Spatial Frequency Scheduling for Uplink SC-FDMA based Linearly Precoded LTE Multiuser MIMO Systems
DEFF Research Database (Denmark)
Lin, Zihuai; Xiao, Pei; Sørensen, Troels Bundgaard;
2010-01-01
This paper investigates the performance of the 3GPP Long Term Evolution (LTE) uplink Single Carrier (SC) Frequency Division Multiple Access (FDMA) based linearly precoded multiuserMultiple InputMultiple Output (MIMO) systems with frequency domain packet scheduling. A mathematical expression...
Diversity of MIMO Linear Precoding
Mehana, Ahmed Hesham
2012-01-01
Linear precoding is a relatively simple method of MIMO signaling that can also be optimal in certain special cases. This paper is dedicated to high-SNR analysis of MIMO linear precoding. The Diversity-Multiplexing Tradeoff (DMT) of a number of linear precoders is analyzed. Furthermore, since the diversity at finite rate (also known as the fixed-rate regime, corresponding to multiplexing gain of zero) does not always follow from the DMT, linear precoders are also analyzed for their diversity at fixed rates. In several cases, the diversity at multiplexing gain of zero is found not to be unique, but rather to depend on spectral efficiency. The analysis includes the zero-forcing (ZF), regularized ZF, matched filtering and Wiener filtering precoders. We calculate the DMT of ZF precoding under two common design approaches, namely maximizing the throughput and minimizing the transmit power. It is shown that regularized ZF (RZF) or Matched filter (MF) suffer from error floors for all positive multiplexing gains. Howe...
Linear precoding based on polynomial expansion: reducing complexity in massive MIMO
Mueller, Axel; Kammoun, Abla; Björnson, Emil; Debbah, Merouane
2016-01-01
Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-opt...
Linear precoding based on polynomial expansion: reducing complexity in massive MIMO
Mueller, Axel
2016-02-29
Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively “antenna-efficient” regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.
A Selfish Linear Precoding Strategy for Downlink Two-User MIMO Systems Using Limited Rate Feedback
Directory of Open Access Journals (Sweden)
Lei Lv
2013-07-01
Full Text Available This letter proposes a limited feedback-based selfish linear precoding (SLP strategy for downlink two-user MIMO systems. In the proposed strategy, each user selfishly chooses the other user’s precoding matrix which minimizes its capacity loss. The proposed SLP strategy has two advantages comparing with traditional linear precoding strategies. First, SLP improves the system capacity by resisting interference more effectively. Second, the computing complexity of transmitter is reduced since the base station needs not to calculate precoding matrix. Simulation results verify the effectiveness of SLP on system capacity improvement comparing to limited feedback block diagonalization (LFBD algorithm, especially when feedback bits are insufficient.
Comparison of Linear Precoding Schemes for the Massive MIMO Downlink
Hoydis, Jakob; Ten Brink, Stephan; Debbah, Mérouane
2012-01-01
978-1-4577-2052-9; International audience; We consider the downlink of a time-division duplexing (TDD) multicell multiuser MIMO system where the base stations (BSs) are equipped with a very large number of antennas. Assuming channel estimation through uplink pilots, arbitrary antenna correlation and user distributions, we derive approximations of achievable rates with linear precoding techniques, namely eigenbeamforming (BF) and regularized zero-forcing (RZF). The approximations are tight in ...
Coded Adaptive Linear Precoded Discrete Multitone Over PLC Channel
Muhammad, Fahad Syed; Hélard, Jean-François; Crussière, Matthieu
2008-01-01
Discrete multitone modulation (DMT) systems exploit the capabilities of orthogonal subcarriers to cope efficiently with narrowband interference, high frequency attenuations and multipath fadings with the help of simple equalization filters. Adaptive linear precoded discrete multitone (LP-DMT) system is based on classical DMT, combined with a linear precoding component. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LPDMT system is presented in the power line communication (PLC) context with a loading algorithm which accommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the proposed algorithm is analyzed. Theoretical coding gains are derived and simulation results are presented for a fixed target bit error ra...
Scutari, Gesualdo; Barbarossa, S
2007-01-01
In this two-parts paper we propose a decentralized strategy, based on a game-theoretic formulation, to find out the optimal precoding/multiplexing matrices for a multipoint-to-multipoint communication system composed of a set of wideband links sharing the same physical resources, i.e., time and bandwidth. We assume, as optimality criterion, the achievement of a Nash equilibrium and consider two alternative optimization problems: 1) the competitive maximization of mutual information on each link, given constraints on the transmit power and on the spectral mask imposed by the radio spectrum regulatory bodies; and 2) the competitive maximization of the transmission rate, using finite order constellations, under the same constraints as above, plus a constraint on the average error probability. In Part I of the paper, we start by showing that the solution set of both noncooperative games is always nonempty and contains only pure strategies. Then, we prove that the optimal precoding/multiplexing scheme for both gam...
A Linear Precoding Scheme for Massive MIMO Systems Based on SSOR Method%一种基于SSOR的大规模MIMO线性预编码方案
Institute of Scientific and Technical Information of China (English)
龙恳; 卿瑞强; 涂斯宇
2016-01-01
大规模多输入多输出系统（Massive MIMO）由于天线数和用户数太大，导致预编码矩阵在求逆是复杂度过高。为了降低复杂度，本文提出了一种基于对称逐步超松弛（SSOR）的线性预编码方案，相比传统的规则化迫零（RZF）预编码方案，本文所提的方案在没有任何性能损失的情况下可以降低一个量级的运算复杂度，为了保证所提SSOR预编码方案的性能，提出一种仅依靠天线配置的简单的量化松弛参数。%Massive multiple-input multiple-output(MIMO) has a large number of attennas and users, which leads to high computational complexity in precoding matrix.To solve this problem,this paper proposed a linear precoding scheme based on symmetric successive overrelaxation(SSOR). Compared to conventional RZF scheme,it can reduce one order of magnitude with negligible performace loss. To guarantee the performance of SSOR-based precoding, we also proposed a simple quantiifed relaxation parameter for SSOR-based scheme, which only depends on the MIMO systemconifguration.
Power Allocation Optimization: Linear Precoding Adapted to NB-LDPC Coded MIMO Transmission
Directory of Open Access Journals (Sweden)
Tarek Chehade
2015-01-01
Full Text Available In multiple-input multiple-output (MIMO transmission systems, the channel state information (CSI at the transmitter can be used to add linear precoding to the transmitted signals in order to improve the performance and the reliability of the transmission system. This paper investigates how to properly join precoded closed-loop MIMO systems and nonbinary low density parity check (NB-LDPC. The q elements in the Galois field, GF(q, are directly mapped to q transmit symbol vectors. This allows NB-LDPC codes to perfectly fit with a MIMO precoding scheme, unlike binary LDPC codes. The new transmission model is detailed and studied for several linear precoders and various designed LDPC codes. We show that NB-LDPC codes are particularly well suited to be jointly used with precoding schemes based on the maximization of the minimum Euclidean distance (max-dmin criterion. These results are theoretically supported by extrinsic information transfer (EXIT analysis and are confirmed by numerical simulations.
Performance Evaluation of STBC MIMO Systems with Linear Precoding
Directory of Open Access Journals (Sweden)
I. Vermeşan
2010-06-01
Full Text Available It is known that transmit channel side information (CSIT is used to enhance the performance of space-time block codes based multi-antenna communication links. In this paper, we analyze how transmission algorithms can be adapted to the channel condition based on the degree of the available CSIT and the system diversity order. The precoding design criterion considered is minimizing the average pairwise error probability. The analyzed parameters are the bit error rate (BER and the link throughput.
Xu, Wei; Lu, Wu-Sheng; 10.1109/TSP.2010.2056687
2012-01-01
Multi-antenna relaying has emerged as a promising technology to enhance the system performance in cellular networks. However, when precoding techniques are utilized to obtain multi-antenna gains, the system generally requires channel state information (CSI) at the transmitters. We consider a linear precoding scheme in a MIMO relaying broadcast channel with quantized CSI feedback from both two-hop links. With this scheme, each remote user feeds back its quantized CSI to the relay, and the relay sends back the quantized precoding information to the base station (BS). An upper bound on the rate loss due to quantized channel knowledge is first characterized. Then, in order to maintain the rate loss within a predetermined gap for growing SNRs, a strategy of scaling quantization quality of both two-hop links is proposed. It is revealed that the numbers of feedback bits of both links should scale linearly with the transmit power at the relay, while only the bit number of feedback from the relay to the BS needs to gr...
Energy efficient downlink MIMO transmission with linear precoding
Institute of Scientific and Technical Information of China (English)
XU Jie; LI ShiChao; QIU Ling; SLIMANE Ben S.; YU ChengWen
2013-01-01
Energy efficiency （EE） is becoming increasingly important for wireless cellular networks. This paper addresses EE optimization problems in downlink multiuser MIMO systems with linear precoding. Referring to different active transmit/receive antenna sets and transmission schemes as different modes, we propose a joint bandwidth/power optimization and mode switching scheme to maximize EE. With a specific mode, we prove that the optimal bandwidth and transmit power is either full transmit power or full bandwidth. After deriving the optimal bandwidth and transmit power, we further propose mode switching to select the mode with optimal EE. Since the optimal mode switching, i.e. exhaustive search, is too complex to implement, an alternative heuristic method is developed to decrease the complexity through reducing the search size and avoiding the EE calculation during each search. Through simulations, we demonstrate that the proposed methods can significantly improve EE and the performance is similar to the optimal exhaustive search.
Linear Precoding and Analysis of Performance Criteria in MIMO Interference Channels
Bazzi, Samer
2016-01-01
This thesis treats the downlink transmission in multi-antenna (MIMO) wireless interference channels, and characterizes the spectral efficiency of different linear precoding methods for such channels. These methods include interference alignment, maximum ratio transmission, and eigenmode precoding. The performance characterization of the latter two methods is especially important in massive MIMO scenarios, where these simple techniques exhibit a good performance. The analysis is mainly perform...
Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots
Ngo, Hien Quoc; Larsson, Erik G.; Marzetta, Thomas L.
2013-01-01
We consider a massive MU-MIMO downlink time-division duplex system where a base station (BS) equipped with many antennas serves several single-antenna users in the same time-frequency resource. We assume that the BS uses linear precoding for the transmission. To reliably decode the signals transmitted from the BS, each user should have an estimate of its channel. In this work, we consider an efficient channel estimation scheme to acquire CSI at each user, called beamforming training scheme. W...
LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM
Institute of Scientific and Technical Information of China (English)
Qu Daiming; Zhu Guangxi
2006-01-01
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precoder of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10-6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.
Power allocation strategies for distributed precoded multicell based systems
Directory of Open Access Journals (Sweden)
Silva Adão
2011-01-01
Full Text Available Abstract Multicell cooperation is a promising solution for cellular wireless systems to mitigate intercell interference, improve system fairness, and increase capacity. In this article, we propose power allocation techniques for the downlink of distributed, precoded, multicell cellular-based systems. The precoder is designed in two phases: first the intercell interference is removed by applying a set of distributed precoding vectors; then the system is further optimized through power allocation. Three centralized power allocation algorithms with per-BS power constraint and different complexity trade-offs are proposed: one optimal in terms of minimization of the instantaneous average bit error rate (BER, and two suboptimal. In this latter approach, the powers are computed in two phases. First, the powers are derived under total power constraint (TPC and two criterions are considered, namely, minimization of the instantaneous average BER and minimization of the sum of inverse of signal-to-noise ratio. Then, the final powers are computed to satisfy the individual per-BS power constraint. The performance of the proposed schemes is evaluated, considering typical pedestrian scenarios based on LTE specifications. The numerical results show that the proposed suboptimal schemes achieve a performance very close to the optimal but with lower computational complexity. Moreover, the performance of the proposed per-BS precoding schemes is close to the one obtained considering TPC over a supercell.
Precoding techniques for PAPR reduction in asymmetrically clipped OFDM based optical wireless system
Ranjha, Bilal; Kavehrad, Mohsen
2013-01-01
In this paper, we have analyzed different precoding based Peak-to-Average-Power (PAPR) reduction techniques for asymmetrically-clipped Orthogonal Frequency Division Multiplexing (OFDM) optical wireless communication systems. Intensity Modulated Direct Detection (IM/DD) technique is among the popular techniques for optical wireless communication systems. OFDM cannot be directly applied to IM systems because of the bipolar nature of the output signal. Therefore some variants of OFDM systems have been proposed for (IM/DD) optical wireless systems. Among them are DC-biased-OFDM, Asymmetrically-Clipped Optical OFDM (ACO-OFDM) [2] and Pulse Amplitude Modulated Discrete Multitone (PAM-DMT) [3]. Both ACO-OFDM and PAM-DMT require low average power and thus are very attractive for optical wireless systems. OFDM systems suffer from high PAPR problem that can limit its performance due to non-linear characteristics of LED. Therefore PAPR reduction techniques have to be employed. This paper analyzes precoding based PAPR reduction methods for ACO-OFDM and PAM-DMT. We have used Discrete Fourier Transform (DFT) coding, Zadoff-Chu Transform (ZCT) [8] and Discrete Cosine Transform (DCT) for ACOOFDM and only DCT for PAM-DMT since the modulating symbols are real. We have compared the performance of these precoding techniques using different QAM modulation schemes. Simulation results have shown that both DFT and ZCT offer more PAPR reduction than DCT in ACO-OFDM. For PAM-DMT, DCT precoding yields significant PAPR reduction compared to conventional PAM-DMT signal. These precoding schemes also offer the advantage of zero signaling overhead.
Interference Mitigation for Cognitive Radio MIMO Systems Based on Practical Precoding
Chen, Zengmao; Hong, Xuemin; Thompson, John; Vorobyov, Sergiy A; Zhao, Feng; Xiao, Hailin; Ge, Xiaohu
2011-01-01
In this paper, we propose two subspace-projection-based precoding schemes, namely, full-projection (FP)- and partial-projection (PP)-based precoding, for a cognitive radio multiple-input multiple-output (CR-MIMO) network to mitigate its interference to a primary time-division-duplexing (TDD) system. The proposed precoding schemes are capable of estimating interference channels between CR and primary networks, and incorporating the interference from the primary to the CR system into CR precoding via a novel sensing approach. Then, the CR performance and resulting interference of the proposed precoding schemes are analyzed and evaluated. By fully projecting the CR transmission onto a null space of the interference channels, the FP-based precoding scheme can effectively avoid interfering the primary system with boosted CR throughput. While, the PP-based scheme is able to further improve the CR throughput by partially projecting its transmission onto the null space.
Space Alignment Based on Regularized Inversion Precoding in Cognitive Transmission
Directory of Open Access Journals (Sweden)
R. Yao
2015-09-01
Full Text Available For a two-tier Multiple-Input Multiple-Output (MIMO cognitive network with common receiver, the precoding matrix has a compact relationship with the capacity performance in the unlicensed secondary system. To increase the capacity of secondary system, an improved precoder based on the idea of regularized inversion for secondary transmitter is proposed. An iterative space alignment algorithm is also presented to ensure the Quality of Service (QoS for primary system. The simulations reveal that, on the premise of achieving QoS for primary system, our proposed algorithm can get larger capacity in secondary system at low Signal-to-Noise Ratio (SNR, which proves the effectiveness of the algorithm.
Efficient linear precoding for massive MIMO systems using truncated polynomial expansion
Müller, Axel
2014-06-01
Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively \\'antenna-efficient\\' regularized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is based on truncated polynomial expansion (TPE) and mimics the advantages of RZF, while offering reduced and scalable computational complexity that can be implemented in a convenient parallel fashion. Using random matrix theory we provide a closed-form expression of the signal-to-interference-and-noise ratio under TPE precoding and compare it to previous works on RZF. Furthermore, the sum rate maximizing polynomial coefficients in TPE precoding are calculated. By simulation, we find that to maintain a fixed peruser rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and signal-to-noise ratio. © 2014 IEEE.
Wu, Yongpeng; Wen, Chao-Kai; Xiao, Chengshan; Gao, Xiqi; Schober, Robert
2014-01-01
In this paper, we investigate the design of linear precoders for the multiple-input multiple-output (MIMO) multiple access channel (MAC). We assume that statistical channel state information (CSI) is available at the transmitters and consider the problem under the practical finite alphabet input assumption. First, we derive an asymptotic (in the large system limit) expression for the weighted sum rate (WSR) of the MIMO MAC with finite alphabet inputs and Weichselberger's MIMO channel model. S...
A Chaos-Based Encryption Scheme for DCT Precoded OFDM-Based Visible Light Communication Systems
Directory of Open Access Journals (Sweden)
Zhongpeng Wang
2016-01-01
Full Text Available This paper proposes a physical encryption scheme for discrete cosine transform (DCT precoded OFDM-based visible light communication systems by employing chaos scrambling. In the proposed encryption scheme, the Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can allocate the two scrambling sequences to the real (I and imaginary (Q parts of OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. The simulation experimental results prove the efficiency of the proposed encryption method for DCT precoded OFDM-based VLC systems. The experimental results show that the proposed security scheme can protect the DCT precoded OFDM-based VLC from eavesdropper, while keeping the advantage of the DCT precoding technique, which can reduce the PAPR and improve the BER performance of OFDM-based VLC.
Optimal Shape-Gain Quantization for Multiuser MIMO Systems with Linear Precoding
Islam, Muhammad Nazmul; Khoshnevis, Behrouz
2011-01-01
This paper studies the optimal bit allocation for shape-gain vector quantization of wireless channels in multiuser (MU) multiple-input multiple-output (MIMO) downlink systems based on linear precoding. Our design minimizes the mean squared-error between the original and quantized channels through optimal bit allocation across shape (direction) and gain (magnitude) for a fixed feedback overhead per user. This is shown to significantly reduce the quantization error, which in turn, decreases the MU interference. This paper makes three main contributions: first, we focus on channel gain quantization and derive the quantization distortion, based on a Euclidean distance measure, corresponding to singular values of a MIMO channel. Second, we show that the Euclidean distance-based distortion of a unit norm complex channel, due to shape quantization, is proportional to \\frac{2^{-2Bs}}{2M-1}, where, Bs is the number of shape quantization bits and M is the number of transmit antennas. Finally, we show that for channels ...
Robust Linear Precoder Design for Multi-cell Downlink Transmission
Tajer, Ali; Wang, Xiaodong
2010-01-01
Coordinated information processing by the base stations of multi-cell wireless networks enhances the overall quality of communication in the network. Such coordinations for optimizing any desired network-wide quality of service (QoS) necessitate the base stations to acquire and share some channel state information (CSI). With perfect knowledge of channel states, the base stations can adjust their transmissions for achieving a network-wise QoS optimality. In practice, however, the CSI can be obtained only imperfectly. As a result, due to the uncertainties involved, the network is not guaranteed to benefit from a globally optimal QoS. Nevertheless, if the channel estimation perturbations are confined within bounded regions, the QoS measure will also lie within a bounded region. Therefore, by exploiting the notion of robustness in the worst-case sense some worst-case QoS guarantees for the network can be asserted. We adopt a popular model for noisy channel estimates that assumes that estimation noise terms lie w...
Directory of Open Access Journals (Sweden)
Cuthbert Laurie
2011-01-01
Full Text Available Abstract A downlink adaptive distributed precoding scheme is proposed for coordinated multi-point (CoMP transmission systems. The serving base station (BS obtains the optimal precoding vector via user feedback. Meanwhile, the precoding vector of each coordinated BS is determined by adaptive gradient iteration according to the perturbation vector and the adjustment factor based on the vector perturbation method. In each transmission frame, the CoMP user feeds the precoding matrix index back to the serving BS, and feeds back the adjustment factor index to the coordinated BSs, which can reduce the uplink feedback overhead. The selected adjustment factor for each coordinated BS is obtained via the precoding vector of the coordinated BS used in the previous frame and the preferred precoding vector of the serving BS in this frame. The proposed scheme takes advantage of the spatial non-correlation and temporal correlation of the distributed MIMO channel. The design of the adjustment factor set is given and the channel feedback delay is considered. The system performance of the proposed scheme is verified with and without feedback delay respectively and the system feedback overhead is analyzed. Simulation results show that the proposed scheme has a good trade-off between system performance and the system control information overhead on feedback.
A Coded Bit-Loading Linear Precoded Discrete Multitone Solution for Power Line Communication
Muhammad, Fahad Syed; Hélard, Jean-François; Crussière, Matthieu
2008-01-01
Linear precoded discrete multitone modulation (LP-DMT) system has been already proved advantageous with adaptive resource allocation algorithm in a power line communication (PLC) context. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LP-DMT system is presented in the PLC context with a loading algorithm which ccommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the roposed algorithm is analyzed. Simulation results are presented for a fixed target bit error rate in a multicarrier scenario under power spectral density constraint. Using a multipath model of PLC channel, it is shown that the proposed coded adaptive LP-DMT system performs better than classical coded discrete multitone.
Hou, Xueying; Kiong, Buon; Lau,
2010-01-01
Base station (BS) cooperative transmission can improve the spectrum efficiency of cellular systems, whereas using which the channels will become asymmetry. In this paper, we study the impact of the asymmetry on the performance of channel estimation and precoding in downlink BS cooperative multiple-antenna multiple-carrier systems. We first present three linear estimators which jointly estimate the channel coefficients from users in different cells with minimum mean square error, robust design and least square criterion, and then study the impact of uplink channel asymmetry on their performance. It is shown that when the large scale channel information is exploited for channel estimation, using non-orthogonal training sequences among users in different cells leads to minor performance loss. Next, we analyze the impact of downlink channel asymmetry on the performance of precoding with channel estimation errors. Our analysis shows that although the estimation errors of weak cross links are large, the resulting r...
Performance Analysis of Precoding Based on Massive MIMO System
Directory of Open Access Journals (Sweden)
Li Yi
2015-01-01
Full Text Available In order to improve the system performance, the authors consider a single-cell multiuser Massive MIMO downlink time-division duplex (TDD system for the imperfect channel state information (CSI. For the zero-forcing (ZF and the matched filtering (MF precoding scheme, the authors propose a normalization algorithm: the vector normalization. Assume that the channel estimation is used to acquire CSI by using the uplink pilot sequence, and utilize the proposed algorithm to normalize the precoding matrix in the downlink; we derive the achievable sum rate of ZF and MF. Through the analysis and comparison of two precoding schemes’ performance, the authors conclude that ZF is better than MF with vector normalization algorithm in the high SNR region; and MF is better than ZF in the low SNR region. Simulation results confirm the above conclusion.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper deals with the design and performance analysis of the transmission precoder optimization for multiple-input multiple-output (MIMO) systems with limited feedback of channel state information (CSI). We assume that the receiver can get perfect channel knowledge by channel estimation while the transmitter only has partial channel knowledge from limited feedback. We present a minimum mean square error (MMSE) criterion based codebook construction algorithm for MIMO precoded spatial multiplexing systems under a specific average power constraint. The optimal transmitter structure is employed in this paper. Simulation results show that the MMSE criteria based codebook construction algorithm with hybrid design of power allocation and precoding can achieve better performance than that of equal power allocation based codebook of previous research.
Efficient linear precoding for massive MIMO systems using truncated polynomial expansion
Muller, Axel; Kammoun, Abla; Bjornson, Emil; Debbah, Merouane
2014-01-01
International audience; —Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively "antenna-efficient" regu-larized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is ba...
Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen's Algorithm
An, HongSun; Chang, KyungHi
2011-01-01
Lenstra-Lenstra-Lovasz (LLL) algorithm, which is one of the lattice reduction (LR) techniques, has been extensively used to obtain better basis of the channel matrix. In this paper, we jointly apply Seysen's lattice reduction algorithm (SA), instead of LLL, with the conventional linear precoding algorithms. Since SA obtains more orthogonal lattice basis compared to that obtained by LLL, lattice reduction aided (LRA) precoding based on SA algorithm outperforms the LRA precoding with LLL. Simulation results demonstrate that a gain of 0.5dB at target BER of 10^-5 is achieved when SA is used instead of LLL for the LR stage.
Directory of Open Access Journals (Sweden)
VARUN JEOTI
2011-12-01
Full Text Available High peak-to-average power ratio (PAPR reduction is one of the major challenges in orthogonal frequency division multiple access (OFDMA systems since last decades. High PAPR increases the complexity of analogue-to-digital (A/D and digital-to-analogue (D/A convertors and also reduces the efficiency of RF high-power-amplifier (HPA. In this paper, we present a new Discrete- Hartley transform (DHT precoding based interleaved-OFDMA uplink system for PAPR reduction in the upcoming 4G cellular networks. Extensive computer simulations have been performed to analyze the PAPR of the proposed system with root-raised-cosine (RRC pulse shaping. We also compare simulation results of the proposed system with the conventional interleaved-OFDMA uplink systems and the Walsh-Hadamard transform (WHT precoding based interleaved-OFDMA uplink systems. It is concluded from the computer simulations that the proposed system has low PAPR as compared to the conventional interleaved-OFDMA uplink systems and the WHT precoded interleaved-OFDMA uplink systems.
A HYBRID TECHNIQUE FOR PAPR REDUCTION OF OFDM USING DHT PRECODING WITH PIECEWISE LINEAR COMPANDING
Directory of Open Access Journals (Sweden)
Thammana Ajay
2016-06-01
Full Text Available Orthogonal Frequency Division Multiplexing (OFDM is a fascinating approach for wireless communication applications which require huge amount of data rates. However, OFDM signal suffers from its large Peak-to-Average Power Ratio (PAPR, which results in significant distortion while passing through a nonlinear device, such as a transmitter high power amplifier (HPA. Due to this high PAPR, the complexity of HPA as well as DAC also increases. For the reduction of PAPR in OFDM many techniques are available. Among them companding is an attractive low complexity technique for the OFDM signal’s PAPR reduction. Recently, a piecewise linear companding technique is recommended aiming at minimizing companding distortion. In this paper, a collective piecewise linear companding approach with Discrete Hartley Transform (DHT method is expected to reduce peak-to-average of OFDM to a great extent. Simulation results shows that this new proposed method obtains significant PAPR reduction while maintaining improved performance in the Bit Error Rate (BER and Power Spectral Density (PSD compared to piecewise linear companding method.
Leakage based precoding for multi-user MIMO-OFDM systems
Sadek, Mirette
2011-08-01
In downlink multi-user multiple-input multiple-output (MIMO) transmissions, several precoding schemes have been proposed to decrease interference among users. Notable among these precoding schemes is one that uses the signal-to-leakage-plus-noise ratio (SLNR) as an optimization criterion. In this paper, leveraging the efficiency of the SLNR optimization, we generalize this precoding scheme to MIMO orthogonal frequency division multiplexing (OFDM) multi-user systems where the OFDM is used to overcome the inter-symbol- interference (ISI) introduced by multipath channels. We also introduce a channel compensation technique that reconstructs the channel at the transmitter for every time instant given a significantly lower channel feedback rate by the receiver. © 2006 IEEE.
Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen
2014-08-01
We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.
2D Linear Precoded OFDM for future mobile Digital Video Broadcasting
Pasquero, Oudomsack Pierre; Nasser, Youssef; Hélard, Jean-François
2008-01-01
In this paper, we propose a novel channel estimation technique based on 2D spread pilots. The merits of this technique are its simplicity, its flexibility regarding the transmission scenarios, and the spectral efficiency gain obtained compared to the classical pilot based estimation schemes used in DVB standards. We derive the analytical expression of the mean square error of the estimator and show it is a function of the autocorrelation of the channel in both time and frequency domains. The performance evaluated over a realistic channel model shows the efficiency of this technique which turns out to be a promising channel estimation for the future mobile video broadcasting systems.
Directory of Open Access Journals (Sweden)
Lin Shao
2016-01-01
Full Text Available Due to large numbers of antennas and users, matrix inversion is complicated in linear precoding techniques for massive MIMO systems. Several approximated matrix inversion methods, including the Neumann series, have been proposed to reduce the complexity. However, the Neumann series does not converge fast enough. In this paper, to speed up convergence, a new joint Newton iteration and Neumann series method is proposed, with the first iteration result of Newton iteration method being employed to reconstruct the Neumann series. Then, a high probability convergence condition is established, which can offer useful guidelines for practical massive MIMO systems. Finally, simulation examples are given to demonstrate that the new joint Newton iteration and Neumann series method has a faster convergence rate compared to the previous Neumann series, with almost no increase in complexity when the iteration number is greater than or equal to 2.
Clique-Based Neural Associative Memories with Local Coding and Precoding.
Mofrad, Asieh Abolpour; Parker, Matthew G; Ferdosi, Zahra; Tadayon, Mohammad H
2016-08-01
Techniques from coding theory are able to improve the efficiency of neuroinspired and neural associative memories by forcing some construction and constraints on the network. In this letter, the approach is to embed coding techniques into neural associative memory in order to increase their performance in the presence of partial erasures. The motivation comes from recent work by Gripon, Berrou, and coauthors, which revisited Willshaw networks and presented a neural network with interacting neurons that partitioned into clusters. The model introduced stores patterns as small-size cliques that can be retrieved in spite of partial error. We focus on improving the success of retrieval by applying two techniques: doing a local coding in each cluster and then applying a precoding step. We use a slightly different decoding scheme, which is appropriate for partial erasures and converges faster. Although the ideas of local coding and precoding are not new, the way we apply them is different. Simulations show an increase in the pattern retrieval capacity for both techniques. Moreover, we use self-dual additive codes over field [Formula: see text], which have very interesting properties and a simple-graph representation. PMID:27348736
Polynomial expansion of the precoder for power minimization in large-scale MIMO systems
Sifaou, Houssem Noor Eldeen
2016-07-26
This work focuses on the downlink of a single-cell large-scale MIMO system in which the base station equipped with M antennas serves K single-antenna users. In particular, we are interested in reducing the implementation complexity of the optimal linear precoder (OLP) that minimizes the total power consumption while ensuring target user rates. As most precoding schemes, a major difficulty towards the implementation of OLP is that it requires fast inversions of large matrices at every new channel realizations. To overcome this issue, we aim at designing a linear precoding scheme providing the same performance of OLP but with lower complexity. This is achieved by applying the truncated polynomial expansion (TPE) concept on a per-user basis. To get a further leap in complexity reduction and allow for closed-form expressions of the per-user weighting coefficients, we resort to the asymptotic regime in which M and K grow large with a bounded ratio. Numerical results are used to show that the proposed TPE precoding scheme achieves the same performance of OLP with a significantly lower implementation complexity. © 2016 IEEE.
Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking
Zaidel, Benjamin; Moustakas, Aris; de Miguel, Rodrigo
2010-01-01
The so-called "replica method" of statistical physics is employed for the large system analysis of vector precoding for the Gaussian multiple-input multiple-output (MIMO) broadcast channel. The transmitter is assumed to comprise a linear front-end combined with nonlinear precoding, that minimizes the front-end imposed transmit energy penalty. Focusing on discrete complex input alphabets, the energy penalty is minimized by relaxing the input alphabet to a larger alphabet set prior to precoding. For the common discrete-lattice relaxation, the problem is found to violate the assumption of replica symmetry and a replica symmetry breaking ansatz is taken. The limiting empirical distribution of the precoder's output, as well as the limiting energy penalty, are derived while harnessing to one-step replica symmetry breaking. Corresponding results based on the more commonly used replica symmetric ansatz are also obtained for completeness. Particularizing to a "zero-forcing" (ZF) linear front-end, and non-cooperative u...
Directory of Open Access Journals (Sweden)
Hyunwook Yang
2013-01-01
Full Text Available We propose a novel precoding algorithm that is a zero-forcing (ZF method combined with adaptive beamforming in the Worldwide Interoperability for Microwave Access (WiMAX system. In a Multiuser Multiple-Input Multiple-Output (MU-MIMO system, ZF is used to eliminate the Multiple Access Interference (MAI in order to allow several users to share a common resource. The adaptive beamforming algorithm is used to achieve the desired SNR gain. The experimental system consists of a WiMAX base station that has 2 MIMO elements, each of which is composed of three-array antennas and two mobile terminals, each of which has a single antenna. Through computer simulations, we verified that the proposed method outperforms the conventional ZF method by at least 2.4 dB when the BER is 0.1%, or 1.7 dB when the FER is 1%, in terms of the SNR. Through a hardware implementation of the proposed method, we verified the feasibility of the proposed method for realizing a practical WiMAX base station to utilize the channel resources as efficiently as possible.
A SDP based design of relay precoding for the power minimization of MIMO AF-relay networks
Rao, Anlei
2015-09-11
Relay precoding for multiple-input and multiple-output (MIMO) relay networks has been approached by either optimizing the efficiency performance with given power consumption constraints or minimizing the power consumption with quality-of-service (QoS) requirements. For the later type design, previous works has worked on minimizing the approximated power consumption. In this paper, exact power consumption for all relays is derived into a quadratic form by diagonalizing the minimum-square error (MSE) matrix, and the relay precoding matrix is designed by optimizing this quadratic form with the help of semidefinite programming (SDP) relaxation. Our simulation results show that such a design can achieve a gain of around 3 dB against the previous design, which optimized the approximated power consumption. © 2015 IEEE.
Designs of precoding for LTE TDD using cell specific reference signals
DEFF Research Database (Denmark)
Sun, Fan; Lu, Lu; Sørensen, Troels Bundgaard
2010-01-01
We design non-codebook-based Multiple-Input Multiple-Output (MIMO) precoding schemes using multiple cell-specific reference signals patterns for the time division duplex (TDD) mode of LTE, where channel reciprocity can be exploited. Previously proposed non-codebookbased precoding schemes typically......, and to simplify UE implementation, a precoder-estimation scheme and a codebook-assisted scheme are designed. The codebook-assisted scheme has the novelty of using a codebook in equalization. Link throughput simulations indicate that the codebook-assisted scheme is preferable compared to the precoder...
An Overview of Massive MIMO Precoding Algorithms%大规模MIMO系统的预编码算法综述
Institute of Scientific and Technical Information of China (English)
付豪
2015-01-01
In comparison with traditional multiple-input multiple-output( MIMO) systems,the number of antennas of massive MIMO increases significantly,which improves the system capacity and reduces the bit error rate( BER) but causes high precoding matrix dimension,precoding algorithm complexity,system cost and implementation difficulty. This paper classifies precoding technologies used in massive MIMO systems to two types, linear algorithms and nonlinear algorithms, summarizes and compares them with focuses on several simplified linear precoding algorithms and several typical nonlinear precoding algorithms. Finally,it points out that because of the high complexity of nonlinear algorithm, the future massive MIMO system should be based on linear precoding algorithms.%相比于传统多输入多输出( MIMO)系统，大规模MIMO的天线数量大幅增加，使得系统的容量提升、误比特率下降，但也造成预编码矩阵维度升高，算法复杂度、系统成本及实现难度增大。将大规模MIMO系统主要采用的预编码技术分为线性和非线性两个部分，对两者进行了归纳和对比，并着重介绍了几种经过简化的线性预编码算法和几种比较典型的非线性预编码算法，指出因为非线性算法的复杂度很高，故未来大规模MIMO系统的预编码应当以线性算法为主。
Near-optimal downlink precoding for two-tier priority-based wireless networks
Park, Kihong
2015-02-01
In this paper, we study a two-tier priority-based wireless cellular network in which the primary base station (BS) has multiple antennas and the other terminals have a single antenna. We assume that we have two classes of users: high priority users and low priority users. We consider a rate maximization problem of the low priority users under signal-to-interference-plus-noise-ratio constraints on the high priority user to guarantee a certain quality-of-service for the high priority user. Since the interference due to the low priority users which communicate with each other via direct transmission may severely degrade the performance of the high priority user, we propose a BS-aided two-way relaying approach in which the BS helps relay the low priority users\\' signals instead of allowing them to communicate with each other via a direct path between them. In addition, an algorithm to find a near-optimal beamforming solution at the BS is proposed. The asymptotic results in the high power regime are derived to verify the average sum rate performance in the proposed scheme. Finally, based on some selected numerical results, we show that the proposed scheme outperforms the direct transmission scheme over a wide transmit power range.
Quantized Multimode Precoding in Spatially Correlated Multi-Antenna Channels
Raghavan, Vasanthan; Sayeed, Akbar
2008-01-01
Multimode precoding, where the number of independent data-streams is adapted optimally, can be used to maximize the achievable throughput in multi-antenna communication systems. Motivated by standardization efforts embraced by the industry, the focus of this work is on systematic precoder design with realistic assumptions on the spatial correlation, channel state information (CSI) at the transmitter and the receiver, and implementation complexity. For spatial correlation of the channel matrix, we assume a general channel model, based on physical principles, that has been verified by many recent measurement campaigns. We also assume a coherent receiver and knowledge of the spatial statistics at the transmitter along with the presence of an ideal, low-rate feedback link from the receiver to the transmitter. The reverse link is used for codebook-index feedback and the goal of this work is to construct precoder codebooks, adaptable in response to the statistical information, such that the achievable throughput is...
Power Efficient Low Complexity Precoding for Massive MIMO Systems
Sifaou, Houssem; Kammoun, Abla; Sanguinetti, Luca; Debbah, Merouane; Alouini, Mohamed-Slim
2014-01-01
International audience; This work aims at designing a low-complexity precoding technique in the downlink of a large-scale multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with M antennas to serve K single-antenna user equipments. This is motivated by the high computational complexity required by the widely used zero-forcing or regularized zero-forcing precoding techniques, especially when K grows large. To reduce the computational burden, we adopt a prec...
Directory of Open Access Journals (Sweden)
Yin Zhu
2016-05-01
Full Text Available Interference alignment (IA is a new approach to address interference in modern multiple-input multiple-out (MIMO cellular networks in which interference is an important factor that limits the system throughput. System throughput in most IA implementation schemes is significantly improved only with perfect channel state information and in a high signal-to-noise ratio (SNR region. Designing a simple IA scheme for the system with limited feedback and investigating system performance at a low-to-medium SNR region is important and practical. This paper proposed a precoding and user selection scheme based on partial interference alignment in two-cell downlink multi-user MIMO systems under limited feedback. This scheme aligned inter-cell interference to a predefined direction by designing user’s receive antenna combining vectors. A modified singular value decomposition (SVD-based beamforming method and a corresponding user-selection algorithm were proposed for the system with low rate limited feedback to improve sum rate performance. Simulation results show that the proposed scheme achieves a higher sum rate than traditional schemes without IA. The modified SVD-based beamforming scheme is also superior to the traditional zero-forcing beamforming scheme in low-rate limited feedback systems. The proposed partial IA scheme does not need to collaborate between transmitters and joint design between the transmitter and the users. The scheme can be implemented with low feedback overhead in current MIMO cellular networks.
Precoding design for single-RF massive MIMO systems: A large system analysis
Sifaou, Houssem; Kammoun, Abla; Alouini, Mohamed-Slim
2016-01-01
This work revisits a recently proposed precoding design for massive multiple-input multiple output (MIMO) systems that is based on the use of an instantaneous total power constraint. The main advantages of this technique lie in its suitability to single RF MIMO systems coupled with a very-high power efficiency. Such features have been proven using simulations for uncorrelated channels. Based on tools from random matrix theory, we propose in this work to analyze the performance of this precode...
