis in P.

  18. Molecular diversity and population structure of the forage grass Hemarthria compressa (Poaceae) in south China based on SRAP markers.

    Science.gov (United States)

    Huang, L-K; Zhang, X-Q; Xie, W-G; Zhang, J; Cheng, L; Yan, H D

    2012-08-16

    Hemarthria compressa is one of the most important and widely utilized forage crops in south China, owing to its high forage yield and capability of adaptation to hot and humid conditions. We examined the population structure and genetic variation within and among 12 populations of H. compressa in south China using sequence-related amplified polymorphism (SRAP) markers. High genetic diversity was found in these samples [percentage polymorphic bands (PPB) = 82.21%, Shannon's diversity index (I) = 0.352]. However, there was relatively low level of genetic diversity at the population level (PPB = 29.17%, I = 0.155). A high degree of genetic differentiation among populations was detected based on other measures and molecular markers (Nei's genetic diversity analysis: G(ST) = 54.19%; AMOVA analysis: F(ST) = 53.35%). The SRAP markers were found to be more efficient than ISSR markers for evaluating population diversity. Based on these findings, we propose changes in sampling strategies for appraising and utilizing the genetic resources of this species.

  19. Determination of molecular markers associated with anthesis-silking interval in maize

    International Nuclear Information System (INIS)

    Simpson, J.

    1998-01-01

    Maize lines contrasting in anthesis-silking, interval (ASI), a trait strongly linked to drought tolerance, have been analyzed under different water stress conditions in the field and with molecular markers. Correlation of marker and field data has revealed molecular markers strongly associated with flowering and yield traits. (author)

  20. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies.

    Science.gov (United States)

    Almeida, Nuno Felipe; Trindade Leitão, Susana; Caminero, Constantino; Torres, Ana Maria; Rubiales, Diego; Vaz Patto, Maria Carlota

    2014-01-01

    Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.

  1. Molecular markers linked to apomixis in Panicum maximum Jacq.

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... The objective of this work was to identify molecular markers linked to apomixis in ... Four RAPD markers linked to apomixis were identified and mapped in this .... Data analysis. The amplification of the potential markers was analyzed as binary, with 1 for presence and 0 for absence of the marker. The binary.

  2. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  3. Characterization of some bread wheat genotypes using molecular markers for drought tolerance.

    Science.gov (United States)

    Ateş Sönmezoğlu, Özlem; Terzi, Begüm

    2018-02-01

    Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.

  4. Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits.

    Science.gov (United States)

    Ipek, M; Seker, M; Ipek, A; Gul, M K

    2015-03-31

    The purpose of this study was to characterize olive core collection with amplified fragment length polymorphism (AFLP) markers and fruit traits and to determine AFLP markers significantly associated with these fruit characters in olive. A total of 168 polymorphic AFLP markers generated by five primer combinations and nine fruit traits were used to characterize relationships between 18 olive cultivars. Although all olive cultivars were discriminated from each other by either AFLP markers (markers and fruit traits was not significantly correlated (r = 0.13). Partial clustering of olive cultivars by AFLP markers according to their geographical origin was observed. Associations of AFLP markers with fruits were determined using a multiple-regression analysis with stepwise addition of AFLP markers. Significant associations between eight AFLP markers and fruit traits were identified. While five AFLP markers demonstrated significant negative correlation with fruit and stone weight, width and length and total polyphenols (P markers displayed significant positive correlation with α-tocopherol and γ-tocopherol (P molecular markers with fruit traits in olive. Molecular markers associated with morphological and agronomic traits could be utilized for the breeding of olive cultivars. However, the association power of these markers needs to be confirmed in larger populations, and highly correlated markers should then be converted to PCR-based DNA markers such as sequence-characterized amplified region markers for better utilization.

  5. Segmental distribution of some common molecular markers for colorectal cancer (CRC): influencing factors and potential implications.

    Science.gov (United States)

    Papagiorgis, Petros Christakis

    2016-05-01

    Proximal and distal colorectal cancers (CRCs) are regarded as distinct disease entities, evolving through different genetic pathways and showing multiple clinicopathological and molecular differences. Segmental distribution of some common markers (e.g., KRAS, EGFR, Ki-67, Bcl-2, COX-2) is clinically important, potentially affecting their prognostic or predictive value. However, this distribution is influenced by a variety of factors such as the anatomical overlap of tumorigenic molecular events, associations of some markers with other clinicopathological features (stage and/or grade), and wide methodological variability in markers' assessment. All these factors represent principal influences followed by intratumoral heterogeneity and geographic variation in the frequency of detection of particular markers, whereas the role of other potential influences (e.g., pre-adjuvant treatment, interaction between markers) remains rather unclear. Better understanding and elucidation of the various influences may provide a more accurate picture of the segmental distribution of molecular markers in CRC, potentially allowing the application of a novel patient stratification for treatment, based on particular molecular profiles in combination with tumor location.

  6. Cancer molecular markers: A guide to cancer detection and management.

    Science.gov (United States)

    Nair, Meera; Sandhu, Sardul Singh; Sharma, Anil Kumar

    2018-02-08

    Cancer is generally caused by the molecular alterations which lead to specific mutations. Advances in molecular biology have provided an impetus to the study of cancers with valuable prognostic and predictive significance. Over the hindsight various attempts have been undertaken by scientists worldwide, in the management of cancer; where, we have witnessed a number of molecular markers which allow the early detection of cancers and lead to a decrease in its mortality rate. Recent advances in oncology have led to the discovery of cancer markers that has allowed early detection and targeted therapy of tumors. In this context, current review provides a detail outlook on various molecular markers for diagnosis, prognosis and management of therapeutic response in cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich.

    Science.gov (United States)

    Marubodee, Rusama; Ogiso-Tanaka, Eri; Isemura, Takehisa; Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.

  8. Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.

    Science.gov (United States)

    Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F

    2016-05-13

    Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content.

  9. Molecular Markers for Food Traceability

    Directory of Open Access Journals (Sweden)

    Paula Martins-Lopes

    2013-01-01

    Full Text Available DNA analysis with molecular markers has opened a way to understand complex organism's genome. It is presently being widely applied across different fields, where food takes a preeminent position. Constant outbreaks of foodborne illnesses are increasing consumer's attention towards more detailed information related to what they are consuming. This overview reports on the areas where food traceability has been considered, and the problems that still remain to be bypassed in order to be widely applied. An outline of the most broadly used PCR-based methods for food traceability is described. Applications in the area of detection of genetically modified organisms, protected denomination of origin, allergenic and intolerance reactions are detailed in order to understand the dimension of the performed studies.

  10. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    Science.gov (United States)

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  11. Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers.

    Science.gov (United States)

    Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P

    2009-07-01

    Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).

  12. Molecular markers shared by diverse apomictic Pennisetum species.

    Science.gov (United States)

    Lubbers, E L; Arthur, L; Hanna, W W; Ozias-Akins, P

    1994-11-01

    Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).

  13. Molecular markers in disease detection and follow-up of patients with non-muscle invasive bladder cancer.

    Science.gov (United States)

    Maas, Moritz; Walz, Simon; Stühler, Viktoria; Aufderklamm, Stefan; Rausch, Steffen; Bedke, Jens; Stenzl, Arnulf; Todenhöfer, Tilman

    2018-05-01

    Diagnosis and surveillance of non-muscle invasive bladder cancer (NMIBC) is mainly based on endoscopic bladder evaluation and urine cytology. Several assays for determining additional molecular markers (urine-, tissue- or blood-based) have been developed in recent years but have not been included in clinical guidelines so far. Areas covered: This review gives an update on different molecular markers in the urine and evaluates their role in patients with NMIBC in disease detection and surveillance. Moreover, the potential of recent approaches such as DNA methylation assays, multi-panel RNA gene expression assays and cell-free DNA analysis is assessed. Expert commentary: Most studies on various molecular urine markers have mainly focused on a potential replacement of cystoscopy. New developments in high throughput technologies and urine markers may offer further advantages as they may represent a non-invasive approach for molecular characterization of the disease. This opens new options for individualized surveillance strategies and may help to choose the best therapeutic option. The implementation of these technologies in well-designed clinical trials is essential to further promote the use of urine diagnostics in the management of patients with NMIBC.

  14. Molecular Pathology: Predictive, Prognostic, and Diagnostic Markers in Uterine Tumors.

    Science.gov (United States)

    Ritterhouse, Lauren L; Howitt, Brooke E

    2016-09-01

    This article focuses on the diagnostic, prognostic, and predictive molecular biomarkers in uterine malignancies, in the context of morphologic diagnoses. The histologic classification of endometrial carcinomas is reviewed first, followed by the description and molecular classification of endometrial epithelial malignancies in the context of histologic classification. Taken together, the molecular and histologic classifications help clinicians to approach troublesome areas encountered in clinical practice and evaluate the utility of molecular alterations in the diagnosis and subclassification of endometrial carcinomas. Putative prognostic markers are reviewed. The use of molecular alterations and surrogate immunohistochemistry as prognostic and predictive markers is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  16. Gender Identification in Date Palm Using Molecular Markers.

    Science.gov (United States)

    Awan, Faisal Saeed; Maryam; Jaskani, Muhammad J; Sadia, Bushra

    2017-01-01

    Breeding of date palm is complicated because of its long life cycle and heterozygous nature. Sexual propagation of date palm does not produce true-to-type plants. Sex of date palms cannot be identified until the first flowering stage. Molecular markers such as random amplified polymorphic DNA (RAPD), sequence-characterized amplified regions (SCAR), and simple sequence repeats (SSR) have successfully been used to identify the sex-linked loci in the plant genome and to isolate the corresponding genes. This chapter highlights the use of three molecular markers including RAPD, SCAR, and SSR to identify the gender of date palm seedlings.

  17. Molecular markers. Amplified fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2005-01-01

    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  18. Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers.

    Science.gov (United States)

    Coutinho, João Paulo; Carvalho, Ana; Martín, Antonio; Lima-Brito, José

    2018-04-01

    Retrotransposons (RTNs) contribute for genome evolution, influencing its size and structure. We investigated the utility of the RTN-based markers inter-primer binding site (iPBS) for the molecular characterization of 25 Fagaceae species from genera Castanea, Fagus and Quercus. The assessment of genetic diversity, relationships and structure, as well as taxonomic classification of Fagaceae based on molecular data is important for definition of conservation, forestry management strategies and discrimination among natural hybrids and their parents since natural hybridization may increase with the climate changes. Here, iPBS primers designed by other authors were tested alone and combined. Some of them were discriminative, revealed polymorphism within and among taxa allowing the production of a total of 150 iPBS markers. In addition, several monomorphic iPBS markers were also amplified in each taxon. The UPGMA dendrogram based on the pooled iPBS data revealed 27% of genetic similarity among species. The individuals were clustered per genus and most of the oaks per infrageneric group corroborating the adopted taxonomy. Globally, the iPBS markers demonstrated suitability for DNA fingerprinting, determination of phylogenies and taxonomic discrimination in Fagaceae, and could constitute a useful and alternative tool for germplasm characterization, and for definition of conservation strategies and forestry management. Moreover, these markers would be useful for fingerprinting natural hybrids that share morphological similarities with their parents. Since iPBS markers could also enable insights about RTNs evolution, an eventual correlation among iPBS polymorphism, variability of RTN insertions and/or genome size in Fagaceae is discussed.

  19. An assessment of the use of molecular markers in developing countries

    International Nuclear Information System (INIS)

    Sonnino, A.; Carena, M.J.; Guimaraes, E.P.; Baumung, R.; Pilling, D.; Rischkowsky, B.

    2007-01-01

    Four different sources of information were analysed to assess the current uses of molecular markers in crops, forest trees and livestock in developing countries: the FAO Biotechnology in Developing Countries (FAO-BioDeC) database of biotechnology in developing countries; country reports evaluating the current status of applied plant breeding and related biotechnologies; country reports on animal genetic resources management for preparing the First Report on the State of the World's Animal Genetic Resources (SoW-AnGR); and the results of a questionnaire survey on animal genetic diversity studies. Even if still largely incomplete, the current data show that molecular markers are widely used for plant breeding in the developing world and most probably their use will increase in the future. In the animal sector the use of molecular markers seems less developed and limited or absent in most developing countries. Major differences exist among and within regions regarding the application of molecular marker techniques in plant and animal breeding and genetics. These can be explained by the relatively high investments in infrastructure and human resources necessary to undertake research in these fields. The spectrum of application of molecular markers in crop plants is quite wide, covering many plants relevant to the enhancement of food security, but other important plant species are still neglected. The practical results of marker-assisted selection (MAS) in the field are disappointingly modest, possibly due to: low levels of investment; limited coordination between biotechnologists and practical breeders; instable, non-focused or ill-addressed research projects; and the lack of linkages between research and farmers. Partnerships between developed and developing countries may be a means of better realizing the potential of molecular marker techniques for improving both animal and crop production. (author)

  20. Application of molecular markers in wheat breeding: Reality or delusion?

    Directory of Open Access Journals (Sweden)

    Kobiljski Borislav

    2004-01-01

    Full Text Available Conventional plant breeding use morphological and phenotypic markers for the identification of important agronomic traits. Plant breeders and scientists continuously seek to develop new techniques, which can be used for faster and more accurate introgression of desirable traits into plants. Over the last several years there has been significant increase in the application of molecular markers in the breeding programmes of different species. So far, detected level of polymorphism and informatitivnes of different molecular marker methods applied in MAS (Marker Assisted Selection studies (RFLP, AFLP, etc. were insufficient either to validate their further use or there were very expensive and of huge healthy risk. Fortunately for wheat (and other crops breeders, the new class of molecular markers - microsatellites have prove recently to be most powerful for MAS. But, due to lack of the knowledge, experience, valid informations and even tradition and habits, many breeders have either negative or repulsive attitude towards implementation of MAS in breeding programes. In this paper the relevant facts regarding implementation of MAS in breeding are discussed in general, and for wheat breeding in particular, in order to summarize merits and limitations in application of microsatellites in MAS selection. .

  1. Temperature effects on multiphase reactions of organic molecular markers: A modeling study

    Science.gov (United States)

    Pratap, Vikram; Chen, Ying; Yao, Guangming; Nakao, Shunsuke

    2018-04-01

    Various molecular markers are used in source apportionment studies. In early studies, molecular markers were assumed to be inert. However, recent studies suggest that molecular markers can decay rapidly through multiphase reactions, which makes interpretation of marker measurements challenging. This study presents a simplified model to account for the effects of temperature and relative humidity on the lifetime of molecular markers through a shift in gas-particle partitioning as well as a change in viscosity of the condensed phase. As a model case, this study examines the stability of levoglucosan, a key marker species of biomass burning, over a wide temperature range relevant to summertime and wintertime. Despite the importance of wood combustion for space heating in winter, the lifetime of levoglucosan in wintertime is not well understood. The model predicts that in low-temperature conditions, levoglucosan predominantly remains in the particle phase, and therefore its loss due to gas-phase oxidation reactions is significantly reduced. Furthermore, the movement of the levoglucosan from the bulk of the particle to the particle surface is reduced due to low diffusivity in the semi-solid state. The simplified model developed in this study reasonably reproduces upper and lower bounds of the lifetime of levoglucosan investigated in previous studies. The model results show that the levoglucosan depletion after seven days reduces significantly from ∼98% at 25 °C to marker (lifetime > 1 week) even at 60% relative humidity irrespective of the assumed fragility parameter D that controls estimated diffusivity. The model shows that lifetime of an organic molecular marker strongly depends on assumed D especially when a semi-volatile marker is in semi-solid organic aerosol.

  2. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background.

    Science.gov (United States)

    Gong, Wenping; Li, Guangrong; Zhou, Jianping; Li, Genying; Liu, Cheng; Huang, Chengyan; Zhao, Zhendong; Yang, Zujun

    2014-09-01

    Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.

  3. Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers.

    Science.gov (United States)

    Xu, Jing-Yuan; Zhu, Yan; Yi, Ze; Wu, Gang; Xie, Guo-Yong; Qin, Min-Jian

    2018-01-01

    "Wu zhu yu", which is obtained from the dried unripe fruits of Tetradium ruticarpum (A. Jussieu) T. G. Hartley, has been used as a traditional Chinese medicine for treatment of headaches, abdominal colic, and hypertension for thousands of years. The present study was designed to assess the molecular genetic diversity among 25 collected accessions of T. ruticarpum (Wu zhu yu in Chinese) from different areas of China, based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Thirteen ISSR primers generated 151 amplification bands, of which 130 were polymorphic. Out of 165 bands that were amplified using 10 iPBS primers, 152 were polymorphic. The iPBS markers displayed a higher proportion of polymorphic loci (PPL = 92.5%) than the ISSR markers (PPL = 84.9%). The results showed that T. ruticarpum possessed high loci polymorphism and genetic differentiation occurred in this plant. The combined data of iPBS and ISSR markers scored on 25 accessions produced five clusters that approximately matched the geographic distribution of the species. The results indicated that both iPBS and ISSR markers were reliable and effective tools for analyzing the genetic diversity in T. ruticarpum. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Functional molecular markers for crop improvement.

    Science.gov (United States)

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  5. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  6. Ricebase: a breeding and genetics platform for rice, integrating individual molecular markers, pedigrees and whole-genome-based data.

    Science.gov (United States)

    Edwards, J D; Baldo, A M; Mueller, L A

    2016-01-01

    Ricebase (http://ricebase.org) is an integrative genomic database for rice (Oryza sativa) with an emphasis on combining datasets in a way that maintains the key links between past and current genetic studies. Ricebase includes DNA sequence data, gene annotations, nucleotide variation data and molecular marker fragment size data. Rice research has benefited from early adoption and extensive use of simple sequence repeat (SSR) markers; however, the majority of rice SSR markers were developed prior to the latest rice pseudomolecule assembly. Interpretation of new research using SNPs in the context of literature citing SSRs requires a common coordinate system. A new pipeline, using a stepwise relaxation of stringency, was used to map SSR primers onto the latest rice pseudomolecule assembly. The SSR markers and experimentally assayed amplicon sizes are presented in a relational database with a web-based front end, and are available as a track loaded in a genome browser with links connecting the browser and database. The combined capabilities of Ricebase link genetic markers, genome context, allele states across rice germplasm and potentially user curated phenotypic interpretations as a community resource for genetic discovery and breeding in rice. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.

  7. Fecal Molecular Markers for Colorectal Cancer Screening

    Directory of Open Access Journals (Sweden)

    Rani Kanthan

    2012-01-01

    Full Text Available Despite multiple screening techniques, including colonoscopy, flexible sigmoidoscopy, radiological imaging, and fecal occult blood testing, colorectal cancer remains a leading cause of death. As these techniques improve, their sensitivity to detect malignant lesions is increasing; however, detection of precursor lesions remains problematic and has generated a lack of general acceptance for their widespread usage. Early detection by an accurate, noninvasive, cost-effective, simple-to-use screening technique is central to decreasing the incidence and mortality of this disease. Recent advances in the development of molecular markers in faecal specimens are encouraging for its use as a screening tool. Genetic mutations and epigenetic alterations that result from the carcinogenetic process can be detected by coprocytobiology in the colonocytes exfoliated from the lesion into the fecal matter. These markers have shown promising sensitivity and specificity in the detection of both malignant and premalignant lesions and are gaining popularity as a noninvasive technique that is representative of the entire colon. In this paper, we summarize the genetic and epigenetic fecal molecular markers that have been identified as potential targets in the screening of colorectal cancer.

  8. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    Directory of Open Access Journals (Sweden)

    Yang Huaan

    2012-07-01

    Full Text Available Abstract Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM, and are now replacing the markers previously developed by a traditional DNA

  9. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.

  10. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  11. Molecular Identification of Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) Markers.

    Science.gov (United States)

    Al-Khalifah, Nasser S; Shanavaskhan, A E

    2017-01-01

    Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.

  12. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans).

    Science.gov (United States)

    Buonaccorsi, V P; McDowell, J R; Graves, J E

    2001-05-01

    Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.

  13. Molecular Pathogenesis and Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma.

    Science.gov (United States)

    Mariño-Enríquez, Adrián; Bovée, Judith V M G

    2016-09-01

    Sarcomas are infrequent mesenchymal neoplasms characterized by notable morphological and molecular heterogeneity. Molecular studies in sarcoma provide refinements to morphologic classification, and contribute diagnostic information (frequently), prognostic stratification (rarely) and predict therapeutic response (occasionally). Herein, we summarize the major molecular mechanisms underlying sarcoma pathogenesis and present clinically useful diagnostic, prognostic and predictive molecular markers for sarcoma. Five major molecular alterations are discussed, illustrated with representative sarcoma types, including 1. the presence of chimeric transcription factors, in vascular tumors; 2. abnormal kinase signaling, in gastrointestinal stromal tumor; 3. epigenetic deregulation, in chondrosarcoma, chondroblastoma, and other tumors; 4. deregulated cell survival and proliferation, due to focal copy number alterations, in dedifferentiated liposarcoma; 5. extreme genomic instability, in conventional osteosarcoma as a representative example of sarcomas with highly complex karyotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  15. Molecular marker screening of peanut ( Arachis hypogaea L ...

    African Journals Online (AJOL)

    Molecular marker screening of peanut (Arachis hypogaea L.) germplasm for Meloidogyne arenaria resistance. V Carpentieri-Pipolo, M Gallo-Meagher, DW Dickson, DW Gorbet, M de Lurdes Mendes, SG Hulse de Souza ...

  16. A general mixture model for mapping quantitative trait loci by using molecular markers

    NARCIS (Netherlands)

    Jansen, R.C.

    1992-01-01

    In a segregating population a quantitative trait may be considered to follow a mixture of (normal) distributions, the mixing proportions being based on Mendelian segregation rules. A general and flexible mixture model is proposed for mapping quantitative trait loci (QTLs) by using molecular markers.

  17. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    LENUS (Irish Health Repository)

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  18. Molecular marker analysis of 'Shatangju' and 'Wuzishatangju ...

    African Journals Online (AJOL)

    'Wuzishatangju'(Citrus reticulata Blanco) is an excellent cultivar derived from a bud sport of a seedy 'Shatangju' cultivar found in Guangdong Province in the 1980s. In this study, six molecular markers including random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), simple sequence repeat (SSR) ...

  19. Molecular marker-assisted selection for resistance to pathogens in tomato

    International Nuclear Information System (INIS)

    Barone, A.; Frusciante, L.

    2007-01-01

    Since the 1980s, the use of molecular markers has been suggested to improve the efficiency of releasing resistant varieties, thus overcoming difficulties met with classical breeding. For tomato, a high-density molecular map is available in which more than 40 resistance genes are localized. Markers linked to these genes can be used to speed up gene transfer and pyramiding. Suitable PCR markers targeting resistance genes were constructed directly on the sequences of resistance genes or on restriction fragment length polymorphisms (RFLPs) tightly linked to them, and used to select resistant genotypes in backcross schemes. In some cases, the BC 5 generation was reached, and genotypes that cumulated two homozygous resistant genes were also obtained. These results supported the feasibility of using marker-assisted selection (MAS) in tomato and reinforcing the potential of this approach for other genes, which is today also driven by the development of new techniques and increasing knowledge about the tomato genome. (author)

  20. Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana).

    Science.gov (United States)

    Panwar, Preety; Jha, Anand Kumar; Pandey, P K; Gupta, Arun K; Kumar, Anil

    2011-06-01

    Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05(504,) NBS-09(711), NBS-07(688), NBS-03(509) and EST-SSR-04(241)) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.

  1. Molecular markers based identification of diversity for drought tolerance in bread wheat varieties and synthetic hexaploids.

    Science.gov (United States)

    Shah, Zahid Hussain; Munir, Muhammad; Kazi, Abdul Mujeeb; Mujtaba, Tahir; Ahmed, Zaheer

    2009-01-01

    The complexity of the wheat genome has delayed the development and application of molecular markers to this species and wheat now lies behind barley, maize and rice in marker development. However, improvements in marker detection systems and in the techniques used to identify markers linked to useful traits has allowed considerable advances to be made in recent years. To evaluate the genetic diversity 53 genotypes of Richard's selection, were studied at National Agriculture Reseach Center (NARC) Islamabad. The present study found that RAPD analysis is a valuable diagnostic tool. Different sets of RAPD primers were used to study the polymorphism at molecular level. Highest number of amplifications was shown by primer OpG-2 in Richard's material. Coefficient of similarity as well as genetic distances among these three sets of materials was calculated by using Unweighted Pair Group of Arithamatic Means (UPGMA) function (Nei and Li, 1979). The SHs derived genotypes of Richard's selection were highly polymorphic with a polymorphism percentage of 69.70 as compared to NUYT (rainfed) and elite Pakistani bread wheat varieties with a polymorphism of 44.44% and 61.11% respectively. Cluster analysis was done in which grouping of genotypes was done on the basis of genetic distances. Cluster analysis revealed that genotypes of Richard's genotypes are showing high level of among cultivar variation as compared to NUYT (Rainfed) and elite Pakistani drought tolerant bread wheat varieties. These genotypes were also phenotypically evaluated.

  2. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    [Kotwal S., Dhar M. K., Kour B., Raj K. and Kaul S. 2013 Molecular markers unravel intraspecific and interspecific genetic variability in ... of bowel problems including chronic constipation, amoebic ..... while to select parents from accessions, Pov80 and Pov79 ... nology (DBT), Govt. of India, for financial assistance in the form.

  3. A combination of molecular markers and clinical features improve the classification of pancreatic cysts.

    Science.gov (United States)

    Springer, Simeon; Wang, Yuxuan; Dal Molin, Marco; Masica, David L; Jiao, Yuchen; Kinde, Isaac; Blackford, Amanda; Raman, Siva P; Wolfgang, Christopher L; Tomita, Tyler; Niknafs, Noushin; Douville, Christopher; Ptak, Janine; Dobbyn, Lisa; Allen, Peter J; Klimstra, David S; Schattner, Mark A; Schmidt, C Max; Yip-Schneider, Michele; Cummings, Oscar W; Brand, Randall E; Zeh, Herbert J; Singhi, Aatur D; Scarpa, Aldo; Salvia, Roberto; Malleo, Giuseppe; Zamboni, Giuseppe; Falconi, Massimo; Jang, Jin-Young; Kim, Sun-Whe; Kwon, Wooil; Hong, Seung-Mo; Song, Ki-Byung; Kim, Song Cheol; Swan, Niall; Murphy, Jean; Geoghegan, Justin; Brugge, William; Fernandez-Del Castillo, Carlos; Mino-Kenudson, Mari; Schulick, Richard; Edil, Barish H; Adsay, Volkan; Paulino, Jorge; van Hooft, Jeanin; Yachida, Shinichi; Nara, Satoshi; Hiraoka, Nobuyoshi; Yamao, Kenji; Hijioka, Susuma; van der Merwe, Schalk; Goggins, Michael; Canto, Marcia Irene; Ahuja, Nita; Hirose, Kenzo; Makary, Martin; Weiss, Matthew J; Cameron, John; Pittman, Meredith; Eshleman, James R; Diaz, Luis A; Papadopoulos, Nickolas; Kinzler, Kenneth W; Karchin, Rachel; Hruban, Ralph H; Vogelstein, Bert; Lennon, Anne Marie

    2015-11-01

    The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers was compared with that of clinical markers and a combination of molecular and clinical markers. We identified molecular markers and clinical features that classified cyst type with 90%-100% sensitivity and 92%-98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery and could, therefore, reduce the number of unnecessary operations by 91%. We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    SERVER

    Instead, linkage analysis resulted in the construction of a molecular marker linkage map consisting of 45 ..... This limits the application of this marker type, particularly in ... primer design when one uses RAPDs. .... Concepts of Genetics. Fourth.

  5. Correlation of crAssphage-based qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed.

    Science.gov (United States)

    Stachler, Elyse; Akyon, Benay; Aquino de Carvalho, Nathalia; Ference, Christian; Bibby, Kyle

    2018-06-06

    Environmental waters are monitored for fecal pollution to protect public health. Many previously developed human-specific fecal pollution indicators lack adequate sensitivity to be reliably detected in environmental waters or do not correlate well with viral pathogens. Recently, two novel human sewage-associated source tracking qPCR markers were developed based on the bacteriophage crAssphage, CPQ_056 and CPQ_064. These assays are highly human specific, abundant in sewage, and are viral-based, suggesting great promise for environmental application as human fecal pollution indicators. A 30-day sampling study was conducted in an urban stream impacted by combined sewer overflows to evaluate the crAssphage markers' performance in an environmental system. The crAssphage markers were present at concentrations of 4.02-6.04 log10 copies/100 mL throughout the study period, indicating their high abundance and ease of detection in polluted environmental waters. In addition, the crAssphage assays were correlated with rain events, molecular markers for human polyomavirus and HF183, as well as culturable E. coli, enterococci, and somatic coliphage. The CPQ_064 assay correlated strongly to a greater number of biological indicators than the CPQ_056 assay. This study is the first to evaluate both crAssphage qPCR assays in an extended environmental application of crAssphage markers for monitoring of environmental waters. It is also the first study to compare crAssphage marker concentration with other viral-based indicators.

  6. Trend of different molecular markers in the last decades for studying human migrations.

    Science.gov (United States)

    Kundu, Sharbadeb; Ghosh, Sankar Kumar

    2015-02-10

    Anatomically modern humans are known to have widely migrated throughout history. Different scientific evidences suggest that the entire human population descended from just several thousand African migrants. About 85,000 years ago, the first wave of human migration was out of Africa, that followed the coasts through the Middle East, into Southern Asia via Sri Lanka, and in due course around Indonesia and into Australia. Another wave of migration between 40,000 and 12,000 years ago brought humans northward into Europe. However, the frozen north limited human expansion in Europe, and created a land bridge, "Bering land bridge", connecting Asia with North America about 25,000 years ago. Although fossil data give the most direct information about our past, it has certain anomalies. So, molecular archeologists are now using different molecular markers to trace the "most recent common ancestor" and also the migration pattern of modern humans. In this study, we have studied the trend of molecular markers and also the methodologies implemented in the last decades (2003-2014). From our observation, we can say that D-loop region of mtDNA and Y chromosome based markers are predominant. Nevertheless, mtDNA, especially the D-loop region, has some unique features, which makes it a more effective marker for tracing prehistoric footprints of modern human populations. Although, natural selection should also be taken into account in studying mtDNA based human migration. As per technology is concerned, Sanger sequencing is the major technique that is being used in almost all studies. But, the emergence of different cost-effective-and-easy-to-handle NGS platforms has increased its popularity over Sanger sequencing in studying human migration. Copyright © 2014. Published by Elsevier B.V.

  7. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    Science.gov (United States)

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  8. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome

    DEFF Research Database (Denmark)

    Scheurlen, W G; Schwabe, G C; Joos, S

    1998-01-01

    PURPOSE: The diagnostic and prognostic significance of well-defined molecular markers was investigated in childhood primitive neuroectodermal tumors (PNET). MATERIALS AND METHODS: Using microsatellite analysis, Southern blot analysis, and fluorescence in situ hybridization (FISH), 30 primary tumors......: In our study, amplification of c-myc was a poor-prognosis marker in PNET. LOH of chromosome 17p was associated with metastatic disease. Molecular analysis of primary tumors using these markers may be useful for stratification of children with PNET in future prospective studies. The other aberrations...... investigated were not of significant prognostic value, but may provide an entry point for future large-scale molecular studies....

  9. Molecular markers associated with aluminium tolerance in Sorghum bicolor.

    Science.gov (United States)

    Too, Emily Jepkosgei; Onkware, Augustino Osoro; Were, Beatrice Ang'iyo; Gudu, Samuel; Carlsson, Anders; Geleta, Mulatu

    2018-01-01

    Sorghum ( Sorghum bicolor , L. Moench) production in many agro-ecologies is constrained by a variety of stresses, including high levels of aluminium (Al) commonly found in acid soils. Therefore, for such soils, growing Al tolerant cultivars is imperative for high productivity. In this study, molecular markers associated with Al tolerance were identified using a mapping population developed by crossing two contrasting genotypes for this trait. Four SSR ( Xtxp34 , Sb5_236 , Sb6_34 , and Sb6_342 ), one STS ( CTG29_3b ) and three ISSR ( 811_1400 , 835_200 and 884_200 ) markers produced alleles that showed significant association with Al tolerance. CTG29_3b, 811_1400 , Xtxp34 and Sb5_ 236 are located on chromosome 3 with the first two markers located close to Alt SB , a locus that underlie the Al tolerance gene ( SbMATE ) implying that their association with Al tolerance is due to their linkage to this gene. Although CTG29_3b and 811_ 1400 are located closer to Alt SB , Xtxp34 and Sb5_236 explained higher phenotypic variance of Al tolerance indices. Markers 835_200 , 884_200 , Sb6_34 and Sb6_342 are located on different chromosomes, which implies the presence of several genes involved in Al tolerance in addition to S bMATE in sorghum. These molecular markers have a high potential for use in breeding for Al tolerance in sorghum.

  10. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    Science.gov (United States)

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  11. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers

    NARCIS (Netherlands)

    Syed, H.; Sorensen, A.P.; Antonise, R.; van de Wiel, C.; van der Linden, C.G.; van 't Westende, W.; Hooftman, D.A.P.; den Nijs, J.C.M.; Flavell, A.J.

    2006-01-01

    Abstract Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187

  12. Molecular markers for drought tolerance in bread wheat

    African Journals Online (AJOL)

    aghomotsegin

    2013-05-22

    May 22, 2013 ... Molecular markers for drought tolerance in bread wheat. Tharwat El Ameen. Department of Genetics, South Valley University, Qena, 83523, Egypt. Accepted 3 May, 2013. Random amplified polymorphic DNA (RAPD) primers associated with drought tolerance was used in this study to characterize drought ...

  13. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development.

    Science.gov (United States)

    Liu, Mu-Tai; Chen, Mu-Kuan; Huang, Chia-Chun; Huang, Chao-Yuan

    2015-02-01

    The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.

  14. Molecular marker analysis of heading date Hd1 locus in Egyptian ...

    African Journals Online (AJOL)

    Nine molecular markers derived from the heading date QTL Hd1 DNA sequence for cultivated rice were used to study the heading date allelic diversity of the cultivated Egyptian rice varieties. The results showed that among the nine simple sequence repeats (SSR) and sequence tagged-sites (STS) markers used, one SSR ...

  15. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    Science.gov (United States)

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  16. Molecular markers for predicting end-products quality of wheat ...

    African Journals Online (AJOL)

    Molecular markers for predicting end-products quality of wheat (Triticum aestivum L.) ... African Journal of Biotechnology. Journal Home · ABOUT ... Four new Saudi wheat lines (KSU 102, KSU 103, KSU 105 and KSU 106) and two. American ...

  17. Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunfl ower (Helianthus annuus L.) under natural and water-limited states.

    Science.gov (United States)

    Ali, Soleimani Gezeljeh; Darvishzadeh, Reza; Ebrahimi, Asa; Bihamta, Mohammad Reza

    2018-03-01

    Sunflower is an important source of edible oil. Drought is known as an important factor limiting the growth and productivity of field crops in most parts of the world. Agricultural biotechnology mainly aims at developing crops with higher tolerance to the challenging environmental conditions, such as drought. This study examined a number of morphological characters, along with relative water content (RWC) in 100 inbred sunflower lines. A 10 × 10 simple lattice design with two replications was employed to measure the mentioned parameters under natural and water-limited states during two successive years. In molecular trial, 30 simple sequence repeat (SSR) primer pairs, as well as 14 inter-retrotransposon amplified polymorphism (IRAP) and 14 retrotransposon-microsatellite amplified polymorphism (REMAP) primer combinations were used for DNA fingerprinting of the lines. Most of the examined characters had lower average values under water-limited than natural states. Maximum and minimum reductions were observed in the cases of yield and oil percentage, respectively. The broad-sense heritabilities for all the examined characters were 0.20-0.73 and 0.10-0.34 under natural and water-limited states, respectively. In the studied samples, 8.97% of the 435 possible locus pairs of the SSRs represented significant linkage disequilibrium (LD) levels. In the association analysis using SSR markers, 22 and 21 markers were identified (P ≤ 0.05) for the studied characters under natural and water-limited states, respectively. The corresponding values were 50 and 37 using retrotransposon-based molecular markers. Some detected markers were communal between the characters under water-limited and natural states. This was in line with the phenotypic correlations detected between the characters. Communal markers facilitate the simultaneous selection of several characters and can thus improve the efficacy of selection based on markers in the plant-breeding activities.

  18. Values of molecular markers in the differential diagnosis of thyroid abnormalities.

    Science.gov (United States)

    Tennakoon, T M P B; Rushdhi, M; Ranasinghe, A D C U; Dassanayake, R S

    2017-06-01

    Thyroid cancer (TC), follicular adenoma (FA) and Hashimoto's thyroiditis (HT) are three of the most frequently reported abnormalities that affect the thyroid gland. A frequent co-occurrence along with similar histopathological features is observed between TC and FA as well as between TC and HT. The conventional diagnostic methods such as histochemical analysis present complications in differential diagnosis when these abnormalities occur simultaneously. Hence, the authors recognize novel methods based on screening genetic defects of thyroid abnormalities as viable diagnostic and prognostic methods that could complement the conventional methods. We have extensively reviewed the existing literature on TC, FA and HT and also on three genes, namely braf, nras and ret/ptc, that could be used to differentially diagnose the three abnormalities. Emphasis was also given to the screening methods available to detect the said molecular markers. It can be conferred from the analysis of the available data that the utilization of braf, nras and ret/ptc as markers for the therapeutic evaluation of FA and HT is debatable. However, molecular screening for braf, nras and ret/ptc mutations proves to be a conclusive method that could be employed to differentially diagnose TC from HT and FA in the instance of a suspected co-occurrence. Thyroid cancer patients can be highly benefited from the screening for the said genetic markers, especially the braf gene due to its diagnostic value as well as due to the availability of personalized medicine targeted specifically for braf mutants.

  19. Regression Association Analysis of Yield-Related Traits with RAPD Molecular Markers in Pistachio (Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Saeid Mirzaei

    2017-10-01

    Full Text Available Introduction: The pistachio (Pistacia vera, a member of the cashew family, is a small tree originating from Central Asia and the Middle East. The tree produces seeds that are widely consumed as food. Pistacia vera often is confused with other species in the genus Pistacia that are also known as pistachio. These other species can be distinguished by their geographic distributions and their seeds which are much smaller and have a soft shell. Continual advances in crop improvement through plant breeding are driven by the available genetic diversity. Therefore, the recognition and measurement of such diversity is crucial to breeding programs. In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL identification and marker assisted selection (MAS. The germplasm-regression-combined association studies not only allow mapping of genes/QTLs with higher level of confidence, but also allow detection of genes/QTLs, which will otherwise escape detection in linkage-based QTL studies based on the planned populations. The development of the marker-based technology offers a fast, reliable, and easy way to perform multiple regression analysis and comprise an alternative approach to breeding in diverse species of plants. The availability of many makers and morphological traits can help to regression analysis between these markers and morphological traits. Materials and Methods: In this study, 20 genotypes of Pistachio were studied and yield related traits were measured. Young well-expanded leaves were collected for DNA extraction and total genomic DNA was extracted. Genotyping was performed using 15 RAPD primers and PCR amplification products were visualized by gel electrophoresis. The reproducible RAPD fragments were scored on the basis of present (1 or absent (0 bands and a binary matrix constructed using each molecular marker. Association analysis between

  20. De novo DNA sequence driven bulk segregant analysis can pinpoint candicate loci for Total Glycoalkaloid (TGA) content in potato without prior knowledge of molecular markers

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sønderkær, Mads; Petersen, Annabeth Høgh

    is discarded based on the absence of desired molecular marker already at the seed or seedling stage. However, the number of molecular markers known in potato with appropriate linkage to agronomical traits is presently insufficient to establish a comprehensive MAS breeding platform for potato....

  1. Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes.

    Science.gov (United States)

    Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin

    2017-06-01

    Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

  2. Use of molecular markers in plant breeding = [Het gebruik van moleculaire merkers in de plantenveredeling

    NARCIS (Netherlands)

    Berloo, van R.

    2000-01-01

    Molecular markers provide plant breeding with an important and valuable new source of information. Linkage between molecular markers can be translated to genetic linkage maps, which have become an important tool in plant and animal genetics. Linkage between (quantitative) trait-data and

  3. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  4. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  5. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  6. Isotopic and molecular fractionation in combustion; three routes to molecular marker validation, including direct molecular 'dating' (GC/AMS)

    Science.gov (United States)

    Currie, L. A.; Klouda, G. A.; Benner, B. A.; Garrity, K.; Eglinton, T. I.

    The identification of unique isotopic, elemental, and molecular markers for sources of combustion aerosol has growing practical importance because of the potential effects of fine particle aerosol on health, visibility and global climate. It is urgent, therefore, that substantial efforts be directed toward the validation of assumptions involving the use of such tracers for source apportionment. We describe here three independent routes toward carbonaceous aerosol molecular marker identification and validation: (1) tracer regression and multivariate statistical techniques applied to field measurements of mixed source, carbonaceous aerosols; (2) a new development in aerosol 14C metrology: direct, pure compound accelerator mass spectrometry (AMS) by off-line GC/AMS ('molecular dating'); and (3) direct observation of isotopic and molecular source emissions during controlled laboratory combustion of specific fuels. Findings from the combined studies include: independent support for benzo( ghi)perylene as a motor vehicle tracer from the first (statistical) and second (direct 'dating') studies; a new indication, from the third (controlled combustion) study, of a relation between 13C isotopic fractionation and PAH molecular fractionation, also linked with fuel and stage of combustion; and quantitative data showing the influence of both fuel type and combustion conditions on the yields of such species as elemental carbon and PAH, reinforcing the importance of exercising caution when applying presumed conservative elemental or organic tracers to fossil or biomass burning field data as in the first study.

  7. Usefulness of molecular markers in the diagnosis of occupational and recreational histoplasmosis outbreaks.

    Science.gov (United States)

    Frías-De-León, María Guadalupe; Ramírez-Bárcenas, José Antonio; Rodríguez-Arellanes, Gabriela; Velasco-Castrejón, Oscar; Taylor, Maria Lucia; Reyes-Montes, María Del Rocío

    2017-03-01

    Histoplasmosis is considered the most important systemic mycosis in Mexico, and its diagnosis requires fast and reliable methodologies. The present study evaluated the usefulness of PCR using Hcp100 and 1281-1283 (220) molecular markers in detecting Histoplasma capsulatum in occupational and recreational outbreaks. Seven clinical serum samples of infected individuals from three different histoplasmosis outbreaks were processed by enzyme-linked immunosorbent assay (ELISA) to titre anti-H. capsulatum antibodies and to extract DNA. Fourteen environmental samples were also processed for H. capsulatum isolation and DNA extraction. Both clinical and environmental DNA samples were analysed by PCR with Hcp100 and 1281-1283 (220) markers. Antibodies to H. capsulatum were detected by ELISA in all serum samples using specific antigens, and in six of these samples, the PCR products of both molecular markers were amplified. Four environmental samples amplified one of the two markers, but only one sample amplified both markers and an isolate of H. capsulatum was cultured from this sample. All PCR products were sequenced, and the sequences for each marker were analysed using the Basic Local Alignment Search Tool (BLASTn), which revealed 95-98 and 98-100 % similarities with the reference sequences deposited in the GenBank for Hcp100 and 1281-1283 (220) , respectively. Both molecular markers proved to be useful in studying histoplasmosis outbreaks because they are matched for pathogen detection in either clinical or environmental samples.

  8. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    Science.gov (United States)

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  9. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    Sharat Kumar Pradhan

    Full Text Available Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  10. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  11. Genetic diversity analyses of Lasiodiplodia theobromae on Morus alba and Agave sisalana based on RAPD and ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Hong-hui Xie

    2016-10-01

    Full Text Available Genetic diversity of 23 Lasiodiplodia theobromae isolates on Morus alba and 6 isolates on Agave sisalana in Guangxi province, China, was studied by using random amplified polymorphic DNA and inter-simple sequence repeat molecular markers. Results of two molecular markers showed that the average percentage of polymorphic loci of all isolates was more than 93%. Both dendrograms of two molecular markers showed obvious relationship between groups and the geographical locations where those strains were collected, among which, the 23 isolates on M. alba were divided into 4 populations and the 6 isolates on A. sisalana were separated as a independent population. The average genetic identity and genetic distance of 5 populations were 0.7215, 0.3284 and 0.7915, 0.2347, respectively, which indicated that the genetic identity was high and the genetic distance was short in the 5 populations. Average value of the gene diversity index (H and the Shannon’s information index (I of 29 isolates were significantly higher than 5 populations which showed that genetic diversity of those isolates was richer than the populations and the degree of genetic differentiation of the isolates was higher. The Gst and Nm of 29 isolates were 0.4411, 0.6335 and 0.4756, 0.5513, respectively, which showed that the genetic diversity was rich in those isolates.

  12. Criteria for selection and application of molecular markers for clinical studies of osteoarthritis.

    Science.gov (United States)

    Otterness, I G; Swindell, A C

    2003-03-01

    To develop criteria for the selection and application of molecular markers for the study of osteoarthritis (OA). Statistical criteria for marker selection for OA are developed. After studying more than 20 different molecular markers for monitoring OA, procedures for choosing markers for clinical studies have been developed. For a particular study, the process starts with the markers showing 'face-validity' for monitoring OA. They are next required to successfully distinguish OA patients from controls. This necessitates definition of the distribution of marker values in OA patients and controls. So far, they have been consistently log-normal. The difference (Delta) in marker values between OA and controls defines the opportunity for marker improvement. The between-visit standard deviation (S) in patients puts limits on the detection of marker changes. The two variables can be combined to estimate the practicality of a marker using a modified power analysis. The number of patients (N*) required to observe a 50% improvement with an alpha level of P=0.05 and with 80% certainty is estimated as 50(S/Delta)(2). N*, S and Delta should be used to characterize and compare markers. Marker efficiency can be refined by regressing on secondary variables, such as age, sex, BMI, severity, etc. Finally, the use of two or more markers may be required to improve marker prediction of clinical outcome. Correlated markers can be used to reinforce conclusions by essentially adding replicative data. Independent, complementary markers can be used to develop associations with clinical parameters, and perhaps diagnose and monitor disease status, activities that so far have not been possible with single markers.

