WorldWideScience

Sample records for based inspection techniques

  1. CANDU in-reactor quantitative visual-based inspection techniques

    Science.gov (United States)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  2. Study on in-vessel ISI for JOYO. Laser based ultra sonic non-destructive inspection and manipulation technique

    International Nuclear Information System (INIS)

    This report describes the feasibility study on the in-vessel inspection technique to be applied for the experimental fast reactor JOYO. Since JOYO is a sodium cooled fast reactor and the core structure components are in high temperature and fast neutron irradiation environment, material strength yields to decrease due to heat fatigue and irradiation induced embrittlement. The present surveillance method of testing structural material mechanical property, monitoring subassembly outlet temperature and sodium leak monitoring are not sufficient to detect abnormalities with a small crack. Therefore, the direct inspection method to confirm the core structure integrity needs to be developed considering the recent innovative technology. Since the core structure has a complicated form and components under sodium are not visible, the manipulator technology is essential which has various positioning functions. The core support plate was selected to be an important inspection item, and the method which combines ultrasonic non-destructive inspection technology and manipulator technology was examined. As a result, the concept of core support plate inspection equipment under sodium condition was obtained by contacting ultrasonic sensor from inner side of the core support plate. Another concept was examined by applying laser based ultrasonic inspection technology. This method has advantage of remote control operation because of no-contacting inspection and it was confirmed to be feasible for JOYO in-vessel inspection method from viewpoint of defective detection accuracy and laser transmission ability by means of fiber cable. This is promising for in-vessel inspection without sodium draining. Based on this study, the development of in-vessel inspection equipment is continued and the proto-type will be demonstrated in JOYO. (author)

  3. a Holistic Approach for Inspection of Civil Infrastructures Based on Computer Vision Techniques

    Science.gov (United States)

    Stentoumis, C.; Protopapadakis, E.; Doulamis, A.; Doulamis, N.

    2016-06-01

    In this work, it is examined the 2D recognition and 3D modelling of concrete tunnel cracks, through visual cues. At the time being, the structural integrity inspection of large-scale infrastructures is mainly performed through visual observations by human inspectors, who identify structural defects, rate them and, then, categorize their severity. The described approach targets at minimum human intervention, for autonomous inspection of civil infrastructures. The shortfalls of existing approaches in crack assessment are being addressed by proposing a novel detection scheme. Although efforts have been made in the field, synergies among proposed techniques are still missing. The holistic approach of this paper exploits the state of the art techniques of pattern recognition and stereo-matching, in order to build accurate 3D crack models. The innovation lies in the hybrid approach for the CNN detector initialization, and the use of the modified census transformation for stereo matching along with a binary fusion of two state-of-the-art optimization schemes. The described approach manages to deal with images of harsh radiometry, along with severe radiometric differences in the stereo pair. The effectiveness of this workflow is evaluated on a real dataset gathered in highway and railway tunnels. What is promising is that the computer vision workflow described in this work can be transferred, with adaptations of course, to other infrastructure such as pipelines, bridges and large industrial facilities that are in the need of continuous state assessment during their operational life cycle.

  4. Inspection and Monitoring Techniques for Power Lines

    Institute of Scientific and Technical Information of China (English)

    DAI Kaoshan; CHEN Shenen

    2011-01-01

    Structural assessment is prerequisite for proper maintenance of civil infrastructure.In the begining of this paper, modern inspection and monitoring methods are briefly reviewed.Experiences in applying imagebased methods for highway bridge inspection are described shortly afterward.Studies are then extended to explore technologies for power delivery infrastructure evaluation.Typical power line components are first introduced.Structural analyses show complicated coupling phenomena in the power line system; and its vulnerability is intensified by extreme environment or human induced events.As a main interest, the state-of-art of power line inspection is summarized.Both visual observations and inspections assisted with novel techniques are presented.Real time monitoring of the power line is also investigated in this paper.Technologies that have potentials for monitoring power cables, insulators, and support structures are identified.A conceptual integrated design is proposed by the authors through combining innovative inspection with promising monitoring methods to ensure a sustainable, smart power line.

  5. Nondestructive evaluation techniques for enhanced bridge inspection

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.; Benson, S.; Durbin, P.; Del Grande, N.; Haskins, J.; Brown, A.; Schneberk, D.

    1993-10-01

    Nondestructive evaluation of bridges is a critical aspect in the US aging infrastructure problem. For example in California there are 26,000 bridges, 3000 are made of steel, and of the steel bridges, 1000 are fracture critical. California Department of Transportation (Caltrans), Federal Highway Administration, and Lawrence Livermore National Laboratory (LLNL) are collaborating to develop and field NDE techniques to improve bridge inspections. We have demonstrated our NDE technologies on several bridge inspection applications. An early collaboration was to ultrasonically evaluate the steel pins in the E-9 pier on the San Francisco Bay Bridge. Following the Loma-Prieta earthquake in 1989 and the road way collapse at the E-9 pier, a complete nondestructive evaluation was conducted by Caltrans inspectors and several ultrasonic indications were noted. LLNL worked with Caltrans to help identify the source of these reflections. Another project was to digitally enhance high energy radiographs of bridge components such as cable end caps. We demonstrated our ability to improve the detection of corrosion and fiber breakage inside the end cap. An extension of this technology is limited view computer tomography (CT). We implemented our limited view CT software and produced cross-sectional views of bridge cables from digitized radiographic films. Most recently, we are developing dual band infrared imaging techniques to assess bridge decks for delaminations. We have demonstrated the potential of our NDE technology for enhancing the inspection of the country`s aging bridges.

  6. A Comparative Study of Inspection Techniques for Array Packages

    Science.gov (United States)

    Mohammed, Jelila; Green, Christopher

    2008-01-01

    This viewgraph presentation reviews the inspection techniques for Column Grid Array (CGA) packages. The CGA is a method of chip scale packaging using high temperature solder columns to attach part to board. It is becoming more popular over other techniques (i.e. quad flat pack (QFP) or ball grid array (BGA)). However there are environmental stresses and workmanship challenges that require good inspection techniques for these packages.

  7. Proposal for inclusion of the risk based inspection technique in Regulatory Standard NR 13; Proposta de inclusao da tecnica de inspecao baseada em risco na Norma Regulamentadora NR 13

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Vinicius Teixeira; Lima, Marco Aurelio Oliveira [Det Norske Veritas Ltda. (DNV), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    In Brazil, the Regulatory Standard n. 13 (NR 13) establishes requirements for the inspection of boilers and pressure vessels which has main objective of preventing accidents with these types of equipment. Additionally, it has the Risk-Based Inspection (RBI) technique as an effective way to manage the mechanical integrity of various types of static mechanical equipment by through an inspection planning based on the risk factor. In this study, it is being proposed to include the RBI technique, in the NR 13, for the planning and definition of periods for the safety inspection of boilers and pressure vessels in order to promote an increase in the operational safety in process industries in Brazil. In this study it was carried out a critical analysis of NR 13 and RBI, and beyond that a bibliographic research of various international documents that relate the operational safety of pressurized equipment with the inspection activity, and the acceptability of RBI by governments, agencies and organizations around the world. It is considered that the inclusion and formal acceptance of RBI technique in the NR 13 must be accompanied by a rigorous control to avoid the 'trivialization' of its use and ensure the implementation rational, efficient and reliable. Finally, it was developed and suggested basic elements and minimum requirements to be inserted in the NR 13, to be attended, in order mandatory, by the companies that choose the implementation and use of the RBI technique as a tool for the planning of safety inspection of boilers and pressure vessels. It is concluded that the formal acceptance of the RBI technique in the NR 13 could aggregate much value to this standard, with regard to the prevention of accidents involving boilers or pressure vessels, and provide a technological jump to the companies that make use of RBI technique in Brazil. (author)

  8. Defect sizing using automated ultrasonic inspection techniques at RNL

    International Nuclear Information System (INIS)

    RNL has developed and applied automated wide-beam pulse-echo and time-of-flight techniques with synthetic aperture processing for sizing defects in clad thick-section weldments and nozzle corner regions. These techniques were amongst those used in the four test plate inspections making up the UKAEA Defect Detection Trials. In this report a critical appraisal is given of the sizing procedures adopted by RNL in these inspections. Several factors influencing sizing accuracy are discussed and results from particular defects highlighted. The time-of-flight technique with colour graphics data display is shown to be highly effective in imaging near-vertical buried defects and underclad defects of height greater than 5 mm. Early characterisation of any identified defect from its ultrasonic response under pulse-echo inspection is seen as a desirable aid to the selection of an appropriate advanced sizing technique for buried defects. (author)

  9. In-service inspection techniques for PWR steam generator feedwater and pressuriser nozzles

    International Nuclear Information System (INIS)

    Regular ultrasonic inspection of the steam generator feedwater and pressuriser nozzles of the Sizewell B Pressurised Water Reactor, under construction by the Central Electricity Generating Board (CEGB), will be carried out to detect and size any service-induced cracking in the nozzle corners and bores. External access only will be available for such inspections and, to achieve full inspection coverage, it may be necessary to scan probes under the outer blend radius and adjacent surfaces of each nozzle. As part of the PWR Safety Research Programme being conducted collaboratively by CEGB and the United Kingdom Atomic Energy Authority (UKAEA) in the UK, Risley Laboratories have been developing automated ultrasonic techniques to meet the stringent inspection standards demanded for these components. The geometrical complexity of the inspection has necessitated the use of mathematical modelling to optimise inspection techniques and coverage. Computer-based data collection, display and analysis methods have been developed for the combined pulse-echo and time-of-flight diffraction techniques selected for these inspections. In this paper, the development work performed at Risley is reviewed and examples of the application of the inspection techniques to simulated service-induced defects in full-scale test specimens presented. Work on the related problem of cracking in BWR nozzles (ref.1) has demonstrated detection capability but not accurate sizing. However sizing of defects in the nozzle corner areas has been achieved in this programme with the use of advanced reconstruction methods. (author)

  10. Codified Risk Based Inspection Planning

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, M.H.

    2002-01-01

    and member failure and at the same time minimizing overall total service life costs. Generic inspections plans can then be established for representative fatigue sensitive details in terms of characteristics such as FDF (Fatigue Design Factor), detail type, RSR (Reserve Strength Ratio) given fatigue failure...

  11. Inspection of reinforced concrete samples by Compton backscattering technique

    Science.gov (United States)

    Boldo, E. M.; Appoloni, C. R.

    2014-02-01

    Reinforced concrete structures require frequent monitoring to ensure the concrete quality during its service life and for evaluation of in situ existing conditions. Compton backscattering of gamma rays is a nondestructive technique used for material characterization and detection of defects and inclusions in materials and can be employed on reinforced concrete. The methodology allows one-sided inspection of large structures, is relatively inexpensive and can be portable. The concept is based on detection of backscattered radiation produced from a collimated beam aimed at the sample. By measuring the spectrum of these scattered gamma rays it is possible to determine local density perturbations. In this work we used the Compton backscattering technique to locate and measure steel, defects and crushed stone inside concrete. The samples were irradiated with gamma rays from a Ø2 mm diameter collimated 241Am (100 mCi) source and the inelastically scattered photons were recorded at an angle of 135° by a high resolution CdTe semiconductor detector. Scanning was achieved by lateral movement of the sample blocks across the source and detector field of view in steps of 1 mm. A previous optimization of the experimental setup was performed with Monte Carlo simulation. The results showed that it was possible to locate inclusions and defects with Ø8 mm positioned at a depth of 20 mm below the surface of the sample. It was observed that aggregates such as crushed stone could mask defects at specific points due to high attenuation of the incident and scattered beam.