A Limited Feedback Precoding Scheme based on Double Codebook Structure%一种基于双码本结构的有限反馈预编码方案
Institute of Scientific and Technical Information of China (English)
张阳林; 王明月
2015-01-01
针对基于单码本的多用户多输入多输出( MU-MIMO )有限反馈系统中反馈精度不高的缺点,基于信道容量匹配准则,结合Givens旋转,提出了一种基于双码本结构的有限反馈预编码方案。本方案中,预编码矩阵V表示成两个矩阵相乘的形式：V=FG,其中, F基于最大信道容量准则从DFT码本选择,而G则基于均方误差迹最小准则从Givens变换码本中选择,使得等效的MIMO信道实现近似对角化。用户端根据选择的最佳预编码矩阵Fopt和Gopt ,并将对应的码本索引反馈到基站( BS)端,基站端根据码本索引恢复预编码矩阵Fopt和Gopt ,确定最终的预编码Vopt=Fopt Gopt ,进一步根据最小弦距离最大化准则,从X个待调用户中选择K个用户调度。由于本方案提出的双码本结构通过两次码字选择匹配信道,从而达到提高反馈精度的目的。仿真表明,相比于传统单码本的预编码技术,本方案使得系统的容量得到明显提升。%Aiming at the deficiency of relatively low feedback accuracy in single-codebook-based multi-user MIMO ( Multi-Input Multi-Output) system with limited feedback, a precoding scheme with limited feedback and based on double codebook is proposed in accordance with channel capacity matching criteria and in combination with Givens rotation. In the scheme, the precoding matrix V could be expressed as the multi two matrices multiplying, i. e. , V=FG, where F is chosen from the DFT codebook based on maxi-mum channel capacity criteria, and G is from the Givens rotation codebook based on the criteria of mini-mum the MMSE-trace, thus to achieve the approximate diagonalization of equivalent MIMO channel. Ac-cording to the selected two optimal precoding matrix Fopt and Gopt , corresponding codeword index is fed back to base station ( BS) through users. BS recover the precoding matrix Fopt and Gopt according to code-word index and determines the final precoding matrix Vopt=Fopt Gopt
Hybrid iterative equalization algorithm based on precoding matrix%基于预编码的混合迭代均衡算法
Institute of Scientific and Technical Information of China (English)
李一兵; 刘海涛; 叶方; 林云
2016-01-01
To address co⁃antenna and multipath interferences in the LTE downlink multi⁃input multi⁃output orthogo⁃nal frequency division multiplexing communication system, we propose a low⁃complexity hybrid iterative equaliza⁃tion algorithm. In a receiving terminal, the proposed algorithm utilizes a precoding matrix to spread symbols over all subcarriers, which relieves the influence of deep fading in some parts of the subcarriers. In a receiver, the soft in⁃terference elimination algorithm is adopted based on the minimum mean⁃square⁃error ( MMSE)⁃sorted QR decompo⁃sition to avoid complexity when solving an inverse matrix. This matrix is always involved in traditional parallel soft interference elimination equilibrium algorithms based on minimum mean square error ( MMSE) equalization. In ad⁃dition, using a channel arrangement, the soft interference elimination algorithm prioritizes the detection of transmis⁃sion symbols with a maximum noise⁃to⁃signal ratio ( SNR) to improve detection accuracy. Furthermore, the recon⁃structed signals is preprocessed by a precoding matrix, which decreases error propagation in iteration processing. Simulation results show that the performance of the proposed algorithm is better than that of existing iterative inter⁃ference cancelation algorithms. Specifically, when the system is equipped with four transmitters and four receivers, the bit error rate is 10-5 and the SNR is improved by approximately 0.7 dB.%针对LTE下行多输入多输出正交频分多址（ MIMO⁃OFDM）系统中的天线间干扰和多径干扰问题，提出一种低复杂度的迭代均衡算法。该算法在接收端通过预编码矩阵将发射信号扩展到所有子载波上，从而减少部分子载波深衰落对扩展前原始发射信号的影响。算法在接收端引入最小均方差误差排序QR分解（ MMSE⁃SQRD）软干扰消除均衡算法，一方面避免传统基于最小均方误差（ MMSE）并行软干扰消
Limited Feedback Precoding for Massive MIMO
Directory of Open Access Journals (Sweden)
Xin Su
2013-01-01
Full Text Available The large-scale array antenna system with numerous low-power antennas deployed at the base station, also known as massive multiple-input multiple-output (MIMO, can provide a plethora of advantages over the classical array antenna system. Precoding is important to exploit massive MIMO performance, and codebook design is crucial due to the limited feedback channel. In this paper, we propose a new avenue of codebook design based on a Kronecker-type approximation of the array correlation structure for the uniform rectangular antenna array, which is preferable for the antenna deployment of massive MIMO. Although the feedback overhead is quite limited, the codebook design can provide an effective solution to support multiple users in different scenarios. Simulation results demonstrate that our proposed codebook outperforms the previously known codebooks remarkably.
Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems
Xing, Chengwen
2012-04-01
In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.
Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems
Xing, Chengwen; Gao, Feifei; Wu, Yik-Chung
2011-01-01
In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimation errors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.
Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems
Xing, Chengwen
2012-09-01
In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplifyand-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimationerrors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.
Effective user selection algorithm for quantized precoding in massive MIMO
Directory of Open Access Journals (Sweden)
Nayan fang
2015-02-01
Full Text Available The downlink of a multi-user massive MIMO wireless system is considered, where the base station equipped with a large number of antennas simultaneously servesmultiple users. In this paper, an effective user selection algorithm is proposed for quantized precoding in massive MIMO systems. The algorithm aims at minimizing the correlation of precoders among users by relaxing the optimal problem to be convex and solving it using the Primal Newton’s Barrier Method. The complexity of the proposed algorithm is relatively low and the performance shown by the numerical results is close to the exhaustive search method. The advantage of the proposed algorithm increasingly shows up as the transmit antennas increase significantly.
Power efficient low complexity precoding for massive MIMO systems
Sifaou, Houssem
2014-12-01
This work aims at designing a low-complexity precoding technique in the downlink of a large-scale multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with M antennas to serve K single-antenna user equipments. This is motivated by the high computational complexity required by the widely used zero-forcing or regularized zero-forcing precoding techniques, especially when K grows large. To reduce the computational burden, we adopt a precoding technique based on truncated polynomial expansion (TPE) and make use of the asymptotic analysis to compute the deterministic equivalents of its corresponding signal-to-interference-plus-noise ratios (SINRs) and transmit power. The asymptotic analysis is conducted in the regime in which M and K tend to infinity with the same pace under the assumption that imperfect channel state information is available at the BS. The results are then used to compute the TPE weights that minimize the asymptotic transmit power while meeting a set of target SINR constraints. Numerical simulations are used to validate the theoretical analysis. © 2014 IEEE.
Sifaou, Houssem
2016-05-01
Massive MIMO systems are shown to be a promising technology for next generations of wireless communication networks. The realization of the attractive merits promised by massive MIMO systems requires advanced linear precoding and receiving techniques in order to mitigate the interference in downlink and uplink transmissions. This work considers the precoder and receiver design in massive MIMO systems. We first consider the design of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. The analysis is carried out under the asymptotic regime in which the number of the BS antennas and that of the users grow large with a bounded ratio. This allows us to leverage tools from random matrix theory in order to approximate the parameters of the optimal linear precoder and receiver by their deterministic approximations. Such a result is of valuable practical interest, as it provides a handier way to implement the optimal precoder and receiver. To reduce further the complexity, we propose to apply the truncated polynomial expansion (TPE) concept on a per-user basis to approximate the inverse of large matrices that appear on the expressions of the optimal linear transceivers. Using tools from random matrix theory, we determine deterministic approximations of the SINR and the transmit power in the asymptotic regime. Then, the optimal per-user weight coe cients that solve the max-min SINR problem are derived. The simulation results show that the proposed precoder and receiver provide very close to optimal performance while reducing signi cantly the computational complexity. As a second part of this work, the TPE technique in a per-user basis is applied to the optimal linear precoding that minimizes the transmit power while satisfying a set of target SINR constraints. Due to the emerging research eld of green cellular networks, such a problem is receiving increasing interest nowadays. Closed
MAX-SLNR Precoding Algorithm for Massive MIMO System
Directory of Open Access Journals (Sweden)
Jiang Jing
2016-01-01
Full Text Available Pilot Contamination obviously degrades the system performance of Massive MIMO systems. In this paper, a downlink precoding algorithm based on the Signal-to- Leakage-plus-Noise-Ratio (SLNR criterion is put forward. First, the impact of Pilot Contamination on SLNR is analyzed，then the precoding matrix is calculated with the eigenvalues decomposition of SLNR, which not only maximize the array gains of the target user, but also minimize the impact of Pilot Contamination and the leak to the users of other cells. Further, a simplified solution is derived, in which the impact of Pilot Contamination can be suppressed only with the large-scale fading coefficients. Simulation results reveal that: in the scenario of the serious pilot contamination, the proposed algorithm can avoid the performance loss caused by the pilot contamination compared with the conventional Massive MIMO precoding algorithm. Thus the proposed algorithm can acquire the perfect performance gains of Massive MIMO system and has better practical value since the large-scale fading coefficients are easy to measure and feedback.
Improved Achievable Rates for Regularized Tomlinson-Harashima Precoding in Multiuser MIMO Downlink
Hui, Bing; Chang, KyungHi
2011-01-01
Tomlinson-Harashima precoding (THP) is considered as a prominent precoding scheme due to its capability to efficiently cancel out the known interference at the transmitter side. Therefore, the information rates achieved by THP are superior to those achieved by conventional linear precoding schemes. In this paper, a new lower bound on the achievable information rate for the regularized THP scheme under additive white Gaussian noise (AWGN) channel with multiuser interference is derived. Analytical results show that the lower bound derived in this paper is tighter than the original lower bound particularly for a low SNR range, while all lower bounds converge to 0.5xlog2(6SNR/{\\pi}e) as SNR approaches infinity.
Coordinated Precoding for D2D Communications Underlay Uplink MIMO Cellular Networks
Directory of Open Access Journals (Sweden)
Bing Fang
2016-01-01
Full Text Available We study the coordinated precoding problem for device-to-device (D2D communications underlay multiple-input multiple-output (MIMO cellular networks. The system model considered here constitutes multiple D2D user pairs attempting to share the uplink radio resources of a cellular network. We first formulate the coordinated precoding problem for the D2D user pairs as a sum-rate maximization (SRM problem, which is subject to a total interference power constraint imposed to protect the base station (BS and individual transmit power budgets available for each D2D user pair. Since the formulated SRM problem is nonconvex in general, we reformulate it as a difference convex- (DC- type programming problem, which can be iteratively solved by employing the famous successive convex approximation (SCA method. Moreover, a proximal-point-based regularization approach is also pursued here to ensure the convergence of the proposed algorithm. Interestingly, the centralized precoding algorithm can also lend itself to a distributed implementation. By introducing a price-based interference management mechanism, we reformulate the coordinated precoding problem as a Stackelberg game. Then, a distributed precoding algorithm is developed based on the concept of Stackelberg equilibrium (SE. Finally, numerical simulations are also provided to demonstrate the proposed algorithms. Results show that our algorithms can converge fast to a satisfactory solution with guaranteed convergence.
Kwon, JaeWoo
2012-10-01
In this paper, we investigate a relay enhanced cellular system, where a relay station is located in the overlap area served by two base stations. We propose cooperative joint precoding schemes for the downlink transmission of such relay enhanced cellular system to maximize the system capacity while minimizing the interference at both the relay station and the mobile stations. We formulate the optimization problems to maximize the system capacity and design the multiuser precoding vectors at each base station and the relay station. We quantify the ergodic rate performance of the proposed multiuser precoding schemes through statistical analysis. The extensively derived ergodic expressions will facilitate the accurate performance evaluation of the proposed transmission schemes. Numerical results show that the proposed schemes can effectively cancel the interference and improve the sum rate and the outage performance for cell edge users. © 2002-2012 IEEE.
Precoder design for indoor visible light communications with multiple RGB LEDs
Gao, Qian; Lang, Tian; Bo, Feng; Chen, Gang; Hua, Yingbo
2013-09-01
In this paper, we consider the problem of precoder design for an optical intensity modulation (IM) system with multiple redgreen- blue (RGB) light emitting diodes (LEDs) as transmitters and imaging lens with color filters as receivers. The purpose of using a precoder is to optimally allocate power for each LED based on the current channel condition to minimize the detection error rate. To achieve the goal, an non-convex optimization problem due to a nonconvex constraint is formulated first taking into account several crucial lighting constraints, such as flicker-free, color rendering index (CRI), and luminous efficacy rate (LER) as well as the average optical intensity constraint and non-negative transmitter-side signal constraint. By manipulations we transform the problem into a semi-definite programming (SDP) and by approximation we relaxed the non-convex constraint into a convex one. The resulting convex problem is iteratively solved by CVX, an add-in to MATLAB, which jointly optimizes the precoder and DC-biases driving each LED. We assume that M-PAM signal constellation is used as input to the precoder and an MMSE receiver is applied to recover the input signals in this paper, while our method is not restrict to the specific choice.
DEFF Research Database (Denmark)
2008-01-01
A Coding/Modulating units (200-1-200-N) outputs modulated symbols by modulating coding bit streams based on certain modulation scheme. The limited perturbation vector is calculated by using distribution of perturbation vectors. The original constellation points of modulated symbols are extended...... to several constellation points by using limited perturbation vector by pre-coding unit (204). One of extended constellation points is selected according to reference value and power normalization unit (208) multiplies power normalization constant to output symbols of pre-coding unit....
SDN Controlled mmWave Massive MIMO Hybrid Precoding for 5G Heterogeneous Mobile Systems
Directory of Open Access Journals (Sweden)
Na Chen
2016-01-01
Full Text Available In 5G mobile network, millimeter wave (mmWave and heterogeneous networks (Hetnets are significant techniques to sustain coverage and spectral efficiency. In this paper, we utilize the hybrid precoding to overcome hardware constraints on the analog-only beamforming in mmWave systems. Particularly, we identify the complicated antenna coordination and vast spatial domain information as the outstanding challenges in mmWave Hetnets. In our work, we employ software defined network (SDN to accomplish radio resource management (RRM and achieve flexible spacial coordination in mmWave Hetnets. In our proposed scheme, SDN controller is responsible for collecting the user channel state information (CSI and applying hybrid precoding based on the calculated null-space of victim users. Simulation results show that our design can effectively reduce the interference to victim users and support high quality of service.
Near Optimum Power Control and Precoding under Fairness Constraints in Network MIMO Systems
Directory of Open Access Journals (Sweden)
Gábor Fodor
2010-01-01
needed to meet a sum-rate target. To evaluate the potential of our approach, we perform a semianalytical study in Mathematica using the augmented Lagrangian penalty function method. We find that the gain of the joint optimum SINR setting and power allocation may be significant depending on the degree of fairness that we impose. We develop a numerical technique, based on successive convexification, for real-time optimization of SINR targets and transmit powers. We benchmark our procedure against the globally optimal solution and demonstrate consistently strong performance in realistic network MIMO scenarios. Finally, we study the impact of near optimal precoding in a multicell MIMO environment and find that precoding helps to reduce the sum transmit power while meeting a capacity target.
Hadamard precoding for PAPR reduction in optical direct detection OFDM systems
Wang, Zhong-Peng; Xiao, Jiang-Nan; Li, Fan; Chen, Lin
2011-09-01
The high peak-to-average power ration (PAPR) values of optical orthogond frequency division multiplexing (OFDM) signal limit the system nonlinear tolerance (NLT). In this paper, a novel method based on Hadamard precoding is proposed to reduce the peak-to-average power ratio in optical direct detection OFDM system. The proposed scheme is successfully applied to an experimental system of optical direct-detection OFDM signal transmission through fiber. In this experiment, the 2.5 Gbit/s binary phase shift keying (BPSK) optical OFDM signals with Hadamard precoding are generated and transmitted though a single mode fiber. The experimental results show that the proposed scheme can reduce PAPR by almost 1.5 dB. Meantime the received sensitivity is improved by 2 dB with 100 km fiber transmission compared with that of an ordinary optical direct detection OFDM system.
Grouped DCT precoding for PAPR reduction in optical direct detection OFDM systems
Wang, Zhong-peng; Zhang, Shao-zhong
2013-05-01
A new grouped precoding technique based on discrete cosine transform (DCT) is presented for peak to average power ratio (PAPR) reduction of optical intensity modulated/direct detection (IM/DD) orthogonal frequency division multiplexing (OFDM) system. The computational complexity of the scheme is reduced by at least about 15% compared with that of the ordinary DCT precoding scheme when the number of groups is 2. The PAPR with this method can be reduced by about 0.8 dB. Meantime, compared with original OFDM, the bit error rate (BER) performance of system is improved. So the proposed scheme for reducing PAPR is very effective in optical IM/DD OFDM systems.
Hadamard precoding for PAPR reduction in optical direct detection OFDM systems
Institute of Scientific and Technical Information of China (English)
WANG Zhong-peng; XIAO Jiang-nan; LI Fan; CHEN Lin
2011-01-01
The high peak-to-average power ration(PAPR) values of optical orthogond frequency division multiplexing(OFDM) signal limit the system nonlinear tolerance(NLT).In this paper,a novel method based on Hadamard precoding is proposed to reduce the peak-to-average power ratio in optical direct detection OFDM system.The proposed scheme is successfully applied to an experimental system of optical direct-detection OFDM signal transmission through fiber.In this experiment,the 2.5 Gbit/s binary phase shift keying(BPSK) optical OFDM signals with Hadamard precoding are generated and transmitted though a single mode fiber.The experimental results show that the proposed scheme can reduce PAPR by almost 1.5 dB.Meantime the received sensitivity is improved by 2 dB with 100 km fiber transmission compared with that of an ordinary optical direct detection OFDM system.
Precoded generalized space shift keying for indoor visible light communications
Kadampot, Ishaque Ashar
2014-09-01
We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can be either in ON state or OFF state at a given time. With this set-up, we design in this paper a precoder for this modulation scheme given the channel state information to improve the bit error rate performance of the system. As conventional precoding techniques for radio frequency at the transmitter cannot be applied to the optical intensity channel, we formulate an optimization problem with constraints for this specific channel. An analytical solution for the precoder is derived and the system performance is compared with and without precoder.
Low-Complexity Structured Precoding for Spatially Correlated MIMO Channels
Raghavan, Vasanthan; Veeravalli, Venu
2008-01-01
The focus of this paper is on spatial precoding in correlated multi-antenna channels, where the number of independent data-streams is adapted to trade-off the data-rate with the transmitter complexity. Towards the goal of a low-complexity implementation, a structured precoder is proposed, where the precoder matrix evolves fairly slowly at a rate comparable with the statistical evolution of the channel. Here, the eigenvectors of the precoder matrix correspond to the dominant eigenvectors of the transmit covariance matrix, whereas the power allocation across the modes is fixed, known at both the ends, and is of low-complexity. A particular case of the proposed scheme (semiunitary precoding), where the spatial modes are excited with equal power, is shown to be near-optimal in matched channels. A matched channel is one where the dominant eigenvalues of the transmit covariance matrix are well-conditioned and their number equals the number of independent data-streams, and the receive covariance matrix is also well-...
MIMO Precoding for Networked Control Systems with Energy Harvesting Sensors
Cai, Songfu; Lau, Vincent K. N.
2016-09-01
In this paper, we consider a MIMO networked control system with an energy harvesting sensor, where an unstable MIMO dynamic system is connected to a controller via a MIMO fading channel. We focus on the energy harvesting and MIMO precoding design at the sensor so as to stabilize the unstable MIMO dynamic plant subject to the energy availability constraint at the sensor. Using the Lyapunov optimization approach, we propose a closed-form dynamic energy harvesting and dynamic MIMO precoding solution, which has an event-driven control structure. Furthermore, the MIMO precoding solution is shown to have an eigenvalue water-filling structure, where the water level depends on the state estimation covariance, energy queue and the channel state, and the sea bed level depends on the state estimation covariance. The proposed scheme is also compared with various baselines and we show that significant performance gains can be achieved.
Chiu, Eddy; Zhang, Shunqing; Mok, Bao S M
2012-01-01
Cooperative communication is an important technology in next generation wireless networks. Aside from conventional amplify-and-forward (AF) and decode-and-forward (DF) protocols, the partial decode-and-forward (PDF) protocol is an alternative relaying scheme that is especially promising for scenarios in which the relay node cannot reliably decode the complete source message. However, there are several important issues to be addressed regarding the application of PDF protocols. In this paper, we propose a PDF protocol and MIMO precoder designs at the source and relay nodes. The precoder designs are adapted based on statistical channel state information for correlated MIMO channels, and matched to practical minimum mean-square-error successive interference cancelation (MMSE-SIC) receivers at the relay and destination nodes. We show that under similar system settings, the proposed MIMO precoder design with PDF protocol and MMSE-SIC receivers achieves substantial performance enhancement compared with conventional...
Wireless coordinated multicell systems architectures and precoding designs
Nguyen, Duy H N
2014-01-01
This SpringerBrief discusses the current research on coordinated multipoint transmission/reception (CoMP) in wireless multi-cell systems. This book analyzes the structure of the CoMP precoders and the message exchange mechanism in the CoMP system in order to reveal the advantage of CoMP. Topics include interference management in wireless cellular networks, joint signal processing, interference coordination, uplink and downlink precoding and system models. After an exploration of the motivations and concepts of CoMP, the authors present the architectures of a CoMP system. Practical implementati
Research on Comparison of Pre-coding Algorithm in Massive MIMO for 5 G%面向5 G的大规模MIMO预编码算法比较研究
Institute of Scientific and Technical Information of China (English)
秦舒雅; 杨龙祥
2015-01-01
针对5G核心技术—大规模MIMO系统的预编码技术，文中重点阐述了ZF预编码技术、MMSE预编码技术、BD预编码技术，以及脏纸预编码技术、矢量预编技术、tHP预编码技术，并通过仿真比较线性预编码的优劣，得出同一信噪比情况下MMSE预编码技术性能明显优于ZF和BD预编码技术。最后提出新的多小区MIMO预编码技术，同时考虑小区内和小区间的干扰，在计算量和误差方面做了权衡，对信道状态信息进行估计，并与ZF预编码进行仿真比较，结果表明容量有了明显提高。%In terms of the pre-coding technology in massive Multiple Input Multiple Output ( MIMO) system which is a core technology of the fifth-generation mobile communication,focus on ZF pre-coding,MMSE pre-coding,BD pre-coding,DPC,THP,vector pre-cod-ing and analyze linear pre-coding using MATLAB which proves that MMSE pre-coding is superior to ZF and BD pre-coding under the same SNR. Finally,a new pre-coding for the multi-cell MIMO which takes the global CSI into account is mentioned. It strikes a balance between computational complexity and error,estimating the channel state information and is proved to be effective compared with the ZF pre-coding.
Linear Precoding Performance of Massive MU-MIMO downlink System
Pakdeejit, Eakkamol
2013-01-01
Nowadays, multiuser Multiple-In Multiple-Out systems (MU-MIMO) are used in a new generation wireless technologies. Due to that wireless technology improvement is ongoing, the numbers of users and applications increase rapidly. Then, wireless communications need the high data rate and link reliability at the same time. Therefore, MU-MIMO improvements have to consider 1) providing the high data rate and link reliability, 2) support all users in the same time and frequency resource, and 3) using...
An Inquiry-Based Linear Algebra Class
Wang, Haohao; Posey, Lisa
2011-01-01
Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…
Linear feature detection based on ridgelet
Institute of Scientific and Technical Information of China (English)
HOU; Biao; (侯彪); LIU; Fang; (刘芳); JIAO; Licheng; (焦李成)
2003-01-01
Linear feature detection is very important in image processing. The detection efficiency will directly affect the perfomance of pattern recognition and pattern classification. Based on the idea of ridgelet, this paper presents a new discrete localized ridgelet transform and a new method for detecting linear feature in anisotropic images. Experimental results prove the efficiency of the proposed method.
Downsampling of DFT Precoded Signals for the AWGN Channel
DEFF Research Database (Denmark)
Jensen, Tobias Lindstrøm; Fyhn, Karsten; Arildsen, Thomas;
2012-01-01
In this paper we propose and analyze a method for downsampling discrete Fourier transform (DFT) precoded signals. Since the symbols (in frequency) are in the constellation set, which is a subset of the entire complex plane, it is possible to detect N symbols from the DFT precoded signal when...... transmitting M analysis on so-called simple vectors, and show that it is possible to detect in the noise-less case with high probability down to approximately M ≥ N/4 for BPSK and M ≥ N/2 for QPSK. We develop extensions from the noise-less to the noisy case......, and propose two different detectors for the AWGN channel. Simulations show that using the two proposed detectors in the AWGN channel, we observe empirically a phase transition at M ≈ N/2 for QPSK. Further, it is shown how downsampled QPSK signals can achieve the same BER and data rate as 8PSK at a lower...
Optimal STBC Precoding with Channel Covariance Feedback for Minimum Error Probability
Directory of Open Access Journals (Sweden)
Zhao Yi
2004-01-01
Full Text Available This paper develops the optimal linear transformation (or precoding of orthogonal space-time block codes (STBC for minimizing probability of decoding error, when the channel covariance matrix is available at the transmitter. We build on recent work that stated the performance criterion without solving for the transformation. In this paper, we provide a water-filling solution for multi-input single-output (MISO systems, and present a numerical solution for multi-input multi-output (MIMO systems. Our results confirm that eigen-beamforming is optimal at low SNR or highly correlated channels, and full diversity is optimal at high SNR or weakly correlated channels, in terms of error probability. This conclusion is similar to one reached recently from the capacity-achieving viewpoint.
Combined discrete Fourier transform precoding and clipping using direct detection optical OFDM
Wang, Zhongpeng; Chen, Shoufa
2015-07-01
We propose and demonstrate experimentally the bit error rate (BER) performance of intensity modulation with direct detection (IM/DD) optical orthogonal frequency division multiplexing (OFDM) system by combining discrete Fourier transform (DFT) precoding with clipping. The experimental results show that the received sensitivity at a BER of 10-4 for a 12 Gs/s DFT-precoded and clipped OFDM signal and after 100-km standard single-mode fiber transmission has been improved by 3.5 dB when compared with the original OFDM systems in the SMF link, and by 2.5 dB when compared with compared with the DFT-precoded OFDM signals. When compared with the DFT-precoded QPSK OFDM signal, the DFT-precoded and clipped OFDM QPSK signal can achieve approximately 4.5 dB of peak-to-average power ratio (PAPR) reduction at a complementary cumulative distribution functional value of 10-3.
Allocation Fairness for MIMO Precoded UTRA-LTE TDD System
DEFF Research Database (Denmark)
Wang, Yuanye; Rahman, Muhammad Imadur; Das, Suvra;
2008-01-01
. To increase the cell coverage while ensuring the Quality of Service (QoS) for all UEs across the cell area, fairness should be maximized as much as possible. This paper presents a novel way to help improving fairness performance in the physical layer, via fair power allocation together with resource...... allocation, in MU-MIMO precoding scenarios where the common approach of guaranteeing fairness at MAC layer is not feasible. The results presented in this paper show that the proposed algorithm is able to reduce the system outage event to a large extent, thus increases fairness....
New pre-coded food record form validation
Víctor Manuel Rodríguez; Ana Elbusto-Cabello; Mireia Alberdi-Albeniz; Amaia De la Presa-Donado; Francisco Gómez-Pérez de Mendiola; Maria Puy Portillo-Baquedano; Itziar Churruca-Ortega
2014-01-01
Introduction: For some research fields, simple and accurate food intake quantification tools are needed. The aim of the present work was to design a new self-administered and pre-coded food intake record form and assess its reliability and validity when quantifying the food intake of adult population, in terms of food or food-groups portions.Material and Methods: First of all, a new food-record form was designed, which included food usually consumed and which sought to be easy-to-use, short, ...
Precoder and decoder prediction in time-varying MIMO channel
DEFF Research Database (Denmark)
Nguyen, Tuan Hung; Leus, Geert; Khaled, Nadia
2005-01-01
system throughput. Thus, predicting the future channel conditions can improve not only the performance but also the throughput of many types of wireless systems. This is especially true for a wireless system where multiple antennas are applied at both link ends. In this report we propose and evaluate the...... performance of a prediction scheme for multiple input multiple output (MIMO) systems that apply spatial multiplexing. We aim at predicting the future precoder/decoder directly without going through the prediction of the channel matrix. The results show that in a slowly time varying channel an increase in the...
Linear Regression Based Real-Time Filtering
Directory of Open Access Journals (Sweden)
Misel Batmend
2013-01-01
Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.
A Deterministic Equivalent Approach to the Performance Analysis of Isometric Random Precoded Systems
Couillet, Romain; Debbah, Merouane
2010-01-01
In this work, a general wireless channel model for different types of code-division multiple access (CDMA) and space-division multiple-access (SDMA) systems with isometric random signature or precoding matrices over frequency-selective and flat fading channels is considered. For such models, deterministic approximations of the mutual information and the signal-to-interference-plus-noise ratio (SINR) at the output of the minimum-mean-square-error (MMSE) receiver are derived. Also, a simple fixed-point algorithm for their computation is provided, which is proved to converge. The deterministic approximations are asymptotically exact, almost surely, but shown by simulations to be very accurate even for small system dimensions. Our analysis is based on the Stieltjes transform method which enables the derivation of spectral limits of the large dimensional random matrices under study but requires neither arguments from free probability theory nor the asymptotic freeness or the convergence of the spectral distributio...
Linear systems a measurement based approach
Bhattacharyya, S P; Mohsenizadeh, D N
2014-01-01
This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.
Robust MSE precoder for imperfectly known MIMO wireless correlated channel
Institute of Scientific and Technical Information of China (English)
MA Peng-fei; ZHAO Hui; WANG Wen-bo
2009-01-01
Aimed at that only one form of channel statistic information is utilized in traditional robust precoder schemes: either the channel mean or the transmit antenna correlation in multiple-input multiple-output (MIMO) wireless system, this paper proposes robust precoder designs which exploit both of statistic information to minimize the equalization mean-square error (MSE) with power constraint. Two different power constraints are studied. Besides the usual sum power constraint over all antennas, the per-antenna power constraint is imposed at transmitter in this paper. Since each antenna has its own amplifier, individual power constraint on each antenna is more realistic. Especially in MIMO-OFDM systems, the Peak-to-Average Ratio (PAR) is one of main practical problems. Simulations show that the proposed schemes have better performance than traditional normalized zero forcing schemes for imperfectly known correlated channel. Moreover, per-antenna power constraint can efficiently decrease the demand of dynamic range of power amplifier on each transmit antenna, especially in MIMO-OFDM systems.
Precoding Technique for Massive MIMO Downlink%大规模MIMO下行预编码技术
Institute of Scientific and Technical Information of China (English)
陆晨; 王闻今; 高西奇
2016-01-01
Considering the problem of costly pilot training and computation complexity in massive multiple input multiple output (MIMO) systems, two precoding techniques adapted to massive MIMO are proposed : beam division multiple access (BDMA) downlink transmission based on user scheduling and beam al ocation, which can realize the orthogonal transmission of different users on non-overlapping beams by a simple and effective greedy algorithm; two-stage precoding technique based on user grouping, which partitions the users into multiple groups each with approximately channel covariance matrix by a clustering algorithm, the first-stage precoding aims to suppress inter-group interference, the second-stage precoding is conducted to mitigate intra-group interference after the base stations obtain the instantaneous effective channel of different groups. Research results demonstrate that both downlink techniques are practical in solving the costly pilot and complexity problem of massive MIMO.%考虑大规模多输入多输出（MIMO）中导频序列开销过大以及预编码复杂度的问题，提出了两种适用于大规模MIMO的预编码技术：基于用户调度和波束选择的波束分多址（BDMA）下行传输技术，即通过简单高效的贪婪算法进行用户调度和波束分配，使不同的用户在正交的波束上进行传输；基于用户分组的两级预编码技术，即基于用户分组的两级预编码方法，利用聚类算法将信道特性相似的用户分为一组，基站进行第一级组间干扰消除预编码，基站获取分组的等效瞬时信道后，进行第二级组内干扰消除预编码。研究结果证明：两种下行传输技术在解决大规模MIMO中导频开销过大和系统复杂度问题方面都是切实有效的。
Flexure Based Linear and Rotary Bearings
Voellmer, George M. (Inventor)
2016-01-01
A flexure based linear bearing includes top and bottom parallel rigid plates; first and second flexures connecting the top and bottom plates and constraining exactly four degrees of freedom of relative motion of the plates, the four degrees of freedom being X and Y axis translation and rotation about the X and Y axes; and a strut connecting the top and bottom plates and further constraining exactly one degree of freedom of the plates, the one degree of freedom being one of Z axis translation and rotation about the Z axis.
Linear Temporal Logic-based Mission Planning
Directory of Open Access Journals (Sweden)
Anil Kumar
2016-06-01
Full Text Available In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Temporal Logic to give a representation for such complex task specification and constraints. The specifications are used by a verification engine to judge the feasibility and suitability of plans. The planner gives a motion strategy as output. Finally a controller is used to generate the desired trajectory to achieve such a goal. The approach is tested using simulations on the LTLMoP mission planning tool, operating over the Robot Operating System. Simulation results generated using high level planners and low level controllers work simultaneously for mission planning and controlling the physical behavior of the robot.
Watermark Resistance Analysis Based On Linear Transformation
Directory of Open Access Journals (Sweden)
N.Karthika Devi
2012-06-01
Full Text Available Generally, digital watermark can be embedded in any copyright image whose size is not larger than it. The watermarking schemes can be classified into two categories: spatial domain approach or transform domain approach. Previous works have shown that the transform domain scheme is typically more robust to noise, common image processing, and compression when compared with the spatial transform scheme. Improvements in performance of watermarking schemes can be obtained by exploiting the characteristics of the human visual system (HVS in the watermarking process. We propose a linear transformation based watermarking algorithm. The watermarking bits are embedded into cover image to produce watermarked image. The efficiency of watermark is checked using pre-defined attacks. Attack resistance analysis is done using BER (Bit Error Rate calculation. Finally, the Quality of the watermarked image can be obtained.
Linear Strategy for Boolean Ring Based Theorem Proving
Institute of Scientific and Technical Information of China (English)
WU Jinzhao; LIU Zhuojun
2000-01-01
Two inference rules are discussed in boolean ring based theorem proving, and linear strategy is developed. It is shown that both of them are complete for linear strategy. Moreover, by introducing a partial ordering on atoms, pseudo O-linear and O-linear strategies are presented. The former is complete, the latter, however, is complete for clausal theorem proving.
Linear encoder based low frequency inertial sensor
Directory of Open Access Journals (Sweden)
Collette Christophe
2015-01-01
Full Text Available For many applications, there is an increasing demand for low cost, high-resolution inertial sensors, which are capable of operating in harsh environments. Recently, a prototype of small optical inertial sensor has been built, using a Michelson interferometer. A resolution of 3 pm/√Hz has been obtained above 4 Hz using only low cost components. Compared to most state-of-the-art devices, this prototype did not contain any coil, which offers several important advantages, including a low thermal noise in the suspension and a full compatibility with magnetic environments (like particle collider. On the other hand, the Michelson is known to be tricky to tune, especially when one attempts to miniaturize the sensor. In this paper, we will propose a novel concept of inertial sensor, based on a linear encoder. Compared to the Michelson, the encoder is much more easy to mount, and the calibration more stable. The price to pay is a reduced resolution. In order to overcome this limitation, we amplify mechanically the relative motion between the support and the inertial mass. First results obtained with the new sensor will be discussed, and compared with the Michelson inertial sensor.
Linear Microbolometric Array Based on VOx Thin Film
Chen, Xi-Qu
2010-05-01
In this paper, a linear microbolometric array based on VOx thin film is proposed. The linear microbolometric array is fabricated by using micromachining technology, and its thermo-sensitive VOx thin film has excellent infrared response spectrum and TCR characteristics. Integrated with CMOS circuit, an experimentally prototypical monolithic linear microbolometric array is designed and fabricated. The testing results of the experimental linear array show that the responsivity of linear array can approach 18KV/W and is potential for infrared image systems.
Linear thermal circulator based on Coriolis forces.
Li, Huanan; Kottos, Tsampikos
2015-02-01
We show that the presence of a Coriolis force in a rotating linear lattice imposes a nonreciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform permits us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform.
UNDERSTANDING THE APPLICABILITY OF LINEAR & NON-LINEAR MODELS USING A CASE-BASED STUDY
Gaurav Singh Thakur; Anubhav Gupta; Ankur Bhardwaj; Biju R Mohan
2014-01-01
This paper uses a case based study – “product sales estimation” on real-time data to help us understand the applicability of linear and non-linear models in machine learning and data mining. A systematic approach has been used here to address the given problem statement of sales estimation for a particular set of products in multiple categories by applying both linear and non-linear machine learning techniques on a data set of selected features from the original data set. Feature ...
Linear peristaltic pump based on electromagnetic actuators
Directory of Open Access Journals (Sweden)
Maddoui Lotfi
2014-01-01
Full Text Available In this paper a study and design of a linear peristaltic pump are presented. A set of electromagnetic (solenoid actuators is used as the active tools to drag the liquid by crushing an elastic tube. The pump consists of six serially-connected electromagnetic actuators controlled via an electronic board. This may be considered as a simulated peristalsis action of intestines. The dynamic performances of the pump are investigated analytically and experimentally.
Piecewise Linear Model-Based Image Enhancement
Directory of Open Access Journals (Sweden)
Fabrizio Russo
2004-09-01
Full Text Available A novel technique for the sharpening of noisy images is presented. The proposed enhancement system adopts a simple piecewise linear (PWL function in order to sharpen the image edges and to reduce the noise. Such effects can easily be controlled by varying two parameters only. The noise sensitivity of the operator is further decreased by means of an additional filtering step, which resorts to a nonlinear model too. Results of computer simulations show that the proposed sharpening system is simple and effective. The application of the method to contrast enhancement of color images is also discussed.
Computing Gröbner Bases within Linear Algebra
Suzuki, Akira
In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.
On the Impact of Precoding Errors on Ultra-Reliable Communications
DEFF Research Database (Denmark)
Gerardino, Guillermo Andrés Pocovi; Pedersen, Klaus I.; Alvarez, Beatriz Soret
2016-01-01
to achieve the SINR outage performance required for ultra-reliable communications. Macroscopic diversity, where multiple cells jointly serve the UE, provides additional robustness against precoding errors.For example, a 4x4 MIMO scheme with two orders of macroscopic diversity can achieve the 0 dB SINR outage...
The Forgotten Women of Pre-Code: An Annotated Filmography and Bibliography
Tang, Jennifer
2010-01-01
In recent years, "pre-code" films have been re-discovered and applauded by film scholars and feminists. The term refers to the period between 1929 and 1934 when many Hollywood studios openly disregarded the censorship restrictions of the Hays Code. Named after censorship czar William H. Hays, the Code forbade nudity, cursing, sexual innuendo,…
Institute of Scientific and Technical Information of China (English)
尼俊红; 刘泽民
2009-01-01
冗余滤波器组构成的传送多路复用器可以用来对FIR信道进行估计和均衡.本文提出一种在FIR滤波器组框架结构下,首先利用信号的相关矩阵对信道进行估计,然后在此基础上用MMSE准则下设计的FIR均衡器对数据进行均衡的盲算法.该均衡算法的性能要明显好于基于ZF准则的方法,并且在消除ISI的同时可以抑制噪声的影响,从而使系统的输出信噪比达到最优,而增加的复杂度很有限.文中最后在两种典型信道下对所提出的盲信道均衡算法进行了仿真,结果验证了上述性能.%Transmultiplexers based on filter bank structure can be used in estimation and equalization of finite impulse response (FIR) channels. In this paper we introduce a new equalization scheme under the FIR filter bank framework. Firstly, we use the correlation matrix to identify the unknown channel, and then equalize the received data with a FIR post-equalizer under the minimum mean square error (MMSE) criterion. It is shown that the new MMSE-based method outperforms zero forcing (ZF) equalizer. It can mitigate the intersymbol interference (ISI) and depress the noise amplification effect simultaneously, and subsequently maximizes the signal to noise ratio of the system at the receiver. We obtain the SNR performance in a closed form. Simulation examples demonstrate its good performance.
Grammar Based Genetic Programming Using Linear Representations
Institute of Scientific and Technical Information of China (English)
ZHANGHong; LUYinan; WANGFei
2003-01-01
In recent years,there has been a great interest in genetic programming(GP),which is used to solve many applications such as data mining,electronic engineering and pattern recognition etc.. Genetic programming paradigm as a from of adaptive learning is a functional approach to many problems that require a nonfixed representation and GP typically operates on a population of parse which usually represent computer programs whose nodes have single data type.In this paper GP using context-free grammars(CFGs) is described.This technique separates search space from solution space through a genotype to phenotype mapping.The genotypes and phenotypes of the individuals both act on different linear representations.A phenotype is postfix expression,a new method of representing which is described by making use of the definition and related features of a context-free grammar,i.e.a genotype is a variable length,linear valid genome determined by a simplifled derivation tree(SDT) generated from a context-free grammar.A CFG is used to specify how the possible solutions are created according to experiential knowledge and to direct legal crossover(ormutation)operations without any explicit reference to the process of program generation and parsing,and automatically ensuring typing and syntax correctness.Some related definitions involving genetic operators are described.Fitness evaluation is given.This technique is applied to a symbol regression problem-the identification of nonlinear dynamic characteristics of cushioning packaging.Experimental results show this method can flnd good relations between variables and is better than basic GP without a grammar.Future research on it is outlined.