  13. Targeted introgression of cotton fibre quality quantitative trait loci using molecular markers

    International Nuclear Information System (INIS)

    Lacape, J.M.; Trung-Bieu Nguyen; Hau, B.; Giband, M.

    2007-01-01

    Within the framework of a cotton breeding programme, molecular markers are used to improve the efficiency of the introgression of fibre quality traits of Gossypium barbadense into G. hirsutum. A saturated genetic map was developed based on genotyping data obtained from the BC 1 (75 plants) and BC 2 (200 plants) generations. Phenotypic measurements conducted over three generations (BC 1 , BC 2 and BC 2 S 1 ) allowed 80 quantitative trait loci (QTL) to be detected for fibre length, uniformity, strength, elongation, fineness and colour. Positive QTL, i.e. those for which favourable alleles came from the G. barbadense parent, were harboured by 19 QTL-rich regions on 15 'carrier' chromosomes. In subsequent generations (BC 3 and BC 4 ), markers framing the QTL-rich regions were used to select about 10 percent of over 400 plants analysed in each generation. Although BC plants selected through the marker-assisted selection (MAS) process show promising fibre quality, only their full field evaluation will allow validation of the procedure. (author)

  14. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  15. Molecular marker screening of tomato, ( solanum lycopersicum L ...

    African Journals Online (AJOL)

    Tomato is one of the crops in which genetic resistance has specially been effective against root-knot nematodes. In this study, molecular screening was done on some tomato germplasm to detect markers for the gene that confers resistance (Mi) with specific primer (Mi23/F//Mi23/R). The cultivars; VFNT, FLA 505-BL 1172, ...

  16. Relative profile analysis of molecular markers for identification and genetic discrimination of loaches (Pisces, Nemacheilidae).

    Science.gov (United States)

    Patil, Tejas Suresh; Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Bhosale, Amrut Ravindra; Govindwar, Sanjay Prabhu; Muley, Dipak Vishwanathrao

    2016-01-01

    Genus Nemacheilus, Nemachilichthys and Schistura belong to the family Nemacheilidae of the order Cypriniformes. The present investigation was undertaken to observe genetic diversity, phylogenetic relationship and to develop a molecular-based tool for taxonomic identification. For this purpose, four different types of molecular markers were utilized in which 29 random amplified polymorphic DNA (RAPD), 25 inter-simple sequence repeat (ISSR) markers, and 10 amplified fragment length polymorphism (AFLP) marker sets were screened and mitochondrial COI gene was sequenced. This study added COI barcodes for the identification of Nemacheilus anguilla, Nemachilichthys rueppelli and Schistura denisoni. RAPD showed higher polymorphism (100%) than the ISSR (93.75-100%) and AFLP (93.86-98.96%). The polymorphic information content (PIC), heterozygosity, multiplex ratio, and gene diversity was observed highest for AFLP primers, whereas the major allele frequency was observed higher for RAPD (0.5556) and lowest for AFLP (0.1667). The COI region of all individuals was successfully amplified and sequenced, which gave a 100% species resolution. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    Zhao Yongli

    2012-12-01

    Full Text Available Abstract Background Date palm (Phoenix dactylifera L. is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. Results In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs. We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7% were the most common, followed by tetranucleotide (10.4% and dinucleotide motifs (9.6%. The motif AG (85.7% was most abundant in dinucleotides, while motifs AGG (26.8%, AAG (19.3%, and AGC (16.1% were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4% of such ESTs had homology with known proteins. Conclusion Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.

  18. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features.

    Science.gov (United States)

    Zlobec, Inti; Bihl, Michel; Foerster, Anja; Rufle, Alex; Lugli, Alessandro

    2011-11-01

    CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. Immunohistochemical analysis for 48 protein markers and molecular analysis of CIMP (CIMP-H: ≥ 4/5 methylated genes), MSI (MSI-H: ≥ 2 instable genes), KRAS, and BRAF were performed on 337 colorectal cancers. Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. A Secondary Antibody-Detecting Molecular Weight Marker with Mouse and Rabbit IgG Fc Linear Epitopes for Western Blot Analysis.

    Science.gov (United States)

    Lin, Wen-Wei; Chen, I-Ju; Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R; Cheng, Tian-Lu

    2016-01-01

    Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.

  20. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  1. [Development of indel markers for molecular authentication of Panax ginseng and P. quinquefolius].

    Science.gov (United States)

    Wang, Rong-Bo; Tian, Hui-Li; Wang, Hong-Tao; Li, Gui-Sheng

    2018-04-01

    Panax ginseng and P. quinquefolius are two kinds of important medicinal herbs. They are morphologically similar but have different pharmacological effects. Therefore, botanical origin authentication of these two ginsengs is of great importance for ensuring pharmaceutical efficacy and food safety. Based on the fact that intron position in orthologous genes is highly conserved across plant species, intron length polymorphisms were exploited from unigenes of ginseng. Specific primers were respectively designed for these two species based on their insertion/deletion sequences of cytochrome P450 and glyceraldehyde 3-phosphate dehydrogenase, and multiplex PCR was conducted for molecular authentication of P.ginseng and P. quinquefolius. The results showed that the developed multiplex PCR assay was effective for molecular authentication of P.ginseng and P. quinquefolius without strict PCR condition and the optimization of reaction system.This study provides a preferred ideal marker system for molecular authentication of ginseng,and the presented method can be employed in origin authentication of other herbal preparations. Copyright© by the Chinese Pharmaceutical Association.

  2. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    Science.gov (United States)

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  3. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Science.gov (United States)

    Jespersen, David; Belanger, Faith C; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  4. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Directory of Open Access Journals (Sweden)

    David Jespersen

    Full Text Available Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L. x creeping bentgrass (Agrostis stolonifera L. hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease, antioxidant defense (catalase and glutathione-S-transferase, energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, cell expansion (expansin, and stress protection (heat shock proteins HSP26, HSP70, and HSP101. Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  5. Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics.

    Science.gov (United States)

    Chang, Zhaofeng; Tian, Luping; Wu, Min; Dong, Xudong; Peng, Juan; Pan, Bo

    2018-06-01

    Biochar function in soil is based on properties such as sorption characteristics, and these are expected to change throughout the life cycle of the biochar. Because biochar particles cannot easily be separated from soil particles, this change is seldom investigated. Biochar-related molecular markers, such as benzene polycarboxylic acids (BPCAs) are promising tools for studying the properties of biochars in complex environmental matrices. In this study, biochars were derived from corn straw and pine wood sawdust at 200-500 °C, and their aging was simulated with NaClO. Biochar properties were characterized by elemental analysis, BET surface characterization and BPCA molecular marker analysis. Chemical oxidation decreased the surface area (SA) but increased the O content of biochars. The oxidation decreased the amount of biochars, with a mass loss in the range of 10-55%. A similar mass loss was also observed for BPCAs and was negatively related to both the pyrolysis temperature and the extent of the condensed structure (higher aromaticity). The biochar amounts were calculated quantitatively using the sum of BPCA contents, with a conversion factor (the ratio of biochar amount to BPCA content) in the range of 3.3-5.5, and were negatively related to the B5CA content. Three model pollutants, namely, bisphenol A (BPA), sulfamethoxazole (SMX), and phenanthrene (PHE), were chosen to study the sorption characteristics of biochar before and after oxidation. Chemical oxidation generally increased SMX sorption but decreased PHE sorption. The nonlinear factor n, based on Freundlich equation modeling, was negatively related to B6CA for all three chemicals. The BPCA molecular markers, especially B5CA and B6CA, were correlated to the biochar properties before and after oxidation and are thus a potentially useful technique for describing the characteristics of biochar in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Molecular Markers for Prostate Cancer in Formalin-Fixed Paraffin-Embedded Tissues

    Directory of Open Access Journals (Sweden)

    Tamara Sequeiros

    2013-01-01

    Full Text Available Prostate cancer (PCa is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.

  7. [Molecular markers: an important tool in the diagnosis, treatment and epidemiology of invasive aspergillosis].

    Science.gov (United States)

    Frías-de León, María Guadalupe; Acosta-Altamirano, Gustavo; Duarte-Escalante, Esperanza; Martínez-Hernández, José Enrique; Martínez-Rivera, María de Los Ángeles; Reyes-Montes, María Del Rocío

    2014-01-01

    Increase in the incidence of invasive aspergillosis has represented a difficult problem for management of patients with this infection due to its high rate of mortality, limited knowledge concerning its diagnosis, and therapeutic practice. The difficulty in management of patients with aspergillosis initiates with detection of the fungus in the specimens of immunosuppressed patients infected with Aspergillus fumigatus; in addition, difficulty exists in terms of the development of resistance to antifungals as a consequence of their indiscriminate use in prophylactic and therapeutic practice and to ignorance concerning the epidemiological data of aspergillosis. With the aim of resolving these problems, molecular markers is employed at present with specific and accurate results. However, in Mexico, the use of molecular markers has not yet been implemented in the routine of intrahospital laboratories; despite the fact that these molecular markers has been widely referred in the literature, it is necessary for it to validated and standardized to ensure that the results obtained in any laboratory would be reliable and comparable. In the present review, we present an update on the usefulness of molecular markers in accurate identification of A. fumigatus, detection of resistance to antifugal triazoles, and epidemiological studies for establishing the necessary measures for prevention and control of aspergillosis.

  8. Multiple-clone infections of Plasmodium vivax: definition of a panel of markers for molecular epidemiology.

    Science.gov (United States)

    de Souza, Aracele M; de Araújo, Flávia C F; Fontes, Cor J F; Carvalho, Luzia H; de Brito, Cristiana F A; de Sousa, Taís N

    2015-08-25

    Plasmodium vivax infections commonly contain multiple genetically distinct parasite clones. The detection of multiple-clone infections depends on several factors, such as the accuracy of the genotyping method, and the type and number of the molecular markers analysed. Characterizing the multiplicity of infection has broad implications that range from population genetic studies of the parasite to malaria treatment and control. This study compared and evaluated the efficiency of neutral and non-neutral markers that are widely used in studies of molecular epidemiology to detect the multiplicity of P. vivax infection. The performance of six markers was evaluated using 11 mixtures of DNA with well-defined proportions of two different parasite genotypes for each marker. These mixtures were generated by mixing cloned PCR products or patient-derived genomic DNA. In addition, 51 samples of natural infections from the Brazil were genotyped for all markers. The PCR-capillary electrophoresis-based method was used to permit direct comparisons among the markers. The criteria for differentiating minor peaks from artifacts were also evaluated. The analysis of DNA mixtures showed that the tandem repeat MN21 and the polymorphic blocks 2 (msp1B2) and 10 (msp1B10) of merozoite surface protein-1 allowed for the estimation of the expected ratio of both alleles in the majority of preparations. Nevertheless, msp1B2 was not able to detect the majority of multiple-clone infections in field samples; it identified only 6 % of these infections. The merozoite surface protein-3 alpha and microsatellites (PvMS6 and PvMS7) did not accurately estimate the relative clonal proportions in artificial mixtures, but the microsatellites performed well in detecting natural multiple-clone infections. Notably, the use of a less stringent criterion to score rare alleles significantly increased the sensitivity of the detection of multi-clonal infections. Depending on the type of marker used, a considerable

  9. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......Bladder cancer is the fifth most common neoplasm in industrialized countries. Due to frequent recurrences of the superficial form of this disease, bladder cancer ranks as one of the most common cancers. Despite the description of a large number of tumor markers for bladder cancers, none have......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  10. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses.

    Science.gov (United States)

    Calenic, Bogdan; Greabu, Maria; Caruntu, Constantin; Tanase, Cristiana; Battino, Maurizio

    2015-10-01

    Oral keratinocyte stem cells reside in the basal layers of the oral epithelium, representing a minor population of cells with a great potential to self-renew and proliferate over the course of their lifetime. As a result of the potential uses of oral keratinocyte stem cells in regenerative medicine and the key roles they play in tissue homeostasis, inflammatory conditions, wound healing and tumor initiation and progression, intense scientific efforts are currently being undertaken to identify, separate and reprogram these cells. Although currently there is no specific marker that can characterize and isolate oral keratinocyte stem cells, several suggestions have been made. Thus, different stem/progenitor-cell subpopulations have been categorized based on combinations of positive and/or negative membrane-surface markers, which include integrins, clusters of differentiation and cytokeratins. Important advances have also been made in understanding the molecular pathways that govern processes such as self-renewal, differentiation, proliferation, wound healing and programmed cell death. A thorough understanding of stem-cell biology and the molecular players that govern cellular fate is paramount in the quest for using stem-cell-derived therapies in the treatment of various oral pathologies. The current review focuses on recent advances in understanding the molecular signaling pathways coordinating the behavior of these cells and in identifying suitable markers used for their isolation and characterization. Special emphasis will also be placed on the roles played by oral keratinocyte stem and progenitor cells in normal and diseased oral tissues and on their potential uses in the fields of general medicine and dentistry. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

    Science.gov (United States)

    Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S

    2015-10-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology

  12. Prevalence of the molecular marker of chloroquine resistance ( pfcrt ...

    African Journals Online (AJOL)

    In line with the World Health Organization (WHO) guideline on chloroquine (CQ) resistance, CQ was withdrawn as the first-line antimalarial drug in Nigeria in 2005 as a result of ... We monitored the resistance pattern 5 years after withdrawal of CQ, using the pfcrt K76T mutation as a molecular marker for CQ resistance.

  13. Integrating molecular markers into the World Health Organization classification of CNS tumors: a survey of the neuro-oncology community.

    Science.gov (United States)

    Aldape, Kenneth; Nejad, Romina; Louis, David N; Zadeh, Gelareh

    2017-03-01

    Molecular markers provide important biological and clinical information related to the classification of brain tumors, and the integration of relevant molecular parameters into brain tumor classification systems has been a widely discussed topic in neuro-oncology over the past decade. With recent advances in the development of clinically relevant molecular signatures and the 2016 World Health Organization (WHO) update, the views of the neuro-oncology community on such changes would be informative for implementing this process. A survey with 8 questions regarding molecular markers in tumor classification was sent to an email list of Society for Neuro-Oncology members and attendees of prior meetings (n=5065). There were 403 respondents. Analysis was performed using whole group response, based on self-reported subspecialty. The survey results show overall strong support for incorporating molecular knowledge into the classification and clinical management of brain tumors. Across all 7 subspecialty groups, ≥70% of respondents agreed to this integration. Interestingly, some variability is seen among subspecialties, notably with lowest support from neuropathologists, which may reflect their roles in implementing such diagnostic technologies. Based on a survey provided to the neuro-oncology community, we report strong support for the integration of molecular markers into the WHO classification of brain tumors, as well as for using an integrated "layered" diagnostic format. While membership from each specialty showed support, there was variation by specialty in enthusiasm regarding proposed changes. The initial results of this survey influenced the deliberations underlying the 2016 WHO classification of tumors of the central nervous system. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  14. Progress in molecular-based management of differentiated thyroid cancer

    Science.gov (United States)

    Xing, Mingzhao; Haugen, Bryan R; Schlumberger, Martin

    2014-01-01

    Substantial developments have occurred in the past 5–10 years in clinical translational research of thyroid cancer. Diagnostic molecular markers, such as RET-PTC, RAS, and BRAFV600E mutations; galectin 3; and a new gene expression classifier, are outstanding examples that have improved diagnosis of thyroid nodules. BRAF mutation is a prognostic genetic marker that has improved risk stratification and hence tailored management of patients with thyroid cancer, including those with conventionally low risks. Novel molecular-targeted treatments hold great promise for radioiodine-refractory and surgically inoperable thyroid cancers as shown in clinical trials; such treatments are likely to become a component of the standard treatment regimen for patients with thyroid cancer in the near future. These novel molecular-based management strategies for thyroid nodules and thyroid cancer are the most exciting developments in this unprecedented era of molecular thyroid-cancer medicine. PMID:23668556

  15. Genetic molecular analysis of Coffea arabica (Rubiaceae hybrids using SRAP markers

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Mishra

    2011-06-01

    Full Text Available In Coffea arabica (arabica coffee, the phenotypic as well as genetic variability has been found low because of the narrow genetic basis and self fertile nature of the species. Because of high similarity in phenotypic appearance among the majority of arabica collections, selection of parental lines for inter-varietals hybridization and identification of resultant hybrids at an early stage of plant growth is difficult. DNA markers are known to be reliable in identifying closely related cultivars and hybrids. Sequence Related Amplified Polymorphism (SRAP is a new molecular marker technology developed based on PCR. In this paper, sixty arabica-hybrid progenies belonging to six crosses were analyzed using 31 highly polymorphic SRAP markers. The analysis revealed seven types of SRAP marker profiles which are useful in discriminating the parents and hybrids. The number of bands amplified per primer pair ranges from 6.13 to 8.58 with average number of seven bands. Among six hybrid combinations, percentage of bands shared between hybrids and their parents ranged from 66.29% to 85.71% with polymorphic bands varied from 27.64% to 60.0%. Percentage of hybrid specific fragments obtained in various hybrid combinations ranged from 0.71% to 10.86% and ascribed to the consequence of meiotic recombination. Based on the similarity index calculation, it was observed that F1 hybrids share maximum number of bands with the female parent compared to male parent. The results obtained in the present study revealed the effectiveness of SRAP technique in cultivar identification and hybrid analysis in this coffee species. Rev. Biol. Trop. 59 (2: 607-617. Epub 2011 June 01.

  16. Predictive gene signatures: molecular markers distinguishing colon adenomatous polyp and carcinoma.

    Directory of Open Access Journals (Sweden)

    Janice E Drew

    Full Text Available Cancers exhibit abnormal molecular signatures associated with disease initiation and progression. Molecular signatures could improve cancer screening, detection, drug development and selection of appropriate drug therapies for individual patients. Typically only very small amounts of tissue are available from patients for analysis and biopsy samples exhibit broad heterogeneity that cannot be captured using a single marker. This report details application of an in-house custom designed GenomeLab System multiplex gene expression assay, the hCellMarkerPlex, to assess predictive gene signatures of normal, adenomatous polyp and carcinoma colon tissue using archived tissue bank material. The hCellMarkerPlex incorporates twenty-one gene markers: epithelial (EZR, KRT18, NOX1, SLC9A2, proliferation (PCNA, CCND1, MS4A12, differentiation (B4GANLT2, CDX1, CDX2, apoptotic (CASP3, NOX1, NTN1, fibroblast (FSP1, COL1A1, structural (ACTG2, CNN1, DES, gene transcription (HDAC1, stem cell (LGR5, endothelial (VWF and mucin production (MUC2. Gene signatures distinguished normal, adenomatous polyp and carcinoma. Individual gene targets significantly contributing to molecular tissue types, classifier genes, were further characterised using real-time PCR, in-situ hybridisation and immunohistochemistry revealing aberrant epithelial expression of MS4A12, LGR5 CDX2, NOX1 and SLC9A2 prior to development of carcinoma. Identified gene signatures identify aberrant epithelial expression of genes prior to cancer development using in-house custom designed gene expression multiplex assays. This approach may be used to assist in objective classification of disease initiation, staging, progression and therapeutic responses using biopsy material.

  17. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Cortés, Andrés J; Fernández, Andrea C; Soler, Álvaro; Franco-Herrera, Natalia; Makunde, Godwill; Vanderleyden, Jos; Blair, Matthew W

    2012-06-26

    In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. In short, this study illustrates the power of intron-based markers for linkage and association mapping in

  18. De novo DNA sequence driven bulk segregant analysis can pinpoint candicate loci for Total Glycoalkaloid (TGA) content in potato without prior knowledge of molecular markers

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sønderkær, Mads; Petersen, Annabeth Høgh

    is discarded based on the absence of desired molecular marker already at the seed or seedling stage. However, the number of molecular markers known in potato with appropriate linkage to agronomical traits is presently insufficient to establish a comprehensive MAS breeding platform for potato.......Potato breeding is a slow and costly affair, primarily done as a classical "mate and phenotype" approach using relatively small populations. In contrast, Marker Assisted Selection (MAS) allows cost-effective screening of much larger effective populations sizes because most of the offspring...

  19. Molecular markers of carcinogenesis for risk stratification of individuals with colorectal polyps: a case-control study.

    Science.gov (United States)

    Gupta, Samir; Sun, Han; Yi, Sang; Storm, Joy; Xiao, Guanghua; Balasubramanian, Bijal A; Zhang, Song; Ashfaq, Raheela; Rockey, Don C

    2014-10-01

    Risk stratification using number, size, and histology of colorectal adenomas is currently suboptimal for identifying patients at increased risk for future colorectal cancer. We hypothesized that molecular markers of carcinogenesis in adenomas, measured via immunohistochemistry, may help identify high-risk patients. To test this hypothesis, we conducted a retrospective, 1:1 matched case-control study (n = 216; 46% female) in which cases were patients with colorectal cancer and synchronous adenoma and controls were patients with adenoma but no colorectal cancer at baseline or within 5 years of follow-up. In phase I of analyses, we compared expression of molecular markers of carcinogenesis in case and control adenomas, blind to case status. In phase II of analyses, patients were randomly divided into independent training and validation groups to develop a model for predicting case status. We found that seven markers [p53, p21, Cox-2, β-catenin (BCAT), DNA-dependent protein kinase (DNApkcs), survivin, and O6-methylguanine-DNA methyltransferase (MGMT)] were significantly associated with case status on unadjusted analyses, as well as analyses adjusted for age and advanced adenoma status (P marker component). When applied to the validation set, a predictive model using these seven markers showed substantial accuracy for identifying cases [area under the receiver operation characteristic curve (AUC), 0.83; 95% confidence interval (CI), 0.74-0.92]. A parsimonious model using three markers performed similarly to the seven-marker model (AUC, 0.84). In summary, we found that molecular markers of carcinogenesis distinguished adenomas from patients with and without colorectal cancer. Furthermore, we speculate that prospective studies using molecular markers to identify individuals with polyps at risk for future neoplasia are warranted. ©2014 American Association for Cancer Research.

  20. СD44+/CD24- markers of cancer stem cells in patients with breast cancer of different molecular subtypes.

    Science.gov (United States)

    Chekhun, S V; Zadvorny, T V; Tymovska, Yu O; Anikusko, M F; Novak, O E; Polishchuk, L Z

    2015-03-01

    To determine frequency of tumors with immunohistochemical markers of cancer stem cells (CSC) CD44+/CD24- in patients with breast cancer (BC) of different molecular subtype and to evaluate their prognostic value. Surgical material of 132 patients with BC stage I-II, age from 23 to 75 years, mean age - 50.2 ± 3.1 years was studied. Clinical, immunohistochemical (expression CD44+/CD24-), morphological, statistical. BC is characterized by heterogeneity of molecular subtypes and expression of markers (CD44+/CD24-). Immunohistochemical study of expression of CSC markers in surgical material has detected their expression in 34 (25.4%) patients with BC of different molecular subtypes. The highest frequency of cells with expression of CSC marker was observed in patients with basal molecular subtype (44.8% patients). Most of BC patients with phenotype CD44+/CD24 had stage I of tumor process (34.3%). Statistical processing of data has showen that Yule colligation coefficient equaled 0.28 (р > 0.05) that argues poor correlation between stage of tumor process and number of tumors with positive expression of CSC markers. Statistical processing of data has showen high correlation between presence of cells with expression of CSC markers and metastases of BC in regional lymph nodes (Yule colligation coefficient equals 0.943; р molecular subtype depending on expression of CSC CD44+/CD24- markers was detected. Survival of patients with basal BC was reliably higher at lack in tumors of cells with CSC markers CD44+/CD24- and, correspondingly, lower at presence of such cells (р markers was not determined (р > 0.05). Significance of tumor cells with markers CD44+/CD24- within the limits of molecular subtype of BC may be additional criterion for advanced biological characteristic of BC, and in patients with BC of basal molecular subtype - for predictive evaluation of individual potential of tumor to aggressive clinical course.

  1. Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R

    Directory of Open Access Journals (Sweden)

    Paulino Pérez

    2010-09-01

    Full Text Available The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The R-package BLR (Bayesian Linear Regression implements several statistical procedures (e.g., Bayesian Ridge Regression, Bayesian LASSO in a unified framework that allows including marker genotypes and pedigree data jointly. This article describes the classes of models implemented in the BLR package and illustrates their use through examples. Some challenges faced when applying genomic-enabled selection, such as model choice, evaluation of predictive ability through cross-validation, and choice of hyper-parameters, are also addressed.

  2. Molecular markers from three organellar genomes unravel complex taxonomic relationships within the coralline algal genus Chiharaea (Corallinales, Rhodophyta).

    Science.gov (United States)

    Hind, Katharine R; Saunders, Gary W

    2013-05-01

    The use of molecular markers in taxonomic studies has become a standard practice in biology. However, consensus on which markers to use at the species level is lacking because evolutionary lineages show differences in divergence rates between organellar genomes. Ideally, researchers use multiple lines of evidence when first describing a species, such as the incorporation of several molecular markers from varied genomes (mitochondrion, plastid and nucleus). This study examined species boundaries in the red algal genus Chiharaea. We used five molecular markers, with at least one marker from each genome, coupled with thorough morphological analyses. We recognized three species in Chiharaea (C.americana, C. rhododactyla sp. nov., C. silvae) and two forms (C. americana f. americana and C. americana f. bodegensis (H.W. Johansen) stat. nov.). For C. americana f. americana and C. americana f. bodegensis differentiation based on morphological data was reflected in the plastid-encoded large subunit of RuBisCO (rbcL), but was not concordant with either the mitochondrial cytochrome c oxidase subunit 1 (COI-5P) or nuclear internal transcribed spacer (ITS) sequence data. We suggest that this discordance is indicative of ongoing hybridization and introgression between populations of C. americana f. americana and C. americana f. bodegensis. In addition, we used a PCR assay with ITS specific primers to amplify multiple ITS variants for collections assignable to C. americana indicating that there is genetic variability within ITS copies most likely due to introgression, crossing over and/or the retention of ancestral variants. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. CHRONICITY OF DEPRESSION AND MOLECULAR MARKERS IN A LARGE SAMPLE OF HAN CHINESE WOMEN.

    Science.gov (United States)

    Edwards, Alexis C; Aggen, Steven H; Cai, Na; Bigdeli, Tim B; Peterson, Roseann E; Docherty, Anna R; Webb, Bradley T; Bacanu, Silviu-Alin; Flint, Jonathan; Kendler, Kenneth S

    2016-04-25

    Major depressive disorder (MDD) has been associated with changes in mean telomere length and mitochondrial DNA (mtDNA) copy number. This study investigates if clinical features of MDD differentially impact these molecular markers. Data from a large, clinically ascertained sample of Han Chinese women with recurrent MDD were used to examine whether symptom presentation, severity, and comorbidity were related to salivary telomere length and/or mtDNA copy number (maximum N = 5,284 for both molecular and phenotypic data). Structural equation modeling revealed that duration of longest episode was positively associated with mtDNA copy number, while earlier age of onset of most severe episode and a history of dysthymia were associated with shorter telomeres. Other factors, such as symptom presentation, family history of depression, and other comorbid internalizing disorders, were not associated with these molecular markers. Chronicity of depressive symptoms is related to more pronounced telomere shortening and increased mtDNA copy number among individuals with a history of recurrent MDD. As these molecular markers have previously been implicated in physiological aging and morbidity, individuals who experience prolonged depressive symptoms are potentially at greater risk of adverse medical outcomes. © 2016 Wiley Periodicals, Inc.

  4. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers.

    Science.gov (United States)

    Zhang, Yu; Zhang, Xiaojuan; Chen, Xi; Sun, Wang; Li, Jiao

    2018-01-01

    Qinba area has a long history of tea planting and is a northernmost region in China where Camellia sinensis L. is grown. In order to provide basic data for selection and optimization of molecular markers of tea plants. 118 markers, including 40 EST-SSR, 40 SRAP and 38 SCoT markers were used to evaluate the genetic diversity of 50 tea plant ( Camellia sinensis. ) samples collected from Qinb. tea germplasm, assess population structure. In this study, a total of 414 alleles were obtained using 38 pairs of SCoT primers, with an average of 10.89 alleles per primer. The percentage of polymorphic bands (PPB), polymorphism information content (PIC), resolving power (Rp), effective multiplex ratio (EMR), average band informativeness (Ib av ), and marker index (MI) were 96.14%, 0.79, 6.71, 10.47, 0.58, and 6.07 respectively. 338 alleles were amplified via 40 pairs of SRAP (8.45 per primer), with PPB, PIC, Rp, EMR, Ib av, and MI values of 89.35%, 0.77, 5.11, 7.55, 0.61, and 4.61, respectively. Furthermore, 320 alleles have been detected using 40 EST-SSR primers (8.00 per primer), with PPB, PIC, Rp, EMR, Ib av , and MI values of 94.06%, 0.85, 4.48, 7.53, 0.56, and 4.22 respectively. These results indicated that SCoT markers had higher efficiency.Mantel test was used to analyze the genetic distance matrix generated by EST-SSRs, SRAPs and SCoTs. The results showed that the correlation between the genetic distance matrix based on EST-SSR and that based on SRAP was very small ( r  = 0.01), followed by SCoT and SRAP ( r  = 0.17), then by SCoT and EST-SSR ( r  = 0.19).The 50 tea samples were divided into two sub-populations using STRUCTURE, Neighbor-joining (NJ) method and principal component analyses (PCA). The results produced by STRUCTURE were completely consistent with the PCA analysis. Furthermore, there is no obvious relationship between the results produced using sub-populational and geographical data. Among the three types of markers, SCoT markers has many

  5. Genetic Diversity Analysis in 27 Tomato Accessions Using Morphological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Catur Herison

    2018-02-01

    Full Text Available Genetic diversity is the most important aspect in tomato breeding activities. Better assessment on the diversity of the collected accessions will come up with better result of the cultivar development. This study aimed at analyzing the genetic diversity of 27 tomato accessions by morphological and molecular markers. Twenty seven accessions collected from various regions of Indonesia were planted in the field and evaluated for their morphological traits, and RAPD analyzed for their molecular markers. The UPGMA clustering analyzes, elaborating the combination of morphological and molecular data, indicated that the tomato accessions could be grouped into 5 major groups with 70 % genetic similarity levels. Current study indicated that although many accessions came from different locations, they congregated into the same group. Cherry, Kudamati 1 and Lombok 3 were the farthest genetic distant accessions to the others. Those three genotypes will be the most valuable accessions, when they were crossed with other accessions, for designing a prospective breeding program in the future.

  6. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    Science.gov (United States)

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  7. DNA-based genetic markers for Rapid Cycling Brassica rapa (Fast Plants type designed for the teaching laboratory.

    Directory of Open Access Journals (Sweden)

    Eryn E. Slankster

    2012-06-01

    Full Text Available We have developed DNA-based genetic markers for rapid-cycling Brassica rapa (RCBr, also known as Fast Plants. Although markers for Brassica rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP based markers and 14 variable number tandem repeat (VNTR-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a nongenic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  8. Molecular characterization of cultivated species of the genus Pachyrhizus Rich. ex DC. by AFLP markers

    DEFF Research Database (Denmark)

    Santayana, Monica; Rossel, Genoveva; Núñez, Jorge

    2014-01-01

    ) molecular markers in order to estimate genetic diversity and interspecific relationships. To complement molecular marker information, individuals from each accession were analyzed in order to confirmploidy levels. Eight AFLP primer combinations detected 136 (68.7 %) polymorphic bands. Shannon’s diversity...... indices (Hs) for each species were 1.04 (P. ahipa), 1.07 (P. tuberosus), and 2.42 (P. erosus), while the total diversity index was 2.45. Phylogenetic analysis, principal coordinate analysis and analysis of molecular variance (FST=0.796) all showed significant species differentiation. All accessions were...... diploid (2n=2x=22), which is characteristic of the tribe Phaseoleae. Finally, a misclassified accession of P. tuberosus was identified. Molecular characterization of accessions is necessary for efficient management of germplasm collections....

  9. High-density Integrated Linkage Map Based on SSR Markers in Soybean

    Science.gov (United States)

    Hwang, Tae-Young; Sayama, Takashi; Takahashi, Masakazu; Takada, Yoshitake; Nakamoto, Yumi; Funatsuki, Hideyuki; Hisano, Hiroshi; Sasamoto, Shigemi; Sato, Shusei; Tabata, Satoshi; Kono, Izumi; Hoshi, Masako; Hanawa, Masayoshi; Yano, Chizuru; Xia, Zhengjun; Harada, Kyuya; Kitamura, Keisuke; Ishimoto, Masao

    2009-01-01

    A well-saturated molecular linkage map is a prerequisite for modern plant breeding. Several genetic maps have been developed for soybean with various types of molecular markers. Simple sequence repeats (SSRs) are single-locus markers with high allelic variation and are widely applicable to different genotypes. We have now mapped 1810 SSR or sequence-tagged site markers in one or more of three recombinant inbred populations of soybean (the US cultivar ‘Jack’ × the Japanese cultivar ‘Fukuyutaka’, the Chinese cultivar ‘Peking’ × the Japanese cultivar ‘Akita’, and the Japanese cultivar ‘Misuzudaizu’ × the Chinese breeding line ‘Moshidou Gong 503’) and have aligned these markers with the 20 consensus linkage groups (LGs). The total length of the integrated linkage map was 2442.9 cM, and the average number of molecular markers was 90.5 (range of 70–114) for the 20 LGs. We examined allelic diversity for 1238 of the SSR markers among 23 soybean cultivars or lines and a wild accession. The number of alleles per locus ranged from 2 to 7, with an average of 2.8. Our high-density linkage map should facilitate ongoing and future genomic research such as analysis of quantitative trait loci and positional cloning in addition to marker-assisted selection in soybean breeding. PMID:19531560

  10. [Use of ITS and ISSR markers in the molecular characterisation of Pleurotus djamor hybrid strains].

    Science.gov (United States)

    Aguilar Doroteo, Leticia; Zárate Segura, Paola Berenice; Villanueva Arce, Ramón; Yáñez Fernández, Jorge; Garín Aguilar, María Eugenia; Guadarrama Mendoza, Paula Cecilia; Valencia Del Toro, Gustavo

    Molecular characterisation of wild type Pleurotus species is important for germplasm conservation and its further use for genetic improvement. No molecular studies have been performed with monokaryons used for producing hybrid strains, either with the reconstituted strains obtained by pairing those monokaryons. The molecular characterisation of parental dikaryons, hybrid, and reconstituted strains as well as monokaryotic strains, is therefore of utmost importance. To carry out the molecular identification of Pleurotus djamor strains, i.e. dikaryotic wild type strains, hybrid strains, and the monokaryotic strains used for the hybrid formation. Five wild type strains of P. djamor from different states in Mexico were collected and molecularly identified by sequencing the ITS1-5.8-ITS2 region using ITS1 and ITS4 universal oligonucleotides. Four hybrid strains were obtained by pairing neohaplonts of two wild type strains selected. Six ISSR markers were used for the molecular characterisation of monokaryotic and dikaryotic strains. Using the ITS markers, an amplified product of 700bp was obtained in five wild type strains, with a 99-100% similarity with P. djamor. A total of 95 fragments were obtained using the ISSR markers, with 99% of polymorphism. Wild type strains were identified as P. djamor, and were clearly grouped with Mexican strains from other states of Mexico. ISSR markers allowed the generation of polymorphic bands in monokaryotic and dikaryotic strains, splitting both types of strains. The high degree of polymorphism indicates the genetic diversity of P. djamor, an advantage in mushroom production and in the improving of the species. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Variabilidade genética de acessos de maracujá-suspiro com base em marcadores moleculares Genetic variability of wild passion fruit determined by molecular markers

    Directory of Open Access Journals (Sweden)

    Keize Pereira Junqueira

    2007-01-01

    Full Text Available Passiflora nitida é uma espécie silvestre amplamente distribuída pelo território brasileiro, constituindo-se em fonte de resistência a doenças foliares e de raízes. O objetivo deste trabalho foi avaliar a variabilidade genética entre acessos de P. nitida procedentes de diferentes tipos fitofisionômicos de Cerrado e estados brasileiros (Goiás, Distrito Federal, Tocantins, Mato Grosso e Amazonas, usando marcadores moleculares RAPD. O DNA genômico de cada acesso foi extraído, e doze iniciadores decâmeros foram utilizados para a obtenção de marcadores moleculares RAPD, que foram convertidos em matriz de dados binários, a partir da qual foram estimadas as distâncias genéticas entre os acessos e realizadas análises de agrupamento e de dispersão gráfica. Foram obtidos 196 marcadores para P. nitida, dos quais 63,81% foram polimórficos. As distâncias genéticas entre os acessos de maracujá variaram de 0,031 a 0,614 e, considerando apenas P. nitida, de 0,031 a 0,417. Os marcadores moleculares demonstraram alta variabilidade genética dos acessos de P. nitida. Menores distâncias genéticas foram verificadas entre os acessos originados do mesmo estado. Considerando-se os acessos de um mesmo estado, menores distâncias genéticas foram verificadas entre os acessos provenientes de tipos fitofisionômicos próximos. O acesso "Manaus 2" apresentou o maior distanciamento genético em relação aos demais acessos.Passiflora nitida is a wild species widely distributed in Brazilian territory. It is a source of resistance to foliar and soil borne diseases. The objective of this work was to evaluate the genetic variability among accessions of P. nitida proceeding from different types of Cerrado (Brazilian savannah vegetation and brazilian states (Goiás, Distrito Federal, Tocantins, Mato Grosso and Amazonas using RAPD molecular markers. The genomic DNA of each origin was extracted and amplified using 12 decamer primers to obtain RAPD

  12. Characterization of Gladiolus Germplasm Using Morphological, Physiological, and Molecular Markers.

    Science.gov (United States)

    Singh, Niraj; Pal, Ashish K; Roy, R K; Tewari, S K; Tamta, Sushma; Rana, T S

    2018-04-01

    Estimation of variability and genetic relationships among breeding materials is one of the important strategies in crop improvement programs. Morphological (plant height, spike length, a number of florets/spike), physiological (chlorophyll content, chlorophyll fluorescence, and rapid light curve parameters) and Directed amplification of minisatellite DNA (DAMD) markers were used to investigate the relationships among 50 Gladiolus cultivars. Cluster analysis based on morphological data, physiological characteristics, molecular markers, and cumulative data discriminated all cultivars into seven, five, seven, and six clusters in the unweighted pair-group method using arithmetic mean (UPGMA) dendrogram, respectively. The results of the principal coordinate analysis (PCoA) also supported UPGMA clustering. Variations among the Gladiolus cultivars at phenotypic level could be due to the changes in physiology, environmental conditions, and genetic variability. DAMD analysis using 10 primers produced 120 polymorphic bands with 80% polymorphism showing polymorphic information content (PIC = 0.28), Marker index (MI = 3.37), Nei's gene diversity (h = 0.267), and Shannon's information index (I = 0.407). Plant height showed a positive significant correlation with Spike length and Number of florets/spike (r = 0.729, p < 0.001 and r = 0.448, p = 0.001 respectively). Whereas, Spike length showed positive significant correlation with Number of florets/spike (r = 0.688, p < 0.001) and Chlorophyll content showed positive significant correlation with Electron transport rate (r = 0.863, p < 0.001). Based on significant morphological variations, high physiological performance, high genetic variability, and genetic distances between cultivars, we have been able to identify diverse cultivars of Gladiolus that could be the potential source as breeding material for further genetic improvement in this ornamental crop.

  13. Analysis of genetic diversity of certain species of Piper using RAPD-based molecular markers.

    Science.gov (United States)

    Chowdhury, Utpal; Tanti, Bhaben; Rethy, Parakkal; Gajurel, Padma Raj

    2014-09-01

    The utility of RAPD markers in assessing genetic diversity and phenetic relationships of six different species of Piper from Northeast India was investigated. Polymerase chain reaction (PCR) with four arbitrary 10-mer oligonucleotide primers applied to the six species produced a total of 195 marker bands, of which, 159 were polymorphic. On average, six RAPD fragments were amplified per reaction. In the UPGMA phenetic dendrogram based on Jaccard's coefficient, the different accessions of Piper showed a high level of genetic variation. This study may be useful in identifying diverse genetic stocks of Piper, which may then be conserved on a priority basis.

  14. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    Molecular markers that are linked to witchweed resistance can expedite the development of resistant cultivars through adoption of appropriate markerassisted selection (MAS) strategies. The objectives of this investigation were to study the inheritance or low germination stimulant (lgs) production in cultivar SAR 29 and to ...

  15. Molecular markers predicting radiotherapy response: Report and recommendations from an International Atomic Energy Agency technical meeting

    International Nuclear Information System (INIS)

    West, Catharine M.L.; McKay, Michael J.; Hoelscher, Tobias; Baumann, Michael; Stratford, Ian J.; Bristow, Robert G.; Iwakawa, Mayumi; Imai, Takashi; Zingde, Surekha M.; Anscher, Mitchell S.; Bourhis, Jean; Begg, Adrian C.; Haustermans, Karin; Bentzen, Soren M.; Hendry, Jolyon H.

    2005-01-01

    Purpose: There is increasing interest in radiogenomics and the characterization of molecular profiles that predict normal tissue and tumor radioresponse. A meeting in Amsterdam was organized by the International Atomic Energy Agency to discuss this topic on an international basis. Methods and Materials: This report is not completely exhaustive, but highlights some of the ongoing studies and new initiatives being carried out worldwide in the banking of tumor and normal tissue samples underpinning the development of molecular marker profiles for predicting patient response to radiotherapy. It is generally considered that these profiles will more accurately define individual or group radiosensitivities compared with the nondefinitive findings from the previous era of cellular-based techniques. However, so far there are only a few robust reports of molecular markers predicting normal tissue or tumor response. Results: Many centers in different countries have initiated tissue and tumor banks to store samples from clinical trials for future molecular profiling analysis, to identify profiles that predict for radiotherapy response. The European Society for Therapeutic Radiology and Oncology GENEtic pathways for the Prediction of the effects of Irradiation (GENEPI) project, to store, document, and analyze sample characteristics vs. response, is the most comprehensive in this regard. Conclusions: The next 5-10 years are likely to see the results of these and other correlative studies, and promising associations of profiles with response should be validated in larger definitive trials

  16. Promise and pitfalls of molecular markers of thyroid nodules

    OpenAIRE

    Jadhav, S.; Lila, Anurag; Bandgar, Tushar; Shah, Nalini

    2012-01-01

    Thyroid nodules are common in the general population with a prevalence of 5-7% The initial evaluation of thyroid nodules commonly involves thyroid function tests, an ultrasound (USG) and fine needle aspiration biopsy (FNAB). The optimal management of patients with thyroid nodules with indeterminate cytology is plagued by the lack of highly sensitive and specific diagnostic modalities In this article we attempt to review the available literature on the molecular markers which are increasingly ...

  17. Protein Based Molecular Markers Provide Reliable Means to Understand Prokaryotic Phylogeny and Support Darwinian Mode of Evolution

    Directory of Open Access Journals (Sweden)

    Vaibhav eBhandari

    2012-07-01

    Full Text Available The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning whether the Darwinian model of evolution is applicable to the prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs and conserved signature proteins (CSPs for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical

  18. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution.

    Science.gov (United States)

    Bhandari, Vaibhav; Naushad, Hafiz S; Gupta, Radhey S

    2012-01-01

    The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.

  19. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Science.gov (United States)

    Alfonso-Morales, Abdulahi; Rios, Liliam; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I; Pérez, Lester J

    2015-01-01

    Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular

  20. MOLECULAR MARKERS OF BLADDER CANCER: FROM THE PARTICULAR TO THE GENERAL

    Directory of Open Access Journals (Sweden)

    A. A. Zabolotneva

    2014-08-01

    Full Text Available Bladder cancer (BC is the second most common urinary tract malignancy. Early diagnosis of BC generally increases the probability of successful treatment in a patient. The paper considers noninvasive diagnosis methods for BC and gives a database of the known molecular markers of this disease.

  1. Application of molecular markers in apple breeding

    Directory of Open Access Journals (Sweden)

    Marić Slađana

    2010-01-01

    Full Text Available Apple is economically the most important species of genus Malus Miller. In respect of production, trade and consumption, it ranks first among deciduous fruit and third on a global scale among all fruit species. Apple breeding is carried out on a large scale in several scientific institutes throughout the world. Due to this activity, apple is a fruit species with the highest number of described monogenic traits; 76 genes, encoding morphological traits, pest and disease resistance, as well as 69 genes encoding enzymes. The development of molecular markers (RFLPs, AFLPs, SCARs and SSRs has allowed the mapping of the apple genome and the development of several saturated genetic maps, to which genes controlling important traits are assigned. Markers flanking these genes not only play an important role in selecting parental combinations and seedlings with positive traits, but they are also particularly important in detecting recessive traits, such as seedless fruit. In addition they enable pre-selection for polygenic quantitative traits. In recent years, particular attention has been paid to biochemical and physiological processes involved in the pathway of important traits e.g., ripening and the storage capability of apple fruit.

  2. Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors

    International Nuclear Information System (INIS)

    Augustinos, A.A.; Petropoulos, C.; Karasoulou, V.; Bletsos, F.; Papasotiropoulos, V.