  12. In-vessel visual inspection system using super resolution technique

    International Nuclear Information System (INIS)

    In-Vessel Visual Inspection (IVVI) is usually conducted as indirect visual inspection with remote TV cameras. We often face the following issues in IVVI. When IVVI is conducted at narrow space in the vessel, it is difficult for inspectors to set the cameras to the best position remotely and manually. When the cameras are quickly moved to reduce hours of IVVI, the visibility becomes poor because of motion blurs. For overcoming these problems, we focused on 'Super Resolution (SR)' that is one of image processing techniques and developed a prototype system to perform the SR in IVVI. This SR technique can enhance the resolution of images with software without expensive hardware. This report shows the overview of the prototype system and its evaluation. (author)

  13. Development of FBR visual inspection technique in sodium

    International Nuclear Information System (INIS)

    Because the reactor vessel of Fast Breeder Reactor is filled with opaque liquid sodium, it is expected to develop an acoustic visual inspection technique in sodium. The acoustic 3 dimensional image processing technique and the elemental parts of the visual inspection equipment in sodium have been developed at the first stage of the in-sodium visual inspection technique development. The cross correlation processing has been applied to improve the S/N ratio in the acoustic echo that are deteriorated by wetting in sodium and the low sensitivity that are also deteriorated by rather smaller diameter to integrate the high density multiple acoustic sensors. The improvement of S/N ratio has been realized by the cross correlation between acoustic echo data that is reflected from the objects and M-series continuous wave that is transmitted from the acoustic transducer. The high speed parallel processing circuits, in which DSPs (Digital Signal Processors) are included, have been developed to realize high speed processing by employing (the circuits connected to) each of sensors in parallel. Synthetic Aperture Focussing Technique (SAFT) has been applied to the acoustic 3-dimensional image processing. The amounts of ellipsoids must be drawn into the 3-dimensional memory to compose the 3-dimensional image by SAFT. Then, a high performance work-station has been employed to deal with enormous data to compose the acoustic 3 dimensional image. Motors and cables, which can be operated under the condition of high-temperature and high-radiation environment, have been developed as the parts of the manipulator which will be used for visual inspection equipment in sodium. A prototype drive mechanism consists of the manipulator with three joints and a scanner with an arrayed acoustic sensors which a sweeps in fan-shape mechanically. The manipulatory type prototype drive mechanism and the signal processing device have been developed and tested, and the acoustic 3-dimensional image of pyramid

  14. Development of magnetographic technique for inspecting containment welds through coatings

    International Nuclear Information System (INIS)

    The magnetographic technique was investigated for NDE of containment welds without removing paint. This technique used a magnetic yoke to magnetize a localized region of the steel containment; the leakage field from a flaw was transferred to magnetic tape placed on the containment surface and subsequently read either by means of a magnetic field sensor scanned over the tape or by the visual indications on the tape. Four specimen configurations were fabricated for the experimental evaluations. The first, a flat-plate specimen containing electric discharge machined (EDM) notches, was fabricated for initial evaluations. The three others that contained cracks consisted of one welded flat plate and two simulated containment structures representing, respectively, the longitudinal and circumferential welds in the containment wall and the 90 degree angle encountered at the base of the containment and penetrations. During the project, two types of tape were investigated, magnetic recording and Magnafilm, a tape-like material designed to produce a permanent visual indication of the magnetic leakage field from a flaw. The results show that although the magnetic recording tape did not provide sufficient sensitivity, an inspection using Magnafilm visual indications appears suitable. The latter can reliably detect containment weld cracks 6mm long through paint thicknesses up to 0.23mm and cracks longer than 6mm through paint thicknesses up to 0.38mm. Detection of cracks 6mm long through paint 0.38mm thick can be achieved by scanning the Magnafilm with a magnetic tape head; however, this approach will also tend to produce more false indications

  15. Inspection of an artificial heart by the neutron radiography technique

    CERN Document Server

    Pugliesi, R; Andrade, M L G; Menezes, M O; Pereira, M A S; Maizato, M J S

    1999-01-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process.

  16. Vibrational Based Inspection Of A Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination of accep......The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination...

  17. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    Science.gov (United States)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  18. Vibrational Based Inspection of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Rytter, Anders

    at the University of Aalborg from 1988 to 1991. Secondly, a research project, In-Field Vibration Based Inspection of Civil Engineering Structures, which has been performed as a pilot project by the Consulting Engineers Rambøll, Hannemann and Højlund in cooperation with the department of Building Technology...

  19. Leather inspection based on wavelets

    OpenAIRE

    Sobral, João Luís Ferreira

    2005-01-01

    This paper presents a new methodology to detect leather defects, based on the wavelet transform. The methodology uses a bank of optimised filters, where each filter is tuned to one defect type. Filter shape and wavelet sub-band are selected based the maximisation of the ratio between features values on defect regions and on normal regions. The proposed methodology can detect defects even when small features variations are present, which are not detect by generic texture classification techniq...

  20. Development of visual inspection technique under sodium in FBR

    International Nuclear Information System (INIS)

    The reactor vessel of a fast breeder reactor (FBR) is filled with optically opaque liquid sodium. Therefore, the ultrasonic imaging technique is useful for inspecting in-vessel structures in sodium. We have developed a high-speed and high-resolution three-dimensional image processing technique. For imaging in the sodium, a two-dimensional matrix transducer and the M-series transmitting signal were used. Cross-correlation processing between the transmitted signal and received signal was used to enhance the S/N ratio. Image synthesis also attempts enhancement of resolution by means of the synthetic aperture focusing (SAFT). It has been confirmed that clear and high-resolution three-dimensional ultrasonic images are acquired at a distance of 0.8m in the in-water visualizing test. (author)

  1. Inspection of pipeline girth welds with ultrasonic phased array technique

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased array derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.

  2. Inspection-Repair based Availability Optimization of Distribution Systems using Teaching Learning based Optimization

    Science.gov (United States)

    Tiwary, Aditya; Arya, L. D.; Arya, Rajesh; Choube, S. C.

    2016-09-01

    This paper describes a technique for optimizing inspection and repair based availability of distribution systems. Optimum duration between two inspections has been obtained for each feeder section with respect to cost function and subject to satisfaction of availability at each load point. Teaching learning based optimization has been used for availability optimization. The developed algorithm has been implemented on radial and meshed distribution systems. The result obtained has been compared with those obtained with differential evolution.

  3. Use of artificial intelligence techniques for visual inspection systems prototyping. Application to magnetoscopy

    International Nuclear Information System (INIS)

    The automation of visual inspection is a complex task that requires collaboration between experts, for example inspection specialist, vision specialist. on-line operators. Solving such problems through prototyping promotes this collaboration: the use of a non specific programming environment allows rapid, concrete checking of method validity, thus leading incrementally to the final system. In this context, artificial intelligence techniques permit easy, extensible, and modular design of the prototype, together with heuristic solution building. We define and achieve the SPOR prototyping environment, based on object-oriented programming and rules-basis managing. The feasibility and the validity of an heuristic method for automated visual inspection in fluoroscopy have been proved through prototyping in SPOR. (author)

  4. Principles and status of neutron-based inspection technologies

    Science.gov (United States)

    Gozani, Tsahi

    2011-06-01

    Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally

  5. In service inspection of pipes based on risk methods

    International Nuclear Information System (INIS)

    The politics of the Nuclear Regulatory Commission (by its initials in English NRC) of the United States of America on the use of the Probabilistic Safety Analysis (PSA) in activities of nuclear regulation it foments the use of this analysis technique to improve the decisions making, to reduce the unnecessary work in maintenance aspects, inspection and tests and to improve the regulatory efficiency. The inspection programs in service (ISI by its initials in English) developed by the American Society of Mechanical Engineers (by its initials in English ASME) it has been the one primary mechanism to prove the mechanical equipment in plants of nuclear energy, these programs indeed have been carried out in plants of nuclear energy by more of two decades. Their purpose is to identify the conditions, such as indications of cracks that are precursory of flights and ruptures which violate the integrity principles of the pressure frontier. The inspection in service activities include ultrasonic tests, surface tests and penetrating liquids test, also activities that include the scaffolds construction, removal of insulations and welding polishing. The inspections in service every 18 months during the times outside of service are executed. One of the objectives is to lower the costs of the inspections during the times outside of service and to reduce the exposure to the radiation by part of the personnel during these times out for inspections, while it is increased or it maintains the personnel's safety and the reliability. As part of the methodology a pipe segment is selected for which a fault in any point has the same consequences, being calculated the fault probability of the tube using the dimensions of the segment. In this work the inspection in service methodology is applied based on risk to an aspersion system of low pressure of the Laguna Verde Nucleo electric Central. For this system a reduction in the number of welding to inspect of 103 to only 15 is obtained

  6. Application of ultrasonic phased array technique for inspection of stud bolts in nuclear reactor vessel

    International Nuclear Information System (INIS)

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Cracks initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It take too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signal reflected from every thread. In this study, the advanced ultrasonic phased array technique was introduced for inspect stud bolts. The phased array technique provide fast inspection and high detectability of defects. There are sector scanning and linear scanning method in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated.

  7. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Lee, Jae Han

    2007-02-15

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification.

  8. Reliability-Based Inspection Planning for Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1993-01-01

    A general model for reliability-based optimal inspection and repair strategies for structural systems is described. The total expected costs in the design lifetime is minimized with the number of inspections, the inspection times and efforts as decision variables. The equivalence of this model...... with a preposterior analysis from statistical decision theory is discussed. It is described how information obtained by an inspection can be used in a repair decision. Stochastic models for inspection, measurement and repair actions are presented. The general model is applied for inspection and repair planning...

  9. Coke drums inspection and evaluation using stress and strain analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Marcio Issamu [Tricom Tecnologia e Servicos de Manutencao Industrial Ltda., Piquete, SP (Brazil); Samman, Mahmod [Houston Engineering Solutions, Houston, TX (United States); Tinoco, Ediberto Bastos; Marangone, Fabio de Castro; Silva, Hezio Rosa da; Barcelos, Gustavo de Carvalho [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Coke drums deform due to a complex combination of mechanical and thermal cyclic stresses. Bulges have progressive behavior and represent the main maintenance problem related to these drums. Bulge failure typically result in through-wall cracks, leaks, and sometimes fires. Such failures generally do not represent a great risk to personnel. Repairs needed to maintain reliability of these vessels might require extensive interruption to operation which in turn considerably impacts the profitability of the unit. Therefore the condition, progression and severity of these bulges should be closely monitored. Coke drums can be inspected during turnaround with 3D Laser Scanning and Remote Visual Inspection (RVI) tools, resulting in a detailed dimensional and visual evaluation of the internal surface. A typical project has some goals: inspect the equipment to generate maintenance or inspection recommendations, comparison with previous results and baseline data. Until recently, coke drum structural analysis has been traditionally performed analyzing Stress Concentration Factors (SCF) thought Finite Element Analysis methods; however this technique has some serious technical and practical limitations. To avoid these shortcomings, the new strain analysis technique PSI (Plastic Strain Index) was developed. This method which is based on API 579/ ASME FFS standard failure limit represents the state of the art of coke drum bulging severity assessment has an excellent correlation with failure history. (author)

  10. Performance-based inspection and maintenance strategies

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, W.E.

    1995-04-01

    Performance-based inspection and maintenance strategies utilize measures of equipment performance to help guide inspection and maintenance activities. A relevant measure of performance for safety system components is component unavailability. The component unavailability can also be input into a plant risk model such as a Probabilistic Risk Assessment (PRA) to determine the associated plant risk performance. Based on the present and projected unavailability performance, or the present and projected risk performance, the effectiveness of current maintenance activities can be evaluated and this information can be used to plan future maintenance activities. A significant amount of information other than downtimes or failure times is collected or can be collected when an inspection or maintenance is conducted which can be used to estimate the component unavailability. This information generally involves observations on the condition or state of the component or component piecepart. The information can be detailed such as the amount of corrosion buildup or can be general such as the general state of the component described as {open_quotes}high degradation{close_quotes}, {open_quotes}moderate degradation{close_quotes}, or {open_quotes}low degradation{close_quotes}. Much of the information collected in maintenance logs is qualitative and fuzzy. As part of an NRC Research program on performance-based engineering modeling, approaches have been developed to apply Fuzzy Set Theory to information collected on the state of the component to determine the implied component or component piecepart unavailability. Demonstrations of the applications of Fuzzy Set Theory are presented utilizing information from plant maintenance logs. The demonstrations show the power of Fuzzy Set Theory in translating engineering information to reliability and risk implications.