Optimal trajectories based on linear equations
Carter, Thomas E.
1990-01-01
The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.
Implementation of neural network based non-linear predictive
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;
1998-01-01
The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non-linear...... systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....
UNDERSTANDING THE APPLICABILITY OF LINEAR & NON-LINEAR MODELS USING A CASE-BASED STUDY
Directory of Open Access Journals (Sweden)
Gaurav Singh Thakur
2014-11-01
Full Text Available This paper uses a case based study – “product sales estimation” on real-time data to help us understand the applicability of linear and non-linear models in machine learning and data mining. A systematic approach has been used here to address the given problem statement of sales estimation for a particular set of products in multiple categories by applying both linear and non-linear machine learning techniques on a data set of selected features from the original data set. Feature selection is a process that reduces the dimensionality of the data set by excluding those features which contribute minimal to the prediction of the dependent variable. The next step in this process is training the model that is done using multiple techniques from linear & non-linear domains, one of the best ones in their respective areas. Data Remodeling has then been done to extract new features from the data set by changing the structure of the dataset & the performance of the models is checked again. Data Remodeling often plays a very crucial and important role in boosting classifier accuracies by changing the properties of the given dataset. We then try to explore and analyze the various reasons due to which one model performs better than the other & hence try and develop an understanding about the applicability of linear & non-linear machine learning models. The target mentioned above being our primary goal, we also aim to find the classifier with the best possible accuracy for product sales estimation in the given scenario.
Precoded OFDM System for ICI Mitigation over Time-Frequency Selective Fading Channels
Institute of Scientific and Technical Information of China (English)
LONG Yi; KUANG Linling; LU Jianhua
2009-01-01
In orthogonal frequency-division multiplexing (OFDM) systems, the capability to support high mo-bility is greatly limited by the intercarrier interference (ICI) caused by time-frequency selective fading chan-nels. This paper presents a precoded OFDM system for ICI mitigation. A precoder is introduced to relieve the ICI by transmitting N-point composite information symbols at twice the subcarrier interval. A Ha-damard-matrix-like pilot pattern is used to recover the composite information symbols in a postprocessor at the receiver. Simulations show that, compared to the conventional self-cancellation scheme, this scheme gives much better signal-to-interference-noise ratio performance with much less overhead. Furthermore, the scheme can support twice the vehicle speed in time-frequency selective fading channels than the standard OFDM systems without ICI mitigation.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Commutator-based linearization of $N = 1$ nonlinear supersymmetry
Tsuda, Motomu
2016-01-01
We consider the linearization of $N = 1$ nonlinear supersymmetry (NLSUSY) based on a commutator algebra in Volkov-Akulov NLSUSY theory. We show explicitly that $U(1)$ gauge and scalar supermultiplets in addition to a vector supermultiplet with general auxiliary fields in linear SUSY theories are obtained from a same set of bosonic and fermionic functionals (composites) which are expressed as simple products of the powers of a Nambu-Goldstone fermion and a fundamental determinant in the NLSUSY theory.
Fast wavelet based algorithms for linear evolution equations
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
Resource-oriented Programming Based on Linear Logic
Directory of Open Access Journals (Sweden)
Valerie Novitzká
2007-08-01
Full Text Available In our research we consider programming as logical reasoning over types.Linear logic with its resource-oriented features yields a proper means for our approachbecause it enables to consider about resources as in real life: after their use they areexhausted. Computation then can be regarded as proof search. In our paper we presenthow space and time can be introduced into this logic and we discuss several programminglanguages based on linear logic.
Relay Precoder Optimization in MIMO-Relay Networks With Imperfect CSI
Ubaidulla, P.
2011-11-01
In this paper, we consider robust joint designs of relay precoder and destination receive filters in a nonregenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a MIMO-relay node. The channel state information (CSI) available at the relay node is assumed to be imperfect. We consider robust designs for two models of CSI error. The first model is a stochastic error (SE) model, where the probability distribution of the CSI error is Gaussian. This model is applicable when the imperfect CSI is mainly due to errors in channel estimation. For this model, we propose robust minimum sum mean square error (SMSE), MSE-balancing, and relay transmit power minimizing precoder designs. The next model for the CSI error is a norm-bounded error (NBE) model, where the CSI error can be specified by an uncertainty set. This model is applicable when the CSI error is dominated by quantization errors. In this case, we adopt a worst-case design approach. For this model, we propose a robust precoder design that minimizes total relay transmit power under constraints on MSEs at the destination nodes. We show that the proposed robust design problems can be reformulated as convex optimization problems that can be solved efficiently using interior-point methods. We demonstrate the robust performance of the proposed design through simulations. © 2011 IEEE.
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Linear irreversible heat engines based on local equilibrium assumptions
Izumida, Yuki; Okuda, Koji
2015-08-01
We formulate an endoreversible finite-time Carnot cycle model based on the assumptions of local equilibrium and constant energy flux, where the efficiency and the power are expressed in terms of the thermodynamic variables of the working substance. By analyzing the entropy production rate caused by the heat transfer in each isothermal process during the cycle, and using the endoreversible condition applied to the linear response regime, we identify the thermodynamic flux and force of the present system and obtain a linear relation that connects them. We calculate the efficiency at maximum power in the linear response regime by using the linear relation, which agrees with the Curzon-Ahlborn (CA) efficiency known as the upper bound in this regime. This reason is also elucidated by rewriting our model into the form of the Onsager relations, where our model turns out to satisfy the tight-coupling condition leading to the CA efficiency.
Change-Of-Bases Abstractions for Non-Linear Systems
Sankaranarayanan, Sriram
2012-01-01
We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...
A Spreadsheet-Based, Matrix Formulation Linear Programming Lesson
DEFF Research Database (Denmark)
Harrod, Steven
2009-01-01
The article focuses on the spreadsheet-based, matrix formulation linear programming lesson. According to the article, it makes a higher level of theoretical mathematics approachable by a wide spectrum of students wherein many may not be decision sciences or quantitative methods majors. Moreover...
Classification-Based Method of Linear Multicriteria Optimization
Vassilev, Vassil; Genova, Krassimira; Vassileva, Mariyana; Narula, Subhash
2003-01-01
The paper describes a classification-based learning-oriented interactive method for solving linear multicriteria optimization problems. The method allows the decision makers describe their preferences with greater flexibility, accuracy and reliability. The method is realized in an experimental software system supporting the solution of multicriteria optimization problems.
Support vector classification algorithm based on variable parameter linear programming
Institute of Scientific and Technical Information of China (English)
Xiao Jianhua; Lin Jian
2007-01-01
To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed.In the proposed algorithm, linear programming is employed to solve the optimization problem of classification to decrease the computation time and to reduce its complexity when compared with the original model.The adjusted punishment parameter greatly reduced the classification error resulting from asymmetric distributed samples and the detailed procedure of the proposed algorithm is given.An experiment is conducted to verify whether the proposed algorithm is suitable for asymmetric distributed samples.
Laser-plasma-based linear collider using hollow plasma channels
Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.
2016-09-01
A linear electron-positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.
The generalized sidelobe canceller based on quaternion widely linear processing.
Tao, Jian-wu; Chang, Wen-xiu
2014-01-01
We investigate the problem of quaternion beamforming based on widely linear processing. First, a quaternion model of linear symmetric array with two-component electromagnetic (EM) vector sensors is presented. Based on array's quaternion model, we propose the general expression of a quaternion semiwidely linear (QSWL) beamformer. Unlike the complex widely linear beamformer, the QSWL beamformer is based on the simultaneous operation on the quaternion vector, which is composed of two jointly proper complex vectors, and its involution counterpart. Second, we propose a useful implementation of QSWL beamformer, that is, QSWL generalized sidelobe canceller (GSC), and derive the simple expressions of the weight vectors. The QSWL GSC consists of two-stage beamformers. By designing the weight vectors of two-stage beamformers, the interference is completely canceled in the output of QSWL GSC and the desired signal is not distorted. We derive the array's gain expression and analyze the performance of the QSWL GSC in the presence of one type of interference. The advantage of QSWL GSC is that the main beam can always point to the desired signal's direction and the robustness to DOA mismatch is improved. Finally, simulations are used to verify the performance of the proposed QSWL GSC. PMID:24955425
The Generalized Sidelobe Canceller Based on Quaternion Widely Linear Processing
Directory of Open Access Journals (Sweden)
Jian-wu Tao
2014-01-01
Full Text Available We investigate the problem of quaternion beamforming based on widely linear processing. First, a quaternion model of linear symmetric array with two-component electromagnetic (EM vector sensors is presented. Based on array’s quaternion model, we propose the general expression of a quaternion semiwidely linear (QSWL beamformer. Unlike the complex widely linear beamformer, the QSWL beamformer is based on the simultaneous operation on the quaternion vector, which is composed of two jointly proper complex vectors, and its involution counterpart. Second, we propose a useful implementation of QSWL beamformer, that is, QSWL generalized sidelobe canceller (GSC, and derive the simple expressions of the weight vectors. The QSWL GSC consists of two-stage beamformers. By designing the weight vectors of two-stage beamformers, the interference is completely canceled in the output of QSWL GSC and the desired signal is not distorted. We derive the array’s gain expression and analyze the performance of the QSWL GSC in the presence of one type of interference. The advantage of QSWL GSC is that the main beam can always point to the desired signal’s direction and the robustness to DOA mismatch is improved. Finally, simulations are used to verify the performance of the proposed QSWL GSC.
Linearizing Control of Induction Motor Based on Networked Control Systems
Institute of Scientific and Technical Information of China (English)
Jun Ren; Chun-Wen Li; De-Zong Zhao
2009-01-01
A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Directory of Open Access Journals (Sweden)
Ilse Cervantes
2013-02-01
Full Text Available This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system’s outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results.
Improving throughput of single-relay DF channel using linear constellation precoding
Fareed, Muhammad Mehboob
2014-08-01
In this letter, we propose a transmission scheme to improve the overall throughput of a cooperative communication system with single decode-and-forward relay. Symbol error rate and throughput analysis of the new scheme are presented to facilitate the performance comparison with the existing decode-and-forward relaying schemes. Simulation results are further provided to corroborate the analytical results. © 2012 IEEE.
Applied Research of Enterprise Cost Control Based on Linear Programming
Directory of Open Access Journals (Sweden)
Yu Shuo
2015-01-01
This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.
Mohammed, Saif Khan
2011-01-01
We consider downlink cellular multi-user communication between a base station (BS) having N antennas and M single-antenna users, i.e., an N X M Gaussian Broadcast Channel (GBC). Under an average only total transmit power constraint (APC), large antenna arrays at the BS (having tens to a few hundred antennas) have been recently shown to achieve remarkable multi-user interference (MUI) suppression with simple precoding techniques. However, building large arrays in practice, would require cheap/power-efficient Radio-Frequency(RF) electronic components. The type of transmitted signal that facilitates the use of most power-efficient RF components is a constant envelope (CE) signal. Under certain mild channel conditions (including i.i.d. fading), we analytically show that, even under the stringent per-antenna CE transmission constraint (compared to APC), MUI suppression can still be achieved with large antenna arrays. Our analysis also reveals that, with a fixed M and increasing N, the total transmitted power can b...
Two channel paraunitary filter banks based on linear canonical transform
Shinde, Sudarshan
2009-01-01
In this paper a two channel paraunitary filter bank is proposed, which is based on linear canonical transform, instead of discrete Fourier transform. Input-output relation for such a filter bank are derived in terms of polyphase matrices and modulation matrices. It is shown that like conventional filter banks, the LCT based paraunitary filter banks need only one filter to be designed and rest of the filters can be obtained from it. It is also shown that LCT based paraunitary filter banks can be designed by using conventional power-symmetric filter design in Fourier domain.
A quadratic programming problem arising from vector precoding in wireless communications
International Nuclear Information System (INIS)
A quadratic programming problem is studied in the limit of asymptotically large kernel matrices by means of the replica method. It is found that inverse Wishart kernels are-within the validity range of the replica symmetric solution-asymptotically invariant to Cartesian relaxations. In the context of vector precoding for wireless communication systems with dual antenna arrays, so-called MIMO systems, this implies that adding more transmit antennas cannot reduce the minimum required transmit energy per bit significantly. By contrast, a new convex relaxation is proposed and shown to be a practical and useful method
Validation of a pre-coded food record for infants and young children
Gondolf, Ulla Holmboe; Tetens, Inge; Hills, Andrew; Michaelsen, Kim Fleischer; Trolle, Ellen
2011-01-01
Abstract Background/Objectives: To assess the validity of a 7-day pre-coded food record (PFR) method in 9-month-old infants against metabolisable energy intake (MEDLW) measured by doubly labelled water (DLW); additionally to compare PFR with a 7-day weighed food record (WFR) in 9-month-old infants and 36-month-old children. Subjects/Methods: The study population consisted of 36 infants (age: 9.03?0.2 months) and 36 young children (age: 36.1?0.3 months) enrolled in a cross-over ...
A family of quantization based piecewise linear filter networks
DEFF Research Database (Denmark)
Sørensen, John Aasted
1992-01-01
A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization......). This construction leads to a three-layer filter network. The first layer consists of the quantization class filters for the input signal. The second layer carries out the regularization between neighbor quantization classes, and the third layer constitutes a decision of quantization class from where the resulting...
Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems
Sharma S; Kumar Sudhir; Dagaonkar S; Bisht Geetika; Dayanand S; Devi Reena; Deshpande S; Chaudhary S; Bhatt B; Kannan S
2007-01-01
Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured...
Adaptive Gaussian Mixture Filter Based on Statistical Linearization
Huber, Marco F.
2012-01-01
Gaussian mixtures are a common density representation in nonlinear, non-Gaussian Bayesian state estimation. Selecting an appropriate number of Gaussian components, however, is difficult as one has to trade of computational complexity against estimation accuracy. In this paper, an adaptive Gaussian mixture filter based on statistical linearization is proposed. Depending on the nonlinearity of the considered estimation problem, this filter dynamically increases the number of components via spli...
Graph-based linear scaling electronic structure theory.
Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations. PMID:27334148
Graph-based linear scaling electronic structure theory
Niklasson, Anders M N; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Djidjev, Hristo
2016-01-01
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Linear models based on noisy data and the Frisch scheme
Ning, Lipeng; Georgiou, Tryphon T.; Tannenbaum, Allen; Boyd, Stephen P.
2013-01-01
We address the problem of identifying linear relations among variables based on noisy measurements. This is a central question in the search for structure in large data sets. Often a key assumption is that measurement errors in each variable are independent. This basic formulation has its roots in the work of Charles Spearman in 1904 and of Ragnar Frisch in the 1930s. Various topics such as errors-in-variables, factor analysis, and instrumental variables all refer to alternative viewpoints on...
NEW VERSATILE CAMERA CALIBRATION TECHNIQUE BASED ON LINEAR RECTIFICATION
Institute of Scientific and Technical Information of China (English)
Pan Feng; Wang Xuanyin
2004-01-01
A new versatile camera calibration technique for machine vision using off-the-shelf cameras is described. Aimed at the large distortion of the off-the-shelf cameras, a new camera distortion rectification technology based on line-rectification is proposed. A full-camera-distortion model is introduced and a linear algorithm is provided to obtain the solution. After the camera rectification intrinsic and extrinsic parameters are obtained based on the relationship between the homograph and absolute conic. This technology needs neither a high-accuracy three-dimensional calibration block, nor a complicated translation or rotation platform. Both simulations and experiments show that this method is effective and robust.
A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map
Directory of Open Access Journals (Sweden)
Xizhong Wang
2013-01-01
Full Text Available We introduce a parallel chaos-based encryption algorithm for taking advantage of multicore processors. The chaotic cryptosystem is generated by the piecewise linear chaotic map (PWLCM. The parallel algorithm is designed with a master/slave communication model with the Message Passing Interface (MPI. The algorithm is suitable not only for multicore processors but also for the single-processor architecture. The experimental results show that the chaos-based cryptosystem possesses good statistical properties. The parallel algorithm provides much better performance than the serial ones and would be useful to apply in encryption/decryption file with large size or multimedia.
STATISTICAL BASED NON-LINEAR MODEL UPDATING USING FEATURE EXTRACTION
Energy Technology Data Exchange (ETDEWEB)
Schultz, J.F.; Hemez, F.M. [and others
2000-10-01
This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.
Novel sucker rod pumping system based on linear motor technology
Institute of Scientific and Technical Information of China (English)
李立毅; 李立清; 吴红星; 胡余生; 邹积岩
2004-01-01
Obtaining petroleum at the cost of electrical energy is a common problem in almost all oil fields, and it is mainly caused by low duty radio of induction motor used in beam pumping units. Traditional beam-pumping units have many intrinsic disadvantages such as low efficiency, complex transmission devices, poor flexibility,tremendous volume and weight in long stroke, etc. Therefore, a novel direct driven linear electromagnetic pumping unit (EMPU) has been developed by combining oil extraction technology with linear motor technology. The thrust of EMPU matches the changing of suspension center load to improve the system efficiency and cut down the consumption of energy. Based on previous experience, a small-scale prototype was developed and a simulation was conducted with it. Both theoretical analyses and experimental study showed that the problems exiting in beam pumping units can be solved with EMPU system, and this is a new method which can be used to solve high energy waste in oil fields.
Remote sensing image fusion based on Bayesian linear estimation
Institute of Scientific and Technical Information of China (English)
GE ZhiRong; WANG Bin; ZHANG LiMing
2007-01-01
A new remote sensing image fusion method based on statistical parameter estimation is proposed in this paper. More specially, Bayesian linear estimation (BLE) is applied to observation models between remote sensing images with different spatial and spectral resolutions. The proposed method only estimates the mean vector and covariance matrix of the high-resolution multispectral (MS) images, instead of assuming the joint distribution between the panchromatic (PAN) image and low-resolution multispectral image. Furthermore, the proposed method can enhance the spatial resolution of several principal components of MS images, while the traditional Principal Component Analysis (PCA) method is limited to enhance only the first principal component. Experimental results with real MS images and PAN image of Landsat ETM+ demonstrate that the proposed method performs better than traditional methods based on statistical parameter estimation,PCA-based method and wavelet-based method.
Secured Communication over Frequency-Selective Fading Channels: A Practical Vandermonde Precoding
Directory of Open Access Journals (Sweden)
Mari Kobayashi
2009-01-01
Full Text Available We study the frequency-selective broadcast channel with confidential messages (BCC where the transmitter sends a confidential message to receiver 1 and a common message to receivers 1 and 2. In the case of a block transmission of N symbols followed by a guard interval of L symbols, the frequency-selective channel can be modeled as a N×(N+L Toeplitz matrix. For this special type of multiple-input multiple-output channels, we propose a practical Vandermonde precoding that projects the confidential messages in the null space of the channel seen by receiver 2 while superposing the common message. For this scheme, we provide the achievable rate region and characterize the optimal covariance for some special cases of interest. Interestingly, the proposed scheme can be applied to other multiuser scenarios such as the K+1-user frequency-selective BCC with K confidential messages and the two-user frequency-selective BCC with two confidential messages. For each scenario, we provide the secrecy degree of freedom (s.d.o.f. region of the corresponding channel and prove the optimality of the Vandermonde precoding. One of the appealing features of the proposed scheme is that it does not require any specific secrecy encoding technique but can be applied on top of any existing powerful encoding schemes.
Parameter Optimization of Linear Quadratic Controller Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
LI Jimin; SHANG Chaoxuan; ZOU Minghu
2007-01-01
The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.
A comparative study of linear and region based diagrams
Directory of Open Access Journals (Sweden)
Björn Gottfried
2015-06-01
Full Text Available There are two categories of objects spatial information science investigates: actual objects and their spatial properties, such as in geography, and abstract objects which are employed metaphorically, as for visual languages. A prominent example of the latter are diagrams that model knowledge of some domain. Different aspects of diagrams are of interest, including their formal properties or how human users work with them, for example, with diagrams representing sets. The literature about diagrammatic systems for the representation of sets shows a dominance of region-based diagrams like Euler circles and Venn diagrams. The effectiveness of these diagrams, however, is limited because region-based diagrams become quite complex for more then three sets. By contrast, linear diagrams are not equally prevalent but enable the representation of a greater number of sets without getting cluttered. Cluttered diagrams exhibit inherent complexity due to overlapping objects, irrelevant details, or other reasons that impinge upon their legibility. This study contrasts both types of diagrammatic systems and investigates whether the performance of users differs for both kinds of diagrams. A significant difference can be shown regarding the number of diagrams that can be drawn within a fixed period of time and regarding the number of errors made. The results indicate that linear diagrams are more effective by being more restrictive and because region based diagrams show much clutter due to overlapping, coincident, and tangentially touching contours, as well as an overwhelming number of empty zones. Linear diagrams are less prone to errors and do not suffer from clutter.
IR Microspectrometers based on Linear-Variable Optical Filters
Emadi, A.; Wu, H; De Graaf, G.; Wolffenbuttel, R.F.
2013-01-01
This paper presents the design, fabrication and characterization of Infra-Red (IR) Linear Variable Optical Filter (LVOF)-based micro-spectrometers. Two LVOF microspectrometer designs have been realized: one for operating in the 1400 nm to 2500 nm wavelength range and another between 3000 nm and 5000 nm. The IR LVOFs have been fabricated in an IC-Compatible process using resist reflow. The LVOF provides the possibility to have a small size, robust and high-resolution micro-spectrometer in the ...
Low spatial correlation at base station uniform linear antennas
Institute of Scientific and Technical Information of China (English)
Xiao Hailin; Nie Zaiping
2006-01-01
A spatial channel propagation model is presented. Consider a uniform linear antenna (ULA) at the base station (BS) and narrowband signals transmitted at the mobile. In two types of propagating environments: indoor and outdoor, performance of low spatial correlation is investigated and some results are provided, which are significant to analyze the performance of diversity systems and configuration of array. The results also show that the configuration of array with either smaller angular spread or bigger angle of arrival (AOA) dominates the impact on spatial correlation, and that increasing angular spread or decreasing AOA diminishes, or even eliminates this impact.
Applied research of quantum information based on linear optics
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiao-Ye
2016-08-01
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Applied research of quantum information based on linear optics
International Nuclear Information System (INIS)
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Measurement of spatial object's exterior attitude based on linear CCD
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
It is difficult to realize real-time measurement of exterior attitude by the traditional systems based on the area image sensor which have conflict between speed and accuracy.The subsystem for three-dimensional (3D) coordinate rcconstruction of point target (S3DCRPT) which is composed of three one-dimensional (1D) cameras based on linear charge-coupled device (CCD) can determine the distant light spots' spatial position. The attitude angle of the measured object is determined by the spatial solution while the coordinate reconstruction is separately carried on by the S3DCRPT with some point cooperation targets (PCTs) on the measured object. A new optical system is designed to solve the interference problem with one-to-one relationship between the PCTs and the S3DCRPT optical subsystems,which improves the measurement accuracy and saves space. The mathematical model of the attitude measurement is established,and partial and global calibrations are realized for the multi-camera attitude measurement system.The test results show the feasibility of the exterior attitude measurement based on linear CCD.
Profile-based short linear protein motif discovery
Directory of Open Access Journals (Sweden)
Haslam Niall J
2012-05-01
Full Text Available Abstract Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.
Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators
Directory of Open Access Journals (Sweden)
Janno Torop
2009-12-01
Full Text Available Devices using electroactive polymer-supported carbon material can be exploited as alternatives to conventional electromechanical actuators in applications where electromechanical actuators have some serious deficiencies. One of the numerous examples is precise microactuators. In this paper, we show for first time the dilatometric effect in nanocomposite material actuators containing carbide-derived carbon (CDC and polytetrafluoroetylene polymer (PTFE. Transducers based on high surface area carbide-derived carbon electrode materials are suitable for short range displacement applications, because of the proportional actuation response to the charge inserted, and high Coulombic efficiency due to the EDL capacitance. The material is capable of developing stresses in the range of tens of N cm-2. The area of an actuator can be dozens of cm2, which means that forces above 100 N are achievable. The actuation mechanism is based on the interactions between the high-surface carbon and the ions of the electrolyte. Electrochemical evaluations of the four different actuators with linear (longitudinal action response are described. The actuator electrodes were made from two types of nanoporous TiC-derived carbons with surface area (SA of 1150 m2 g-1 and 1470 m2 g-1, respectively. Two kinds of electrolytes were used in actuators: 1.0 M tetraethylammonium tetrafluoroborate (TEABF4 solution in propylene carbonate and pure ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf. It was found that CDC based actuators exhibit a linear movement of about 1% in the voltage range of 0.8 V to 3.0 V at DC. The actuators with EMITf electrolyte had about 70% larger movement compared to the specimen with TEABF4 electrolyte.
Ingot Nb based SRF technology for the International Linear Collider
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Akira, E-mail: akira.yamamoto@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, 305-0801 (Japan); European Organization for Nuclear Research (CERN) 23 Genève, CH-1211 (Switzerland); Yamanaka, Masashi, E-mail: masashi.yamanaka@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, 305-0801 (Japan); Myneni, Ganapati, E-mail: ganapati@isohim.org [Jefferson Lab (JLab) Newport News, VA, 23606 (United States)
2015-12-04
The International Linear Collider (ILC) is anticipated to be built as the next energy-frontier electron-positron colliding accelerator with a global effort in particle physics. Niobium based Superconducting Radio-Frequency (SRF) technology is required to provide beam-accelerating structure with elliptical cavity strings to linearly accelerate the electron and positron beams up to 250 GeV and to realize a center-of-mass energy of 500 GeV in collisions. The accelerator design and R&D efforts progressed, and the ILC Technical Design Report (ILC-TDR) was published in 2013. Niobium will take a critical role to generate electric field gradient with a frequency of 1.3 GHz, for accelerating the beam with the best efficiency, in energy balance, using RF superconductivity. This paper discusses a technical approach to provide Nb material (ingot) and thin disks for producing the elliptical cavity structure, with direct slicing from Nb ingot having sufficiently optimized purity and residual resistance ration (RRR) necessary for the ILC SRF cavities.
Ingot Nb based SRF technology for the International Linear Collider
International Nuclear Information System (INIS)
The International Linear Collider (ILC) is anticipated to be built as the next energy-frontier electron-positron colliding accelerator with a global effort in particle physics. Niobium based Superconducting Radio-Frequency (SRF) technology is required to provide beam-accelerating structure with elliptical cavity strings to linearly accelerate the electron and positron beams up to 250 GeV and to realize a center-of-mass energy of 500 GeV in collisions. The accelerator design and R&D efforts progressed, and the ILC Technical Design Report (ILC-TDR) was published in 2013. Niobium will take a critical role to generate electric field gradient with a frequency of 1.3 GHz, for accelerating the beam with the best efficiency, in energy balance, using RF superconductivity. This paper discusses a technical approach to provide Nb material (ingot) and thin disks for producing the elliptical cavity structure, with direct slicing from Nb ingot having sufficiently optimized purity and residual resistance ration (RRR) necessary for the ILC SRF cavities
ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Wang Xianji; Ye Xueyi; Li Bin; Li Xin; Zhuang Zhenquan
2008-01-01
When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is dem onstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.
Distance Transform Based Enhancement for Linear Interpolated Images
Institute of Scientific and Technical Information of China (English)
唐莉萍; 曾培峰
2003-01-01
An approach of distance map based image enhancement (DMIE) is proposed. It is applied to conventional interpolations to get sharp images. Edge detection is performed after images are interpolated by linear interpolations. To meet the two conditions set for DMIE, i. e., no abrupt changes and no overboosting, different boosting rate should be used in adjusting pixel intensities. When the boosting rate is determined by using the distance from enhanced pixels to nearest edges, edge-oriented image enhancement is obtained. By using Erosion technique, the range for pixel intensity adjustment is set. Over-enhancement is avoided by limiting the pixel intensities in enhancement within the range.A unified linear-time algorithm for distance transform is adopted to deal with the calculation of Euclidean distance of the images. Its computation complexity is O (N2 ). After the preparation, i. e.,distance transforming and erosion, the images get more and more sharpened while no over-boosting occurs by repeating the enhancement procedure. The simplicity of the enhancement operation makes DMIE suitable for enhancement rate adjusting.
Cluster-Based Distributed Algorithms for Very Large Linear Equations
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In many applications such as computational fluid dynamics and weather prediction, as well as image processing and state of Markov chain etc., the grade of matrix n is often very large, and any serial algorithm cannot solve the problems. A distributed cluster-based solution for very large linear equations is discussed, it includes the definitions of notations, partition of matrix, communication mechanism, and a master-slaver algorithm etc., the computing cost is O(n3/N), the memory cost is O(n2/N), the I/O cost is O(n2/N), and the communication cost is O(Nn), here, N is the number of computing nodes or processes. Some tests show that the solution could solve the double type of matrix under 106×106 effectively.
An Improved Piecewise Linear Chaotic Map Based Image Encryption Algorithm
Hu, Yuping; Wang, Zhijian
2014-01-01
An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM) model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack. PMID:24592159
DOA ESTIMATION USING A SPARSE LINEAR MODEL BASED ON EIGENVECTORS
Institute of Scientific and Technical Information of China (English)
Wang Libin; Cui Chen; Li Pengfei
2011-01-01
To reduce high computational cost of existing Direction-Of-Arrival (DOA) estimation techniques within a sparse representation framework,a novel method with low computational complexity is proposed.Firstly,a sparse linear model constructed from the eigenvectors of covariance matrix of array received signals is built.Then based on the FOCal Underdetermined System Solver (FOCUSS) algorithm,a sparse solution finding algorithm to solve the model is developed.Compared with other state-of-the-art methods using a sparse representation,our approach also can resolve closely and highly correlated sources without a priori knowledge of the number of sources.However,our method has lower computational complexity and performs better in low Signal-to-Noise Ratio (SNR).Lastly,the performance of the proposed method is illustrated by computer simulations.
Measurement-based noiseless linear amplification for quantum communication
Chrzanowski, H. M.; Walk, N.; Haw, J. Y.; Thearle, O.; Assad, S. M.; Janousek, J.; Hosseini, S.; Ralph, T. C.; Symul, T.; Lam, P. K.
2014-11-01
Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require non-trivial experimental techniques such as noiseless amplification. We show that noiseless amplification could be achieved by performing a post-selective filtering of measurement outcomes. We termed this protocol measurement-based noiseless linear amplification (MBNLA). We apply this protocol to entanglement that suffers transmission loss of up to the equivalent of 100km of optical fibre and show that it is capable of distilling entanglement to a level stronger than that achievable by transmitting a maximally entangled state through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime via MBNLA. Compared to its physical counterpart, MBNLA not only is easier in term of implementation, but also allows one to achieve near optimal probability of success.
Design of experiments an introduction based on linear models
Morris, Max D
2011-01-01
IntroductionExample: rainfall and grassland Basic elements of an experimentExperiments and experiment-like studies Models and data analysisLinear Statistical ModelsLinear vector spaces Basic linear model The hat matrix, least-squares estimates, and design information matrixThe partitioned linear model The reduced normal equations Linear and quadratic forms Estimation and information Hypothesis testing and informationBlocking and informationCompletely Randomized DesignsIntroductionModels Matrix formulation Influence of design on estimation Influence of design on hypothesis testingRandomized Com
Validation of a pre-coded food record for infants and young children
DEFF Research Database (Denmark)
Gondolf, Ulla Holmboe; Tetens, Inge; Hills, A. P.;
2012-01-01
Background/Objectives:To assess the validity of a 7-day pre-coded food record (PFR) method in 9-month-old infants against metabolizable energy intake (ME(DLW)) measured by doubly labeled water (DLW); additionally to compare PFR with a 7-day weighed food record (WFR) in 9-month-old infants and 36......, crossing over to the alternative method in week 2. Total energy expenditure (TEE) and ME(DLW) were obtained in the 9-month-old infants using the DLW technique for 7 days while recording with PFR.Results:For the 9-month-old group, PFR showed a mean bias of +726âkJ/day, equivalent to 24%, (P...
Cost Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States
Energy Technology Data Exchange (ETDEWEB)
Fairey, Philip [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States)
2012-11-01
This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous United States. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.
Linear Models Based on Noisy Data and the Frisch Scheme*
Ning, Lipeng; Georgiou, Tryphon T.; Tannenbaum, Allen; Boyd, Stephen P.
2016-01-01
We address the problem of identifying linear relations among variables based on noisy measurements. This is a central question in the search for structure in large data sets. Often a key assumption is that measurement errors in each variable are independent. This basic formulation has its roots in the work of Charles Spearman in 1904 and of Ragnar Frisch in the 1930s. Various topics such as errors-in-variables, factor analysis, and instrumental variables all refer to alternative viewpoints on this problem and on ways to account for the anticipated way that noise enters the data. In the present paper we begin by describing certain fundamental contributions by the founders of the field and provide alternative modern proofs to certain key results. We then go on to consider a modern viewpoint and novel numerical techniques to the problem. The central theme is expressed by the Frisch–Kalman dictum, which calls for identifying a noise contribution that allows a maximal number of simultaneous linear relations among the noise-free variables—a rank minimization problem. In the years since Frisch’s original formulation, there have been several insights, including trace minimization as a convenient heuristic to replace rank minimization. We discuss convex relaxations and theoretical bounds on the rank that, when met, provide guarantees for global optimality. A complementary point of view to this minimum-rank dictum is presented in which models are sought leading to a uniformly optimal quadratic estimation error for the error-free variables. Points of contact between these formalisms are discussed, and alternative regularization schemes are presented. PMID:27168672
Linear-accelerator-based stereotactic irradiation for metastatic brain tumors
Energy Technology Data Exchange (ETDEWEB)
Takemoto, Mitsuhiro; Katsui, Kuniaki; Yoshida, Atsushi [Okayama Univ. (Japan). School of Medicine] [and others
2003-05-01
To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)
Multivariate statistical modelling based on generalized linear models
Fahrmeir, Ludwig
1994-01-01
This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...
Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim
2012-12-01
Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.
Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems
Directory of Open Access Journals (Sweden)
Sharma S
2007-01-01
Full Text Available Stereotactic radiosurgery (SRS is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC, are used for linear accelerator-based SRS systems (X-Knife. Output factor (St, tissue maximum ratio (TMR and off axis ratio (OAR of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer and Pinpoint (PTW cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well.
Feed Drive Based upon Linear Motor for Ultraprecision Turning Machine
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The characteristics of several different linear motors have been investigated, and the feed drive system with linear motor instead of screw-nut mechanism has been built for a submicro ultraprecision turning machine. In the control system for the feed drive system arranged as "T", both P-position and PI-speed control loops are used. The feedback variable is obtained from a double frequecy laser interferometor. Experiments show that the feed drive with linear motor is simple in construction, and that its dynamics is better than others. So the machining accuracy of the workpiece machined has been successfully improved.
Luminosity Limitations in Linear Colliders Based on Plasma Acceleration
Lebedev, Valeri; Nagaitsev, Sergei
2016-01-01
Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. However, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.
EEG based Autism Diagnosis Using Regularized Fisher Linear Discriminant Analysis
Directory of Open Access Journals (Sweden)
Mahmoud I. Kamel
2012-04-01
Full Text Available Diagnosis of autism is one of the difficult problems facing researchers. To reveal the discriminative pattern between autistic and normal children via electroencephalogram (EEG analysis is a big challenge. The feature extraction is averaged Fast Fourier Transform (FFT with the Regulated Fisher Linear Discriminant (RFLD classifier. Gaussinaty condition for the optimality of Regulated Fisher Linear Discriminant (RFLD has been achieved by a well-conditioned appropriate preprocessing of the data, as well as optimal shrinkage technique for the Lambda parameter. Winsorised Filtered Data gave the best result.
Partially Flipped Linear Algebra: A Team-Based Approach
Carney, Debra; Ormes, Nicholas; Swanson, Rebecca
2015-01-01
In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…
A tearing-based hybrid parallel banded linear system solver
Naumov, Maxim; Sameh, Ahmed H.
2009-04-01
A new parallel algorithm for the solution of banded linear systems is proposed. The scheme tears the coefficient matrix into several overlapped independent blocks in which the size of the overlap is equal to the system's bandwidth. A corresponding splitting of the right-hand side is also provided. The resulting independent, and smaller size, linear systems are solved under the constraint that the solutions corresponding to the overlap regions are identical. This results in a linear system whose size is proportional to the sum of the overlap regions which we refer to as the "balance" system. We propose a solution strategy that does not require obtaining this "balance" system explicitly. Once the balance system is solved, retrieving the rest of the solution can be realized with almost perfect parallelism. Our proposed algorithm is a hybrid scheme that combines direct and iterative methods for solving a single banded system of linear equations on parallel architectures. It has broad applications in finite-element analysis, particularly as a parallel solver of banded preconditioners that can be used in conjunction with outer Krylov iterative schemes.
Bistatic Sonar Localization Based on Best Linear Unbiased Estimation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A best linear unbiased estimation (BLUE) algorithm for bistatic sonar localization is proposed. The Cramer-Rao bound for bistatic sonar and the geometrical dilution of precision (GDOP) in different conditions are given. The simulation results show that the location accuracy of BLUE algorithm is higher than the weighted least square method.
Asghar, HJ; Steinfeld, R.; Li, S.; Kaafar, MA; Pieprzyk, J
2015-01-01
Human identification protocols are challenge-response protocols that rely on human computational ability to reply to random challenges from the server based on a public function of a shared secret and the challenge to authenticate the human user. One security criterion for a human identification protocol is the number of challenge-response pairs the adversary needs to observe before it can deduce the secret. In order to increase this number, protocol designers have tried to construct protocol...
Sboui, Lokman
2013-06-01
In this paper, we investigate the spectral efficiency gain of an uplink Cognitive Radio (CR) Multi-Input MultiOutput (MIMO) system in which the Secondary/unlicensed User (SU) is allowed to share the spectrum with the Primary/licensed User (PU) using a specific precoding scheme to communicate with a common receiver. The proposed scheme exploits at the same time the free eigenmodes of the primary channel after a space alignment procedure and the interference threshold tolerated by the PU. In our work, we study the maximum achievable rate of the CR node after deriving an optimal power allocation with respect to an outage interference and an average power constraints. We, then, study a protection protocol that considers a fixed interference threshold. Applied to Rayleigh fading channels, we show, through numerical results, that our proposed scheme enhances considerably the cognitive achievable rate. For instance, in case of a perfect detection of the PU signal, after applying Successive Interference Cancellation (SIC), the CR rate remains non-zero for high Signal to Noise Ratio (SNR) which is usually impossible when we only use space alignment technique. In addition, we show that the rate gain is proportional to the allowed interference threshold by providing a fixed rate even in the high SNR range. © 2013 IEEE.
Secured Communication over Frequency-Selective Fading Channels: a practical Vandermonde precoding
Kobayashi, Mari; Shamai, Shlomo
2009-01-01
In this paper, we study the frequency-selective broadcast channel with confidential messages (BCC) in which the transmitter sends a confidential message to receiver 1 and a common message to receivers 1 and 2. In the case of a block transmission of N symbols followed by a guard interval of L symbols, the frequency-selective channel can be modeled as a N * (N+L) Toeplitz matrix. For this special type of multiple-input multiple-output (MIMO) channels, we propose a practical Vandermonde precoding that consists of projecting the confidential messages in the null space of the channel seen by receiver 2 while superposing the common message. For this scheme, we provide the achievable rate region, i.e. the rate-tuple of the common and confidential messages, and characterize the optimal covariance inputs for some special cases of interest. It is proved that the proposed scheme achieves the optimal degree of freedom (d.o.f) region. More specifically, it enables to send l <= L confidential messages and N-l common mes...
Directory of Open Access Journals (Sweden)
Kesavan.E
2013-04-01
Full Text Available This paper suggests an idea to design an adaptive PID controller for Non-linear liquid tank System and is implemented in PLC. Online estimation of linear parameters (Time constant and Gain brings an exact model of the process to take perfect control action. Based on these estimated values, the controller parameters will be well tuned by internal model control. Internal model control is an unremarkably used technique and provides well tuned controller in order to have a good controlling process. PLC with its ability to have both continues control for PID Control and digital control for fault diagnosis which ascertains faults in the system and provides alerts about the status of the entire process.