    2016-01-01

    Eggplant is a widely cultivated vegetable crop of great economic importance. Its long lasting history of domestication, selection and breeding has led to the development of numerous cultivars with variable traits. In the present study, we assessed the diversity levels within and among eleven Greek and foreign cultivars, using 22 morphological descriptors and two different classes of molecular markers (retrotransposon microsatellite amplified polymorphism-REMAP markers and nuclear microsatellites). Our results, in accordance with other studies in the field showed: a) the limited levels of genetic polymorphism within the cultivars; b) the high morphological and genetic divergence existing among them as indicated by the genetic distance values calculated, which could be attributed to selection, inbreeding and bottleneck effects; and c) the lack of concordance among morphological descriptors and molecular markers. Despite these, our analysis showed that the utilization of combinations of markers is an effective method for the characterization of plant material providing also useful diagnostic tools for the identification and authentication of the selected Greek cultivars.

  3. Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors

    Energy Technology Data Exchange (ETDEWEB)

    Augustinos, A.A.; Petropoulos, C.; Karasoulou, V.; Bletsos, F.; Papasotiropoulos, V.

    2016-07-01

    Eggplant is a widely cultivated vegetable crop of great economic importance. Its long lasting history of domestication, selection and breeding has led to the development of numerous cultivars with variable traits. In the present study, we assessed the diversity levels within and among eleven Greek and foreign cultivars, using 22 morphological descriptors and two different classes of molecular markers (retrotransposon microsatellite amplified polymorphism-REMAP markers and nuclear microsatellites). Our results, in accordance with other studies in the field showed: a) the limited levels of genetic polymorphism within the cultivars; b) the high morphological and genetic divergence existing among them as indicated by the genetic distance values calculated, which could be attributed to selection, inbreeding and bottleneck effects; and c) the lack of concordance among morphological descriptors and molecular markers. Despite these, our analysis showed that the utilization of combinations of markers is an effective method for the characterization of plant material providing also useful diagnostic tools for the identification and authentication of the selected Greek cultivars.

  4. LTR-retrotransposons-based molecular markers in cultivated ...

    African Journals Online (AJOL)

    GRACE

    2006-07-03

    Jul 3, 2006 ... LTR-retrotransposons represent a standard component of the Gossypium Genome (Zaki and Abdel Ghany,. 2003). The analysis of the molecular existence and distribution of ancient and active LTR-retrotransposons, therefore, provides a comprehensive evaluation of the evolutionary history of Gossypium.

  5. Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers

    Directory of Open Access Journals (Sweden)

    Moradkhani Hoda

    2015-12-01

    Full Text Available The aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions of Aegilops and Triticum species with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA revealed that 81% (ISSR and 84% (SSR of variability was partitioned among individuals within populations. Comparing the genetic diversity of Aegilops and Triticum accessions, based on genetic parameters, shows that genetic variation of Ae. crassa and Ae. tauschii species are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification according to ISSR marker data. Principal co-ordinate analysis (PCoA for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA, also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of accessions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.

  6. Molecular genetic markers for thyroid FNAB. Established assays and future perspective.

    Science.gov (United States)

    Musholt, Thomas J; Musholt, P B

    2015-01-01

    Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18-65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Molecular genetic analysis of FNABs is increasingly performed in Germany

  7. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    Science.gov (United States)

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  8. Incorporation of conventional genetic markers and RAPD markers into an RFLP based map in maize

    International Nuclear Information System (INIS)

    Coe, E.H. Jr.; McMullen, M.D.; Polacco, M.; Davis, G.L.; Chao, S.

    1998-01-01

    Integration of classical genetic markers, in particular mutants, onto the maize Restriction Fragment Length Polymorphism (RFLP) map will provide the tools necessary to further our understanding of plant development and of complex traits. Initially integration was accomplished by visual alignment of common markers and sometimes involved the use of information from several different molecular maps to determine the relative placement of a single mutant. The maize core marker set was designed to provide a common set of markers which could be used for integration of map data. We have completed the mapping, of 56 mutants on chromosome one relative to the core marker set. Phenotypes included whole plant, seedling, and kernel effects and represented a variety of biological processes. Since these mutants were previously located to chromosome arm, mapping required the use of only seven markers per mutant to define the correct bin location. Two mistakes in marker order relative to the classical map were identified, as well as, six groups of mutants which require allelism testing. Placement of mutants and cDNAs into bins using, the core markers provides a necessary resource for identification of gene function in maize. (author)

  9. Cerebrospinal fluid tau levels are a marker for molecular subtype in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Karch, André; Hermann, Peter; Ponto, Claudia; Schmitz, Matthias; Arora, Amandeep; Zafar, Saima; Llorens, Franc; Müller-Heine, Annika; Zerr, Inga

    2015-05-01

    The molecular subtype of sporadic Creutzfeldt-Jakob disease (sCJD) is an important prognostic marker for patient survival. However, subtype determination is not possible during lifetime. Because the rate of disease progression is associated with the molecular subtype, this study aimed at investigating if total tau, a marker of neuronal death, allows premortem diagnosis of molecular subtype when codon 129 genotype is known. Two hundred ninety-six sCJD patients were tested for their cerebrospinal fluid total tau level at the time of diagnosis and were investigated for their sCJD subtype postmortem. There was a significant association between tau levels and the prion protein type in patients with codon 129 MM (p disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Greek PDO saffron authentication studies using species specific molecular markers.

    Science.gov (United States)

    Bosmali, I; Ordoudi, S A; Tsimidou, M Z; Madesis, P

    2017-10-01

    Saffron, the spice produced from the red stigmas of the flower of Crocus sativus L. is a frequent target of fraud and mislabeling practices that cannot be fully traced using the ISO 3632 trade standard specifications and test methods. A molecular approach is proposed herein as a promising branding strategy for the authentication of highly esteemed saffron brands such as the Greek Protected Designation of Origin (PDO) "Krokos Kozanis". Specific ISSR (inter-simple sequence repeat) markers were used to assess for the first time, the within species variability of several populations of C. sativus L. from the cultivation area of "Krokos Kozanis" as well as the potential differences with the band pattern produced by other Crocus species. Then, species-specific markers were developed taking advantage of an advanced molecular technique such as the HRM analysis coupled with universal DNA barcoding regions (trnL) (Bar-HRM) and applied to saffron admixtures with some of the most common plant adulterants (Calendula officinalis, Carthamus tinctorius, Gardenia jasminoides, Zea mays and Curcuma longa). The sensitivity of the procedure was tested for turmeric as a case study whereas HPLC-fluorescence determination of secondary metabolites was also employed for comparison. The overall results indicated that the Bar-HRM approach is quite effective in terms of specificity and sensitivity. Its effectiveness regarding the detection of turmeric was comparable to that of a conventional HPLC method (0.5% vs 1.0%, w/w). Yet, the proposed DNA-based method is much faster, cost-effective and can be used even by non-geneticists, in any laboratory having access to an HRM-capable real-time PCR instrumentation. It can be, thus, regarded as a strong analytical tool in saffron authentication studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  12. Improving a Lecture-Size Molecular Model Set by Repurposing Used Whiteboard Markers

    Science.gov (United States)

    Dragojlovic, Veljko

    2015-01-01

    Preparation of an inexpensive model set from whiteboard markers and either HGS molecular model set or atoms made of wood is described. The model set is relatively easy to prepare and is sufficiently large to be suitable as an instructor set for use in lectures.

  13. Identification of molecular markers linked to rice bacterial blight resistance genes from Oryza meyeriana

    Directory of Open Access Journals (Sweden)

    Jing WANG,Chen CHENG,Yanru ZHOU,Yong YANG,Qiong MEI,Junmin LI,Ye CHENG,Chengqi YAN,Jianping CHEN

    2015-09-01

    Full Text Available Y73 is a progeny of asymmetric somatic hybridization between Oryza sativa cv. Dalixiang and the wild rice species Oryza meyeriana. Inoculation with a range of strains of Xanthomonas oryzae pv. oryzae showed that Y73 had inherited a high level of resistance to rice bacterial blight (BB from its wild parent. An F2 population of 7125 individuals was constructed from the cross between Y73 and a BB-susceptible cultivar IR24. After testing 615 SSR and STS markers covering the 12 rice chromosomes, 186 markers were selected that showed polymorphism between Y73 and IR24. Molecular markers linked to the BB resistance genes in Y73 were scanned using the F2 population and the polymorphic markers. The SSR marker RM128 on chromosome 1, the STS marker R03D159 on chromosome 3 and the STS marker R05D104 on chromosome 5 were found to be linked to the rice BB resistance genes in Y73.

  14. Identification of differentiation-stage specific molecular markers for the osteoblastic phenotype

    DEFF Research Database (Denmark)

    Twine, Natalie; Chen, Li; Wilkins, Marc

    to age-matched control (n=4). Using RNA-seq and cluster analysis, we identified a set of stage-specific molecular markers that define the progression of OB phenotype during ex vivo culture of hMSC, predict in vivo bone formation capacity of hMSC and can be employed to study the mechanisms of impaired......The phenotype of osteoblastic (OB) cells in culture is currently defined using a limited number of markers of low sensitivity and specificity which belong mostly to extracellular matrix proteins. Also, for clinical use of human skeletal (mesenchymal) stem cells (hMSC) in bone regeneration......, there is a need to identify predictive markers for in vivo bone forming capacity. Thus, we employed Illumina RNA sequencing (RNASeq) to examine changes in gene expression across 8 time points between 0-12 days of ex vivo OB differentiation of hMSC. We identified a subset of expressed genes as potentially...

  15. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Science.gov (United States)

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  16. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents.

    Science.gov (United States)

    Li, Guangrong; Wang, Hongjin; Lang, Tao; Li, Jianbo; La, Shixiao; Yang, Ennian; Yang, Zujun

    2016-10-01

    New molecular markers were developed for targeting Thinopyrum intermedium 1St#2 chromosome, and novel FISH probe representing the terminal repeats was produced for identification of Thinopyrum chromosomes. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. A wheat-Th. intermedium ssp. trichophorum chromosome 1St#2 substitution and translocation has displayed superior grain protein and wet gluten content. With the aim to develop a number of chromosome 1St#2 specific molecular and cytogenetic markers, a high throughput, low-cost specific-locus amplified fragment sequencing (SLAF-seq) technology was used to compare the sequences between a wheat-Thinopyrum 1St#2 (1D) substitution and the related species Pseudoroegneria spicata (St genome, 2n = 14). A total of 5142 polymorphic fragments were analyzed and 359 different SLAF markers for 1St#2 were predicted. Thirty-seven specific molecular markers were validated by PCR from 50 randomly selected SLAFs. Meanwhile, the distribution of transposable elements (TEs) at the family level between wheat and St genomes was compared using the SLAFs. A new oligo-nucleotide probe named Oligo-pSt122 from high SLAF reads was produced for fluorescence in situ hybridization (FISH), and was observed to hybridize to the terminal region of 1St#L and also onto the terminal heterochromatic region of Th. intermedium genomes. The genome-wide markers and repetitive based probe Oligo-pSt122 will be valuable for identifying Thinopyrum chromosome segments in wheat backgrounds.

  17. Selective extraction and determination of chlorogenic acids as combined quality markers in herbal medicines using molecularly imprinted polymers based on a mimic template.

    Science.gov (United States)

    Ji, Wenhua; Zhang, Mingming; Yan, Huijiao; Zhao, Hengqiang; Mu, Yan; Guo, Lanping; Wang, Xiao

    2017-12-01

    We describe a solid-phase extraction adsorbent based on molecularly imprinted polymers (MIPs), prepared with use of a mimic template. The MIPs were used for the selective extraction and determination of three chlorogenic acids as combined quality markers for Lonicera japonica and Lianhua qingwen granules. The morphologies and surface groups of the MIPs were assessed by scanning electron microscopy, Brunauer-Emmett-Teller surface area analysis, and Fourier transform infrared spectroscopy. The adsorption isotherms, kinetics, and selectivity of the MIPs were systematically compared with those of non-molecularly imprinted polymers. The MIPs showed high selectivity toward three structurally similar chlorogenic acids (chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid). A procedure using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography was established for the determination of three chlorogenic acids from Lonicera japonica and Lianhua qingwen granules. The recoveries of the chlorogenic acids ranged from 93.1% to 101.4%. The limits of detection and limits of quantification for the three chlorogenic acids were 0.003 mg g -1 and 0.01 mg g -1 , respectively. The newly developed method is thus a promising technique for the enrichment and determination of chlorogenic acids from herbal medicines. Graphical Abstract Mimic molecularly imprinted polymers for the selective extraction of chlorogenic acids.

  18. A suite of molecular markers for identifying species, detecting introgression and describing population structure in spadefoot toads (Spea spp.).

    Science.gov (United States)

    Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D

    2012-09-01

    Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.

  19. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Directory of Open Access Journals (Sweden)

    Abdulahi Alfonso-Morales

    Full Text Available Infectious bursal disease (IBD is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV strains worldwide.Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population.This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for

  20. Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; de Sain, Mara; Ter Horst, Anneliek; van der Gragt, Michelle; Rep, Martijn

    2018-01-01

    The polyphyletic nature of many formae speciales of Fusarium oxysporum prevents molecular identification of newly encountered strains based on conserved, vertically inherited genes. Alternative molecular detection methods that could replace labor- and time-intensive disease assays are therefore highly desired. Effectors are functional elements in the pathogen-host interaction and have been found to show very limited sequence diversity between strains of the same forma specialis , which makes them potential markers for host-specific pathogenicity. We therefore compared candidate effector genes extracted from 60 existing and 22 newly generated genome assemblies, specifically targeting strains affecting cucurbit plant species. Based on these candidate effector genes, a total of 18 PCR primer pairs were designed to discriminate between each of the seven Cucurbitaceae-affecting formae speciales When tested on a collection of strains encompassing different clonal lineages of these formae speciales , nonpathogenic strains, and strains of other formae speciales , they allowed clear recognition of the host range of each evaluated strain. Within Fusarium oxysporum f. sp. melonis more genetic variability exists than anticipated, resulting in three F. oxysporum f. sp. melonis marker patterns that partially overlapped with the cucurbit-infecting Fusarium oxysporum f. sp. cucumerinum , Fusarium oxysporum f. sp. niveum , Fusarium oxysporum f. sp. momordicae , and/or Fusarium oxysporum f. sp. lagenariae For F. oxysporum f. sp. niveum , a multiplex TaqMan assay was evaluated and was shown to allow quantitative and specific detection of template DNA quantities as low as 2.5 pg. These results provide ready-to-use marker sequences for the mentioned F. oxysporum pathogens. Additionally, the method can be applied to find markers distinguishing other host-specific forms of F. oxysporum IMPORTANCE Pathogenic strains of Fusarium oxysporum are differentiated into formae speciales based on

  1. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity

    DEFF Research Database (Denmark)

    Mancini, A; Vitucci, D; Labruna, G

    2017-01-01

    PURPOSE: We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. METHODS: Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men...... the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity....... (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. RESULTS: The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher...

  2. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  3. Application of molecular markers in germplasm enhancement of Cassava (Manihot esculenta L. Crantz) and Yams (Dioscorea spp.) at IITA

    International Nuclear Information System (INIS)

    Mignouna, H.D.; Asiedu, R.; Dixon, A.G.O.; Tonukari, J.; Ng, N.Q.; Thottappilly, G.; Knox, M.; Ellis, T.H.N.

    1998-01-01

    The genetic variation among 28 varieties of cassava (Manihot esculenta L. Crantz), collected from different parts of the Republic of Benin was determined using random amplified polymorphic DNA (RAPD) markers. A set of ten primers out of the one hundred that were screened, detected polymorphisms. Thirty-five cassava landraces from three countries of West Africa, along with five improved varieties and one genetic stock (58308), were analysed using both micro satellite markers and nine selected random primers which generated fifty-four polymorphic markers. Based on the unweighted pair group method with arithmetic averages (UPGMA) and Principal Component Analysis (PCA), six major groups of clusters were identified among the forty one genotypes. Clone 58308, the original source of resistance to African Cassava Mosaic Disease (ACMD) in IITA's cassava breeding program, and TMS 30572, an improved cultivar derived from clone 58308, were found in the same cluster group. All 34 of the landraces that are known to be resistant to ACMD were genetically distant from 58308 and TMS 30572. A diallel mating programme has been initiated to elucidate the genetics of these new sources of resistance to ACMD and determine their complementarity as well as allellism for resistance. A set of eight random primers for RAPD and two combinations of enzymes and specific primers for AFLP were used to generate DNA fingerprinting of twenty varietal groups among the 32 described for cultivated yams in the region. The results obtained confirm that a given varietal group is a mixture of different genotypes. The molecular taxonomy of 30 accessions of cultivated yams, D. rotundata and D. cayenensis, and 35 accessions of wild yams from Nigeria was established using RAPD and micro satellite markers. The cultivated yams separated into two distinct groups corresponding to the two species. D. rotundata genotypes showed relationship to the wild species D. abyssinica and D. praehensilis, whereas D. cayenensis

  4. Application of molecular markers in germplasm enhancement of Cassava (Manihot esculenta L. Crantz) and Yams (Dioscorea spp.) at IITA

    Energy Technology Data Exchange (ETDEWEB)

    Mignouna, H D; Asiedu, R; Dixon, A G.O.; Tonukari, J; Ng, N Q; Thottappilly, G [International Institute of Tropical Agriculture, Ibadan (Nigeria); Knox, M; Ellis, T H.N. [John Innes Centre, Norwich (United Kingdom)

    1998-10-01

    The genetic variation among 28 varieties of cassava (Manihot esculenta L. Crantz), collected from different parts of the Republic of Benin was determined using random amplified polymorphic DNA (RAPD) markers. A set of ten primers out of the one hundred that were screened, detected polymorphisms. Thirty-five cassava landraces from three countries of West Africa, along with five improved varieties and one genetic stock (58308), were analysed using both micro satellite markers and nine selected random primers which generated fifty-four polymorphic markers. Based on the unweighted pair group method with arithmetic averages (UPGMA) and Principal Component Analysis (PCA), six major groups of clusters were identified among the forty one genotypes. Clone 58308, the original source of resistance to African Cassava Mosaic Disease (ACMD) in IITA`s cassava breeding program, and TMS 30572, an improved cultivar derived from clone 58308, were found in the same cluster group. All 34 of the landraces that are known to be resistant to ACMD were genetically distant from 58308 and TMS 30572. A diallel mating programme has been initiated to elucidate the genetics of these new sources of resistance to ACMD and determine their complementarity as well as allellism for resistance. A set of eight random primers for RAPD and two combinations of enzymes and specific primers for AFLP were used to generate DNA fingerprinting of twenty varietal groups among the 32 described for cultivated yams in the region. The results obtained confirm that a given varietal group is a mixture of different genotypes. The molecular taxonomy of 30 accessions of cultivated yams, D. rotundata and D. cayenensis, and 35 accessions of wild yams from Nigeria was established using RAPD and micro satellite markers. The cultivated yams separated into two distinct groups corresponding to the two species. D. rotundata genotypes showed relationship to the wild species D. abyssinica and D. praehensilis, whereas D. cayenensis

  5. Use of radioisotopes in agriculture: DNA based molecular markers in crop improvement

    International Nuclear Information System (INIS)

    Sivaramakrishnan, S.; Seetharama, N.; Kannan, Seetha

    2001-01-01

    Agriculture has always benefited from the use of radioisotopes in many ways. In the beginning radioisotopes were mostly used for physiological studies to measure photosynthetic efficiency, nutrient uptake, and for mutation breeding. Radioisotopes have now become a part of the biotechnological tools that are being increasingly used in improving crops and production systems. The tools of biotechnology are being increasingly used to hasten breeding and address problems of biotic and abiotic stresses. Some of the non-radioactive methods have replaced radiotracer techniques and thus led to automation often at high cost. However, still there remain many applications where radioisotopes seem almost indispensable. For some of the applications like comparative genome mapping, the confirmation of transgenics, and establishment of gene copy number, use of RFLP with radioisotopes is essential. The following research areas at ICRISAT use radioisotopes: (1) physiological basis of adaptation to abiotic stresses (ii) development and use of appropriate DNA markers crop improvement; (iii) characterization of cytoplasmic male sterile systems and genetic diversity of breeding materials, land races and the wild relatives and (iv) molecular basis of disease resistance; (v) comparative genome mapping across cereals, (vi) isolation and characterization of genes of potential value to genetic improvement and (vii) verification of genetic transformation events. (author)

  6. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Directory of Open Access Journals (Sweden)

    Jingli Wei

    Full Text Available The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG Release2.3 Predicted CDS (SL2.40 discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2% of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  7. An Educational Software for Simulating the Sample Size of Molecular Marker Experiments

    Science.gov (United States)

    Helms, T. C.; Doetkott, C.

    2007-01-01

    We developed educational software to show graduate students how to plan molecular marker experiments. These computer simulations give the students feedback on the precision of their experiments. The objective of the software was to show students using a hands-on approach how: (1) environmental variation influences the range of the estimates of the…

  8. Biomedical wellness monitoring system based upon molecular markers

    Science.gov (United States)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  9. Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol.

    Science.gov (United States)

    Pissard, Audrey; Arbizu, Carlos; Ghislain, Marc; Faux, Anne-Michèle; Paulet, Sébastien; Bertin, Pierre

    2008-01-01

    Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.

  10. Molecular mapping of the Pinus monticola Cr2 gene using AFLP and SCAR markers

    Directory of Open Access Journals (Sweden)

    A.K.M. Ekramoddoullah

    2013-12-01

    Full Text Available White pine blister rust (WPBR, caused by Cronartium ribicola, is a devastating disease in five-needle pines. Genetic resistance is an important component of integrated strategies to control WPBR. The major resistance gene Cr2, discovered by Kinloch etal.(1999, is also effective against British Columbia (BC isolates of WPBR (Hunt et al. 2004. Pyramiding Cr2 gene with other resistancegenes is being pursued as a strategy in BC white pine breeding. To facilitate this strategy, we have recently identified a few RAPD markerslinked to Cr2 at one side (Liu et al. 2006. The objective of the present study was to identify amplified fragment length polymorphism(AFLP markers linked to both sides of Cr2 for its more precise apping. Use of the AFLP technique combined with bulked segregant analysis (BSA and haploid segregation analysis allowed the identification of five AFLP markers. Of these five AFLP markers in the Cr2 linkage, markers EacccMccgat-365, EactgMcccac- 290, and EacagEacag-750 werelinked in coupling and EacagMcccag-160r and EacccMccgat-180r in repulsion. Following cloning and sequencing of the AFLP andRAPD markers, specific PCR primers were designed and used in the amplification of sequence characterized amplified region(SCAR markers at both sides of Cr2. EacccMccgat- 365 and RAPD marker U570-843 reported previously were converted into SCARmarkers. These two SCARs segregated in a 1:1 (presence:absence ratio and the scoring cosegregated with their respective AFLP orRAPD marker. The SCAR marker EacccMccgat- 365-scar was positioned at 3.1 Kosambi cM from one side of Cr2 and U570-843-scarlocalized at 1.4 Kosambi cM from other side. Both SCAR markers can be useful in breeding programs with marker-assisted selection procedureto screen for resistance. This study represents the first report of the development of PCR-based sequence-specific markers linkedto blister rust resistance in five-needle pines. These findings may

  11. Long-term monitoring of molecular markers can distinguish different seasonal patterns of fecal indicating bacteria sources.

    Science.gov (United States)

    Riedel, Timothy E; Thulsiraj, Vanessa; Zimmer-Faust, Amity G; Dagit, Rosi; Krug, Jenna; Hanley, Kaitlyn T; Adamek, Krista; Ebentier, Darcy L; Torres, Robert; Cobian, Uriel; Peterson, Sophie; Jay, Jennifer A

    2015-03-15

    Elevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach. A decline in creek FIB/markers downstream from upper watershed development and a sharp increase in FIB/markers at the lagoon sites suggest sources are local to the lagoon. At the lagoon and beach, human markers are detected sporadically, dog marker peaks in abundance mid-winter, and gull marker is chronically elevated. Varied seasonal patterns of FIB and source markers were identified showing the importance of applying a suite of markers over long-term spatial and temporal sampling to identify a complex combination of sources of contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Elimination of ghost markers during dual sensor-based infrared tracking of multiple individual reflective markers

    International Nuclear Information System (INIS)

    Stroian, G.; Falco, T.; Seuntjens, J.P.

    2004-01-01

    The accuracy of dose delivery in radiotherapy is affected by the uncertainty in tumor localization. Motion of internal anatomy due to physiological processes such as respiration may lead to significant displacements which compromise tumor coverage and generate irradiation of healthy tissue. Real-time tracking with infrared-based systems is often used for tracking thoracic motion in radiation therapy. We studied the origin of ghost markers ('crosstalk') which may appear during dual sensor-based infrared tracking of independent reflective markers. Ghost markers occur when two or more reflective markers are coplanar with each other and with the sensors of the two camera-based infrared tracking system. Analysis shows that sensors are not points but they have a finite extent and this extent determines for each marker a 'ghost volume'. If one reflective marker enters the ghost volume of another marker, ghost markers will be reported by the tracking system; if the reflective markers belong to a surface their 'ghost volume' is reduced to a 'ghost surface' (ghost zone). Appearance of ghost markers is predicted for markers taped on the torso of an anthropomorphic phantom. This study illustrates the dependence of the shape, extent, and location of the ghost zones on the shape of the anthropomorphic phantom, the angle of view of the tracking system, and the distance between the tracking system and the anthropomorphic phantom. It is concluded that the appearance of ghost markers can be avoided by positioning the markers outside the ghost zones of the other markers. However, if this is not possible and the initial marker configuration is ghost marker-free, ghost markers can be eliminated during real-time tracking by virtue of the fact that they appear in the coordinate data sequence only temporarily

  13. Genetic variability of hull-less barley accessions based on molecular and quantitative data

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses Sayd

    2015-02-01

    Full Text Available The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.

  14. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  15. Genotyping and Molecular Identification of Date Palm Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers.

    Science.gov (United States)

    Ayesh, Basim M

    2017-01-01

    Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.

  16. DOMINO: development of informative molecular markers for phylogenetic and genome-wide population genetic studies in non-model organisms.

    Science.gov (United States)

    Frías-López, Cristina; Sánchez-Herrero, José F; Guirao-Rico, Sara; Mora, Elisa; Arnedo, Miquel A; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-12-15

    The development of molecular markers is one of the most important challenges in phylogenetic and genome wide population genetics studies, especially in studies with non-model organisms. A highly promising approach for obtaining suitable markers is the utilization of genomic partitioning strategies for the simultaneous discovery and genotyping of a large number of markers. Unfortunately, not all markers obtained from these strategies provide enough information for solving multiple evolutionary questions at a reasonable taxonomic resolution. We have developed Development Of Molecular markers In Non-model Organisms (DOMINO), a bioinformatics tool for informative marker development from both next generation sequencing (NGS) data and pre-computed sequence alignments. The application implements popular NGS tools with new utilities in a highly versatile pipeline specifically designed to discover or select personalized markers at different levels of taxonomic resolution. These markers can be directly used to study the taxa surveyed for their design, utilized for further downstream PCR amplification in a broader set taxonomic scope, or exploited as suitable templates to bait design for target DNA enrichment techniques. We conducted an exhaustive evaluation of the performance of DOMINO via computer simulations and illustrate its utility to find informative markers in an empirical dataset. DOMINO is freely available from www.ub.edu/softevol/domino CONTACT: elsanchez@ub.edu or jrozas@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.).

    Science.gov (United States)

    Patzak, Josef; Vrba, Lukás; Matousek, Jaroslav

    2007-01-01

    Molecular markers have been increasingly used in genetic studies of crop species for their applicability in breeding programs. In this work, we report on the development of new sequence-tagged site (STS) markers based on sequence information from several identified hop (Humulus lupulus L.) genes. We demonstrate the usefulness of these STS markers and compare them to SSRs for identifying hop genotypes and estimating genetic diversity in a collection of 68 hop cultivars from around the world. We found 3 individual gene variants (A, B, C) of the chs_H1 gene in this collection. The most frequent gene variant, B (AJ304877), was not detected in Mt. Hood, Glacier, and Horizon (US) cultivars. Gene variant A came from an American germplasm through wild hops. We found length polymorphism in intron 1 of the chs2 gene, and 4 different amplified markers were detected in PCRs. The chs3 gene was found in only one third of the cultivars. None of the variants of the studied CHS genes were found in Humulus japonicus. We detected 5 major gene variants of DNA-binding protein in the collection of H. lupulus cultivars and 2 others in H. japonicus. We also found 3 individual gene variants of an endochitinase gene. The distribution of gene variants did not correlate with any resistance. We proved that developed STS markers can be successfully used for the analysis of genetic diversity and can substitute and supplement SSR markers in hop.

  18. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  19. Prioritizing molecular markers to test for in the initial workup of advanced non-small cell lung cancer: wants versus needs.

    Science.gov (United States)

    West, Howard

    2017-09-01

    The current standard of care for molecular marker testing in patients with advanced non-small cell lung cancer (NSCLC) has been evolving over several years and is a product of the quality of the evidence supporting a targeted therapy for a specific molecular marker, the pre-test probability of that marker in the population, and the magnitude of benefit seen with that treatment. Among the markers that have one or more matched targeted therapies, only a few are in the subset for which they should be considered as most clearly worthy of prioritizing to detect in the first line setting in order to have them supplant other first line alternatives, and in only a subset of patients, as defined currently by NSCLC histology. Specifically, this currently includes testing for an activating epidermal growth factor receptor ( EGFR ) mutation or an anaplastic lymphoma kinase ( ALK ) or ROS1 rearrangement. This article reviews the history and data supporting the prioritization of these markers in patients with non-squamous NSCLC, a histologically selected population in whom the probability of these markers combined with the anticipated efficacy of targeted therapies against them is high enough to favor these treatments in the first line setting. In reviewing the evidence supporting this very limited core subset of most valuable molecular markers to detect in the initial workup of such patients, we can also see the criteria by which other actionable markers need to reach in order to be widely recognized as reliably valuable enough to warrant prioritization to detect in the initial workup of advanced NSCLC as well.

  20. Identify super quality markers from prototype-based pharmacokinetic markers of Tangzhiqing tablet (TZQ) based on in vitro dissolution/ permeation and in vivo absorption correlations.

    Science.gov (United States)

    Li, Ziqiang; Liu, Jia; Li, Yazhuo; Du, Xi; Li, Yanfen; Wang, Ruihua; Lv, Chunxiao; He, Xin; Wang, Baohe; Huang, Yuhong; Zhang, Deqin

    2018-06-01

    A quality marker (Q-marker) is defined as an inherent chemical compound that is used for the quality control of a drug. Its biological activities are closely related to safety and therapeutic effects. Generally, a multiple-component herbal medicine may have many Q-markers. We therefore proposed a concept of "super Q-marker" satisfying both the criterion of Q-markers and PK-markers to be used in more effective quality control of herbal medicine. The first aim was to find suitable prototype-based PK-markers from Tangzhiqing tablets (TZQ), a Chinese patent medicine. Then super Q-markers were expected to be identified from the prototype-based PK-markers based on an in vitro-in vivo correlation study. Potentially eligible prototype-based PK-markers were identified in a single- and multiple-dose pharmacokinetic study on TZQ in 30 healthy volunteers. The in vitro dissolution and permeation profiles of the prototype-based PK-markers of TZQ were evaluated by the physiologically-based drug dissolution/absorption simulating system (DDASS). An in vitro-in vivo correlation analysis was conducted between the dissolution/permeation behaviors in DDASS and the actual absorption profiles in human to test the transferability and traceability of the promising super Q-markers for TZQ. In human, plasma paeoniflorin and nuciferine as prototype-based PK-markers exhibited the appropriate pharmacokinetic properties, including dose-dependent systemic exposure (AUC, C max ) and a proper elimination half-life (1∼3h). In DDASS, it was predicted that paeoniflorin and nuciferine are highly permeable but the absorption rates are primarily limited by the dissolution rates. Moreover, the established in vitro-in vivo correlations of paeoniflorin and nuciferine were in support of the super Q-markers features. Paeoniflorin and nuciferine are identified as the super Q-markers from the prototype-based PK-markers of TZQ based on findings from a combination of in vitro, in vivo, and in vitro-in vivo

  1. Molecular Markers Useful for Intraspecies Subtyping and Strain Differentiation of Dermatophytes.

    Science.gov (United States)

    Mochizuki, Takashi; Takeda, Kiminobu; Anzawa, Kazushi

    2017-02-01

    Dermatophytosis is a very common skin disorder and the most frequent infection encountered by practicing dermatologists. The identification, pathogenicity, biology, and epidemiology of dermatophytes, the causative agents of dermatophytosis, are of interest for both dermatologists and medical mycologists. Recent advances in molecular methods have provided new techniques for identifying dermatophytes, including intraspecies variations. Intraspecies subtyping and strain differentiation have made possible the tracking of infections, the identification of common sources of infections, recurrence or reinfection after treatment, and analysis of strain virulence and drug resistance. This review describes molecular methods of intraspecies subtyping and strain differentiation, including analyses of mitochondrial DNA and non-transcribed spacer regions of ribosomal RNA genes, random amplification of polymorphic DNA, and microsatellite markers, along with their advantages and limitations.

  2. Molecular markers derived from bombesin for tumor diagnosis by SPECT and PET

    International Nuclear Information System (INIS)

    Pujatti, Priscilla Brunelli

    2012-01-01

    A high number of molecules have already been identified to have high affinity to some receptors overexpressed on tumour cells and the radiolabelling of those molecules offers the possibility of new compounds for tumour diagnosis and therapy by nuclear medicine. Among of those molecules, bombesin (BBN) has become focus of interest, as its BB 2 receptors are known to be overexpressed in prostate, breast, colon, pancreatic and lung tumour, as long as glioblastomas and neuroblastomas. BBN agonists and antagonists have already been described for this purpose and promising results were obtained in preclinical studies. However, most of them exhibited high abdominal accumulation, especially in pancreas and intestines, which can compromise diagnosis accuracy and cause serious adverse effects in therapy. In this context, the goal of the present work to radiolabel new BBN derivatives with 11 1In and 68 Ga and to evaluate their potential for BB 2 positive tumors diagnosis by single photon emission tomography (SPECT) and positron emission tomography (PET). The structure of studied peptides was Q-YG n -BBN(6-14), where Q is the chelator, n is the number of glycine aminoacids in the spacer YG n and BBN(6-14) is the original bombesin sequence from the aminoacid 6 to 14. The derivative in which the last aminoacid (methionine, Met) was replaced by norleucine (Nle) was also evaluated. The experimental evaluation of the bombesin derivatives was divided into four steps: computational studies, molecular markers for SPECT, molecular markers for PET and toxicological studies. The theoretical partition (log P) and distribution (log D) coefficients were calculated for all bombesin derivatives conjugated to DTPA (diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators applying computational programmes. Bombesin derivatives for SPECT were developed by radiolabelling DTPA-conjugated bombesin derivatives with 111 In to determine the best

  3. Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination.

    Science.gov (United States)

    De Backer, M; Bonants, P; Pedley, K F; Maes, M; Roldan-Ruiz, I; Van Bockstaele, E; Heungens, K; van der Lee, T

    2013-11-01

    The obligate biotrophic pathogen Puccinia horiana is the causal agent of chrysanthemum white rust. Although P. horiana is a quarantine organism, it has been able to spread to most chrysanthemum-producing regions in the world since the 1960s; however, the transfer routes are largely obscure. An extremely low level of allelic diversity was observed in a geographically diverse set of eight isolates using complexity reduction of polymorphic sequences (CRoPS) technology. Only 184 of the 16,196 contigs (1.1%) showed one or more single-nucleotide polymorphisms (SNPs). Thirty-two SNPs and one simple-sequence repeat were translated into molecular markers and used to genotype 45 isolates originating from North and South America, Asia, and Europe. In most cases, phylogenetic clustering was related to geographic origin, indicating local establishment. The European isolates mostly grouped in two major populations that may relate to the two historic introductions previously reported. However, evidence of recent geographic transfer was also observed, including transfer events between Europe and South America and between Southeast Asia and Europe. In contrast with the presumed clonal propagation of this microcyclic rust, strong indications of marker recombination were observed, presumably as a result of anastomosis, karyogamy, and somatic meiosis. Recombination and transfer also explain the geographic dispersal of specific markers. A near-to-significant correlation between the genotypic data and previously obtained pathotype data was observed and one marker was associated with the most virulent pathotype group. In combination with a fast SNP detection method, the markers presented here will be helpful tools to further elucidate the transfer pathways and local survival of this pathogen.

  4. Efficiency of Floristic and Molecular Markers to Determine Diversity in Iranian Populations of T. boeoticum

    OpenAIRE

    M. R. Naghavi; M. Maleki; S. F. Tabatabaei

    2009-01-01

    In order to study floristic and molecular classification of common wild wheat (Triticum boeoticum Boiss.), an analysis was conducted on populations of the Triticum boeoticum collected from different regions of Iran. Considering all floristic compositions of habitats, six floristic groups (syntaxa) within the populations were identified. A high level of variation of T. boeoticum also detected using SSR markers. Our results showed that molecular method confirmed the groupin...

  5. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Science.gov (United States)

    Diaz-Cano, Salvador J.

    2012-01-01

    Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning. PMID:22408433

  6. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women.

    Science.gov (United States)

    Samadder, N Jewel; Vierkant, Robert A; Tillmans, Lori S; Wang, Alice H; Weisenberger, Daniel J; Laird, Peter W; Lynch, Charles F; Anderson, Kristin E; French, Amy J; Haile, Robert W; Potter, John D; Slager, Susan L; Smyrk, Thomas C; Thibodeau, Stephen N; Cerhan, James R; Limburg, Paul J

    2013-08-01

    Colorectal tumors have a large degree of molecular heterogeneity. Three integrated pathways of carcinogenesis (ie, traditional, alternate, and serrated) have been proposed, based on specific combinations of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and mutations in BRAF and KRAS. We used resources from the population-based Iowa Women's Health Study (n = 41,836) to associate markers of colorectal tumors, integrated pathways, and clinical and pathology characteristics, including survival times. We assessed archived specimens from 732 incident colorectal tumors and characterized them as microsatellite stable (MSS), MSI high or MSI low, CIMP high or CIMP low, CIMP negative, and positive or negative for BRAF and/or KRAS mutations. Informative marker data were collected from 563 tumors (77%), which were assigned to the following integrated pathways: traditional (MSS, CIMP negative, BRAF mutation negative, and KRAS mutation negative; n = 170), alternate (MSS, CIMP low, BRAF mutation negative, and KRAS mutation positive; n = 58), serrated (any MSI, CIMP high, BRAF mutation positive, and KRAS mutation negative; n = 142), or unassigned (n = 193). Multivariable-adjusted Cox proportional hazards regression models were used to assess the associations of interest. Patients' mean age (P = .03) and tumors' anatomic subsite (P = .0001) and grade (P = .0001) were significantly associated with integrated pathway assignment. Colorectal cancer (CRC) mortality was not associated with the traditional, alternate, or serrated pathways, but was associated with a subset of pathway-unassigned tumors (MSS or MSI low, CIMP negative, BRAF mutation negative, and KRAS mutation positive) (n = 96 cases; relative risk = 1.76; 95% confidence interval, 1.07-2.89, compared with the traditional pathway). We identified clinical and pathology features associated with molecularly defined CRC subtypes. However, additional studies are needed to determine how these features

  7. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  8. Transport of sewage molecular markers through saturated soil column and effect of easily biodegradable primary substrate on their removal.

    Science.gov (United States)

    Foolad, Mahsa; Ong, Say Leong; Hu, Jiangyong

    2015-11-01

    Pharmaceutical and personal care products (PPCPs) and artificial sweeteners (ASs) are emerging organic contaminants (EOCs) in the aquatic environment. The presence of PPCPs and ASs in water bodies has an ecologic potential risk and health concern. Therefore, it is needed to detect the pollution sources by understanding the transport behavior of sewage molecular markers in a subsurface area. The aim of this study was to evaluate transport of nine selected molecular markers through saturated soil column experiments. The selected sewage molecular markers in this study were six PPCPs including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), crotamiton (CTMT), diethyltoluamide (DEET), salicylic acid (SA) and three ASs including acesulfame (ACF), cyclamate (CYC), and saccharine (SAC). Results confirmed that ACF, CBZ, CTMT, CYC and SAC were suitable to be used as sewage molecular markers since they were almost stable against sorption and biodegradation process during soil column experiments. In contrast, transport of ACT, CF and DEET were limited by both sorption and biodegradation processes and 100% removal efficiency was achieved in the biotic column. Moreover, in this study the effect of different acetate concentration (0-100mg/L) as an easily biodegradable primary substrate on a removal of PPCPs and ASs was also studied. Results showed a negative correlation (r(2)>0.75) between the removal of some selected sewage chemical markers including ACF, CF, ACT, CYC, SAC and acetate concentration. CTMT also decreased with the addition of acetate, but increasing acetate concentration did not affect on its removal. CBZ and DEET removal were not dependent on the presence of acetate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Marcadores moleculares na predição do sexo em plantas de mamoeiro Molecular markers for sex identification in papaya

    Directory of Open Access Journals (Sweden)

    Eder Jorge de Oliveira

    2007-12-01

    Full Text Available O objetivo deste trabalho foi validar marcadores moleculares, previamente identificados como ligados ao sexo do mamoeiro, para utilização na seleção indireta em genótipos comerciais. Foram analisadas duas variedades do grupo Solo e dois híbridos do grupo Formosa, com utilização de 20 plantas por genótipo, quatro marcadores do tipo SCAR (Sequence Characterized Amplified Region e um RAPD (Random Amplified Polymorphic DNA. O RAPD BC210 permitiu a identificação de todas as plantas femininas e hermafroditas, o que revela grande potencial para ser usado na seleção assistida em alguns dos genótipos mais cultivados no Brasil. Os marcadores do tipo SCAR não permitiram a identificação correta do sexo dos genótipos, pois detectou-se a presença de falso-positivos e falso-negativos nas análises.The objective of this work was the validation of previous discovered sex related molecular markers of papaya, aiming at the indirect selection of Brazilian commercial genotypes. Two varieties of the Solo group and two hybrids of the Formosa group (20 plants for genotype, four SCAR (Sequence Characterized Amplified Region and one RAPD (Random Amplified Polymorphic DNA markers were used. All hermaphrodite and female plants were correctly predicted by RAPD BC210, showing its high potential for marker assisted selection in important commercial genotypes used in Brazil. The SCAR markers did not show the true sex identification of these genotypes, revealing the presence of false positives and negatives in the analyses.

  10. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Shugart, L.R.; D'Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-01-01

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO 6 -ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O 6 -ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  11. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  12. A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers

    Directory of Open Access Journals (Sweden)

    Palhares Alessandra C

    2012-06-01

    Full Text Available Abstract Background The development of sugarcane as a sustainable crop has unlimited applications. The crop is one of the most economically viable for renewable energy production, and CO2 balance. Linkage maps are valuable tools for understanding genetic and genomic organization, particularly in sugarcane due to its complex polyploid genome of multispecific origins. The overall objective of our study was to construct a novel sugarcane linkage map, compiling AFLP and EST-SSR markers, and to generate data on the distribution of markers anchored to sequences of scIvana_1, a complete sugarcane transposable element, and member of the Copia superfamily. Results The mapping population parents (‘IAC66-6’ and ‘TUC71-7’ contributed equally to polymorphisms, independent of marker type, and generated markers that were distributed into nearly the same number of co-segregation groups (or CGs. Bi-parentally inherited alleles provided the integration of 19 CGs. The marker number per CG ranged from two to 39. The total map length was 4,843.19 cM, with a marker density of 8.87 cM. Markers were assembled into 92 CGs that ranged in length from 1.14 to 404.72 cM, with an estimated average length of 52.64 cM. The greatest distance between two adjacent markers was 48.25 cM. The scIvana_1-based markers (56 were positioned on 21 CGs, but were not regularly distributed. Interestingly, the distance between adjacent scIvana_1-based markers was less than 5 cM, and was observed on five CGs, suggesting a clustered organization. Conclusions Results indicated the use of a NBS-profiling technique was efficient to develop retrotransposon-based markers in sugarcane. The simultaneous maximum-likelihood estimates of linkage and linkage phase based strategies confirmed the suitability of its approach to estimate linkage, and construct the linkage map. Interestingly, using our genetic data it was possible to calculate the number of retrotransposon scIvana_1 (~60

  13. Development of RAPD-SCAR markers for different Ganoderma species authentication by improved RAPD amplification and molecular cloning.

    Science.gov (United States)

    Fu, J J; Mei, Z Q; Tania, M; Yang, L Q; Cheng, J L; Khan, M A

    2015-05-25

    The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.

  14. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers

    Science.gov (United States)

    Singh, Dharmendra; Singh, Chandan Kumar; Tomar, Ram Sewak Singh; Taunk, Jyoti; Singh, Ranjeet; Maurya, Sadhana; Chaturvedi, Ashish Kumar; Pal, Madan; Singh, Rajendra; Dubey, Sarawan Kumar

    2016-01-01

    The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil. PMID:26808306

  15. Determinants of molecular marker based classification of rice (Oryza ...

    African Journals Online (AJOL)

    mr devi singh

    2015-01-07

    Jan 7, 2015 ... 1Molecular Biology Laboratory, Department of Genetics and Plant Breeding, SVP University of Agriculture and ... Basmati and non-Basmati rice adapted to different agro- ecological ..... acid soils in southern New South Wales?

  16. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    Science.gov (United States)

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  17. Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches.