  11. Generic Reliability-Based Inspection Planning for Fatigue Sensitive Details

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Straub, Daniel; Faber, Michael Havbro

    2005-01-01

    The generic approach for planning of in-service NDT inspections is extended to cover the case where the fatigue load is modified during the design lifetime of the structure. Generic reliability-based inspection planning has been developed as a practical approach to perform inspection planning...

  12. Risk based inspection for atmospheric storage tank

    Science.gov (United States)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  13. Risk Based Inspection Planning of Ageing Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Ersdal, Gerhard

    2008-01-01

    There are an increasing number of older installations in use on the Norwegian Continental shelf. Inspections are a key issue in ensuring the safety of an older installation, and the inspection intervals, inspection methods and its reliability are clearly influencing the safety of the installation...

  14. Risk based inspection experience from the European chemical- and petrochemical industries

    International Nuclear Information System (INIS)

    As an inspection vendor with 60 years of experience and with more than 25 years of experience as manufacturer of the Automated Ultrasonic NDT systems, the P-scan systems, FORCE Institute is continuously analysing the market for NDT. This is done to assure that both the equipment product line and the service mix provided by FORCE Institute are meeting the requirements from the industry today and in the future. The concept of Risk Based Inspection Programmes were adopted early by the offshore industry and has in the recent years been adopted by many other industries as a reliable and cost efficient way of maintaining a production facility. A Risk/Reliability Based Inspection Programme is a 'living organism' that constantly needs information if it shall be of any value and NDT information is only one type of information that is required. The NDT information required is normally related to corrosion/base material information and weld integrity information. NDT as an integrated part of a plants maintenance system is, in Europe, currently influenced by the following tendencies which all are related to 'Risk Based Inspection': · Increased use of Base-Line Inspections · Reduction in the use of repeated inspections(qualitative- instead of quantitative Inspections). · Inspection results are fed directly into the plant maintenance system. · Fitness-for-Purpose acceptance criteria instead of conventional acceptance criteria. As repeatability and accuracy is a key issue for the data, automated ultrasonic inspection is increasingly used as an alternative to manual ultrasonic inspection, but due to the physical size of most automated ultrasonic inspection systems the gain in productivity has not been as significant as the gain in repeatability and accuracy. In this paper some of FORCE Institute's practical experiences with examinations carried out in connection with Risk Based Inspection is used to illustrate the above described tendencies. Not only examples using automated

  15. Generic service water system risk-based inspection guide

    International Nuclear Information System (INIS)

    The risk-based inspection guide is intended to supplement US Nuclear Regulatory Commission (NRC) Temporary Instruction 2515/115, ''Service Water System Operational Performance Inspection (SWSOPI).'' The purpose of this guide is to assist NRC inspection team leaders and team members to prioritize inspection items and refine inspection plans so their inspections will address those elements that dominate the risk associated with the service water system. This generic document presents risk insights obtained from probabilistic risk assessments and historical operating experience. Because it is intended to assist inspections at all commercial US power reactors (which have wide variations in service water system designs), some items may not be applicable to every plant. Where possible, the risk significance of the potential inspection items has been related to particular characteristics of plant design or environmental conditions so that inspectors can determine which items may be applicable to a specific plant

  16. Study on flaw detection and evaluation technique for turbine rotor disc using ultrasonic inspection

    International Nuclear Information System (INIS)

    Rim or web part of the turbine rotor disc can be inspected by magnetic test(MT) or penetration test(PT) because of easy accessibility to them. but, unless disc is separated from a rotor, above NDT inspection of hub, keyway part and bore surface is not applicable because of difficult accessibility to them. MT method which has been used for inspection of the LP turbine disc, should be replaced by a new method as it has caused an increase of the manpower followed by blade separation and prolonged shut-down periods. So, ultrasonic inspection that can be inspected promptly and elucidated crack size, is urgently required for a disc, and can not but depend on this method. However, due to complexity of their shape and structure, and unestablishment of inspection technique, ultrasonic inspection for a disc has many difficulties such as inspection method, flaw evaluation and signal analysis etc. Thus, in this study, ultrasonic inspection technique to detect and assess flows occurred in turbine rotor disc was developed, and also their inspection procedure was established for guarantee of safety and reliability on turbine for a power plant.

  17. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1998-05-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

  18. Nondestructive inspection of chemical warfare based on API-TOF

    International Nuclear Information System (INIS)

    Background: Real-time, fast, accurate, nondestructive inspection (NDI) and quantitative analysis for chemical warfare are very imperative for chemical defense, anti-terror and nation security. Purpose: Associated Particles Technique (APT)/Neutron Time of Flight (TOF) has been developed for non-invasive inspection of sealed containers with chemical warfare agents. Methods: A prototype equipment for chemical warfare is consisted of an APT neutron generator with a 3×3 matrix of semiconductor detectors of associated alpha-particles, the shielding protection of neutron and gamma-ray, arrayed NaI(Tl)-based detectors of gamma-rays, fully-digital data acquisition electronics, data analysis, decision-making software, support platform and remote control system. Inelastic scattering gamma-ray pulse height spectra of sarin, VX, mustard gas and adamsite induced by 14-MeV neutron are measured. The energies of these gamma rays are used to identify the inelastic scattering elements, and the intensities of the peaks at these energies are used to reveal their concentrations. Results: The characteristic peaks of inelastic scattering gamma-ray pulse height spectra show that the prototype equipment can fast and accurately inspect chemical warfare. Conclusion: The equipment can be used to detect not only chemical warfare agents but also other hazardous materials, such as chemical/toxic/drug materials, if their chemical composition is in any way different from that of the surrounding materials. (authors)

  19. Application of Ultrasonic inspection Technique on Fuel Rod Seam Weld

    International Nuclear Information System (INIS)

    As of the end of March, 1996, 26 BWR power plants of which station capacity has reached up to 23,000 GW in total are in commercial operation in Japan, Japan Nuclear Fuel (JNF), a BWR fuel fabricator in Japan, has supplied fuels to those power plants for 25 years. This paper presents refinement of inspection technology applied to enhance completeness of fuel rod welding at JNF, which has cumulatively produced approximately 50,000 fuel bundles to the date in Japan. In this operation, TIG method has been employed for plug to tube welding of fuel rod, and X-ray radiography was formerly applied as nondestructive testing (NDT) means in order to verify weld integrity of every fuel rod. As there was limited capabilities of X-ray radiography such as shooting time and direction, and also inspection of fuel rod weld integrity is one of key characteristics of regulatory inspection according to the law, JNF has developed and applied more reliable and effective probe rotation type ultrasonic method. This paper presents refinement of inspection technology applied to enhance completeness of fuel rod welding at JNF

  20. Benefits of Risk Based Inspection Planning for Offshore Structures

    DEFF Research Database (Denmark)

    Straub, D.M.; Goyet, J.; Sørensen, John Dalsgaard;

    2006-01-01

    The economical benefits of applying risk-based inspection planning (RBI) for offshore structures subject to fatigue are evaluated based on experiences from past industrial projects. To this end, the factors influencing the cost of inspection, repair and failure of structures are discussed......, the financial benefit of RBI is assessed....

  1. Heat Exchanger Tube Inspection of Nuclear Power Plants using IRIS Technique

    International Nuclear Information System (INIS)

    Inspection of heat exchange tubing include steam generator of nuclear power plant mostly performed with eddy current method. Recently, various inspection technique is available such as remote field eddy current, flux leakage and ultrasonic methods. Each of these techniques has its merits and limitations. Electromagnetic techniques are very useful to locate areas of concern but sizing is hard because of the difficult interpretation of an electric signature. On the other hand, ultrasonic methods are very accurate in measuring wall loss damage, and are reliable for detecting cracks. Additionally ultrasound methods is not affected by support plates or tube sheets and variation of electrical conductivity or permeability. Ultrasound data is also easier to analyze since the data displayed is generally the remaining wall thickness. It should be emphasized that ultrasound is an important tool for sizing defects in tubing. In addition, it can be used in situations where eddy current or remote field eddy current is not reliable, or as a flaw assessment tool to supplement the electromagnetic data. The need to develop specialized ultrasonic tools for tubing inspection was necessary considering the limitations of electromagnetic techniques to some common inspection problems. These problems the sizing of wall loss in carbon steel tubes near the tube sheet or support plate, sizing internal erosion damage, and crack detection. This paper will present an IRIS(Internal Rotating Inspection System) ultrasonic tube inspection technique for heat exchanger tubing in nuclear power plant and verify inspection reliability for artificial flaw embedded to condenser tube

  2. Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials

    International Nuclear Information System (INIS)

    Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified

  3. Inspection Based Evaluation of a Danish Road Bridge

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper it is shown how an inspection-based evaluation of a Danish road bridge may be performed using the BRIDGE1 and BRIDGE2 bridge management systems produced within the EC-supported research programme "Assessment of Performance and Optimal Strategies for Inspection and Maintenance...

  4. Management of Microbiologically Influenced Corrosion in Risk Based Inspection analysis

    DEFF Research Database (Denmark)

    Skovhus, Torben Lund; Hillier, Elizabeth; Andersen, Erlend S.

    2016-01-01

    Operating offshore oil and gas production facilities is often associated with high risk. In order to manage the risk, operators commonly use aids to support decision making in the establishment of a maintenance and inspection strategy. Risk Based Inspection (RBI) analysis is widely used in the of...

  5. Development of an ultrasonic inspection technique for the dovetail of turbine rotor disks

    International Nuclear Information System (INIS)

    Non-destructive inspection of steam turbine rotor disks has become more important if high reliability of power plants is to be maintained. Defects in the rotor may be produced by a material secular change or increased number of start-stop operations, and they may cause unexpected trouble in the plant. The authors have been developing an ultrasonic inspection technique with a shorter inspection time for the dovetail of turbine rotor disks. This method allows the blades to be kept on the dovetail. In this report, they developed an inspection system to detect radial defects, which propagate in an axial radial direction. It has the following two features: use of the reflection at the dovetail for detection of hidden defects; and combination of single and double probe methods. In this inspection, the probes are set at the position and angle at which reflection waves from the notched part have maximum power. The probes are moved on the fixed rotor disks by a vehicle. The defects are detected by a change in received power of the single and double probe methods during probe scanning. The inspection time is about one-fourth that of magnetic particle inspection (MT), which requires blades to be removed from the dovetail. In application of this technique to inspection of artificial defects in a full size dovetail, a radial defect of 0.5 mm height could be detected. The defect detection sensitivity had its maximum value when the incidence angle at the dovetail was equal to 43--45 degree

  6. A PLM-based automated inspection planning system for coordinate measuring machine

    Science.gov (United States)

    Zhao, Haibin; Wang, Junying; Wang, Boxiong; Wang, Jianmei; Chen, Huacheng

    2006-11-01

    With rapid progress of Product Lifecycle Management (PLM) in manufacturing industry, automatic generation of inspection planning of product and the integration with other activities in product lifecycle play important roles in quality control. But the techniques for these purposes are laggard comparing with techniques of CAD/CAM. Therefore, an automatic inspection planning system for Coordinate Measuring Machine (CMM) was developed to improve the automatization of measuring based on the integration of inspection system in PLM. Feature information representation is achieved based on a PLM canter database; measuring strategy is optimized through the integration of multi-sensors; reasonable number and distribution of inspection points are calculated and designed with the guidance of statistic theory and a synthesis distribution algorithm; a collision avoidance method is proposed to generate non-collision inspection path with high efficiency. Information mapping is performed between Neutral Interchange Files (NIFs), such as STEP, DML, DMIS, XML, etc., to realize information integration with other activities in the product lifecycle like design, manufacturing and inspection execution, etc. Simulation was carried out to demonstrate the feasibility of the proposed system. As a result, the inspection process is becoming simpler and good result can be got based on the integration in PLM.