Xia, Run-Qiu; Wang, Xia; Jin, Wei-Qi; Liang, Jian-An
2015-10-01
Linear polarizer-based polarimeters that measure the degree of linear polarization (DoLP) and the angle of polarization (AoP) were considered in this study. Variances of DoLP and AoP of the region of interest (ROI) to be measured were analyzed using a statistical method. To simplify the calculation, only additive noise and shot noise were considered. Optimized combinations of the polarizers that can minimize the variances of DoLP and AoP were determined by investigating the variances of different polarizer combinations. Several regularities were found when analyzing the data obtained from the optimized combinations. Some variables in the combinations are inversely proportional to the cube or square root of the signal-to-noise ratio of the output signals from sensors without polarizer filtering, and these variables are functions of the DoLP of the ROI to be measured.
Quantum-dot-based integrated non-linear sources
DEFF Research Database (Denmark)
Bernard, Alice; Mariani, Silvia; Andronico, Alessio;
2015-01-01
The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is...... granted by parametric generation in a waveguide via modal phase matching. Both devices rely on embedded quantum-dot lasers, which allow for low-threshold currents and unconventional geometries. They also include specific degrees of freedom that open a practical route towards phase matching, either during...
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised. PMID:26873262
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Institute of Scientific and Technical Information of China (English)
彭章友; 王淼; 李林霄; 刘洋; 刘琦; 王春娜
2016-01-01
毫米波和M assive M IM O作为下一代移动通信中的关键技术，成为国内外通信领域研究的热点。在楼群密集的城市环境下，基于毫米波的传播特性，构建了城市环境下的毫米波多用户M assive M IM O系统模型，并针对大规模M IM O系统中，消除用户间干扰所用预编码矩阵维度高、系统复杂的特点，依据波束空间信道矩阵的稀疏特性，提出了一种基于波束选择的低维度预编码算法，对无共用波束的用户进行功率分配，对有共用波束、产生干扰的用户进行预编码。仿真结果表明，本文提出的方法在降低系统复杂度的同时又能保证较好的系统性能。所提出的系统模型和低维预编码算法具有较强的理论价值和实践意义，可以为系统后续算法研究以及软硬件设计提供参考。%With the continuous development of research work on next generation wireless communication ,millimeter wave (mm‐wave) and Massive MIMO technology has become the focus topics both at home and abroad .In this paper , we choose dense urban environments as our research background , according to the main line‐of‐sight (LOS ) propagation and the excellent reflection performance in millimeter wave multiuser Massive MIMO systems , we construct a simplified system model .Based on the sparsity of the beamspace channel matrix ,we choose several beams that capture the channel’s main energy to approximate the original high‐dimensional channel ,and propose a low‐dimensional beamspace precoder method .The simulation results demonstrate that the reduced‐complexity precoder can also achieve considerable system sum rates .The construction of the system model and the optimization of precoder methods have strong theory value and practical significance ,can provide a reference for hardware and software design and subsequent algorithm research .
Low-Complexity MMSE Precoding for Coordinated Multipoint with Per-Antenna Power Constraint
DEFF Research Database (Denmark)
Kim, Tae Min; Sun, Fan; Paulraj, Arogyaswami
2013-01-01
We propose a low-complexity minimum mean square error (MMSE) transmit filter design for the coordinated beamforming (CB) in the coordinated multipoint (CoMP) under the practical per-antenna power constraint (PAPC). The proposed design is based on the non-linear Gauss-Seidel type algorithm in which...
DEFF Research Database (Denmark)
Knudsen, Vibeke Kildegaard; Gille, Maj-Britt; Nielsen, Trine Holmgaard;
2011-01-01
weighed food record. Intakes of foods and drinks were estimated, and nutrient intakes were calculated. Means and medians of intake were compared, and crossclassification of individuals according to intake was performed. To assess agreement between the two methods, Pearson and Spearman’s correlation...... coefficients and weighted kappa coefficients were calculated. Setting: Validation study of the pre-coded food diary against a 4 d weighed food record. Subjects: Seventy-two volunteer, healthy free-living adults (thirty-five males, thirty-seven females). Results: Intakes of cereals and vegetables were higher...
Exploring stochasticity and imprecise knowledge based on linear inequality constraints.
Subbey, Sam; Planque, Benjamin; Lindstrøm, Ulf
2016-09-01
This paper explores the stochastic dynamics of a simple foodweb system using a network model that mimics interacting species in a biosystem. It is shown that the system can be described by a set of ordinary differential equations with real-valued uncertain parameters, which satisfy a set of linear inequality constraints. The constraints restrict the solution space to a bounded convex polytope. We present results from numerical experiments to show how the stochasticity and uncertainty characterizing the system can be captured by sampling the interior of the polytope with a prescribed probability rule, using the Hit-and-Run algorithm. The examples illustrate a parsimonious approach to modeling complex biosystems under vague knowledge. PMID:26746217
Optimization techniques for OpenCL-based linear algebra routines
Kozacik, Stephen; Fox, Paul; Humphrey, John; Kuller, Aryeh; Kelmelis, Eric; Prather, Dennis W.
2014-06-01
The OpenCL standard for general-purpose parallel programming allows a developer to target highly parallel computations towards graphics processing units (GPUs), CPUs, co-processing devices, and field programmable gate arrays (FPGAs). The computationally intense domains of linear algebra and image processing have shown significant speedups when implemented in the OpenCL environment. A major benefit of OpenCL is that a routine written for one device can be run across many different devices and architectures; however, a kernel optimized for one device may not exhibit high performance when executed on a different device. For this reason kernels must typically be hand-optimized for every target device family. Due to the large number of parameters that can affect performance, hand tuning for every possible device is impractical and often produces suboptimal results. For this work, we focused on optimizing the general matrix multiplication routine. General matrix multiplication is used as a building block for many linear algebra routines and often comprises a large portion of the run-time. Prior work has shown this routine to be a good candidate for high-performance implementation in OpenCL. We selected several candidate algorithms from the literature that are suitable for parameterization. We then developed parameterized kernels implementing these algorithms using only portable OpenCL features. Our implementation queries device information supplied by the OpenCL runtime and utilizes this as well as user input to generate a search space that satisfies device and algorithmic constraints. Preliminary results from our work confirm that optimizations are not portable from one device to the next, and show the benefits of automatic tuning. Using a standard set of tuning parameters seen in the literature for the NVIDIA Fermi architecture achieves a performance of 1.6 TFLOPS on an AMD 7970 device, while automatically tuning achieves a peak of 2.7 TFLOPS
MIMO系统的正则块对角化迫零矢量预编码设计%RBD-ZF-VP precoding design for the MIMO system
Institute of Scientific and Technical Information of China (English)
刘国华; 黄洪琼; 吴程
2015-01-01
In order to further reduce the BER of multi-user MIMO (MU-MIMO) downlink transmission system, a RBD-ZF-VP precoding design is proposed. Utilizing the advantages of RBD precoding and VP precoding, the method transforms the RBD precoding matrix into the equivalent channel matrix on the basis of the RBD precoding of the original MIMO system, and then calculates the disturbance vector of VP by utilizing ZF criteria. Finally, a new signal vector will be formed with the disturbance vector added to the original signal vector and then the new signal vector will be processed. The simulation results show that the scheme can be used in multi-user and multi-antenna MIMO transmission system. Compared with the traditional BD precoding and RBD precoding, it improves the performance of the system effectively, which shows that the system has obvious advantages.%为了进一步减少多用户 MIMO （ Multiple-Input Multiple-Output ）下行传输系统的误码率，提出了正则块对角化迫零矢量预编码设计（ RBD-ZF-VP ）。该方法利用正则块对角化预编码（ RBD ）和矢量预编码（ VP ）的优点，在原有 MIMO 系统 RBD 预编码的基础上，将 RBD 预编码的矩阵转变成信道等价矩阵，然后利用迫零（ ZF ）准则求出 VP 的扰动矢量，再将扰动矢量加到原有信号上构成新信号向量，接着对新信号向量进行处理。仿真结果表明，该方案支持多用户多天线 MIMO 传输系统，与传统的块对角化（ BD ）预编码和RBD 预编码相比，有效地提升了系统性能，具有显著的系统误码率性能优势。
Infeasible Interior-Point Methods for Linear Optimization Based on Large Neighborhood
Asadi, A.R.; Roos, C.
2015-01-01
In this paper, we design a class of infeasible interior-point methods for linear optimization based on large neighborhood. The algorithm is inspired by a full-Newton step infeasible algorithm with a linear convergence rate in problem dimension that was recently proposed by the second author. Unfortu
Marinsky, J.A.; Reddy, M.M.
1991-01-01
Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.
Design of a novel integrated position sensor based on Hall effects for linear oscillating actuator.
Wang, Tianyi; Yan, Liang; Jiao, Zongxia
2015-07-01
Linear oscillating actuator provides linear reciprocate motion directly without other auxiliary components, which is suitable for high integration applications in aerospace industry. Accurate position control is essential for linear oscillating motor and relies on concise measurement of mover position. However, most position measurements are dependent on external complicated sensors, which hinders further integration of linear oscillating actuation system. In this paper, a novel position sensing system for linear oscillating actuator based on Hall effects is proposed to achieve accurate and high integration measurement simultaneously. Axial sensing magnetic field with approximately linear relationship with position is created for direct and convenient measurement. Analytical model of sensing magnetic field is set up for optimization and validated by finite element method and experimental results. Finally, sensing magnets are integrated into motor prototype for experiments. Dynamic position results are tested in experiments and prove to be effective and accurate for position sensing with short-stroke.
Enhancing atlas based segmentation with multiclass linear classifiers
Energy Technology Data Exchange (ETDEWEB)
Sdika, Michaël, E-mail: michael.sdika@creatis.insa-lyon.fr [Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne 69300 (France)
2015-12-15
Purpose: To present a method to enrich atlases for atlas based segmentation. Such enriched atlases can then be used as a single atlas or within a multiatlas framework. Methods: In this paper, machine learning techniques have been used to enhance the atlas based segmentation approach. The enhanced atlas defined in this work is a pair composed of a gray level image alongside an image of multiclass classifiers with one classifier per voxel. Each classifier embeds local information from the whole training dataset that allows for the correction of some systematic errors in the segmentation and accounts for the possible local registration errors. The authors also propose to use these images of classifiers within a multiatlas framework: results produced by a set of such local classifier atlases can be combined using a label fusion method. Results: Experiments have been made on the in vivo images of the IBSR dataset and a comparison has been made with several state-of-the-art methods such as FreeSurfer and the multiatlas nonlocal patch based method of Coupé or Rousseau. These experiments show that their method is competitive with state-of-the-art methods while having a low computational cost. Further enhancement has also been obtained with a multiatlas version of their method. It is also shown that, in this case, nonlocal fusion is unnecessary. The multiatlas fusion can therefore be done efficiently. Conclusions: The single atlas version has similar quality as state-of-the-arts multiatlas methods but with the computational cost of a naive single atlas segmentation. The multiatlas version offers a improvement in quality and can be done efficiently without a nonlocal strategy.
Linear feature selection in texture analysis - A PLS based method
DEFF Research Database (Denmark)
Marques, Joselene; Igel, Christian; Lillholm, Martin;
2013-01-01
, which first applied a PLS regression to rank the features and then defined the best number of features to retain in the model by an iterative learning phase. The outliers in the dataset, that could inflate the number of selected features, were eliminated by a pre-processing step. To cope...... and considering all CV groups, the methods selected 36 % of the original features available. The diagnosis evaluation reached a generalization area-under-the-ROC curve of 0.92, which was higher than established cartilage-based markers known to relate to OA diagnosis....
Alternate transmission relaying based on interference alignment in 3-relay half-duplex MIMO systems
Park, Seongho
2012-09-01
In a half-duplex relaying, the capacity pre-log factor 1/2 is a major drawback in spectral efficiency. This paper proposes a linear precoding/decoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help the communication between the source and the destination. In our proposed scheme, we consider a phase incoherent method in relays in which the source alternately transmits message signals to the different relays. In addition, we propose a linear interference alignment scheme which can suppress the inter-relay interference resulting from the phase incoherence of relaying. Based on our analysis of degrees of freedom and our simulation results, we show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying. © 2012 IEEE.
Linear and nonlinear optical properties of nucleic acid bases
Alparone, Andrea
2013-01-01
Electronic and vibrational (hyper)polarizabilities of neutral nucleic acid bases (uracil, thymine, cytosine, adenine, hypoxanthine and guanine) were determined using Hartree-Fock, correlated MPn (n = 2, 4), CCSD and DFT (B3LYP, B97-1, CAM-B3LYP) methods. The computations were performed in gaseous and aqueous phases for the most stable tautomeric forms. Frequency-dependent second-order hyperpolarizabilities were calculated for the OKE, IDRI, EFISHG and THG nonlinear optical processes at the wavelength of 1064 nm. The results show that the average electronic polarizabilities increase in the order uracil guanine. This order is also maintained for the electronic hyperpolarizabilities, with the inversion between cytosine and thymine. The response electric properties for the tautomers are almost similar to each other, whereas group substitution and solvation effects are much more significant. Among the DFT methods, the long-range corrected CAM-B3LYP functional gives the better performances, reproducing satisfactorily the correlated ab initio (hyper)polarizability data.
Simple and easy estimation of network properties based on linear correlation analysis
Directory of Open Access Journals (Sweden)
Yanhong Qi
2015-12-01
Full Text Available An ecological network can be constructed by calculating the sampling data of taxon by sample type. A statistically significant Pearson linear correlation means an indirect or direct linear interaction between two taxa, and a statistically significant partial (net, or pure correlation based on Pearson linear correlation means a candidate direct linear interaction between two taxa. In many cases, statistically significant partial correlations are not available, or we only need to estimate some of network properties. Based on sampling data of arthropods in different countries and periods, in present study I proved that the number of candidate direct linear interactions (y increases with the number of indirect + direct linear interactions (x calculated by Pearson linear correlation (y=-0.2757+0.5343x, r2=0.859, p<0.00001, and the former is approximately half of the later. The proportion of candidate direct interactions in possible maximum interactions (y percent is approximately two-thirds of mean Pearson linear correlation (x (y=1.9060+64.6084x, r2=0.339, p=0.023. These conclusions are expected to provide simple and easy quantities to estimate some of network properties.
An Adaptive Finite Element Method Based on Optimal Error Estimates for Linear Elliptic Problems
Institute of Scientific and Technical Information of China (English)
汤雁
2004-01-01
The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK
Institute of Scientific and Technical Information of China (English)
ZHANG Dailin; CHEN Youping; AI Wu; ZHOU Zude; KONG Ching Tom
2008-01-01
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.
Aras, Mohd Shahrieel Mohd; Abdullah, Shahrum Shah; Kamarudin, Muhammad Nizam; Rahman, Ahmad Fadzli Nizam Abdul; Azis, Fadilah Abd; Jaafar, Hazriq Izzuan
2015-05-01
This paper describes the effectiveness of observer-based output feedback for Unmanned Underwater Vehicle (UUV) with Linear Quadratic Regulation (LQR) performance. Tuning of observer parameters is crucial for tracking purpose. Prior to tuning facility, the ranges of observer and LQR parameters are obtained via system output cum error. The validation of this technique using unmanned underwater vehicles called Remotely Operated Vehicle (ROV) modelling helps to improve steady state performance of system response. The ROV modeling is focused for depth control using ROV 1 developed by the Underwater Technology Research Group (UTeRG). The results are showing that this technique improves steady state performances in term of overshoot and settling time of the system response.
On the linearization of nonlinear supersymmetry based on the commutator algebra
Tsuda, Motomu
2016-01-01
We discuss a linearization procedure of nonlinear supersymmetry (NLSUSY) based on the closure of the commutator algebra for variations of functionals of Nambu-Goldstone fermions and their derivative terms under NLSUSY transformations in Volkov-Akulov NLSUSY theory. In the case of a set of bosonic and fermionic functionals, which leads to (massless) vector linear supermultiplets, we explicitly show that general linear SUSY transformations of basic components defined from those functionals are uniquely determined by examining the commutation relation in the NLSUSY theory.
Institute of Scientific and Technical Information of China (English)
程东升; 张建武; 叶晓峰; 黄维纲
2003-01-01
A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.
Gain Scheduling Control of Nonlinear Shock Motion Based on Equilibrium Manifold Linearization Model
Institute of Scientific and Technical Information of China (English)
Cui Tao; Yu Daren; Bao Wen; Yang Yongbin
2007-01-01
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
On Combining Linear-Based Strategies for Tabled Evaluation of Logic Programs
Areias, Miguel; 10.1017/S147106841100024X
2011-01-01
Tabled evaluation is a recognized and powerful technique that overcomes some limitations of traditional Prolog systems in dealing with recursion and redundant sub-computations. We can distinguish two main categories of tabling mechanisms: suspension-based tabling and linear tabling. While suspension-based mechanisms are considered to obtain better results in general, they have more memory space requirements and are more complex and harder to implement than linear tabling mechanisms. Arguably, the SLDT and DRA strategies are the two most successful extensions to standard linear tabled evaluation. In this work, we propose a new strategy, named DRS, and we present a framework, on top of the Yap system, that supports the combination of all these three strategies. Our implementation shares the underlying execution environment and most of the data structures used to implement tabling in Yap. We thus argue that all these common features allows us to make a first and fair comparison between these different linear tab...
PCR-based detection of a rare linear DNA in cell culture
Directory of Open Access Journals (Sweden)
Saveliev Sergei V.
2002-01-01
Full Text Available The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.
Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States
Energy Technology Data Exchange (ETDEWEB)
Fairey, P.; Parker, D.
2012-11-01
This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.
Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films
Hong-Baek Cho; Minh Triet Tan Huynh; Tadachika Nakayama; Son Thanh Nguyen; Hisayuki Suematsu; Tsuneo Suzuki; Weihua Jiang; Satoshi Tanaka; Yoshinori Tokoi; Soo Wohn Lee; Tohoru Sekino; Koichi Niihara
2013-01-01
Linear assemblies of carbon nanotubes (LACNTs) were fabricated and controlled in polysiloxane-based nanocomposite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely ...
Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng
2014-06-20
We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Robustness-tracking control based on sliding mode and H∞ theory for linear servo system
Institute of Scientific and Technical Information of China (English)
TIAN Yan-feng; GUO Qing-ding
2005-01-01
A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solution problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACO algorithm. Finally, the ACO with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.
On Development of a Problem Based Learning System for Linear Algebra with Simple Input Method
Yokota, Hisashi
2011-08-01
Learning how to express a matrix using a keyboard inputs requires a lot of time for most of college students. Therefore, for a problem based learning system for linear algebra to be accessible for college students, it is inevitable to develop a simple method for expressing matrices. Studying the two most widely used input methods for expressing matrices, a simpler input method for expressing matrices is obtained. Furthermore, using this input method and educator's knowledge structure as a concept map, a problem based learning system for linear algebra which is capable of assessing students' knowledge structure and skill is developed.
Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution
Directory of Open Access Journals (Sweden)
Yichen Zhang
2015-06-01
Full Text Available We propose a method to improve the performance of two entanglement-based continuous-variable quantum key distribution protocols using noiseless linear amplifiers. The two entanglement-based schemes consist of an entanglement distribution protocol with an untrusted source and an entanglement swapping protocol with an untrusted relay. Simulation results show that the noiseless linear amplifiers can improve the performance of these two protocols, in terms of maximal transmission distances, when we consider small amounts of entanglement, as typical in realistic setups.
System Reliability of Timber Trusses Based on Non-Linear Structural Modelling
DEFF Research Database (Denmark)
Hansson, Martin; Ellegaard, Peter
2006-01-01
between timber members and non-linear behaviour of the joints. The timber members are given linear properties. The system effect is based on reliability analyses. The system effect found depends on the coefficient of variation, the distribution of the random load variable and the reliability level...... with a number of elements, two different effects (called system effects) can be found: - The probabilistic system effect that is based on the reduced probability that weak sections coincide with the most stressed sections. - Structural load-sharing that is the ability to redistribute load between members....... Depending on the assumptions, the system effect was found to be in the range 8-25%....
Directory of Open Access Journals (Sweden)
Farzin Piltan
2012-10-01
Full Text Available Congetive method is used in this research to create portfilo of movement robot manipulator. Gradient descent (GD artificial intelligence based switching feedback linearization controller was used and robot’s postures and trajectory were expected in MATLAB/SIMULINK environment. Feedback linearization controller (CTC is an influential nonlinear controller to certain systems which it is based on feedback linearization and computes the required torques using the nonlinear feedback control law in certain systems. Practically a large amount of systems have uncertainties accordingly this method has a challenge. Switching feedback linearization controller is a significant combination nonlinear stable-robust controller under condition of partly uncertain dynamic parameters of system. This technique is used to control of highly nonlinear systems especially in nonlinear time varient nonlinear dynamic system. To increase the stability and robustness with regards to improve the robustness switching methodology is applied to feedback linearization controller. Lyapunov stability is proved in proposed controller based on switching function. To compensate for the dependence on switching parameters baseline methodology is used.The nonlinear model dynamic formulation problem in uncertain system can be solved by using artificial intelligence theorem. Fuzzy logic theory is used to estimate the system dynamic. Forward kinematics implemented the manipulator's movements. Results validated the robot's range of possible postures and trajectories.
Laser-Based Trespassing Prediction in Restrictive Environments: A Linear Approach
Gustavo Scaglia; Fernando Auat Cheein
2012-01-01
Stationary range laser sensors for intruder monitoring, restricted space violation detections and workspace determination are extensively used in risky environments. In this work we present a linear based approach for predicting the presence of moving agents before they trespass a laser-based restricted space. Our approach is based on the Taylor's series expansion of the detected objects' movements. The latter makes our proposal suitable for embedded applications. In the experimental results ...
Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng
2013-12-01
We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.
Institute of Scientific and Technical Information of China (English)
Peixin ZHAO
2013-01-01
In this paper,we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data.By constructing a penalized auxiliary vector ingeniously,we propose an empirical likelihood based variable selection procedure,and show that it is consistent and satisfies the sparsity.The simulation studies show that the proposed variable selection method is workable.
Lesaja, G.; Roos, C.
2011-01-01
We present an interior-point method for monotone linear complementarity problems over symmetric cones (SCLCP) that is based on barrier functions which are defined by a large class of univariate functions, called eligible kernel functions. This class is fairly general and includes the classical logar
Non-linear dynamic modelling and design procedure of FV spring-dampers for base isolation
S. Sorace; Terenzi, G.
2001-01-01
Awarded Munro Prize 2001 jointly with “Non-linear dynamic design procedure of FV spring-dampers for base isolation - frame building applications”, (S. Sorace, G. Terenzi), Engineering Structures, Elsevier Science Ltd, Oxford, 23(12), pp. 1568-1576.
A Modified Approach to Team-Based Learning in Linear Algebra Courses
Nanes, Kalman M.
2014-01-01
This paper documents the author's adaptation of team-based learning (TBL), an active learning pedagogy developed by Larry Michaelsen and others, in the linear algebra classroom. The paper discusses the standard components of TBL and the necessary changes to those components for the needs of the course in question. There is also an empirically…
An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers
Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin
2011-01-01
This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…
Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra
Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly
2014-01-01
The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…
A new approach of binary addition and subtraction by non-linear material based switching technique
Indian Academy of Sciences (India)
Archan Kumar Das; Partha Partima Das; Sourangshu Mukhopadhyay
2005-02-01
Here, we refer a new proposal of binary addition as well as subtraction in all-optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.
Linear logical relations and observational equivalences for session-based concurrency
Perez, Jorge A.; Caires, Luis; Pfenning, Frank; Toninho, Bernardo
2014-01-01
We investigate strong normalization, confluence, and behavioral equality in the realm of session-based concurrency. These interrelated issues underpin advanced correctness analysis in models of structured communications. The starting point for our study is an interpretation of linear logic propositi
Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding
DEFF Research Database (Denmark)
Thomsen, Jesper Sandberg
2005-01-01
In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only...
A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection
Directory of Open Access Journals (Sweden)
Xingling Shao
2014-01-01
Full Text Available A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC method, a feedback linearization based control law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO is constructed to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning and simple form based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the effectiveness of the control strategy.
Scene matching based on non-linear pre-processing on reference image and sensed image
Institute of Scientific and Technical Information of China (English)
Zhong Sheng; Zhang Tianxu; Sang Nong
2005-01-01
To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.
Linear GPR Imaging Based on Electromagnetic Plane-Wave Spectra and Diffraction Tomography
DEFF Research Database (Denmark)
Meincke, Peter
2004-01-01
Two linear diffraction-tomography based inversion schemes, referred to as the Fourier transform method (FTM) and the far-field method (FFM), are derived for 3-dimensional fixed-offset GPR imaging of buried objects. The FTM and FFM are obtained by using different asymptotic approximations in the...
Learning Statistics - in a WEB-based and non-linear way
DEFF Research Database (Denmark)
Rootzen, Helle
2007-01-01
different from one another. They have different prior knowledge and different learning styles so it is a challenging task to teach them all in the same way. Furthermore the world of statistics has become so huge that it is impossible to cover everything. The structure imposed by the Bologna agreement gives...... can design the course – or a part of the course – so that it fits their individual learning style and their prior knowledge. Some prefer to look at examples first and afterwards look at which theories it is based on. Others want to do it the opposite way. Some wants to work with the problem themselves......Have you thought about why most teaching is linear? Do you know what non-linear learning means? Do you use web-based learning? And have you ever thought of combining web-based learning with “standard” university teaching such as lectures, problem based learning etc.? Students nowadays are very...
[Non-linear rectification of sensor based on immune genetic Algorithm].
Lu, Lirong; Zhou, Jinyang; Niu, Xiaodong
2014-08-01
A non-linear rectification based on immune genetic algorithm (IGA) is proposed in this paper, for the shortcoming of the non-linearity rectification. This algorithm introducing the biologic immune mechanism into the genetic algorithm can restrain the disadvantages that the poor precision, slow convergence speed and early maturity of the genetic algorithm. Computer simulations indicated that the algorithm not only keeps population diversity, but also increases the convergent speed, precision and the stability greatly. The results have shown the correctness and effectiveness of the method.
The 2D Linearly Polarized Near-Field Focusing Based on Angularly Discretized Slot Arrays
Chen, Menglin; Ma, Zilong; Jiang, Lijun
2014-01-01
A 2-D near-field focusing design is proposed based on the circular slot array waveguide structures, synthesized using the array-factor theory, and demonstrated by full-wave simulations. The principle of beam-focusing is extended to the 2-D angularly discretized configuration using regular center-fed linear slots arranged in a circular pattern. By the mirror image arrangement of the slots, a linearly polarized focus in the near-field of the antenna, with negligible cross-polarization is achieved. Its beam-focusing properties are discussed in details and demonstrated by simulations.
Jiawei Ren; Huihua Chen; Weimin Jia; Minli Yao
2012-01-01
Unambiguous tracking and multipath mitigation for Binary Offset Carrier (BOC) signals are two important requirements of modern Global Navigation Satellite Systems (GNSS) receivers. A GNSS discriminator design method based on optimization technique is proposed in this paper to meet these requirements. Firstly, the discriminator structure based on a linear-combined code is given. Then the requirements of ideal discriminator function are converted into the mathematical constraints and the object...
SPATIAL ANALYSIS BASED HEALTH AND SAFETY RISK ASSESSMENT FOR LINEAR CONSTRUCTION PROJECTS
H. Atay; G. Toz
2012-01-01
This paper describes an on-going study that aims to develop a web-based spatial decision support system model for proactive health and safety management in linear construction projects. Currently, health and safety management is usually performed reactively instead of proactive management since hazard identification and risk assessment is mostly performed on paper based documents that are not effectively used at site. This leads to accidents and fatalities at construction sites. The proposed ...
Optimal linear combinations of multiple diagnostic biomarkers based on Youden index.
Yin, Jingjing; Tian, Lili
2014-04-15
In practice, usually multiple biomarkers are measured on the same subject for disease diagnosis. Combining these biomarkers into a single score could improve diagnostic accuracy. Many researchers have addressed the problem of finding the optimal linear combination based on maximizing the area under ROC curve (AUC). Actually, such combined score might have less than optimal property at the diagnostic threshold. In this paper, we propose the idea of using Youden index as an objective function for searching the optimal linear combination. The combined score directly achieves the maximum overall correct classification rate at the diagnostic threshold corresponding to Youden index; in other words, it is the optimal linear combination score for making the disease diagnosis. We present both empirical and numerical searching methods for the optimal linear combination. We carry out extensive simulation study to investigate the performance of the proposed methods. Additionally, we empirically compare the optimal overall classification rates between the proposed combination based on Youden index and the traditional one based on AUC and demonstrate a significant gain in diagnostic accuracy for the proposed combination. In the end, we apply the proposed methods to a real data set. PMID:24311111
A finite element perspective on non-linear FFT-based micromechanical simulations
Zeman, Jan; Vondřejc, Jaroslav; Peerlings, Ron H J; Geers, Marc G D
2016-01-01
Fourier solvers have become efficient tools to establish structure-property relations in heterogeneous materials. Introduced as an alternative to the Finite Element (FE) method, they are based on fixed-point solutions of the Lippmann-Schwinger type integral equation. Their computational efficiency results from handling the kernel of this equation by the Fast Fourier Transform (FFT). However, the kernel is derived from an auxiliary homogeneous linear problem, which renders the extension of FFT-based schemes to non-linear problems conceptually difficult. This paper aims to establish a link between FE- and FFT-based methods, in order to develop a solver applicable to general history- and time-dependent material models. For this purpose, we follow the standard steps of the FE method, starting from the weak form, proceeding to the Galerkin discretization and the numerical quadrature, up to the solution of non-linear equilibrium equations by an iterative Newton-Krylov solver. No auxiliary linear problem is thus nee...
Wireless Positioning Based on a Segment-Wise Linear Approach for Modeling the Target Trajectory
DEFF Research Database (Denmark)
Figueiras, Joao; Pedersen, Troels; Schwefel, Hans-Peter
2008-01-01
Positioning solutions in infrastructure-based wireless networks generally operate by exploiting the channel information of the links between the Wireless Devices and fixed networking Access Points. The major challenge of such solutions is the modeling of both the noise properties of the channel...... measurements and the user mobility patterns. One class of typical human being movement patterns is the segment-wise linear approach, which is studied in this paper. Current tracking solutions, such as the Constant Velocity model, hardly handle such segment-wise linear patterns. In this paper we propose a...... segment-wise linear model, called the Drifting Points model. The model results in an increased performance when compared with traditional solutions....
FBG-based ultrasonic wave detection and acoustic emission linear location system
Institute of Scientific and Technical Information of China (English)
JIANG Ming-shun; SUI Qing-mei; JIA Lei; PENG Peng; CAO Yu-qiang
2012-01-01
The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed,which employ fiber Bragg gratings (FBGs) as US wave sensors.In the theoretical analysis,the FBG sensor response to longitudinal US wave is investigated.The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength.The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal.Further research using two FBGs for realizing linear location is also achieved.The maximumlinear location error is obtained as less than 5 mm.FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.
Analysis and synthesis of phase shifting algorithms based on linear systems theory
Servin, M.; Estrada, J. C.
2012-08-01
We review and update a recently published formalism for the theory of linear Phase Shifting Algorithms (PSAs) based on linear filtering (systems) theory, mainly using the Frequency Transfer Function (FTF). The FTF has been for decades the standard tool in Electrical Engineering to analyze and synthesize their linear systems. Given the well defined FTF approach (matured over the last century), it clarifies, in our view, many not fully understood properties of PSAs. We present easy formulae for the spectra of the PSAs (the FTF magnitude), their Signal to Noise (S/N) power-ratio gain, their detuning robustness, and their harmonic rejection in terms of the FTF. This paper has more practical appeal than previous publications by the same authors, hoping to enrich the understanding of this PSA's theory as applied to the analysis and synthesis of temporal interferometry algorithms in Optical Metrology.
Kimura, Akisato; Kurozumi, Takayuki; Murase, Hiroshi
2007-01-01
This paper presents a new method for a quick similarity-based search through long unlabeled audio streams to detect and locate audio clips provided by users. The method involves feature-dimension reduction based on a piecewise linear representation of a sequential feature trajectory extracted from a long audio stream. Two techniques enable us to obtain a piecewise linear representation: the dynamic segmentation of feature trajectories and the segment-based Karhunen-L\\'{o}eve (KL) transform. The proposed search method guarantees the same search results as the search method without the proposed feature-dimension reduction method in principle. Experiment results indicate significant improvements in search speed. For example the proposed method reduced the total search time to approximately 1/12 that of previous methods and detected queries in approximately 0.3 seconds from a 200-hour audio database.
Optimum linear array for aperture synthesis imaging based on redundant spacing calibration
Liu, Li; He, Yuntao; Zhang, Jianguo; Jia, Huayu; Ma, Jun
2014-05-01
Aperture synthesis imaging has been proved to be attractive in surveillance and detection applications. Such an imaging process is inevitably subject to aberrations introduced by instrument defects and/or turbulent media. Redundant spacing calibration (RSC) technique allows continuous calibration of these errors at any electromagnetic wavelength. However, it is based on specially designed array, in which just enough redundancy is included to permit the successful implementation of RSC. A new design criterion for linear RSC array is described, which introduces coverage efficiency and redundancy efficiency factors, aiming to find the perfect configurations, which have as complete uv-plane coverage as possible while containing required redundancy. Optimum linear arrays for N (number of subapertures) up to 10 are listed based on simulated annealing algorithm. The comparisons with existing linear RSC arrays with equivalent subaperture number are implemented. Results show that the optimized arrays have better performance of both optical transfer function, point spread function, and object reconstruction with reasonable value of the matrix condition number. After that, linear arrays are used to construct two-dimensional (2-D) pseudo-Y-shaped RSC arrays, which give a way to design 2-D RSC arrays without exhaustive searches.
Directory of Open Access Journals (Sweden)
He Miao
2009-12-01
Full Text Available Abstract Background More studies based on gene expression data have been reported in great detail, however, one major challenge for the methodologists is the choice of classification methods. The main purpose of this research was to compare the performance of linear discriminant analysis (LDA and its modification methods for the classification of cancer based on gene expression data. Methods The classification performance of linear discriminant analysis (LDA and its modification methods was evaluated by applying these methods to six public cancer gene expression datasets. These methods included linear discriminant analysis (LDA, prediction analysis for microarrays (PAM, shrinkage centroid regularized discriminant analysis (SCRDA, shrinkage linear discriminant analysis (SLDA and shrinkage diagonal discriminant analysis (SDDA. The procedures were performed by software R 2.80. Results PAM picked out fewer feature genes than other methods from most datasets except from Brain dataset. For the two methods of shrinkage discriminant analysis, SLDA selected more genes than SDDA from most datasets except from 2-class lung cancer dataset. When comparing SLDA with SCRDA, SLDA selected more genes than SCRDA from 2-class lung cancer, SRBCT and Brain dataset, the result was opposite for the rest datasets. The average test error of LDA modification methods was lower than LDA method. Conclusions The classification performance of LDA modification methods was superior to that of traditional LDA with respect to the average error and there was no significant difference between theses modification methods.
Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling.
Yang, Xianfeng; Goh, Alvina; Qiu, Anqi
2011-05-01
This paper presents the algorithm, Locally Linear Diffeomorphic Metric Embedding (LLDME), for constructing efficient and compact representations of surface-based brain shapes whose variations are characterized using Large Deformation Diffeomorphic Metric Mapping (LDDMM). Our hypothesis is that the shape variations in the infinite-dimensional diffeomorphic metric space can be captured by a low-dimensional space. To do so, traditional Locally Linear Embedding (LLE) that reconstructs a data point from its neighbors in Euclidean space is extended to LLDME that requires interpolating a shape from its neighbors in the infinite-dimensional diffeomorphic metric space. This is made possible through the conservation law of momentum derived from LDDMM. It indicates that initial momentum, a linear transformation of the initial velocity of diffeomorphic flows, at a fixed template shape determines the geodesic connecting the template to a subject's shape in the diffeomorphic metric space and becomes the shape signature of an individual subject. This leads to the compact linear representation of the nonlinear diffeomorphisms in terms of the initial momentum. Since the initial momentum is in a linear space, a shape can be approximated by a linear combination of its neighbors in the diffeomorphic metric space. In addition, we provide efficient computations for the metric distance between two shapes through the first order approximation of the geodesic using the initial momentum as well as for the reconstruction of a shape given its low-dimensional Euclidean coordinates using the geodesic shooting with the initial momentum as the initial condition. Experiments are performed on the hippocampal shapes of 302 normal subjects across the whole life span (18-94years). Compared with Principal Component Analysis and ISOMAP, LLDME provides the most compact and efficient representation of the age-related hippocampal shapes. Even though the hippocampal volumes among young adults are as
Laser-Based Trespassing Prediction in Restrictive Environments: A Linear Approach
Directory of Open Access Journals (Sweden)
Gustavo Scaglia
2012-08-01
Full Text Available Stationary range laser sensors for intruder monitoring, restricted space violation detections and workspace determination are extensively used in risky environments. In this work we present a linear based approach for predicting the presence of moving agents before they trespass a laser-based restricted space. Our approach is based on the Taylor’s series expansion of the detected objects’ movements. The latter makes our proposal suitable for embedded applications. In the experimental results (carried out in different scenarios presented herein, our proposal shows 100% of effectiveness in predicting trespassing situations.Several implementation results and statistics analysis showing the performance of our proposal are included in this work.
COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS
Directory of Open Access Journals (Sweden)
K. Seetharaman
2015-08-01
Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.
A novel crowd flow model based on linear fractional stable motion
Wei, Juan; Zhang, Hong; Wu, Zhenya; He, Junlin; Guo, Yangyong
2016-03-01
For the evacuation dynamics in indoor space, a novel crowd flow model is put forward based on Linear Fractional Stable Motion. Based on position attraction and queuing time, the calculation formula of movement probability is defined and the queuing time is depicted according to linear fractal stable movement. At last, an experiment and simulation platform can be used for performance analysis, studying deeply the relation among system evacuation time, crowd density and exit flow rate. It is concluded that the evacuation time and the exit flow rate have positive correlations with the crowd density, and when the exit width reaches to the threshold value, it will not effectively decrease the evacuation time by further increasing the exit width.
Directory of Open Access Journals (Sweden)
Jiawei Ren
2012-12-01
Full Text Available Unambiguous tracking and multipath mitigation for Binary Offset Carrier (BOC signals are two important requirements of modern Global Navigation Satellite Systems (GNSS receivers. A GNSS discriminator design method based on optimization technique is proposed in this paper to meet these requirements. Firstly, the discriminator structure based on a linear-combined code is given. Then the requirements of ideal discriminator function are converted into the mathematical constraints and the objective function to form a non-linear optimization problem. Finally, the problem is solved and the local code is generated according to the results. The theoretical analysis and simulation results indicate that the proposed method can completely remove the false lock points for BOC signals and provide superior multipath mitigation performance compared with traditional discriminator and high revolution correlator (HRC technique. Moreover, the proposed discriminator is easy to implement for not increasing the number of correlators.
Institute of Scientific and Technical Information of China (English)
PAN Li-xin; JIN Hong-zhang; WANG Lin-lin
2011-01-01
In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.
Directory of Open Access Journals (Sweden)
Farman Ali Mangi
2016-01-01
Full Text Available A multiband circular polarizer based on fission transmission of linearly polarized wave for x-band application is proposed, which is constructed of 2 × 2 metallic strips array. The linear-to-circular polarization conversion is obtained by decomposing the linearly incident x-polarized wave into two orthogonal vector components of equal amplitude and 90° phase difference between them. The innovative approach of “fission transmission of linear-to-circular polarized wave” is firstly introduced to obtain giant circular dichroism based on decomposition of orthogonal vector components through the structure. It means that the incident linearly polarized wave is converted into two orthogonal components through lower printed metallic strips layer and two transmitted waves impinge on the upper printed strips layer to convert into four orthogonal vector components at the end of structure. This projection and transmission sequence of orthogonal components sustain the chain transmission of electromagnetic wave and can achieve giant circular dichroism. Theoretical analysis and microwave experiments are presented to validate the performance of the structure. The measured results are in good agreement with simulation results. In addition, the proposed circular polarizer exhibits the optimal performance with respect to the normal incidence. The right handed circularly polarized wave is emitted ranging from 10.08 GHz to 10.53 GHz and 10.78 GHz to 11.12 GHz, while the left handed circular polarized wave is excited at 10.54 GHz–10.70 GHz and 11.13 GHz–11.14 GHz, respectively.