    Science.gov (United States)

    Gholave, Avinash R; Pawar, Kiran D; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2017-01-01

    Plastid DNA markers sequencing and DNA fingerprinting approaches were used and compared for resolving molecular phylogeny of closely related, previously unexplored Amorphophallus species of India. The utility of individual plastid markers namely rbcL , matK , trnH - psbA , trnLC - trnLD , their combined dataset and two fingerprinting techniques viz. RAPD and ISSR were tested for their efficacy to resolves Amorphophallus species into three sections specific clades namely Rhaphiophallus , Conophallus and Amorphophallus . In the present study, sequences of these four plastid DNA regions as well as RAPD and ISSR profiles of 16 Amorphophallus species together with six varieties of two species were generated and analyzed. Maximum likelihood and Bayesian Inference based construction of phylogenetic trees indicated that among the four plastid DNA regions tested individually and their combined dataset, rbcL was found best suited for resolving closely related Amorphophallus species into section specific clades. When analyzed individually, rbcL exhibited better discrimination ability than matK , trnH - psbA , trnLC - trnLD and combination of all four tested plastid markers. Among two fingerprinting techniques used, the resolution of Amorphophallus species using RAPD was better than ISSR and combination of RAPD +ISSR and in congruence with resolution based on rbcL .

  18. Molecular and protein markers for clinical decision making in breast cancer: today and tomorrow.

    Science.gov (United States)

    Harbeck, Nadia; Sotlar, Karl; Wuerstlein, Rachel; Doisneau-Sixou, Sophie

    2014-04-01

    In early breast cancer (eBC), established clinicopathological factors are not sufficient for clinical decision making particularly regarding adjuvant chemotherapy since substantial over- or undertreatment may occur. Thus, novel protein- and molecular markers have been put forward as decision aids. Since these potential prognosis and/or predictive tests differ substantially regarding their methodology, analytical and clinical validation, this review attempts to summarize the essential facts for clinicians. This review focuses on those markers which are the most advanced so far in their development towards routine clinical application, i.e. two protein markers (i.e. uPA/PAI-1 and IHC4) and six molecular multigene tests (i.e. Mammaprint®, Oncotype DX®, PAM50, Endopredict®, the 97-gene genomic grade, and 76 gene Rotterdam signatures). Next to methodological aspects, we summarized the clinical evidences, in particular the main prospective clinical trials which have already been fully recruited (i.e. MINDACT, TAILORx, WSG PLAN B) or are still ongoing (i.e. RxPONDER/SWOG S1007, WSG-ADAPT). Last but not least, this review points out the key elements for clinicians to select one test among the wide panel of proposed assays, for a specific population of patients in term of level of evidence, analytical and clinical validity as well as cost effectiveness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2012-02-01

    Full Text Available Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma, mechanisms of intercellular transference of genetic information (exosomes, and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.

  20. What are the currently available and in development molecular markers for bladder cancer? Will they prove to be useful in the future?

    Science.gov (United States)

    Abdulmajed, Mohamed Ismat; Sancak, Eyüp Burak; Reşorlu, Berkan; Al-Chalaby, Gydhia Zuhair

    2014-12-01

    Urothelial carcinoma is the 9(th) most common cancer worldwide. Most urothelial tumors are non-muscle invasive on presentation. However, two-thirds of non-invasive bladder cancers will eventually recur with a 25% risk of progression to muscle-invasive bladder cancer. Tumor stage, histological grade and pathological invasion of blood vessels and lymphatic tissue are the main indicators for urothelial cancer prognosis. The gold standard for diagnosing bladder cancer is conventional white-light cystoscopy and biopsy. Urine cytology is a highly specific, sensitive test for high-grade tumors or carcinoma in situ (CIS). Urinary NMP22 has an overall sensitivity and specificity for detecting bladder cancer of 49% and 87%, respectively. However, there are false-positive results in the presence of urinary tract infection or hematuria. The detection of specific gene mutations related to urothelial cancers has been studied and employed to reproduce markers helpful for diagnosis. According to current studies, molecular markers can be used to predict tumor recurrence. From a prognostic point of view, new molecular markers have yet to be established as reliable indicators of tumor aggressiveness. We aimed to review the molecular markers with possible prognostic significance that have been discussed in the literature. This review examined the literature for various molecular markers under development for bladder cancer in an attempt to optimize patient care and reduce the costs of treating these patients.

  1. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers

    Directory of Open Access Journals (Sweden)

    Rafael Gustavo Ferreira Morales

    2011-12-01

    Full Text Available Most strawberry (Fragaria × ananassa Duchesne cultivars used in Brazil are developed in other countries, it became clear the need to start the strawberry breeding program in the country. To start a breeding program is necessary the genetic characterization of the germplasm available. Molecular markers are important tools that can be used for this purpose. The objectives of the present study were to assess the genetic similarity among 11 strawberry cultivars using RAPD and ISSR molecular markers and to indicate the possible promising crosses. The DNA of the eleven strawberry cultivars was extracted and amplified by PCR with RAPD and ISSR primers. The DNA fragments were separated in agarose gel for the RAPD markers and in polyacrylamide gel for the ISSR markers. The genetic similarity matrix was estimated by the Jaccard coefficient. Based on this matrix, the cultivars were grouped using the UPGMA method. The dendogram generated by the RAPD markers distributed the cultivars in three groups while the ISSR markers generated two groups. There was no direct relationship between the marker groups when the two types of markers were compared. The grouping proposed by the ISSR markers was more coherent with the origin and the genealogy of the cultivars than that proposed by the RAPD markers, and it can be considered the most efficient method for the study of genetic divergence in strawberry. The most promising crosses, based on the genetic divergence estimated from the RAPD and ISSR molecular data were between the Tudla and Ventana and the Oso Grande and Ventana cultivars, respectively.

  2. Evaluation of white spot syndrome virus variable DNA loci as molecular markers of virus spread at intermediate spatiotemporal scales

    NARCIS (Netherlands)

    Bui Thi Minh Dieu,; Marks, H.; Zwart, M.P.; Vlak, J.M.

    2010-01-01

    Variable genomic loci have been employed in a number of molecular epidemiology studies of white spot syndrome virus (WSSV), but it is unknown which loci are suitable molecular markers for determining WSSV spread on different spatiotemporal scales. Although previous work suggests that multiple

  3. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication. Refs, figs, tabs.

  4. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication

  5. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  6. Oligodendroglioma: pathology, molecular mechanisms and markers

    NARCIS (Netherlands)

    Wesseling, P.; Bent, M. van den; Perry, A.

    2015-01-01

    For nearly a century, the diagnosis and grading of oligodendrogliomas and oligoastrocytomas has been based on histopathology alone. Roughly 20 years ago, the first glioma-associated molecular signature was found with complete chromosome 1p and 19q codeletion being particularly common in

  7. Development and characterization of polymorphic EST based SSR markers in barley (Hordeum vulgare).

    Science.gov (United States)

    Jo, Won-Sam; Kim, Hye-Yeong; Kim, Kyung-Min

    2017-08-01

    In barley, breeding using good genetic characteristics can improve the quality or quantity of crop characters from one generation to the next generation. The development of effective molecular markers in barley is crucial for understanding and analyzing the diversity of useful alleles. In this study, we conducted genetic relationship analysis using expressed sequence tag-simple sequence repeat (EST-SSR) markers for barley identification and assessment of barley cultivar similarity. Seeds from 82 cultivars, including 31 each of naked and hulled barley from the Korea Seed and Variety Service and 20 of malting barley from the RDA-Genebank Information Center, were analyzed in this study. A cDNA library of the cultivar Gwanbori was constructed for use in analysis of genetic relationships, and 58 EST-SSR markers were developed and characterized. In total, 47 SSR markers were employed to analyze polymorphisms. A relationship dendrogram based on the polymorphism data was constructed to compare genetic diversity. We found that the polymorphism information content among the examined cultivars was 0.519, which indicates that there is low genetic diversity among Korean barley cultivars. The results obtained in this study may be useful in preventing redundant investment in new cultivars and in resolving disputes over seed patents. Our approach can be used by companies and government groups to develop different cultivars with distinguishable markers. In addition, the developed markers can be used for quantitative trait locus analysis to improve both the quantity and the quality of cultivated barley.

  8. Indel Group in Genomes (IGG) Molecular Genetic Markers1[OPEN

    Science.gov (United States)

    Burkart-Waco, Diana; Kuppu, Sundaram; Britt, Anne; Chetelat, Roger

    2016-01-01

    Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included. PMID:27436831

  9. Combined-modality treatment and organ preservation in bladder cancer. Do molecular markers predict outcome?

    International Nuclear Information System (INIS)

    Weiss, C.; Roedel, F.; Wolf, I.; Sauer, R.; Roedel, C.; Papadopoulos, T.; Engehausen, D.G.; Schrott, K.M.

    2005-01-01

    Purpose: in invasive bladder cancer, several groups have reported the value of organ preservation by a combined-treatment approach, including transurethral resection (TUR-BT) and radiochemotherapy (RCT). As more experience is acquired with this organ-sparing treatment, patient selection needs to be optimized. Clinical factors are limited in their potential to identify patients most likely to respond to RCT, thus, additional molecular markers for predicting treatment response of individual lesions are sorely needed. Patients and methods: the apoptotic index (AI) and Ki-67 index were evaluated by immunohistochemistry on pretreatment biopsies of 134 patients treated for bladder cancer by TUR-BT and RCT. Expression of each marker as well as clinicopathologic factors were then correlated with initial response, local control and cancer-specific survival with preserved bladder in univariate and multivariate analysis. Results: the median AI for all patients was 1.5% (range 0.2-7.4%). The percentage of Ki-67-positive cells in the tumors ranged from 0.2% to 85% with a median of 14.2%. A significant correlation was found for AI and tumor differentiation (G1/2: AI = 1.3% vs. G3/4: AI = 1.6%; p = 0.01). A complete response at restaging TUR-BT was achieved in 76% of patients. Factors predictive of complete response included T-category (p < 0.0001), resection status (p = 0.02), lymphovascular invasion (p = 0.01), and Ki-67 index (p = 0.02). For local control, AI (p = 0.04) and Ki-67 index (p = 0.05) as well as T-category (p = 0.005), R-status (p = 0.05), and lymphatic vessel invasion (p = 0.05) reached statistical significance. Out of the molecular markers only high Ki-67 levels were associated to cause-specific survival with preserved bladder. On multivariate analysis, T-category was the strongest independent factor for initial response, local control and cancer-specific survival with preserved bladder. Conclusion: The indices of pretreatment apoptosis and Ki-67 predict a

  10. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology1

    Science.gov (United States)

    Robarts, Daniel W. H.; Wolfe, Andrea D.

    2014-01-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance. PMID:25202637

  11. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology(1.).

    Science.gov (United States)

    Robarts, Daniel W H; Wolfe, Andrea D

    2014-07-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance.

  12. Development of Insertion and Deletion Markers for Bottle Gourd Based on Restriction Site-associated DNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Xinyi WU

    2017-01-01

    Full Text Available Bottle gourd is an important cucurbit crop worldwide. To provide more available molecular markers for this crop, a bioinformatic approach was employed to develop insertion–deletions (InDels markers in bottle gourd based on restriction site-associated DNA sequencing (RAD-Seq data. A total of 892 Indels were predicted, with the length varying from 1 bp to 167 bp. Single-nucleotide InDels were the predominant types of InDels. To validate these InDels, PCR primers were designed from 162 loci where InDels longer than 2 bp were predicated. A total of 112 InDels were found to be polymorphic among 9 bottle gourd accessions under investigation. The rate of prediction accuracy was thus at a high level of 72.7%. DNA fingerprinting for 4 cultivars were performed using 8 selected Indels markers, demonstrating the usefulness of these markers.

  13. Molecular markers of resistance to amodiaquine plus sulfadoxine-pyrimethamine in an area with seasonal malaria chemoprevention in south central Niger.

    Science.gov (United States)

    Grais, Rebecca F; Laminou, Ibrahim M; Woi-Messe, Lynda; Makarimi, Rockyath; Bouriema, Seidou H; Langendorf, Celine; Amambua-Ngwa, Alfred; D'Alessandro, Umberto; Guérin, Philippe J; Fandeur, Thierry; Sibley, Carol H

    2018-02-27

    In Niger, malaria transmission is markedly seasonal with most of the disease burden occurring in children during the rainy season. Seasonal malaria chemoprevention (SMC) with amodiaquine plus sulfadoxine-pyrimethamine (AQ + SP) is recommended in the country to be administered monthly just before and during the rainy season. Moreover, clinical decisions on use of SP for intermittent preventive treatment in pregnancy (IPTp) now depend upon the validated molecular markers for SP resistance in Plasmodium falciparum observed in the local parasite population. However, little is known about molecular markers of resistance for either SP or AQ in the south of Niger. To address this question, clinical samples which met clinical and biological criteria, were collected in Gabi, Madarounfa district, Maradi region, Niger in 2011-2012 (before SMC implementation). Molecular markers of resistance to pyrimethamine (pfdhfr), sulfadoxine (pfdhps) and amodiaquine (pfmdr1) were assessed by DNA sequencing. Prior to SMC implementation, the samples showed a high proportion of clinical samples that carried the pfdhfr 51I/59R/108N haplotype associated with resistance to pyrimethamine and pfdhps 436A/F/H and 437G mutations associated with reduced susceptibility to sulfadoxine. In contrast mutations in codons 581G, and 613S in the pfdhps gene, and in pfmdr1, 86Y, 184Y, 1042D and 1246Y associated with resistance to amodiaquine, were less frequently observed. Importantly, pfdhfr I164L and pfdhps K540E mutations shown to be the most clinically relevant markers for high level clinical resistance to SP were not detected in Gabi. Although parasites with genotypes associated with the highest levels of resistance to AQ + SP are not yet common in this setting, their importance for deployment of SMC and IPTp dictates that monitoring of these markers of resistance should accompany these interventions. This study also highlights the parasite heterogeneity within a small spatial area and the need to

  14. Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses

    Directory of Open Access Journals (Sweden)

    Inja Naga Bheema Lingeswara Reddy

    2017-11-01

    Full Text Available The key for rice plant survival under NaCl salt stress is maintaining a high K+/Na+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K+/Na+ ratios. Seventeen SSR markers reported to be associated with K+/Na+ ratio were used to screen the accessions. Five SSR markers (RM8053, RM345, RM318, RM253 and RM7075 could differentiate accessions classified based on their K+/Na+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K+/Na+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  15. Development of Insertion and Deletion Markers based on Biparental Resequencing for Fine Mapping Seed Weight in Soybean

    Directory of Open Access Journals (Sweden)

    Ying-hui Li

    2014-11-01

    Full Text Available As a complement to single nucleotide polymorphisms (SNPs and simple sequence repeats (SSRs, biallelic insertions and deletions (InDels represent powerful molecular markers with desirable features for filling the gap in current genetic linkage maps. In this study, 28,908 small InDel polymorphisms (1–5 base pair, bp distributed genome-wide were identified and annotated by comparison of a whole-genome resequencing data set from two soybean [ (L. Merr.] genotypes, cultivar Zhonghunag13 (ZH and line Zhongpin03-5373 (ZP. The physical distribution of InDel polymorphisms in soybean genome was uneven, and matched closely with the distribution of previously annotated genes. The average density of InDel in the arm region was significantly higher than that in the pericentromeric region. The genomic regions that were fixed between the two elites were elucidated. With this information, five InDel markers within a putative quantitative trait locus (QTL for seed weight (SW, , were developed and used to genotype 254 recombinant inbred lines (RILs derived from the cross of ZP × ZH. Adding these five InDel markers to previously used SNP and SSR markers facilitated the discovery of further recombination events allowing fine-mapping the QTL to a 0.5 Mbp region. Our study clearly underlines the high value of InDel markers for map-based cloning and marker-assisted selection in soybean.

  16. [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, Lien [CHU de Caen, Department of Neurology, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Neurosurgery, Caen (France); CHU de Caen, Service de Neurochirurgie, Caen (France); Valable, Samuel; Collet, Solene; Bordji, Karim; Petit, Edwige; Bernaudin, Myriam [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); Lechapt-Zalcman, Emmanuele [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Pathology, Caen (France); Ponte, Keven [CHU de Caen, Department of Neurosurgery, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); Constans, Jean-Marc [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Neuroradiology, Caen (France); Levallet, Guenaelle [CHU de Caen, Department of Pathology, Caen (France); Branger, Pierre [CHU de Caen, Department of Neurology, Caen (France); Emery, Evelyne [CHU de Caen, Department of Neurosurgery, Caen (France); Manrique, Alain [CHU de Caen, Department of Nuclear Medicine, Caen (France); Barre, Louisa [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, Caen (France); Guillamo, Jean-Sebastien [CHU de Caen, Department of Neurology, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Nimes, Department of Neurology, Nimes (France)

    2017-08-15

    Hypoxia in gliomas is associated with tumor resistance to radio- and chemotherapy. However, positron emission tomography (PET) imaging of hypoxia remains challenging, and the validation of biological markers is, therefore, of great importance. We investigated the relationship between uptake of the PET hypoxia tracer [18F]-FMISO and other markers of hypoxia and angiogenesis and with patient survival. In this prospective single center clinical study, 33 glioma patients (grade IV: n = 24, III: n = 3, and II: n = 6) underwent [18F]-FMISO PET and MRI including relative cerebral blood volume (rCBV) maps before surgery. Maximum standardized uptake values (SUVmax) and hypoxic volume were calculated, defining two groups of patients based on the presence or absence of [18F]-FMISO uptake. After surgery, molecular quantification of CAIX, VEGF, Ang2 (rt-qPCR), and HIF-1α (immunohistochemistry) were performed on tumor specimens. [18F]-FMISO PET uptake was closely linked to tumor grade, with high uptake in glioblastomas (GB, grade IV). Expression of biomarkers of hypoxia (CAIX, HIF-1α), and angiogenesis markers (VEGF, Ang2, rCBV) were significantly higher in the [18F]-FMISO uptake group. We found correlations between the degree of hypoxia (hypoxic volume and SUVmax) and expression of HIF-1α, CAIX, VEGF, Ang2, and rCBV (p < 0.01). Patients without [18F]-FMISO uptake had a longer survival time than uptake positive patients (log-rank, p < 0.005). Tumor hypoxia as evaluated by [18F]-FMISO PET is associated with the expression of hypoxia markers on a molecular level and is related to angiogenesis. [18F]-FMISO uptake is a mark of an aggressive tumor, almost always a glioblastoma. Our results underline that [18F]-FMISO PET could be useful to guide glioma treatment, and in particular radiotherapy, since hypoxia is a well-known factor of resistance. (orig.)

  17. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers

    Directory of Open Access Journals (Sweden)

    Preeyaporn Koedrith

    2011-12-01

    Full Text Available Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression.

  18. New models and molecular markers in evaluation of developmental toxicity

    International Nuclear Information System (INIS)

    Huuskonen, Hannele

    2005-01-01

    Mammalian and non-mammalian embryos and embryonic stem cells may be used as models in mechanistic studies and in testing embryotoxicity of compounds. In addition to conventional culture methods, genetic modifications and use of molecular markers offer significant advantages in mechanistic studies as well as in developing new test methods for embryotoxicity. Zebrafish model has been used for a long time and at present several applications are available. It is an easy vertebral non-mammalian model, whose genome is largely known and several genetic modifications are easily constructed to study gene expression or knocked down genes. Fluorescent marker proteins can be used also in zebrafish to indicate gene activation in transgenic models. Chemical genetics approach has been developed using zebrafish model. This is a new approach to screen small molecules that regulate signaling pathways. Embryonic stem cells have been used in mechanistic studies and mouse embryonic stem cell test has been validated to study embryotoxicity in vitro. This method has been improved using quantitative measurements of molecular endpoints by real-time RT-PCR or fluorescent activated cell sorting methods (FACS). Methods facilitating differentiation to several different cell types are available. We have studied preimplantation mouse embryos as a possible model for in vitro testing. In this method, superovulated and in vivo fertilized preimplantation embryos were collected at morula stage and cultured up to blastocysts. The mouse preimplantation culture test was improved by quantitative gene expression measurement using two-step real-time RT-PCR methods. New endpoints improve the tests of in vitro embryotoxicity because subjective assessments are replaced by objective measurements. In addition, automation is possible and less time is needed for analysis. Thus, high throughput screening will come possible to test large numbers of compounds

  19. Status of potential PfATP6 molecular markers for artemisinin resistance in Suriname

    Directory of Open Access Journals (Sweden)

    Adhin Malti R

    2012-09-01

    Full Text Available Abstract Background Polymorphisms within the PfATP6 gene have been indicated as potential molecular markers for artemisinin efficacy. Since 2004, the use of artemisinin combination therapy (ACT was introduced as first-line treatment of the uncomplicated malaria cases in Suriname. The aim of this research was to determine changes in Suriname in the status of the polymorphic markers in the PfATP6 gene before and after the adoption of the ACT-regimen, particularly of the S769N mutation, which was reported to be associated with in vitro Artemether resistance in the neighboring country French Guiana. Methods The PfATP6 gene from Plasmodium falciparum parasites in Suriname was investigated in 28 samples using PCR amplification and restriction enzyme analysis, to assess and determine the prevalence of potentially interesting single nucleotide polymorphisms. The polymorphisms [L263E; A623E; S769N], which may be associated with the artemisinin resistant phenotype were characterized in parasites from three endemic regions before and after the adoption of the ACT-regimen. In addition, the status of these molecular markers was compared in paired P. falciparum isolates from patients with recurring malaria after controlled ACT. Results All the investigated samples exhibit the wild-type genotype at all three positions; L263, A623, S769. Conclusion All investigated isolates before and after the adoption of the ACT-regimen and independent of endemic region harbored the wild-type genotype for the three investigated polymorphisms. The study revealed that decreased artemisinin susceptibility could occur independent from PfATP6 mutations, challenging the assumption that artemisinin resistance is associated with these mutations in the PfATP6 gene.

  20. Distinctive pattern of expression of spermatogenic molecular markers in testes of azoospermic men with non-mosaic Klinefelter syndrome.

    Science.gov (United States)

    Kleiman, Sandra E; Yogev, Leah; Lehavi, Ofer; Yavetz, Haim; Hauser, Ron

    2016-06-01

    Mature sperm cells can be found in testicular specimens extracted from azoospermic men with non-mosaic Klinefelter syndrome (KS). The present study evaluates the expression of various known molecular markers of spermatogenesis in a population of men with KS and assesses the ability of those markers to predict spermatogenesis. Two groups of men with non-obstructive azoospermia who underwent testicular sperm-retrieval procedures were included in the study: 31 had non-mosaic KS (KS group) and 91 had normal karyotype (NK group). Each group was subdivided into mixed atrophy (containing some mature sperm cells) or Sertoli cell only syndrome according to testicular histology and cytology observations. Semi-quantitative histological morphometric analysis (interstitial hyperplasia and hyalinization, tubules with cells and abnormal thickness of the basement membrane) and expression of spermatogenetic markers (DAZ, RBM, BOLL, and CDY1) were evaluated and compared among those subgroups. Clear differences in the histological morphometry and spermatogenetic marker expression were noted between the KS and NK groups. There was a significant difference in the expression of spermatogenetic markers between the subgroups of the NK group (as expected), while no difference could be discerned between the two subgroups in the KS group. We conclude that molecular spermatogenetic markers have a pattern of expression in men with KS that is distinctively different from that of men with NK, and that it precludes and limits their use for predicting spermatogenesis in the former. It is suggested that this difference might be due to the specific highly abnormal histological morphometric parameters in KS specimens.

  1. Molecular tissue changes in early myocardial ischemia: from pathophysiology to the identification of new diagnostic markers.

    Science.gov (United States)

    Aljakna, Aleksandra; Fracasso, Tony; Sabatasso, Sara

    2018-03-01

    Diagnosing early myocardial ischemia (the initial 4 to 6 h after interruption of blood flow to part of the myocardium) remains a challenge for clinical and forensic pathologists. Several immunohistochemical markers have been proposed for improving postmortem detection of early myocardial ischemia; however, no single marker appears to be both sufficiently specific as well as sensitive. This review summarizes the diverse categories of molecular tissue markers that have been investigated in human autopsy samples with acute myocardial infarction as well as in the well-established and widely used in vivo animal model of early myocardial ischemia (permanent ligation of the coronary artery). Recently identified markers appearing during the initial 2 h of myocardial ischemia are highlighted. Among them, only six were tested for specificity (C5b-9, hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, heart fatty acid binding protein, connexin 43, and JunB). Despite the discovery of several potentially promising markers (in terms of early expression and specificity), many of them remain to be tested and validated for application in routine diagnostics in clinical and forensic pathology. In particular, research investigating the postmortem stability of these markers is required before any might be implemented into routine diagnostics. Establishing a standardized panel of immunohistochemical markers may be more useful for improving sensitivity and specificity than searching for a single marker.

  2. Caracterização de genótipos de mirtilo utilizando marcadores moleculares Characterization of blueberry genotypes using molecular markers

    Directory of Open Access Journals (Sweden)

    Sergio Delmar dos Anjos e Silva

    2008-03-01

    Full Text Available O cultivo do mirtilo está em expansão no Brasil, em especial em regiões de clima temperado, onde há grande demanda em relação a cultivares adaptadas às condições edafoclimáticas regionais. O objetivo deste trabalho foi caracterizar genótipos de mirtilo do programa de melhoramento da Embrapa Clima Temperado, utilizando marcadores moleculares do tipo RAPD e SSR. Foram caracterizados 40 genótipos de mirtilo por RAPD e oito cultivares por microssatélites. Os nove primers utilizados na técnica de RAPD geraram 89 marcadores. A similaridade genética entre os genótipos variou de 64 a 89%. Utilizando a similaridade média (66%, foram obtidos quatro grupos. Foram gerados 11 marcadores a partir de três pares de primers de microssatélites. A similaridade genética entre as cultivares variou de 25 a 75%. Com similaridade média (42,4%, foram obtidos três grupos. Com apenas três pares de primers de SSR, foi possível definir o padrão das oito cultivares de mirtilo, revelando a eficiência da técnica de microssatélite na caracterização de genótipos dessa espécie. Esses resultados revelam a eficiência dos marcadores tipo RAPD e SSR na caracterização de genótipos de mirtilo. Entretanto, os marcadores tipo microssatélites geram resultados mais precisos, sendo os mais recomendados para uso em programas de melhoramento e identificação de cultivares.The blueberry crop planting area is increasing in Brazil, especially in Temperate Climate Zones, generating demands relating to suitable cultivars adapted to regional climate and soil conditions. This work aimed to characterize blueberry genotypes from Embrapa Clima Temperado breeding program, using RAPD and SSR molecular markers. There were characterized 40 blueberry genotypes using RAPD and 8 cultivars using SSR molecular markers. The 9 RAPD primers generated 89 markers. The genetic similarity ranged from 64 to 89%. Through the average similarity (66%, it was possible to identify four

  3. Genetic Diversity of Some Tunisian Botrytis cinerea Isolates Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    D. ben Ahmed

    2005-12-01

    Full Text Available The genetic diversity of Botrytis cinerea in Tunisia was studied using molecular markers, and the level of resistance to the fungicide fenhexamid was shown. Isolates from different plants (grape, tomato, cucumber, onion, strawberry, gerbera and rose and different parts of the country were analysed in order to determine whether the two groups, transposa and vacuma, that were detected in French vineyards, are also present in Tunisia. A combined PCR and Dot Blot method was developed to identify the transposable elements Boty and Flipper that distinguish between these two B. cinerea groups. Both the transposa and vacuma groups, and isolates containing the transposable element Boty, were found in Tunisia. Moreover, analysis of the Bc-hch locus by PCR and restriction enzyme digestion identified only the B. cinerea group corresponding to one allelic type. Finally, by using the level of resistance shown by B. cinerea to the fungicide fenhexamid as a marker, it was confirmed that this was the only group of B. cinerea in the Tunisian population.

  4. The Search for Molecular Prognostic Markers of Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    V. M. Ibragimov

    2016-03-01

    Full Text Available The purpose of this study was to search for molecular prognostic markers of diabetic nephropathy (DN in patients with type 2 diabetes mellitus (T2DM. The study included 205 patients with T2DM and DN (stages 1 to 4. All patients were stratified by the MDRD equation. The control group included 30 healthy individuals. All T2DM patients were divided into 4 groups depending on the DN stages. Group 1 included 42 patients with DN-Stage 1 (prenephropathy, Group 2 included 48 patients with DN-Stage 2 (incipient nephropathy; Group 3 included 65 patients with DN-Stage 3 (overt nephropathy, and Group 4 included 50 patients with DN-Stage 4 (kidney failure. Molecular phenotyping of urine was processed with methods of proteomics: the prefractionation, the separation of proteins with standard sets (MB-HIC C8 Kit, MB-IMAC Cu, MB-Wax Kit, «Bruker», USA, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS/MS, Ultraflex II, «Bruker», USA. The data of the molecular interactions and functional features of proteins were received with STRING 10.0 database. Potentially new molecular markers of DN development were identified. The research into signaling pathways and the molecules that are involved in ECM formation may help in developing strategies to prevent DN.

  5. Improving Blast Resistance of a Thermo-Sensitive Genic Male Sterile Rice Line GD-8S by Molecular Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Wu-ge LIU

    2008-09-01

    Full Text Available The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%. On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.

  6. Assessment of molecular markers demonstrates concordance between samples acquired via stereotactic biopsy and open craniotomy in both anaplastic astrocytomas and glioblastomas.

    Science.gov (United States)

    Gessler, Florian; Baumgarten, Peter; Bernstock, Joshua D; Harter, Patrick; Lescher, Stephanie; Senft, Christian; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-06-01

    The classification, treatment and prognosis of high-grade gliomas has been shown to correlate with the expression of molecular markers (e.g. MGMT promotor methylation and IDH1 mutations). Acquisition of tumor samples may be obtained via stereotactic biopsy or open craniotomy. Between the years 2009 and 2013, 22 patients initially diagnosed with HGGs via stereotactic biopsy, that ultimately underwent open craniotomy for resection of their tumor were prospectively included in an institutional glioma database. MGMT promotor analysis was performed using methylation-specific (MS)-PCR and IDH1R132H mutation analysis was performed using immunohistochemistry. Three patients (13.7%) exhibited IDH1R132H mutations in samples obtained via stereotactic biopsy. Tissue derived from stereotaxic biopsy was demonstrated to have MGMT promotor methylation in ten patients (45.5%), while a non-methylated MGMT promotor was demonstrated in ten patients (45.5%); inconclusive results were obtained for the remaining two patients (9%) within our cohort. The initial histologic grading, IDH1R132H mutation and MGMT promotor methylation results were confirmed using samples obtained during open craniotomy in all but one patient; here inconclusive MGMT promotor analysis was obtained in contrast to that which was obtained via stereotactic biopsy. Tumor samples acquired via stereotactic biopsy provide accurate information with regard to clinically relevant molecular markers that have been shown to impact patient care decisions. The profile of markers analyzed in our cohort was nearly concordant between those samples obtained via stereotactic biopsy or open craniotomy thereby suggesting that clinical decisions may be based on the molecular profile of the tumor samples obtained via stereotactic biopsy.

  7. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus)

    Science.gov (United States)

    2011-01-01

    Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine

  8. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Timms Peter

    2011-04-01

    Full Text Available Abstract Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58, we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of

  9. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?

    NARCIS (Netherlands)

    Odong, T.L.; Heerwaarden, van J.; Jansen, J.; Hintum, van T.J.L.; Eeuwijk, van F.A.

    2011-01-01

    Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using

  10. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  11. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus.

    Science.gov (United States)

    Manni, Mosè; Gomulski, Ludvik M; Aketarawong, Nidchaya; Tait, Gabriella; Scolari, Francesca; Somboon, Pradya; Guglielmino, Carmela R; Malacrida, Anna R; Gasperi, Giuliano

    2015-03-28

    The dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures. Wild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations. Seventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and F ST estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability. The two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities

  12. Traditional and emerging molecular markers in neuroblastoma prognosis: the good, the bad and the ugly.

    Science.gov (United States)

    Poremba, C; Hero, B; Goertz, H G; Scheel, C; Wai, D; Schaefer, K L; Christiansen, H; Berthold, F; Juergens, H; Boecker, W; Dockhorn-Dworniczak, B

    2001-01-01

    Neuroblastomas (NB) are a heterogeneous group of childhood tumours with a wide range of likelihood for tumour progression. As traditional parameters do not ensure completely accurate prognostic grouping, new molecular markers are needed for assessing the individual patient's prognosis more precisely. 133 NB of all stages were analysed in blind-trial fashion for telomerase activity (TA), expression of surviving, and MYCN status. These data were correlated with other traditional prognostic indicators and disease outcome. TA is a powerful independent prognostic marker for all stages and is capable of differentiating between good and poor outcome in putative "favourable" clinical or biological subgroups of NB patients. High surviving expression is associated with an adverse outcome, but is more difficult to interprete than TA because survivin expression needs to be accurately quantified to be of predictive value. We propose an extended progression model for NB including emerging prognostic markers, with emphasis on telomerase activity.

  13. Applicability of SCAR markers to food genomics: olive oil traceability.

    Science.gov (United States)

    Pafundo, Simona; Agrimonti, Caterina; Maestri, Elena; Marmiroli, Nelson

    2007-07-25

    DNA analysis with molecular markers has opened a shortcut toward a genomic comprehension of complex organisms. The availability of micro-DNA extraction methods, coupled with selective amplification of the smallest extracted fragments with molecular markers, could equally bring a breakthrough in food genomics: the identification of original components in food. Amplified fragment length polymorphisms (AFLPs) have been instrumental in plant genomics because they may allow rapid and reliable analysis of multiple and potentially polymorphic sites. Nevertheless, their direct application to the analysis of DNA extracted from food matrixes is complicated by the low quality of DNA extracted: its high degradation and the presence of inhibitors of enzymatic reactions. The conversion of an AFLP fragment to a robust and specific single-locus PCR-based marker, therefore, could extend the use of molecular markers to large-scale analysis of complex agro-food matrixes. In the present study is reported the development of sequence characterized amplified regions (SCARs) starting from AFLP profiles of monovarietal olive oils analyzed on agarose gel; one of these was used to identify differences among 56 olive cultivars. All the developed markers were purposefully amplified in olive oils to apply them to olive oil traceability.

  14. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yan, Guanghua; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-01-01

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  15. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  16. On marker-based parentage verification via non-linear optimization.

    Science.gov (United States)

    Boerner, Vinzent

    2017-06-15

    Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping projects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well. Recent developments of algorithms such as evaluating opposing homozygous SNP genotypes have drawbacks, for example the inability of rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage verification by constrained regression which overcomes the latter limitation and proves to be very fast and accurate even when the number of SNPs is as low as 50. The algorithm was tested on a sample of 14,816 animals with 50, 100 and 500 SNP genotypes randomly selected from 40k genotypes. The samples of putative parents of these animals contained either five random animals, or four random animals and the true sire. Parentage assignment was performed by ranking of regression coefficients, or by setting a minimum threshold for regression coefficients. The assignment quality was evaluated by the power of assignment (P[Formula: see text]) and the power of exclusion (P[Formula: see text]). If the sample of putative parents contained the true sire and parentage was assigned by coefficient ranking, P[Formula: see text] and P[Formula: see text] were both higher than 0.99 for the 500 and 100 SNP genotypes, and higher than 0.98 for the 50 SNP genotypes. When parentage was assigned by a coefficient threshold, P[Formula: see text] was higher than 0.99 regardless of the number of SNPs, but P[Formula: see text] decreased from 0.99 (500 SNPs) to 0.97 (100 SNPs) and 0.92 (50 SNPs). If the sample of putative parents did not contain the true sire and parentage was rejected using a coefficient threshold, the algorithm achieved a P[Formula: see text] of 1 (500 SNPs), 0.99 (100 SNPs) and 0.97 (50 SNPs). The algorithm described here is easy to implement

  17. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    Directory of Open Access Journals (Sweden)

    Y. Mancilla

    2016-01-01

    burning events. Finally, source attribution results obtained using the CMB (chemical mass balance model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5. To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS.

  18. Molecular marker differences relate to developmental position and subsets of mesodiencephalic dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Simone M Smits

    Full Text Available The development of mesodiencephalic dopaminergic (mdDA neurons located in the substantia nigra compacta (SNc and ventral tegmental area (VTA follow a number of stages marked by distinct events. After preparation of the region by signals that provide induction and patterning, several transcription factors have been identified, which are involved in specifying the neuronal fate of these cells. The specific vulnerability of SNc neurons is thought to root in these specific developmental programs. The present study examines the positions of young postmitotic mdDA neurons to relate developmental position to mdDA subset specific markers. MdDA neurons were mapped relative to the neuromeric domains (prosomeres 1-3 (P1-3, midbrain, and hindbrain as well as the longitudinal subdivisions (floor plate, basal plate, alar plate, as proposed by the prosomeric model. We found that postmitotic mdDA neurons are located mainly in the floorplate domain and very few in slightly more lateral domains. Moreover, mdDA neurons are present along a large proportion of the anterior/posterior axis extending from the midbrain to P3 in the diencephalon. The specific positions relate to some extent to the presence of specific subset markers as Ahd2. In the adult stage more of such subsets specific expressed genes are present and may represent a molecular map defining molecularly distinct groups of mdDA neurons.

  19. From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries.

    Science.gov (United States)

    Muñoz, Balam; Suárez-Sánchez, Rocío; Hernández-Hernández, Oscar; Franco-Cendejas, Rafael; Cortés, Hernán; Magaña, Jonathan J

    2018-05-22

    Sepsis is a life-threatening organ-dysfunction condition caused by a dysregulated response to an infectious condition that can cause complications in patients with major trauma. Burns are one of the most destructive forms of trauma; despite the improvements in medical care, infections remain an important cause of burn injury-related mortality and morbidity, and complicated sepsis predisposes patients to diverse complications such as organ failure, lengthening of hospital stays, and increased costs. Accurate diagnosis and early treatment of sepsis may have a beneficial impact on clinical outcome of burn-injured patients. In this review, we offer a comprehensive description of the current and traditional markers used as indicative of sepsis in burned patients. However, although these are markers of the inflammatory post-burn response, they usually fail to predict sepsis in severely burned patients due to that they do not reflect the severity of the infection. Identification and measurement of biomarkers in early stages of infection is important in order to provide timely response and effective treatment of burned patients. Therefore, we compiled important experimental evidence, demonstrating novel biomarkers, including molecular markers such as genomic DNA variations, alterations of transcriptome profiling (mRNA, miRNAs, lncRNAs and circRNAs), epigenetic markers, and advances in proteomics and metabolomics. Finally, this review summarizes next-generation technologies for the identification of markers for detection of sepsis after burn injuries. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  20. IDENTIFICATION OF PARAMECIUM BURSARIA SYNGENS THROUGH MOLECULAR MARKERS – COMPARATIVE ANALYSIS OF MITOCHONDRIAL CYTOCHROME C OXIDASE SUBUNIT I (COI

    Directory of Open Access Journals (Sweden)

    Patrycja Zagata

    2014-08-01

    Full Text Available The aim of this study is an identification of Paramecium bursaria syngens originating from different geographical locations and proving the correlation between distributions and belonging to any of five syngens. Ten strains of Paramecium bursaria belonging to five different syngens and strain of Paramecium multimicronucleatum were investigated using molecular marker — mitochondrial cytochrome c oxidase subunit I (COI. According to results, obtained in this study, using phylogenetic methods like Neighbor Joining (NJ and Maximum Likelihood (ML, relationship between analyzing strains through their clustering in clusters and correlation between strains belonging to any syngen and syngen’s distribution was confirmed. Phylograms constructed using NJ and ML methods revealed strains’ grouping in five clusters. Results which were obtained revealed usefulness of COI as a biomarker, which is important in identification of Paramecium bursaria syngens. This reports to a great potential of COI as a molecular marker and obtaining dependable results through combination of molecular methods with classical ones.

  1. Combustion inputs into a terrestrial archive over 265 years as evidenced by BPCA molecular markers

    Science.gov (United States)

    Hanke, Ulrich M.; Eglinton, Timothy I.; Wiedemeier, Daniel B.; Schmidt, Michael W. I.

    2015-04-01

    Pyrogenic organic matter (PyOM) such as char and soot is produced during the incomplete combustion of biomass and fossil fuel. It is composed of condensed aromatic structures and can resist degradation processes, maybe over long periods of time. Land-use changes, industrial activity and its transport by wind and water affect the fluxes of PyOM from the source to its sedimentary archive. Investigating environmental PyOM with the molecular marker benzene polycarboxylic acid (BPCA) method provides various information about quantity, quality (BPCA distribution pattern) and about its isotopic composition (13C and 14C). Assessing PyOM quality can indicate whether it is mostly combustion condensate (soot) or combustion residue (charcoal) and potentially allow source apportionment. Our study area is the Pettaquamscutt River catchment area (35 km2), Rhode Island, U.S.A. It is located down-wind of industrial areas recording deposition of long-distance atmospheric transport as well as local catchment inputs, both from natural and anthropogenic sources. We investigated 50 samples of a sediment record over a time span of 265 years (1733-1998 AD). Previous investigations provided information on the age of deposition, the content of polycyclic aromatic hydrocarbons (PAH) as well as of the radiocarbon contents of total organic carbon (TOC) and PAH (Lima, 2004). We used the BPCA molecular marker method to quantify and characterize PyOM in the same record. First results show that quantity and quality of PyOM change over 265 years. Our investigation aims at understanding how different sources of PyOM are reflected in terrestrial archives by comparing the results of BPCA with radiocarbon-dated TOC and PAH records. Among other aspects, the PAH record reflects the Great Depression and the 1970s oil embargo in North America. We interpret the BPCA distribution patterns regarding the simultaneous shift of dominant fuels including wood, coal, petroleum and gas. Future work will include

  2. Yam ( Dioscorea spp.) molecular breeding

    African Journals Online (AJOL)

    Some progress has been made in recent years in germplasm characterization and the development of molecular markers for genome analysis. A genetic linkage map based on amplified fragment length polymorphism (AFLP) markers has been constructed for Guinea and water yams. These linkage maps were used to scan ...

  3. ESAP plus: a web-based server for EST-SSR marker development.

    Science.gov (United States)

    Ponyared, Piyarat; Ponsawat, Jiradej; Tongsima, Sissades; Seresangtakul, Pusadee; Akkasaeng, Chutipong; Tantisuwichwong, Nathpapat

    2016-12-22

    Simple sequence repeats (SSRs) have become widely used as molecular markers in plant genetic studies due to their abundance, high allelic variation at each locus and simplicity to analyze using conventional PCR amplification. To study plants with unknown genome sequence, SSR markers from Expressed Sequence Tags (ESTs), which can be obtained from the plant mRNA (converted to cDNA), must be utilized. With the advent of high-throughput sequencing technology, huge EST sequence data have been generated and are now accessible from many public databases. However, SSR marker identification from a large in-house or public EST collection requires a computational pipeline that makes use of several standard bioinformatic tools to design high quality EST-SSR primers. Some of these computational tools are not users friendly and must be tightly integrated with reference genomic databases. A web-based bioinformatic pipeline, called EST Analysis Pipeline Plus (ESAP Plus), was constructed for assisting researchers to develop SSR markers from a large EST collection. ESAP Plus incorporates several bioinformatic scripts and some useful standard software tools necessary for the four main procedures of EST-SSR marker development, namely 1) pre-processing, 2) clustering and assembly, 3) SSR mining and 4) SSR primer design. The proposed pipeline also provides two alternative steps for reducing EST redundancy and identifying SSR loci. Using public sugarcane ESTs, ESAP Plus automatically executed the aforementioned computational pipeline via a simple web user interface, which was implemented using standard PHP, HTML, CSS and Java scripts. With ESAP Plus, users can upload raw EST data and choose various filtering options and parameters to analyze each of the four main procedures through this web interface. All input EST data and their predicted SSR results will be stored in the ESAP Plus MySQL database. Users will be notified via e-mail when the automatic process is completed and they can

  4. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation.

    Science.gov (United States)

    Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel

    2017-08-01

    High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of a Swine-Specific Fecal Pollution Marker Based on Host Differences in Methanogen mcrA Genes▿

    OpenAIRE

    Ufnar, Jennifer A.; Ufnar, David F.; Wang, Shiao Y.; Ellender, R. D.

    2007-01-01

    The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testin...

  6. Molecular characterization of Anthurium genotypes by using DNA fingerprinting and SPAR markers.

    Science.gov (United States)

    Souza Neto, J D; Soares, T C B; Motta, L B; Cabral, P D S; Silva, J A

    2014-07-02

    We characterized single primer amplification reaction (SPAR) molecular markers from 20 genotypes of Anthurium andraeanum Lind., including 3 from commercial varieties and 17 from 2 communities in the State of Espírito Santo, Brazil. Twenty-four SPAR, consisting of 7 random amplified polymorphic DNA and 17 inter-simple sequence repeat markers were used to estimate the genetic diversity of 20 Anthurium accessions. The set of SPAR markers generated 288 bands and showed an average polymorphism percentage of 93.39%, ranging from 71.43 to 100%. The polymorphism information content (PIC) of the random amplified polymorphic DNA primers averaged 0.364 and ranged from 0.258 to 0.490. Primer OPF 06 showed the lowest PIC, while OPAM 14 was the highest. The average PIC of the inter-simple sequence repeat primers was 0.299, with values ranging from 0.196 to 0.401. Primer UBC 845 had the lowest PIC (0.196), while primer UCB 810 had the highest (0.401). By using the complement of Jaccard's similarity index and unweighted pair group method with arithmetic mean clustering, 5 clusters were formed with a cophenetic correlation coefficient of 0.8093, indicating an acceptable clustering consistency. However, no genotype clustering patterns agreed with the morphological data. The Anthurium genotypes investigated in this study are a germplasm source for conservational research and may be used in improvement programs for this species.