  7. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  8. Study of a risk-based piping inspection guideline system.

    Science.gov (United States)

    Tien, Shiaw-Wen; Hwang, Wen-Tsung; Tsai, Chih-Hung

    2007-02-01

    A risk-based inspection system and a piping inspection guideline model were developed in this study. The research procedure consists of two parts--the building of a risk-based inspection model for piping and the construction of a risk-based piping inspection guideline model. Field visits at the plant were conducted to develop the risk-based inspection and strategic analysis system. A knowledge-based model had been built in accordance with international standards and local government regulations, and the rational unified process was applied for reducing the discrepancy in the development of the models. The models had been designed to analyze damage factors, damage models, and potential damage positions of piping in the petrochemical plants. The purpose of this study was to provide inspection-related personnel with the optimal planning tools for piping inspections, hence, to enable effective predictions of potential piping risks and to enhance the better degree of safety in plant operations that the petrochemical industries can be expected to achieve. A risk analysis was conducted on the piping system of a petrochemical plant. The outcome indicated that most of the risks resulted from a small number of pipelines.

  9. IEC-Based Neutron Generator for Security Inspection System

    International Nuclear Information System (INIS)

    Large nuclear reactors are widely employed for electricity power generation, but small nuclear radiation sources can also be used for a variety of industrial/government applications. In this paper we will discuss the use of a small neutron source based on Inertial Electrostatic Confinement (IEC) of accelerated deuterium ions. There is an urgent need of highly effective detection systems for explosives, especially in airports. While current airport inspection systems are strongly based on X-ray technique, neutron activation including Thermal Neutron Analysis (TNA) and Fast Neutron Analysis (FNA) is powerful in detecting certain types of explosives in luggage and in cargoes. Basic elements present in the explosives can be measured through the (n, n'?) reaction initiated by fast neutrons. Combined with a time-of-flight technique, a complete imaging of key elements, hence of the explosive materials, is obtained. Among the various neutron source generators, the IEC is an ideal candidate to meet the neutron activation analysis requirements. Compared with other accelerators and radioisotopes such as 252Cf, the IEC is simpler, can be switched on or off, and can reliably produce neutrons with minimum maintenance. Theoretical and experimental studies of a spherical IEC have been conducted at the University of Illinois. In a spherical IEC device, 2.54-MeV neutrons of ∼108 n/s via DD reactions over recent years or 14-MeV neutrons of ∼2x1010 n/s via DT reactions can be obtained using an ion gun injection technique. The possibility of the cylindrical IEC in pulsed operation mode combining with pulsed FNA method would also be discussed. In this paper we examine the possibility of using an alternative cylindrical IEC configuration. Such a device was studied earlier at the University of Illinois and it provides a very convenient geometry for security inspection. However, to calculate the neutron yield precisely with this configuration, an understanding of the potential wall

  10. Distributed heterogeneous inspecting system and its middleware-based solution

    Institute of Scientific and Technical Information of China (English)

    黄理灿; 吴朝晖; 潘云鹤

    2003-01-01

    There are many cases when an organization needs to monitor the data and operations of its super-vised departments, especially those departments which are not owned by this organization and are managed by their own information systems. Distributed Heterogeneous Inspecting System (DHIS) is the system an organization uses to monitor its supervised departments by inspecting their information systems. In DHIS, the inspected systems are generally distributed, heterogeneous, and constructed by different companies. DHIS has three key processes-abstracting core data sets and core operation sets, collecting these sets, and inspecting these collected sets. In this paper, we present the concept and mathematical definition of DHIS, a metadata method for solving the interoperability, a security strategy for data transferring, and a middleware-based solution of DHIS. We also describe an example of the inspecting system at WENZHOU custom.

  11. Distributed heterogeneous inspecting system and its middleware-based solution

    Institute of Scientific and Technical Information of China (English)

    黄理灿; 吴朝晖; 潘云鹤

    2003-01-01

    There are many cases when an organization needs to monitor the data and operations of its supervised departments, especially those departments which are not owned by this organization and are managed by their own information systems. Distributed Heterogeneous Inspecting System (DHIS) is the system an organization uses to monitor its supervised departments by inspecting their information systems. In DHIS, the inspected systems are generally distributed, heterogeneous, and constructed by different companies. DHIS has three key processes-abstracting core data sets and core operation sets, collecting these sets, and inspecting these collected sets. In this paper, we present the concept and mathematical definition of DHIS, a metadata method for solving the interoperability, a security strategy for data transferring, and a middleware-based solution of DHIS. We also describe an example of the inspecting system at WENZHOU custom.

  12. Ultrasonic turbine shaft inspection using the synthetic aperture focussing technique (SAFT)

    International Nuclear Information System (INIS)

    Ultrasonic imaging techniques developed for turbine shaft inspection result in a two-dimensional image of the defect distribution inside the specimen. It is shown, how the effect of reflectors outside of the image plane lead to misinterpretation of the reflector positions. The expansion of the two-dimensional imaging technique to three-dimensions will help to overcome these problems. (orig.)

  13. Inspection Workshop-6: OSI Technologies: Methodologies and Techniques for Application

    Energy Technology Data Exchange (ETDEWEB)

    Krioutchenkov, V.; Shchukin, V.; Sweeney, J.J.

    2000-09-14

    On-Site Inspection (OSI) Workshop-6 met 26-30 June 2000 in Vienna, hosted by the Provisional Technical Secretariat (PTS) of the CTBT Organization. The purpose of the workshop was to provide guidance on OSI Operational Manual (OM) development for Working Group B (WGB) of the CTBT preparatory Commission (PrepCom) in the general areas of equipment and logistics. The two main sessions of this workshop, titled ''OSI Equipment: Development of Functional and Operational Requirements, Specifications and Application Procedures'' and ''OSI Logistics: Continued Work on Standing Arrangements, Status of Inspectors and Support Equipment Issues'' reflected this focus. For this workshop, the schedule of work was divided into two parts: The first half of the week were sessions with formal paper presentations and discussion; the latter half of the week used two smaller subgroups to focus on and discuss separately equipment and logistics issues. Drawing heavily on the results of the five previous workshops, these subgroups produced material to be considered by Working Group B. This provisional material is intended to advance the process of equipment definition and procurement and establish procedures for logistics that can be incorporated into the OSI Operational Manual. The participants agreed that using subgroups in this workshop was an especially effective mechanism for discussion of different expert opinion on technical issues, and that having access to material presented at the previous five OSI workshops was particularly valuable.

  14. Proceedings of the Joint EC, OECD, IAEA Specialists Meeting on NDE Techniques Capability Demonstration and Inspection Qualification

    International Nuclear Information System (INIS)

    The 1997 International Specialists Meeting on NDE Techniques Capability Demonstration and Inspection Qualification was intended to provide an international forum for the discussion of recent developments, results and experience with NDE techniques capability demonstration and inspection qualification methods. The meeting provided an opportunity to compare and assess the qualification principles as proposed or applied by the American Performance Demonstration Initiative, the European Network on Inspection Qualification and the IAEA in its proposed guidelines specific to WWERs. The meeting addressed, in terms of state of the art, the capability demonstration of NDE procedures applied to the major nuclear reactor components. Special emphasis was placed on NDE techniques qualification to detect and size flaws in order to assure structural integrity during plant design life or beyond. National positions or experience were presented showing the typical variety of applications of one or two general principles or methodologies in agreement with national legal and traditional aspects. Experience developed by national qualification bodies and by pilot studies were rich in information concerning the difficulties which were encountered during the studies. Risk Based Inspection concepts were explained due to their relevance with the setting of the ISI objectives and therefore the level of qualification required for each situation considered

  15. Risk-based inspection--Development of guidelines

    International Nuclear Information System (INIS)

    Effective inservice inspection programs can play a significant role in minimizing equipment and structural failures. Most of the current inservice inspection programs for light water reactor (LWR) nuclear power plant components are based on experience and engineers' qualitative judgment. These programs include only an implicit consideration of risk, which combines the probability of failure of a component under its operation and loading conditions and the consequences of such failure, if it occurs. This document recommends appropriate methods for establishing a risk-based inspection program for LWR nuclear power plant components. The process has been built from a general methodology (Volume 1) and has been expanded to involve five major steps: defining the system; evaluating qualitative risk assessment results; using this and information from plant probabilistic risk assessments to perform a quantitative risk analysis; selecting target failure probabilities; and developing an inspection program for components using economic decision analysis and structural reliability assessment methods

  16. Optimal Risk-Based Inspection Planning for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2008-01-01

    , inspection and maintenance activities are developed. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod types of wind turbine support structures. Based on risk-based inspection planning methods used for oil & gas installations, a framework......Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coming years. The support structure for offshore wind turbines is typically a steel structure consisting of a tower...... for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines are considered: usually the wind loading are dominating the wave loading, wake effects in wind farms are important and the reliability level is typically significantly lower than...

  17. Optimal Risk-Based Inspection Planning for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Rangel-Ramirez, Jose G.; Sørensen, John Dalsgaard

    2008-01-01

    , inspection and maintenance activities are developed. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod types of wind turbine support structures. Based oil risk-based inspection planning methods used for oil & gas installations, a framework......Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coining years. The Support structure for offshore wind turbines is typically a steel structure consisting of a tower...... for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines are considered: usually the wind loading are dominating the wave loading, wake effects in wind farms are important and the reliability level is typically significantly lower than...

  18. Key Techniques of the X-ray Inspection Real-time Imaging Pipeline Robot

    Institute of Scientific and Technical Information of China (English)

    Deng Zongquan(邓宗全); Xu Fengping; Zhang Xiaohua; Chen Hongjun

    2004-01-01

    This paper presents a robotic system for weld-joint inspection of the big-caliber pipeline, which is developed for the purpose of being utilized as automation platform for X-ray real-time imaging inspection technique (RTIIT). The robot can perform autonomous seeking and locating of weld-seam position in-pipe, and under the control of synchro-follow control technique it can accomplish the technologic task of weld inspection. The robotic system is equipped with a small focal spot and directional beam X-ray tube, so the higher definition image of weld-seam can be obtained. Several key techniques about the robotic system developed are also explained in detail. Its construction is outlined.

  19. Development of multifunction laser welding head (3). Surface inspection technique by laser-ultrasonics

    International Nuclear Information System (INIS)

    Multifunction laser welding head has been developed. The head is able to perform not only underwater laser welding as repair, but also laser peening as preventive maintenance and laser ultrasonic testing as inspection. For inspection with multifunction laser welding head, a new method of visualized weld defects in water by laser-ultrasonics has developed. To detect and visualize a surface of weld metal with welding bead, the authors have developed a new detection method by leaky wave induced by interaction with surface acoustic waves and defects. Furthermore, developing Synthetic Aperture Focus Technique (SAFT) for visualized inspection surface 2-dimensionally, we achieve the inspection result alike Penetrant Testing (PT) despite underwater environment with multifunction laser welding head. (author)

  20. Clutter removal techniques for GPR images in structure inspection tasks

    Science.gov (United States)

    Vuksanovic, Branislav; Bostanudin, Nurul Jihan Farhah

    2012-04-01

    This document analyses the performance of subspace signal processing techniques applied to ground penetrating radar (GPR) images in order to reduce the amount of clutter and noise in the measured GPR image. Two methods considered in this work are Principal Component Analysis (PCA) and Independent Component Analysis (ICA). An approach to combine those two techniques to improve their effectiveness when applied to GPR data is proposed in this paper. The experiments performed to gather GPR data and evaluate proposed algorithms are also described. The aim of undertaken experiments is to replicate conditions found in water reservoirs where cracks and holes in the reservoir foundations and joints cause excessive water leakages and losses to water companies and the UK economy in general. Performance of implemented algorithms is discussed and compared to the results achieved by a highly skilled human - GPR image analyst.