Linear accelerator-based stereotactic radiosurgery in 140 brain metastases from malignant melanoma
Hauswald, Henrik; Stenke, Alina; Debus, Jürgen; Combs, Stephanie E
2015-01-01
Background: To retrospectively access outcome and prognostic parameters of linear accelerator-based stereotactic radiosurgery in brain metastases from malignant melanoma. Methods: Between 1990 and 2011 140 brain metastases in 84 patients with malignant melanoma (median age 56 years) were treated with stereotactic radiosurgery. At initial stereotactic radiosurgery 48 % of patients showed extracerebral control. The median count of brain metastases in a single patient was 1, the median diamete...
Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma
Selch, Michael T.; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P; Gorgulho, Alessandra; De Salles, Antonio A. F.
2012-01-01
Purpose: To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Methods: Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple–Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median ...
Johansson, Håkan
2011-01-01
A class of Farrow-structure-based reconfigurable bandpass finite-length impulse response (FIR) filters for integer sampling rate conversion is introduced. The converters are realized in terms of a number of fixed linear-phase FIR subfilters and two sets of reconfigurable multipliers that determine the passband location and conversion factor, respectively. Both Mth-band and general FIR filters can be realized, and the filters work equally well for any integer factor and passband location. Desi...
Zhang, Xiaomin; Zheng, You
Based on linear and nonlinear mathematical model of spacecraft formation flying and technology of relative position measurement of small satellites, the linear and nonlinear relative navigation strategies are developed in this paper. The dynamical characteristics of multi spacecraft formation flying have been researched in many references, including the authors' several International Astronautical Congress papers with numbers of IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. Under conditions of short distance and short time, the linear model can describe relative orbit motion; otherwise, nonlinear model must be adopted. Furthermore the means of measurement and their error will influence relative navigation. Thus three kinds of relative navigation strategy are progressed. With consideration of difficulty in relative velocity measurement of small satellites, the three relative navigation strategies are proposed and only depend on sequential data of relative position through measuring the relative distance and relative orientation. The first kind of relative navigation strategy is based on linear model. The second relative navigation strategy is based on nonlinear model, with inclusion of the second order item. In fact the measurement error can not be avoided especially for small satellites, it is mainly considered in the third relative navigation strategy. This research is theoretical yet and a series of formulas of relative navigation are presented in this paper. Also the authors analyzed the three strategies qualitatively and quantitatively. According to results of simulation, the ranges of application are indicated and suggested in allusion to the three strategies of relative navigation. On the view of authors, the relative navigation strategies for small satellite formation flying based on relative position measurement are significant for engineering of small satellite formation flying.
Duality, thermodynamics, and the linear programming problem in constraint-based models of metabolism
Warren, Patrick B.; Jones, Janette L.
2007-01-01
It is shown that the dual to the linear programming problem that arises in constraint-based models of metabolism can be given a thermodynamic interpretation in which the shadow prices are chemical potential analogues, and the objective is to minimise free energy consumption given a free energy drain corresponding to growth. The interpretation is distinct from conventional non-equilibrium thermodynamics, although it does satisfy a minimum entropy production principle. It can be used to motivat...
A New UKF Based Fault Detection Method in Non-linear Systems
Institute of Scientific and Technical Information of China (English)
GE Zhe-xue; YANG Yong-min; HU Zheng
2006-01-01
To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of traditional Extended Kalman Filtering(EKF). It uses the UKF as the residual generation method and the Weighted-Sum Squared Residual (WSSR) as the fault detection strategy. The simulation results are provided which demonstrate better effectiveness and a higher detection ratio of the developed methods.
Rajendran, Arvind
2008-03-28
The design of simulated moving bed processes under reduced purity requirements for systems whose isotherm is linear is considered. Based on the equilibrium theory of chromatography, explicit equations to uniquely identify the separation region that will ensure specified extract and raffinate purities are derived. The identification of the region requires only the knowledge of Henry constants of the solutes, the concentration of the solutes in the feed and the purity specifications. These results are validated using numerical simulations. PMID:18281052
A modified approach to team-based learning in linear algebra courses
Nanes, Kalman M.
2014-11-01
This paper documents the author's adaptation of team-based learning (TBL), an active learning pedagogy developed by Larry Michaelsen and others, in the linear algebra classroom. The paper discusses the standard components of TBL and the necessary changes to those components for the needs of the course in question. There is also an empirically controlled analysis of the effects of TBL on the student learning experience in the first year of TBL use.
TUNABILITY PERFORMANCE OF REFLECTARRAYS BASED ON NON-LINEAR MATERIAL PROPERTIES
Directory of Open Access Journals (Sweden)
M. Y. Ismail
2013-01-01
Full Text Available Limited phase range and narrower bandwidth are the main performance limitations of reflectarray antennas for high gain applications which result in the performance to be restricted particularly in satellite and earth observatory systems. This study provides a thorough investigation on the tunability performance of reflectarrays designed in X-band frequency range using different non-linear dielectric substrates. An investigation of phase agility characteristics of reflectarray rectangular patch antenna printed above non-linear materials (0.17â¤ ÎÎµ â¤0.45 is thoroughly presented. A detailed analytical study on dynamic phase range and frequency tunability of the reflectarrays is carried out based on the analytical investigation which is validated by Finite Integral Method (FIM. As the dielectric anisotropy of non-linear materials increases from 0.17-0.45 the frequency tunability performance of the reflectarray antenna is shown to increase from 372-796 MHz. The results show that LC-B1 with a dielectric anisotropy of 0.45 contributes a maximum dynamic phase range and frequency tunability performance of 160Â° and 796 MHz respectively. The dielectric non-linear properties presented in this study are shown to considerably affect the frequency and phase range performance of reflectarray antenna particularly for rapid dynamic phase change of terrestrial systems.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
An out-of-plane linear motion measurement system based on optical beam deflection
International Nuclear Information System (INIS)
Measurement of out-of-plane linear motion with high precision and bandwidth is indispensable for development of precision motion stages and for dynamic characterization of mechanical structures. This paper presents an optical beam deflection (OBD) based system for measurement of out-of-plane linear motion for fully reflective samples. The system also achieves nearly zero cross-sensitivity to angular motion, and a large working distance. The sensitivities to linear and angular motion are analytically obtained and employed to optimize the system design. The optimal shot-noise limited resolution is shown to be less than one angstrom over a bandwidth in excess of 1 kHz. Subsequently, the system is experimentally realized and the sensitivities to out-of-plane motions are calibrated using a novel strategy. The linear sensitivity is found to be in agreement with theory. The angular sensitivity is shown to be over 7.5-times smaller than that of conventional OBD. Finally, the measurement system is employed to measure the transient response of a piezo-positioner, and, with the aid of an open-loop controller, reduce the settling time by about 90%. It is also employed to operate the positioner in closed-loop and demonstrate significant minimization of hysteresis and positioning error. (paper)
Characteristics of the Main Journal Bearings of an Engine Based on Non-linear Dynamics
Institute of Scientific and Technical Information of China (English)
NI Guangjian; ZHANG Junhong; CHENG Xiaoming
2009-01-01
Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.
Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye
2016-04-14
A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.
Local Ray-Based Traveltime Computation Using the Linearized Eikonal Equation
Almubarak, Mohammed S.
2013-05-01
The computation of traveltimes plays a critical role in the conventional implementations of Kirchhoff migration. Finite-difference-based methods are considered one of the most effective approaches for traveltime calculations and are therefore widely used. However, these eikonal solvers are mainly used to obtain early-arrival traveltime. Ray tracing can be used to pick later traveltime branches, besides the early arrivals, which may lead to an improvement in velocity estimation or in seismic imaging. In this thesis, I improved the accuracy of the solution of the linearized eikonal equation by constructing a linear system of equations (LSE) based on finite-difference approximation, which is of second-order accuracy. The ill-conditioned LSE is initially regularized and subsequently solved to calculate the traveltime update. Numerical tests proved that this method is as accurate as the second-order eikonal solver. Later arrivals are picked using ray tracing. These traveltimes are binned to the nearest node on a regular grid and empty nodes are estimated by interpolating the known values. The resulting traveltime field is used as an input to the linearized eikonal algorithm, which improves the accuracy of the interpolated nodes and yields a local ray-based traveltime. This is a preliminary study and further investigation is required to test the efficiency and the convergence of the solutions.
A linear coherent integrated receiver based on a broadband optical phase-locked loop
Ramaswamy, Anand
Optical Phase-Locked Loops (OPLL) have diverse applications in future communication systems. They can be used in high sensitivity homodyne phase-shift keying receivers for phase noise reduction, provided sufficient loop bandwidth is maintained. Alternative phase-locked loop applications include coherent synchronization of laser arrays and frequency synthesis by offset locking. In this work, a broadband OPLL based coherent receiver is used for linear phase demodulation. Phase modulated (PM) analog optical links have the potential to outperform conventional direct detection links. However, their progress has been stymied by the lack of a linear phase demodulator. We describe how feedback can be used to suppress non-linearities arising from the phase demodulation process. The receiver concept is demonstrated at low frequencies and is found to improve the Spurious Free Dynamic Range (SFDR) of an experimental analog link by over 20dB. In order to extend the operation of the receiver to microwave frequencies, latencies arising from physical delays in the feedback path need to be dramatically reduced. To facilitate this, monolithic and hybrid versions of the receiver based on compact integration of InP photonic integrated circuits (PIC) with InP and SiGe electronic integrated circuits (EIC) have been developed at UCSB. In this work, we develop novel measurement techniques to characterize the linearity of the individual components of the PIC, namely, the semiconductor photodiodes and optical phase modulators. We then demonstrate the operation of the receiver in a high power analog link. The OPLL based receiver has a bandwidth of 1.5GHz. The link gain and shot-noise limited SFDR at 300MHz are -2dB and 125dB-Hz2/3, respectively. Further, optical sampling downconversion is demonstrated as a viable technique to increase the operating frequency of the receiver beyond the baseband range.
A Neural Network Based Hybrid Mixture Model to Extract Information from Non-linear Mixed Pixels
Directory of Open Access Journals (Sweden)
Uttam Kumar
2012-09-01
Full Text Available Signals acquired by sensors in the real world are non-linear combinations, requiring non-linear mixture models to describe the resultant mixture spectra for the endmember’s (pure pixel’s distribution. This communication discusses inferring class fraction through a novel hybrid mixture model (HMM. HMM is a three-step process, where the endmembers are first derived from the images themselves using the N-FINDR algorithm. These endmembers are used by the linear mixture model (LMM in the second step that provides an abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual ground proportions are fed into neural network based multi-layer perceptron (MLP architecture as input to train the neurons. The neural output further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. HMM is first implemented and validated on simulated hyper spectral data of 200 bands and subsequently on real time MODIS data with a spatial resolution of 250 m. The results on computer simulated data show that the method gives acceptable results for unmixing pixels with an overall RMSE of 0.0089 ± 0.0022 with LMM and 0.0030 ± 0.0001 with the HMM when compared to actual class proportions. The unmixed MODIS images showed overall RMSE with HMM as 0.0191 ± 0.022 as compared to the LMM output considered alone that had an overall RMSE of 0.2005 ± 0.41, indicating that individual class abundances obtained from HMM are very close to the real observations.
Designing a graph-based approach to landscape ecological assessment of linear infrastructures
International Nuclear Information System (INIS)
The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact
Designing a graph-based approach to landscape ecological assessment of linear infrastructures
Energy Technology Data Exchange (ETDEWEB)
Girardet, Xavier, E-mail: xavier.girardet@univ-fcomte.fr; Foltête, Jean-Christophe, E-mail: jean-christophe.foltete@univ-fcomte.fr; Clauzel, Céline, E-mail: celine.clauzel@univ-fcomte.fr
2013-09-15
The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact.
Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors
Directory of Open Access Journals (Sweden)
Alma Y. Alanis
2013-01-01
Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.
Fault detection in non-linear systems based on type-2 fuzzy logic
Safarinejadian, Behrooz; Ghane, Parisa; Monirvaghefi, Hossein
2015-02-01
This paper presents a new method for fault detection (FD) based on interval type-2 fuzzy sets. The main idea is based on a confident span using interval type-2 fuzzy systems. An estimate for upper and lower bounds of output has been taken using the designing of an optimal fuzzy system through clustering. Finally the method has been tested in two non-linear systems, a two-tank with a fluid flow and pH neutralisation process, and it is compared with a well-known method named ANFIS. Furthermore, the mathematical model and the results of simulations prove the effectiveness, usefulness and applications of our new method.
JTpack90: A parallel, object-based, Fortran 90 linear algebra package
Energy Technology Data Exchange (ETDEWEB)
Turner, J.A.; Kothe, D.B. [Los Alamos National Lab., NM (United States); Ferrell, R.C. [Cambridge Power Computing Associates, Ltd., Brookline, MA (United States)
1997-03-01
The authors have developed an object-based linear algebra package, currently with emphasis on sparse Krylov methods, driven primarily by needs of the Los Alamos National Laboratory parallel unstructured-mesh casting simulation tool Telluride. Support for a number of sparse storage formats, methods, and preconditioners have been implemented, driven primarily by application needs. They describe the object-based Fortran 90 approach, which enhances maintainability, performance, and extensibility, the parallelization approach using a new portable gather/scatter library (PGSLib), current capabilities and future plans, and present preliminary performance results on a variety of platforms.
Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation
Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.
2016-06-01
As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.
Observer-based passive control for uncertain linear systems with delay in state and control input
Institute of Scientific and Technical Information of China (English)
Li Gui-Fang; Li Hui-Ying; Yang Cheng-Wu
2005-01-01
This paper deals with the robust passivity synthesis problem for a class of uncertain linear systems with timevarying delay in state and control input. The parameter uncertainties are norm-bounded and allowed to appear in all matrices of the model. The problem aims at designing an observer-based dynamic output-feedback controller that robustly stabilizes the uncertain systems and achieves the strict passivity of closed-loop systems for all admissible uncertainties. By converting the problem at hand into a class of strictly passive control problem for a parameterized system, the explicit solution is established and expressed in terms of a linear matrix inequality. A numerical example is provided to demonstrate the validity of the proposed approach.
Self-consistent field theory based molecular dynamics with linear system-size scaling.
Richters, Dorothee; Kühne, Thomas D
2014-04-01
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Robust observer-based fault estimation and accommodation of discrete-time piecewise linear systems
DEFF Research Database (Denmark)
Tabatabaeipour, Mojtaba; Bak, Thomas
2013-01-01
In this paper a new integrated observer-based fault estimation and accommodation strategy for discrete-time piecewise linear (PWL) systems subject to actuator faults is proposed. A robust estimator is designed to simultaneously estimate the state of the system and the actuator fault. Then...... controller. We show that separate design of the state feedback and the estimator results in the stability of the overall closed-loop system. In addition, the input-to-state stability (ISS) gain for the closed-loop system is obtained and a procedure for minimizing it is given. All of the design conditions...... are formulated in terms of linear matrix inequalities (LMI) which can be solved efficiently. Also, performance of the estimator and the state feedback controller are minimized by solving convex optimization problems. The efficiency of the method is demonstrated by means of a numerical example....
Parameter identification of fractional order linear system based on Haar wavelet operational matrix.
Li, Yuanlu; Meng, Xiao; Zheng, Bochao; Ding, Yaqing
2015-11-01
Fractional order systems can be more adequate for the description of dynamical systems than integer order models, however, how to obtain fractional order models are still actively exploring. In this paper, an identification method for fractional order linear system was proposed. This is a method based on input-output data in time domain. The input and output signals are represented by Haar wavelet, and then fractional order systems described by fractional order differential equations are transformed into fractional order integral equations. Taking use of the Haar wavelet operational matrix of the fractional order integration, the fractional order linear system can easily be converted into a system of algebraic equation. Finally, the parameters of the fractional order system are determined by minimizing the errors between the output of the real system and that of the identified system. Numerical simulations, involving integral and fractional order systems, confirm the efficiency of the above methodology.
Self-consistent field theory based molecular dynamics with linear system-size scaling
Energy Technology Data Exchange (ETDEWEB)
Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
The SPH approach to the process of container filling based on non-linear constitutive models
Institute of Scientific and Technical Information of China (English)
Tao Jiang; Jie Ouyang; Lin Zhang; Jin-Lian Ren
2012-01-01
In this work,the transient free surface of container filling with non-linear constitutive equation's fluids is numerically investigated by the smoothed particle hydrodynamics (SPH) method.Specifically,the filling process of a square container is considered for non-linear polymer fluids based on the Cross model.The validity of the presented SPH is first verified by solving the Newtonian fluid and OldroydB fluid jet.Various phenomena in the filling process are shown,including the jet buckling,jet thinning,splashing or spluttering,steady filling.Moreover,a new phenomenon of vortex whirling is more evidently observed for the Cross model fluid compared with the Newtonian fluid case.
Observer-based passive control of linear time-delay systems with parametric uncertainty
Energy Technology Data Exchange (ETDEWEB)
Cui Baotong [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Raod, Wuxi, Jiangsu 214122 (China)]. E-mail: btcui@sohu.com; Hua Mingang [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Raod, Wuxi, Jiangsu 214122 (China)]. E-mail: huamingang@yahoo.com.cn
2007-04-15
This paper deals with the problem of observer-based passive control of a class of uncertain linear systems with delayed state and parameter uncertainties. This problem aims at designing the linear state observers such that, for all admissible parameter uncertainties, the observation process remains robustly stable and passive, independently of the time delay. The time delay is assumed to be unknown, and the parameter uncertainties are allowed to be norm-bounded and appear in all the matrices of the state-space model. An effective matrix inequality methodology is developed to solve the proposed problem. We derive the conditions for the existence of the desired robust passive observers, and then characterize the analytical expression of these observers in terms of some free parameters. A numerical example demonstrates the validity and applicability of the present approach.
International Nuclear Information System (INIS)
Linear assemblies of carbon nano tubes (LACNTs) were fabricated and controlled in polysiloxane-based nano composite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely packed LACNTs that fixed the composite film surfaces were fabricated with various structures and thicknesses that depended on the DC and switching DC conditions. Polymer nano composites with different LACNT densities exhibited enhanced thermal and electrical conductivities and high optical transmittances. They are considered promising structural materials for electronic sectors in automotive and aerospace applications
Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.
Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen
2016-01-15
We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave.
A Multiple Beamforming Network for Unequally Spaced Linear Array Based on CORPS
Directory of Open Access Journals (Sweden)
Armando Arce
2015-01-01
Full Text Available This paper proposes an alternative and innovative way to design a simpler beamforming network (BFN based on balancing alternated power combiners and dividers, to feed a nonuniformly spaced linear array with Gaussian amplitude and coherent (in-phase signals. Thus, a two-beam design configuration of the feeding network for a nonuniform array with beam steering capability is proposed and analyzed. The nonuniform aperture and the complex inputs of the feeding network are optimized by means of a differential evolution algorithm. In addition, a comparative analysis between a uniform and nonuniform linear array with the proposed feeding network is performed. Simulation results show the advantages and effectiveness of the proposed feeding network exploiting the nonuniformity of the antenna elements, in terms of side lobe level and directivity. Furthermore, research results show an inherent reduction in hardware complexity of the network.
Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films
Directory of Open Access Journals (Sweden)
Hong-Baek Cho
2013-01-01
Full Text Available Linear assemblies of carbon nanotubes (LACNTs were fabricated and controlled in polysiloxane-based nanocomposite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely packed LACNTs that fixed the composite film surfaces were fabricated with various structures and thicknesses that depended on the DC and switching DC conditions. Polymer nanocomposites with different LACNT densities exhibited enhanced thermal and electrical conductivities and high optical transmittances. They are considered promising structural materials for electronic sectors in automotive and aerospace applications.
ASME stress linearization and classification - a discussion based on a case study
International Nuclear Information System (INIS)
The ASME code, specially in its Nuclear Division (Subsection NB - Class I Components), gives some recommendations to the structural analyst on how to perform the verifications required to prove the design as good as the by-analysis prevented failures modes. Each of these failure modes has specific stress limits which are established based on simple but conservative hypothesis like the material perfectly plastic behavior and the shell theory with its typical membrane and bending stresses with linear distribution along the thickness. Other detail to keep in mind is the code distinction between primary and secondary stresses (respectively, stress that came due to equilibrium and due to displacement compatibility). In general, the numerical models used in the analyses are developed with plane or 3D solid elements and due this fact no direct comparison with the code limits can be done and, besides that, the programs do not distinguish between primary and secondary stresses. Mostly, the later are produced due to the temperature variation but they also appear near discontinuities. Sometimes, this classification is not so clear or direct. To perform the required ASME Code verifications the analyst should obtain the membrane and bending stresses from the plane or 3-D model which is called stress linearization and, also, should classify them as primary and secondary. (The excess between the maximum stress at a point and the sum of these linearized values is called peak stress and is included in the fatigue verification.) This task, most of the time is not a simple one due to the nature of the involved load and/or the complex geometry under analysis. In fact, there are several studies discussing on how to perform these stress classification and linearization. The present paper shows a discussion on how to perform these verifications based on a generic geometry found in many plants, from petrochemical to nuclear, which emphasizes some of theses issues. (author)
Discovering biclusters in gene expression data based on high-dimensional linear geometries
Directory of Open Access Journals (Sweden)
Liew Alan
2008-04-01
Full Text Available Abstract Background In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits consistent pattern over a subset of conditions. Conventional clustering algorithms that deal with the entire row or column in an expression matrix would therefore fail to detect these useful patterns in the data. Recently, biclustering has been proposed to detect a subset of genes exhibiting consistent pattern over a subset of conditions. However, most existing biclustering algorithms are based on searching for sub-matrices within a data matrix by optimizing certain heuristically defined merit functions. Moreover, most of these algorithms can only detect a restricted set of bicluster patterns. Results In this paper, we present a novel geometric perspective for the biclustering problem. The biclustering process is interpreted as the detection of linear geometries in a high dimensional data space. Such a new perspective views biclusters with different patterns as hyperplanes in a high dimensional space, and allows us to handle different types of linear patterns simultaneously by matching a specific set of linear geometries. This geometric viewpoint also inspires us to propose a generic bicluster pattern, i.e. the linear coherent model that unifies the seemingly incompatible additive and multiplicative bicluster models. As a particular realization of our framework, we have implemented a Hough transform-based hyperplane detection algorithm. The experimental results on human lymphoma gene expression dataset show that our algorithm can find biologically significant subsets of genes. Conclusion We have proposed a novel geometric interpretation of the biclustering problem. We have shown that many common types of bicluster are just different spatial arrangements of hyperplanes in
Directory of Open Access Journals (Sweden)
N. Harihara Krishnan
2013-05-01
Full Text Available This paper reports control of switching characteristics of silicon-based semiconductor diode using electron beam produced using linear accelerator. Conventionally, p-n junction chips of diode are exposed to gamma rays from a radioactive source or electron beam from a microtron, depending upon the required level of correction. High energy linear accelerators featuring simultaneous exposure of multiple chips are recent advancements in radiation technology. The paper presents the results of the radiation process using a 10 MeV linear accelerator as applied in industrial manufacturing of a high voltage diode (2600 V. The achieved values of reverse recovery time were found to be within the design limits. The suitability of the new process was verified by constructing the trade-off curve between the switching and conduction parameters of the diode for the complete range using large number of experimental samples. The paper summarizes the advantages of the new process over the conventional methods specifically with reference to industrial requirements. The developed process has been successfully implemented in semiconductor manufacturing.
International Nuclear Information System (INIS)
Mixed-integer linear programming (MILP) based techniques are among the most widely applied methods for unit commitment (UC) problems. The fuel cost functions are often replaced by their piecewise linear approximations whereas it is more or less disturbing to use piecewise linear approximations without knowing the exact effect on solution deviation from the optima. Therefore, error analysis is important since the optimal solutions are different when different objective functions are adopted. Another important problem is balancing between solution quality and computation efficiency since better solution quality relies on finer discretization with exponentially increased computational efforts. A detailed error analysis is presented in this paper. It is found that the approximation error is inverse proportional to the square of the number of piecewise segments. Lower bounds on the minimum necessary number of discretization segments are also derived. A 2-Stage Procedure is then established to achieve a better balance between solution quality and computation efficiency. Numerical testing to 2 groups of UC problems is exciting. It is found that the operating cost increases no more than 0.6% in all cases while the CPU time is greatly reduced regarding other MILP approaches. The results are still valid in electric power market clearing computation. (author)
MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS
Energy Technology Data Exchange (ETDEWEB)
Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard
2011-09-01
Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.
Highly Linear, Broadband Optical Modulator Based on Electro-optic Polymer
Zhang, Xingyu; Lin, Che-yun; Wang, Alan X; Hosseini, Amir; Chen, Ray T
2014-01-01
In this paper, we present the design, fabrication and characterization of a traveling wave directional coupler modulator based on electro-optic polymer, which is able to provide both high linearity and broad bandwidth. The high linearity is realized by introducing domain-inversion technique in the two-domain directional coupler. A travelling wave electrode is designed to function with bandwidth-length product of 302GHz cm, by achieving low microwave loss, excellent impedance matching and velocity matching, as well as smooth electric field profile transformation. The 3-dB bandwidth of the device is measured to be 10GHz. The spurious free dynamic range of about 110dB Hz^(2/3) is measured over the modulation frequency range 2-8GHz. To the best of our knowledge, such high linearity is first measured at the frequency up to 8GHz. In addition, a 1-to-2 multi-mode interference 3dB-splitter, a photobleached refractive index taper and a quasi-vertical taper are used to reduce the optical insertion loss of the device.
Long and uniform plasma columns generated by linear field-applicators based on stripline technology
Energy Technology Data Exchange (ETDEWEB)
Pollak, J [Groupe de physique des plasmas, Universite de Montreal, C.P. 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Moisan, M [Groupe de physique des plasmas, Universite de Montreal, C.P. 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Zakrzewski, Z [Polish Academy of Sciences, IMP-PAN, 80-952 Gdansk (Poland)
2007-05-15
Long plasma columns generated by high-frequency (HF) fields and extending over distances longer than the free-space wavelength of the applied electromagnetic (EM) field are of interest in various applications. A commonly used method to achieve such long plasma columns calls for the propagation of EM surface waves that use the plasma as their propagating medium. In such a case, the HF field applicator, called a wave launcher, is much shorter than the actual length of the plasma column. Long plasma columns can also be sustained by using field applicators that run along the full length of the discharge tube. Most such linear applicators rely on waveguide components. However, it is possible to use transverse electric magnetic planar-transmission-lines based on stripline technology to design efficient linear field applicators. Using such an approach, we have developed a new type of HF linear field applicator that operates on a relatively wide frequency range (typically, 200-2450 MHz). Comparison of the discharge that it generates with a surface-wave discharge (SWD) sustained under similar operating conditions shows that the discharge volume is larger than that obtained with a SWD at the same power level, hence a lower gas temperature and a plasma column more axially uniform, two valuable features for some applications. The contraction of these plasma columns is shown to occur at higher gas pressures than with SWDs. All these measurements are carried out in argon as the discharge gas.
Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging
Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.
2015-03-01
Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.
Linearized Aeroelastic Computations in the Frequency Domain Based on Computational Fluid Dynamics
Amsallem, David; Choi, Youngsoo; Farhat, Charbel
2015-01-01
An iterative, CFD-based approach for aeroelastic computations in the frequency domain is presented. The method relies on a linearized formulation of the aeroelastic problem and a fixed-point iteration approach and enables the computation of the eigenproperties of each of the wet aeroelastic eigenmodes. Numerical experiments on the aeroelastic analysis and design optimization of two wing configurations illustrate the capability of the method for the fast and accurate aeroelastic analysis of aircraft configurations and its advantage over classical time-domain approaches.
New methods for determining speciality of linear systems based at fat points in P^n
Paul, Stepan
2012-01-01
In this paper we develop techniques for determining the dimension of linear systems of divisors based at a collection of general fat points in P^n by partitioning the monomial basis for the vector space of global sections of O(d). The methods we develop can be viewed as extensions of those developed by Dumnicki. We apply these techniques to produce new lower bounds on multi-point Seshadri constants of P^2 and to provide a new proof of a known result confirming the perfect-power cases of Iarrobino's analogue to Nagata's Conjecture in higher dimension.
Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle
Institute of Scientific and Technical Information of China (English)
Dan Necsulescu; Yi-Wu Jiang; Bumsoo Kim
2007-01-01
This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is nonminimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.
Generalized model of double random phase encoding based on linear algebra
Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro
2013-01-01
We propose a generalized model for double random phase encoding (DRPE) based on linear algebra. We defined the DRPE procedure in six steps. The first three steps form an encryption procedure, while the later three steps make up a decryption procedure. We noted that the first (mapping) and second (transform) steps can be generalized. As an example of this generalization, we used 3D mapping and a transform matrix, which is a combination of a discrete cosine transform and two permutation matrices. Finally, we investigated the sensitivity of the proposed model to errors in the decryption key.
Formation Control of Multirobot Based on I/O Feedback Linearization and Potential Function
Directory of Open Access Journals (Sweden)
Jie Dong
2014-01-01
Full Text Available Standard techniques of I/O linearization are widely applied to leader-follower approach for multirobot formation control. However general leader-follower approach cannot adapt to the environment with obstacles. Concerning that issue, a formation control method of multirobot system based on potential function is proposed in this paper, and a new control law is designed by choosing a proper potential function and employing Lyapunov stability theory, which stabilizes the formation of the multirobot system. We combine the method with a leader-follower approach to solve the problem that the latter cannot avoid obstacles. Simulation results are given to validate the method.
Data-based controllability analysis of discrete-time linear time-delay systems
Liu, Yang; Chen, Hong-Wei; Lu, Jian-Quan
2014-11-01
In this paper, a data-based method is used to analyse the controllability of discrete-time linear time-delay systems. By this method, one can directly construct a controllability matrix using the measured state data without identifying system parameters. Hence, one can save time in practice and avoid corresponding identification errors. Moreover, its calculation precision is higher than some other traditional approaches, which need to identify unknown parameters. Our methods are feasible to the study of characteristics of deterministic systems. A numerical example is given to show the advantage of our results.
Ultrafast all-optical clock recovery based on phase-only linear optical filtering
DEFF Research Database (Denmark)
Maram, Reza; Kong, Deming; Galili, Michael;
2014-01-01
We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitu...... optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper. (C) 2014 Optical Society of America...
High-Gain Approach Based Full-Order Observers for Linear Systems with Unknown Inputs
Institute of Scientific and Technical Information of China (English)
韩冬; 刘俊
2016-01-01
In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the con-ventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching con-dition is removed. The procedure of calculating the parameter matrices of the full-order observer is also presented. Compared with the existing auxiliary outputs based sliding-mode observers, the designed observer has a simpler design procedure, which is systematic and does not involve solving linear matrix inequalities. The simulation re-sults show that the proposed method is effective.
Optical NRZ-to-RZ format conversion based on frequency chirp linearization and spectrum slicing
Wang, Dong; Huo, Li; Chen, Xin; Jiang, Xiangyu; Lou, Caiyun
2015-12-01
A flexible optical NRZ-to-RZ format converter based on a time lens followed by optical filtering is proposed and demonstrated experimentally. After frequency chirp linearization, 9-tone ultra-flat optical frequency comb of 25-GHz frequency spacing within 1 dB power variation is obtained. By changing the shape of the following optical band-pass filter, 3.4-ps Nyquist-shaped RZ signal and 3.7-ps Gaussian-shaped RZ signal are both achieved. The sensitivity improvements at a bit error rate of 10-9 are 3.3 dB and 1.7 dB, respectively.
Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE)
DEFF Research Database (Denmark)
Ladefoged, Claes N; Benoit, Didier; Law, Ian;
2015-01-01
, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous...... images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R(*)2 values to CT Hounsfield Units (HU) to measure the density...
Edward D. Lemaire, PhD; Reza Samadi, MASc; Louis Goudreau, PEng; Jonathan Kofman, PhD, PEng
2013-01-01
A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without me...
An all-optical matrix multiplication scheme with non-linear material based switching system
Institute of Scientific and Technical Information of China (English)
Archan Kumar Das; Sourangshu Mukhopadhyay
2005-01-01
Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.
Fuzzy inference systems with no any base and linearly parameter growth
Institute of Scientific and Technical Information of China (English)
Shitong WANG; Korris F. L. CHUNG; Jieping LU; Bin HAN; Dewen HU
2004-01-01
A class of new fuzzy inference systems New-FISs is presented. Compared with the standard fuzzy system,New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality": there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables, resulting in surprisingly reduced computational complexity and being especially suitable for applications, where the complexity is of the first importance with respect to the approximation accuracy.
A KIND OF FUZZY MULTI-OBJECTIVE LINEAR PROGRAMMING PROBLEMS BASED ON INTERVAL VALUED FUZZY SETS
Institute of Scientific and Technical Information of China (English)
XU Jiuping
2001-01-01
This paper presents a general solution procedure and an interactive fuzzy satisfying method for a kind of fuzzy multi-objective linear programming problems based on interval valued fuzzy sets. Firstly, a fuzzy set of the fuzzy solutions, which can be focused on providing complete information for the final decision, can be obtained by the proposed tolerance analysis of a non-dominated set. Secondly, the satisfying solution for the decisionmaker can be derived from Pareto optimal solutions by updating the current reference membership levels on the basis of the current levels of the membership functions together with the trade-off rates between the membership functions.
Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Andersen, Palle; Pedersen, Tom Søndergaard
This paper considers the trajectory tracking problem for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The robot is modeled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. A nonlinear trajectory tracking feedback control law based...... on dynamic feedback linearization is designed for this model. Since several parameters in the model, in particular the ground-wheel contact friction, are not well known a priori, a robustness analysis is carried out for bounded uncertainties. It is demonstrated that uncertainties can render the closed...
Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Andersen, Palle; Pedersen, Tom Søndergaard
2002-01-01
This paper considers the trajectory tracking problem for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The robot is modeled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. A nonlinear trajectory tracking feedback control law based...... on dynamic feedback linearization is designed for this model. Since several parameters in the model, in particular the ground-wheel contact friction, are not well known a priori, a robustness analysis is carried out for bounded uncertainties. It is demonstrated that uncertainties can render the closed...
A Calibration Method Based on Linear InGaAs in Fiber Grating Sensors Interrogation System
Institute of Scientific and Technical Information of China (English)
TAO Jun; ZHANG Xia
2009-01-01
In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system, the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed. Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit, thus the calibration method is needed. Based on an analysis of InGaAs imaging model, least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position. The experimental results show that the methods are effective and the demodulation system precision is improved.
Empirical likelihood-based inference in a partially linear model for longitudinal data
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A partially linear model with longitudinal data is considered, empirical likelihood to inference for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the parameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed.
Empirical likelihood-based inference in a partially linear model for longitudinal data
Institute of Scientific and Technical Information of China (English)
2008-01-01
A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed.
Directory of Open Access Journals (Sweden)
Xin-Jia Meng
2015-01-01
Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.
Linearity enhancement of TVGA based on adaptive sweep optimisation in monostatic radar receiver
Almslmany, Amir; Wang, Caiyun; Cao, Qunsheng
2016-08-01
The limited input dynamic power range of the radar receiver and the power loss due to the targets' ranges are two potential problems in the radar receivers. This paper proposes a model based on the time-varying gain amplifier (TVGA) to compensate the power loss from the targets' ranges, and using the negative impedance compensation technique to enhance the TVGA linearity based on Volterra series. The simulation has been done based on adaptive sweep optimisation (ASO) using advanced design system (ADS) and Matlab. It shows that the suppression of the third-order intermodulation products (IMR3) was carried out for two-tone test, the high-gain accuracy improved by 3 dB, and the high linearity IMR3 improved by 14 dB. The monostatic radar system was tested to detect three targets at different ranges and to compare its probability of detection with the prior models; the results show that the probability of detection has been increased for ASO/TVGA.
Compensation of Linear Multiscale Doppler for OFDM-Based Underwater Acoustic Communication Systems
Directory of Open Access Journals (Sweden)
A. E. Abdelkareem
2012-01-01
Full Text Available In particular cases, such as acceleration, it is required to design a receiver structure that is capable of accomplishing time varying Doppler compensation. In this paper, two approaches are taken into consideration in order to estimate the symbol timing offset parameter. The first method employed to achieve an estimate of this particular parameter is based upon centroid localization and this prediction is reinforced by a second technique which utilises linear prediction, based on the assumption that the speed changes linearly during the OFDM symbol time. Subsequently, the two estimations of the symbol timing offset parameter are smoothed in order to obtain a fine tuned approximation of the Doppler scale. Additionally, the effects of weighting coefficients on smoothing the Doppler scale and on the performance of the receiver are also investigated. The proposed receiver is investigated, incorporating an improvement that includes fine tuning of the coarse timing synchronization in order to accommodate the time-varying Doppler. Based on this fine-tuned timing synchronization, an extension to the improved receiver is presented to assess the performance of two point correlations. The proposed algorithms' performances were investigated using real data obtained from an experiment that took place in the North Sea in 2009.
Comparison of the Noise Robustness of FVC Retrieval Algorithms Based on Linear Mixture Models
Directory of Open Access Journals (Sweden)
Hiroki Yoshioka
2011-07-01
Full Text Available The fraction of vegetation cover (FVC is often estimated by unmixing a linear mixture model (LMM to assess the horizontal spread of vegetation within a pixel based on a remotely sensed reflectance spectrum. The LMM-based algorithm produces results that can vary to a certain degree, depending on the model assumptions. For example, the robustness of the results depends on the presence of errors in the measured reflectance spectra. The objective of this study was to derive a factor that could be used to assess the robustness of LMM-based algorithms under a two-endmember assumption. The factor was derived from the analytical relationship between FVC values determined according to several previously described algorithms. The factor depended on the target spectra, endmember spectra, and choice of the spectral vegetation index. Numerical simulations were conducted to demonstrate the dependence and usefulness of the technique in terms of robustness against the measurement noise.
Directory of Open Access Journals (Sweden)
Weihua Jin
2013-01-01
Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.
Šepitka, Peter; Šimon Hilscher, Roman
2016-04-01
In this paper we derive a general limit characterization of principal solutions at infinity of linear Hamiltonian systems under no controllability assumption. The main result is formulated in terms of a limit involving antiprincipal solutions at infinity of the system. The novelty lies in the fact that the principal and antiprincipal solutions at infinity may belong to two different genera of conjoined bases, i.e., the eventual image of their first components is not required to be the same as in the known literature. For this purpose we extend the theory of genera of conjoined bases, which was recently initiated by the authors. We show that the orthogonal projector representing each genus of conjoined bases satisfies a symmetric Riccati matrix differential equation. This result then leads to an exact description of the structure of the set of all genera, in particular it forms a complete lattice. We also provide several examples, which illustrate our new theory.
Projection-Based linear constrained estimation and fusion over long-haul links
Energy Technology Data Exchange (ETDEWEB)
Rao, Nageswara S [ORNL
2016-01-01
We study estimation and fusion with linear dynamics in long-haul sensor networks, wherein a number of sensors are remotely deployed over a large geographical area for performing tasks such as target tracking, and a remote fusion center serves to combine the information provided by these sensors in order to improve the overall tracking accuracy. In reality, the motion of a dynamic target might be subject to certain constraints, for instance, those defined by a road network. We explore the accuracy performance of projection-based constrained estimation and fusion methods that is affected by information loss over the long-haul links. We use an example to compare the tracking errors under various implementations of centralized and distributed projection-based estimation and fusion methods and demonstrate the effectiveness of using projection-based methods in these settings.
Wang, Zhe; Li, Lizhi; Ni, Weidou; Li, Zheng
2011-01-01
A multivariate dominant factor based non-linearized PLS model is proposed. The intensities of different lines were taken to construct a multivariate dominant factor model, which describes the dominant concentration information of the measured species. In constructing such a multivariate model, non-linear transformation of multi characteristic line intensities according to the physical mechanisms of lased induced plasma spectrum were made, combined with linear-correlation-based PLS method, to model the nonlinear self-absorption and inter-element interference effects. This enables the linear PLS method to describe non-linear relationship more accurately and provides the statistics-based PLS method with physical backgrounds. Moreover, a secondary PLS is applied utilizing the whole spectra information to further correct the model results. Experiments were conducted using standard brass samples. Taylor expansion was applied to make the nonlinear transformation to describe the self-absorption effect of Cu. Then, li...