  7. Assessment of Cultivar Distinctness in Alfalfa: A Comparison of Genotyping-by-Sequencing, Simple-Sequence Repeat Marker, and Morphophysiological Observations

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2016-07-01

    Full Text Available Cultivar registration agencies typically require morphophysiological trait-based distinctness of candidate cultivars. This requirement is difficult to achieve for cultivars of major perennial forages because of their genetic structure and ever-increasing number of registered material, leading to possible rejection of agronomically valuable cultivars. This study aimed to explore the value of molecular markers applied to replicated bulked plants (three bulks of 100 independent plants each per cultivar to assess alfalfa ( L. subsp. cultivar distinctness. We compared genotyping-by-sequencing information based on 2902 polymorphic single-nucleotide polymorphism (SNP markers (>30 reads per DNA sample with morphophysiological information based on 11 traits and with simple-sequence repeat (SSR marker information from 41 polymorphic markers for their ability to distinguish 11 alfalfa landraces representative of the germplasm from northern Italy. Three molecular criteria, one based on cultivar differences for individual SSR bands and two based on overall SNP marker variation assessed either by statistically significant cultivar differences on principal component axes or discriminant analysis, distinctly outperformed the morphophysiological criterion. Combining the morphophysiological criterion with either molecular marker method increased discrimination among cultivars, since morphophysiological diversity was unrelated to SSR marker-based diversity ( = 0.04 and poorly related to SNP marker-based diversity ( = 0.23, < 0.15. The criterion based on statistically significant SNP allele frequency differences was less discriminating than morphophysiological variation. Marker-based distinctness, which can be assessed at low cost and without interactions with testing conditions, could validly substitute for (or complement morphophysiological distinctness in alfalfa cultivar registration schemes. It also has interest in sui generis registration systems aimed at

  8. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers

    Science.gov (United States)

    Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B

    2015-01-01

    Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816

  9. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    Science.gov (United States)

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  10. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa

    NARCIS (Netherlands)

    Choi, H.K.; Kim, D.; Uhm, T.; Limpens, E.H.M.; Lim, H.; Mun, J.H.; Kalo, P.; Penmetsa, R.V.; Seres, A.; Kulikova, O.; Roe, B.A.; Bisseling, T.; Kiss, G.B.; Cook, D.R.

    2004-01-01

    A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an E, population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene

  11. Role of the pulmonologist in ordering post-procedure molecular markers in non-small-cell lung cancer: implications for personalized medicine.

    Science.gov (United States)

    Murgu, Septimiu; Colt, Henri

    2013-11-01

    In the growing era of personalized medicine for the treatment of non-small-cell lung cancer (NSCLC), it is becoming increasingly important that sufficient quality and quantity of tumor tissue are available for morphologic diagnosis and molecular analysis. As new treatment options emerge that might require more frequent and possibly higher volume biopsies, the role of the pulmonologist will expand, and it will be important for pulmonologists to work within a multidisciplinary team to provide optimal therapeutic management for patients with NSCLC. In this review, we discuss the rationale for individualized treatment decisions for patients with NSCLC, molecular pathways and specific molecular predictors relevant to personalized NSCLC therapy, assay technologies for molecular marker analysis, and specifics regarding tumor specimen selection, acquisition, and handling. Moreover, we briefly address issues regarding racial and socioeconomic disparities as they relate to molecular testing and treatment decisions, and cost considerations for molecular testing and targeted therapies in NSCLC. We also propose a model for an institution-based multidisciplinary team, including oncologists, pathologists, pulmonologists, interventional radiologists, and thoracic surgeons, to ensure adequate material is available for cytological and histological studies and to standardize methods of tumor specimen handling and processing in an effort to provide beneficial, individualized therapy for patients with NSCLC. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The Association Between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer Risk

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0273 TITLE: The Association between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer ... Colorectal Cancer Risk 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0273 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrea Burnett-Hartman 5d... cancer in patients with sessile serrated colorectal polyps (SSPs). The project’s specific aims are as follows: 1) Estimate the risk of colorectal

  13. Caracterização molecular de butiazeiro por marcadores RAPD Molecular characterization of Pindo palm by RAPD markers

    Directory of Open Access Journals (Sweden)

    Adrise Medeiros Nunes

    2008-09-01

    Full Text Available O grupo botânico Arecaceae é de extremo interesse por compreender plantas em extinção e por apresentar um grande potencial de exploração econômica. O butiazeiro (Butia capitata (Mart. Becc. ocorre naturalmente no Sul do Brasil. Sua caracterização molecular é de extremo interesse para futuros trabalhos de melhoramento genético. Assim sendo, verificou-se a variabilidade genética existente entre vinte e dois genótipos de butiazeiro da espécie (Butia capitata, pertencentes ao BAG (Banco Ativo de Germoplasma de frutíferas nativas do Centro Agropecuário da Palma - UFPel. Esses genótipos foram analisados usando marcadores do tipo RAPD (Random Amplified Polymorphic DNA. Um total de 136 fragmentos foram obtidos, sendo 77 polimórficos. O primer OPA11 apresentou maior polimorfismo, produzindo 9 perfis diferentes. A análise de agrupamento, realizada pelo método UPGMA, produziu um dendrograma que permitiu a clara separação dos genótipos em dois grupos principais. Verificou-se que, com a técnica de marcadores de RAPD, foi possível obter um perfil molecular único e uma estimativa da variabilidade existente entre os genótipos de butiazeiro avaliados.The study of the botanical group Arecaceae is of extreme interest for evolving several endangered species of plants and for presenting a great potential of economical exploration. The Pindo palm (or wine palm, jelly palm (Butia capitata (Mart. Becc. is natural from the south of Brazil. Its molecular characterization is of extreme interest for future researches of genetic improvement. Since little is known about the variability of the species, the existent genetic variability was verified among twenty-two genotypes of Pindo palm (or wine palm, jelly palm, from BAG (Germoplasm Assets Bank of fruit trees native from the Agricultural Center of the Palma - UFPEL, which were analyzed using markers RAPD (Random Amplified Polymorphic DNA with Operon Technologies' decamers primers. With 21 primers

  14. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    Science.gov (United States)

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  15. Invisible marker based augmented reality system

    Science.gov (United States)

    Park, Hanhoon; Park, Jong-Il

    2005-07-01

    Augmented reality (AR) has recently gained significant attention. The previous AR techniques usually need a fiducial marker with known geometry or objects of which the structure can be easily estimated such as cube. Placing a marker in the workspace of the user can be intrusive. To overcome this limitation, we present an AR system using invisible markers which are created/drawn with an infrared (IR) fluorescent pen. Two cameras are used: an IR camera and a visible camera, which are positioned in each side of a cold mirror so that their optical centers coincide with each other. We track the invisible markers using IR camera and visualize AR in the view of visible camera. Additional algorithms are employed for the system to have a reliable performance in the cluttered background. Experimental results are given to demonstrate the viability of the proposed system. As an application of the proposed system, the invisible marker can act as a Vision-Based Identity and Geometry (VBIG) tag, which can significantly extend the functionality of RFID. The invisible tag is the same as RFID in that it is not perceivable while more powerful in that the tag information can be presented to the user by direct projection using a mobile projector or by visualizing AR on the screen of mobile PDA.

  16. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    Science.gov (United States)

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding.

  17. Molecular characterization of Cymbidium kanran cultivars based on ...

    African Journals Online (AJOL)

    Fifty-four Cymbidium kanran cultivars from China, Japan and Korea were examined and analyzed by using the successive screening of 3'-end extended random primer amplified polymorphic DNA (ERAPD) markers to determine their molecular diversity and relationships. In ERAPD analyses, the strandspecific DNA ...

  18. Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR.

    Science.gov (United States)

    Oueslati, Amel; Ollitrault, Frederique; Baraket, Ghada; Salhi-Hannachi, Amel; Navarro, Luis; Ollitrault, Patrick

    2016-08-18

    Chloroplast DNA is a primary source of molecular variations for phylogenetic analysis of photosynthetic eukaryotes. However, the sequencing and analysis of multiple chloroplastic regions is difficult to apply to large collections or large samples of natural populations. The objective of our work was to demonstrate that a molecular taxonomic key based on easy, scalable and low-cost genotyping method should be developed from a set of Single Nucleotide Polymorphisms (SNPs) diagnostic of well-established clades. It was applied to the Aurantioideae subfamily, the largest group of the Rutaceae family that includes the cultivated citrus species. The publicly available nucleotide sequences of eight plastid genomic regions were compared for 79 accessions of the Aurantioideae subfamily to search for SNPs revealing taxonomic differentiation at the inter-tribe, inter-subtribe, inter-genus and interspecific levels. Diagnostic SNPs (DSNPs) were found for 46 of the 54 clade levels analysed. Forty DSNPs were selected to develop KASPar markers and their taxonomic value was tested by genotyping 108 accessions of the Aurantioideae subfamily. Twenty-seven markers diagnostic of 24 clades were validated and they displayed a very high rate of transferability in the Aurantioideae subfamily (only 1.2 % of missing data on average). The UPGMA from the validated markers produced a cladistic organisation that was highly coherent with the previous phylogenetic analysis based on the sequence data of the eight plasmid regions. In particular, the monophyletic origin of the "true citrus" genera plus Oxanthera was validated. However, some clarification remains necessary regarding the organisation of the other wild species of the Citreae tribe. We validated the concept that with well-established clades, DSNPs can be selected and efficiently transformed into competitive allele-specific PCR markers (KASPar method) allowing cost-effective highly efficient cladistic analysis in large collections at

  19. Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    International Nuclear Information System (INIS)

    Hendrix, Mary JC; Seftor, Elisabeth A; Kirschmann, Dawn A; Seftor, Richard EB

    2000-01-01

    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

  20. Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation.

    Science.gov (United States)

    Koyuncu, Can Fahrettin; Akhan, Ece; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2016-04-01

    Automated microscopy imaging systems facilitate high-throughput screening in molecular cellular biology research. The first step of these systems is cell nucleus segmentation, which has a great impact on the success of the overall system. The marker-controlled watershed is a technique commonly used by the previous studies for nucleus segmentation. These studies define their markers finding regional minima on the intensity/gradient and/or distance transform maps. They typically use the h-minima transform beforehand to suppress noise on these maps. The selection of the h value is critical; unnecessarily small values do not sufficiently suppress the noise, resulting in false and oversegmented markers, and unnecessarily large ones suppress too many pixels, causing missing and undersegmented markers. Because cell nuclei show different characteristics within an image, the same h value may not work to define correct markers for all the nuclei. To address this issue, in this work, we propose a new watershed algorithm that iteratively identifies its markers, considering a set of different h values. In each iteration, the proposed algorithm defines a set of candidates using a particular h value and selects the markers from those candidates provided that they fulfill the size requirement. Working with widefield fluorescence microscopy images, our experiments reveal that the use of multiple h values in our iterative algorithm leads to better segmentation results, compared to its counterparts. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  1. Molecular markers in transitional cell carcinoma of the bladder: New insights into mechanisms and prognosis

    Directory of Open Access Journals (Sweden)

    Behfar Ehdaie

    2008-01-01

    Full Text Available Urothelial carcinoma is potentially life-threatening and expensive to treat since for many patients, the diagnosis entails a lifetime of surveillance to detect recurrent disease. Advancements in technology have provided an understanding of the molecular mechanisms of carcinogenesis and defined distinct pathways in tumorigenesis and progression. At the molecular level, urothelial carcinoma is being seen as a disease with distinct pathways of carcinogenesis and progression and thus markers of these processes should be used as both diagnostics and predictors of progression and patient outcome. Herein we present a selective overview of the molecular underpinning of urothelial carcinogenesis and progression and discuss the potential for proteins involved in these processes to serve as biomarkers. The discovery of biomarkers has enabled the elucidation of targets for novel therapeutic agents to disrupt the deregulation underlying the development and progression of urothelial carcinogenesis.

  2. Full Length Research Paper LTR-retrotransposons-based molecular ...

    African Journals Online (AJOL)

    LTR-retrotransposons possess unique properties that make them appropriate for investigating relationships between closely related species and populations. The aim of the current study was to employ Ty1-copia group retrotransposons as molecular markers in cultivated Egyptian cottons, G. barbadense L. Restriction site ...

  3. Caracterização molecular de cultivares de pessegueiro e nectarineira com microssatélites Molecular characterization of peach and nectarine cultivars though microsatellites markers

    Directory of Open Access Journals (Sweden)

    Valmor João Bianchi

    2004-12-01

    Full Text Available Na certificação de mudas de plantas frutíferas, a identificação genética é importante em todas as etapas do processo de produção. Em pessegueiro, a identificação de genótipos baseada somente em características morfofenológicas deixa dúvidas quanto à verdadeira identidade de algumas cultivares. Marcadores moleculares de microssatélies foram utilizados objetivando a caracterização molecular de 8 cultivares de nectarineira e 28 de pessegueiro. Para a análise, foram utilizados 13 incializadores de microssatélites (primers, sendo que todos foram marcadores produzindo polimorfismo suficiente para identificar 32 das 36 cultivares analisadas. A maior similaridade genética verificada nas cultivares para consumo in natura foi entre Coral e Planalto (0,94 e entre Della Nona e Marfim (0,90, enquanto, para os pessegueiros para indústria, foi de 0,93 entre Jubileu e Capdeboscq e de 0,92 entre Jade e Esmeralda. Os marcadores de microssatélites permitiram separar em grupos distintos as nectarineiras e os pessegueiros de consumo in natura dos de indústria, havendo uma elevada concordância entre os dados genealógicos das cultivares e os dados gerados pelos microssatélites, confirmando a grande utilidade da técnica para a caracterização genética.Genetic identification of fruit tree plants is important in all phases of the production process. On peach the genotypes identification based only on the morphologic and phenologic characteristics leaves doubts on the true identity of some cultivars. Microsatellite markers were used aiming at the molecular characterization of eight nectarine and 28 peach cultivars. Thirteen microsatellite primers were used and all of them generated enough polimorfism that may identify 32 out of 36 of the analysed cultivars. The greatest genetic similarity was found between the fresh market 'Coral' and 'Planalto'(0,94 and between the 'Della Nona' and 'Marfim' cultivars (0,90, whereas for caning peaches the

  4. The First Molecular Identification of an Olive Collection Applying Standard Simple Sequence Repeats and Novel Expressed Sequence Tag Markers.

    Science.gov (United States)

    Mousavi, Soraya; Mariotti, Roberto; Regni, Luca; Nasini, Luigi; Bufacchi, Marina; Pandolfi, Saverio; Baldoni, Luciana; Proietti, Primo

    2017-01-01

    Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST ( Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections

  5. Small renal masses: The molecular markers associated with outcome of patients with kidney tumors 7 cm or less

    Science.gov (United States)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Pikalova, L. V.

    2016-08-01

    The investigation of molecular mechanisms of tumor cell behavior in small renal masses is required to achieve the better cancer survival. The aim of the study is to find molecular markers associated with outcome of patients with kidney tumors 7 cm or less. A homogenous group of 20 patients T1N0M0-1 (mean age 57.6 ± 2.2 years) with kidney cancer was selected for the present analysis. The content of transcription and growth factors was determined by ELISA. The levels of AKT-mTOR signaling pathway components were measured by Western blotting analysis. The molecular markers associated with unfavorable outcome of patients with kidney tumors 7 cm or less were high levels of NF-kB p50, NF-kB p65, HIF-1, HIF-2, VEGF and CAIX. AKT activation with PTEN loss also correlated with the unfavorable outcome of kidney cancer patients with tumor size 7 cm or less. It is observed that the biological features of kidney cancer could predict the outcome of patients.

  6. Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes.

    Science.gov (United States)

    Benz, Karin; Breit, Stephen; Lukoschek, Martin; Mau, Hans; Richter, Wiltrud

    2002-04-26

    This study is intended to optimise expansion and differentiation of cultured human chondrocytes by growth factor application and to identify molecular markers to monitor their differentiation state. We dissected the molecular consequences of matrix release, monolayer, and 3D-alginate culture, growth factor optimised expansion, and re-differentiation protocols by gene expression analysis. Among 19 common cartilage molecules assessed by cDNA array, six proved best to monitor differentiation. Instant down-regulation at release of cells from the matrix was strongest for COL 2A1, fibromodulin, and PRELP while LUM, CHI3L1, and CHI3L2 were expansion-related. Both gene sets reflected the physiologic effects of the most potent growth-inducing (PDGF-BB) and proteoglycan-inducing (BMP-4) factors. Only CRTAC1 expression correlated with 2D/3D switches while the molecular phenotype of native chondrocytes was not restored. The markers and optimised protocols we suggest can help to improve cell therapy of cartilage defects and chondrocyte differentiation from stem cell sources.

  7. Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding.

    Science.gov (United States)

    Hernández, P; Dorado, G; Ramírez, M C; Laurie, D A; Snape, J W; Martín, A

    2003-01-01

    Hordeum chilense is a potential source of useful genes for wheat breeding. The use of this wild species to increase genetic variation in wheat will be greatly facilitated by marker-assisted introgression. In recent years, the search for the most suitable DNA marker system for tagging H. chilense genomic regions in a wheat background has lead to the development of RAPD and SCAR markers for this species. RAPDs represent an easy way of quickly generating suitable introgression markers, but their use is limited in heterogeneous wheat genetic backgrounds. SCARs are more specific assays, suitable for automatation or multiplexing. Direct sequencing of RAPD products is a cost-effective approach that reduces labour and costs for SCAR development. The use of SSR and STS primers originally developed for wheat and barley are additional sources of genetic markers. Practical applications of the different marker approaches for obtaining derived introgression products are described.

  8. Occupational exposure to diesel engine exhaust and alterations in immune/inflammatory markers: a cross-sectional molecular epidemiology study in China.

    Science.gov (United States)

    Bassig, Bryan A; Dai, Yufei; Vermeulen, Roel; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Shiels, Meredith S; Kemp, Troy J; Pinto, Ligia A; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Wong, Jason Y Y; Bin, Ping; Hosgood, H Dean; Hildesheim, Allan; Silverman, Debra T; Rothman, Nathaniel; Zheng, Yuxin; Lan, Qing

    2017-10-26

    The relationship between diesel engine exhaust (DEE), a known lung carcinogen, and immune/inflammatory markers that have been prospectively associated with lung cancer risk is not well understood. To provide insight into these associations, we conducted a cross-sectional molecular epidemiology study of 54 males highly occupationally exposed to DEE and 55 unexposed male controls from representative workplaces in China. We measured plasma levels of 64 immune/inflammatory markers in all subjects using Luminex bead-based assays, and compared our findings to those from a nested case-control study of these markers and lung cancer risk, which had been conducted among never-smoking women in Shanghai using the same multiplex panels. Levels of nine markers that were associated with lung cancer risk in the Shanghai study were altered in DEE-exposed workers in the same direction as the lung cancer associations. Among these, associations with the levels of CRP (β= -0.53; P = 0.01) and CCL15/MIP-1D (β = 0.20; P = 0.02) were observed in workers exposed to DEE and with increasing elemental carbon exposure levels (Ptrends marker positively associated with an increased lung cancer risk, CCL2/MCP-1, were higher among DEE-exposed workers compared with controls in never and former smokers, but not in current smokers (Pinteraction = 0.01). The immunological differences in these markers in DEE-exposed workers are consistent with associations observed for lung cancer risk in a prospective study of Chinese women and may provide some insight into the mechanistic processes by which DEE causes lung cancer. Published by Oxford University Press 2017.

  9. Molecular characterization of Cymbidium kanran cultivars based on ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... Fifty-four Cymbidium kanran cultivars from China, Japan and Korea were examined and analyzed by using the successive screening of 3′-end extended random primer amplified polymorphic DNA (ERAPD) markers to determine their molecular diversity and relationships. In ERAPD analyses, the strand-.

  10. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Yang, Wenlong; Liu, Kunfan; Sun, Jiazhu; Guo, Xiaoli; Li, Yiwen; Wang, Daowen; Ling, Hongqing; Zhang, Aimin

    2011-05-01

    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli-tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.

  11. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.

    Science.gov (United States)

    Zych, Konrad; Li, Yang; van der Velde, Joeri K; Joosen, Ronny V L; Ligterink, Wilco; Jansen, Ritsert C; Arends, Danny

    2015-02-19

    Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers. The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping. We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population. The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R

  12. ADM3, TFF3 and LGALS3 are discriminative molecular markers in fine-needle aspiration biopsies of benign and malignant thyroid tumours

    Science.gov (United States)

    Karger, S; Krause, K; Gutknecht, M; Schierle, K; Graf, D; Steinert, F; Dralle, H; Führer, D

    2012-01-01

    Background: Previously, we reported a six-marker gene set, which allowed a molecular discrimination of benign and malignant thyroid tumours. Now, we evaluated these markers in fine-needle aspiration biopsies (FNAB) in a prospective, independent series of thyroid tumours with proven histological outcome. Methods: Quantitative RT–PCR was performed (ADM3, HGD1, LGALS3, PLAB, TFF3, TG) in the needle wash-out of 156 FNAB of follicular adenoma (FA), adenomatous nodules, follicular and papillary thyroid cancers (TC) and normal thyroid tissues (NT). Results: Significant expression differences were found for TFF3, HGD1, ADM3 and LGALS3 in FNAB of TC compared with benign thyroid nodules and NT. Using two-marker gene sets, a specific FNAB distinction of benign and malignant tumours was achieved with negative predictive values (NPV) up to 0.78 and positive predictive values (PPV) up to 0.84. Two FNAB marker gene combinations (ADM3/TFF3; ADM3/ACTB) allowed the distinction of FA and malignant follicular neoplasia with NPV up to 0.94 and PPV up to 0.86. Conclusion: We demonstrate that molecular FNAB diagnosis of benign and malignant thyroid tumours including follicular neoplasia is possible with recently identified marker gene combinations. We propose multi-centre FNAB studies on these markers to bring this promising diagnostic tool closer to clinical practice. PMID:22223087

  13. The Wiphala Genomics: the deployment of molecular markers in small-scale potato crop systems in the Bolivian Andes

    NARCIS (Netherlands)

    Puente, D.

    2008-01-01

    The deployment of molecular markers in the small-scale potato systems in the Bolivian Andes takes place within two contradictory understandings of potato biodiversity. On the one hand, biodiversity is understood as raw material; farmers' varieties have no intrinsic value, value is added by breeders

  14. Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha: Teleostei).

    Science.gov (United States)

    Lavoué, Sébastien; Sullivan, John P

    2004-10-01

    Fishes of the Superorder Osteoglossomorpha (the "bonytongues") constitute a morphologically heterogeneous group of basal teleosts, including highly derived subgroups such as African electric fishes, the African butterfly fish, and Old World knifefishes. Lack of consensus among hypotheses of osteoglossomorph relationships advanced during the past 30 years may be due in part to the difficulty of identifying shared derived characters among the morphologically differentiated extant families of this group. In this study, we present a novel phylogenetic hypothesis for this group, based on the analysis of more than 4000 characters from five molecular markers (the mitochondrial cytochrome b, 12S and 16S rRNA genes, and the nuclear genes RAG2 and MLL). Our taxonomic sampling includes one representative of each extant non-mormyrid osteoglossomorph genus, one representative for the monophyletic family Mormyridae, and four outgroup taxa within the basal Teleostei. Maximum parsimony analysis of combined and equally weighted characters from the five molecular markers and Bayesian analysis provide a single, well-supported, hypothesis of osteoglossomorph interrelationships and show the group to be monophyletic. The tree topology is the following: (Hiodon alosoides, (Pantodon buchholzi, (((Osteoglossum bicirrhosum, Scleropages sp.), (Arapaima gigas, Heterotis niloticus)), ((Gymnarchus niloticus, Ivindomyrus opdenboschi), ((Notopterus notopterus, Chitala ornata), (Xenomystus nigri, Papyrocranus afer)))))). We compare our results with previously published phylogenetic hypotheses based on morpho-anatomical data. Additionally, we explore the consequences of the long terminal branch length for the taxon Pantodon buchholzi in our phylogenetic reconstruction and we use the obtained phylogenetic tree to reconstruct the evolutionary history of electroreception in the Notopteroidei.

  15. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach

    Science.gov (United States)

    2006-02-01

    some variability between protein assay measurements. Using densitometric analysis after 1D-PAGE, microfiltration alone showed an 11 ( 5% sample reduction...KOPETSCH, O., WOSZCZYK, A., et al. (2003). Serum S-100B protein as a molecular marker in severe trau- matic brain injury. Restor . Neurol. Neurosci. 21...proteomics. Implications in the search for preventive initiatives to slow the clinical progression of Alzheimer’s disease dementia. Restor . Neurol. Neurosci

  17. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    OpenAIRE

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240?360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and ?-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us t...

  18. Marker-assisted selection in fish and shellfish breeding schemes

    International Nuclear Information System (INIS)

    Martinez, V.

    2007-01-01

    The main goals of breeding programmes for fish and shellfish are to increase the profitability and sustainability of aquaculture. Traditionally, these have been carried out successfully using pedigree information by selecting individuals based on breeding values predicted for traits measured on candidates using an 'animal model'. This methodology assumes that phenotypes are explained by a large number of genes with small effects and random environmental deviations. However, information on individual genes with medium or large effects cannot be used in this manner. In selective breeding programmes using pedigree information, molecular markers have been used primarily for parentage assignment when tagging individual fish is difficult and to avoid causing common environmental effects from rearing families in separate tanks. The use of these techniques in such conventional breeding programmes is discussed in detail. Exploiting the great biological diversity of many fish and shellfish species, different experimental designs may use either chromosomal manipulations or large family sizes to increase the likelihood of finding the loci affecting quantitative traits, the so-called QTL, by screening the segregation of molecular markers. Using information on identified loci in breeding schemes in aquaculture is expected to be cost-effective compared with traditional breeding methods only when the accuracy of predicting breeding values is rather low, e.g. for traits with low heritability such as disease resistance or carcass quality. One of the problems facing aquaculture is that some of the resources required to locate QTL accurately, such as dense linkage maps, are not yet available for the many species. Recently, however, information from expressed sequence tag (EST) databases has been used for developing molecular markers such as microsatellites and single nucleotide polymorphisms (SNPs). Marker-assisted selection (MAS) or genome-wide marker-assisted selection (G-MAS) using

  19. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low- molecular -weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  20. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low-molecular-weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  1. Evolutionary history of genus Macrobrachium inferred from mitochondrial markers: a molecular clock approach.

    Science.gov (United States)

    Jose, Deepak; Harikrishnan, Mahadevan

    2018-04-17

    Caridea, an infraorder of shrimps coming under Pleocyemata was first reported from the oceans before 417 million years followed by their radiation recorded during the Permian period. Hitherto, about 3877 extant caridean species were accounted within which one quarter constitute freshwater species. Freshwater prawns of genus Macrobrachium (Infraorder Caridea; Family Palaemonidae), with more than 240 species are inhabitants of diverse aquatic habitats like coastal lagoons, lakes, tropical streams, ponds and rivers. Previous studies on Macrobrachium relied on the highly variable morphological characters which were insufficient for accurate diagnosis of natural species groups. Present study focuses on the utility of molecular markers (viz. COI and 16S rRNA) for resolving the evolutionary history of genus Macrobrachium using a combination of phylogeny and timescale components. It is for the first time a molecular clock approach had been carried out towards genus Macrobrachium in a broad aspect with the incorporation of congeners inhabiting diverse geographical realms including endemic species M. striatum from South West coast of India. Molecular results obtained revealed the phylogenetic relationships between congeners of genus Macrobrachium at intra/inter-continental level along with the corresponding evolutionary time estimates.

  2. Mining and gene ontology based annotation of SSR markers from expressed sequence tags of Humulus lupulus

    Science.gov (United States)

    Singh, Swati; Gupta, Sanchita; Mani, Ashutosh; Chaturvedi, Anoop

    2012-01-01

    Humulus lupulus is commonly known as hops, a member of the family moraceae. Currently many projects are underway leading to the accumulation of voluminous genomic and expressed sequence tag sequences in public databases. The genetically characterized domains in these databases are limited due to non-availability of reliable molecular markers. The large data of EST sequences are available in hops. The simple sequence repeat markers extracted from EST data are used as molecular markers for genetic characterization, in the present study. 25,495 EST sequences were examined and assembled to get full-length sequences. Maximum frequency distribution was shown by mononucleotide SSR motifs i.e. 60.44% in contig and 62.16% in singleton where as minimum frequency are observed for hexanucleotide SSR in contig (0.09%) and pentanucleotide SSR in singletons (0.12%). Maximum trinucleotide motifs code for Glutamic acid (GAA) while AT/TA were the most frequent repeat of dinucleotide SSRs. Flanking primer pairs were designed in-silico for the SSR containing sequences. Functional categorization of SSRs containing sequences was done through gene ontology terms like biological process, cellular component and molecular function. PMID:22368382

  3. Exploiting transcriptome data for the development and characterization of gene-based SSR markers related to cold tolerance in oil palm (Elaeis guineensis).

    Science.gov (United States)

    Xiao, Yong; Zhou, Lixia; Xia, Wei; Mason, Annaliese S; Yang, Yaodong; Ma, Zilong; Peng, Ming

    2014-12-19

    The oil palm (Elaeis guineensis, 2n = 32) has the highest oil yield of any crop species, as well as comprising the richest dietary source of provitamin A. For the tropical species, the best mean growth temperature is about 27°C, with a minimal growth temperature of 15°C. Hence, the plantation area is limited into the geographical ranges of 10°N to 10°S. Enhancing cold tolerance capability will increase the total cultivation area and subsequently oil productivity of this tropical species. Developing molecular markers related to cold tolerance would be helpful for molecular breeding of cold tolerant Elaeis guineensis. In total, 5791 gene-based SSRs were identified in 51,452 expressed sequences from Elaeis guineensis transcriptome data: approximately one SSR was detected per 10 expressed sequences. Of these 5791 gene-based SSRs, 916 were derived from expressed sequences up- or down-regulated at least two-fold in response to cold stress. A total of 182 polymorphic markers were developed and characterized from 442 primer pairs flanking these cold-responsive SSR repeats. The polymorphic information content (PIC) of these polymorphic SSR markers across 24 lines of Elaeis guineensis varied from 0.08 to 0.65 (mean = 0.31 ± 0.12). Using in-silico mapping, 137 (75.3%) of the 182 polymorphic SSR markers were located onto the 16 Elaeis guineensis chromosomes. Total coverage of 473 Mbp was achieved, with an average physical distance of 3.4 Mbp between adjacent markers (range 96 bp - 20.8 Mbp). Meanwhile, Comparative analysis of transcriptome under cold stress revealed that one ICE1 putative ortholog, five CBF putative orthologs, 19 NAC transcription factors and four cold-induced orhologs were up-regulated at least two fold in response to cold stress. Interestingly, 5' untranslated region of both Unigene21287 (ICE1) and CL2628.Contig1 (NAC) both contained an SSR markers. In the present study, a series of SSR markers were developed based on sequences

  4. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    Directory of Open Access Journals (Sweden)

    Rogier Christophe

    2009-04-01

    Full Text Available Abstract Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the

  5. Nanoplatform-based molecular imaging

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2011-01-01

    "Nanoplathform-Based Molecular Imaging provides rationale for using nanoparticle-based probes for molecular imaging, then discusses general strategies for this underutilized, yet promising, technology...

  6. Variability among Capsicum baccatum accessions from Goiás, Brazil, assessed by morphological traits and molecular markers.

    Science.gov (United States)

    Martinez, A L A; Araújo, J S P; Ragassi, C F; Buso, G S C; Reifschneider, F J B

    2017-07-06

    Capsicum peppers are native to the Americas, with Brazil being a significant diversity center. Capsicum baccatum accessions at Instituto Federal (IF) Goiano represent a portion of the species genetic resources from central Brazil. We aimed to characterize a C. baccatum working collection comprising 27 accessions and 3 commercial cultivars using morphological traits and molecular markers to describe its genetic and morphological variability and verify the occurrence of duplicates. This set included 1 C. baccatum var. praetermissum and 29 C. baccatum var. pendulum with potential for use in breeding programs. Twenty-two morphological descriptors, 57 inter-simple sequence repeat, and 34 random amplified polymorphic DNA markers were used. Genetic distance was calculated through the Jaccard similarity index and genetic variability through cluster analysis using the unweighted pair group method with arithmetic mean, resulting in dendrograms for both morphological analysis and molecular analysis. Genetic variability was found among C. baccatum var. pendulum accessions, and the distinction between the two C. baccatum varieties was evident in both the morphological and molecular analyses. The 29 C. baccatum var. pendulum genotypes clustered in four groups according to fruit type in the morphological analysis. They formed seven groups in the molecular analysis, without a clear correspondence with morphology. No duplicates were found. The results describe the genetic and morphological variability, provide a detailed characterization of genotypes, and discard the possibility of duplicates within the IF Goiano C. baccatum L. collection. This study will foment the use of this germplasm collection in C. baccatum breeding programs.

  7. Molecular marker analysis as a guide to the sources of fine organic aerosols

    International Nuclear Information System (INIS)

    Rogge, W.F.; Cass, G.R.; Hildemann, L.M.; Simoneit, B.R.T.

    1992-07-01

    The molecular composition of fine particulate (D p ≥ 2 μm) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available

  8. Use of SSR markers for DNA fingerprinting and diversity analysis of Pakistani sugarcane (Saccharum spp. hybrids) cultivars

    Science.gov (United States)

    In recent years SSR markers have been used widely for genetic analysis. The objective of this study was to use an SSR-based marker system to develop the molecular fingerprints and analyze the genetic relationship of sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers wer...

  9. Generating markers based on biotic stress of protein system in and tandem repeats sequence for Aquilaria sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hanif Azhari N; Siti Norhayati Ismail

    2014-01-01

    Aquilaria sp. belongs to the Thymelaeaceae family and is well distributed in Asia region. The species has multipurpose use from root to shoot and is an economically important crop, which generates wide interest in understanding genetic diversity of the species. Knowledge on DNA-based markers has become a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. In this work, both targeted genes and tandem repeat sequences were used for DNA fingerprinting in Aquilaria sp. A total of 100 ISSR (inter simple sequence repeat) primers and 50 combination pairs of specific primers derived from conserved region of a specific protein known as system in were optimized. 38 ISSR primers were found affirmative for polymorphism evaluation study and were generated from both specific and degenerate ISSR primers. And one utmost combination of system in primers showed significant results in distinguishing the Aquilaria sp. In conclusion, polymorphism derived from ISSR profiling and targeted stress genes of protein system in proved as a powerful approach for identification and molecular classification of Aquilaria sp. which will be useful for diversification in identifying any mutant lines derived from nature. (author)

  10. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis.

    Science.gov (United States)

    Bracci, T; Busconi, M; Fogher, C; Sebastiani, L

    2011-04-01

    Olive (Olea europaea L.) is one of the oldest agricultural tree crops worldwide and is an important source of oil with beneficial properties for human health. This emblematic tree crop of the Mediterranean Basin, which has conserved a very wide germplasm estimated in more than 1,200 cultivars, is a diploid species (2n = 2x = 46) that is present in two forms, namely wild (Olea europaea subsp. europaea var. sylvestris) and cultivated (Olea europaea subsp. europaea var. europaea). In spite of its economic and nutritional importance, there are few data about the genetic of olive if compared with other fruit crops. Available molecular data are especially related to the application of molecular markers to the analysis of genetic variability in Olea europaea complex and to develop efficient molecular tools for the olive oil origin traceability. With regard to genomic research, in the last years efforts are made for the identification of expressed sequence tag, with particular interest in those sequences expressed during fruit development and in pollen allergens. Very recently the sequencing of chloroplast genome provided new information on the olive nucleotide sequence, opening the olive genomic era. In this article, we provide an overview of the most relevant results in olive molecular studies. A particular attention was given to DNA markers and their application that constitute the most part of published researches. The first important results in genome analysis were reported.

  11. pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment

    DEFF Research Database (Denmark)

    El Azhari, Najoi

    2007-01-01

    Microorganisms degrading phenolic compounds play an important role in soil carbon cycling as well as in pesticide degradation. The pcaH gene encoding a key ring-cleaving enzyme of the β-ketoadipate pathway was selected as a functional marker. Using a degenerate primer pair, pcaH fragments were cl......H sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pair targets a wide diversity of pcaH sequences, thereby constituting a suitable molecular marker to estimate the response of the pca community to agricultural practices....

  12. Teaching practice and experiences of verifying the three laws of genetics based on the SSLP marker analysis.

    Science.gov (United States)

    Huang, Xue-Ying; Fan, Kai; Ye, Yan-Fang; Wang, Bin; Wu, Wei-Ren; Lan, Tao

    2017-09-20

    We explored the practical effect of the genetic analysis of simple sequence length polymorphism (SSLP) molecular markers in rice in the genetics lab course. Two parents and their F 2 population were analyzed and detected with three SSLP molecular markers that located on two chromosomes of the rice genome. The markers' genotype data were used to verify the three laws of genetics, including segregation, independent assortment and linkage and crossing-over. Our practice has proved not only beneficial to deepen students' understandings about the three laws of genetics, but also conducive to cultivate students' interests in research and innovation and improve their skills and comprehensive analysis abilities. At the same time, the application scope of the experiment was discussed. This comprehensive experiment is also useful for the transformation of scientific research achievements into undergraduate experimental teaching.

  13. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia.

    Science.gov (United States)

    Eberhart, Charles G; Kratz, John; Wang, Yunyue; Summers, Krista; Stearns, Duncan; Cohen, Kenneth; Dang, Chi V; Burger, Peter C

    2004-05-01

    Several molecular and histopathological prognostic markers have been proposed for the therapeutic stratification of medulloblastoma patients. Amplification of the c-myc oncogene, elevated levels of c-myc mRNA, or tumor anaplasia have been associated with worse clinical outcomes. In contrast, high TrkC mRNA expression generally presages longer survival. The goal of this study was to evaluate the prognostic value of c-myc, N-myc and TrkC expression in medulloblastomas and compare them to histopathological classification. We used in situ hybridization to measure expression of these molecular markers. c-myc mRNA was detected in 18 of 59 (31%) cases, and was significantly associated with shorter patient survival times on both univariate and multivariate analyses (p = 0.04). The presence of c-myc mRNA was also significantly associated with tumor anaplasia. While survival rates were higher for patients with low N-myc or high TrkC expression, these differences were not statistically significant. The group of patients with either moderate or severely anaplastic tumors showed only a trend towards shorter survival (p = 0.11). However, severe anaplasia alone was significantly prognostic (p = 0.002). Given the prognostic import of c-myc, we investigated 2 potential mechanisms by which its expression might be regulated: Wnt signaling and Mxi-1 mutation. Nuclear translocation of beta-catenin, a marker of Wnt pathway activation, was more common in medulloblastomas with high c-myc than in tumors overall, but the difference was not statistically significant. No Mxi-1 mutations were detected in the 22 cases examined. The association we describe between c-myc expression, tumor anaplasia, and worse clinical outcomes provides further evidence for the importance of this oncogene in medulloblastoma pathobiology.

  14. Processes underpinning development and maintenance of diversity in rice in West Africa: Evidence from combining morphological and molecular markers

    NARCIS (Netherlands)

    Mokuwa, G.A.; Nuijten, H.A.C.P.; Okry, F.; Teeken, B.W.E.; Maat, H.; Richards, P.; Struik, P.C.

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component

  15. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    2006-12-01

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  16. Development of ITS sequence based molecular marker to distinguish, Tribulus terrestris L. (Zygophyllaceae) from its adulterants.

    Science.gov (United States)

    Balasubramani, Subramani Paranthaman; Murugan, Ramar; Ravikumar, Kaliamoorthy; Venkatasubramanian, Padma

    2010-09-01

    Tribulus terrestris L. (Zygophyllaceae) is one of the highly traded raw drugs and also used as a stimulative food additive in Europe and USA. While, Ayurvedic Pharmacopoeia of India recognizes T. terrestris as Goksura, Tribulus lanuginosus and T. subramanyamii are also traded by the same name raising issues of quality control. The nuclear ribosomal RNA genes and ITS (internal transcribed spacer) sequence were used to develop species-specific DNA markers. The species-specific markers efficiently amplified 295bp for T. terrestris (TT1F and TT1R), 300bp for T. lanuginosus (TL1F and TL1R) and 214bp for T. subramanyamii (TS1F and TS1R). These DNA markers can be used to distinguish T. terrestris from its adulterants. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Molecular Genetic Diversity of Date (Phoenix dactylifera) Germplasm in Qatar based on Microsatellite Markers

    KAUST Repository

    Ahmed, Talaat

    2016-01-01

    Depending on morphological traits alone, studying the genetic diversity of date palm is a very difficult task since morphological characteristics are highly affected by the environment. DNA markers are excellent option that can help and enhance

  18. Separation of the genera in the subtribe Cassiinae (Leguminosae: Caesalpinioidae using molecular markers Separação dos gêneros na subtribo Cassiinae (Leguminosae: Caesalpinioidae utilizando marcadores moleculares

    Directory of Open Access Journals (Sweden)

    Laxmikanta Acharya

    2011-03-01

    Full Text Available Random amplified polymorphic DNA (RAPD, Inter simple sequence repeat (ISSR and Amplified fragment length polymorphism (AFLP markers were used to verify the segregation of the genus Cassia L. senso lato into three distinct genera namely Chamaecrista Moench., Senna P. Mill. and Cassia L. sensostricto Eighteen representatives of the three taxa were characterized using the molecular markers. 25 RAPD, six ISSR primers and six AFLP primer combinations resulted in the amplification of 612, 115 and 622 bands (loci respectively. Most of the loci are found to be polymorphic, showing high degrees of genetic diversity among the different taxa studied. The dendrogram constructed on the basis of the RAPD, ISSR and AFLP data using SHAN clustering, divided Cassia L. senso lato. into three different clusters as Chamaecrista Moench. Senna P. Mill. and Cassia L. senso stricto High bootstrap value revealed that all the clusters were stable and robust. It was observed from the present investigation that these genera have their identity at molecular level, which supports the elevation of the genus Cassia L. senso lato to the level of subtribe Cassiinae and segregation into three distinct genera instead of intrageneric categories.Técnicas de Random amplified polymorphic DNA (RAPD, Inter simple sequence repeat (ISSR e Amplified Fragment Length Polymorphism markers (AFLP foram utilizadas para verificar a segregação do gênero Cassia L. senso lato em três diferentes gêneros, Chamaecrista Moench., Senna P. Mill. e Cassia L. senso stricto Dezoito representantes dos três táxons foram caracterizados com o uso de marcadores moleculares: 25 RAPD, seis iniciadores ("primers" ISSR e seis AFLP combinações de iniciadores, resultando na amplificação de 612, 115 e 622 bandas (loci, respectivamente. A maioria dos loci apresentou-se como polimórfico, mostrando um alto grau de diversidade genética entre os táxons estudados. O dendrograma construído com base nos dados de

  19. Identification of the sources of primary organic aerosols at urban schools: A molecular marker approach

    International Nuclear Information System (INIS)

    Crilley, Leigh R.; Qadir, Raeed M.; Ayoko, Godwin A.; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Orasche, Jürgen; Zimmermann, Ralf; Morawska, Lidia

    2014-01-01

    Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children's exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools. - Highlights: • Selected organic molecular markers at 11 urban schools were analyzed. • Four sources of primary organic aerosols were identified by PMF at the schools. • Both local and regional sources were found to influence exposure at the schools. • The results have implications for mitigation of children's exposure at schools. - The identification of the most important sources of primary organic aerosols at urban schools has implications for control strategies for mitigating children's exposure at schools

  20. Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae and the utility of molecular markers.

    Directory of Open Access Journals (Sweden)

    Louis Graf

    Full Text Available Coccophora langsdorfii (Turner Greville (Fucales is an intertidal brown alga that is endemic to Northeast Asia and increasingly endangered by habitat loss and climate change. We sequenced the complete circular plastid and mitochondrial genomes of C. langsdorfii. The circular plastid genome is 124,450 bp and contains 139 protein-coding, 28 tRNA and 6 rRNA genes. The circular mitochondrial genome is 35,660 bp and contains 38 protein-coding, 25 tRNA and 3 rRNA genes. The structure and gene content of the C. langsdorfii plastid genome is similar to those of other species in the Fucales. The plastid genomes of brown algae in other orders share similar gene content but exhibit large structural recombination. The large in-frame insert in the cox2 gene in the mitochondrial genome of C. langsdorfii is typical of other brown algae. We explored the effect of this insertion on the structure and function of the cox2 protein. We estimated the usefulness of 135 plastid genes and 35 mitochondrial genes for developing molecular markers. This study shows that 29 organellar genes will prove efficient for resolving brown algal phylogeny. In addition, we propose a new molecular marker suitable for the study of intraspecific genetic diversity that should be tested in a large survey of populations of C. langsdorfii.

  1. Mixed Marker-Based/Marker-Less Visual Odometry System for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Fabrizio Lamberti

    2013-05-01

    Full Text Available Abstract When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision-based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision-based odometry algorithm, which is capable of estimating the relative frame-to-frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off-the-shelf quadrotor via extensive experimental tests.