  1. Eddy Current Rail Inspection Using AC Bridge Techniques

    OpenAIRE

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a di...

  2. Development of an Ultrasonic Inspection Technique for LP Turbine Rotor Disc

    International Nuclear Information System (INIS)

    Turbine rotor disc consists of disc, bore, keyway, hub, and rim in which the typical defects are located. And these part of disc has very complicated geometry, therefore proper transducer selection, wedge design, fabrication, classification and evaluation of the signal identification are required. In this research, test block with the artificial flaws at keyway and boresurface parts have been used in order to establish the ultrasonic inspection technique for flaw detectability on disc. The analysis of the signals from the test blocks was performed. The wedges were designed according to the curvature from the discs. All the ultrasonic signals were collected and identified for evaluation. The ultrasonic inspection technique for the flaw-detection was established from this research. And it is proved that the result of this research can be applicable in the field inspection

  3. A comparison of conventional and advanced ultrasonic inspection techniques in the characterization of TMC materials

    Science.gov (United States)

    Holland, Mark R.; Handley, Scott M.; Miller, James G.; Reighard, Mark K.

    1992-01-01

    Results obtained with a conventional ultrasonic inspection technique as well as those obtained with more advanced ultrasonic NDE methods in the characterization of an 8-ply quasi-isotropic titanium matrix composite (TMC) specimen are presented. Images obtained from a conventional ultrasonic inspection of TMC material are compared with those obtained using more sophisticated ultrasonic inspection methods. It is suggested that the latter techniques are able to provide quantitative images of TMC material. They are able to reveal the same potential defect indications while simultaneously providing more quantitative information concerning the material's inherent properties. Band-limited signal loss and slope-of-attenuation images provide quantitative data on the inherent material characteristics and defects in TMC.

  4. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-15

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A{sub 0} plate wave was selected as the application mode of the sensor. The A{sub 0} plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A{sub 0} mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote

  5. Eddy Current Rail Inspection Using AC Bridge Techniques.

    Science.gov (United States)

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  6. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes. Additional information

    International Nuclear Information System (INIS)

    The reports from Argentina, Canada, India, Korea and Romania are presented concerning the projects carried out under the Coordinated Research Program (CRP) I3.30.10 of the International Agency for Atomic Energy - Vienna related to 'Intercomparison of Techniques for Pressure Tube Inspection and Diagnostics'

  7. The in-service inspection of coated steel welds using Eddy-Current Techniques

    International Nuclear Information System (INIS)

    Traditionally surface crack detection in coated Ferritic Steel Welds with Eddy-Current Techniques has been difficult due to the change in material properties in the Heat Affected Zone. These typically produce signals larger than crack signals. Sophisticated probe design and construction, combined with modern electronic equipment, have largely overcome the traditional problems and now enable the advantages of Eddy-Current Techniques to be applied to In-Service Inspection of Coated Ferritic Steel Structures in the as-welded conditions. Specifically, the advantage of the technique is that under quantifiable conditions an inspection may now be carried out through corrosion protection systems. It is the intention of this paper to review the current information available, establish the limiting parameters of the technique and detail the practical experiments conducted to determine the extent of the limiting parameters. The results of these experiments are detailed. Having determined the limiting factors, outline testing procedures have been established together with relative sensitivity settings.

  8. Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    OpenAIRE

    Bromberger, B.; Bar, D.; Brandis, M.; Dangendorf, V.; Goldberg, M B; Kaufmann, F.; Mor, I.; Nolte, R.; SCHMIEDEL M.; Tittelmeier, K.; Vartsky, D.; H. Wershofen

    2012-01-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and ga...

  9. Optical triangulation-based microtopographic inspection of surfaces.

    Science.gov (United States)

    Costa, Manuel F M

    2012-01-01

    The non-invasive inspection of surfaces is a major issue in a wide variety of industries and research laboratories. The vast and increasing range of surface types, tolerance requirements and measurement constraints demanded during the last decades represents a major research effort in the development of new methods, systems and metrological strategies. The discreet dimensional evaluation the rugometric characterization and the profilometric inspection seem to be insufficient in many instances. The full microtopographic inspection has became a common requirement. Among the different systems developed, optical methods have the most important role and among those triangulation-based ones have gained a major status thanks to their flexibility, reliability and robustness. In this communication we will provide a brief historical review on the development of optical triangulation application to the dimensional inspection of objects and surfaces and on the work done at the Microtopography Laboratory of the Physics Department of the University of Minho, Portugal, in the development of methods and systems of optical triangulation-based microtopographic inspection of surfaces.

  10. Reliable NDT data risk based inspection for offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Rouhan, A. [Bureau Veritas, Marine Div., Research Dept., Courbevoie (France)

    2002-07-01

    The monitoring of existing structures is more and more based on probabilistic approaches suck as risk based inspection (RBI). In order to minimise risks and costs in monitoring, reliable inspection data are of great importance, all the more inspection, maintenance and repair (IMR) campaigns are carried out at a low frequency. This is the case for offshore structures, with expensive non-destructive underwater inspections. This kind of harsh environment leads to lower in-situ performances than those obtained in laboratory. PoD data are often used in current RBI approaches. However, false alarms are not considered in spite of some results of the ICON project (InterCalibration of Offshore NDT), showing a significant number of false indications. In this paper, some data on underwater inspections on tubular nodes are presented. It is shown how ROC curves, Pod and PFI data where obtained within the ICON project. From a structural point of view, this paper then underlines the role of false alarms in a RBI process, using a cost function and both the probability of detection and the probability of false alarm. The basic policy ''repair when crack is detected'' and ''do nothing when no crack is detected'' is shown to be not optimal, underlining the necessity to use false alarms. (orig.)

  11. Long range guided wave inspection of a small-bone tube with the magnetostrictive transducer technique

    International Nuclear Information System (INIS)

    There are several incidents from the leakage of the pipes which are in the category of a safety class as well as a non-safety class in nuclear power plants. However, in many cases, because of their geometrical complexity and inaccessibility, it is difficult to inspect them by the conventional ultrasonic method. A long-range guided ultrasonic inspection, thus, is an option to inspect them during an outage period. The magnetostrictive transducer technique has several advantages for practical applications, for such as a 100-percent volumetric coverage of a long segment of a structure, the inspection time and its cost effective, with a relatively simple and easy transducer structure. This study investigated the applicability of a long-rang guided ultrasonic method for the detection of artificial notches even in the presence of various foreign objects. Both the torsional (T(0,1) mode) and the longitudinal (L(0,1) mode) guided ultrasonic waves were effective for the long-range inspection of the tubes. It showed that it had a good detectability for the notch in the tubes, even though several obstacles are attached in front of the notch.

  12. Risk-based Inspection Planning Optimisation of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramirez, José Rangel; Sørensen, John Dalsgaard

    2011-01-01

    Wind industry is substantially propelled and the future scenarios designate offshore locations as important sites for energy production. With this development, offshore wind farms represent a feasible option to accomplish the needed energy, bringing with it technical and economical challenges....... Inspection and maintenance (I&M) costs for offshore sites are much larger than for onshore ones, making the choice of suitable I&M planning for minimising costs important. Risk-based inspection planning (RBI) for offshore installations represents a suitable methodology to identify the optimal maintenance...

  13. Reliability-Based Maintenance and Inspection Planning for Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2004-01-01

    and maintenance costs, and failure costs. Different reconstruction policies in case of failure are considered, including systematic reconstruction in case of failure, no reconstruction and failure of the control system. The concept of generic inspection and maintenance planning coupled with information from......, local buckling of main tower, and failure of the foundation. This paper considers reliability-based optimal inspection and maintenance planning of wind turbines. Different formulations are considered of the objective function including benefits, building costs of the wind turbine, inspection...... continuous monitoring is presented and illustrated. Illustrative examples for offshore wind turbines are presented, and as a part of the results optimal reliability levels for the different failure modes are obtained....

  14. Multisensor-based robotic systems for inspection and manipulation tasks

    International Nuclear Information System (INIS)

    The advanced technology division of the US Department of Energy is sponsoring research at four universities (Florida, Michigan, Tennessee, and Texas) and the Oak Ridge National Laboratory (ORNL) directed toward the development of advanced robotic systems for use in nuclear environments. The primary motivation for using robotic technology in such hazardous environments is to reduce exposure and costs associated with performing tasks such as surveillance, maintenance, and repair. The main focus of research at the University of Tennessee has been to contribute to the development of autonomous inspection and manipulation systems, which utilize a wide array of sensory inputs in controlling the actions of a stationary robot. This involves several important research issues, including selection of sensor modalities, processing and analysis of data acquired by individual sensors, integration of sensory information, control of the robotic arm and end effectors, and efficient computational architectures for implementing various algorithms. Experimental research effort is directed toward design and evaluation of new methodologies using a laboratory-based robotic test bed. A unique feature of this test bed is a multisensor module that is useful in the characterization of the robots work space. In this paper, the authors describe the development of a robotic vision system for automatic spill detection, localization, and cleanup verification and the development of efficient techniques for analyzing range images using a parallel computer. The simulated spill cleanup scenario allows demonstration of the applicability of robotic systems to problems encountered in nuclear environments

  15. Interferometer -based Technology for Optical Nanoscale Inspection

    Directory of Open Access Journals (Sweden)

    Ryabko M.

    2014-02-01

    Full Text Available We demonstrate the interferometer-based approach for nanoscale grating Critical Dimension (CD measurements and prove the possibility to achieve no worse than 10 nm accuracy of measurements for 100 nm pitch gratings. The approach is based on phase shift measurement of light fields specularly reflected from periodical pattern and adjacent substrate with subsequent comparison between experimental and simulation results. RCWA algorithm is used to fit the measured results and extract the CD value. It is shown that accuracy of CD value measurement depends rather on the grating’s CD/pitch ratio than its CD value

  16. Development of Under-Sodium Inspection Technique Using Ultrasonic Waveguide Sensor

    International Nuclear Information System (INIS)

    The under-sodium inspection technique using ultrasonic waveguide sensor has been developed for the in-service inspection of a reactor core and in-vessel structures in the sodium-cooled fast reactor. The 10 m long prototype ultrasonic waveguide sensor modules have been designed and manufactured for the applications of under-sodium viewing and ranging. The real-scale test facility with a 13 m H-beam structure was constructed for the feasibility tests of the prototype ultrasonic waveguide sensor modules. The inspection program has been developed for the under-sodium inspection using the prototype ultrasonic waveguide sensor modules. The performance of the ultrasonic waveguide sensor modules has been successfully demonstrated in water. A novel under-sodium ultrasonic waveguide sensor with beryllium and nickel coating layers is suggested for the enhancement of the radiation and wetting performance of ultrasonic waveguide sensor in sodium. The sodium test facility with a glove box system and a sodium tank has been designed and fabricated to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition. The sensitivity and C-scan imaging tests have been carried out in sodium for evaluating performance of the under-sodium ultrasonic waveguide sensor. (author)

  17. Application of risk-based inspection methods for cryogenic equipment

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Risk-based Inspection (RBI) is widely applied across the world as part of Pressure Equipment Integrity Management, especially in the oil and gas industry, to generally reduce costs compared with time-based approaches and assist in assigning resources to the most critical equipment. One of the challenges in RBI is to apply it for low temperature and cryogenic applications, as there are usually no degradation mechanisms by which to determine a suitable probability of failure in the overall risk assessment. However, the assumptions used for other degradation mechanisms can be adopted to determine, qualitatively and semi-quantitatively, a consequence of failure within the risk assessment. This can assist in providing a consistent basis for the assumptions used in ensuring adequate process safety barriers and determining suitable sizing of relief devices. This presentation will discuss risk-based inspection in the context of cryogenic safety, as well as present some of the considerations for the risk assessme...