The modernization paradigm based on monistic multi-linear theory: a response to some comments
Institute of Scientific and Technical Information of China (English)
Dong Zhenghua
2006-01-01
Long before 1979,Chinese historical research had been dominated by the theory of "the Five Modes of Production",according to which the whole Chinese history as well as the other parts of the world had been developed from the first MOD to the last one by one.The modernization theories prevailed during the 1950s and the 1960s,bringing about another uni-linear model of historical changes.For example,W.W.Rostow designed a five-stage process as a universal frame work of economic development,based on which each society could find its position in this uni-line.The task of the less developed societies is just to introduce modernity from the modernized societies so that they can make some developments.Thus modernization is a uni-direction movement as well as a uni-linear process.After 1979,modernization as a new paradigm has been accepted by an increasing number of Chinese historians.The increasing depth and breadth of the academic researches have encouraged such an acceptance,but,admittedly,as a new conceptual system that corresponded to the historic breakthrough and the new direction towards modernization in China.This acceptance also showed the "crisis of paradigm",that is,the contradiction between the new themes and the old ones that had dominated Chinese humanities and social sciences.The modernization paradigm based on monistic multi-linear theory considers modernization as a unique breakthrough in history,a great transformation around the whole world,and a historical process that does not have a given ultimate aim and value but different models and routes.The monistic multi-finear theory on historical development is open and all-embracing in historical studies.A variety of historical paradigms is favorable to prosperity of Chinese history.
Energy Technology Data Exchange (ETDEWEB)
Hauptman, Jason S., E-mail: jhauptman@mednet.ucla.edu [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Tenn, Steven; Agazaryan, Nzhde; Selch, Michael [Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); De Salles, Antonio A.F. [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States)
2012-06-01
Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be
International Nuclear Information System (INIS)
Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be
SPATIAL ANALYSIS BASED HEALTH AND SAFETY RISK ASSESSMENT FOR LINEAR CONSTRUCTION PROJECTS
Directory of Open Access Journals (Sweden)
H. Atay
2012-07-01
Full Text Available This paper describes an on-going study that aims to develop a web-based spatial decision support system model for proactive health and safety management in linear construction projects. Currently, health and safety management is usually performed reactively instead of proactive management since hazard identification and risk assessment is mostly performed on paper based documents that are not effectively used at site. This leads to accidents and fatalities at construction sites. The proposed system automatically identifies the spatial risks according to the topographic and layout map of the site, project specification and health and safety regulations by means of spatial analysis. It enables the workers and management personnel to access the possible hazards and thematic risk map of any portion of the construction site for linear projects. Finally, the described approach provides the proposed mitigation measures for the identified hazards. The developed system is expected to raise awareness in H&S among workers and engineers, and increase participation of workers to health and safety management.
Spatial Analysis Based Health and Safety Risk Assessment for Linear Construction Projects
Atay, H.; Toz, G.
2012-07-01
This paper describes an on-going study that aims to develop a web-based spatial decision support system model for proactive health and safety management in linear construction projects. Currently, health and safety management is usually performed reactively instead of proactive management since hazard identification and risk assessment is mostly performed on paper based documents that are not effectively used at site. This leads to accidents and fatalities at construction sites. The proposed system automatically identifies the spatial risks according to the topographic and layout map of the site, project specification and health and safety regulations by means of spatial analysis. It enables the workers and management personnel to access the possible hazards and thematic risk map of any portion of the construction site for linear projects. Finally, the described approach provides the proposed mitigation measures for the identified hazards. The developed system is expected to raise awareness in H&S among workers and engineers, and increase participation of workers to health and safety management.
Onishi, Akinari; Natsume, Kiyohisa
2013-01-01
This paper demonstrates a better classification performance of an ensemble classifier using a regularized linear discriminant analysis (LDA) for P300-based brain-computer interface (BCI). The ensemble classifier with an LDA is sensitive to the lack of training data because covariance matrices are estimated imprecisely. One of the solution against the lack of training data is to employ a regularized LDA. Thus we employed the regularized LDA for the ensemble classifier of the P300-based BCI. The principal component analysis (PCA) was used for the dimension reduction. As a result, an ensemble regularized LDA classifier showed significantly better classification performance than an ensemble un-regularized LDA classifier. Therefore the proposed ensemble regularized LDA classifier is robust against the lack of training data.
Non linear dynamics of memristor based 3rd order oscillatory system
Talukdar, Abdul Hafiz Ibne
2012-07-23
In this paper, we report for the first time the nonlinear dynamics of three memristor based phase shift oscillators, and consider them as a plausible solution for the realization of parametric oscillation as an autonomous linear time variant system. Sustained oscillation is reported through oscillating resistance while time dependent poles are present. The memristor based phase shift oscillator is explored further by varying the parameters so as to present the resistance of the memristor as a time varying parameter, thus potentially eliminating the need of external periodic forces in order for it to oscillate. Multi memristors, used simultaneously with similar and different parameters, are investigated in this paper. Mathematical formulas for analyzing such oscillators are verified with simulation results and are found to be in good agreement. © 2011 Elsevier Ltd. All rights reserved.
A Versatile Multiple Target Detection System Based on DNA Nano-assembled Linear FRET Arrays.
Li, Yansheng; Du, Hongwu; Wang, Wenqian; Zhang, Peixun; Xu, Liping; Wen, Yongqiang; Zhang, Xueji
2016-05-27
DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as inconstant programmable templates for assembly of biosensors. In this paper, a versatile, scalable and multiplex detection system is reported based on an extending fluorescent resonance energy transfer (FRET) cascades on a linear DNA assemblies. Seven combinations of three kinds of targets are successfully detected through the changes of fluorescence spectra because of the three-steps FRET or non-FRET continuity mechanisms. This nano-assembled FRET-based nanowire is extremely significant for the development of rapid, simple and sensitive detection system. The method used here could be extended to a general platform for multiplex detection through more-step FRET process.
Order Statistics Based List Decoding Techniques for Linear Binary Block Codes
Alnawayseh, Saif E A
2011-01-01
The order statistics based list decoding techniques for linear binary block codes of small to medium block length are investigated. The construction of the list of the test error patterns is considered. The original order statistics decoding is generalized by assuming segmentation of the most reliable independent positions of the received bits. The segmentation is shown to overcome several drawbacks of the original order statistics decoding. The complexity of the order statistics based decoding is further reduced by assuming a partial ordering of the received bits in order to avoid the complex Gauss elimination. The probability of the test error patterns in the decoding list is derived. The bit error rate performance and the decoding complexity trade-off of the proposed decoding algorithms is studied by computer simulations. Numerical examples show that, in some cases, the proposed decoding schemes are superior to the original order statistics decoding in terms of both the bit error rate performance as well a...
The Omega Counter, a Frequency Counter Based on the Linear Regression
Rubiola, E; Bourgeois, P -Y; Vernotte, F
2015-01-01
This article introduces the {\\Omega} counter, a frequency counter -- or a frequency-to-digital converter, in a different jargon -- based on the Linear Regression (LR) algorithm on time stamps. We discuss the noise of the electronics. We derive the statistical properties of the {\\Omega} counter on rigorous mathematical basis, including the weighted measure and the frequency response. We describe an implementation based on a SoC, under test in our laboratory, and we compare the {\\Omega} counter to the traditional {\\Pi} and {\\Lambda} counters. The LR exhibits optimum rejection of white phase noise, superior to that of the {\\Pi} and {\\Lambda} counters. White noise is the major practical problem of wideband digital electronics, both in the instrument internal circuits and in the fast processes which we may want to measure. The {\\Omega} counter finds a natural application in the measurement of the Parabolic Variance, described in the companion article arXiv:1506.00687 [physics.data-an].
Rejection of Linear FM Interference in DSSS System Based on Fractional Fourier Transform
Institute of Scientific and Technical Information of China (English)
QI Lin; TAO Ran; ZHOU Si-yong
2005-01-01
A new method for the rejection of linear frequency modulation (LFM) interference in direct sequence spread spectrum (DSSS) system based on the fractional Fourier transform is proposed, and the configuration of the receiver with an interference exciser is also presented. Based on the property that the fractional Fourier transform of a signal is equivalent to rotating the signal in the time-frequency plane, the received signal is transform into a certain fractional Fourier domain, this transform will result in the least spectrum overlap between the signal and interference. Then, a narrowband filter is exploited to extract most of the interference energy. The performance analyses show that remarkable improvements in signal-to-noise ratio (SNR) and biterror-ratio (BER) are obtained.
Research of robust adaptive trajectory linearization control based on T-S fuzzy system
Institute of Scientific and Technical Information of China (English)
Jiang Changsheng; Zhang Chunyu; Zhu Liang
2008-01-01
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
Projection-Based Linear Constrained Estimation and Fusion over Long-Haul Links
Energy Technology Data Exchange (ETDEWEB)
Rao, Nageswara S [ORNL
2016-01-01
In this work, we study estimation and fusion with linear dynamics in long-haul sensor networks, wherein a number of sensors are remotely deployed over a large geographical area for performing tasks such as target tracking, and a remote fusion center serves to combine the information provided by these sensors in order to improve the overall tracking accuracy. In reality, the motion of a dynamic target might be subject to certain constraints, for instance, those defined by a road network. We explore the accuracy performance of projection-based constrained estimation and fusion methods that is affected by information loss over the long-haul links. We use a tracking example to compare the tracking errors under various implementations of centralized and distributed projection-based estimation and fusion methods.
CONSTRUCTION OF PROXY BLIND SIGNATURE SCHEME BASED ON MULTI-LINEAR TRANSFORM
Institute of Scientific and Technical Information of China (English)
Zhao Zemao; Liu Fengyu
2004-01-01
A general method of constructing proxy blind signature is proposed based on multilinear transform. Based on this method, the four proxy blind signature schemes are correspondently generated with four different signature equations, and each of them has four forms of variations of signs. Hence there are sixteen signatures in all, and all of them are proxy stronglyblind signature schemes. Furthermore, the two degenerated situations of multi-linear transform are discussed. Their corresponding proxy blind signature schemes are shown, too. But some schemes come from one of these degenerate situations are proxy weakly-blind signature scheme.The security for proposed scheme is analyzed in details. The results indicate that these signature schemes have many good properties such as unforgeability, distinguish-ability of proxy signature,non-repudiation and extensive value of application etc.
PAPR reduction in FBMC using an ACE-based linear programming optimization
van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan
2014-12-01
This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as
Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E
2016-08-23
Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings.
Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E
2016-08-23
Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings. PMID:27406029
S. Sorace; Terenzi G.
2001-01-01
Awarded Munro Prize 2001 jointly with “Non-linear dynamic modelling and design procedure of FV spring-dampers for base isolation”, (S. Sorace, G. Terenzi). Engineering Structures, Elsevier Science Ltd, Oxford, 23(12), pp. 1556-1567.
3-D ultrasonic strain imaging based on a linear scanning system.
Huang, Qinghua; Xie, Bo; Ye, Pengfei; Chen, Zhaohong
2015-02-01
This paper introduces a 3-D strain imaging method based on a freehand linear scanning mode. We designed a linear sliding track with a position sensor and a height-adjustable holder to constrain the movement of an ultrasound probe in a freehand manner. When moving the probe along the sliding track, the corresponding positional measures for the probe are transmitted via a wireless communication module based on Bluetooth in real time. In a single examination, the probe is scanned in two sweeps in which the height of the probe is adjusted by the holder to collect the pre- and postcompression radio-frequency echoes, respectively. To generate a 3-D strain image, a volume cubic in which the voxels denote relative strains for tissues is defined according to the range of the two sweeps. With respect to the post-compression frames, several slices in the volume are determined and the pre-compression frames are re-sampled to precisely correspond to the post-compression frames. Thereby, a strain estimation method based on minimizing a cost function using dynamic programming is used to obtain the 2-D strain image for each pair of frames from the re-sampled pre-compression sweep and the post-compression sweep, respectively. A software system is developed for volume reconstruction, visualization, and measurement of the 3-D strain images. The experimental results show that high-quality 3-D strain images of phantom and human tissues can be generated by the proposed method, indicating that the proposed system can be applied for real clinical applications (e.g., musculoskeletal assessments).
Directory of Open Access Journals (Sweden)
Edward D. Lemaire, PhD
2013-02-01
Full Text Available A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.
Fahmy, Ahmed S.; Gabr, Refaat E.; Heberlein, Keith; Hu, Xiaoping P.
2006-01-01
Image reconstruction from nonuniformly sampled spatial frequency domain data is an important problem that arises in computed imaging. Current reconstruction techniques suffer from limitations in their model and implementation. In this paper, we present a new reconstruction method that is based on solving a system of linear equations using an efficient iterative approach. Image pixel intensities are related to the measured frequency domain data through a set of linear equations. Although the system matrix is too dense and large to solve by direct inversion in practice, a simple orthogonal transformation to the rows of this matrix is applied to convert the matrix into a sparse one up to a certain chosen level of energy preservation. The transformed system is subsequently solved using the conjugate gradient method. This method is applied to reconstruct images of a numerical phantom as well as magnetic resonance images from experimental spiral imaging data. The results support the theory and demonstrate that the computational load of this method is similar to that of standard gridding, illustrating its practical utility. PMID:23165034
Handheld Thermoacoustic Scanning System Based on a Linear-array Transducer.
Ji, Zhong; Ding, Wenzheng; Ye, Fanghao; Lou, Cunguang
2016-07-01
To receive the information necessary for imaging, traditional microwave-induced thermoacoustic imaging systems (MITISs) use a type of circular-scanning mode using single or arc detectors. However, the use of MITISs for body scanning is complicated by restrictions in space and imaging time. A linear-array detector, the most widely used transducer in medical ultrasound imaging systems for body scanning, is a possible alternative to MITISs for scanning biological tissues, such as from the breast or limbs. In this paper, a handheld MITIS, based on a linear-array detector and a multiple data acquisition system, is described, and the capacity of the system is explored experimentally. First, the vertical and lateral resolution of the system is discussed. Next, real-time imaging of a moving object, obtained with an image capture rate of 20 frame/s, is described. Finally, a phantom experiment is detailed, investigating the overall imaging capability. The results show that this system achieves rapid scanning with a large field of view. The system has the obvious advantages of being handheld, not using coupled fluids, and achieving real-time imaging with a large field of view, which make this MITIS more suitable for clinical applications.
Canepa, Edward S.
2013-01-01
Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. We use this fact to pose the problem of detecting spoofing cyber-attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber-attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © 2013 IEEE.
A substrate-modified CPW-based linear microwave phase shifter
Kulandhaisamy, Indhumathi; Kumar, Shrivastav Arun; Kanagasabai, Malathi
2015-10-01
A novel method for achieving linear phase shift is proposed over the frequency range of 2 - 6 GHz. Dielectric characterization of FR4 substrate interfaced with air as well as water produces the phase shift. The substrate property is modified by introducing a plain rectangular packet and W-shaped packet within the FR4 substrate. The overall dimension of the proposed structure is 30 × 60 mm2. Across the entire proposed frequency range, the reflection coefficient is less than -10 dB. The proposed coplanar waveguide with water- and air-stacked FR4 substrate is simulated, fabricated, and measured for its linear phase shifting characteristics analyzed in ISM 2.45, 3.3, and 5.8 GHz bands. The analysis over the entire band depicts that the differential shift in phase is directly proportional to the effective dielectric constant of the material used. The design will be more useful in automotive anti-collision radars in military, cellular base stations, and satellite communications.
Sample based 3D face reconstruction from a single frontal image by adaptive locally linear embedding
Institute of Scientific and Technical Information of China (English)
ZHANG Jian; ZHUANG Yue-ting
2007-01-01
In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.
A Solution Methodology of Bi-Level Linear Programming Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
M. S. Osman
2009-01-01
Full Text Available Problem statement: We deal with the bi-level linear programming problem. A bi-level programming problem is formulated for a problem in which two Decision-Makers (DMs make decisions successively. Approach: In this research we studied and designs a Genetic Algorithm (GA of Bi-Level Linear Programming Problems (BLPP by constructing the fitness function of the upper-level programming problems based on the definition of the feasible degree. This GA avoids the use of penalty function to deal with the constraints, by changing the randomly generated initial population into an initial population satisfying the constraints in order to improve the ability of the GA to deal with the constraints. Also we designed software to solve this problem. A comparative study between proposed method and previous methods through numerical results of some examples. Finally, parametric information of the GA was introduced. Results: Results of the study showed that the proposed method is feasible and more efficient to solve (BLPP, also there exist package to solve (BLPP problem. Conclusion: This GA avoids the use of penalty function to deal with the constraints, by changing the randomly generated initial population into an initial population satisfying the constraints in order to improve the ability of the GA to deal with the constraints.
Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan
2013-01-01
A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness. PMID:23516082
A novel impact identification algorithm based on a linear approximation with maximum entropy
Sanchez, N.; Meruane, V.; Ortiz-Bernardin, A.
2016-09-01
This article presents a novel impact identification algorithm that uses a linear approximation handled by a statistical inference model based on the maximum-entropy principle, termed linear approximation with maximum entropy (LME). Unlike other regression algorithms as artificial neural networks (ANNs) and support vector machines, the proposed algorithm requires only parameter to be selected and the impact is identified after solving a convex optimization problem that has a unique solution. In addition, with LME data is processed in a period of time that is comparable to the one of other algorithms. The performance of the proposed methodology is validated by considering an experimental aluminum plate. Time varying strain data is measured using four piezoceramic sensors bonded to the plate. To demonstrate the potential of the proposed approach over existing ones, results obtained via LME are compared with those of ANN and least square support vector machines. The results demonstrate that with a low number of sensors it is possible to accurately locate and quantify impacts on a structure and that LME outperforms other impact identification algorithms.
Development of photoelectric balanced car based on the linear CCD sensor
Directory of Open Access Journals (Sweden)
Wang Feng
2016-01-01
Full Text Available The smart car is designed based on Freescale’s MC9S12XS128 and a linear CCD camera. The linear CCD collects the road information and sends it to MCU through the operational amplifier. The PID control algorithm, the proportional–integral–derivative control algorithm, is adopted synthetically to control the smart car. First, the smart car’s inclination and angular velocity are detect through the accelerometers and gyro sensors, then the PD control algorithm, the proportional–derivative control algorithm, is employed to make the smart car have the ability of two-wheeled self-balancing. Second, the speed of wheel obtained by the encoder is fed back to the MCU by way of pulse signal, then the PI control algorithm, the proportional–integral control algorithm, is employed to make the speed of smart car reach the set point in the shortest possible time and stabilize at the set point. Finally, the PD control algorithm is used to regulate the smart car’s turning angle to make the smart car respond quickly while the smart car is passing the curve path. The smart car can realize the self-balancing control of two wheels and track automatically the black and while lines to march.
Solving systems of linear equations by GPU-based matrix factorization in a Science Ground Segment
Legendre, Maxime; Schmidt, Albrecht; Moussaoui, Saïd; Lammers, Uwe
2013-11-01
Recently, Graphics Cards have been used to offload scientific computations from traditional CPUs for greater efficiency. This paper investigates the adaptation of a real-world linear system solver, which plays a central role in the data processing of the Science Ground Segment of ESA's astrometric Gaia mission. The paper quantifies the resource trade-offs between traditional CPU implementations and modern CUDA based GPU implementations. It also analyses the impact on the pipeline architecture and system development. The investigation starts from both a selected baseline algorithm with a reference implementation and a traditional linear system solver and then explores various modifications to control flow and data layout to achieve higher resource efficiency. It turns out that with the current state of the art, the modifications impact non-technical system attributes. For example, the control flow of the original modified Cholesky transform is modified so that locality of the code and verifiability deteriorate. The maintainability of the system is affected as well. On the system level, users will have to deal with more complex configuration control and testing procedures.
Sharifie, Javad; Lucas, Caro; Araabi, Babak N.
2006-06-01
Disturbance storm time index (Dst) is nonlinearly related to solar wind data. In this paper, Dst past values, Dst derivative, past values of southward interplanetary magnetic field, and the square root of dynamic pressure are used as inputs for modeling and prediction of the Dst index, especially during extreme events. The geoeffective solar wind parameters are selected depending on the physical background of the geomagnetic storm procedure and physical models. A locally linear neurofuzzy model with a progressive tree construction learning algorithm is applied as a powerful tool for nonlinear modeling of Dst index on the basis of its past values and solar wind parameters. The result for modeling and prediction of several intense storms shows that the geomagnetic disturbance Dst index based on geoeffective parameters is a nonlinear model that could be considered as the nonlinear extension of empirical linear physical models. The method is applied for prediction of some geomagnetic storms. Obtained results show that using the proposed method, the predicted values of several extreme storms are highly correlated with observed values. In addition, prediction of the main phase of many storms shows a good match with observed data, which constitutes an appropriate approach for solar storm alerting to vulnerable industries.
Canepa, Edward S.
2013-09-01
Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper argues that agent-based simulation can be used as a way for testing Kansei Engineering methods which deal with the human reaction from sensory to mental state, that is, sensitivity, sense,sensibility, feeling, esthetics, emotion affection and intuition. A new fuzzy linear quantification method is tested in an artificial world by agent-based modeling and simulations, and the performance of the fuzzy linear method is compared with that of a genetic algorithm. The simulations can expand people's imagination and enhance people's intuition that the new fuzzy linear quantification method is effective.
Nearly best linear estimates of logistic parameters based on complete ordered statistics
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Deals with the determination of the nearly best linear estimates of location and scale parameters of a logistic population, when both parameters are unknown, by introducing Bloms semi-empirical α, β-correction′into the asymptotic mean and covariance formulae with complete and ordered samples taken into consideration and various nearly best linear estimates established and points out the high efficiency of these estimators relative to the best linear unbiased estimators (BLUEs) and other linear estimators makes them useful in practice.
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
General polynomial factorization-based design of sparse periodic linear arrays.
Mitra, Sanjit K; Mondal, Kalyan; Tchobanou, Mikhail K; Dolecek, Gordana Jovanovic
2010-09-01
We have developed several methods of designing sparse periodic arrays based upon the polynomial factorization method. In these methods, transmit and receive aperture polynomials are selected such that their product results in a polynomial representing the desired combined transmit/receive (T/R) effective aperture function. A desired combined T/R effective aperture is simply an aperture with an appropriate width exhibiting a spectrum that corresponds to the desired two-way radiation pattern. At least one of the two aperture functions that constitute the combined T/R effective aperture function will be a sparse polynomial. A measure of sparsity of the designed array is defined in terms of the element reduction factor. We show that elements of a linear array can be reduced with varying degrees of beam mainlobe width to sidelobe reduction properties.
Wen, Qiang; Lian, Su-Jie; Zhang, Chen; Zhao, Hui; Zhao, Yu; Wang, Gao; Xu, De-Gang; Yao, Jian-Quan
2014-03-01
In order to obtain the different position temperature changes in the process of explosive casting accurate, stability and comprehensive, we designed the temperature monitoring system based on fiber Bragg grating spectral shift. Through the fiberoptic network, the system can monitor the different point temperature of melt-cast explosive real-time. According to the function of linear frequency shift of fiber Bragg grating wavelength with the grating of temperature, we get the temperature of different positions. Four channels share a broadband light source with a coupler. The Bragg wavelengths of the 5 gratings of each fiber are separated from each other. Using the gratings designed, spliced and packaged by our own, we can obtain temperature data through the demodulator. The temperature data was processed by the Origin to draw diagram time-temperature curve. The results show that the measured temperature data of the fiber Bragg grating can meet the requirements of experiment.
A Study on Missile Reentry Control Based on the Method of Feedback Linearization
Institute of Scientific and Technical Information of China (English)
LIU Yu-xi; ZHOU Jun; ZHOU Feng-qi
2007-01-01
In the process of missile large attack angle reentry, there exist nonlinear, strong coupling uncertainty and multiinput-multi-output (MIMO) in the movement equations, so the traditional small disturbance faces difficulties. For such situations, the method of feedback linearization is adopted to control the complex system, and the control method based on the fuzzy adaptive nonlinear dynamic inversion decoupling control of missile is proposed in the paper. According to the principle of time-scale separation, the system is separated into fast loop and slow loop, the method of dynamic inversion is applied to them, and the method of adaptive fuzzy approach is adopted to compensate for the uncertainty of the fast loop.The simulation results denote the control method in the paper has a better tracing characteristic and robustness.
Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover,the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.
Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation
Institute of Scientific and Technical Information of China (English)
XIANG YongZhe; WANG Na; ZHANG Ji; LI Kun; ZHANG ZhongWei; LIN HongHui; YU XiaoQi
2009-01-01
A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction be-tween 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod- odecane.High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover, the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA con-densation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.
Lan, Fujun; Bayraksan, Güzin; Lansey, Kevin
2016-03-01
A regional water supply system design problem that determines pipe and pump design parameters and water flows over a multi-year planning horizon is considered. A non-convex nonlinear model is formulated and solved by a branch-and-reduce global optimization approach. The lower bounding problem is constructed via a three-pronged effort that involves transforming the space of certain decision variables, polyhedral outer approximations, and the Reformulation Linearization Technique (RLT). Range reduction techniques are employed systematically to speed up convergence. Computational results demonstrate the efficiency of the proposed algorithm; in particular, the critical role range reduction techniques could play in RLT based branch-and-bound methods. Results also indicate using reclaimed water not only saves freshwater sources but is also a cost-effective non-potable water source in arid regions. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2015.1016508.
Directory of Open Access Journals (Sweden)
Velislava Spasova
2016-06-01
Full Text Available The paper presents a novel fast, real-time and privacy protecting algorithm for fall detection based on geometric properties of the human silhouette and a linear support vector machine. The algorithm uses infrared and visible light imagery in order to detect the human. A simple real-time human silhouette extraction algorithm has been developed and used to extract features for training of the support vector machine. The achieved sensitivity and specificity of the proposed approach are over 97% which match state of the art research in the area of fall detection. The developed solution uses low-cost hardware components and open source software library and is suitable for usage in assistive systems for the home or nursing homes.
Institute of Scientific and Technical Information of China (English)
CHEN Ning; ZHU Jie
2007-01-01
To make speech watermarking achieve both copyright protection and integrity verification, a novel multipurpose speech watermarking algorithm based on the multistage vector quantization (MSVQ) of linear prediction coefficients (LPCs) is presented in this article. The property of natural speech that the vector quantization (VQ) indices of the LPCs amongst neigh- boring frames tend to be very similar is utilized to embed the robust watermark in the indices of the first-stage VQ (VQ1). Then, the semi-fragile watermark is embedded in the indices of the second-stage VQ (VQ2) with index constrained VQ encoding scheme. Both the robust watermark and the semi-fragile water- mark can be extracted without host speech. Simulation results verify the effectiveness of the proposed algorithm in terms of robustness and semi-fragility.
Cooperation and Game between Producers and Managers Based on the Linear Contract
Directory of Open Access Journals (Sweden)
Xianglan Wan
2014-01-01
Full Text Available There is a cooperative game between the manager and the producer in the enterprise. In this paper, we firstly construct the cooperative game model based on the principal-agent theory. Under the conditions of Nash equilibrium and linear contract, the paper calculates the net income of the client, the total risk and welfare of the agents when the agents have the cooperation or not. The result shows that the correlation coefficient between their output has a direct relationship with the cooperation. Secondly, according to the power distribution theory another model is developed. We analyze the game process and critical state. Furthermore, we deduce the share proportion of the profit and the control size when they have the cooperation. Finally, we summarize all the research achievements, which are of universal significance for the practical cooperation game problems.
Iwaoka, Nobuyuki; Hagita, Katsumi; Takano, Hiroshi
2014-03-01
On the basis of relaxation mode analysis (RMA), we present an efficient method to estimate the linear viscoelasticity of polymer melts in a molecular dynamics (MD) simulation. Slow relaxation phenomena appeared in polymer melts cause a problem that a calculation of the stress relaxation function in MD simulations, especially in the terminal time region, requires large computational efforts. Relaxation mode analysis is a method that systematically extracts slow relaxation modes and rates of the polymer chain from the time correlation of its conformations. We show the computational cost may be drastically reduced by combining a direct calculation of the stress relaxation function based on the Green-Kubo formula with the relaxation rates spectra estimated by RMA. N. I. acknowledges the Graduate School Doctoral Student Aid Program from Keio University.
Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration
Directory of Open Access Journals (Sweden)
Chen Wenfeng
2016-08-01
Full Text Available This study aims to enable steady and speedy acquisition of Inverse Synthetic Aperture Radar (ISAR images using sparse echo data. To this end, a Multiple Measurement Vectors (MMV ISAR echo model is studied. This model is then combined with the Compressive Sensing (CS theory to realize a class of MMV fast ISAR imaging algorithms based on the Linearized Bregman Iteration (LBI. The algorithms involve four methods, and the iterative framework, application conditions, and relationship between the four methods are given. The reconstructed performance of the methods, convergence, anti-noise, and selection of regularization parameters are then compared and analyzed comprehensively. Finally, the experimental results are compared with the traditional Single Measurement Vector (SMV ISAR imaging algorithm; this comparison shows that the proposed algorithm delivers an improved imaging quality with a low Signal-to-Noise Ratio (SNR.
Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials
Eiras, Jesus N.; Kundu, Tribikram; Popovics, John S.; Monzó, José; Borrachero, María V.; Payá, Jordi
2016-01-01
Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40×40×160 mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and >95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation.
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. PMID:22370050
Linearly constrained minimax optimization
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems are...
Ahmed, Qasim Zeeshan
2014-04-01
The ever growing demand of higher data rates can now be addressed by exploiting cooperative diversity. This form of diversity has become a fundamental technique for achieving spatial diversity by exploiting the presence of idle users in the network. This has led to new challenges in terms of designing new protocols and detectors for cooperative communications. Among various amplify-and-forward (AF) protocols, the half duplex non-orthogonal amplify-and-forward (NAF) protocol is superior to other AF schemes in terms of error performance and capacity. However, this superiority is achieved at the cost of higher receiver complexity. Furthermore, in order to exploit the full diversity of the system an optimal precoder is required. In this paper, an optimal joint linear transceiver is proposed for the NAF protocol. This transceiver operates on the principles of minimum bit error rate (BER), and is referred as joint bit error rate (JBER) detector. The BER performance of JBER detector is superior to all the proposed linear detectors such as channel inversion, the maximal ratio combining, the biased maximum likelihood detectors, and the minimum mean square error. The proposed transceiver also outperforms previous precoders designed for the NAF protocol. © 2002-2012 IEEE.
Li, Wangnan; Cai, Hongneng; Li, Chao
2014-11-01
This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.
Abuturab, Muhammad Rafiq
2015-11-01
A novel gyrator wavelet transform based non-linear multiple single channel information fusion and authentication is introduced. In this technique, each user channel is normalized, phase encoded, and modulated by random phase function, and then multiplexed into a single channel user ciphertext. Now, the secret channel of corresponding user is phase encoded, modulated by random phase function, and gyrator transformed, and then multiplexed into a single channel secret ciphertext. The user ciphertext and secret ciphertext are multiplied to get a single channel multiplex image and then inverse gyrator transformed. The resultant spectrum is phase- and amplitude-truncated to obtain the encrypted image and the asymmetric key, respectively. The encrypted image is a single-level 2-D discrete wavelet transformed. The information is decomposed into LL, HL, LH, and HH sub-bands. This process is repeated to obtain three sets of four sub-bands of three different images. Next, the individual sub-band of each encrypted image is fused to get four fused sub-bands. Finally, the four fused sub-bands are inverse single-level 2-D discrete wavelet transformed to obtain final encrypted image. This is the main advantage for the proposed system: using multiple individual decryption keys (authentication key, asymmetric key, secret keys, and sub-band keys) for each user not only expands the key spaces but also supplies non-linear keys to control the system security. Moreover, the orders of gyrator transform provide extra degrees of freedom. The theoretical analysis and numerical simulation results support the proposed method.
International Nuclear Information System (INIS)
As an advanced measurement technique of non-radiant, non-intrusive, rapid response, and low cost, the electrical tomography (ET) technique has developed rapidly in recent decades. The ET imaging algorithm plays an important role in the ET imaging process. Linear back projection (LBP) is the most used ET algorithm due to its advantages of dynamic imaging process, real-time response, and easy realization. But the LBP algorithm is of low spatial resolution due to the natural ‘soft field’ effect and ‘ill-posed solution’ problems; thus its applicable ranges are greatly limited. In this paper, an original data decomposition method is proposed, and every ET measuring data are decomposed into two independent new data based on the positive and negative sensing areas of the measuring data. Consequently, the number of total measuring data is extended to twice as many as the number of the original data, thus effectively reducing the ‘ill-posed solution’. On the other hand, an index to measure the ‘soft field’ effect is proposed. The index shows that the decomposed data can distinguish between different contributions of various units (pixels) for any ET measuring data, and can efficiently reduce the ‘soft field’ effect of the ET imaging process. In light of the data decomposition method, a new linear back projection algorithm is proposed to improve the spatial resolution of the ET image. A series of simulations and experiments are applied to validate the proposed algorithm by the real-time performances and the progress of spatial resolutions. (paper)
A Non-linear Scaling Algorithm Based on chirp-z Transform for Squint Mode FMCW-SAR
Directory of Open Access Journals (Sweden)
Yu Bin-bin
2012-03-01
Full Text Available A non-linear scaling chirp-z imaging algorithm for squint mode Frequency Modulated Continuous Wave Synthetic Aperture Radar (FMCW-SAR is presented to solve the problem of the focus accuracy decline. Based on the non-linear characteristics in range direction for the echo signal in Doppler domain, a non-linear modulated signal is introduced to perform a non-linear scaling based on chirp-z transform. Then the error due to range compression and range migration correction can be reduced, therefore the range resolution of radar image is improved. By using the imaging algorithm proposed, the imaging performances for point targets, compared with that from the original chirp-z algorithm, are demonstrated to be improved in range resolution and image contrast, and to be maintained the same in azimuth resolution.
The Static Stiffness Linear Regression of Parallel Mechanism Based on the Orthogonal Experiment
Wang-Nan; Zhao-Cheng Kang; Gao-Peng; Pang-Bo; Zhou-Shasha
2013-01-01
Using the orthogonal experimental method, we can get the linear regression model of about parallel mechanism stiffness. Selecting four factors three levels of orthogonal experiment method, in ANSYS-workbench to space in third rotation 3-SPS/S parallel mechanism for static stiffness analysis, we have won nine of the data of the experiments, the application of the MATLAB software to experimental data is linear regression, which can get the static stiffness linear regression of parallel mechanis...
The Ω Counter, a Frequency Counter Based on the Linear Regression.
Rubiola, Enrico; Lenczner, Michel; Bourgeois, Pierre-Yves; Vernotte, Francois
2016-07-01
This paper introduces the Ω counter, a frequency counter-i.e., a frequency-to-digital converter-based on the linear regression (LR) algorithm on time stamps. We discuss the noise of the electronics. We derive the statistical properties of the Ω counter on rigorous mathematical basis, including the weighted measure and the frequency response. We describe an implementation based on a system on chip, under test in our laboratory, and we compare the Ω counter to the traditional Π and Λ counters. The LR exhibits the optimum rejection of white phase noise, superior to that of the Π and Λ counters. White noise is the major practical problem of wideband digital electronics, both in the instrument internal circuits and in the fast processes, which we may want to measure. With a measurement time τ , the variance is proportional to 1/τ(2) for the Π counter, and to 1/τ(3) for both the Λ and Ω counters. However, the Ω counter has the smallest possible variance, 1.25 dB smaller than that of the Λ counter. The Ω counter finds a natural application in the measurement of the parabolic variance, described in the companion article in this Journal [vol. 63 no. 4 pp. 611-623, April 2016 (Special Issue on the 50th Anniversary of the Allan Variance), DOI 10.1109/TUFFC.2015.2499325]. PMID:27244731
Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons
Directory of Open Access Journals (Sweden)
Samuel L. Nogueira
2014-01-01
Full Text Available In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF to improve the performance of inertial measurement units (IMUs based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank are not taken into account in other link position estimation (e.g., the foot. In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.
A pseudorandom pink noise for the computer-based measurements of linear responses
Kinugawa, Tohru; Sakurai, Katsumi; Mitsui, Takahisa
1998-07-01
We propose a nonbinary pseudorandom sequence for the measurement of linear responses. Compared with a maximal length shift register sequence (m sequence), this sequence is more suitable for digital processing based on computers; with the use of discrete Fourier transforms, the response functions are reproduced without approximations from digitally sampled data because the input power spectrum is pink, i.e., completely flat in a given frequency range and 0 otherwise. In practice, the new sequence is simply the sum of harmonics with arbitrary phases and is produced readily with digital wave form generators. For reducing the peak power of this sequence, the amplitude distribution is better to be bimodal rather than Gaussian. For demonstrating its feasibility with common digital hardware, the magnetic resonance of Rb atoms in a sub-MHz region was measured successfully. With the use of the fast Fourier transform algorithm, our software task was only 0.4% of that for the cross-correlational calculation based on an m sequence.
Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei
2016-06-01
A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s. PMID:27370479
A repetitive long-pulse power generator based on pulse forming network and linear transformer driver
Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei
2016-06-01
A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ˜50 ns and a flat top of ˜100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ˜560 kV, output current amplitude of ˜10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 104 pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.
Face Biometrics Based on Principal Component Analysis and Linear Discriminant Analysis
Directory of Open Access Journals (Sweden)
Lih H. Chan
2010-01-01
Full Text Available Problem statement: In facial biometrics, face features are used as the required human traits for automatic recognition. Feature extracted from face images are significant for face biometrics system performance. Approach: In this thesis, a framework of facial biometric was designed based on two subspace methods i.e., Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. First, PCA is used for dimension reduction, where original face images are projected into lower-dimensional face representations. Second, LDA was proposed to provide a solution of better discriminant. Both PCA and LDA features were presented to Euclidean distance measurement which is conveniently used as a benchmark. The algorithms were evaluated in face identification and verification using a standard face database-AT and T and a locally collected database-CBE. Each database consists of 400 images and 320 images respectively. Results: LDA-based methods outperform PCA for both face identification and verification. For face identification, PCA achieves accuracy of 91.9% (AT and T and 76.7% (CBE while LDA 94.2% (AT and T and 83.1% (CBE. For face verification, PCA achieves Equal Error Rate (EER of 1.15% (AT and T, 7.3% (CBE while LDA 0.78% (AT and T and 5.81% (CBE. Conclusion/Recommendations: This study had proved that, when given sufficient training samples, LDA is able to provide better discriminant ability in feature extraction for face biometrics.
A Multi-TeV Linear Collider Based on CLIC Technology CLIC Conceptual Design Report
Burrows, P; Draper, M; Garvey, T; Lebrun, P; Peach, K; Phinney, N; Schmickler, H; Schulte, D; Toge, N
2012-01-01
This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from ...
Linear VSS and Distributed Commitments Based on Secret Sharing and Pairwise Checks
DEFF Research Database (Denmark)
Fehr, Serge; Maurer, Ueli M.
2002-01-01
. VSS and DC are main building blocks for unconditional secure multi-party computation protocols. This general approach covers all known linear VSS and DC schemes. The main theorem states that the security of a scheme is equivalent to a pure linear-algebra condition on the linear mappings (e.......g. described as matrices and vectors) describing the scheme. The security of all known schemes follows as corollaries whose proofs are pure linear-algebra arguments, in contrast to some hybrid arguments used in the literature. Our approach is demonstrated for the CDM DC scheme, which we generalize to be secure...
Linearization of Mach-Zehnder modulator using microring-based all-pass filter
Institute of Scientific and Technical Information of China (English)
Jianyi Yang; Fan Wang; Xiaoqing Jiang; Hongchang Qu; Yaming Wu; Minghua Wang; Yuelin Wang
2005-01-01
@@ By applying the microring resonator to the Mach-Zehnder (MZ) optical modulator and employing the super-linear phase change characteristic of the all-pass filter, the sublinear modulation curve of the conventional MZ modulator is highly linearized. With properly controlled power coupling between the microring and the arm of the MZ modulator, the third-order distortion can be suppressed. If the transmission coefficient is set between 0.25 and 0.42, the linearity range larger than 90% can be easily achieved. The maximum linearity range is even up to 99.5%.