  2. Investigation and Analysis of Genetic Diversity of Diospyros Germplasms Using SCoT Molecular Markers in Guangxi.

    Science.gov (United States)

    Deng, Libao; Liang, Qingzhi; He, Xinhua; Luo, Cong; Chen, Hu; Qin, Zhenshi

    2015-01-01

    Knowledge about genetic diversity and relationships among germplasms could be an invaluable aid in diospyros improvement strategies. This study was designed to analyze the genetic diversity and relationship of local and natural varieties in Guangxi Zhuang Autonomous Region of China using start codon targeted polymorphism (SCoT) markers. The accessions of 95 diospyros germplasms belonging to four species Diospyros kaki Thunb, D. oleifera Cheng, D. kaki var. silverstris Mak, and D. lotus Linn were collected from different eco-climatic zones in Guangxi and were analyzed using SCoT markers. Results indicated that the accessions of 95 diospyros germplasms could be distinguished using SCoT markers, and were divided into three groups at similarity coefficient of 0.608; these germplasms that belong to the same species were clustered together; of these, the degree of genetic diversity of the natural D. kaki var. silverstris Mak population was richest among the four species; the geographical distance showed that the 12 natural populations of D. kaki var. silverstris Mak were divided into two groups at similarity coefficient of 0.19. Meanwhile, in order to further verify the stable and useful of SCoT markers in diospyros germplasms, SSR markers were also used in current research to analyze the genetic diversity and relationship in the same diospyros germplasms. Once again, majority of germplasms that belong to the same species were clustered together. Thus SCoT markers were stable and especially useful for analysis of the genetic diversity and relationship in diospyros germplasms. The molecular characterization and diversity assessment of diospyros were very important for conservation of diospyros germplasm resources, meanwhile for diospyros improvement.

  3. Marker-based or model-based RSA for evaluation of hip resurfacing arthroplasty? A clinical validation and 5-year follow-up.

    Science.gov (United States)

    Lorenzen, Nina Dyrberg; Stilling, Maiken; Jakobsen, Stig Storgaard; Gustafson, Klas; Søballe, Kjeld; Baad-Hansen, Thomas

    2013-11-01

    The stability of implants is vital to ensure a long-term survival. RSA determines micro-motions of implants as a predictor of early implant failure. RSA can be performed as a marker- or model-based analysis. So far, CAD and RE model-based RSA have not been validated for use in hip resurfacing arthroplasty (HRA). A phantom study determined the precision of marker-based and CAD and RE model-based RSA on a HRA implant. In a clinical study, 19 patients were followed with stereoradiographs until 5 years after surgery. Analysis of double-examination migration results determined the clinical precision of marker-based and CAD model-based RSA, and at the 5-year follow-up, results of the total translation (TT) and the total rotation (TR) for marker- and CAD model-based RSA were compared. The phantom study showed that comparison of the precision (SDdiff) in marker-based RSA analysis was more precise than model-based RSA analysis in TT (p CAD RSA analysis (p = 0.002), but showed no difference between the marker- and CAD model-based RSA analysis regarding the TR (p = 0.91). Comparing the mean signed values regarding the TT and the TR at the 5-year follow-up in 13 patients, the TT was lower (p = 0.03) and the TR higher (p = 0.04) in the marker-based RSA compared to CAD model-based RSA. The precision of marker-based RSA was significantly better than model-based RSA. However, problems with occluded markers lead to exclusion of many patients which was not a problem with model-based RSA. HRA were stable at the 5-year follow-up. The detection limit was 0.2 mm TT and 1° TR for marker-based and 0.5 mm TT and 1° TR for CAD model-based RSA for HRA.

  4. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Gómez Marcela

    2009-12-01

    Full Text Available Abstract Background Expressed sequence tags (ESTs are an important source of gene-based markers such as those based on insertion-deletions (Indels or single-nucleotide polymorphisms (SNPs. Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs, to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction

  5. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Galeano, Carlos H; Fernández, Andrea C; Gómez, Marcela; Blair, Matthew W

    2009-12-23

    Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 x G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 x 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation

  6. Polyploidy creates higher diversity among Cynodon accessions as assessed by molecular markers.

    Science.gov (United States)

    Gulsen, Osman; Sever-Mutlu, Songul; Mutlu, Nedim; Tuna, Metin; Karaguzel, Osman; Shearman, Robert C; Riordan, Terrance P; Heng-Moss, Tiffany M

    2009-05-01

    Developing a better understanding of associations among ploidy level, geographic distribution, and genetic diversity of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to: (1) determine ploidy analysis of Cynodon accessions collected from Turkey, (2) investigate associations between ploidy level and diversity, (3) determine whether geographic and ploidy distribution are related to nuclear genome variation, and (4) correlate among four nuclear molecular marker systems for Cynodon accessions' genetic analyses. One hundred and eighty-two Cynodon accessions collected in Turkey from an area south of the Taurus Mountains along the Mediterranean cost and ten known genotypes were genotyped using sequence related amplified polymorphism (SRAP), peroxidase gene polymorphism (POGP), inter-simple sequence repeat (ISSR), and random amplified polymorphic DNA (RAPD). The diploids, triploids, tetraploids, pentaploids, and hexaploids revealed by flow cytometry had a linear present band frequency of 0.36, 0.47, 0.49, 0.52, and 0.54, respectively. Regression analysis explained that quadratic relationship between ploidy level and band frequency was the most explanatory (r = 0.62, P Cynodon accessions' genetic structure can aid to enhance breeding programs and broaden genetic base of commercial cultivars.

  7. Molecular markers validation to drought resistance in wheat meal (Triticum aestivum L. under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Gabriel Julio

    2013-08-01

    Full Text Available With the aim to study the genetic resistance to drought and validate molecular markers co-localized with genes/QTLs for this factor, 16 varieties were evaluated as well as advanced lines of wheat meal (Triticum aestivum in two stages of crop development. Physiological parameters were considered: amount of chlorophyll (clo, wilting or severity degree (SEV and recovery (reco, morphological parameters: foliage dry matter (FDM and root dry matter (RDM, the integrated resistance mechanisms: water use efficiency (WUE, other parameters: number of grains (Ngrain and grain weight (Wgrain, biochemical parameters: Catalaza (CAT, Ascorbate Peroxidase (APX and Guaiacol Peroxidase (POX and three microsatellite markers (Xwmc603, Xwmc596, Xwmc9. Results showed significant differences for MSR and Ngrain. It was observed that Anzaldo, ERR2V.L-20, EARII2V.L-5, EARIZV.L-11, ERR2V.L-11 and EE2V.L-19 were the most resistant to drough water stress. There was a highly significant negative correlation between the MSR and Ngrain. All other variables showed low and non-significant correlations. In biochemical analyzes, the Anzaldo variety showed an increased enzymatic activity compared to controls in all cases (CAT-APX and POX, being the most resistant to water stress by drought. Finally, it was found that SSR markers (Xwmc596 and Xwmc9 are co-located with the gene / QTL of drought resistance and can be used for marker-assisted selection.

  8. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    Science.gov (United States)

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in

  9. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.

    Directory of Open Access Journals (Sweden)

    Schaffer Arthur

    2011-07-01

    Full Text Available Abstract Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L. over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS. Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org, an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability

  10. Translating epithelial mesenchymal transition markers into the clinic: Novel insights from proteomics

    Directory of Open Access Journals (Sweden)

    Vergara Daniele

    2016-03-01

    Full Text Available The growing understanding of the molecular mechanisms underlying epithelial-to-mesenchymal transition (EMT may represent a potential source of clinical markers. Despite EMT drivers have not yet emerged as candidate markers in the clinical setting, their association with established clinical markers may improve their specificity and sensitivity. Mass spectrometry-based platforms allow analyzing multiple samples for the expression of EMT candidate markers, and may help to diagnose diseases or monitor treatment efficiently. This review highlights proteomic approaches applied to elucidate the differences between epithelial and mesenchymal tumors and describes how these can be used for target discovery and validation.

  11. Occupational exposure to diesel engine exhaust and alterations in immune/inflammatory markers : a cross-sectional molecular epidemiology study in China

    NARCIS (Netherlands)

    Bassig, Bryan A.; Dai, Yufei; Vermeulen, Roel; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Shiels, Meredith S; Kemp, Troy J; Pinto, Ligia A; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Wong, Jason Y Y; Li, Ping; Hosgood, H. Dean; Hildesheim, Allan; Silverman, Debra T.; Rothman, Nathaniel; Zheng, Yuxin; Lan, Qing

    2017-01-01

    The relationship between diesel engine exhaust (DEE), a known lung carcinogen, and immune/inflammatory markers that have been prospectively associated with lung cancer risk is not well understood. To provide insight into these associations, we conducted a cross-sectional molecular epidemiology study

  12. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in-vitro culture in cryopreservation studies.

    Science.gov (United States)

    Anil, Siji; Rawson, David; Zhang, Tiantian

    2018-05-29

    Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae, Trigonini based on rapd markers

    Directory of Open Access Journals (Sweden)

    Rosana de Cássia Oliveira

    2004-01-01

    Full Text Available One of the commonest neotropical stingless bees is Tetragonisca angustula (Latreille, 1811, popularly known in Portuguese as jataí, which occurs in variable nesting sites from Mexico to Argentina. We used 18 primers to generate 218 RAPD markers which we used to determined the genetic distance between T. angustula populations from 25 localities in three different Latin America countries, using Tetragonisca weyrauchi from the Brazilian state of Acre and the common honey bee (Apis mellifera as outgroups. Genetic distance, calculated as the Percentage of Dissimilarity (14%, based on all markers divided the T. angustula population into eastern (group 1 and western (group 2 groups. However, we were able to separate the two groups by using only two primers that have generated five specific molecular markers. The eastern group consists of T. angustula angustula which occurs from Panama to the Brazilian states of Maranhão and northern Minas Gerais and has spread through the Brazilian Atlantic Forest as far as the southern Brazilian state of Santa Catarina. Group 2 is made up of T. angustula fiebrigi which has a more southerly and western distribution, occurring only in the western Brazilian states of Mato Grosso and Mato Grosso do Sul as well as the west of some other Brazilian states (Goiás, Minas Gerais, São Paulo, Paraná and Santa Catarina and northeastern Argentina.

  14. Evaluation of molecular markers for Phytophthora ramorum detection and identification: Testing for specificity using a standardized library of isolates

    Science.gov (United States)

    F.N. Martin; M.D. Coffey; K. Zeller; R.C. Hamelin; P. Tooley; M. Garbelotto; K.J.D. Hughes; T. Kubisiak; G.J. Bilodeau; L. Levy; C. Blomquist; P.H. Berger

    2009-01-01

    Given the importance of Phytophthora ramorum from a regulatory standpoint, it is imperative that molecular markers for pathogen detection are fully tested to evaluate their specificity in detection of the pathogen. In an effort to evaluate 11 reported diagnostic techniques, we assembled a standardized DNA library using accessions from the World...

  15. Use of molecular markers in identification and characterization of resistance to rice blast in India.

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Yadav

    Full Text Available Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs using molecular markers linked to twelve major blast resistance (R genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75% showed resistance, twenty one were moderately resistant (26.25% while remaining forty varieties (50% showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.

  16. Use of molecular markers in identification and characterization of resistance to rice blast in India.

    Science.gov (United States)

    Yadav, Manoj Kumar; S, Aravindan; Ngangkham, Umakanta; Shubudhi, H N; Bag, Manas Kumar; Adak, Totan; Munda, Sushmita; Samantaray, Sanghamitra; Jena, Mayabini

    2017-01-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs) using molecular markers linked to twelve major blast resistance (R) genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75%) showed resistance, twenty one were moderately resistant (26.25%) while remaining forty varieties (50%) showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.

  17. Retrotransposon-Based Molecular Markers for Analysis of Genetic Diversity within the Genus Linum

    Science.gov (United States)

    Melnikova, Nataliya V.; Kudryavtseva, Anna V.; Zelenin, Alexander V.; Lakunina, Valentina A.; Yurkevich, Olga Yu.; Speranskaya, Anna S.; Dmitriev, Alexey A.; Krinitsina, Anastasia A.; Belenikin, Maxim S.; Uroshlev, Leonid A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Koroban, Nadezda V.; Amosova, Alexandra V.; Samatadze, Tatiana E.; Guzenko, Elena V.; Lemesh, Valentina A.; Savilova, Anastasya M.; Rachinskaia, Olga A.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Bolsheva, Nadezhda L.; Muravenko, Olga V.

    2014-01-01

    SSAP method was used to study the genetic diversity of 22 Linum species from sections Linum, Adenolinum, Dasylinum, Stellerolinum, and 46 flax cultivars. All the studied flax varieties were distinguished using SSAP for retrotransposons FL9 and FL11. Thus, the validity of SSAP method was demonstrated for flax marking, identification of accessions in genebank collections, and control during propagation of flax varieties. Polymorphism of Fl1a, Fl1b, and Cassandra insertions were very low in flax varieties, but these retrotransposons were successfully used for the investigation of Linum species. Species clusterization based on SSAP markers was in concordance with their taxonomic division into sections Dasylinum, Stellerolinum, Adenolinum, and Linum. All species of sect. Adenolinum clustered apart from species of sect. Linum. The data confirmed the accuracy of the separation in these sections. Members of section Linum are not as closely related as members of other sections, so taxonomic revision of this section is desirable. L. usitatissimum accessions genetically distant from modern flax cultivars were revealed in our work. These accessions are of utmost interest for flax breeding and introduction of new useful traits into flax cultivars. The chromosome localization of Cassandra retrotransposon in Linum species was determined. PMID:25243121

  18. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Díaz-Arce, Natalia

    2016-06-07

    Although species from the genus Thunnus include some of the most commercially important and most severely overexploited fishes, the phylogeny of this genus is still unresolved, hampering evolutionary and traceability studies that could help improve conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough phylogenetically informative markers. Here we infer the first genome-wide nuclear marker-based phylogeny of tunas using restriction site associated DNA sequencing (RAD-seq) data. Our results, derived from phylogenomic inferences obtained from 128 nucleotide matrices constructed using alternative data assembly procedures, support a single Thunnus evolutionary history that challenges previous assumptions based on morphological and molecular data.

  19. Pathogenicity Assay of Vibrio harveyi in Tiger Shrimp Larvae Employing Rifampicin-Resistant as A Molecular Marker

    Directory of Open Access Journals (Sweden)

    . Widanarni

    2007-12-01

    Full Text Available Rifampicin-resistant marker was employed as a reporter to assay pathogenicity of Vibrio harveyi  in shrimp larvae.  V. harveyi M. G3 and G7 that difference not schizotyping as shown by Pulsed-Filed Gel Electrophoresis (PFGE used in this study. Spontaneous mutation was conducted to generate V. harveyi resistant to rifampicin. Two groups of shrimp post-larvae (PL5 were immersed for 30 min in 106 CFU/ml of mutants and wild type of V. harveyi, respectively; and then placed in a 2 liter shrimp rearing tank for five days. A control group was immersed in sterile seawater. Growth curve analysis and pathogenicity assay of V. harveyi  showed that each of the V. harveyi mutant exhibited almost identical profiles to that of the wild type parental strain and did not show alteration in their pathogenicity. Sample from dead shrimp larvae showed that the dead shrimp larvae were infected by V. harveyi RfR, indicated that rifampicin-resistant marker effective as a reporter to assay pathogenicity of Vibrio harveyi in shrimp larvae. Key words: shrimp larvae, Vibrio harveyi, rifampicin-resistant, molecular marker

  20. De novo transcriptome analysis and molecular marker development of two Hemarthria species

    Directory of Open Access Journals (Sweden)

    Xiu eHuang

    2016-04-01

    Full Text Available Hemarthria R. Br. is an important genus of perennial forage grasses that is widely used in subtropical and tropical regions. Hemarthria grasses have made remarkable contributions to the development of animal husbandry and agro-ecosystem maintenance; however, there is currently a lack of comprehensive genomic data available for these species. In this study, we used Illumina high-throughput deep sequencing to characterize of two agriculturally important Hemarthria materials, H. compressa ‘Yaan’ and H. altissima ‘1110.’ Sequencing runs that used each of four normalized RNA samples from the leaves or roots of the two materials yielded more than 24 million high-quality reads. After de novo assembly, 137,142 and 77,150 unigenes were obtained for ‘Yaan’ and ‘1110’, respectively. In addition, a total of 86,731 ‘Yaan’ and 48,645 ‘1110’ unigenes were successfully annotated. After consolidating the unigenes for both materials, 42,646 high-quality SNPs were identified in 10,880 unigenes and 10,888 SSRs were identified in 8,330 unigenes. To validate the identified markers, high quality PCR primers were designed for both SNPs and SSRs. We randomly tested 16 of the SNP primers and 54 of the SSR primers and found that the majority of these primers successfully amplified the desired PCR product. In addition, high cross-species transferability (61.11%-87.04% of SSR markers was achieved for four other Poaceae species. The amount of RNA sequencing data that was generated for these two Hemarthria species greatly increases the amount of genomic information available for Hemarthria and the SSR and SNP markers identified in this study will facilitate further advancements in genetic and molecular studies of the Hemarthria genus.

  1. SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis.

    Science.gov (United States)

    Han, Zhengzhou; Ma, Xinye; Wei, Min; Zhao, Tong; Zhan, Ruoting; Chen, Weiwen

    2018-04-25

    Chrysanthemum indicum L., an important ancestral species of the flowering plant chrysanthemum, can be used as medicine and for functional food development. Due to the lack of hereditary information for this species and the difficulty of germplasm identification, we herein provide new genetic insight from the perspective of intraspecific transcriptome comparison and present single sequence repeat (SSR) molecular marker recognition technology. Through the study of a diploid germplasm (DIWNT) and a tetraploid germplasm (DIWT), the following outcome were obtained. (1) A significant difference in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations for specific homologous genes was observed using the OrthoMCL method for the identification of homologous gene families between the two cytotypes. Ka/Ks analysis of common, single-copy homologous family members also revealed a greater difference among genes that experienced positive selection than among those experiencing positive selection. (2) Of more practical value, 2575 SSR markers were predicted and partly verified. We used TaxonGap as a visual tool to inspect genotype uniqueness and screen for high-performance molecular loci; we recommend four primers of 65 randomly selected primers with a combined identification success rate of 88.6% as priorities for further development of DNA fingerprinting of C. indicum germplasm. The SSR technology based on next-generation sequencing was proved to be successful in the identification of C. indicum germplasms. And the information on the intraspecfic genetic divergence generated by transcriptome comparison deepened the understanding of this complex species' nature.

  2. Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers

    Science.gov (United States)

    Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAP and dCAP markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as tetraploid cotton that has A and D subgenomes. The obje...

  3. Assessment on Evaluating Parameters of Rice Core Collections Constructed by Genotypic Values and Molecular Marker Information

    Directory of Open Access Journals (Sweden)

    Jian-cheng WANG

    2007-06-01

    Full Text Available Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marker information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR was the optimal parameter. Mean Simpson index (MD, mean Shannon-Weaver index of genetic diversity (MI and mean polymorphism information content (MPIC were important evaluating parameters. The variable rate of coefficient of variation (VR could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p could be used as a determination parameter for the size of core collection. Mean difference percentage (MD was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.

  4. Molecular marker genes for ectomycorrhizal symbiosis

    Science.gov (United States)

    Shiv Hiremath; Carolyn McQuattie; Gopi Podila; Jenise. Bauman

    2013-01-01

    Mycorrhizal symbiosis is a mutually beneficial association very commonly found among most vascular plants. Formation of mycorrhiza happens only between compatible partners and predicting this is often accomplished through a trial and error process. We investigated the possibility of using expression of symbiosis specific genes as markers to predict the formation of...

  5. A Novel Marker Based Method to Teeth Alignment in MRI

    Science.gov (United States)

    Luukinen, Jean-Marc; Aalto, Daniel; Malinen, Jarmo; Niikuni, Naoko; Saunavaara, Jani; Jääsaari, Päivi; Ojalammi, Antti; Parkkola, Riitta; Soukka, Tero; Happonen, Risto-Pekka

    2018-04-01

    Magnetic resonance imaging (MRI) can precisely capture the anatomy of the vocal tract. However, the crowns of teeth are not visible in standard MRI scans. In this study, a marker-based teeth alignment method is presented and evaluated. Ten patients undergoing orthognathic surgery were enrolled. Supraglottal airways were imaged preoperatively using structural MRI. MRI visible markers were developed, and they were attached to maxillary teeth and corresponding locations on the dental casts. Repeated measurements of intermarker distances in MRI and in a replica model was compared using linear regression analysis. Dental cast MRI and corresponding caliper measurements did not differ significantly. In contrast, the marker locations in vivo differed somewhat from the dental cast measurements likely due to marker placement inaccuracies. The markers were clearly visible in MRI and allowed for dental models to be aligned to head and neck MRI scans.

  6. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles.

    Science.gov (United States)

    Campbell, Eleanor A; Peterson, Evan; Kolpashchikov, Dmitry M

    2017-07-05

    DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  8. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications.

    Science.gov (United States)

    Mubjer, Reem A; Adeel, Ahmed A; Chance, Michael L; Hassan, Amir A

    2011-08-21

    This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP). Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt)-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr)-C59R and dihydropteroate synthase (dhps)-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum parasites from Yemen. Mutant pfcrtT76 is highly prevalent but it

  9. Molecular markers derived from bombesin for tumor diagnosis by SPECT and PET; Marcadores moleculares derivados da bombesina para diagnostico de tumores por SPECT e PET

    Energy Technology Data Exchange (ETDEWEB)

    Pujatti, Priscilla Brunelli

    2012-07-01

    A high number of molecules have already been identified to have high affinity to some receptors overexpressed on tumour cells and the radiolabelling of those molecules offers the possibility of new compounds for tumour diagnosis and therapy by nuclear medicine. Among of those molecules, bombesin (BBN) has become focus of interest, as its BB{sub 2} receptors are known to be overexpressed in prostate, breast, colon, pancreatic and lung tumour, as long as glioblastomas and neuroblastomas. BBN agonists and antagonists have already been described for this purpose and promising results were obtained in preclinical studies. However, most of them exhibited high abdominal accumulation, especially in pancreas and intestines, which can compromise diagnosis accuracy and cause serious adverse effects in therapy. In this context, the goal of the present work to radiolabel new BBN derivatives with {sup 11}1In and {sup 68}Ga and to evaluate their potential for BB{sub 2} positive tumors diagnosis by single photon emission tomography (SPECT) and positron emission tomography (PET). The structure of studied peptides was Q-YG{sub n}-BBN(6-14), where Q is the chelator, n is the number of glycine aminoacids in the spacer YG{sub n} and BBN(6-14) is the original bombesin sequence from the aminoacid 6 to 14. The derivative in which the last aminoacid (methionine, Met) was replaced by norleucine (Nle) was also evaluated. The experimental evaluation of the bombesin derivatives was divided into four steps: computational studies, molecular markers for SPECT, molecular markers for PET and toxicological studies. The theoretical partition (log P) and distribution (log D) coefficients were calculated for all bombesin derivatives conjugated to DTPA (diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators applying computational programmes. Bombesin derivatives for SPECT were developed by radiolabelling DTPA-conjugated bombesin derivatives with

  10. Novel molecular markers differentiate Oncorhynchus mykiss (rainbow trout and steelhead) and the O. clarki (cutthroat trout) subspecies

    Science.gov (United States)

    Ostberg, C.O.; Rodriguez, R.J.

    2002-01-01

    A suite of 26 PCR-based markers was developed that differentiates rainbow (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki). The markers also differentiated rainbow from other cutthroat trout subspecies (O. clarki), and several of the markers differentiated between cutthroat trout subspecies. This system has numerous positive attributes, including: nonlethal sampling, high species-specificity and products that are easily identified and scored using agarose gel electrophoresis. The methodology described for developing the markers can be applied to virtually any system in which numerous markers are desired for identifying or differentiating species or subspecies.

  11. Phylogeny and systematics of the brake fern genus Pteris (Pteridaceae) based on molecular (plastid and nuclear) and morphological evidence.

    Science.gov (United States)

    Zhang, Liang; Zhang, Li-Bing

    2018-01-01

    The brake fern genus Pteris belongs to Pteridaceae subfamily Pteridoideae. It is one of the largest fern genera and has been estimated to contain 200-250 species distributed on all continents except Antarctica. Previous studies were either based on plastid data only or based on both plastid and nuclear data but the sampling was small. In addition, an infrageneric classification of Pteris based on morphological and molecular evidence has not been available yet. In the present study, based on molecular data of eight plastid markers and one nuclear marker (gapCp) of 256 accessions representing ca. 178 species of Pteris, we reconstruct a global phylogeny of Pteris. The 15 major clades identified earlier are recovered here and we further identified a new major clade. Our nuclear phylogeny recovered 11 of these 16 major clades, seven of which are strongly supported. The inclusion of Schizostege in Pteris is confirmed for the first time. Based on the newly reconstructed phylogeny and evidence from morphology, distribution and/or ecology, we classify Pteris into three subgenera: P. subg. Pteris, P. subg. Campteria, and P. subg. Platyzoma. The former two are further divided into three and 12 sections, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts

    Science.gov (United States)

    Lee, Taehyung

    2017-01-01

    In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals. PMID:29236050

  13. From quality markers to data mining and intelligence assessment: A smart quality-evaluation strategy for traditional Chinese medicine based on quality markers.

    Science.gov (United States)

    Bai, Gang; Zhang, Tiejun; Hou, Yuanyuan; Ding, Guoyu; Jiang, Min; Luo, Guoan

    2018-01-31

    The quality of traditional Chinese medicine (TCM) forms the foundation of its clinical efficacy. The standardization of TCM is the most important task of TCM modernization. In recent years, there has been great progress in the quality control of TCM. However, there are still many issues related to the current quality standards, and it is difficult to objectively evaluate and effectively control the quality of TCM. To face these challenge, we summarized the current quality marker (Q-marker) research based on its characteristics and benefits, and proposed a reasonable and intelligentized quality evaluation strategy for the development and application of Q-markers. Ultra-performance liquid chromatography-quadrupole/time-of-flight with partial least squares-discriminant analysis was suggested to screen the chemical markers from Chinese medicinal materials (CMM), and a bioactive-guided evaluation method was used to select the Q-markers. Near-infrared spectroscopy (NIRS), based on the distinctive wavenumber zones or points from the Q-markers, was developed for its determination. Then, artificial intelligence algorithms were used to clarify the complex relationship between the Q-markers and their integral functions. Internet and mobile communication technology helped us to perform remote analysis and determine the information feedback of test samples. The quality control research, evaluation, standard establishment and quality control of TCM must be based on the systematic analysis of Q-markers to study and describe the material basis of TCM efficacy, define the chemical markers in the plant body, and understand the process of herb drug acquisition, change and transmission laws affecting metabolism and exposure. Based on the advantages of chemometrics, new sensor technologies, including infrared spectroscopy, hyperspectral imaging, chemical imaging, electronic nose and electronic tongue, have become increasingly important in the quality evaluation of CMM. Inspired by the

  14. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    Science.gov (United States)

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  15. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat.

    Science.gov (United States)

    Wu, Peipei; Xie, Jingzhong; Hu, Jinghuang; Qiu, Dan; Liu, Zhiyong; Li, Jingting; Li, Miaomiao; Zhang, Hongjun; Yang, Li; Liu, Hongwei; Zhou, Yang; Zhang, Zhongjun; Li, Hongjie

    2018-01-01

    Powdery mildew resistance gene Pm4b , originating from Triticum persicum , is effective against the prevalent Blumeria graminis f. sp. tritici ( Bgt ) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F 2:3 mapping population (237 families) derived from a pair of isogenic lines VPM1/7 ∗ Bainong 3217 F 4 (carrying Pm4b ) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F 2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b -linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13 , Xics43 , and Xics76 , were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with

  16. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq in Wheat

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2018-02-01

    Full Text Available Powdery mildew resistance gene Pm4b, originating from Triticum persicum, is effective against the prevalent Blumeria graminis f. sp. tritici (Bgt isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS. The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq was applied in an F2:3 mapping population (237 families derived from a pair of isogenic lines VPM1/7∗Bainong 3217 F4 (carrying Pm4b and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13, Xics43, and Xics76, were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with

  17. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  18. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics.

    Science.gov (United States)

    Patrizi, Alfredo; Pennestrì, Ettore; Valentini, Pier Paolo

    2016-01-01

    The paper deals with the comparison between a high-end marker-based acquisition system and a low-cost marker-less methodology for the assessment of the human posture during working tasks. The low-cost methodology is based on the use of a single Microsoft Kinect V1 device. The high-end acquisition system is the BTS SMART that requires the use of reflective markers to be placed on the subject's body. Three practical working activities involving object lifting and displacement have been investigated. The operational risk has been evaluated according to the lifting equation proposed by the American National Institute for Occupational Safety and Health. The results of the study show that the risk multipliers computed from the two acquisition methodologies are very close for all the analysed activities. In agreement to this outcome, the marker-less methodology based on the Microsoft Kinect V1 device seems very promising to promote the dissemination of computer-aided assessment of ergonomics while maintaining good accuracy and affordable costs. PRACTITIONER’S SUMMARY: The study is motivated by the increasing interest for on-site working ergonomics assessment. We compared a low-cost marker-less methodology with a high-end marker-based system. We tested them on three different working tasks, assessing the working risk of lifting loads. The two methodologies showed comparable precision in all the investigations.

  19. Detection of molecular markers by comparative sequence analysis of enzymes from mycobacteria species

    International Nuclear Information System (INIS)

    Asad, S.; Hussain, M.; Siddiqua, A.; Ain, Q.U.

    2014-01-01

    Mycobacterial species are one of the most important pathogens and among these members of non-tuberculous mycobacteria (NTM) and mycobacterial tuberculousis complex (MTC) are the causative agent of a relatively milder form of Tuberculosis. Traditional methods for identification of these groups of pathogens are time consuming, lack specificity and sensitivity and furthermore lead to the misidentification due to high similarity index. Therefore, more rapid, specific and cost-effective methods are required for the accurate identification of Mycobacterium species in routine diagnostics. In our study, we identified molecular markers in order to differentiate closely related cousin species of genus Mycobacterium including M. bovis, M. avium, M. leprae and M. tuberculosis. The nucleotide sequences of selected unique markers, i.e., enzymes (used previously in various biochemical tests for the identification of M. species) were selected and their ORFs were retrieved and selected functional proteins of respective biosynthetic pathways were compared in-silico. Result suggested that the variations in nucleotide sequences of the selected enzymes can be directly used for M. species discrimination in one step PCR test. We believe that the in-silico identification and storage of these distinctive characteristics of individual M. species will help in more precise recognition of pathogenic strains and hence specie specific targeted therapy. (author)

  20. Study of the Expression of Survivin & Its Splice Variants; ΔEx3, 2b and 3b as Diagnostic Molecular Markers in Breast Cancer

    Directory of Open Access Journals (Sweden)

    E Babaei

    2009-07-01

    Full Text Available Introduction: Survivin is a new member of the Inhibitor Apotosis Protein family (IAP which plays an important role in the regulation of both cell cycle and apoptosis. Its distinct expression in tumor cells as compared to normal adult cells introduces Survivin as the fourth transcriptom demonstrated in tumors. Breast cancer is the most common malignancy among women and scientist`s efforts to classify it has lead to various molecular subtypes and controversial results. Because of the high prevalence of these tumors and lack of suitable molecular markers for diagnosis and prognosis, there are ongoing efforts to find molecular markers which can distinguish nontumoral from tumor tissues. In this study we evaluate the potential usefulness of Survivin and its splice variants ΔEx3, 2b and 3b as molecular markers in breast cancer. Methods: We studied 18 tumor and 17 non tumor adjacent tissues. Transcription levels were measured by Semiquantitative Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR and normalized by ß2m as an internal control. Results: 1Survivin and its splice variants; Δex3, 2b and 3b showed differentially higher expression levels in tumors than adjacent normal tissues. 2 The expression levels of Survivin, Survivin-ΔEx3 and Survivin-3b were significantly correlated with the type of tumors. 3 Survivin-2b was expressed in a few samples. 4 Survivin-3b was detected only in tumor samples. Also, our results showed that ΔEx3 variant can be introduced as a dominant expressed variant in breast cancer. Conclusion: Our data indicated that the expression of Survivin, Survivin ∆Ex3 and especially, Survivin-3b were correlated with cancerous nature of tumors and Survivin-∆Ex3 was the most common expressed variant in breast carcinomas. These results besides confirming the potential usefulness of Survivin and its splice variants as molecular markers in breast cancer, demonstrated the role of the gene and its splice variants, especially 3b

  1. Genetic variability of watermelon accessions based on microsatellite markers.

    Science.gov (United States)

    de S Gama, R N C; Santos, C A F; de C S Dias, R

    2013-03-13

    We analyzed the genetic variability of 40 watermelon accessions collected from 8 regions of Northeastern Brazil using microsatellite markers, in order to suggest strategies of conservation and utilization of genetic variability in this species. These accessions are not commercial cultivars. They were sampled in areas of traditional farmers that usually keep their own seeds for future plantings year after year. An UPGMA dendrogram was generated from a distance matrix of the Jaccard coefficient, based on 41 alleles of 13 microsatellite loci. Analysis of molecular variance was made by partitioning between and within geographical regions. The similarity coefficient between accessions ranged from 37 to 96%; the dendrogram gave a co-phenetic value of 0.80. The among population genetic variability was high ( (^)ϕST = 0.319). Specific clusters of accessions sampled in 3 regions of Maranhão were observed while the other 5 regions did not presented specific clusters by regions. We conclude that watermelon genetic variability is not uniformly dispersed in the regions analyzed, indicating that geographical barriers or edaphoclimatic conditions have limited open mating. We suggest sampling a greater number of populations, so regional species diversity will be better represented and preserved in the germplasm bank.

  2. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Chihara, Yoshitomo; Hirao, Yoshihiko; Kanai, Yae; Fujimoto, Hiroyuki; Sugano, Kokichi; Kawashima, Kiyotaka; Liang, Gangning; Jones, Peter A; Fujimoto, Kiyohide; Kuniyasu, Hiroki

    2013-01-01

    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  3. Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle

    Directory of Open Access Journals (Sweden)

    Yeun Sub Byun

    2016-11-01

    Full Text Available Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS, vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm and reliable under unexpected missing markers or incorrect markers.

  4. Genetic and epigenetic markers in colorectal cancer screening: recent advances.

    Science.gov (United States)

    Singh, Manish Pratap; Rai, Sandhya; Suyal, Shradha; Singh, Sunil Kumar; Singh, Nand Kumar; Agarwal, Akash; Srivastava, Sameer

    2017-07-01

    Colorectal cancer (CRC) is a heterogenous disease which develops from benign intraepithelial lesions known as adenomas to malignant carcinomas. Acquired alterations in Wnt signaling, TGFβ, MAPK pathway genes and clonal propagation of altered cells are responsible for this transformation. Detection of adenomas or early stage cancer in asymptomatic patients and better prognostic and predictive markers is important for improving the clinical management of CRC. Area covered: In this review, the authors have evaluated the potential of genetic and epigenetic alterations as markers for early detection, prognosis and therapeutic predictive potential in the context of CRC. We have discussed molecular heterogeneity present in CRC and its correlation to prognosis and response to therapy. Expert commentary: Molecular marker based CRC screening methods still fail to gain trust of clinicians. Invasive screening methods, molecular heterogeneity, chemoresistance and low quality test samples are some key challenges which need to be addressed in the present context. New sequencing technologies and integrated omics data analysis of individual or population cohort results in GWAS. MPE studies following a GWAS could be future line of research to establish accurate correlations between CRC and its risk factors. This strategy would identify most reliable biomarkers for CRC screening and management.

  5. Metal-Based Systems for Molecular Imaging Applications - COST D38 Annual Workshop - Scientific Program and Abstracts

    International Nuclear Information System (INIS)

    Mikolajczak, R.

    2009-01-01

    The main objective of the Action is the development of metal-based imaging probes for cellular and molecular imaging applications, based on MRI, PET, SPECT and optical imaging that will facilitate early diagnosis, assessment of disease progression and treatment evaluation.The goal of this Action is to further the development of innovative imaging probes through the pursuit of innovations in a number of different areas, ranging from the design of imaging units endowed with enhanced sensitivity to the control of the structural and electronic determinants responsible for the molecular recognition of the target molecule.At present, in vivo diagnostic systems basically assess the structure and function of human organs. Therefore, for important diseases such as cancer and cardiovascular pathologies,and also diseases of the central nervous system, only the late symptoms are detected. It is expected that the advances in genomics and proteomics will have a tremendous impact on human health care of the future. However, advances in molecular biology are already redefining diseases in terms of molecular abnormalities. With this knowledge, new generations of diagnostic imaging agents can be defined that aim at the detection of those molecular processes in vivo.The molecular imaging approach offers a great potential for earlier detection and characterisation of disease, and evaluation of treatment. However, more research is necessary to bring these ideas to clinical applications and a key aspect relates to the development of high-specificity, high-sensitivity imaging probes for the different detection modalities. Additionally, the Action includes research activities dealing with the exploitation of peculiar nuclear properties of given isotopes for therapeutic effects, thus integrating the diagnostic and the therapeutic stages.Apart from its use in early diagnosis in clinical practice, the molecular imaging approach will have also a major impact on the development of new

  6. Characterization of onion genotypes by use of RAPD markers

    Directory of Open Access Journals (Sweden)

    Pavlović Nenad

    2012-01-01

    Full Text Available In order to estimate, at the molecular level, the divergence of parental lines that were used in diallel crossbreeding for production of superior offspring (F1 generation hybrids at the Institute for Vegetable Crops, the molecular analysis using five RAPD markers for five pairs of parents has been performed. It gives an insight into their genetic polymorphism and the possibility of their further use in breeding programs. Information from this research has pioneered the application of molecular markers of onion in Serbia. Analyses were performed using the RAPD primers, which in previous studies established a high degree of polymorphism. In all five cases there was a corresponding amplification of DNA segments. From totally 50 bands analyzed, the length of fragments ranged from 500 to 3000 bp. Number of polymorphic band per example was 8 to 13. In our research at the level of the analyzed primers, a high degree of polymorphism between analyzed genotypes has been found. Based on UPGMA dendogram, analyzed genotypes were divided into two main clusters and two subclusters.

  7. Identification of Paramecium bursaria syngens through molecular markers--comparative analysis of three loci in the nuclear and mitochondrial DNA.

    Science.gov (United States)

    Greczek-Stachura, Magdalena; Potekhin, Alexey; Przyboś, Ewa; Rautian, Maria; Skoblo, Inna; Tarcz, Sebastian

    2012-09-01

    This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Application of molecular markers in breeding for bean common ...

    African Journals Online (AJOL)

    Sequence characterised amplified region (SCAR) markers, linked to four independent quantitative trait loci (QTL) in XAN 159 and GN #1 Nebr. sel. 27, are available for indirect selection of resistance to common bacterial blight in Phaseolus vulgaris. Existing SCAR-markers, SU91, BC420, BC409 and SAP6, were evaluated ...

  9. Simple sequence repeat marker loci discovery using SSR primer.

    Science.gov (United States)

    Robinson, Andrew J; Love, Christopher G; Batley, Jacqueline; Barker, Gary; Edwards, David

    2004-06-12

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. With the increase in the availability of DNA sequence information, an automated process to identify and design PCR primers for amplification of SSR loci would be a useful tool in plant breeding programs. We report an application that integrates SPUTNIK, an SSR repeat finder, with Primer3, a PCR primer design program, into one pipeline tool, SSR Primer. On submission of multiple FASTA formatted sequences, the script screens each sequence for SSRs using SPUTNIK. The results are parsed to Primer3 for locus-specific primer design. The script makes use of a Web-based interface, enabling remote use. This program has been written in PERL and is freely available for non-commercial users by request from the authors. The Web-based version may be accessed at http://hornbill.cspp.latrobe.edu.au/

  10. Identification of quality markers of Yuanhu Zhitong tablets based on integrative pharmacology and data mining.

    Science.gov (United States)

    Li, Ke; Li, Junfang; Su, Jin; Xiao, Xuefeng; Peng, Xiujuan; Liu, Feng; Li, Defeng; Zhang, Yi; Chong, Tao; Xu, Haiyu; Liu, Changxiao; Yang, Hongjun

    2018-03-07

    The quality evaluation of traditional Chinese medicine (TCM) formulations is needed to guarantee the safety and efficacy. In our laboratory, we established interaction rules between chemical quality control and biological activity evaluations to study Yuanhu Zhitong tablets (YZTs). Moreover, a quality marker (Q-marker) has recently been proposed as a new concept in the quality control of TCM. However, no appropriate methods are available for the identification of Q-markers from the complex TCM systems. We aimed to use an integrative pharmacological (IP) approach to further identify Q-markers from YZTs through the integration of multidisciplinary knowledge. In addition, data mining was used to determine the correlation between multiple constituents of this TCM and its bioactivity to improve quality control. The IP approach was used to identify the active constituents of YZTs and elucidate the molecular mechanisms by integrating chemical and biosynthetic analyses, drug metabolism, and network pharmacology. Data mining methods including grey relational analysis (GRA) and least squares support vector machine (LS-SVM) regression techniques, were used to establish the correlations among the constituents and efficacy, and dose efficacy in multiple dimensions. Seven constituents (tetrahydropalmatine, α-allocryptopine, protopine, corydaline, imperatorin, isoimperatorin, and byakangelicin) were identified as Q-markers of YZT using IP based on their high abundance, specific presence in the individual herbal constituents and the product, appropriate drug-like properties, and critical contribution to the bioactivity of the mixture of YZT constituents. Moreover, three Q-markers (protopine, α-allocryptopine, and corydaline) were highly correlated with the multiple bioactivities of the YZTs, as found using data mining. Finally, three constituents (tetrahydropalmatine, corydaline, and imperatorin) were chosen as minimum combinations that both distinguished the authentic

  11. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper.

    Science.gov (United States)

    Manivannan, Abinaya; Kim, Jin-Hee; Yang, Eun-Young; Ahn, Yul-Kyun; Lee, Eun-Su; Choi, Sena; Kim, Do-Sun

    2018-01-01

    Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.

  12. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2018-01-01

    Full Text Available Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.

  13. Novel molecular method for identification of Streptococcus pneumoniae applicable to clinical microbiology and 16S rRNA sequence-based microbiome studies

    DEFF Research Database (Denmark)

    Scholz, Christian F. P.; Poulsen, Knud; Kilian, Mogens

    2012-01-01

    offers an inexpensive means for validation of the identity of clinical isolates and should be used as an integrated marker in the annotation procedure employed in 16S rRNA-based molecular studies of complex human microbiotas. This may avoid frequent misidentifications such as those we demonstrate to have...

  14. Marcadores moleculares em estudos de caracterização de erva-mate (Ilex paraguariensis St.Hil.: o sabor Molecular markers in erva-mate (Ilex paraguariensis araguariensis St.Hil. characterization studies: the taste

    Directory of Open Access Journals (Sweden)

    Mario Angelo Vidor

    2002-06-01

    Full Text Available A Epagri (Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina S.A possui uma das maiores coleções brasileiras de erva-mate (Ilex paraguariensis St.Hil.. A partir de ensaios agronômicos preliminares, apresentaram destaque as procedências Barão de Cotegipe e Água Doce. Dentre essas, verificaram-se diferentes sabores (mais amargo e menos amargo, aparentemente, em função do tipo de folha (CL - curta e larga; LE - longa e estreita. O objetivo deste trabalho foi o de tentar associar os padrões obtidos mediante marcadores moleculares, com as procedências ou acessos e características fenotípicas desejáveis - altura de planta, diâmetro de copa, densidade folhar, sobrevivência das plantas e comportamento de rebrota -, dentro do caráter sabor em erva-mate. Para isto, utilizaram-se marcadores moleculares que amplificam DNA, do tipo RAPD (Random Amplified Polymorphic DNA. Os resultados indicaram não ser possível, com o número de iniciadores utlizados como marcadores moleculares, definir geneticamente o caráter sabor, ainda que os mesmos tenham indicado tendência para tal.The Santa Catarina State Agricultural Research and Extensios Organization - Epagri SA, owns one of the largest Brazilian colletions or erva-mate (Ilex paraguariensis St.Hil.. Preliminary agronomic trials identified two promissing erva-mate materials named Barão de Cotegipe and Água Doce. Different tastes within each material were also identified, i.e. tastes with different grades of bitterness, apparently associated with the shape of leaves (CL - short and wide; LE - long and narrow. This study aimed to associate this plant patterns using molecular markers with plant origins and desirable fenotipic characteristics such as plant height, crown diameter, leaf density, plant survival, regrowth behaviour, within each taste group. For this molecular markers which amplify DNA of RAPD type (Random Amplified Polimorphic DNA was used. The results did not allow

  15. SCoT marker for the assessment of genetic diversity in saudi arabian date palm cultivars

    International Nuclear Information System (INIS)

    Qurainy, F.A.; Tarroum, M.

    2015-01-01

    Different types of molecular markers based on DNA have been used for the assessment of genetic diversity in the plant species. Start Codon Targeted Polymorphism (SCoT) marker has recently become the marker of choice in genetic diversity studies. SCoT marker was used for the assessment of genetic diversity in Saudi Arabian date palm cultivars. The percentage of polymorphic loci (PPL) at population level ranged from 3.28 to 13.11 with an average of 7.10. The Neis gene diversity (h) and Shannons Information index (I) were 0.033 and 0.046, respectively. However, at cultivar level, PPL, Neis gene diversity (h) and Shannons Information index (I) were 42.62, 0.090 and 0.155, respectively. Analysis of molecular variance (AMOVA) showed 48% of variation within the populations, whereas 52% was found among the populations. A hierarchical analysis of molecular variance revealed level of genetic differentiation among populations (52% of total variance, P = 0.001), consistent with the gene differentiation coefficient (Gst = 0.631). Unweighted pair group method of arithmetic averages (UPGMA) cluster analysis of the SCoT marker data divided the six cultivars and their populations into five main clusters at 0.95 genetic similarity coefficient level. (author)

  16. An integrated evaluation of molecular marker indices and linear alkylbenzenes (LABs) to measure sewage input in a subtropical estuary (Babitonga Bay, Brazil)

    International Nuclear Information System (INIS)

    Martins, César C.; Cabral, Ana Caroline; Barbosa-Cintra, Scheyla C.T.; Dauner, Ana Lúcia L.; Souza, Fernanda M.