  18. Application of non-destructive liner thickness measurement technique for manufacturing and inspection process of zirconium lined cladding tube

    International Nuclear Information System (INIS)

    Recently, in order to meet the difference of electric power demand owing to electric power situation, large scale load following operation has become necessary. Therefore, the development of the cladding tubes which withstand power variation has been carried out, as the result, zirconium-lined zircaloy 2 cladding tubes have been developed. In order to reduce the sensitivity to stress corrosion cracking, these zirconium-lined cladding tubes require uniform liner thickness over the whole surface and whole length. Kobe Steel Ltd. developed the nondestructive liner thickness measuring technique based on ultrasonic flaw detection technique and eddy current flaw detection technique. These equipments were applied to the manufacturing and inspection processes of the zirconium-lined cladding tubes, and have demonstrated superiority in the control and assurance of the liner thickness of products. Zirconium-lined cladding tubes, the development of the measuring technique for guaranteeing the uniform liner thickness and the liner thickness control in the manufacturing and inspection processes are described. (Kako, I.)

  19. Realtime Vision-Based Surface Defect Inspection of Steel Balls

    Institute of Scientific and Technical Information of China (English)

    Wang Zhong; Xing Qian; Fu Luhua; Sun Hong

    2015-01-01

    In the proposed system for online inspection of steel balls, a diffuse illumination is developed to enhance defect appearances and produce high quality images. To fully view the entire sphere, a novel unfolding method is put forward based on geometrical analysis, which only requires one-dimensional movement of the balls and a pair of cam-eras to capture images from different directions. Moreover, a realtime inspection algorithm is customized to improve both accuracy and efficiency. The precision and recall of the sample set were 87.7% and 98%, respectively. The aver-age time cost on image processing and analysis for a steel ballwas 47 ms, and the total time cost was less than 200 ms plus the cost of image acquisition and balls’ movement. The system can sort 18 000 balls per hour with a spatial reso-lution higher than 0.01 mm.

  20. Machine vision inspection of rice seed based on Hough transform

    Institute of Scientific and Technical Information of China (English)

    成芳; 应义斌

    2004-01-01

    A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black background and white background were acquired with the image processing system for identifying external features of rice seeds. Five image sets consisting of 600 original images each were obtained. Then a digital image processing algorithm based on Hough transform was developed to inspect the rice seeds with incompletely closed glumes. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with incompletely closed glumes. The algorithm was proved to be applicable to different seed varieties and insensitive to the color of the background.

  1. Machine vision inspection of rice seed based on Hough transform

    Institute of Scientific and Technical Information of China (English)

    成芳; 应义斌

    2004-01-01

    A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402,Shanyou 10, Zhongyou207, Jiayou and Ilyou were evaluated. The images of both sides of rice seed with black background and white background were acquired with the image processing system for identifying external features of rice seeds. Five image sets consisting of 600 original images each were obtained. Then a digital image processing algorithm based on Hough transform was developed to inspect the rice seeds with incompletely closed glumes. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with incompletely closed glumes. The algorithm was proved to be applicable to different seed varieties and insensitive to the color of the background.

  2. Computer vision based end cap weld quality inspection system

    International Nuclear Information System (INIS)

    This paper describes a weld quality inspection system that has been developed for QA(F), NFC to evaluate the PHWR end cap welds. The system consists of a trinocular microscope with a video camera connected through a video reduction lens, PCI video frame grabber and PC based acquisition and analysis software. The software developed in the VC++ under windows operating system calculates the non-fusion percentage for the weld specimens in two different modes of computing i.e. Indian welding inspection method and Canadian welding inspection method. The software uses image processing and analysis algorithms to automatically identify the lack of fusion lines as per user supplied parameters for a specific set-up of the system. The lack of fusion lines and the region of interest that was used for computation are marked on the image and can be saved for future reference. GUI for user interaction to delete or add non-fusion lines is also provided. A report generation module has been integrated with the analysis software as per user requirements. Reports are generated for the end cap welding performance including machine set up, machine qualification and operator qualification information. (author)

  3. Study on in-vessel ISI for JOYO. Technical survey of under sodium non-destructive inspection technique and study of application concept

    International Nuclear Information System (INIS)

    This report is concerning the in-vessel in-service inspection (ISI) technology for the experimental fast reactor JOYO. The present ISI method in JOYO is not able to confirm the integrity of the core structure directly, expecting the visual inspection for the top of core assemblies from above the rotating plug. The purpose of this examination is to progress of the ISI method, and to confirm the integrity of the core structure directly. The core support plate is an important structure and it is selected for the object of in-vessel ISI. From the viewpoint of the influence on the plant, it is regarded important the method without all sodium draining, and the remote operation from above of the shielding plug. As a result, following technology is thought promising. Under sodium inspection technique by means of ultrasonic method (it is able to apply in-vessel ISI without all sodium draining). Nondestructive inspection technique by laser based ultrasonic method (it is superior in remote operating). The local sodium discharge mechanism (it makes possible to apply laser based ultra sonic method for under sodium inspection). These technologies were investigated, examined, and the concept applied to ISI in JOYO core support plate was examined. Moreover, the problem when these were applied to in-vessel ISI in JOYO was picked up. (author)

  4. Ultrasonic inspection techniques for two weld closures proposed for RSSF waste storage casks

    International Nuclear Information System (INIS)

    One method being considered for interim storage of high-level radioactive waste materials is to place these materials in large sealed stainless steel canisters and subsequently store these canisters in a second sealed steel storage cask. Weld procedures are proposed as the closure or seal for these vessels. Inspection of these closures to assure initial and long-term integrity of the closure welds presents a challenge to nondestructive testing. The environment is thermally (400 to 10000F) and radioactively (105 R/hr) hot necessitating remote inspection procedures. As a result of research work, ultrasonic test techniques were developed for inspecting the final weld closure of the waste cask. Special transducers, coupling techniques and fixturing were developed and demonstrated in a mockup test facility by remotely examining a 2-in. full penetration weld closure. The examination was performed at room ambient and at a temperature of 2000F. Testing at the desired temperature of 4000F was not completed due to a loss in transducer performance at temperatures in excess of 2000F. Upon completion of the mockup test demonstration, the cask was subjected to a drop test. The ultrasonic results of the pre- and post-examination of two weld closures (the 2-in. full penetration weld and the threaded plug with seal weld) are presented. After the completion of the drop test, both weld closures were radiographed. The radiographs verified the ultrasonic examination and the presence of weld defects in the same areas. Sectioning of the cask closure welds with metallographic verification was not completed at the time of this writing. As a result of the experience gained from the Retrievable Surface Storage Facility (RSSF) storage cask program, recommendations pertaining to the nondestructive engineering development program for Spent Unreprocessed Fuel (SURF) storage casks are presented

  5. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  6. Evaluation of computer-based ultrasonic inservice inspection systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T. [Pacific Northwest Lab., Richland, WA (United States)

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems.

  7. Feasibility of developing risk-based rankings of pressure boundary systems for inservice inspection

    International Nuclear Information System (INIS)

    The goals of the Evaluation and Improvement of Non-destructive Examination Reliability for the In-service Inspection of Light Water Reactors Program sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory (PNL) are to (1) assess current ISI techniques and requirements for all pressure boundary systems and components, (2) determine if improvements to the requirements are needed, and (3) if necessary, develop recommendations for revising the applicable ASME Codes and regulatory requirements. In evaluating approaches that could be used to provide a technical basis for improved inservice inspection plans, PNL has developed and applied a method that uses results of probabilistic risk assessment (PRA) to establish piping system ISI requirements. In the PNL program, the feasibility of generic ISI requirements is being addressed in two phases. Phase I involves identifying and prioritizing the systems most relevant to plant safety. The results of these evaluations will be later consolidated into requirements for comprehensive inservice inspection of nuclear power plant components that will be developed in Phase II. This report presents Phase I evaluations for eight selected plants and attempts to compare these PRA-based inspection priorities with current ASME Section XI requirements for Class 1, 2 and 3 systems. These results show that there are generic insights that can be extrapolated from the selected plants to specific classes of light water reactors

  8. Comparing thermal stimulation techniques in infrared thermographic inspection of corrosion in steel

    Science.gov (United States)

    Chulkov, A. O.; Vavilov, V. P.

    2015-04-01

    Remote detection of corrosion in metals is a developing application area of active thermal nondestructive testing. In this study, emphasis is made on the optimization of heating techniques that is of a major interest in practical surveys. Some popular data processing techniques, such as Fourier transform, correlation and principal component analysis, are also quantitatively compared in application to corrosion detection in 1-2 mm thick steel by applying a criterion of signal-to-noise ratio. The best inspection results have been obtained by using powerful halogen lamps and air blowers. Material loss of about 25% with lateral dimensions greater than 10×10 mm can be reliably identified in practical tests. The use of Xenon flash tubes is inefficient because of significant steel thickness. LED panels have not provided expected results due to low absorption of LED quasi-monochromatic radiation.

  9. Use of knowledge based systems for rational reliability analysis based inspection and maintenance planning for offshore structures

    International Nuclear Information System (INIS)

    The structural integrity of fixed offshore platforms is ensured by periodic inspections. In the past, decisions made as to when, where and how to inspect have been made by engineers using rules-of-thumb and general planning heuristics. It is now hoped that more rational inspection and maintenance scheduling may be carried out by applying recently developed techniques based on structural reliability methods. However, one of the problems associated with a theoretical approach is that it is not always possible to incorporate all the constraints that are present in a practical situation. These constraints modify the decisions made for analysis data input and the interpretation of the analysis results. Knowledge based systems provide a mean of encapsulating several different forms of information and knowledge within a computer system and hence can overcome this problem. In this paper, a prototype system being developed for integrating reliability based analysis with other constraints for inspection scheduling will be described. In addition, the scheduling model and the algorithms to carry out the scheduling will be explained. Furthermore, implementation details are also given

  10. New techniques provide low-cost X-ray inspection of highly attenuating materials

    International Nuclear Information System (INIS)

    As a result of an arms reduction treaty between the United States and the Russian Federation, both countries will each be storing over 40,000 containers of plutonium. To help detect any deterioration of the containers and prevent leakage, the authors are designing a digital radiography and computed tomography system capable of handling this volume reliably, efficiently, and at a lower cost. The materials to be stored have very high x-ray attenuations, and, in the past, were inspected using 1- to 24-MV x-ray sources. This inspection system, however, uses a new scintillating (Lockheed) glass and an integrating CCD camera. Preliminary experiments show that this will permit the use of a 450-kV x-ray source. This low-energy system will cost much less than others designed to use a higher-energy x-ray source because it will require a less expensive source, less shielding, and less floor space. Furthermore, they can achieve a tenfold improvement in spatial resolution by using their knowledge of the point-spread function of the x-ray imaging system and a least-squares fitting technique

  11. Task-driven equipment inspection system based on safe workflow model

    Science.gov (United States)

    Guo, Xinyou; Liu, Yangguang

    2010-12-01

    An equipment inspection system is one that contains a number of equipment queues served in cyclic order. In order to satisfy multi-task scheduling and multi-task combination requirements for equipment inspection system, we propose a model based on inspection workflow in this paper. On the one hand, the model organizes all kinds of equipments according to inspection workflow, elemental work units according to inspection tasks, combination elements according to the task defined by users. We proposed a 3-dimensional workflow model for equipments inspection system including organization sub-model, process sub-model and data sub-model. On the other hand, the model is based on the security authorization which defined by relation between roles, tasks, pre-defined business workflows and inspection data. The system based on proposed framework is safe and efficient. Our implement shows that the system is easy to operate and manage according to the basic performance.

  12. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Science.gov (United States)

    Wiggenhauser, H.; Niederleithinger, E.

    2013-07-01

    Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  13. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  14. Control assembly behaviour, inspection techniques and remedies against wear at pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Knaab, H.; Fuchs, H.P. (Siemens AG Unternehmensbereich KWU, Erlangen (Germany, F.R.))