Forecasting South African Inflation Using Non-Linear Models: A Weighted Loss-Based Evaluation
Pejman Bahramian; Mehmet Balcilar; Rangan Gupta; Kanda, Patrick T.
2014-01-01
The conduct of inflation targeting is heavily dependent on accurate inflation forecasts. Non-linear models have increasingly featured, along with linear counterparts, in the forecasting literature. In this study, we focus on forecasting South African infl ation by means of non-linear models and using a long historical dataset of seasonally-adjusted monthly inflation rates spanning from 1921:02 to 2013:01. For an emerging market economy such as South Africa, non-linearities can be a salient fe...
Forecasting South African Ination Using Non-linear Models: A Weighted Loss-based Evaluation
Pejman Bahramian; Mehmet Balcilar; Rangan Gupta; Kanda, Patrick T.
2014-01-01
The conduct of in ation targeting is heavily dependent on accurate in ation forecasts. Non-linear models have increasingly featured, along with linear counterparts, in the forecasting literature. In this study, we focus on forecasting South African in ation by means of non-linear models and using a long historical dataset of seasonally-adjusted monthly in ation rates spanning from 1921:02 to 2013:01. For an emerging market economy such as South Africa, non-linearities can be a salient feature...
Algorithm and Hardware Aspects of Pre-coding in Massive MIMO Systems
Prabhu, Hemanth; Rodrigues, Joachim; Liu, Liang; Edfors, Ove
2015-01-01
Massive Multiple-Input Multiple-Output (MIMO) systems have been shown to improve both spectral and energy efficiency one or more orders of magnitude by efficiently exploiting the spatial domain. Low-cost RF chains can be employed to reduce the Base Station (BS) cost, however this may require additional baseband processing to handle induced distortions due to the hardware impairments. In this article the reduction of Peak-to-Average power Ratio (PAR) of the transmitted signals and IQ imbalance...
Lin, Shu; Fossorier, Marc
1998-01-01
For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.
Directory of Open Access Journals (Sweden)
Sirin Sait
2011-01-01
Full Text Available Background/Aim. Management of patients with recurrent glioblastoma (GB comprises a therapeutic challenge in neurooncology owing to the aggressive nature of the disease with poor local control despite a combined modality treatment. The majority of cases recur within the highdose radiotherapy field limiting the use of conventional techniques for re-irradiation due to potential toxicity. Stereotactic radiosurgery (SRS offers a viable noninvasive therapeutic option in palliative treatment of recurrent GB as a sophisticated modality with improved setup accuracy allowing the administration of high-dose, precise radiotherapy. The aim of the study was to, we report our experience with single-dose linear accelerator (LINAC based SRS in the management of patients with recurrent GB. Methods. Between 1998 and 2010 a total of 19 patients with recurrent GB were treated using single-dose LINAC-based SRS. The median age was 47 (23-65 years at primary diagnosis. Karnofsky Performance Score was ≥ 70 for all the patients. The median planning target volume (PTV was 13 (7-19 cc. The median marginal dose was 16 (10-19 Gy prescribed to the 80%-95% isodose line encompassing the planning target volume. The median follow-up time was 13 (2-59 months. Results. The median survival was 21 months and 9.3 months from the initial GB diagnosis and from SRS, respectively. The median progression-free survival from SRS was 5.7 months. All the patients tolerated radiosurgical treatment well without any Common Toxicity Criteria (CTC grade > 2 acute side effects. Conclusion. Single-dose LINAC-based SRS is a safe and well- tolerated palliative therapeutic option in the management of patients with recurrent GB.
Linear CCD attitude measurement system based on the identification of the auxiliary array CCD
Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan
2015-10-01
Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.
Extracting ECG signal characteristics based on non-linear transformations and wavelets
Directory of Open Access Journals (Sweden)
Victoria Eugenia Montes
2010-07-01
Full Text Available Different extraction methods were compared regarding the characteristics of normal ECG signals and those emitted in the presence of events related to ischemic cardiopathy based on diagnosis measurements, wavelet transformation and nonlinear analysis of main components. Methods were developed for automatic recognition between normal and ischemic ECG signals. Two effective feature selection techniques were proposed; one used multivariate statistical methods and the second univariate ones. Linear discriminatory evaluation and vector support machines were used for evaluating the proposed feature extraction techniques, comparing error when classifying different states of cardiac functionality. Nonlinear PCA offered slightly better performance compared to wavelet representation but was much better compared to diagnosis measurement. There was up to 0.22% error compared to 6.78% in the case of wavelets and 24.22% in the case of diagnostic measurements. Support vector machines increased the performance for all analysed feature extraction methods; more discriminating characteristics were obtained when using wavelets applied to heartbeat having up to 0.1% classification precision compared to 0.12% in the case of nonlinear analysis of main components and 5.11% in the case of diagnostic measurements.
Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-01-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Directory of Open Access Journals (Sweden)
Andrea Nobili
2015-01-01
Full Text Available Three generalizations of the Timoshenko beam model according to the linear theory of micropolar elasticity or its special cases, that is, the couple stress theory or the modified couple stress theory, recently developed in the literature, are investigated and compared. The analysis is carried out in a variational setting, making use of Hamilton’s principle. It is shown that both the Timoshenko and the (possibly modified couple stress models are based on a microstructural kinematics which is governed by kinosthenic (ignorable terms in the Lagrangian. Despite their difference, all models bring in a beam-plane theory only one microstructural material parameter. Besides, the micropolar model formally reduces to the couple stress model upon introducing the proper constraint on the microstructure kinematics, although the material parameter is generally different. Line loading on the microstructure results in a nonconservative force potential. Finally, the Hamiltonian form of the micropolar beam model is derived and the canonical equations are presented along with their general solution. The latter exhibits a general oscillatory pattern for the microstructure rotation and stress, whose behavior matches the numerical findings.
Energy Technology Data Exchange (ETDEWEB)
Mao, Jinlong; Zuo, Zhengxing; Li, Wen; Feng, Huihua [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)
2011-04-15
A free-piston linear alternator (FPLA) is being developed by the Beijing Institute of Technology to improve the thermal efficiency relative to conventional crank-driven engines. A two-stroke scavenging process recharges the engine and is crucial to realizing the continuous operation of a free-piston engine. In order to study the FPLA scavenging process, the scavenging system was configured using computational fluid dynamics. As the piston dynamics of the FPLA are different to conventional crank-driven two-stroke engines, a time-based numerical simulation program was built using Matlab to define the piston's motion profiles. A wide range of design and operating options were investigated including effective stroke length, valve overlapping distance, operating frequency and charging pressure to find out their effects on the scavenging performance. The results indicate that a combination of high effective stroke length to bore ratio and long valve overlapping distance with a low supercharging pressure has the potential to achieve high scavenging and trapping efficiencies with low short-circuiting losses. (author)
A Vehicle Traveling Time Prediction Method Based on Grey Theory and Linear Regression Analysis
Institute of Scientific and Technical Information of China (English)
TU Jun; LI Yan-ming; LIU Cheng-liang
2009-01-01
Vehicle traveling time prediction is an important part of the research of intelligent transportation system. By now, there have been various kinds of methods for vehicle traveling time prediction. But few consider both aspects of time and space. In this paper, a vehicle traveling time prediction method based on grey theory (GT) and linear regression analysis (LRA) is presented. In aspects of time, we use the history data sequence of bus speed on a certain road to predict the future bus speed on that road by GT. And in aspects of space, we calculate the traffic affecting factors between various roads by LRA. Using these factors we can predict the vehicle's speed at the lower road if the vehicle's speed at the current road is known. Finally we use time factor and space factor as the weighting factors of the two results predicted by GT and LRA respectively to find the fina0l result, thus calculating the vehicle's travehng time. The method also considers such factors as dwell time, thus making the prediction more accurate.
Linearly programmed DNA-based molecular computer operated on magnetic particle surface in test-tube
Institute of Scientific and Technical Information of China (English)
ZHAO Jian; ZHANG Zhizhou; SHI Yongyong; Li Xiuxia; HE Lin
2004-01-01
The postgenomic era has seen an emergence of new applications of DNA manipulation technologies, including DNA-based molecular computing. Surface DNA computing has already been reported in a number of studies that, however, all employ different mechanisms other than automaton functions. Here we describe a programmable DNA surface-computing device as a Turing machine-like finite automaton. The laboratory automaton is primarily composed of DNA (inputs, output-detectors, transition molecules as software), DNA manipulating enzymes and buffer system that solve artificial computational problems autonomously. When fluoresceins were labeled in the 5′ end of (-) strand of the input molecule, direct observation of all reaction intermediates along the time scale was made so that the dynamic process of DNA computing could be conveniently visualized. The features of this study are: (i) achievement of finite automaton functions by linearly programmed DNA computer operated on magnetic particle surface and (ii) direct detection of all DNA computing intermediates by capillary electrophoresis. Since DNA computing has the massive parallelism and feasibility for automation, this achievement sets a basis for large-scale implications of DNA computing for functional genomics in the near future.
Contrast-based moving target detection with the randomized linear receive array
Ranney, Kenneth; Martone, Anthony; Innocenti, Roberto; Nguyen, Lam
2012-06-01
The Army Research Laboratory (ARL) has, in the past, demonstrated the effectiveness of low frequency, ultrawideband radar for detection of slow-moving targets located behind walls. While these initial results were promising, they also indicated that sidelobe artifacts produced by moving target indication (MTI) processing could pose serious problems. Such artifacts induced false alarms and necessitated the introduction of a tracker stage to eliminate them. Of course, the tracker algorithm was also imperfect, and it tended to pass any persistent, nearly collocated false alarms. In this work we describe the incorporation of a sidelobe-reduction technique-the randomized linear receiver array (RA)-into our MTI processing chain. To perform this investigation, we leverage data collected by ARL's synchronous impulse reconstruction (SIRE) radar. We begin by calculating MTI imagery using both the non-random and randomized array methods. We then compare the sidelobe levels in each image and quantify the differences. Finally, we apply a local-contrast target detection algorithm based on constant false alarm rate (CFAR) principles, and we analyze probabilities of detection and false alarm for each MTI image.
Linear variable filter based oil condition monitoring systems for offshore windturbines
Wiesent, Benjamin R.; Dorigo, Daniel G.; Şimşek, Özlem; Koch, Alexander W.
2011-10-01
A major part of future renewable energy will be generated in offshore wind farms. The used turbines of the 5 MW class and beyond, often feature a planetary gear with 1000 liters lubricating oil or even more. Monitoring the oil aging process provides early indication of necessary maintenance and oil change. Thus maintenance is no longer time-scheduled but becomes wear dependent providing ecological and economical benefits. This paper describes two approaches based on a linear variable filter (LVF) as dispersive element in a setup of a cost effective infrared miniature spectrometer for oil condition monitoring purposes. Spectra and design criteria of a static multi-element detector and a scanning single element detector system are compared and rated. Both LVF miniature spectrometers are appropriately designed for the suggested measurements but have certain restrictions. LVF multi-channel sensors combined with sophisticated multivariate data processing offer the possibility to use the sensor for a broad range of lubricants just by a software update of the calibration set. An all-purpose oil sensor may be obtained.
Counter-propagating dual-trap optical tweezers based on linear momentum conservation
Energy Technology Data Exchange (ETDEWEB)
Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)
2013-04-15
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.
Directory of Open Access Journals (Sweden)
Linsheng Huo
2014-01-01
Full Text Available Passive liquid dampers have been used to effectively reduce the dynamic response of civil infrastructures subjected to earthquakes or strong winds. The design of liquid dampers for structural vibration control involves the determination of the optimal parameters. This paper presents an optimal design methodology for tuned liquid column dampers (TLCDs based on the H∞ control theory. A practical structure, Dalian Xinghai Financial Business Building, is used to illustrate the feasibility of the optimal procedure. The model of structure is built by the finite element method and simplified to the lumped mass model. To facilitate the design of TLCDs, the TLCD parametric optimization problem is transferred to the feedback controller design problem. Through the bounded real lemma, an optimization problem with bilinear matrix inequality (BMI constraints is constructed to design a static output feedback H∞ controller. Iterative linear matrix inequality method is employed and it added some value range constraints to solve the BMI problem. After the TLCD parameters are optimized, the responses of displacement and acceleration in frequency domain and time domain are compared for the structure with and without TLCD. It is validated that the TLCD with the optimized parameters can make the structure satisfy the need for safety and comfort.
Linear birefringence and dichroism measurement in oil-based Fe3O4 magnetic nanoparticles
Lin, Jing-Fung; Wang, Chia-Hung; Lee, Meng-Zhe
2013-04-01
To prepare dispersed Fe3O4 magnetic nanoparticles (MNPs), we adopt a co-precipitation method and consider surfactant amount, stirring speed, dispersion mode, and molar ratio of Fe3+/Fe2+. Via transmission electronic microscopy and X-ray diffractometry, we characterize the dispersibility and size of the products and determine the appropriate values of experimental parameters. The stirring speed is 1000 rpm in titration. There is simultaneous ultrasonic vibration and mechanical stirring in the titration and surface coating processes. The surfactant amount of oleic acid is 1.2 ml for molar ratios of Fe3+/Fe2+ as 1.7:1, 1.8:1, and 1.9:1. The average diameters of these Fe3O4 MNPs are 11 nm, and the ratios of saturation magnetization for these MNPs to that of bulk magnetite range from 45% to 65%, with remanent magnetization close to zero and low coercivity. Above all, the linear birefringence and dichroism measurements of the kerosene-based ferrofluid (FF) samples are investigated by a Stokes polarimeter. The influences of particle size distribution and magnetization in the birefringence and dichroism measurements of FFs are discussed.
Fisher's linear discriminant ratio based threshold for moving human detection in thermal video
Sharma, Lavanya; Yadav, Dileep Kumar; Singh, Annapurna
2016-09-01
In video surveillance, the moving human detection in thermal video is a critical phase that filters out redundant information to extract relevant information. The moving object detection is applied on thermal video because it penetrate challenging problems such as dynamic issues of background and illumination variation. In this work, we have proposed a new background subtraction method using Fisher's linear discriminant ratio based threshold. This threshold is investigated automatically during run-time for each pixel of every sequential frame. Automatically means to avoid the involvement of external source such as programmer or user for threshold selection. This threshold provides better pixel classification at run-time. This method handles problems generated due to multiple behavior of background more accurately using Fisher's ratio. It maximizes the separation between object pixel and the background pixel. To check the efficacy, the performance of this work is observed in terms of various parameters depicted in analysis. The experimental results and their analysis demonstrated better performance of proposed method against considered peer methods.
Beyond simple linear mixing models: process-based isotope partitioning of ecological processes.
Ogle, Kiona; Tucker, Colin; Cable, Jessica M
2014-01-01
Stable isotopes are valuable tools for partitioning the components contributing to ecological processes of interest, such as animal diets and trophic interactions, plant resource use, ecosystem gas fluxes, streamflow, and many more. Stable isotope data are often analyzed with simple linear mixing (SLM) models to partition the contributions of different sources, but SLM models cannot incorporate a mechanistic understanding of the underlying processes and do not accommodate additional data associated with these processes (e.g., environmental covariates, flux data, gut contents). Thus, SLM models lack predictive ability. We describe a process-based mixing (PBM) model approach for integrating stable isotopes, other data sources, and process models to partition different sources or process components. This is accomplished via a hierarchical Bayesian framework that quantifies multiple sources of uncertainty and enables the incorporation of process models and prior information to help constrain the source-specific proportional contributions, thereby potentially avoiding identifiability issues that plague SLM models applied to "too many" sources. We discuss the application of the PBM model framework to three diverse examples: temporal and spatial partitioning of streamflow, estimation of plant rooting profiles and water uptake profiles (or water sources) with extension to partitioning soil and ecosystem CO2 fluxes, and reconstructing animal diets. These examples illustrate the advantages of the PBM modeling approach, which facilitates incorporation of ecological theory and diverse sources of information into the mixing model framework, thus enabling one to partition key process components across time and space. PMID:24640543
Linear redshift space distortions for cosmic voids based on galaxies in redshift space
Chuang, Chia-Hsun; Liang, Yu; Font-Ribera, Andreu; Zhao, Cheng; McDonald, Patrick; Tao, Charling
2016-01-01
Cosmic voids found in galaxy surveys are defined based on the galaxy distribution in redshift space. We show that the large scale distribution of voids in redshift space traces the fluctuations in the dark matter density field \\delta(k) (in Fourier space with \\mu being the line of sight projected k-vector): \\delta_v^s(k) = (1 + \\beta_v \\mu^2) b^s_v \\delta(k), with a beta factor that will be in general different than the one describing the distribution of galaxies. Only in case voids could be assumed to be quasi-local transformations of the linear (Gaussian) galaxy redshift space field, one gets equal beta factors \\beta_v=\\beta_g=f/b_g with f being the growth rate, and b_g, b^s_v being the galaxy and void bias on large scales defined in redshift space. Indeed, in our mock void catalogs we measure void beta factors being in good agreement with the galaxy one. Further work needs to be done to confirm the level of accuracy of the beta factor equality between voids and galaxies, but in general the void beta factor...
Institute of Scientific and Technical Information of China (English)
Xiang Li; Serge Cescotto; Barbara Rossi
2009-01-01
The natural neighbour method can be considered as one of many variants of the meshless methods. In the present paper, a new approach based on the Fraeijs de Veubeke (FdV) functional, which is initially developed for linear elasticity, is extended to the case of geometrically linear but materially non-linear solids. The new approach provides an original treatment to two classical problems: the numerical evaluation of the integrals over the domain A and the enforcement of boundary conditions of the type ui = uion Su. In the absence of body forces (Fi = 0), it will be shown that the calculation of integrals of the type fA .dA can be avoided and that boundary conditions of the type ui = ui on Su can be imposed in the average sense in general and exactly if ui is linear between two contour nodes, which is obviously the case for ui = 0.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The applicability of the density rule of Pathwardhan and Kumer and the rule based on the linear isopiestic relation is studied by comparison with experimental density data in the literature. Predicted and measured values for 18 electrolyte mixtures are compared. The two rules are good for mixtures with and without common ions, including those containing associating ions. The deviations of the rule based on the linear isopiestic relation are slightly higher for the mixtures involving very strong ion complexes, but the predictions are still quite satisfactory. The density rule of Pathwardhan and Kumer is more accurate for these mixtures. However, it is not applicable for mixtures containing non-electrolytes. The rule based on the linear isopiestic relation is extended to mixtures involving non-electrolytes. The predictions for the mixtures containing both electrolytes and non-electrolytes and the non-electrolyte mixtures are accurate. All these results indicate that this rule is a widely applicable approach.
Institute of Scientific and Technical Information of China (English)
胡玉峰
2001-01-01
The applicability of the density rule of Pathwardhan and Kumer and the rule based on the linear isopiestic relation is studied by comparison with experimental density data in the literature. Predicted and measured values for 18 electrolyte mixtures are compared. The two rules are good for mixtures with and without common ions, including those containing associating ions. The deviations of the rule based on the linear isopiestic relation are slightly higher for the mixtures involving very strong ion complexes, but the predictions are still quite satisfactory.The density rule of Pathwardhan and Kumer is more accurate for these mixtures. However, it is not applicable for mixtures containing non-electrolytes. The rule based on the linear isopiestic relation is extended to mixtures involving non-electrolytes. The predictions for the mixtures containing both electrolytes and non-electrolytes and the non-electrolyte mixtures are accurate. All these results indicate that this rule is a widely avvlicable approach.
Sohrabi Mahboub, Mahdi; Farrokhpour, Hossein
2016-06-01
In this paper, we present the results of an extensive study on a novel approach to the molecular modeling of pure ionic liquids (ILs) that incorporates the perturbed thermodynamic linear Yukawa isotherm regularity (LYIR), which is derived based on an effective nearest neighboring pair attractive interaction of the Yukawa potential. The LYIR was used to model the densities of ILs up to high pressures (35 MPa) and in the temperature range 293.15 to 393.15 K. To use the LYIR for ILs, a simple molecular model was proposed to describe their molecular structure, in which they were considered as a liquid consisting of the ion pairs moving together in the fluid, and each ion pair was assumed to be a one-center spherical united atom. The ILs under consideration contained one of the IL cations [C2mim]+, [C4mim]+, [C7mim]+, [C8mim]+, [C3mpy]+, [C3mpip]+, [C3mpyr]+ or [C4mpyr]+, and one of the IL anions [BF4]-, [C(CN)3]-, [CF3SO4]- or [NTf2]-. The reliability and physical significance of the parameters as well as the proposed molecular model were tested by calculating the densities of pure imidazolium-, pyridinium-, piperidinium- and pyrrolidimium-based ILs. The results showed that the LYIR can be used to predict and reproduce the density of ILs in good agreement with the experimental data. In addition, the LYIR enabled us to determine the physical quantities, such as an effective Yukawa screening length, λ eff, the product of the effective energy well depth and the effective coordination number, (ɛ eff/k)z eff, the contribution of the non-reference thermal pressure and also the influence of the anionic and cationic structure on the λ eff parameter. The standard deviation of the IL densities predicted in this work is lower than those calculated by the one other important equation of state reported in the literature.
LMI-based robust iterative learning controller design for discrete linear uncertain systems
Institute of Scientific and Technical Information of China (English)
Jianming XU; Mingxuan SUN; Li YU
2005-01-01
This paper addresses the design problem of robust iterative learning controllers for a class of linear discrete-time systems with norm-bounded parameter uncertainties.An iterative learning algorithm with current cycle feedback is proposed to achieve both robust convergence and robust stability.The synthesis problem of the proposed iterative learning control (ILC) system is reformulated as a γ-suboptimal H-infinity control problem via the linear fractional transformation (LFT).A sufficient condition for the convergence of the ILC algorithm is presented in terms of linear matrix inequalities (LMIs).Furthermore,the linear transfer operators of the ILC algorithm with high convergence speed are obtained by using existing convex optimization techniques.The simulation results demonstrate the effectiveness of the proposed method.
Dietary arginine and linear growth
DEFF Research Database (Denmark)
van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W;
2013-01-01
Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept...
Simple Cellular Automata-Based Linear Models for the Shrinking Generator
Fúster-Sabater, Amparo
2010-01-01
Structural properties of two well-known families of keystream generators, Shrinking Generators and Cellular Automata, have been analyzed. Emphasis is on the equivalence of the binary sequences obtained from both kinds of generators. In fact, Shrinking Generators (SG) can be identified with a subset of linear Cellular Automata (mainly rule 90, rule 150 or a hybrid combination of both rules). The linearity of these cellular models can be advantageously used in the cryptanalysis of those keystream generators.
Kinematics Modeling and Simulation of a Bionic Fish Tail System Based on Linear Hypocycloid
Shu-yan Wang; Jun Zhu; Xin-guo Wang; Qin-feng Li; Hui-yun Zhu
2015-01-01
Kinematics and simulation study on a two-joint linear hypocycloid tail driving system composed of a special planetary gear system and a linkage mechanism are conducted in this paper. First, the composition and working principle of the linear hypocycloid tail transmission system are introduced and analyzed. Second, the kinematics study on the transmission mechanism is conducted with graphical method of vector equation. The relationships between the caudal peduncle stroke, the tail fin swing an...
Directory of Open Access Journals (Sweden)
Linlin Gao
2015-11-01
Full Text Available From the perspective of vehicle dynamics, the four-wheel independent steering vehicle dynamics stability control method is studied, and a four-wheel independent steering varying parameter linear quadratic regulator control system is proposed with the help of expert control method. In the article, a four-wheel independent steering linear quadratic regulator controller for model following purpose is designed first. Then, by analyzing the four-wheel independent steering vehicle dynamic characteristics and the influence of linear quadratic regulator control parameters on control performance, a linear quadratic regulator control parameter adjustment strategy based on vehicle steering state is proposed to achieve the adaptive adjustment of linear quadratic regulator control parameters. In addition, to further improve the control performance, the proposed varying parameter linear quadratic regulator control system is optimized by genetic algorithm. Finally, simulation studies have been conducted by applying the proposed control system to the 8-degree-of-freedom four-wheel independent steering vehicle dynamics model. The simulation results indicate that the proposed control system has better performance and robustness and can effectively improve the stability and steering safety of the four-wheel independent steering vehicle.
Energy Technology Data Exchange (ETDEWEB)
Matsuo, Takayuki, E-mail: takayuki@nagasaki-u.ac.jp; Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi
2014-07-01
Purpose: Although radiosurgery is an accepted treatment method for intracranial arteriovenous malformations (AVMs), its long-term therapeutic effects have not been sufficiently evaluated, and many reports of long-term observations are from gamma-knife facilities. Furthermore, there are few reported results of treatment using only linear accelerator (LINAC)-based radiosurgery (LBRS). Methods and Materials: Over a period of more than 12 years, we followed the long-term results of LBRS treatment performed in 51 AVM patients. Results: The actuarial obliteration rates, after a single radiosurgery session, at 3, 5, 10, and 15 years were 46.9%, 54.0%, 64.4%, and 68.0%, respectively; when subsequent radiosurgeries were included, the rates were 46.9%, 61.3%, 74.2%, and 90.3%, respectively. Obliteration rates were significantly related to target volumes ≥4 cm{sup 3}, marginal doses ≥12 Gy, Spetzler-Martin grades (1 vs other), and AVM scores ≥1.5; multivariate analyses revealed a significant difference for target volumes ≥4 cm{sup 3}. The postprocedural actuarial symptomatic radiation injury rates, after a single radiation surgery session, at 5, 10, and 15 years were 12.3%, 16.8%, and 19.1%, respectively. Volumes ≥4 cm{sup 3}, location (lobular or other), AVM scores ≥1.5, and the number of radiosurgery were related to radiation injury incidence; multivariate analyses revealed significant differences associated with volumes ≥4 cm{sup 3} and location (lobular or other). Conclusions: Positive results can be obtained with LBRS when performed with a target volume ≤4 cm{sup 3}, an AVM score ≤1.5, and ≥12 Gy radiation. Bleeding and radiation injuries may appear even 10 years after treatment, necessitating long-term observation.
Yu, Shao-De; Wu, Shi-Bin; Wang, Hao-Yu; Wei, Xin-Hua; Chen, Xin; Pan, Wan-Long; Hu, Jiani; Xie, Yao-Qin
2015-12-01
Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of weighted magnetic resonance imaging However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo . Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation. Project supported in part by the National High Technology Research and Development Program of China (Grant Nos. 2015AA043203 and 2012AA02A604), the National Natural Science Foundation of China (Grant Nos. 81171402, 61471349, and 81501463), the Innovative Research Team Program of Guangdong Province, China (Grant No. 2011S013), the Science and Technological Program for Higher Education, Science and Research, and Health Care Institutions of Guangdong Province, China (Grant No. 2011108101001), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310360), the Fundamental Research Program of Shenzhen City, China (Grant No. JCYJ20140417113430639), and Beijing Center for Mathematics and Information Interdisciplinary Sciences, China.
Institute of Scientific and Technical Information of China (English)
LI Zicheng; SUN Yukun
2006-01-01
Considering the detection principle that "when load current is periodic current, the integral in a cycle for absolute value of load current subtracting fundamental active current is the least", harmonic current real-time detection methods for power active filter are proposed based on direct computation, simple iterative algorithm and optimal iterative algorithm. According to the direct computation method, the amplitude of the fundamental active current can be accurately calculated when load current is placed in stable state. The simple iterative algorithm and the optimal iterative algorithm provide an idea about judging the state of load current. On the basis of the direct computation method, the simple iterative algorithm, the optimal iterative algorithm and precise definition of the basic concepts such as the true amplitude of the fundamental active current when load current is placed in varying state, etc., the double linear construction idea is proposed in which the amplitude of the fundamental active current at the moment of the sample is accurately calculated by using the first linear construction and the condition which disposes the next sample is created by using the second linear construction. On the basis of the double linear construction idea, a harmonic current real-time detection method for power active filter is proposed based on the double linear construction algorithm. This method has the characteristics of small computing quantity, fine real-time performance, being capable of accurately calculating the amplitude of the fundamental active current and so on.
Sohrabi Mahboub, Mahdi; Farrokhpour, Hossein
2016-06-15
In this paper, we present the results of an extensive study on a novel approach to the molecular modeling of pure ionic liquids (ILs) that incorporates the perturbed thermodynamic linear Yukawa isotherm regularity (LYIR), which is derived based on an effective nearest neighboring pair attractive interaction of the Yukawa potential. The LYIR was used to model the densities of ILs up to high pressures (35 MPa) and in the temperature range 293.15 to 393.15 K. To use the LYIR for ILs, a simple molecular model was proposed to describe their molecular structure, in which they were considered as a liquid consisting of the ion pairs moving together in the fluid, and each ion pair was assumed to be a one-center spherical united atom. The ILs under consideration contained one of the IL cations [C2mim](+), [C4mim](+), [C7mim](+), [C8mim](+), [C3mpy](+), [C3mpip](+), [C3mpyr](+) or [C4mpyr](+), and one of the IL anions [BF4](-), [C(CN)3](-), [CF3SO4](-) or [NTf2](-). The reliability and physical significance of the parameters as well as the proposed molecular model were tested by calculating the densities of pure imidazolium-, pyridinium-, piperidinium- and pyrrolidimium-based ILs. The results showed that the LYIR can be used to predict and reproduce the density of ILs in good agreement with the experimental data. In addition, the LYIR enabled us to determine the physical quantities, such as an effective Yukawa screening length, λ eff, the product of the effective energy well depth and the effective coordination number, (ε eff/k)z eff, the contribution of the non-reference thermal pressure and also the influence of the anionic and cationic structure on the λ eff parameter. The standard deviation of the IL densities predicted in this work is lower than those calculated by the one other important equation of state reported in the literature. PMID:27157142
Kun, David William
Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external
Sohrabi Mahboub, Mahdi; Farrokhpour, Hossein
2016-06-01
In this paper, we present the results of an extensive study on a novel approach to the molecular modeling of pure ionic liquids (ILs) that incorporates the perturbed thermodynamic linear Yukawa isotherm regularity (LYIR), which is derived based on an effective nearest neighboring pair attractive interaction of the Yukawa potential. The LYIR was used to model the densities of ILs up to high pressures (35 MPa) and in the temperature range 293.15 to 393.15 K. To use the LYIR for ILs, a simple molecular model was proposed to describe their molecular structure, in which they were considered as a liquid consisting of the ion pairs moving together in the fluid, and each ion pair was assumed to be a one-center spherical united atom. The ILs under consideration contained one of the IL cations [C2mim]+, [C4mim]+, [C7mim]+, [C8mim]+, [C3mpy]+, [C3mpip]+, [C3mpyr]+ or [C4mpyr]+, and one of the IL anions [BF4]‑, [C(CN)3]‑, [CF3SO4]‑ or [NTf2]‑. The reliability and physical significance of the parameters as well as the proposed molecular model were tested by calculating the densities of pure imidazolium-, pyridinium-, piperidinium- and pyrrolidimium-based ILs. The results showed that the LYIR can be used to predict and reproduce the density of ILs in good agreement with the experimental data. In addition, the LYIR enabled us to determine the physical quantities, such as an effective Yukawa screening length, λ eff, the product of the effective energy well depth and the effective coordination number, (ε eff/k)z eff, the contribution of the non-reference thermal pressure and also the influence of the anionic and cationic structure on the λ eff parameter. The standard deviation of the IL densities predicted in this work is lower than those calculated by the one other important equation of state reported in the literature.
Unified Analysis of Kernel-Based Interior-Point Methods for P∗(κ)-Linear Complementarity Problems
Lesaja, G.; Roos, C.
2010-01-01
We present an interior-point method for the P∗(κ)-linear complementarity problem (LCP) that is based on barrier functions which are defined by a large class of univariate functions called eligible kernel functions. This class is fairly general and includes the classical logarithmic function and the
Institute of Scientific and Technical Information of China (English)
Chun-Fu Li; Jue-Bang Yu
2008-01-01
In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In this part, the structure of the projective synchronization method is presented. And the condition of projection synchronization is theoretically analyzed when the synchronization subsystem is linear.
Wang, Chen; Xie, G.; Wang, L.; Cao, M.
2011-01-01
The aim of the present study is to investigate the locomotion control of a robotic fish. To achieve this goal, we design a control architecture based on a novel central pattern generator (CPG) and implement it as a system of coupled linear oscillators. This design differs significantly from the usua
Field-based observations confirm linear scaling of sand flux with wind stress
Martin, Raleigh L
2016-01-01
Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the sand flux scales with wind speed, largely because models do not agree on how particle speed changes with wind shear velocity. Here, we present comprehensive measurements from three new field sites and three published studies, showing that characteristic saltation layer heights, and thus particle speeds, remain approximately constant with shear velocity. This result implies a linear dependence of saltation flux on wind shear stress, which contrasts with the nonlinear 3/2 scaling used in most aeolian process predictions. We confirm the linear flux law with direct measurements of the stress-flux relationship occurring at each site. Models for dust generation, dune migration, and other processes driven by wind-blown sand on Earth, Mars, and several other planetary surfaces should be modified to account for linear stress-flux scaling.
Linear Look-ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation
Directory of Open Access Journals (Sweden)
John L Kubie
2012-04-01
Full Text Available The crisp organization of the firing bumps of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed linear look-ahead, by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies of rigid modules of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-minute walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive-cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: The pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look ahead starting in any location and extending in any direction. We speculate that this process may: 1. compute linear paths to goals; 2. update grid cell firing during navigation; and 3. stabilize the rigid modules of grid cells and conjunctive cells.
The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS
Institute of Scientific and Technical Information of China (English)
MU Xiao-lan; SONG Zhi-jian
2004-01-01
@@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.
Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun
2015-01-01
The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. PMID:25827247
Emadi, A.; Wu, H; De Graaf, G.; Wolffenbuttel, R.F.
2011-01-01
In this paper the concept of a microspectrometer based on a Linear Variable Optical Filter (LVOF) for operation in the visible spectrum is presented and used in two different designs: the first is for the narrow spectral band between 610 nm and 680 nm, whereas the other is for the wider spectral band between 570 nm and 740 nm. Design considerations, fabrication and measurement results of the LVOF are presented. An iterative signal processing algorithm based on an initial calibration has been ...
Modeling and Stability Analysis for Non-linear Network Control System Based on T-S Fuzzy Model
Institute of Scientific and Technical Information of China (English)
ZHANG Hong; FANG Huajing
2007-01-01
Based on the T-S fuzzy model, this paper presents a new model of non-linear network control system with stochastic transfer delay. Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model. Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model. All these results present a new approach for networked control system analysis and design.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A new rigid-plastic/rigid-viscoplastic (RP/RVP) FEM based on linear programming (LP) for plane-strain metal forming simulation is proposed. Compared with the traditional RP/RVP FEM based on iteration solution, it has some remarkable advantages, such as it's free of convergence problem and its convenience in contact, incompressibility constraint and rigid zone treatment. Two solution examples are provided to validate its accuracy and efficiency.
Liu, Y.; Li, T.; Zhu, C.; Zhang, R.; Wu, Y.
2015-12-01
Three-dimensional (3-D) electromagnetic (EM) forward modelling and inversion continues to be an important issue for the correct interpretation of EM data.To this end,approximate solutions have been developed that allow the construction of relatively fast forward modelling and inversion schemes.We have developed an improved quasi-linear approximation which is more appropriate in solving the linear equation for greatly shortening calculation time.We achieved this by using green's function properties.Then we introduced the improved quasi-linear approximation to spectral induced polarization (SIP) to tackle the problem of the resolution and the efficiency.The localized quasi-linear (LQL) approximation theory is appropriate for multisource array-type surveys assuming that the normal field is slowly varying within the inhomogeneity domain.However,the normal field of attenuates severely which dose not satisfy the assumption of the LQL approximation.As a consenquence,the imaginary part is not accurate when LQL approximation is adopted for the simulation.The improved quasi-linear approximation provide a new approach with the same resolution of QL approximation and much less calculation time.We have also constructed three-dimensional SIP forward modeling based on improved quasi-linear approximation method.It only takes 0.8s for forward modeling when inhomogeneity domain is divided into 2000 blocks.Beyond that, we have introduced the Cole-Cole model to the algorithm and complete the three-dimensional complex resistivity conjugate gradient inversion with parameter restraint.The model trial results show that this method can obtain good inversion results in physical parameters such as zero frequency resistivity, polarization.The results demonstrate the stability and the efficiency of the improved quasi-linear approximation and the method may be a practical solution for3-D EM forward modelling and inversion of SIP.
An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations
Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B.; Jia, Xun
2015-10-01
Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum
A linear receiver for visible light communication systems with phase modulated OFDM
Xie, Gui-Teng; Yu, Hong-Yi; Zhu, Yi-Jun; Ji, Xin-Sheng
2016-07-01
In the orthogonal frequency-division multiplexing (OFDM) systems for visible light communication (VLC), the peak-to-average power ratio (PAPR) of OFDM signals is the primary concern of high-speed data transmission. In order to get low PAPR signals and reduce the influence of nonlinearity of the light-emitting diode (LED), a phase modulated OFDM (PM-OFDM) system is developed and a linear receiver is presented. Unlike the conventional angle detection receiver implemented by arctangent calculator, the linear receiver has lower computation complexity and is immune to the threshold effect. Simulation results indicate that the proposed PM-OFDM obtains significant performance gains over DC-biased optical OFDM (DCO-OFDM) and precoded OFDM.
Ewen, Hamish Maclean; Riccardo, Bartolini
The non-linear beam dynamics of a circular accelerator, such as the Large Hadron Collider, can have a significant impact on its operation. In order to avoid limitations on the performance reach of the accelerator, and ensure machine protection, it is vital that the beam dynamics are well understood and controlled. This thesis presents the results of studies of non-linear beam dynamics undertaken on the Large Hadron Collider at CERN, during the 2010 to 2013 period. It sets out to quantify the understanding of the non-linear beam dynamics through the comparison of beam-based measurements to simulation, and where able and appropriate seeks to explain deviations of measurement from the model, and define corrections for relevant aspects of the dynamics. The analyses presented in this thesis represent considerable advances in the understanding of the LHC beam dynamics which should allow for an improved operation of the machine in the coming years.
A Highly Linear All Optical Gate Based on Coupled Photonic Crystal Cavities
Moille, Gregory; De Rossi, Alfredo; Lehoucq, Gaelle; Martin, Aude; Bramerie, Laurent; Gay, Mathilde; Combrie, Sylvain
2014-01-01
International audience A photonic crystal molecule is used as an all-optical gate to perform sampling of microwave signals. We demonstrate a very linear operation over a 50dB still with a 1.2mW power consumption.
Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator
Bol, G.H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.
2012-01-01
The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) r
DEFF Research Database (Denmark)
Shabbir, Aamir; Javakhishvili, Irakli; Cerveny, Silvina;
2016-01-01
Supramolecular polymers possess versatile mechanical properties and a unique ability to respond to external stimuli. Understanding the rich dynamics of such associative polymers is essential for tailoring user-defined properties in many products. Linear copolymers of 2-methoxyethyl acrylate (MEA)...
A Practical Approach to Inquiry-Based Learning in Linear Algebra
Chang, J.-M.
2011-01-01
Linear algebra has become one of the most useful fields of mathematics since last decade, yet students still have trouble seeing the connection between some of the abstract concepts and real-world applications. In this article, we propose the use of thought-provoking questions in lesson designs to allow two-way communications between instructors…
Institute of Scientific and Technical Information of China (English)
Chun-Fu Li; Jue-Bang Yu
2008-01-01
In this three-part paper, an observerbased projective synchronization method for a class ofchaotic system is proposed. At the transmitter, a generalobserver is used to create the scalar signal forsynchronizing. In this part, the structure of theprojective synchronization method is presented. And thecondition of projection synchronization is theoreticallyanalyzed when the synchronization subsystem is linear.
LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander
2006-01-01
This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore of...
A novel method of drift-scanning stars suppression based on the standardized linear filter
Lin, Jianlin; Ping, Xijian; Hou, Guanghua; Ma, Debao
2011-11-01
A large number of stars in the drift-scanning star image have interfered with the detection of small target, this paper proposes an adaptive linear filtering method to achieve the small target detection by suppressing the stars. Firstly, the characteristics of stars, interest target and noise three different representative objects in the star image are analyzed, then the standardized linear filter is constructed to suppress the stars. For the purpose of decreasing the influence region of stars filtering uniformly, a gradient linear filter is constructed to modify the stars suppression method with the standardized linear filter. Then the filter parameter selection method is given. Finally, a multi-frame target track experiment on the real drift-scanning data is made to testify the validity of the proposed method. With the processing results of different methods, it has been showed that the proposed method for suppressing stars with different length and lean angle has a better effect, higher robustness and easier application than the others.