    2014-01-01

    Babitonga Bay is a South Atlantic estuary with significant ecological function; it is part of the last remaining areas of mangrove communities in the Southern Hemisphere. The aim of this study was to determine the spatial distribution of the faecal sterols and linear alkylbenzenes (LABs) in surface sediments and to perform an integrated evaluation of several molecular marker indices to assess the sewage contamination status in the study area. The highest observed concentrations of faecal sterols (coprostanol + epicoprostanol) and LABs were 6.65 μg g −1 and 413.3 ng g −1 , respectively. Several faecal sterol indices were calculated and correlated with coprostanol levels; these analyses showed that the index limits presented in the current literature could underestimate the sewage contamination in this study area. For the overall estuarine system, a low sewage impact may be assumed based on the low total mass inventories calculated for coprostanol (between 1.4% and 4.8%). - Highlights: • Sewage contamination in a South Atlantic estuary was confirmed by molecular markers. • Faecal sterol indices were established as indicators of sewage contamination. • Estimates of the total mass inventory of coprostanol and LABs are presented. • Faecal sterols are preferable to LABs for the evaluation of sewage inputs in this study area. - Faecal sterols index limits has been established to a subtropical environment as way to ensure reliability for a more precise assessment of sewage contamination

  17. Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India.

    Directory of Open Access Journals (Sweden)

    Ankush Ashok Saddhe

    Full Text Available The plant DNA barcoding is a complex and requires more than one marker(s as compared to animal barcoding. Mangroves are diverse estuarine ecosystem prevalent in the tropical and subtropical zone, but anthropogenic activity turned them into the vulnerable ecosystem. There is a need to build a molecular reference library of mangrove plant species based on molecular barcode marker along with morphological characteristics. In this study, we tested the core plant barcode (rbcL and matK and four promising complementary barcodes (ITS2, psbK-psbI, rpoC1 and atpF-atpH in 14 mangroves species belonging to 5 families from West Coast India. Data analysis was performed based on barcode gap analysis, intra- and inter-specific genetic distance, Automated Barcode Gap Discovery (ABGD, TaxonDNA (BM, BCM, Poisson Tree Processes (PTP and General Mixed Yule-coalescent (GMYC. matK+ITS2 marker based on GMYC method resolved 57.14% of mangroves species and TaxonDNA, ABGD, and PTP discriminated 42.85% of mangrove species. With a single locus analysis, ITS2 exhibited the higher discriminatory power (87.82% and combinations of matK + ITS2 provided the highest discrimination success (89.74% rate except for Avicennia genus. Further, we explored 3 additional markers (psbK-psbI, rpoC1, and atpF-atpH for Avicennia genera (A. alba, A. officinalis and A. marina and atpF-atpH locus was able to discriminate three species of Avicennia genera. Our analysis underscored the efficacy of matK + ITS2 markers along with atpF-atpH as the best combination for mangrove identification in West Coast India regions.

  18. High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of Upper Brahmaputra Valley Zone of NE India using molecular markers.

    Science.gov (United States)

    Medhi, K; Sarmah, D K; Deka, M; Bhau, B S

    2014-12-01

    The genetic diversity in Zanthoxylum species viz.  Zanthoxylum nitidum, Zanthoxylum oxyphyllum and Zanthoxylum rhesta collected from the Upper Brahmaputra Valley Zone of Assam (NE India) was amplified using 13 random amplified polymorphic DNA (RAPD) markers and 9 inter-simple sequence repeat (ISSR) markers. RAPD markers were able to detect 81.82% polymorphism whereas ISSR detected 98.02% polymorphism. The genetic similarities were analyzed from the dendrogram constructed by RAPD and ISSR fingerprinting methods which divided the 3 species of Zanthoxylum into 3 clear different clusters. The principle component analysis (PCA) was carried out to confirm the clustering pattern of RAPD and ISSR analysis. Analysis of molecular variance (AMOVA) revealed the presence of significant variability between different Zanthoxylum species and within the species by both RAPD and ISSR markers. Z. nitidum was found to be sharing a high degree of variation with the other two Zanthoxylum species under study. The Nei's gene diversity (h), Shannon's information index (I), observed number of alleles (na) and effective number of alleles (ne) were also found to be higher in ISSR markers (0.3526, 0.5230, 1.9802 and 1.6145) than in RAPD markers (0.3144, 0.4610, 1.8182 and 1.5571). The values for total genotype diversity for among population (HT), within population diversity (Hs) and gene flow (Nm) were more in ISSR (0.3491, 0.2644 and 1.5610) than RAPD (0.3128, 0.2264 and 1.3087) but the mean coefficient of gene differentiation (GST) was more in RAPD (0.2764) than ISSR (0.2426). A comparison of this two finger printing methods was done by calculating MR, EMI and MI. The correlation coefficient between data matrices of RAPD and ISSR based on Mantel test was found to be significant (r = 0.65612).

  19. Searching for non-genetic molecular and imaging PTSD risk and resilience markers: Systematic review of literature and design of the German Armed Forces PTSD biomarker study.

    Science.gov (United States)

    Schmidt, Ulrike; Willmund, Gerd-Dieter; Holsboer, Florian; Wotjak, Carsten T; Gallinat, Jürgen; Kowalski, Jens T; Zimmermann, Peter

    2015-01-01

    Biomarkers allowing the identification of individuals with an above average vulnerability or resilience for posttraumatic stress disorder (PTSD) would especially serve populations at high risk for trauma exposure like firefighters, police officers and combat soldiers. Aiming to identify the most promising putative PTSD vulnerability markers, we conducted the first systematic review on potential imaging and non-genetic molecular markers for PTSD risk and resilience. Following the PRISMA guidelines, we systematically screened the PubMed database for prospective longitudinal clinical studies and twin studies reporting on pre-trauma and post-trauma PTSD risk and resilience biomarkers. Using 25 different combinations of search terms, we retrieved 8151 articles of which we finally included and evaluated 9 imaging and 27 molecular studies. In addition, we briefly illustrate the design of the ongoing prospective German Armed Forces (Bundeswehr) PTSD biomarker study (Bw-BioPTSD) which not only aims to validate these previous findings but also to identify novel and clinically applicable molecular, psychological and imaging risk, resilience and disease markers for deployment-related psychopathology in a cohort of German soldiers who served in Afghanistan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Genome-Wide Development of MicroRNA-Based SSR Markers in Medicago truncatula with Their Transferability Analysis and Utilization in Related Legume Species.

    Science.gov (United States)

    Min, Xueyang; Zhang, Zhengshe; Liu, Yisong; Wei, Xingyi; Liu, Zhipeng; Wang, Yanrong; Liu, Wenxian

    2017-11-18

    Microsatellite (simple sequence repeats, SSRs) marker is one of the most widely used markers in marker-assisted breeding. As one type of functional markers, MicroRNA-based SSR (miRNA-SSR) markers have been exploited mainly in animals, but the development and characterization of miRNA-SSR markers in plants are still limited. In the present study, miRNA-SSR markers for Medicago truncatula ( M. truncatula ) were developed and their cross-species transferability in six leguminous species was evaluated. A total of 169 primer pairs were successfully designed from 130 M. truncatula miRNA genes, the majority of which were mononucleotide repeats (70.41%), followed by dinucleotide repeats (14.20%), compound repeats (11.24%) and trinucleotide repeats (4.14%). Functional classification of SSR-containing miRNA genes showed that all targets could be grouped into three Gene Ontology (GO) categories: 17 in biological process, 11 in molecular function, and 14 in cellular component. The miRNA-SSR markers showed high transferability in other six leguminous species, ranged from 74.56% to 90.53%. Furthermore, 25 Mt - miRNA-SSR markers were used to evaluate polymorphisms in 20 alfalfa accessions, and the polymorphism information content (PIC) values ranged from 0.39 to 0.89 with an average of 0.71, the allele number per marker varied from 3 to 18 with an average of 7.88, indicating a high level of informativeness. The present study is the first time developed and characterized of M. truncatula miRNA-SSRs and demonstrated their utility in transferability, these novel markers will be valuable for genetic diversity analysis, marker-assisted selection and genotyping in leguminous species.

  1. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    Science.gov (United States)

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  2. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Boyang Xing

    2018-05-01

    Full Text Available A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland. Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB beacon and lidar to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV visual localization and robotics control.

  3. Genetic rearrangements of six wheat-agropyron cristatum 6P addition lines revealed by molecular markers.

    Directory of Open Access Journals (Sweden)

    Haiming Han

    Full Text Available Agropyron cristatum (L. Gaertn. (2n = 4x = 28, PPPP not only is cultivated as pasture fodder but also could provide many desirable genes for wheat improvement. It is critical to obtain common wheat-A. cristatum alien disomic addition lines to locate the desired genes on the P genome chromosomes. Comparative analysis of the homoeologous relationships between the P genome chromosome and wheat genome chromosomes is a key step in transferring different desirable genes into common wheat and producing the desired alien translocation line while compensating for the loss of wheat chromatin. In this study, six common wheat-A. cristatum disomic addition lines were produced and analyzed by phenotypic examination, genomic in situ hybridization (GISH, SSR markers from the ABD genomes and STS markers from the P genome. Comparative maps, six in total, were generated and demonstrated that all six addition lines belonged to homoeologous group 6. However, chromosome 6P had undergone obvious rearrangements in different addition lines compared with the wheat chromosome, indicating that to obtain a genetic compensating alien translocation line, one should recombine alien chromosomal regions with homoeologous wheat chromosomes. Indeed, these addition lines were classified into four types based on the comparative mapping: 6PI, 6PII, 6PIII, and 6PIV. The different types of chromosome 6P possessed different desirable genes. For example, the 6PI type, containing three addition lines, carried genes conferring high numbers of kernels per spike and resistance to powdery mildew, important traits for wheat improvement. These results may prove valuable for promoting the development of conventional chromosome engineering techniques toward molecular chromosome engineering.

  4. Molecular characterization of a peanut variety and its derivatives based on SSR and COP analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoping REN; Boshou LIAO; Huifang JIANG; Zhongyuan YUAN; Yuning CHEN; Xiaojing ZHOU; Li HUANG; Jiaquan HUANG; Yong LEI; Liying YAN

    2016-01-01

    Despite the economic importance of the peanut,no studies have been carried out to determine the correlation between genetic distances based on molecular markers and on coefficient of parentage (COP) data.In this study,simple sequence repeat (SSR) and pedigree data were used to assess the genetic distance between the Fuhuasheng variety and its derivative cultivars.A total of 39 SSR polymorphism primers were used,and 151 bands were obtained,with an average of 2.04 bands in each primer.The genetic SSR-based distance (GD) values ranged from 0.02 to 0.81,while the COP-based GD ranged from 0.25 to 0.98.Certain Fuhuasheng loci displayed higher transmission rates.These loci or nearby chromosomal regions might be associated with desirable traits in Fuhuasheng variety,thus being frequently selected in breeding programs.Therefore,it can be suggested that COP analysis should be the preferred method for estimating genetic diversity invarieties with available complete pedigree information and parents.In this case,marker analysis would provide the best estimations.

  5. A review of molecular biomarkers for bladder cancer | Miakhil ...

    African Journals Online (AJOL)

    Background: Numerous molecular markers for bladder cancer have been identified and investigated with various laboratory techniques. Molecular markers are isolated from tissue, serum and urine. They fall into proteomic, genetic and epigenetic categories. Some of molecular markers show promising results in terms of ...

  6. A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking

    Directory of Open Access Journals (Sweden)

    Rosen David

    2008-10-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP genotyping provides the means to develop a practical, rapid, inexpensive assay that will uniquely identify any Plasmodium falciparum parasite using a small amount of DNA. Such an assay could be used to distinguish recrudescence from re-infection in drug trials, to monitor the frequency and distribution of specific parasites in a patient population undergoing drug treatment or vaccine challenge, or for tracking samples and determining purity of isolates in the laboratory during culture adaptation and sub-cloning, as well as routine passage. Methods A panel of twenty-four SNP markers has been identified that exhibit a high minor allele frequency (average MAF > 35%, for which robust TaqMan genotyping assays were constructed. All SNPs were identified through whole genome sequencing and MAF was estimated through Affymetrix array-based genotyping of a worldwide collection of parasites. These assays create a "molecular barcode" to uniquely identify a parasite genome. Results Using 24 such markers no two parasites known to be of independent origin have yet been found to have the same allele signature. The TaqMan genotyping assays can be performed on a variety of samples including cultured parasites, frozen whole blood, or whole blood spotted onto filter paper with a success rate > 99%. Less than 5 ng of parasite DNA is needed to complete a panel of 24 markers. The ability of this SNP panel to detect and identify parasites was compared to the standard molecular methods, MSP-1 and MSP-2 typing. Conclusion This work provides a facile field-deployable genotyping tool that can be used without special skills with standard lab equipment, and at reasonable cost that will unambiguously identify and track P. falciparum parasites both from patient samples and in the laboratory.

  7. Molecular Characterization and Genetic Diversity of the Macaw Palm Ex Situ Germplasm Collection Revealed by Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Fekadu G. Mengistu

    2016-10-01

    Full Text Available Macaw palm (Acrocomia aculeata is native to tropical forests in South America and highly abundant in Brazil. It is cited as a highly productive oleaginous palm tree presenting high potential for biodiesel production. The aim of this work was to characterize and study the genetic diversity of A. aculeata ex situ collections from different geographical states in Brazil using microsatellite (Simple Sequence Repeats, SSR markers. A total of 192 accessions from 10 provenances were analyzed with 10 SSR, and variations were detected in allelic diversity, polymorphism, and heterozygosity in the collections. Three major groups of accessions were formed using PCoA—principal coordinate analysis, UPGMA—unweighted pair-group method with arithmetic mean, and Tocher. The Mantel test revealed a weak correlation (r = 0.07 between genetic and geographic distances among the provenances reaffirming the result of the grouping. Reduced average heterozygosity (Ho < 50% per locus (or provenance confirmed the predominance of endogamy (or inbreeding in the germplasm collections as evidenced by positive inbreeding coefficient (F > 0 per locus (or per provenance. AMOVA—Analysis of Molecular Variance revealed higher (48.2% genetic variation within population than among populations (36.5%. SSR are useful molecular markers in characterizing A. aculeata germplasm and could facilitate the process of identifying, grouping, and selecting genotypes. Present results could be used to formulate appropriate conservation strategies in the genebank.

  8. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance.

    Science.gov (United States)

    Jia, Wan-Zhong; Yan, Hong-Bin; Guo, Ai-Jiang; Zhu, Xing-Quan; Wang, Yu-Chao; Shi, Wan-Gui; Chen, Hao-Tai; Zhan, Fang; Zhang, Shao-Hua; Fu, Bao-Quan; Littlewood, D Timothy J; Cai, Xue-Peng

    2010-07-22

    Mitochondrial genomes provide a rich source of molecular variation of proven and widespread utility in molecular ecology, population genetics and evolutionary biology. The tapeworm genus Taenia includes a diversity of tapeworm parasites of significant human and veterinary importance. Here we add complete sequences of the mt genomes of T. multiceps, T. hydatigena and T. pisiformis, to a data set of 4 published mtDNAs in the same genus. Seven complete mt genomes of Taenia species are used to compare and contrast variation within and between genomes in the genus, to estimate a phylogeny for the genus, and to develop novel molecular markers as part of an extended mitochondrial toolkit. The complete circular mtDNAs of T. multiceps, T. hydatigena and T. pisiformis were 13,693, 13,492 and 13,387 bp in size respectively, comprising the usual complement of flatworm genes. Start and stop codons of protein coding genes included those found commonly amongst other platyhelminth mt genomes, but the much rarer initiation codon GTT was inferred for the gene atp6 in T. pisiformis. Phylogenetic analysis of mtDNAs offered novel estimates of the interrelationships of Taenia. Sliding window analyses showed nad6, nad5, atp6, nad3 and nad2 are amongst the most variable of genes per unit length, with the highest peaks in nucleotide diversity found in nad5. New primer pairs capable of amplifying fragments of variable DNA in nad1, rrnS and nad5 genes were designed in silico and tested as possible alternatives to existing mitochondrial markers for Taenia. With the availability of complete mtDNAs of 7 Taenia species, we have shown that analysis of amino acids provides a robust estimate of phylogeny for the genus that differs markedly from morphological estimates or those using partial genes; with implications for understanding the evolutionary radiation of important Taenia. Full alignment of the nucleotides of Taenia mtDNAs and sliding window analysis suggests numerous alternative gene

  9. [EST-SSR identification, markers development of Ligusticum chuanxiong based on Ligusticum chuanxiong transcriptome sequences].

    Science.gov (United States)

    Yuan, Can; Peng, Fang; Yang, Ze-Mao; Zhong, Wen-Juan; Mou, Fang-Sheng; Gong, Yi-Yun; Ji, Pei-Cheng; Pu, De-Qiang; Huang, Hai-Yan; Yang, Xiao; Zhang, Chao

    2017-09-01

    Ligusticum chuanxiong is a well-known traditional Chinese medicine plant. The study on its molecular markers development and germplasm resources is very important. In this study, we obtained 24 422 unigenes by assembling transcriptome sequencing reads of L. chuanxiong root. EST-SSR was detected and 4 073 SSR loci were identified. EST-SSR distribution and characteristic analysis results showed that the mono-nucleotide repeats were the main repeat types, accounting for 41.0%. In addition, the sequences containing SSR were functionally annotated in Gene Ontology (GO) and KEGG pathway and were assigned to 49 GO categories, 242 KEGG pathways, among them 2 201 sequences were annotated against Nr database. By validating 235 EST-SSRs,74 primer pairs were ultimately proved to have high quality amplification. Subsequently, genetic diversity analysis, UPGMA cluster analysis, PCoA analysis and population structure analysis of 34 L. chuanxiong germplasm resources were carried out with 74 primer pairs. In both UPGMA tree and PCoA results, L. chuanxiong resources were clustered into two groups, which are believed to be partial related to their geographical distribution. In this study, EST-SSRs in L. chuanxiong was firstly identified, and newly developed molecular markers would contribute significantly to further genetic diversity study, the purity detection, gene mapping, and molecular breeding. Copyright© by the Chinese Pharmaceutical Association.

  10. Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing.

    Science.gov (United States)

    Wu, Jianzhong; Zhao, Qian; Wu, Guangwen; Zhang, Shuquan; Jiang, Tingbo

    2016-01-01

    Flax ( Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5-8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs.

  11. Molecular techniques: An overview of methods for the detection of ...

    African Journals Online (AJOL)

    Several DNA molecular markers are now available for use in surveillance and investigation of food-borne outbreaks that were previously difficult to detect. The results from several sources of literature indicate substantially different degrees of sensitivities between conventional detection methods and molecular-based ...

  12. Characterization and classification of one new cytoplasmic male sterility (CMS) line based on morphological, cytological and molecular markers in non-heading Chinese cabbage (Brassica rapa L.).

    Science.gov (United States)

    Heng, Shuangping; Shi, Dianyi; Hu, Zhenhua; Huang, Tao; Li, Jinping; Liu, Liyan; Xia, Chunxiu; Yuan, Zhenzhen; Xu, Yuejin; Fu, Tingdong; Wan, Zhengjie

    2015-09-01

    A new non-heading Chinese cabbage CMS line M119A was characterized and specific molecular markers were developed to classify different CMS types. One new non-heading Chinese cabbage (Brassica rapa L.) cytoplasmic male sterile (CMS) line M119A was obtained by interspecific crosses between the recently discovered hau CMS line of Brassica juncea and B. rapa. Furthermore, the line was characterized and compared with other five isonuclear-alloplasmic CMS lines. The M119A line produced six stamens without pollen and only two stamen fused together in fewer flowers. Tissue section indicated that anther abortion in M119A may have occurred during differentiation of the archesporial cells without pollen sac. All the six CMS lines were grouped into three types based on the presence of three PCR fragments of 825, 465 and 772 bp amplified with different mitochondrial genes specific primers. The 825-bp fragment was amplified both in 09-10A and H201A using the specific primer pair P-orf224-atp6, and showed 100 % identity with the mitochondrial gene of pol CMS. The 465-bp fragment was amplified in 30A and 105A using the primer pair P-orf138 and shared 100 % identity with the mitochondrial gene of ogu CMS. The 772-bp fragment was amplified in M119A and H203A using the primer pair P-orf288 and showed 100 % identity with the mitochondrial gene of hau CMS. Therefore, these markers could efficiently distinguish different types of isonuclear-alloplasmic CMS lines of non-heading Chinese cabbage, which were useful for improving the efficiency of cross-breeding and heterosis utilization in cruciferous vegetables.

  13. Sequence exploration reveals information bias among molecular markers used in phylogenetic reconstruction for Colletotrichum species.

    Science.gov (United States)

    Rampersad, Sephra N; Hosein, Fazeeda N; Carrington, Christine Vf

    2014-01-01

    The Colletotrichum gloeosporioides species complex is among the most destructive fungal plant pathogens in the world, however, identification of isolates of quarantine importance to the intra-specific level is confounded by a number of factors that affect phylogenetic reconstruction. Information bias and quality parameters were investigated to determine whether nucleotide sequence alignments and phylogenetic trees accurately reflect the genetic diversity and phylogenetic relatedness of individuals. Sequence exploration of GAPDH, ACT, TUB2 and ITS markers indicated that the query sequences had different patterns of nucleotide substitution but were without evidence of base substitution saturation. Regions of high entropy were much more dispersed in the ACT and GAPDH marker alignments than for the ITS and TUB2 markers. A discernible bimodal gap in the genetic distance frequency histograms was produced for the ACT and GAPDH markers which indicated successful separation of intra- and inter-specific sequences in the data set. Overall, analyses indicated clear differences in the ability of these markers to phylogenetically separate individuals to the intra-specific level which coincided with information bias.

  14. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria

    OpenAIRE

    Nguetse, Christian N.; Adegnika, Ayola Akim; Agbenyega, Tsiri; Ogutu, Bernhards R.; Krishna, Sanjeev; Kremsner, Peter G.; Velavan, Thirumalaisamy P.

    2017-01-01

    BACKGROUND: The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca(2+)-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. METHODS: Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped fo...

  15. Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Zan; Yan, Hongwei; Fu, Xinnian; Li, Xuehui; Gao, Hongwen

    2013-04-01

    Efficient and robust molecular markers are essential for molecular breeding in plant. Compared to dominant and bi-allelic markers, multiple alleles of simple sequence repeat (SSR) markers are particularly informative and superior in genetic linkage map and QTL mapping in autotetraploid species like alfalfa. The objective of this study was to enrich SSR markers directly from alfalfa expressed sequence tags (ESTs). A total of 12,371 alfalfa ESTs were retrieved from the National Center for Biotechnology Information. Total 774 SSR-containing ESTs were identified from 716 ESTs. On average, one SSR was found per 7.7 kb of EST sequences. Tri-nucleotide repeats (48.8 %) was the most abundant motif type, followed by di-(26.1 %), tetra-(11.5 %), penta-(9.7 %), and hexanucleotide (3.9 %). One hundred EST-SSR primer pairs were successfully designed and 29 exhibited polymorphism among 28 alfalfa accessions. The allele number per marker ranged from two to 21 with an average of 6.8. The PIC values ranged from 0.195 to 0.896 with an average of 0.608, indicating a high level of polymorphism of the EST-SSR markers. Based on the 29 EST-SSR markers, assessment of genetic diversity was conducted and found that Medicago sativa ssp. sativa was clearly different from the other subspecies. The high transferability of those EST-SSR markers was also found for relative species.

  16. Application of DNA markers against illegal logging as a new tool for the Forest Guard Service

    OpenAIRE

    Nowakowska, Justyna A.

    2011-01-01

    DNA markers are currently the most precise tool for forest tree species identification and can be used for comparative analyses of plant material. Molecular diagnosis of evidence and reference material is based on comparing the structure of DNA markers duplicated in the PCR reaction and estimation of the DNA profiles obtained in studied wood samples. For this purpose, the microsatellite DNA markers are the most suitable tool because of their high polymorphism and accurate detection of structu...

  17. Molecular genetic diversity assessment of Citrus species grown in Iran revealed by SSR, ISSR and CAPS molecular markers

    Directory of Open Access Journals (Sweden)

    Ata Allah Sharafi

    2017-12-01

    Full Text Available In this study, genetic diversity in 19 citrus cultivars was analyzed using Simple Sequence Repeat (SSR, Inter-simple Sequence Repeat (ISSR and cleaved amplified polymorphic sequence (CAPS markers. Nine primers for SSR, nine ISSR primers and two primers for CAPS were used for allele scoring. One chloroplast DNA region (rbcL-ORF106 and one mitochondrial DNA region (18S-5S were analyzed using cleaved amplified polymorphic sequence (CAPS marker in 19 citrus accessions grown in Iran. In total, 45 SSR and 131 ISSR polymorphic alleles and tree organelle genome types were detected. Cluster analysis of SSR and ISSR data was performed using UPGMA method and based on Jaccard's coefficient. The result of this investigation showed that the SSR and ISSR primers were highly informative and efficient in detecting genetic variability and relationships of the citrus accessions. And CAPS marker analysis Results showed that Bakraee and one of off type Mexican lime had banding pattern similar to Clementine Mandarin, while Pummelo regarded as maternal parent of other studied genotypes Citron regarded as father parent showed definite banding pattern among 19 studied genotypes which it confirmed Cytoplasmic inheritance from mother cellular organelles.

  18. Marker-assisted selection of Fusarium wilt-resistant and gynoecious melon (Cucumis melo L.).

    Science.gov (United States)

    Gao, P; Liu, S; Zhu, Q L; Luan, F S

    2015-12-08

    In this study, molecular markers were designed based on the sex determination genes ACS7 (A) and WIP1 (G) and the domain in the Fusarium oxysporum-resistant gene Fom-2 (F) in order to achieve selection of F. oxysporum-resistant gynoecious melon plants. Markers of A and F are cleaved amplified polymorphic sequences that distinguish alleles according to restriction analysis. Twenty F1 and 1863 F2 plants derived from the crosses between the gynoecious line WI998 and the Fusarium wilt-resistant line MR-1 were genotyped based on the markers. The results showed that the polymerase chain reaction and enzyme digestion results could be effectively used to identify plants with the AAggFF genotype in F2 populations. In the F2 population, 35 gynoecious wilt-resistant plants were selected by marker-assisted selection and were confirmed by disease infection assays, demonstrating that these markers can be used in breeding to select F. oxysporum-resistant gynoecious melon plants.

  19. Phylogenetic Relationships between Four Salix L. Species Based on DArT Markers

    Directory of Open Access Journals (Sweden)

    Jerzy A. Przyborowski

    2013-12-01

    Full Text Available The objectives of this study were to evaluate the usefulness of DArT markers in genotypic identification of willow species and describe genetic relationships between four willow species: Salix viminalis, S. purpurea, S. alba and S. triandra. The experimental plant material comprised 53 willow genotypes of these four species, which are popularly grown in Poland. DArT markers seem to identify Salix species with a high degree of accuracy. As a result, the examined species were divided into four distinct groups which corresponded to the four analyzed species. In our study, we observed that S. triandra was very different genetically from the other species, including S. alba which is generally classified into the same subgenus of Salix. The above corroborates the findings of other authors who relied on molecular methods to reveal that the classification of S. triandra to the subgenus Salix was erroneous. The Principal Coordinate Analysis (PCoA and the neighbor-joining dendrogram also confirmed the clear division of the studied willow genotypes into four clusters corresponding to individual species. This confirmed the usefulness of DArT markers in taxonomic analyses and identification of willow species.

  20. [Immunological Markers in Organ Transplantation].

    Science.gov (United States)

    Beckmann, J H; Heits, N; Braun, F; Becker, T

    2017-04-01

    The immunological monitoring in organ transplantation is based mainly on the determination of laboratory parameters as surrogate markers of organ dysfunction. Structural damage, caused by alloreactivity, can only be detected by invasive biopsy of the graft, which is why inevitably rejection episodes are diagnosed at a rather progressive stage. New non-invasive specific markers that enable transplant clinicians to identify rejection episodes at an earlier stage, on the molecular level, are needed. The accurate identification of rejection episodes and the establishment of operational tolerance permit early treatment or, respectively, a controlled cessation of immunosuppression. In addition, new prognostic biological markers are expected to allow a pre-transplant risk stratification thus having an impact on organ allocation and immunosuppressive regimen. New high-throughput screening methods allow simultaneous examination of hundreds of characteristics and the generation of specific biological signatures, which might give concrete information about acute rejection, chronic dysfunction as well as operational tolerance. Even though multiple studies and a variety of publications report about important advances on this subject, almost no new biological marker has been implemented in clinical practice as yet. Nevertheless, new technologies, in particular analysis of the genome, transcriptome, proteome and metabolome will make personalised transplantation medicine possible and will further improve the long-term results and graft survival rates. This article gives a survey of the limitations and possibilities of new immunological markers in organ transplantation. Georg Thieme Verlag KG Stuttgart · New York.

  1. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling

    Science.gov (United States)

    Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2017-08-01

    From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.

  2. Genetic structure and inter-generic relationship of closed colony of laboratory rodents based on RAPD markers.

    Science.gov (United States)

    Kumar, Mahadeo; Kumar, Sharad

    2014-11-01

    Molecular genetic analysis was performed using random amplified polymorphic DNA (RAPD) on three commonly used laboratory bred rodent genera viz. mouse (Mus musculus), rat (Rattus norvegicus) and guinea pig (Cavia porcellus) as sampled from the breeding colony maintained at the Animal Facility, CSIR-Indian Institute of Toxicology Research, Lucknow. In this study, 60 samples, 20 from each genus, were analyzed for evaluation of genetic structure of rodent stocks based on polymorphic bands using RAPD markers. Thirty five random primers were assessed for RAPD analysis. Out of 35, only 20 primers generated a total of 56.88% polymorphic bands among mice, rats and guinea pigs. The results revealed significantly variant and distinct fingerprint patterns specific to each of the genus. Within-genera analysis, the highest (89.0%) amount of genetic homogeneity was observed in mice samples and the least (79.3%) were observed in guinea pig samples. The amount of genetic homogeneity was observed very high within all genera. The average genetic diversity index observed was low (0.045) for mice and high (0.094) for guinea pigs. The inter-generic distances were maximum (0.8775) between mice and guinea pigs; and the minimum (0.5143) between rats and mice. The study proved that the RAPD markers are useful as genetic markers for assessment of genetic structure as well as inter-generic variability assessments.

  3. Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species.

    Science.gov (United States)

    Gupta, S K; Gopalakrishna, T

    2010-07-01

    Unigene sequences available in public databases provide a cost-effective and valuable source for the development of molecular markers. In this study, the identification and development of unigene-based SSR markers in cowpea (Vigna unguiculata (L.) Walp.) is presented. A total of 1071 SSRs were identified in 15 740 cowpea unigene sequences downloaded from the National Center for Biotechnology Information. The most frequent SSR motifs present in the unigenes were trinucleotides (59.7%), followed by dinucleotides (34.8%), pentanucleotides (4%), and tetranucleotides (1.5%). The copy number varied from 6 to 33 for dinucleotide, 5 to 29 for trinucleotide, 5 to 7 for tetranucleotide, and 4 to 6 for pentanucleotide repeats. Primer pairs were successfully designed for 803 SSR motifs and 102 SSR markers were finally characterized and validated. Putative function was assigned to 64.7% of the unigene SSR markers based on significant homology to reported proteins. About 31.7% of the SSRs were present in coding sequences and 68.3% in untranslated regions of the genes. About 87% of the SSRs located in the coding sequences were trinucleotide repeats. Allelic variation at 32 SSR loci produced 98 alleles in 20 cowpea genotypes. The polymorphic information content for the SSR markers varied from 0.10 to 0.83 with an average of 0.53. These unigene SSR markers showed a high rate of transferability (88%) across other Vigna species, thereby expanding their utility. Alignment of unigene sequences with soybean genomic sequences revealed the presence of introns in amplified products of some of the SSR markers. This study presents the distribution of SSRs in the expressed portion of the cowpea genome and is the first report of the development of functional unigene-based SSR markers in cowpea. These SSR markers would play an important role in molecular mapping, comparative genomics, and marker-assisted selection strategies in cowpea and other Vigna species.

  4. How to measure separation and angles between inter-molecular fluorescent markers

    DEFF Research Database (Denmark)

    Flyvbjerg, Henrik

    Structure and function of an individual biomolecule can be explored with minimum two fluorescent markers of different colors. Since the light of such markers can be spec- trally separated and imaged simultaneously, the markers can be colocalized. Here, we describe the method used for such two......-color colocalization microscopy. Then we extend it to fluorescent markers with fixed orientations and in intramolecular proximity. Our benchmarking of this extension produced two extra results: (a) we established short double-labeled DNA molecules as probes of 3D orientation of anything to which one can attach them...

  5. Optimization Of ISSR Markers For DNA Fingerprinting In Stevia Rebaudiana Bertoni

    International Nuclear Information System (INIS)

    Lyena Watty Zuraine Ahmad; Lyena Watty Zuraine Ahmad; Azhar Mohamad; Mohamad Osman; Zarina Zainuddin; Fatin Izzati Mohd Khari

    2014-01-01

    ISSR or inter-simple sequence repeat is PCR based markers which required no prior DNA sequence knowledge of the studied organism. It has been proved to overcome limitations in other genetic marker techniques. In this study, 100 ISSR primers which comprised of 80 specific primers and 20 degenerate primers were used. All of the primers were tested on gradient temperatures from 45-55 degree Celsius. For positive amplification, 62 specific primers (77.5 %) and 18 degenerate primers (90.0 %) were recorded as working primers. The most efficient temperature for 25 primers was 55 degree Celsius. Marker derived from ISSR profiling is a powerful approach for identification and molecular classification of Stevia rebaudiana bertoni. (author)

  6. Molecular Method for Sex Identification of Half-Smooth Tongue Sole (Cynoglossus semilaevis Using a Novel Sex-Linked Microsatellite Marker

    Directory of Open Access Journals (Sweden)

    Xiaolin Liao

    2014-07-01

    Full Text Available Half-smooth tongue sole (Cynoglossus semilaevis is one of the most important flatfish species for aquaculture in China. To produce a monosex population, we attempted to develop a marker-assisted sex control technique in this sexually size dimorphic fish. In this study, we identified a co-dominant sex-linked marker (i.e., CyseSLM by screening genomic microsatellites and further developed a novel molecular method for sex identification in the tongue sole. CyseSLM has a sequence similarity of 73%–75% with stickleback, medaka, Fugu and Tetraodon. At this locus, two alleles (i.e., A244 and A234 were amplified from 119 tongue sole individuals with primer pairs CyseSLM-F1 and CyseSLM-R. Allele A244 was present in all individuals, while allele A234 (female-associated allele, FAA was mostly present in females with exceptions in four male individuals. Compared with the sequence of A244, A234 has a 10-bp deletion and 28 SNPs. A specific primer (CyseSLM-F2 was then designed based on the A234 sequence, which amplified a 204 bp fragment in all females and four males with primer CyseSLM-R. A time-efficient multiplex PCR program was developed using primers CyseSLM-F2, CyseSLM-R and the newly designed primer CyseSLM-F3. The multiplex PCR products with co-dominant pattern could be detected by agarose gel electrophoresis, which accurately identified the genetic sex of the tongue sole. Therefore, we have developed a rapid and reliable method for sex identification in tongue sole with a newly identified sex-linked microsatellite marker.

  7. Use of molecular markers for the study of wild fungus basidiomycetes

    Directory of Open Access Journals (Sweden)

    Blanca Estela Gómez Luna

    2012-09-01

    Full Text Available Molecular marker techniques in the study of wild basidiomycete, are increasingly applied to ecology projects, with special focus on analysis of genetic diversity. Often require specialized methods for extracting the DNA of organisms of natural environments, because of the complex compounds that are (carbohydrate polymers and contaminants from the environment (soil particles. Biological materials used were basidiocarps collected in the forest of Santa Rosa, Guanajuato. And mycelium isolated from these basidiocarps. In this work we used a DNA extraction method that allowed the PCR amplification, restriction enzyme digestion and Southern hybridization by non-radioactive method. The results were obtained: Amplification of the ITS1 region of ribosomal unit of the different species of Basidiomycetes. It was possible to observe the genetic diversity among different species of basidiomycetes and the mycelia. Furthermore, the results also suggest differences in DNA methylation between the vegetative mycelium and mycelium of basidiocarp. Finally it is noteworthy that there were no previous work on the application of methods of non-radioactive Southern hybridization for analysis of wild Basidiomycetes and this pioneering work in applying this technique.

  8. Development and validation of cross-transferable and polymorphic DNA markers for detecting alien genome introgression in Oryza sativa from Oryza brachyantha.

    Science.gov (United States)

    Ray, Soham; Bose, Lotan K; Ray, Joshitha; Ngangkham, Umakanta; Katara, Jawahar L; Samantaray, Sanghamitra; Behera, Lambodar; Anumalla, Mahender; Singh, Onkar N; Chen, Meingsheng; Wing, Rod A; Mohapatra, Trilochan

    2016-08-01

    African wild rice Oryza brachyantha (FF), a distant relative of cultivated rice Oryza sativa (AA), carries genes for pests and disease resistance. Molecular marker assisted alien gene introgression from this wild species to its domesticated counterpart is largely impeded due to the scarce availability of cross-transferable and polymorphic molecular markers that can clearly distinguish these two species. Availability of the whole genome sequence (WGS) of both the species provides a unique opportunity to develop markers, which are cross-transferable. We observed poor cross-transferability (~0.75 %) of O. sativa specific sequence tagged microsatellite (STMS) markers to O. brachyantha. By utilizing the genome sequence information, we developed a set of 45 low cost PCR based co-dominant polymorphic markers (STS and CAPS). These markers were found cross-transferrable (84.78 %) between the two species and could distinguish them from each other and thus allowed tracing alien genome introgression. Finally, we validated a Monosomic Alien Addition Line (MAAL) carrying chromosome 1 of O. brachyantha in O. sativa background using these markers, as a proof of concept. Hence, in this study, we have identified a set molecular marker (comprising of STMS, STS and CAPS) that are capable of detecting alien genome introgression from O. brachyantha to O. sativa.

  9. Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. Alpina: assembly, annotation and molecular marker discovery

    Directory of Open Access Journals (Sweden)

    Torales Susana L

    2012-07-01

    Full Text Available Abstract Background Nothofagus nervosa is one of the most emblematic native tree species of Patagonian temperate forests. Here, the shotgun RNA-sequencing (RNA-Seq of the transcriptome of N. nervosa, including de novo assembly, functional annotation, and in silico discovery of potential molecular markers to support population and associations genetic studies, are described. Results Pyrosequencing of a young leaf cDNA library generated a total of 111,814 high quality reads, with an average length of 447 bp. De novo assembly using Newbler resulted into 3,005 tentative isotigs (including alternative transcripts. The non-assembled sequences (singletons were clustered with CD-HIT-454 to identify natural and artificial duplicates from pyrosequencing reads, leading to 21,881 unique singletons. 15,497 out of 24,886 non-redundant sequences or unigenes, were successfully annotated against a plant protein database. A substantial number of simple sequence repeat markers (SSRs were discovered in the assembled and annotated sequences. More than 40% of the SSR sequences were inside ORF sequences. To confirm the validity of these predicted markers, a subset of 73 SSRs selected through functional annotation evidences were successfully amplified from six seedlings DNA samples, being 14 polymorphic. Conclusions This paper is the first report that shows a highly precise representation of the mRNAs diversity present in young leaves of a native South American tree, N. nervosa, as well as its in silico deduced putative functionality. The reported Nothofagus transcriptome sequences represent a unique resource for genetic studies and provide a tool to discover genes of interest and genetic markers that will greatly aid questions involving evolution, ecology, and conservation using genetic and genomic approaches in the genus.

  10. [Molecular markers of Alzheimer disease early diagnostic: investigation perspectives of peripheral tissues.

    Science.gov (United States)

    Paltsev, M A; Zuev, V A; Kozhevnikova, E O; Linkova, N S; Kvetnaia, T V; Polyakova, V O; Kvetnoy, I M

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder of elderly and old age people. For intravital diagnosis of the expression of signaling molecules - AD markers, cerebrospinal fluid (CSF) and peripheral tissues are used: lymphocytes and blood platelets, buccal and olfactory epithelium, skin fibroblasts. There are several changes in the production of hyper phosphorylated form of τ-protein, BACE1 and peptide Аβ42 in CSF in case of AD, but CSF taking may have a number of side effects. Less traumatic taking of sampling tissues for the diagnosis of AD is in use of epithelium biopsy and blood portion. An increase in the expression of the hyper phosphorylated form of τ-protein is shown in blood lymphocytes of AD patients. An increase in the content of high molecular weight forms of phosphorylated t-protein and amyloid precursor protein-APP was also revealed in blood platelets of AD patients. Changes in the amount of 2 miRNA families - miR-132 family and miR-134 family were revealed in blood cells 1-5 years before the manifestation of clinical signs of AD. An increase in the concentration of bound calcium, synthesis of peptides Aβ40 and Aβ42, τ protein was observed in AD skin fibroblasts. In the olfactory and buccal epithelium an increase in the expression of hyper phosphorylated form of τ-protein and Aβ peptide was detected in patients with AD. Verification of AD markers in peripheral tissues for biopsy have the important significant for life diagnostics, prevention and and target AD treatment.

  11. Survey of Paramecium duboscqui using three markers and assessment of the molecular variability in the genus Paramecium.

    Science.gov (United States)

    Boscaro, Vittorio; Fokin, Sergei I; Verni, Franco; Petroni, Giulio

    2012-12-01

    The genus Paramecium (phylum Ciliophora) is one of the best-known among protozoa. Nevertheless, the knowledge on the diversity and distribution of species within this genus was remarkably scarce until recent times. In the last years a constantly growing amount of data has formed, especially on the distribution of species and the characterization of molecular markers. Much effort has been made on detecting clades inside each morphospecies, which could suggest the presence of sibling species complexes as in the famous case of Paramecium aurelia. In this work we present new data on Paramecium duboscqui, one of the morphospecies that have not yet been surveyed employing DNA sequences as markers. We obtained data from nine strains sampled around the world, using the three most commonly employed markers (18S rRNA gene, ITS1-5.8S-ITS2 and COI gene sequences). Moreover, we compared our results with those already available for other Paramecium species, and performed phylogenetic analyses for the entire genus. We also expanded the knowledge on the ITS2 secondary structure and its usefulness in studies on Paramecium. Our approach, that considers the data of all the species together, highlighted some characteristic patterns as well as some ambiguities that should be further investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Molecular marker to identify radiolarian species -toward establishment of paleo-environmental proxy-

    Science.gov (United States)

    Ishitani, Y.

    2017-12-01

    Marine fossilized unicellular plankton are known to have many genetically divergent species (biological species) in the single morphological species and these biological species show the species-specific environments much more precisely than that of morphological species. Among these plankton, Radiolaria are one of the best candidates for time- and environmental-indicators in the modern and past oceans, because radiolarians are the only group which represent entire water column from shallow to deep waters. However, the ecology and evolution of radiolarian were traditionally studied in paleontology and paleoceanography by morphological species. Even Radiolaria has a huge potential for novel proxy of wide and deep environments, there is no criterion to identify the biological species. The motivation for this study is setting the quantitative delimitation to establish the biological species of radiolarians based on molecular data, for leading the future ecological and paleo-environmental study. Identification of the biological species by ribosomal DNA sequences are mainly based on two ways: one is the evolutionary distance of the small subunit (SSU) rDNA, the internal transcribed spacer region of ribosomal DNA (ITS1 and 2), and the large subunit (LSU) rDNA; and the other is the secondary structure of ITS2. In the present study, all four possible genetic markers (SSU, ITS1, ITS2, and LSU rDNA) were amplified from 232 individuals of five radiolarian morphological species and applied to examine the evolutionary distance and secondary structure of rDNA. Comprehensive survey clearly shows that evolutionary distance of ITS1 rDNA and the secondary structure of ITS2 is good to identify the species. Notably, evolutionary distance of ITS1 rDNA is possible to set the common delimitation to identify the biological species, as 0.225 substitution per site. The results show that the ITS1 and ITS 2 rDNA could be the criterion for radiolarian species identification.

  13. Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco.

    Science.gov (United States)

    Tong, Zhijun; Xiao, Bingguang; Jiao, Fangchan; Fang, Dunhuang; Zeng, Jianmin; Wu, Xingfu; Chen, Xuejun; Yang, Jiankang; Li, Yongping

    2016-06-01

    Tobacco (Nicotiana tabacum L.), particularly flue-cured tobacco, is one of the most economically important nonfood crops and is also an important model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping, and breeding. Simple sequence repeats (SSR) are one of the most widely-used molecular markers, having significant advantages including that they are generally co-dominant, easy to use, abundant in eukaryotic organisms, and produce highly reproducible results. In this study, based on the genome sequence data of flue-cured tobacco (K326), we developed a total of 13,645 mostly novel SSR markers, which were working in a set of eighteen tobacco varieties of four different types. A mapping population of 213 backcross (BC1) individuals, which were derived from an intra-type cross between two flue-cured tobacco varieties, Y3 and K326, was selected for mapping. Based on the newly developed SSR markers as well as published SSR markers, we constructed a genetic map consisting of 626 SSR loci distributed across 24 linkage groups and covering a total length of 1120.45 cM with an average distance of 1.79 cM between adjacent markers, which is the highest density map of flue-cured tobacco till date.