    1989-08-01

    Rod cluster control assemblies as fabricated by Siemens for pressurized water reactors have been in use for up to 20 plant operating cycles. All of them have demonstrated excellent operational behaviour. The design features austenitic steel spiders formed by electrical discharge machining from a forging, lock-welded screw connections for the individual rods, and swelling-resistant Ag-In-Cd absorbers. Additionally, several optional features are available and in use for improved resistance against wear and irradiation-assisted stress corrosion cracking. Specialized non-destructive testing techniques were developed and are in use for routine in-pool inspections of the assemblies for fretting, clad thinning and irradiation-assisted stress corrosion cracking. (orig.).

  15. Integrating design and production planning with knowledge-based inspection planning system

    International Nuclear Information System (INIS)

    In this paper an intelligent environment to integrate design and inspection earlier to the design stage. A hybrid knowledge-based approach integrating computer-aided design (CAD) and computer-aided inspection planning (CAIP) was developed, thereafter called computer-aided design and inspection planning (CADIP). CADIP was adopted for automated dimensional inspection planning. Critical functional features were screened based on certain attributes for part features for inspection planning application. Testing the model resulted in minimizing the number of probing vectors associated with the most important features in the inspected prismatic part, significant reduction in inspection costs and release of human labor. In totality, this tends to increase customer satisfaction as a final goal of the developed system. (author)

  16. Use of the cylindrically guided wave technique for the inspection of stud bolts, valve stems and pump shafts

    International Nuclear Information System (INIS)

    Over the last several years, nuclear power plants have expressed concern about failures of bolting, valve stems, and pump shafts. This paper reports on the development of an ultrasonic technique to inspect these components. The authors have successfully demonstrated the cylindrically guided wave technique (CGWT) on a wide range of stud bolts. The CGWT employs zero-degree longitudinal waves constrained to travel within the boundary of the cylindrically shaped components during inspection. Theoretically explained, mode conversion occurs because the ultrasonic wave is guided down the length of the component. These mode-converted signals are dependent upon the diameter of the component under inspection and the longitudinal- and shear-wave velocities of the component material. This technique has also been successfully used on valve stems in the field. The geometry of the valve stem is very similar to that of the stud bolt

  17. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  18. Application of dual-energy x-ray techniques for automated food container inspection

    Science.gov (United States)

    Shashishekhar, N.; Veselitza, D.

    2016-02-01

    Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.

  19. Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    CERN Document Server

    Bromberger, B; Brandis, M; Dangendorf, V; Goldberg, M B; Kaufmann, F; Mor, I; Nolte, R; Schmiedel, M; Tittelmeier, K; Vartsky, D; Wershofen, H

    2012-01-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. T...

  20. Development and validation of a real-time synthetic aperture focusing technique for ultrasonic testing (SAFT-UT) system for in-service inspection of light water reactors

    International Nuclear Information System (INIS)

    The objectives of the program is to: 1) design, fabricate, and evaluate a real-time flaw detection and characterization system based on synthetic aperture focusing technique for ultrasonic testing (SAFT-UT) for inservice inspection (ISI) of all required light water reactors (LWR) components; 2) establish calibration and field test procedures; 3) demonstrate and validate the system through actual field reactor inspections; and 4) generate an engineering data base to support code acceptance of the real-time SAFT-UT technique. The program scope is defined by the following: 1) conduct laboratory tests to provide engineering data for defining SAFT-UT system performance; 2) complete the development of a special processor to make SAFT a real-time process for ISI application; and 3) fabricate and field test a fieldable real-time SAFT-UT system on nuclear reactor piping, nozzles and pressure vessels

  1. Inspection of thin-walled pipe welds using mechanized ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lozev, M.; Spencer, R. [Edison Welding Inst., Columbus, OH (United States); Hodgkinson, D. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2004-07-01

    This paper investigated applications of high-frequency single/multiprobe techniques and phased-array (PA) technology for the inspection of thin-walled pipes welds. Ultrasonic testing (UT), modeling and simulation was used as an effective way of determining that the desired calibration reflectors and flaws in thin-walled pipes can be accurately sized. A laboratory experiment was conducted in which simple or complex flaws were virtually split on several segments. Beam profile monitoring and automated ultrasonic testing was performed for non-focused 5, 10 and 15 MHz single elements, a variety of focused MHz elements, and a 10 MHz 32 element linear PA probe. A Mephisto model was used to examine the various echo-formation mechanisms. Beam interactions and connected planar flaws were examined. Two calibration targets were used: (1) a 1.5 mm diameter side-drilled hole; and (2) a 4 per cent deep notch. A thin-walled pipe sample was designed for the validation of modeling results. A commercially available PA system and computer software program was used to create focal laws, as well as to steer the beam, collect data, and perform the analysis. Results of the notch tilt models showed that inspection angles of approximately 58 to 68 degrees were the least sensitive to tilt. Signal amplitude losses of less than 10 decibels were observed when compared with the reference notch. The PA model for complex flaws showed that signal loss arising from tilt and skew stabilized at approximately 10 degrees due to a loss of amplitude. Larger sound beams resulted in a greater echo-dynamic that increased masking effects. It was concluded that the most accurate UT simulations were achieved using a 10 MHz, 32-element linear PA technology. 4 refs., 2 tabs., 8 figs.

  2. Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks

    Science.gov (United States)

    Topalis, P.; Korneliussen, G.; Hermanrud, J.; Steo, Y.

    2012-05-01

    A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.

  3. Feature-based tolerancing for intelligent inspection process definition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.W.

    1993-07-01

    This paper describes a feature-based tolerancing capability that complements a geometric solid model with an explicit representation of conventional and geometric tolerances. This capability is focused on supporting an intelligent inspection process definition system. The feature-based tolerance model`s benefits include advancing complete product definition initiatives (e.g., STEP -- Standard for Exchange of Product model dam), suppling computer-integrated manufacturing applications (e.g., generative process planning and automated part programming) with product definition information, and assisting in the solution of measurement performance issues. A feature-based tolerance information model was developed based upon the notion of a feature`s toleranceable aspects and describes an object-oriented scheme for representing and relating tolerance features, tolerances, and datum reference frames. For easy incorporation, the tolerance feature entities are interconnected with STEP solid model entities. This schema will explicitly represent the tolerance specification for mechanical products, support advanced dimensional measurement applications, and assist in tolerance-related methods divergence issues.

  4. Improved plant availability by advanced condition based inspections

    International Nuclear Information System (INIS)

    An industrial plant has to operate safely, reliably and efficiently at the lowest possible cost. Plant availability plays an important role regarding economic life optimisation. Industrial installations that are under pressure and are operating at high temperatures have a limited life due to creep and fatigue. It is, therefore, of critical importance to know the location of any possible weak spots in the installation. To avoid safety risks, unplanned plant shutdown and, as a consequence, high costs for unavailability, cycling and repair, periodic inspections and strain measurements are recommended. A Speckle Image Correlation Analysis (SPICA) system enables on-stream measurement of deformation due to creep in critical areas like the heat-affected zone in welds. Plant management and operators use the strain measurements to take action when necessary and, consequently, prevent failures. In those plants that have been provided with SPICA-technology for some years plant availability has improved significantly as a result. Another important development for yielding improved availability concerns steam drums. During some 20 years, KEMA has been performing automated ultrasonic steam drum inspections from outside. The Dutch authorities accepted this methodology in this period as an alternative (rather than an addition) after several pilot projects. An advantage of this inspection methodology is the possibility to record of the inspection results and possibility of thus trending these data. The resulting reduction of through time appeared a major benefit for plant owners. Since the authorities adopted the RBI approach during the last 10 years, another advantage of the inspection methodology became apparent: complete scanning and recording of the inspection data of circumferential and longitudinal (butt and fillet) welds, inspection of nozzle welds and inner radius as well as corrosion mapping has been covering all higher risk areas in these drums. This enhanced inspection

  5. Robotized Inspection of Vertical Structures of a Solar Power Plant Using NDT Techniques

    OpenAIRE

    Torsten Felsch; Gunnar Strauss; Carmen Perez; José M. Rego; Iñaki Maurtua; Loreto Susperregi; Jorge R. Rodríguez

    2015-01-01

    Concentrated solar power (CSP) plants are expansive facilities that require substantial inspection and maintenance. A fully automated inspection robot increases the efficiency of maintenance work, reduces operating and maintenance costs, and improves safety and work conditions for service technicians. This paper describes a climbing robot that is capable of performing inspection and maintenance on vertical surfaces of solar power plants, e.g., the tubes of the receiver in a central tower CSP ...

  6. An Image Content Description Technique for the Inspection of Specular Objects

    Directory of Open Access Journals (Sweden)

    S. Bourennane

    2008-11-01

    Full Text Available This paper proposed an image content description method within the context of specular surface inspection. Such a method is based on a preliminary research concerning the generation of specific stripe patterns for the visual enhancement of defective surface parts of cylindrical specular objects. The goal of this paper is to address the stripe pattern interpretation within a general approach. For this purpose, different pattern recognition processes, consisting not only of the combination of different image segmentation, feature retrieval, and classification, but also of feature combination and selection, will be considered. Three top-down and one bottom-up approaches are evaluated for retrieving the most appropriate feature sets in terms of highest classification rates. It will be demonstrated that following a combination and appropriate selection of these feature sets, even better rates can be reached. With only half of the initial features, an increase of more than 2% is observable.

  7. Inspection system for welded tubular joint based on ultrasonic phased array

    Institute of Scientific and Technical Information of China (English)

    Hao Guangping; Deng Zongquan; Shan Baohua; Yu Weizhen; Li Lifang

    2010-01-01

    A manual inspection of large-diameter tubular joints is difficult. As a result a scanner with three degrees of freedom (DOFs) was developed based on the scanning principle of ultrasonic phased array. The weld tracing is realized by a 2D0F motion of scanner. The pose of ultrasonic probe is controlled by the third one. The control strategy is put forward based on a programmable multi-axis controller. Four kinds of scanning modes can be implemented simultaneously employing this ultrasonic inspection system. Experiments on reference blocks of tubular joints reveal that the automatic ultrasonic phased array inspection system has the same inspection accuracy as a manual ultrasonic inspection. This system is superior to the manual ultrasonic system in terms of reliability and repeatability. The artificial defects of weld at tubular joint can be detected accurately with the presented inspection system.

  8. Sandy Damage Estimates Based on FEMA IA Registrant Inspection Data

    Data.gov (United States)

    Department of Housing and Urban Development — A FEMA housing inspection for renters is used to assess personal property loss and for owners to assess damage to their home as well as personal property. This...

  9. DEVELOPMENT AND TEST OF BLIMP-BASED COMPACT LIDAR POWEWR-LINE INSPECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    W. W. Pan

    2015-03-01

    Full Text Available This paper introduces a compact LIDAR system designed to inspect overhead transmission line for maintenance purposes. This LIDAR system is carried by a small unmanned helium airship, which is guided by GPS and laser ranging to fly automatically along the power-line over a limited distance. The 3D coordinates of the power line, power tower and power line channel features are gathered by LIDAR. Test have been accomplished using this blimp-based compact LIDAR power-line inspection system. Its inspections of a 500kV power lines also shows the high efficient inspection, less risk to personnel and more inspections per day compared with manual inspection.