Auto-measurement system of aerial camera lens' resolution based on orthogonal linear CCD
Zhao, Yu-liang; Zhang, Yu-ye; Ding, Hong-yi
2010-10-01
The resolution of aerial camera lens is one of the most important camera's performance indexes. The measurement and calibration of resolution are important test items in in maintenance of camera. The traditional method that is observing resolution panel of collimator rely on human's eyes using microscope and doing some computing. The method is of low efficiency and susceptible to artificial factors. The measurement results are unstable, too. An auto-measurement system of aerial camera lens' resolution, which uses orthogonal linear CCD sensor as the detector to replace reading microscope, is introduced. The system can measure automatically and show result real-timely. In order to measure the smallest diameter of resolution panel which could be identified, two orthogonal linear CCD is laid on the imaging plane of measured lens and four intersection points are formed on the orthogonal linear CCD. A coordinate system is determined by origin point of the linear CCD. And a circle is determined by four intersection points. In order to obtain the circle's radius, firstly, the image of resolution panel is transformed to pulse width of electric signal which is send to computer through amplifying circuit and threshold comparator and counter. Secondly, the smallest circle would be extracted to do measurement. The circle extraction made using of wavelet transform which has character of localization in the domain of time and frequency and has capability of multi-scale analysis. Lastly, according to the solution formula of lens' resolution, we could obtain the resolution of measured lens. The measuring precision on practical measurement is analyzed, and the result indicated that the precision will be improved when using linear CCD instead of reading microscope. Moreover, the improvement of system error is determined by the pixel's size of CCD. With the technique of CCD developed, the pixel's size will smaller, the system error will be reduced greatly too. So the auto
Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Kocher, M.; Müller, R.-P.; Sturm, V.
2000-08-01
We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.
Gocke, Elmar; Müller, Lutz; Pfister, Thomas
2009-11-12
Prior to having performed in depth toxicological, genotoxicological and DMPK studies on ethyl methanesulfonate (EMS) providing solid evidence for a thresholded dose response relationship, we had prepared and shared with regulatory authorities a preliminary risk estimate based on standard linear dose-effect projections. We estimated that maximal lifetime cancer risk was in the order of 10(-3) (for lifetime ingestion of the maximally contaminated tablets) or 10(-4) for the exposure lasting for 3 months. This estimate was based on a lifetime cancer study with methyl methanesulfonate (MMS; as insufficient data were available for EMS) in rodents and default linear back extrapolation. Analogous estimates were made specifically for breast cancer based on short term tumorigenicity studies with EMS in rats, for the induction of heritable mutations based on specific locus and dominant lethal tests in mice and for the induction of birth defects based on teratogenicity studies in mice. We concluded that even under worst case assumptions of linear dose relations the chance of experiencing these adverse effects would be very small, comprising at most a minute additional burden among the background incidence of the patients.
Z-score linear discriminant analysis for EEG based brain-computer interfaces.
Directory of Open Access Journals (Sweden)
Rui Zhang
Full Text Available Linear discriminant analysis (LDA is one of the most popular classification algorithms for brain-computer interfaces (BCI. LDA assumes Gaussian distribution of the data, with equal covariance matrices for the concerned classes, however, the assumption is not usually held in actual BCI applications, where the heteroscedastic class distributions are usually observed. This paper proposes an enhanced version of LDA, namely z-score linear discriminant analysis (Z-LDA, which introduces a new decision boundary definition strategy to handle with the heteroscedastic class distributions. Z-LDA defines decision boundary through z-score utilizing both mean and standard deviation information of the projected data, which can adaptively adjust the decision boundary to fit for heteroscedastic distribution situation. Results derived from both simulation dataset and two actual BCI datasets consistently show that Z-LDA achieves significantly higher average classification accuracies than conventional LDA, indicating the superiority of the new proposed decision boundary definition strategy.
Gray Scale Image Compression Based on Wavelet Transform and Linear Prediction
Directory of Open Access Journals (Sweden)
Arya Devi P S
2012-03-01
Full Text Available Every year, several terabytes of image data- both medical and non medical- are engendered so that the requisition for image compression is substantiated. In this paper, the correlation properties of wavelets are harnessed in linear predictive coding to compress images. The image is decomposed using a one dimensional wavelet transform. The highest level wavelet transform coefficients and few detail coefficients in every level are retained. Using linear prediction on these coefficients the image is reconstructed. The prediction is done in both the dimensions, so the numbers of coefficients retained in detail subbands are less. With less predictors and samples from the original wavelet coefficients compression can be achieved. The results are appraised in objective and subjective manner with real world and medical images. The results are also verified on ModelFest database.
Dynamic behavior of valve system in linear compressor based on fluid-structure interaction
Energy Technology Data Exchange (ETDEWEB)
Choi, Yong Sik; Lee, Jun Ho; Jeong, Weui Bong [Pusal National University, Busan (Korea, Republic of); Kim, Il Geun [Locus Company Limited, Busan (Korea, Republic of)
2010-07-15
In refrigerator designs, the linear compressor is preferable to the recipro-type compressor, due to its higher energy efficiency. The linear compressor's valve system, however, causes significant noise, not only in the steady state but also in the transient state. To accurately predict the behavior of the suction and discharge valve system in both states, the interaction between the fluid flowing through the valves and the structural deformation of the valves needs to be understood. In the present study, the steady-state behaviors of the valve system were numerically analyzed using ADINA software, which takes fluid-structure interaction (FSI) into account. This computational analysis thereafter was experimentally validated. The effects of a pre-load of the conical compression spring on the dynamic characteristics of the valve system also were analyzed
Theodore, Zachary B.
A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.
Kinematics Modeling and Simulation of a Bionic Fish Tail System Based on Linear Hypocycloid
Directory of Open Access Journals (Sweden)
Shu-yan Wang
2015-01-01
Full Text Available Kinematics and simulation study on a two-joint linear hypocycloid tail driving system composed of a special planetary gear system and a linkage mechanism are conducted in this paper. First, the composition and working principle of the linear hypocycloid tail transmission system are introduced and analyzed. Second, the kinematics study on the transmission mechanism is conducted with graphical method of vector equation. The relationships between the caudal peduncle stroke, the tail fin swing angle, and the phase difference with structure parameters are studied, and further optimization of structure sizes (i.e., linkage length, sun gear’s diameter, the intersection angle between planet gears, etc. is developed. At last, simulation and comparative study on a biofish in sample parameters with a live fish of Carp is conducted in MATLAB. The study would serve for underwater vehicles thruster design and its mechanism.
Adjoint-based linear analysis in reduced-order thermo-acoustic models
Magri, Luca
2014-01-01
This paper presents the linear theory of adjoint equations as applied to thermo-acoustics. The purpose is to describe the mathematical foundations of adjoint equations for linear sensitivity analysis of thermo-acoustic systems, recently developed by Magri and Juniper (J. Fluid Mech. (2013), vol. 719, pp. 183--202). This method is applied pedagogically to a damped oscillator, for which analytical solutions are available, and then for an electrically heated Rijke tube with a mean-flow temperature discontinuity induced by the compact heat source. Passive devices that most affect the growth rate / frequency of the electrical Rijke-tube system are presented, including a discussion about the effect of modelling the mean-flow temperature discontinuity.
Use of Linear Spectral Mixture Model to Estimate Rice Planted Area Based on MODIS Data
Institute of Scientific and Technical Information of China (English)
2008-01-01
MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites.Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers.Shaoxing county of Zhcjiang Province in China was chosen to be the study site and early rice was selected as the study crop.The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day,which implies that MODIS data could be used as satellite data source for rice cultivation area estimation,possibly rice growth monitoring and yield forecasting on the regional scale.
Ardestani, Mehdi Shafiee; Fordoei, Alireza Salehi; Abdoli, Asghar; Ahangari Cohan, Reza; Bahramali, Golnaz; Sadat, Seyed Mehdi; Siadat, Seyed Davar; Moloudian, Hamid; Nassiri Koopaei, Nasser; Bolhasani, Azam; Rahimi, Pooneh; Hekmat, Soheila; Davari, Mehdi; Aghasadeghi, Mohammad Reza
2015-05-01
HIV is commonly caused to a very complicated disease which has not any recognized vaccine, so designing and development of novel antiretroviral agents with specific application of nanomedicine is a globally interested research subject worldwide. In the current study, a novel structure of silver complexes with anionic linear globular dendrimer was synthesized, characterized and then assessed against HIV replication pathway in vitro as well. The results showed a very good yield of synthesis (up to 70%) for the nano-complex as well as a very potent significant (P < 0.05) antiretroviral activity with non-severe toxic effects in comparison with the Nevirapine as standard drug in positive control group. According to the present data, silver anionic linear globular dendrimers complex may have a promising future to inhibit replication of HIV viruse in clinical practice.
Gray Scale Image Compression Based on Wavelet Transform and Linear Prediction
Directory of Open Access Journals (Sweden)
Arya Devi P S
2012-02-01
Full Text Available Every year, several terabytes of image data- both medical and non medical- are engendered so that the requisition for image compression is substantiated. In this paper, the correlation properties of wavelets are harnessed in linear predictive coding to compress images. The image is decomposed using a one dimensional wavelet transform. The highest level wavelet transform coefficients and few detail coefficients in every level are retained. Using linear prediction on these coefficients the image is reconstructed. The prediction is done in both the dimensions, so the numbers of coefficients retained in detail subbands are less. With less predictors and samples from the original wavelet coefficients compression can be achieved. The results are appraised in objective and subjective manner with real world and medical images. The results are also verified on ModelFest database.
A Low-Complexity ESPRIT-Based DOA Estimation Method for Co-Prime Linear Arrays.
Sun, Fenggang; Gao, Bin; Chen, Lizhen; Lan, Peng
2016-01-01
The problem of direction-of-arrival (DOA) estimation is investigated for co-prime array, where the co-prime array consists of two uniform sparse linear subarrays with extended inter-element spacing. For each sparse subarray, true DOAs are mapped into several equivalent angles impinging on the traditional uniform linear array with half-wavelength spacing. Then, by applying the estimation of signal parameters via rotational invariance technique (ESPRIT), the equivalent DOAs are estimated, and the candidate DOAs are recovered according to the relationship among equivalent and true DOAs. Finally, the true DOAs are estimated by combining the results of the two subarrays. The proposed method achieves a better complexity-performance tradeoff as compared to other existing methods. PMID:27571079
Design of non-linear optical materials based on inorganic compounds
Lamberth, Curt.; Mingos, D. M. P.; Dr. Mike Mingos
1992-01-01
This Thesis is concerned with the prediction, synthesis, characterization and testing of inorganic materials for Second Harmonic Generation (SHG). Chapter One describes the fundamentals of non-linear optics, and poses the problems, and some of their solutions which confront the synthetic chemist and the theoretical prediction of the second order hyperpolarizability constant β using CNDOVSB calculations. Chapter Two describes the design, implementation and calibration of an a...
CUCKOO OPTIMIZATION ALGORITHM BASED DESIGN FOR LOW-SPEED LINEAR INDUCTION MOTOR
ZAYANDEHROODI, Hadi; NASRABADIAN, Alireza; ANOOSHEH, Roohollah
2015-01-01
Abstract. In these years, linear induction machines (LIMs) are widely used in rapid transportation applications and these machines achieve thrust directly without gear device, link or axial mechanism system. Furthermore LIMs have numerous other benefits such as not complex body and easy repairing. Unfortunately LMIs have big disadvantage: not good efficiency and weak power factor. These disadvantages cause high energy loss and a rise in input current value, and occupy transmission line capaci...
A linear programming based decision support aid for Navy enlisted strength planning
Rodgers, Philip D.
1991-01-01
Approved for public release; distribution is unlimited A multi-objective linear program (MOLP) using goal programming is developed as a decision support aid in determining optimal levels of those areas of Navy enlisted strength planning which are subject to centralized management control. Over a multi-year period these decisions include monthly inventories in each paygrade, monthly total inventories, monthly advancements in the top six paygrades, and monthly recruiting goals. The mod...
The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS
Institute of Scientific and Technical Information of China (English)
MUXiao-lan; SONGZhi-jian
2004-01-01
The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.
Energy Technology Data Exchange (ETDEWEB)
Brau, James E [Univ. of Oregon
2013-04-22
The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.
Sharma, K. K.; Jain, Heena
2013-01-01
The security of digital data including images has attracted more attention recently, and many different image encryption methods have been proposed in the literature for this purpose. In this paper, a new image encryption method using wavelet packet decomposition and discrete linear canonical transform is proposed. The use of wavelet packet decomposition and DLCT increases the key size significantly making the encryption more robust. Simulation results of the proposed technique are also presented.
A Multi-Objective Production Planning Problem Based on NeutrosophicLinear Programming Approach
Rittik Roy; Pintu Das
2015-01-01
Neutrosophic set is a powerful general formal framework that has been proposed in 1995 by Smarandache. The paper aims to give a computational algorithm to solve a multi-objective linear programming problem (MOLPP) using Neutrosophic optimization method. The developed algorithm has been illustrated by a production planning problem. We made a comparative study of optimal solution between intuitionistic fuzzy optimization and Neutrosophic optimization technique.
DEFF Research Database (Denmark)
Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars;
2010-01-01
Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large...... gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles....
Chen, G; de Figueiredo, R P
1993-01-01
The unified approach to optimal image interpolation problems presented provides a constructive procedure for finding explicit and closed-form optimal solutions to image interpolation problems when the type of interpolation can be either spatial or temporal-spatial. The unknown image is reconstructed from a finite set of sampled data in such a way that a mean-square error is minimized by first expressing the solution in terms of the reproducing kernel of a related Hilbert space, and then constructing this kernel using the fundamental solution of an induced linear partial differential equation, or the Green's function of the corresponding self-adjoint operator. It is proved that in most cases, closed-form fundamental solutions (or Green's functions) for the corresponding linear partial differential operators can be found in the general image reconstruction problem described by a first- or second-order linear partial differential operator. An efficient method for obtaining the corresponding closed-form fundamental solutions (or Green's functions) of the operators is presented. A computer simulation demonstrates the reconstruction procedure.
International Nuclear Information System (INIS)
Aim: To report the authors' experience with the administration of four gadolinium-based contrast agents (GBCA; gadopentetate dimeglumine, gadofosveset trisodium, gadoxetate disodium and gadobenate dimeglumine) in a large study population at a single, large academic medical centre. Materials and methods: The institutional review board approved this retrospective study in which data in the electronic incident reporting system were searched. A total of 194, 400 intravenous administrations of linear ionic GBCAs were assessed for the incidence of adverse reactions and risk factors from 1 January 2007 to 14 January 2014. The severity of reactions (mild, moderate, and severe), patient type (outpatients, inpatients, and emergency), examination type, and treatment options were also investigated. Results: In total, 204/194400 (0.1%) patients (mean age 45.7 ± 14.9) showed adverse reactions, consisting of 6/746 (0.80%), 10/3200 (0.31%), 14/6236 (0.22%) and 174/184218 (0.09%), for gadofosveset trisodium, gadoxetate disodium, gadobenate dimeglumine, and gadopentetate dimeglumine, respectively. An overall significant difference was found between different GBCAs regarding the total number of reactions (p < 0.0001). When comparing the GBCAs together, significant differences were found between gadofosveset trisodium versus gadopentetate dimeglumine (p < 0.0001), gadofosveset trisodium versus gadobenate dimeglumine (p = 0.0051), gadoxetate disodium versus gadopentetate dimeglumine (p < 0.0001) and gadopentetate dimeglumine versus gadobenate dimeglumine (p = 0.0013). Rate of reaction was higher in females (F: 146/113187, 0.13%/M: 58/81213, 0.07%; p < 0.0001). Rate of reactions was higher in outpatient (180/158885, 0.11%), emergency (10/10413, 0.10%), and inpatients (14/25102, 0.05%), respectively (p < 0.0001). Most of the patients had mild symptoms 171/204 (83.8%). Abdomen–pelvis, liver, and thoracic examinations had highest rates of reactions (0.17 versus 0
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Compared with the traditional rigid-plastic/rigid-viscoplastic(RP/RVP) FEM(based on iteration solution),RP/RVP FEM based on linear programming (LP) has some remarkable advantages,such as it's free of convergence problem and its convenience in contact,rigid zone,and friction force treatment.The numerical model of RP/RVP FEM based on LP for axisymmetrical metal forming simulation is studied,and some related key factors and its treatment methods in formulation of constraint condition are proposed.Some solution examples are provided to validate its accuracy and efficiency.
Institute of Scientific and Technical Information of China (English)
CHEN Chao; SHI Yunlai; CHEN Haipeng; ZHAO Chunsheng
2014-01-01
A novel linear ultrasonic motor based on d15 effect of piezoelectric materials was presented. The design idea aimed at the direct utilization of the shear-induced vibration modes of piezoelectric material. Firstly, the inherent electromechanical coupling mechanism of piezoelectric material was investigated, and shear vibration modes of a piezoelectric shear block was specially designed. A driving point’s elliptical trajectory induced by shear vibration modes was discussed. Then a dynamic model for the piezoelectric shear stator was established with finite element (FE) method to conduct the parametric optimal design. Finally, a prototype based on d15 converse piezoelectric effect is manufactured, and the modal experiment of piezoelectric stator was conducted with laser doppler vibrometer. The experimental results show that the calculated shear-induced vibration modes can be excited completely, and the new linear ultrasonic motor reaches a speed 118 mm/s at no-load, and maximal thrust 12.8 N.
Wei, Liansuo; Guo, Yuan
2013-04-01
Based on the principle of laser-linear array charge-coupled device (CCD) detection technology, a high accuracy nontouch on-line system for monitoring roller wear is brought forward. The principle and composition of the laser-linear array CCD detection system and the operation process were expatiated. Aiming at the errors of the roller's axes shifting during the detection process, compensating steps were adopted from the vertical and the parallel direction to the detection surface. This effectively enhanced the accuracy of the detection system. Experiments proved that the accuracy of the system could reach the demand of the practical production process. It provides a new method for high speed, accuracy, and automatic on-line monitoring of roller wear. r shapegear array CCD detection. A simulation-software program is also compiled based on this principle. By using this program, the I/O signals's data for this system is gained and the detection curves can be drawn automatically.
Ibáñez, Javier; Hernández, Vicente
2011-03-01
Differential Matrix Riccati Equations (DMREs) appear in several branches of science such as applied physics and engineering. For example, these equations play a fundamental role in control theory, optimal control, filtering and estimation, decoupling and order reduction, etc. In this paper a new method based on a theorem proved in this paper is described for solving DMREs by a piecewise-linearized approach. This method is applied for developing two block-oriented algorithms based on diagonal Padé approximants. MATLAB versions of the above algorithms are developed, comparing, under equal conditions, accuracy and computational costs with other piecewise-linearized algorithms implemented by the authors. Experimental results show the advantages of solving stiff or non-stiff DMREs by the implemented algorithms.
Liu, Ruiming; Li, Xuelong; Han, Lei; Meng, Jiao
2013-03-01
For a long time, tracking IR point targets is a great challenge task. We propose a tracking framework based on template matching combined with Kalman prediction. Firstly, a novel template matching method for detecting infrared point targets is presented. Different from the classic template matching, the projection coefficients obtained from principal component analysis are used as templates and the non-linear correlation coefficient is used to measure the matching degree. The non-linear correlation can capture the higher-order statistics. So the detection performance is improved greatly. Secondly, a framework of tracking point targets, based on the proposed detection method and Kalman prediction, is developed. Kalman prediction reduces the searching region for the detection method and, in turn, the detection method provides the more precise measurement for Kalman prediction. They bring out the best in each other. Results of experiments show that this framework is competent to track infrared point targets.
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
DEFF Research Database (Denmark)
Aili, David; Hansen, Martin Kalmar; Renzaho, Richard Fulgence;
2013-01-01
Polybenzimidazole is a highly hygroscopic polymer that can be doped with aqueous KOH to give a material with high ion conductivity in the 10−2Scm−1 range, which in combination with its low gas permeability makes it an interesting electrolyte material for alkaline water electrolysis. In this study...... on their linear counterpart. The technical feasibility of the membranes was evaluated by the preliminary water electrolysis tests showing performance comparable to that of commercially available cell separators with great potential of further improvement....
DEFF Research Database (Denmark)
Stoustrup, Jakob; Pommer, Christian; Kliem, Wolfhard
2015-01-01
This paper deals with two stability aspects of linear systems of the form Ix¨+Bx˙+Cx=0 given by the triple (I, B, C). A general transformation scheme is given for a structure and Jordan form preserving transformation of the triple. We investigate how a system can be transformed by suitable choices...... of the transformation parameters into a new system (I, B 1, C 1) with a symmetrizable matrix C 1. This procedure facilitates stability investigations. We also consider systems with a Hamiltonian spectrum which discloses marginal stability after a Jordan form preserving transformation....
Linear-contract Mechanisms Based on the Risk Preference of an Agent in a Supply Chain
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
With respect to different risk preference of an agent in a supply chain, linear-contract models are designed according to the principal-agent theory. The study shows that the risk preference of an agent directly correlates with the incentive compensation coefficient of principal, order quantity of principal and production capability level of the agent. The principal should offer an appropriate incentive contract according to the risk preference of the agent, or choose an agent holding a different risk preference to establish the supply chain.
Stable 1-Norm Error Minimization Based Linear Predictors for Speech Modeling
DEFF Research Database (Denmark)
Giacobello, Daniele; Christensen, Mads Græsbøll; Jensen, Tobias Lindstrøm;
2014-01-01
In linear prediction of speech, the 1-norm error minimization criterion has been shown to provide a valid alternative to the 2-norm minimization criterion. However, unlike 2-norm minimization, 1-norm minimization does not guarantee the stability of the corresponding all-pole filter and can generate...... minimization of the forward and backward prediction error, and the iteratively reweighted 2-norm minimization known to converge to the 1-norm minimization with an appropriate selection of weights. The evaluation gives proof of the effectiveness of the new methods, performing as well as unconstrained 1-norm...
Power vircathor based on iron-less linear induction electron accelerator
International Nuclear Information System (INIS)
The design of the power vircathor, representing a UHF generator on the virtual cathode basis, is described. The power vircathor is realized for the first time on the basis of an iron-less linear induction accelerator on the radial forming lines. The vircathor contains the coaxial cathode and anode, the gas-controlled discharge and the inductors unit. The results of computer modeling of the vircathor geometry and its experimental optimization are presented. The following vircathor parameters: the cathode current of 35 kA, the UHF pulse duration of 18 ns and the peak capacity above 500 MW are obtained in the course of the performed experiments
Faithful quantum entanglement sharing based on linear optics with additional qubits
Institute of Scientific and Technical Information of China (English)
Li Xi-Han; Duan Xiao-Jiao; Sheng Yu-Bo; Zhou Hong-Yu; Deng Fu-Guo
2009-01-01
This paper presents a scheme for faithfully distributing a pure entanglement between two parties over an arbitrary collective-noise channel with linear optics. The transmission is assisted by an additional qubit against collective noise.The receiver can take advantage of the time discrimination and the measurement results of the assistant qubit to reconstruct a pure entanglement with the sender. Although the scheme succeeds probabilistically,the resource used to get a pure entanglement state is finite,and so is easier to establish entanglement in practice than quantum entanglement purification.
Performance of MPGD-based TPC prototypes for the linear collider experiment
International Nuclear Information System (INIS)
We conducted a series of beam tests of prototype TPCs for the International Linear Collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in progress and some of the preliminary results obtained with GEMs and MicroMEGAS are presented along with our interpretation. Also given is the extrapolation of the obtained spatial resolution to that of a large TPC expected as the central tracker of the ILC experiment
Interpretation of the resonance Raman spectra of linear tetrapyrroles based on DFT calculations
Kneip, Christa; Hildebrandt, Peter; Németh, Károly; Mark, Franz; Schaffner, Kurt
1999-10-01
Raman spectra of linear methine-bridged tetrapyrroles in different conformational and protonation states were calculated on the basis of scaled force fields obtained by density functional theory. Results are reported for protonated phycocyanobilin in the extended ZZZasa configuration, as it is found in C-phycocyanin of cyanobacteria. The calculated spectra are in good agreement with experimental spectra of the protein-bound chromophore in the α-subunit of C-phycocyanin and allow a plausible and consistent assignment of most of the observed resonance Raman bands in the region between 1000 and 1700 cm -1.
Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm
Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng
2009-10-01
The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.
Institute of Scientific and Technical Information of China (English)
Wen Nuan; Dai Zibin; Zhang Yongfu
2006-01-01
In order to make the typical Montgomery's algorithm suitable for implementation on FPGA, a modified version is proposed and then a high-performance systolic linear array architecture is designed for RSA cryptosystem on the basis of the optimized algorithm. The proposed systolic array architecture has distinctive features, i.e. not only the computation speed is significantly fast but also the hardware overhead is drastically decreased. As a major practical result, the paper shows that it is possible to implement public-key cryptosystem at secure bit lengths on a single commercially available FPGA.
Energy Technology Data Exchange (ETDEWEB)
Stoustrup, Jakob; Pommer, Christian; Kliem, Wolfhard
2015-10-31
This paper deals with two stability aspects of linear systems of the form I ¨ x +B˙ x +Cx = 0 given by the triple (I;B;C). A general transformation scheme is given for a structure and Jordan form preserving transformation of the triple. We investigate how a system can be transformed by suitable choices of the transformation parameters into a new system (I;B1;C1) with a symmetrizable matrix C1. This procedure facilitates stability investigations. We also consider systems with a Hamiltonian spectrum which discloses marginal stability after a Jordan form preserving transformation.
Manipulating Deformable Linear Objects: Sensor-Based Fast Manipulation during Vibration
Yue, Shigang; Henrich, Dominik
2002-01-01
It is difficult for robots to handle a vibrating deformable object. Even for human beings it is a high-risk operation to, for example, insert a vibrating linear object into a small hole. However, fast manipulation using a robot arm is not just a dream; it may be achieved if some important features of the vibration are detected online. In this paper, we present an approach for fast manipulation using a force/torque sensor mounted on the robot's wrist. Template matching method is employed to re...
Bilevel linear programming model of charging for effluent based on price control
Institute of Scientific and Technical Information of China (English)
LI Yu-hua; LI Lei; HU Yun-quan; SHAO Hai-hong
2007-01-01
For the optimum price problem of charging for effluent, this paper analyzes the optimal Pigovian Tax and the serious information asymmetry problem existing in the application process of optimal Pigovian Tax,which is predominant in theory. Then the bilevel system optimizing decision-making theory is applied to give bilevel linear programming decision-making model of charging for effluent, in which the government (environmental protection agency) acts as the upper level decision-making unit and the polluting enterprises act as the lower level decision-making unit. To some extent, the model avoids the serious information asymmetry between the government and the polluting enterprises on charging for effluent.
Graphene-based Q-switched pulsed fiber laser in a linear configuration
Institute of Scientific and Technical Information of China (English)
Y. K. Yap; Richard M. De La Rue; C. H. Pua; S. W. Harun; H. Ahmad
2012-01-01
A pulsed laser system is realized with graphene employed as a Q-switch.The graphene is exfoliated from its solution using an optical deposition and the optical tweezer effect.A fiber ferrule that already has the graphene deposited on it is inserted into an erbium-ytterbium laser (EYL) system with linear cavity configuration.We successfully demonstrate a pulsed EYL with a pulse duration of approximately 5.9 μs and a repetition rate of 20.0 kHz.
Observer-based output feedback control of discrete-time linear systems with input and output delays
Zhou, Bin
2014-11-01
In this paper, we study observer-based output feedback control of discrete-time linear systems with both multiple input and output delays. By generalising our recently developed truncated predictor feedback approach for state feedback stabilisation of discrete-time time-delay systems to the design of observer-based output feedback, two types of observer-based output feedback controllers, one being memory and the other memoryless, are constructed. Both full-order and reduced-order observer-based controllers are established in both the memory and memoryless schemes. It is shown that the separation principle holds for the memory observer-based output feedback controllers, but does not hold for the memoryless ones. We further show that the proposed observer-based output feedback controllers solve both the l2 and l∞ semi-global stabilisation problems. A numerical example is given to illustrate the effectiveness of the proposed approaches.
Blended General Linear Methods based on Boundary Value Methods in the GBDF family
Brugnano, Luigi
2010-01-01
Among the methods for solving ODE-IVPs, the class of General Linear Methods (GLMs) is able to encompass most of them, ranging from Linear Multistep Formulae (LMF) to RK formulae. Moreover, it is possible to obtain methods able to overcome typical drawbacks of the previous classes of methods. For example, order barriers for stable LMF and the problem of order reduction for RK methods. Nevertheless, these goals are usually achieved at the price of a higher computational cost. Consequently, many efforts have been made in order to derive GLMs with particular features, to be exploited for their efficient implementation. In recent years, the derivation of GLMs from particular Boundary Value Methods (BVMs), namely the family of Generalized BDF (GBDF), has been proposed for the numerical solution of stiff ODE-IVPs. In particular, this approach has been recently developed, resulting in a new family of L-stable GLMs of arbitrarily high order, whose theory is here completed and fully worked-out. Moreover, for each one o...
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)
1996-05-01
In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.
Directory of Open Access Journals (Sweden)
Páez-Borrallo José M
2006-01-01
Full Text Available Location estimation is a recent interesting research area that 0exploits the possibilities of modern communication technology. In this paper, we present a new location system for wireless networks that is especially suitable for indoor terminal-based architectures, as it improves both the speed and the memory requirements. The algorithm is based on the application of linear discriminant functions and Markovian models and its performance has been compared with other systems presented in the literature. Simulation results show a very good performance in reducing the computing time and memory space and displaying an adequate behavior under conditions of few a priori calibration points per position.
Improvement of CPU time of Linear Discriminant Function based on MNM criterion by IP
Directory of Open Access Journals (Sweden)
Shuichi Shinmura
2014-05-01
Full Text Available Revised IP-OLDF (optimal linear discriminant function by integer programming is a linear discriminant function to minimize the number of misclassifications (NM of training samples by integer programming (IP. However, IP requires large computation (CPU time. In this paper, it is proposed how to reduce CPU time by using linear programming (LP. In the first phase, Revised LP-OLDF is applied to all cases, and all cases are categorized into two groups: those that are classified correctly or those that are not classified by support vectors (SVs. In the second phase, Revised IP-OLDF is applied to the misclassified cases by SVs. This method is called Revised IPLP-OLDF.In this research, it is evaluated whether NM of Revised IPLP-OLDF is good estimate of the minimum number of misclassifications (MNM by Revised IP-OLDF. Four kinds of the real data—Iris data, Swiss bank note data, student data, and CPD data—are used as training samples. Four kinds of 20,000 re-sampling cases generated from these data are used as the evaluation samples. There are a total of 149 models of all combinations of independent variables by these data. NMs and CPU times of the 149 models are compared with Revised IPLP-OLDF and Revised IP-OLDF. The following results are obtained: 1 Revised IPLP-OLDF significantly improves CPU time. 2 In the case of training samples, all 149 NMs of Revised IPLP-OLDF are equal to the MNM of Revised IP-OLDF. 3 In the case of evaluation samples, most NMs of Revised IPLP-OLDF are equal to NM of Revised IP-OLDF. 4 Generalization abilities of both discriminant functions are concluded to be high, because the difference between the error rates of training and evaluation samples are almost within 2%. Therefore, Revised IPLP-OLDF is recommended for the analysis of big data instead of Revised IP-OLDF. Next, Revised IPLP-OLDF is compared with LDF and logistic regression by 100-fold cross validation using 100 re-sampling samples. Means of error rates of
Domnisoru, L.; Modiga, A.; Gasparotti, C.
2016-08-01
At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.
Microcontroller-based intelligent low-cost-linear-sensor-camera for general edge detection
Hussmann, Stephan; Justen, Detlef
1997-09-01
With this paper we would like to present an intelligent low- cost-camera. Intelligent means that a microcontroller does all the controlling and provides several in- and outputs. The camera is a stand-alone system. The basic element of the camera is a linear sensor that consists of a photodiode array (PDA). In comparison with standard CCD-chips this type of sensor is a low cost component and its operation is very simple. Furthermore this paper shows the mechanical, electrical and electro-optical differences between CCD- and PDA-sensors. So the reader will be able to choose the right sensor for a particular task. Two cases of industrial applications are listed at the end of this paper.
Fundamental approaches to PWM control based GTO inverters for linear synchronous motor drives
Energy Technology Data Exchange (ETDEWEB)
Tadakuma, S.; Tanaka, S.; Miura, K.; Inokuchi, H.; Ikeda, H. (Toshiba Corp., Tokyo (Japan))
1992-01-01
In order to reply to the forthcoming program of magnetically levitated trains, new pulse width modulated (PWM) inverters for linear synchronous motor (LSM) drives instead of the cycloconverter have been developed. Changing from the cycloconverter to the PWM inverter is really drastic. Accordingly, it was considered that reactive power and harmonics to transmission line must be reduced by using self-excited commutation instead of source commutation. At first, a half bridge (HB) and full bridges (FB) combined system with output transformer were constructed. Secondly, a control procedure for reducing voltage harmonics and preventing magnetic saturation of output transformers was proposed. Finally. a case for neutral point clamped (NPC) inverters was considered and compared with the HB/FB ones. It was considered whether HB/FB or NPC is suitable for magnetically levitated vehicles depends on the capacity. 8 refs., 12 figs., 1 tab.
Wind turbine fatigue damage evaluation based on a linear model and a spectral method
DEFF Research Database (Denmark)
Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig;
2015-01-01
presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high-order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied to...... power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time...... with the presented method are less dependent on the turbulent wind realization; therefore, less turbulence seeds are required compared with time-domain simulations to remove the dependency on the wind realization used to estimate loads. Copyright © 2015 John Wiley & Sons, Ltd....
Energy Technology Data Exchange (ETDEWEB)
Li Guoyu; Li Yan [Institute of Information Engineering, Handan College, Handan, 056005 (China); Zhao Peng, E-mail: guoyu_li@yahoo.cn [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)
2011-02-01
In optical frequency domain reflectometry (OFDR) system, the spatial resolution is obtained by using the total frequency-sweep span of the tunable laser. However, in practice, the spatial resolution is severely limited by nonlinearity in the lightwave-frequency sweep of the tunable laser. A closed-loop PZT modulated DBR linear fiber laser is proposed to improve the spatial resolution of the OFDR system. Experimental results show that the spatial resolution of OFDR system has improved greatly. When the frequency sweep excursion is 66GHz and the fiber under test (FUT) is 7 m, the OFDR system has a spatial resolution of 1.5 m with open-loop PZT modulated laser. But the spatial resolution increases to 35 cm with closed-loop PZT modulated laser.
International Nuclear Information System (INIS)
The results of studies on relativistic SHF-generators - orotron and gyrotron for obtaining data on the quality of a high-current electron beam shaped in the section of a linear induction accelerator are given. Axisymmetric resonators as sections of weak-irregular waveguides were used in both generators. Stable generation of short-wave radiation of 15-20 MW at the efficiency of 5-7% SHF pulse duration of 50 ns was obtained in the orotron at the wave length of 8.5 mm and current of 600 A. Stable generation of 7-10 MW SHF-radiation at the efficiency of 3-5% and pulse duration of 150 ns was observed in the gyrotron at the wave length of 12 mm. Under further acceleration in the following sections of the accelerator the electron beam may be used for obtaining radiation of shorter waves
Shrivastava, Purva; Rao, T. Rama
2016-09-01
The performance of wireless communication systems is predominantly dependent on propagation environment and respective radiating antennas. Due to the shorter wavelength at millimeter wave (MmW) frequencies, the propagation loss through the objects in indoor environments is typically very high. To improve the channel capacity and to reduce inter-user interference, a high gain directional antenna is desired at MmW frequencies. Traditional antennas used in MmW devices are not suitable for low-cost commercial devices due to their heavy and bulky configurations. This paper focuses on design and development of a very compact (44.61 × 9.93 × 0.381 mm) high gain antipodal linear tapered slot antenna (ALTSA) utilizing substrate integrated waveguide (SIW) technology at 60 GHz. Received signal strength (RSS), path loss, and capacity are studied for MmW indoor applications utilizing ALTSA with radio frequency (RF) measurement equipment in narrow hallway environment.
Institute of Scientific and Technical Information of China (English)
刘鹏; 孙凤举; 魏浩; 王志国; 尹佳辉; 邱爱慈
2012-01-01
A whole circuit model of a linear transformer drivers （LTD） module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of LTDs. In the model, each brick in each cavity is capable of operating with jitter in its switch. Additionally, the manner of triggering cables entering into cavities was considered. The performances of the LTD module operating with three typical cavity-triggering sequences were simulated and the simulation results indicate that switching jitter affects slightly the peak and starting time of the output current pulse. However, the enhancement in switching jitter would significantly lengthen the rise time of the output current pulse. Without considering other factors, a jitter lower than 10 ns may be necessary for the switches in the LTD module to provide output current parameters with an acceptable deviation.
Linear SVM-Based Android Malware Detection for Reliable IoT Services
Directory of Open Access Journals (Sweden)
Hyo-Sik Ham
2014-01-01
Full Text Available Current many Internet of Things (IoT services are monitored and controlled through smartphone applications. By combining IoT with smartphones, many convenient IoT services have been provided to users. However, there are adverse underlying effects in such services including invasion of privacy and information leakage. In most cases, mobile devices have become cluttered with important personal user information as various services and contents are provided through them. Accordingly, attackers are expanding the scope of their attacks beyond the existing PC and Internet environment into mobile devices. In this paper, we apply a linear support vector machine (SVM to detect Android malware and compare the malware detection performance of SVM with that of other machine learning classifiers. Through experimental validation, we show that the SVM outperforms other machine learning classifiers.
CONTROL SYSTEM OF MAGNETIC BEARINGS BASED ON LINEAR QUADRATIC METHOD OF OPTIMAL CONTROL STRATEGY
Institute of Scientific and Technical Information of China (English)
Zhu Huangqiu
2005-01-01
A state equation for radical 4-degree-of-freedom active magnetic bearings is built, and the approach on how to use linear quadratic method of optical control theory to design a centralized and decentralized parameters control system is introduced, and also Matlab language is used to simulate and analyze. The simulation results have proved that the differences are small between centralized parameters and decentralized parameters control system. The conclusions of experiments have shown that decentralized controllers designed from optimal state feedback theory meet the requirements of active magnetic bearing system. The vibration amplitude of the rotor is about 20 μm when the speed of the rotor runs between 0 to 60 000 r/min. This method may be used in the study and design of controllers of magnetic bearings.
Asadi, Roya; Sulaiman, Nasir
2009-01-01
Learning is the important property of Back Propagation Network (BPN) and finding the suitable weights and thresholds during training in order to improve training time as well as achieve high accuracy. Currently, data pre-processing such as dimension reduction input values and pre-training are the contributing factors in developing efficient techniques for reducing training time with high accuracy and initialization of the weights is the important issue which is random and creates paradox, and leads to low accuracy with high training time. One good data preprocessing technique for accelerating BPN classification is dimension reduction technique but it has problem of missing data. In this paper, we study current pre-training techniques and new preprocessing technique called Potential Weight Linear Analysis (PWLA) which combines normalization, dimension reduction input values and pre-training. In PWLA, the first data preprocessing is performed for generating normalized input values and then applying them by pre-...
Methodology and applications in non-linear model-based geostatistics
DEFF Research Database (Denmark)
Christensen, Ole Fredslund
Today geostatistics is used in a number of research areas, among others agricultural and environmental sciences.This thesis concerns data and applications where the classical Gaussian spatial model is not appropriate. A transformation could be used in an attempt to obtain data that are approximat......Today geostatistics is used in a number of research areas, among others agricultural and environmental sciences.This thesis concerns data and applications where the classical Gaussian spatial model is not appropriate. A transformation could be used in an attempt to obtain data....... Conditioned by an underlying and unobserved Gaussian process the observations at the measured locations follow a generalised linear model. Concerning inference Markov chain Monte Carlo methods are used. The study of these models is the main topic of the thesis. Construction of priors, and the use of flat...