  14. Characterization of nuclear and chloroplast microsatellite markers for Falcaria vulgaris (Apiaceae)

    Science.gov (United States)

    Sarbottam Piya; Madhav P. Nepal

    2013-01-01

    Falcaria vulgaris (sickleweed) is native to Eurasia and a potential invasive plant of the United States. No molecular markers have been developed so far for sickleweed. Characterization of molecular markers for this plant would allow investigation into its population structure and biogeography thereby yielding insights into risk analysis and effective management...

  15. Towards the Development of a Molecular Map in Switchgrass: I. Microsatellite Marker Development; ANNUAL

    International Nuclear Information System (INIS)

    Gunter, L.E.

    2001-01-01

    The long-term goal of the switchgrass breeding program is to improve regionally adapted varieties and increase biomass yield and feedstock quality. Although, to some extent, biomass yields are dependent on environmental constraints, increased yield can be achieved through the development of genotypes with improved seasonal adaptation, tolerance to unfavorable environmental conditions, and improved resistance to pest and disease. To date, improvement in switchgrass has relied on recurrent breeding strategies based on phenotypic or genotypic selection. Yield improvements have been modest by this method. If we expect to make significant increase in yields, we need tools that will allow us to map complex traits and uncover the genes that influence them. A genetic linkage map could be a powerful tool for accelerating switchgrass development through marker-assisted selection, breeding and recombination. This type of mapping requires the development of markers that can be associated with phenotypic traits in a population of known pedigree. The most commonly used markers for mapping include restriction fragment length polymorphisms (RFLP) and simple sequence repeats (SSR). At ORNL, we have been concentrating on the development of SSR markers, while our colleagues at the University of Georgia are developing RFLP markers in order to select parents to produce a mapping population and from there to create a framework map from(approx)100 F1 progeny

  16. Molecular Analysis of Synedrela Nodiflora (L. Gaertn. Resistance Against Fomesafen using RAPD Markers

    Directory of Open Access Journals (Sweden)

    Murni Dwiati

    2015-01-01

    Based on the RAPD markers used in this study, it can be concluded that genetic distance between susceptible and resistant S. nodiflora is higher than that within susceptible samples supporting our previous morphological and protein data, although genetic variation among susceptible individuals seems to be significantly high.

  17. Molecular markers for granulovacuolar degeneration are present in rimmed vacuoles.

    Directory of Open Access Journals (Sweden)

    Masahiro Nakamori

    Full Text Available BACKGROUND: Rimmed vacuoles (RVs are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM and distal myopathy with RVs (DMRV. Granulovacuolar degeneration (GVD bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers. METHODS: Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1 tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK], (2 lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1, and (3 other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43] in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization. RESULTS: GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs. CONCLUSIONS: These results suggest that RVs of muscle

  18. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae.

    Directory of Open Access Journals (Sweden)

    Peri E Bolton

    Full Text Available Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.

  19. A vision-based automated guided vehicle system with marker recognition for indoor use.

    Science.gov (United States)

    Lee, Jeisung; Hyun, Chang-Ho; Park, Mignon

    2013-08-07

    We propose an intelligent vision-based Automated Guided Vehicle (AGV) system using fiduciary markers. In this paper, we explore a low-cost, efficient vehicle guiding method using a consumer grade web camera and fiduciary markers. In the proposed method, the system uses fiduciary markers with a capital letter or triangle indicating direction in it. The markers are very easy to produce, manipulate, and maintain. The marker information is used to guide a vehicle. We use hue and saturation values in the image to extract marker candidates. When the known size fiduciary marker is detected by using a bird's eye view and Hough transform, the positional relation between the marker and the vehicle can be calculated. To recognize the character in the marker, a distance transform is used. The probability of feature matching was calculated by using a distance transform, and a feature having high probability is selected as a captured marker. Four directional signals and 10 alphabet features are defined and used as markers. A 98.87% recognition rate was achieved in the testing phase. The experimental results with the fiduciary marker show that the proposed method is a solution for an indoor AGV system.

  20. IMPLEMENTATION OF DNA MARKERS TO IMPROVE BREEDING OF FORAGE LEGUMES

    Directory of Open Access Journals (Sweden)

    S. Grljušić

    2008-09-01

    Full Text Available The low rates of estimated genetic gains in forage legumes breeding have emphasized the need for new breeding methods that would increase efficiency in forage selection and provide reliable improvement. Information on application of molecular methodologies and tools for the enhancement of the current empirical phenotype-based selection moved us toward implementation of DNA markers to our breeding activities. Firstly, attention was given to identification of genetic variability within the forage species involved in program and comparison of conventional and molecular marker efficiency in variability evaluation. RAPDs were used (i to estimate availability of alfalfa (Medicago sativa L. and Medicago falcata L. genetic variation and (ii to identify changes of red clover (Trifolium pratense L. variability after natural selection. SSRs were applied to evaluate diversity within and among field pea (Pisum sativum L. var. arvense and sativum groups/varieties. A total of 90 (alfalfa or 92 (red clover polymorphic bands was found by RAPDs. Total number of SSR alleles recorded was 118. The average Roger's distance per species/genus estimated was 0.29 (red clover, 0.33 (alfalfa and 0.51 (field pea. 2D PCo analysis of each species/genus separated materials into respective groups. A high degree of genetic variation within populations/varieties of each investigated species was found by AMOVA. The correspondence between pairs of matrices based on the morphological and molecular data was significant (p=0.95 only for red clover. RAPD and SSR data have given valuable information on genetic structure of materials and provided a description that determines heterogeneity. Further studies will be focused on identifying quantitative trait loci and marker assisted selection.

  1. Development and characterization of genic SSR markers from low ...

    Indian Academy of Sciences (India)

    Development and characterization of genic SSR markers from low depth genome ... A variety of molecular markers are currently ... chloroform method (Sambrook et al. 1989). ..... Available online, http://www.iucnredlist.org/details/168255/0.

  2. Molecular alterations and biomarkers in colorectal cancer

    Science.gov (United States)

    Grady, William M.; Pritchard, Colin C.

    2013-01-01

    The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577

  3. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species

    Science.gov (United States)

    2013-01-01

    Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species

  4. Measles Virus: Identification in the M Protein Primary Sequence of a Potential Molecular Marker for Subacute Sclerosing Panencephalitis

    Directory of Open Access Journals (Sweden)

    Hasan Kweder

    2015-01-01

    Full Text Available Subacute Sclerosing Panencephalitis (SSPE, a rare lethal disease of children and young adults due to persistence of measles virus (MeV in the brain, is caused by wild type (wt MeV. Why MeV vaccine strains never cause SSPE is completely unknown. Hypothesizing that this phenotypic difference could potentially be represented by a molecular marker, we compared glycoprotein and matrix (M genes from SSPE cases with those from the Moraten vaccine strain, searching for differential structural motifs. We observed that all known SSPE viruses have residues P64, E89, and A209 (PEA in their M proteins whereas the equivalent residues for vaccine strains are either S64, K89, and T209 (SKT as in Moraten or PKT. Through the construction of MeV recombinants, we have obtained evidence that the wt MeV-M protein PEA motif, in particular A209, is linked to increased viral spread. Importantly, for the 10 wt genotypes (of 23 that have had their M proteins sequenced, 9 have the PEA motif, the exception being B3, which has PET. Interestingly, cases of SSPE caused by genotype B3 have yet to be reported. In conclusion, our results strongly suggest that the PEA motif is a molecular marker for wt MeV at risk to cause SSPE.

  5. ANALYSES OF GENETIC VARIABILITY IN LENTINULA EDODES THROUGH MYCELIA RESPONSES TO DIFFERENT ABIOTIC CONDITIONS AND RAPD MOLECULAR MARKERS

    Directory of Open Access Journals (Sweden)

    Maki Cristina Sayuri

    2001-01-01

    Full Text Available The growth of thirty-four Lentinula edodes strains submitted to different mycelial cultivation conditions (pH and temperature was evaluated and strain variability was assessed by RAPD molecular markers. The growth at three pH values (5, 6 and 7 and four different temperatures (16, 25, 28 and 37ºC was measured using the in vitro mycelial development rate and water retention as parameters. Mycelial cultivation was successful at all pH tested, while the ideal temperature for mycelial cultivation ranged between 25 and 28ºC. The water content was lower in strains grown at 37ºC. Among 20 OPA primers (Operon Technologies, Inc. used for the RAPD analyses, seventeen presented good polymorphism (OPA01 to OPA05, OPA07 to OPA14, OPA17 to OPA20. The clustering based on similarity coefficients allowed the separation of strain in two groups with different geographic origins.

  6. Widespread utility of highly informative AFLP molecular markers across divergent shark species.

    Science.gov (United States)

    Zenger, Kyall R; Stow, Adam J; Peddemors, Victor; Briscoe, David A; Harcourt, Robert G

    2006-01-01

    Population numbers of many shark species are declining rapidly around the world. Despite the commercial and conservation significance, little is known on even the most fundamental aspects of their population biology. Data collection that relies on direct observation can be logistically challenging with sharks. Consequently, molecular methods are becoming increasingly important to obtain knowledge that is critical for conservation and management. Here we describe an amplified fragment length polymorphism method that can be applied universally to sharks to identify highly informative genome-wide polymorphisms from 12 primer pairs. We demonstrate the value of our method on 15 divergent shark species within the superorder Galeomorphii, including endangered species which are notorious for low levels of genetic diversity. Both the endangered sand tiger shark (Carcharodon taurus, N = 18) and the great white shark (Carcharodon carcharias, N = 7) displayed relatively high levels of allelic diversity. A total of 59 polymorphic loci (H(e) = 0.373) and 78 polymorphic loci (H(e) = 0.316) were resolved in C. taurus and C. carcharias, respectively. Results from other sharks (e.g., Orectolobus ornatus, Orectolobus sp., and Galeocerdo cuvier) produced remarkably high numbers of polymorphic loci (106, 94, and 86, respectively) from a limited sample size of only 2. A major constraint to obtaining much needed genetic data from sharks is the time-consuming process of developing molecular markers. Here we demonstrate the general utility of a technique that provides large numbers of informative loci in sharks.

  7. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers

    DEFF Research Database (Denmark)

    Tomaszewski, Céline; Byrne, Stephen; Foito, Alexandra

    2012-01-01

    Perennial ryegrass is the principal forage grass species used in temperate agriculture. In recent years, significant efforts have been made to develop molecular marker strategies to allow cost-effective characterization of a large number of loci simultaneously. One such strategy involves using DAr......T markers, and a DArT array has recently been developed for the Lolium-Festuca complex. In this study, we report the first use of the DArTFest array to generate a genetic linkage map based on 326 markers in a Lolium perenne F2 population, consisting of 325 genotypes. For proof of concept, the map was used...

  8. Molecular Strain Typing of Clinical Isolates, Trichophyton rubrum using Non Transcribed Spacer (NTS) Region as a Molecular Marker.

    Science.gov (United States)

    Ramaraj, Vijayakumar; Vijayaraman, Rajyoganandh S; Elavarashi, Elangovan; Rangarajan, Sudha; Kindo, Anupma Jyoti

    2017-05-01

    Dermatophytes are a group of fungi which infect keratinized tissues and causes superficial mycoses in humans and animals. The group comprises of three major genera, Trichophyton , Microsporum and Epidermophyton . Among them Trichophyton rubrum is a predominant anthropophilic fungi which causes chronic infections. Although, the infection is superficial and treatable, reinfection/coinfection causes inflation in the treatment cost. Identifying the source and mode of transmission is essential to prevent its transmission. Accurate discrimination is required to understand the clinical (relapse or reinfection) and epidemiological implications of the genetic heterogeneity of this species. Polymorphism in the Non Transcribed Spacer (NTS) region of ribosomal DNA (rDNA) clusters renders an effective way to discriminate strains among T. rubrum . To carry out the strain typing of the clinical isolates, Trichophyton rubrum using NTS as a molecular marker. Seventy T.rubrum clinical isolates obtained from April-2011-March 2013, from Sri Ramachandra Medical Centre, Chennai, Tamil Nadu, India, were identified by conventional phenotypic methods and included in this prospective study. The isolates were then subjected to Polymerase Chain Reaction (PCR) targeting two subrepeat elements (SREs), TRS-1 and TRS-2 of the NTS region. Strain-specific polymorphism was observed in both subrepeat loci. Total, nine different strains were obtained on combining both TRS-1 and TRS-2, SREs. The outcome has given a strong representation for using NTS region amplification in discriminating the T. rubrum clinical isolates. The method can be adapted as a tool for conducting epidemiology and population based study in T. rubrum infections. This will help in future exploration of the epidemiology of T. rubrum .

  9. Mass transfer ranking of polylysine, poly-ornithine and poly-methylene-co-guanidine microcapsule membranes using a single low molecular mass marker

    Directory of Open Access Journals (Sweden)

    Rosinski Stefan

    2003-01-01

    Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.

  10. (SSR) markers for drought tolerance in maize

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... and dominance gene effects in inheritance are included in almost all traits related to drought (Shiri et al., 2010a, b). Identifying the complete-linked molecular markers with target gene and mapping its chromosome locus is an important goal in plant breeding for gene cloning and marker-aided selection.

  11. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers.

    Science.gov (United States)

    de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa

    2012-10-04

    Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  12. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    Directory of Open Access Journals (Sweden)

    de Miguel Marina

    2012-10-01

    Full Text Available Abstract Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15 belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  13. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund

    2012-01-01

    Single-step methods for genomic prediction have recently become popular because they are conceptually simple and in practice such a method can completely replace a pedigree-based method for routine genetic evaluation. An issue with single-step methods is compatibility between the marker-based rel...

  14. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.

  15. Leishmania infections: Molecular targets and diagnosis.

    Science.gov (United States)

    Akhoundi, Mohammad; Downing, Tim; Votýpka, Jan; Kuhls, Katrin; Lukeš, Julius; Cannet, Arnaud; Ravel, Christophe; Marty, Pierre; Delaunay, Pascal; Kasbari, Mohamed; Granouillac, Bruno; Gradoni, Luigi; Sereno, Denis

    2017-10-01

    Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Smart markers for watershed-based cell segmentation.

    Directory of Open Access Journals (Sweden)

    Can Fahrettin Koyuncu

    Full Text Available Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.

  17. Smart markers for watershed-based cell segmentation.

    Science.gov (United States)

    Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2012-01-01

    Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.

  18. Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians.

    Science.gov (United States)

    Paz, Andrea; Crawford, Andrew J

    2012-11-01

    Molecular markers offer a universal source of data for quantifying biodiversity. DNA barcoding uses a standardized genetic marker and a curated reference database to identify known species and to reveal cryptic diversity within wellsampled clades. Rapid biological inventories, e.g. rapid assessment programs (RAPs), unlike most barcoding campaigns, are focused on particular geographic localities rather than on clades. Because of the potentially sparse phylogenetic sampling, the addition of DNA barcoding to RAPs may present a greater challenge for the identification of named species or for revealing cryptic diversity. In this article we evaluate the use of DNA barcoding for quantifying lineage diversity within a single sampling site as compared to clade-based sampling, and present examples from amphibians. We compared algorithms for identifying DNA barcode clusters (e.g. species, cryptic species or Evolutionary Significant Units) using previously published DNA barcode data obtained from geography-based sampling at a site in Central Panama, and from clade-based sampling in Madagascar. We found that clustering algorithms based on genetic distance performed similarly on sympatric as well as clade-based barcode data, while a promising coalescent-based method performed poorly on sympatric data. The various clustering algorithms were also compared in terms of speed and software implementation. Although each method has its shortcomings in certain contexts, we recommend the use of the ABGD method, which not only performs fairly well under either sampling method, but does so in a few seconds and with a user-friendly Web interface.

  19. Stratification of type 2 diabetes based on routine clinical markers

    DEFF Research Database (Denmark)

    Safai, Narges; Ali, Ashfaq; Rossing, Peter

    2018-01-01

    AIMS: We hypothesized that patients with dysregulated type 2 diabetes may be stratified based on routine clinical markers. METHODS: In this retrospective cohort study, diabetes related clinical measures including age at onset, diabetes duration, HbA1c, BMI, HOMA2-β, HOMA2-IR and GAD65...... autoantibodies, were used for sub-grouping patients by K-means clustering and for adjusting. Probability of diabetes complications (95% confidence interval), were calculated using logistic regression. RESULTS: Based on baseline data from patients with type 2 diabetes (n=2,290), the cluster analysis suggested up....... CONCLUSIONS: Patients with type 2 diabetes cluster into clinically relevant sub-groups based on routine clinical markers. The prevalence of diabetes complications seems to be sub-group specific. Our data suggests the need for a tailored strategy for the treatment of type 2 diabetes....

  20. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity.

    Science.gov (United States)

    Mancini, A; Vitucci, D; Labruna, G; Imperlini, E; Randers, M B; Schmidt, J F; Hagman, M; Andersen, T R; Russo, R; Orrù, S; Krustrup, P; Salvatore, F; Buono, P

    2017-04-01

    We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher in the muscle of football-trained men vs untrained men. Also citrate synthase activity was higher in trained than in untrained men (109.3 ± 9.2 vs 75.1 ± 9.2 mU/mg). These findings were associated with a healthier body composition in trained than in untrained men [body weight: 78.2 ± 6.5 vs 91.2 ± 11.2 kg; body mass index BMI: 24.4 ± 1.6 vs 28.8 ± 4.0 kg m -2 ; fat%: 22.6 ± 8.0 vs 31.4 ± 5.0%)] and with a higher maximal oxygen uptake (VO 2 max: 34.7 ± 3.8 vs 27.3 ± 4.0 ml/min/kg). Also the expression of proteins involved in DNA repair and in senescence suppression (Erk1/2, Akt and FoxM1) was higher in trained than in untrained men. At BMI- and age-adjusted multiple linear regression analysis, fat percentage was independently associated with Akt protein expression, and VO 2 max was independently associated with TFAM mRNA and with Erk1/2 protein expression. Lifelong football training increases the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity.

  1. A conservative region of the mercuric reductase gene (merA) as a molecular marker of bacterial mercury resistance Região conservada do gene da mercúrio redutase (merA) como marcador molecular da resistência bacteriana ao mercúrio

    OpenAIRE

    Adriana Sotero-Martins; Michele Silva de Jesus; Michele Lacerda; Josino Costa Moreira; Ana Luzia Lauria Filgueiras; Paulo Rubens Guimarães Barrocas

    2008-01-01

    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains.O mecanismo de resistência bacteriana ao mercúrio mais comum é baseada na redução do Hg(II) a Hg0, através da ativida...

  2. [Evaluation of Molecular Genetic Diversity of Wild Apple Malus sieversii Populations from Zailiysky Alatau by Microsatellite Markers].

    Science.gov (United States)

    Omasheva, M E; Chekalin, S V; Galiakparov, N N

    2015-07-01

    The territory of Kazakhstan is part of the distribution range of Malus sieversii, which is one of the ancestors of cultivated apple tree varieties. The collected samples of Sievers apple leaves from five populations growing in the Zailiysky Alatau region served as a source not only for the creation of a bank of genomic DNA but also for determination ofthe wild apple genetic polymorphism. The seven microsatellite markers used in this study revealed 86 alleles with different frequencies, as well as the characteristic pools of rare alleles for each of the populations. Molecular genetic analysis showed a high level of genetic diversity (H(o) = 0.704; PIC = 0.752; I = 1.617). Moreover, interpopulation variability accounted only for 7.5% of total variability, confirming the genetic closeness of the populations examined. Based on phylogenetic analysis, it was demonstrated that the Bel'bulak and Almaty Reserve populations were closest to each other, while the most distant were the Ketmen and Great Almaty gorge populations, which suggests the dependence of genetic distance on the geographical.

  3. Molecular pathology and thyroid FNA.

    Science.gov (United States)

    Poller, D N; Glaysher, S

    2017-12-01

    This review summarises molecular pathological techniques applicable to thyroid FNA. The molecular pathology of thyroid tumours is now fairly well understood. Molecular methods may be used as a rule-in test for diagnosis of malignancy in thyroid nodules, eg BRAF V600E point mutation, use of a seven-gene mutational panel (BRAF V600E, RAS genes, RET/PTC or PAX8/PPARG rearrangement), or as a comprehensive multigene next-generation sequencing panel, eg ThyroSeq v2. Molecular methods can also be applied as rule-out tests for malignancy in thyroid nodules, eg Afirma or ThyroSeq v2 or as markers of prognosis, eg TERT promoter mutation or other gene mutations including BRAF V600E, TP53 and AKT1, and as tests for newly defined tumour entities such as non-invasive follicular thyroid neoplasm with papillary like nuclei, or as a molecular marker(s) for targeted therapies. This review describes practical examples of molecular techniques as applied to thyroid FNA in routine clinical practice and the value of molecular diagnostics in thyroid FNA. It describes the range of molecular abnormalities identified in thyroid nodules and thyroid cancers with some practical applications of molecular methods to diagnosis and prognosis of thyroid nodules and thyroid cancer. © 2017 John Wiley & Sons Ltd.

  4. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 90, No. ... Segregation analysis was based on 64 molecular markers, including 26 .... FHB of RIL populations was controlled by quantitative trait ... The authors acknowledge financial support by the National Basic.

  5. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.

    Science.gov (United States)

    Sharma, Vishakha; Nandineni, Madhusudan R

    2014-04-01

    Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0

  6. Autonomous molecular cascades for evaluation of cell surfaces

    Science.gov (United States)

    Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler, Vincent P., Jr.; Rudchenko, Sergei; Stojanovic, Milan N.

    2013-08-01

    Molecular automata are mixtures of molecules that undergo precisely defined structural changes in response to sequential interactions with inputs. Previously studied nucleic acid-based automata include game-playing molecular devices (MAYA automata) and finite-state automata for the analysis of nucleic acids, with the latter inspiring circuits for the analysis of RNA species inside cells. Here, we describe automata based on strand-displacement cascades directed by antibodies that can analyse cells by using their surface markers as inputs. The final output of a molecular automaton that successfully completes its analysis is the presence of a unique molecular tag on the cell surface of a specific subpopulation of lymphocytes within human blood cells.

  7. The Effect of Molecular Diagnostics on the Treatment of Glioma.

    Science.gov (United States)

    Bush, Nancy Ann Oberheim; Butowski, Nicholas

    2017-04-01

    This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.

  8. The use of DNA markers for rapid improvement of crops in Africa ...

    African Journals Online (AJOL)

    Genetic engineering and biotechnology are providing new tools for genetic improvement of food crops. Molecular DNA markers are some of these tools which can be used in various fields of plant breeding and germplasm management. For example, molecular markers have been used to confirm the identity of hybrids in ...

  9. Characterization of Capsicum species using anatomical and molecular data.

    Science.gov (United States)

    Dias, G B; Gomes, V M; Moraes, T M S; Zottich, U P; Rabelo, G R; Carvalho, A O; Moulin, M; Gonçalves, L S A; Rodrigues, R; Da Cunha, M

    2013-02-28

    Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.

  10. A centennial record of anthropogenic impacts and extreme weather events in southwestern Taiwan: Evidence from sedimentary molecular markers in coastal margin

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Li-Jung; Lee, Chon-Lin; Louchouarn, Patrick; Huh, Chih-An; Liu, James T.; Chen, Jian-Cheng; Lee, Kun-Je

    2014-09-15

    A 100-year history of human and natural disturbances in southwestern Taiwan was reconstructed using a suite of molecular markers in four dated sediment cores from the upper slope region off the Gaoping River mouth. Trends in polycyclic aromatic hydrocarbons (PAHs) tracked Taiwan's industrialization/urbanization starting in the 1970s, and the enactment of environmental regulatory policies thereafter.

  11. Improvement of molecular techniques: A multidisciplinar vision

    Directory of Open Access Journals (Sweden)

    Bruno do Amaral Crispim

    2016-08-01

    Full Text Available The advances in molecular technologies since the discovery of the PCR (Polymerase Chain Reaction and their association with the use of molecular markers, allowed a rapid progress in the development of technologies and equipment able to generate and analyze data on a large scale, revolutionizing research that until recently was only based on single marker, like the analysis of Single Nucleotide Polymorphism (SNP, and nowadays with the genomic era is already possible in a few hours genotyping millions or even thousands of SNPs. This evolution has allowed improvements in research to the knowledge of genomes creating expectations and real possibilities of application of these techniques in various fields, from medicine to animal production. These new technologies of molecular analysis of DNA variability determining points of interest in chromosomes, which are technically called as molecular markers. These markers can be used in various applications, including paternity test, construction of genetic maps, mapping of quantitative inheritance of characteristics, isolation of genes, marker-assisted selection and characterization of the genetic diversity of different species. The improvement of sequencing and bioinformatics technologies were crucial to studies with characteristics of interest using high-density genetic information. The SNP genotyping panels stimulated researches in the human area, especially in studies of cancer and exoma, and also in agribusiness, aiming the search for superior genotypes for domestic plants and animals. The differential use of the panels is the possibility to seek complex characteristics, once the wide distribution of markers favors through the linkage disequilibrium, the identification of genomic regions associated with expression phenotypes in study. Therefore, this advance has become essential for greater accuracy and speed in molecular diagnostics, increasing the accuracy in the selection of individuals with

  12. Viral-Cellular DNA Junctions as Molecular Markers for Assessing Intra-Tumor Heterogeneity in Cervical Cancer and for the Detection of Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Katrin Carow

    2017-09-01

    Full Text Available The development of cervical cancer is frequently accompanied by the integration of human papillomaviruses (HPV DNA into the host genome. Viral-cellular junction sequences, which arise in consequence, are highly tumor specific. By using these fragments as markers for tumor cell origin, we examined cervical cancer clonality in the context of intra-tumor heterogeneity. Moreover, we assessed the potential of these fragments as molecular tumor markers and analyzed their suitability for the detection of circulating tumor DNA in sera of cervical cancer patients. For intra-tumor heterogeneity analyses tumors of 8 patients with up to 5 integration sites per tumor were included. Tumor islands were micro-dissected from cryosections of several tissue blocks representing different regions of the tumor. Each micro-dissected tumor area served as template for a single junction-specific PCR. For the detection of circulating tumor-DNA (ctDNA junction-specific PCR-assays were applied to sera of 21 patients. Samples were collected preoperatively and during the course of disease. In 7 of 8 tumors the integration site(s were shown to be homogenously distributed throughout different tumor regions. Only one tumor displayed intra-tumor heterogeneity. In 5 of 21 analyzed preoperative serum samples we specifically detected junction fragments. Junction-based detection of ctDNA was significantly associated with reduced recurrence-free survival. Our study provides evidence that HPV-DNA integration is as an early step in cervical carcinogenesis. Clonality with respect to HPV integration opens new perspectives for the application of viral-cellular junction sites as molecular biomarkers in a clinical setting such as disease monitoring.

  13. Application of random amplified polymorphic DNA (RAPD) markers ...

    African Journals Online (AJOL)

    The random amplified polymorphic DNA (RAPD) technique has been widely applied to identify different varieties of plants for molecular breeding. However, application of RAPD markers to identify parthenogenesis in plants has not been reported. In this investigation, we used pedigree and RAPD markers to differentiate ...

  14. Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid.

    Science.gov (United States)

    Bhattacharyya, Paromik; Kumaria, Suman; Tandon, Pramod

    2015-09-01

    Dendrobium nobile is an important medicinal orchid having profound importance in traditional herbal drug preparations and pharmacopeias worldwide. Due to various anthropogenic pressures the natural populations of this important orchid species are presently facing threats of extinction. In the present study, genetic and chemical diversity existing amongst 6 natural populations of D. nobile were assessed using molecular markers, and the influence of genetic factors on its phytochemical activity especially antioxidant potential was determined. Molecular fingerprinting of the orchid taxa was performed using ISSR and DAMD markers along with the estimation of total phenolics, flavonoids and alkaloid contents. Antioxidant activity was also measured using DPPH and FRAP assays which cumulatively revealed a significant level of variability across the sampled populations. The representatives from Sikkim in Northeast India revealed higher phytochemical activity whereas those from Mizoram showed lesser activity. Analysis of molecular variance (AMOVA) revealed that variation amongst the populations was significantly higher than within the populations. The data generated by UPGMA and Bayesian analytical models were compared in order to estimate the genetic relationships amongst the D. nobile germplasm sampled from different geographical areas of Northeast India. Interestingly, identical grouping patterns were exhibited by both the approaches. The results of the present study detected a high degree of existing genetic and phytochemical variation amongst the populations in relation to bioclimatic and geographic locations of populations. Our results strongly establish that the cumulative marker approach could be the best suited for assessing the genetic relationships with high accuracy amongst distinct D. nobile accessions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bases moleculares de las leucemias agudas

    Directory of Open Access Journals (Sweden)

    G. Martínez Antuña

    2006-04-01

    Full Text Available El gran desarrollo de la biología molecular en los últimos años ha contribuido a un importante avance en los conocimientos relacionados con las bases moleculares de las leucemias agudas (LA. Ademas de profundizar en la biología de estas enfermedades y conocer las bases moleculares, ha renido también gran impacto en mejorar el resultado de los tratamientos y disminuir la toxicidad de las terapias.

  16. Molecular characterization of UV-treated sugar beet somaclones using RFLP markers

    International Nuclear Information System (INIS)

    Levall, M.W.; Bengtsson, K.; Nilsson, N.-O.; Hjerdin, A.; Hallden, C.

    1994-01-01

    Sugar beet plants regenerated from UV-treated calluses were examined by restriction fragment length polymorphism (RFLP) analysis to determine the extent of somaclonal variation occurring at the DNA level. In total, 50 random sugar beet DNA sequences were used to screen 42 somaclones for genetic alterations. Three polymorphisms were detected among the 7 644 alleles analysed. From these data a mutation frequency of 0.03 ± 0.02% per allele was estimated. This frequency is in agreement with similar studies of somaclonal DNA variation using molecular markers and lies in the upper range of the spontaneous gene mutation frequencies found in plants. The two probegenotype combinations showing independent polymorphisms, were further analysed using the restriction enzymes Bam HI, Eco RI, Eco RV and Hind III. Both polymorphisms are likely to result from structural rearrangements rather than from point mutations. Differences in methylation among 10 of the investigated somaclones were tested for by comparing Hpa II and Msp I generated RFLP patterns. The somaclones showed extensive methylation, but no differences in their degree of methylation. Cytological analysis revealed 34 diploid, 8 tetraploid, but no aneuploid plants. (author)

  17. Molecular Genetic Diversity of Date (Phoenix dactylifera) Germplasm in Qatar based on Microsatellite Markers

    KAUST Repository

    Ahmed, Talaat

    2016-01-25

    Depending on morphological traits alone, studying the genetic diversity of date palm is a very difficult task since morphological characteristics are highly affected by the environment. DNA markers are excellent option that can help and enhance the discriminatory power of morphological characteristics. To study the genetic diversity among date palm cultivars grown in Qatar, fifteen Date palm samples were collected from Qatar University Experimental Farm. DNAs were extracted from fresh leaves by using commercial DNeasy Plant System Kit (Qiagen, Inc., Valencia, CA). Total of 18 (Inter Simple Sequence Repeat) ISSR single primers were used to amplify DNA fragments using genomic DNA of the 15 samples. First screening was done to test the ability of these primers to amplify clear bands using Date palm genomic DNA. All 18 ISSR primers successfully produced clear bands in the first screening. Then, each primer was used separately to genotype the whole set of 15 Date palm samples. Total of 4794 bands were generated using 18 ISSR primers for the 15 Date palm samples. On average, each primer generated 400 bands. The Number of amplified bands varied from cultivar to cultivar. The highest number of bands was obtained using Primers 2, 5 and 12 for the 15 (470 bands), while the lowest number of bands were obtained by Primers 1, 7 and 8 where they produced only 329 bands. Markers were scored for the presence and absence of the corresponding band among the different cultivars. Data were subjected to cluster analysis. A similarity matrix was constructed and the similarity values were used for cluster analysis.

  18. Molecular Markers of Metastasis in Ductal Mammary Carcinoma

    National Research Council Canada - National Science Library

    Achary, Patnala

    2002-01-01

    ...% of those patients, however, the disease spreads, and they are at risk of death. Our goal is to develop DNA markers that could be reliably used to identify the ductal mammary carcinomas that are prone to develop metastasis...

  19. Cross-transferability of SSR markers in Osmanthus

    Science.gov (United States)

    Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at O. fragrans with little work to develop markers for other species and cu...

  20. Construction of a genetic linkage map in Lilium using a RIL mapping population based on SRAP marker

    Directory of Open Access Journals (Sweden)

    Chen Li-Jing

    2015-01-01

    Full Text Available A genetic linkage map of lily was constructed using RILs (recombinant inbred lines population of 180 individuals. This mapping population was developed by crossing Raizan No.1 (Formolongo and Gelria (Longiflomm cultivars through single-seed descent (SSD. SRAPs were generated by using restriction enzymes EcoRI in combination with either MseI. The resulting products were separated by electrophoresis on 6% denaturing polyacrylamide gel and visualized by silver staining. The segregation of each marker and linkage analysis was done using the program Mapmaker3.0. With 50 primer pairs, a total of 189 parental polymorphic bands were detected and 78 were used for mapping. The total map length was 2,135.5 cM consisted of 16 linkage groups. The number of markers in the linkage groups varied from 1 to 12. The length of linkage groups was range from 11.2 cM to 425.9 cM and mean marker interval distance range from 9.4 cM to 345.4 cM individually. The mean marker interval distance between markers was 27.4 cM. The map developed in the present study was the first sequence-related amplified polymorphism markers map of lily constructed with recombinant inbred lines, it could be used for genetic mapping and molecular marker assisted breeding and quantitative trait locus mapping of Lilium.

  1. Association analysis and marker development for grain quality traits using USDA diverse rice germplasm collections

    Science.gov (United States)

    New molecular markers are being designed and validated for grain quality improvement based on computationally assisted analysis of genome wide association study (GWAS) findings across multiple panels and multiple grain quality traits. The traits include grain dimensions, apparent amylose content (A...

  2. The expression of selected molecular markers of immune tolerance in psoriatic patients.

    Science.gov (United States)

    Bartosińska, Joanna; Purkot, Joanna; Kowal, Małgorzata; Michalak-Stoma, Anna; Krasowska, Dorota; Chodorowska, Grażyna; Giannopoulos, Krzysztof

    2018-04-24

    Psoriasis is a chronic autoinflammatory disease whose underlying molecular mechanisms remain unclear. The disease is mediated by the cells and molecules of both the innate and adaptive immune systems. Some T cell surface molecules, including neuropilin-1 (NRP1), programmed death 1 (PD-1) and the human leukocyte antigen G (HLA-G), are known to play a role in the maintenance of immune tolerance. The aim of this study was to investigate HLA-G, NRP1 and programmed cell death gene (PDCD1) mRNA expression in psoriatic patients. The study included 72 psoriatic patients and 35 healthy individuals. Twentyone patients (29.17%) suffered from concomitant psoriatic arthritis. The mRNA expression of HLA-G, NRP1, and PDCD1 were determined using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The severity of skin lesions was assessed by means of the Psoriasis Area and Severity Index (PASI), Body Surface Area (BSA), the Patient Global Assessment (PGA), and the Dermatology Life Quality Index (DLQI). The median value of the PASI was 11.5, and of BSA was 15.8%. The expressions of NRP1 and PDCD1, but not HLA-G, were significantly lower in psoriatic patients in comparison with the control group. The expression of HLA-G, NRP1 and PDCD1 were not significantly different in the psoriatic arthritis and psoriasis vulgaris patients. The results of this study suggest that the molecular markers of immune tolerance, i.e., HLA-G, NRP1, and PD-1, may be involved in the immune response in psoriatic patients.

  3. Development of genomic SSR and potential EST-SSR markers in ...

    African Journals Online (AJOL)

    In addition, forty four EST-SSRs which can be amplified with expected sizes were identified from a B. chinense root cDNA library. The genomic SSR markers and potential EST-SSR markers developed in the present study should be useful for genetic diversity and molecular marker assistant selection breeding research in ...

  4. Molecular markers for detection of resistance to chemotherapy

    International Nuclear Information System (INIS)

    Auner, V.

    2009-01-01

    Objectives: The scope of this thesis was to select new biomarkers for the response to standard chemotherapies and new targeted therapies in ovarian cancer. Furthermore the utility of new platforms for the routine testing of biomarkers on RNA and DNA level was evaluated. Such markers are especially interesting for ovarian cancer as after initial good response to chemotherapy most tumors acquire multiple drug resistance (MDR). Material and Methods: Mutational status of KRAS was determined in fresh frozen and formalin fixed paraffin embedded (FFPE) ovarian tissue samples. The experiments were conducted on two different platforms, Gastoxin, a micro array system, and a reverse hybridisation strip assay. Gene expression of nine ATP-binding cassette (ABC) transporters were analysed in recurrent ovarian cancer samples and benign tissue with real-time Pcr. Transporters exhibiting a significant overexpression in recurrent disease were further evaluated in primary cancer tissue. Furthermore real-time Pcr results were validated with two novel platforms. Results: In 15% of ovarian carcinoma samples KRAS was mutated. Mutation rates in fresh and FFPE tissue were approximately the same which leads to the conclusion that both assays are able to process these types of tissue. Four of the ABC transporters were significantly higher expressed in recurrent cancer tissue. Primary lesions compared to benign tissue showed no mentionable differences in gene expression. Therefore the examined transporters are not feasible as prognostic markers but some seem to play a role in MDR of ovarian cancer. Regarding the two tested platforms, the Quantitating 2.0 Reagent System was found to be an adequate alternative to real-time Pcr. For the Approve-B platform the first optimization experiments were promising, further development is currently ongoing. Conclusion: Mutation of KRAS is no prognostic marker for patients under standard therapy, but in the light of the new anti-EGF R therapies, which are

  5. Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice

    Science.gov (United States)

    Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371

  6. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.

    Science.gov (United States)

    Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J

    2005-08-01

    Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.

  7. Use of molecular markers for predicting therapy response in cancer patients.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    Predictive markers are factors that are associated with upfront response or resistance to a particular therapy. Predictive markers are important in oncology as tumors of the same tissue of origin vary widely in their response to most available systemic therapies. Currently recommended oncological predictive markers include both estrogen and progesterone receptors for identifying patients with breast cancers likely to benefit from hormone therapy, HER-2 for the identification of breast cancer patients likely to benefit from trastuzumab, specific K-RAS mutations for the identification of patients with advanced colorectal cancer unlikely to benefit from either cetuximab or panitumumab and specific EGFR mutations for selecting patients with advanced non-small-cell lung cancer for treatment with tyrosine kinase inhibitors such as gefitinib and erlotinib. The availability of predictive markers should increase drug efficacy and decrease toxicity, thus leading to a more personalized approach to cancer treatment.

  8. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    Science.gov (United States)

    2010-01-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with FST > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species. PMID:21637482

  9. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers.

    Science.gov (United States)

    Enciso-Rodríguez, Felix; Martínez, Rodrigo; Lobo, Mario; Barrero, Luz Stella

    2010-04-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F(ST) > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  10. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII markers

    Directory of Open Access Journals (Sweden)

    Felix Enciso-Rodríguez

    2010-01-01

    Full Text Available The Lulo or naranjilla (Solanum quitoense Lam. and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt. are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32 and tree tomatoes (n = 30 through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII in other Solanaceae (Asterid species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested and tree tomatoes (26 out of 41 for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F ST > 0.90, which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  11. Advances in plant gene-targeted and functional markers: a review

    Directory of Open Access Journals (Sweden)

    Poczai Péter

    2013-02-01

    Full Text Available Abstract Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information

  12. Advances in plant gene-targeted and functional markers: a review

    Science.gov (United States)

    2013-01-01

    Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the

  13. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Bin Han

    Full Text Available Microsatellites or simple sequence repeats (SSRs are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR; 70,564 (23.9% were found to be monomorphic and 224,703 (76.1% were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3% amplified one locus, 8 (17.8% amplified multiple identical loci, and 13 (28.9% did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising

  14. Molecular diversity of Pakistani mango (Mangifera indica L.) varieties based on microsatellite markers.

    Science.gov (United States)

    Nazish, T; Shabbir, G; Ali, A; Sami-Ul-Allah, S; Naeem, M; Javed, M; Batool, S; Arshad, H; Hussain, S B; Aslam, K; Seher, R; Tahir, M; Baber, M

    2017-04-05

    Understanding the genetic diversity of different Pakistani mango varieties is important for germplasm management and varietal characterization. Microsatellites are efficient and highly polymorphic markers for comparative genome mapping, and were used in the present study to determine the genetic relatedness and variability among 15 indigenous mango cultivars (Mangifera indica L.). Overall, 181 bands were produced using 12 simple sequence repeat (SSR) primers. Out of the 12 primers used, 10 were polymorphic and two were monomorphic. Genetic relatedness among cultivars was assessed by constructing a dendrogram using the unweighted pair group method of arithmetic means. The accessions exhibited coefficients of similarity ranging from 75 to 100%, indicating the frequent use of only a few parent cultivars and the presence of inbreeding. The primers used in the present study were found to be valuable for identifying genetic relationships among mango cultivars.

  15. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Schousboe, Mette L; Thomsen, Thomas

    2011-01-01

    ABSTRACT: BACKGROUND: Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly...... endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of P. falciparum and Plasmodium vivax CQ and SP resistance to determine...... and P. vivax for CQ (Pfcrt, Pfmdr1, Pvmdr1) and SP (Pfdhfr, Pfdhps, Pvdhfr), using various PCR-based methods. RESULTS AND DISCUSSION: Positive P. vivax and P. falciparum infections were identified by PCR in 92 and 41 samples respectively. However, some of these were negative in subsequent PCRs. Based...

  16. High-throughput development of genome-wide locus-specific informative SSR markers in wheat

    Science.gov (United States)

    Although simple sequence repeat (SSR) markers are not new, they are still useful and often used markers in molecular mapping and marker-assisted breeding, particularly in developing countries. However, locus-specific SSR markers could be more useful and informative in wheat breeding and genetic stud...

  17. Diagnostic markers for germ cell neoplasms

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Nielsen, John E; Skakkebaek, Niels E

    2015-01-01

    This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCTs), with focus on the most common testicular GCTs (TGCTs). GCTs are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic diff...... of molecular markers, which allow specific diagnosis of various subtypes of GCT and are very useful for early detection at the precursor stage and for monitoring of patients during the follow-up....

  18. Variações genéticas em populações de Eucalyptus spp. detectadas por meio de marcadores moleculares Genetic variations in Eucalyptus spp. genotypes detected by means of molecular markers

    Directory of Open Access Journals (Sweden)

    Ronaldo Pereira Caixeta

    2003-06-01

    Full Text Available A tecnologia de marcadores moleculares, aliada às técnicas clássicas do melhoramento, pode contribuir significativamente para o conhecimento básico da cultura e do caráter estudado e para a geração e o desenvolvimento de produtos melhorados. O objetivo deste trabalho foi utilizar marcadores RAPD para detectar e maximizar a variabilidade genética em genótipos Eucalyptus, identificando cruzamentos favoráveis para um programa de melhoramento florestal, visando o uso múltiplo. Foram analisados 44 genótipos de híbridos naturais do gênero Eucalyptus, plantados na região noroeste de Minas Gerais. Os marcadores moleculares RAPD apresentaram poder de discriminação eficiente entre os 44 genótipos avaliados, constatando-se uma distância genética média entre os genótipos de Eucalyptus de 54% e divergência genética variando de 24 a 73%. Este fato indica que entre os indivíduos analisados existe uma ampla base genética, o que possibilita a manipulação desse material em programas de melhoramento. A distância genética entre os genótipos 5 e 9; 9 e 10; 9 e 19; 9 e 25; 9 e 33; 9 e 35; 9 e 36; 9 e 44; 10 e 33; 12 e 19; 12 e 33; e 12 e 39 apresentou-se maior ou igual a 70%. A análise de agrupamento estabelecida, utilizando UPGMA e o critério de corte de 80% da distância genética total, permitiu a formação de nove grupos distintos. Esses grupos apresentaram divergência genética média superior a 60%. A maior média de distância ocorreu entre o grupo I e os demais, com 67%. A avaliação por marcadores moleculares RAPD forneceu uma identificação direta da variação genética dos genótipos e, neste sentido, novos cruzamentos para produção de híbridos específicos poderão ser gerados, aumentando, assim, a divergência genética e a produtividade de derivados de madeira de qualidade superior para usos múltiplos em programas de melhoramento florestal.Molecular marker technology combined with the classic breeding techniques

  19. Characterization of Haemaphysalis flava (Acari: Ixodidae from Qingling subspecies of giant panda (Ailuropoda melanoleuca qinlingensis in Qinling Mountains (Central China by morphology and molecular markers.

    Directory of Open Access Journals (Sweden)

    Wen-yu Cheng

    Full Text Available Tick is one of important ectoparasites capable of causing direct damage to their hosts and also acts as vectors of relevant infectious agents. In the present study, the taxa of 10 ticks, collected from Qinling giant pandas (Ailuropoda melanoleuca qinlingensis in Qinling Mountains of China in April 2010, were determined using morphology and molecular markers (nucleotide ITS2 rDNA and mitochondrial 16S. Microscopic observation demonstrated that the morphological features of these ticks were similar to Haemaphysalis flava. Compared with other Haemaphysalis species, genetic variations between Haemaphysalis collected from A. m. qinlingensis and H. flava were the lowest in ITS2 rDNA and mitochondrial 16S, with sequence differences of 2.06%-2.40% and 1.30%-4.70%, respectively. Phylogenetic relationships showed that all the Haemaphysalis collected from A. m. qinlingensis were grouped with H. flava, further confirmed that the Haemaphysalis sp. is H. flava. This is the first report of ticks in giant panda by combining with morphology and molecular markers. This study also provided evidence that combining morphology and molecular tools provide a valuable and efficient tool for tick identification.

  20. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    Science.gov (United States)

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.