  10. Norovirus outbreak at a wildland fire base camp ignites investigation of restaurant inspection policies.

    Science.gov (United States)

    Britton, Carla L; Guzzle, Patrick L; Hahn, Christine G; Carter, Kris K

    2014-01-01

    Norovirus outbreaks occur worldwide and have been associated with congregate settings (e.g., military and recreational camps). Investigation of a norovirus outbreak at a wildland fire base camp identified 49 (27%) illnesses among approximately 180 responders. Epidemiologic evidence implicated a restaurant as the infection source. Eight (89%) of nine wildland fire responder groups who ate at the restaurant had ill members; no groups who ate elsewhere reported ill members. An environmental health specialist restaurant inspection identified lack of managerial knowledge to protect against foodborne disease one year after the restaurant's opening; earlier inspection after opening might have led to earlier intervention. States were surveyed to determine existence of any policy or rule for food establishment inspection after opening and inspection timing. Among 18 states, five had no state rule or policy; nine had a policy in place; and four required postopening inspection by rule. Further research is needed to evaluate post-opening inspection efficacy and timing. PMID:25185322

  11. Non-contact inspection for inner surface of small-diameter pipes based on laser-PSD

    Institute of Scientific and Technical Information of China (English)

    WU En-qi; KE Ying-lin; LI Jiang-xiong

    2005-01-01

    A new non-contact inspection technique based on laser-PSD (position sensitive detector) to inspect the inner surface of small-diameter pipe is proposed,and the corresponding sensor has been developed.After being reflected by two mirrors in series,a laser beam is projected onto the inner wall of a pipe as a small light spot and is read by a two-dimensional PSD.Based on the signals from the PSD and the structure parameters of the sensor,the spot position on the wall can be calculated in a local 3D coordinate system.The spot controlled by the micro-motor driven mirrors will scan a closed section ring on the inner wall of the pipe to obtain the relative coordinates of all the sampled points.The data will be then processed through data segmentation and least square fitting,to reconstruct the section curve used for obtaining the radius and the defect description of the section.Driven by a micro-pipe robot,the sensor can inspect a long curved pipe and obtain its 3-D reconstruction.An inspection system based on this technique can detect the mini-diameter pipe with an inner diameter of 9.5 mm~10.5 mm and a curvature radius larger than 100 mm at a measurement accuracy of the inner surface defect of ±0.1 mm.

  12. Non-Intrusive Techniques of Inspections During the Pre-Launch Phase of Space Vehicle

    Science.gov (United States)

    Thirumalainambi, Rejkumar; Bardina, Jorge E.

    2005-01-01

    This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrophotometer with additional spectrophotometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. This paper addresses a team of micro flying robots with necessary sensors and photometers to monitor the entire space vehicle internally and externally. The micro flying robots can reach altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robot has an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a Supervisor to fix the problems. As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. The robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  13. 基于金属磁记忆方法的压力容器对接焊缝应力检测%Stress Inspection of Pressure Vessel Butt Weld Based on Metal Magnetic Memory Technique

    Institute of Scientific and Technical Information of China (English)

    章彬斌; 梁斌

    2011-01-01

    It is probable to occur many kinds of damage in the area of stress concentration zone when the pressure vessel is in operation, so finding those injury and eliminate the stress concentration is very useful to stable pressure vessel for improving its usage life. This paper is mainly to summarize the basic principle and parameter set of the diagnose equipment of the metal magnetic memory. And it calculated the residual stress distribution of 09MnNiDR butt-welded(WM) and heat affected zone( HAZ) according to the relevant standards with the data being analyzed with one software. The result of the analysis showed that the residual stress of heat affected zone was higher than welding and it was also similar with the result of experimentation and numerical analysis based on the same welding procedure. It revealed that magnetic memory test could find the stress concentration zone of pressure vessels, and could be used for the early diagnosis of pressure vessels.%压力容器运行中易在应力集中区出现各种损伤,因此找出并消除应力集中区对稳定压力容器的使用寿命非常有益.阐述了金属磁记忆方法的基本原理、诊断设备的参数设置,并通过分析软件得到的数据,根据相关标准计算09MnNiDR对接焊缝和热影响区的残余应力分布情况.分析结果表明,热影响区残余应力高于焊缝,数据结果与同类焊接工艺下的试验和数值分析基本吻合.说明磁记忆检测可发现压力容器的应力集中区,实现压力容器的早期诊断.

  14. Inspection planning

    International Nuclear Information System (INIS)

    Slovenian Nuclear Safety Administration (SNSA) division of nuclear and radiological safety inspection has developed systematic approach to their inspections. To be efficient in their efforts regarding regular and other types of inspections, in past years, the inspection plan has been developed. It is yearly based and organized on a such systematic way, that all areas of nuclear safety important activities of the licensee are covered. The inspection plan assures appropriate preparation for conducting the inspections, allows the overview of the progress regarding the areas to be covered during the year. Depending on the licensee activities and nature of facility (nuclear power plant, research reactor, radioactive waste storage, others), the plan has different levels of intensity of inspections and also their frequency. One of the basic approaches of the plan is to cover all nuclear and radiological important activities on such way, that all regulatory requests are fulfilled. In addition, the inspection plan is a good tool to improve inspection effectiveness based on previous experience and allows to have the oversight of the current status of fulfillment of planned inspections. Future improvement of the plan is necessary in the light of newest achievements on this field in the nuclear world, that means, new types of inspections are planned and will be incorporated into plan in next year.(author)

  15. Robotized Inspection of Vertical Structures of a Solar Power Plant Using NDT Techniques

    Directory of Open Access Journals (Sweden)

    Torsten Felsch

    2015-03-01

    Full Text Available Concentrated solar power (CSP plants are expansive facilities that require substantial inspection and maintenance. A fully automated inspection robot increases the efficiency of maintenance work, reduces operating and maintenance costs, and improves safety and work conditions for service technicians. This paper describes a climbing robot that is capable of performing inspection and maintenance on vertical surfaces of solar power plants, e.g., the tubes of the receiver in a central tower CSP plant. Specifically, the service robot’s climbing mechanism is explained and the results of the nondestructive inspection methods are reviewed. The robot moves on the panels of the receiver in the tower and aligns the sensors correctly for inspection. The vertical movement of the climbing kinematics is synchronized with the movement of the tower’s crane. Various devices that detect surface defects and thickness losses inside the tube were integrated into the robot. Since the tubes are exposed to very high radiation, they need to be inspected regularly.

  16. Deficiencies in oxygen, carbon and chlorine (n, n'γ) cross sections and their impact on nuclear based inspection systems

    International Nuclear Information System (INIS)

    Large discrepancies have been found among the various nuclear libraries, mainly in the production cross sections and angular distributions of gamma-rays following neutron interactions. These data are required for the design and application of contraband inspection systems based on neutron irradiation techniques. As a result of these discrepancies experiments were conducted to correct and complement the required data. Cross section evaluations of carbon, oxygen and chlorine are reviewed and compared with existing and the new experimental data. ((orig.))

  17. RBI - Risk Based Inspection: new technologies and methods applied to inspections of FPSO (Floating Production, Storage and Offloading Vessel) hull; IBR - Inspecao Baseada em Risco: novas tecnologias e metodos aplicados as inspecoes de casco de FPSOs

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Bruno de; Figueiredo, Eduardo; Luiz, Marcio [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Meurer, Gustavo; Duarte, Romulo; Oliveira, Thais; Krzonkalla, Viviane [ABS Consulting, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    With the aging of the FPSO's, which are fundamental to the operation Offshore, better techniques and technologies must be applied to assess more accurately the actual efficiency and structural conditions of producing unit. With the emergence of new engineering techniques and equipment and methods of structural inspection, is now possible to use these new technologies to better manage risk and reliability of the structure of the FPSO, with that, the inspections and methods are more rational and efficient. The Risk-Based Inspection is the tool for monitoring operation of industrial plants with systemic use of technology in conjunction with risk analysis and reliability. His concept is applicable to various branches of industry. The companies began their implementation of oil by refineries. The group of ABS Consulting with PETROBRAS has been developing and implementing these new technologies in inspections of hulls of FPSO's. Applied successfully in the units of the Campos basin, these methods are used by the group of Risk-Based Inspection to improve the efficiency of all the steps involved with the structural integrity of the unit. (author)

  18. Development of nondestructive evaluation techniques for DAM inspection. Progress report, January 1995 through August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A. E.; Thomas, G.H.

    1997-09-04

    The Lawrence Livermore National Laboratory has concluded a two and a half year study on the development of an ultrasonic inspection system to inspect post stressed steel tendons on dams and flood gates. The inspection systems were part of a program for the California Department of Water Resources. The effort included the identification of the location and amount of corrosion damage to the tendons, identification of the cause of corrosion, and the technology for inhibiting corrosion. Several NDE methods for inspecting and quantifying damage to steel reinforced concrete water pipes were investigated and presented to the DWR for their consideration. The additional methods included Ground Penetrating RADAR, Electro- Potential Measurements, Infrared Technology, Pipe Inspection Crawlers (designed to travel inside pipelines and simultaneously report on the pipe condition as viewed by ultrasonic methods and video cameras from within the pipeline.) Reference to consultants hired by LLNL for similar on-site corrosion inspections were given to the DWR. The LLNL research into industries that have products to prevent corrosion resulted in the identification of an Innsbruck, Austria, company. This company claims to have products to permanently protect post- or pre-stressed tendons. The caveat is that the tendon protection system must be installed when the tendons are installed because no retrofit is available. Corrosion mitigation on the steel reinforcements surrounding the concrete was addressed through active and passive cathodic protection schemes. The combination of corrosion and erosion were addressed during consideration for the inspection of water-pump impeller-blades that are used in the three stage, million horsepower, pumping stations at Edmunston.

  19. Combined electromagnetic techniques in inspection of pump rod; Tecnicas eletromagneticas combinadas na inspecao de hastes de bombeio

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Francisco Carlos Rodrigues; Martins, Marcus Vinicius Maciel [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1998-07-01

    This work describes the experience acquired with the ground production installation of the PETROBRAS, state of Bahia, Brazil, where a procedures has been applied for rod inspection by using a semi-automatic electromagnetic technique, combined with magnetic particles test. Up to the present, this procedure is giving results which are technically promisers. Under the strictly economic viewpoint, some doubts were raised related to the establishing of the optimum point to the utilization.

  20. Reducing uncertainty in wind turbine blade health inspection with image processing techniques

    Science.gov (United States)

    Zhang, Huiyi

    Structural health inspection has been widely applied in the operation of wind farms to find early cracks in wind turbine blades (WTBs). Increased numbers of turbines and expanded rotor diameters are driving up the workloads and safety risks for site employees. Therefore, it is important to automate the inspection process as well as minimize the uncertainties involved in routine blade health inspection. In addition, crack documentation and trending is vital to assess rotor blade and turbine reliability in the 20 year designed life span. A new crack recognition and classification algorithm is described that can support automated structural health inspection of the surface of large composite WTBs. The first part of the study investigated the feasibility of digital image processing in WTB health inspection and defined the capability of numerically detecting cracks as small as hairline thickness. The second part of the study identified and analyzed the uncertainty of the digital image processing method. A self-learning algorithm was proposed to recognize and classify cracks without comparing a blade image to a library of crack images. The last part of the research quantified the uncertainty in the field conditions and the image processing methods.

  1. Development of signal processing technique for inspection of defects in stud bolts of nuclear reactor vessel

    International Nuclear Information System (INIS)

    Bolt failure is a hazard factor for the safety of reactor vessels in nuclear power plants. However, in the practical application of ultrasonic technique for crack detection in stud bolt, the classification of crack signal from the signals reflected from threads in stud bolt is very difficult. In this study, shadow effect technique combined with new signal processing method has been investigated to enhance the detectability of small crack initiated from root of thread in stud bolt. The key idea of new signal processing concept is based on the fact that the shape of waveforms from the threads is uniform since the shape of the threads in a bolt is same. If some cracks exist in the thread, the flaw signals are different from the reference signals. It has shown that the small flaws can be effectively detected by novel ultrasonic technique combined with this new signal processing concept.

  2. Electron Optic Design of Arrayed E-Beam Microcolumns Based Systems for Wafer Defects Inspection

    CERN Document Server

    Kazmiruk, V V

    2008-01-01

    In this paper is considered a matter of the system for wafer defect inspection (WDIS) practical realization. Such systems are on the agenda as the next generation and substitution for light optics and single $e$-beam based WDISs.

  3. In-Service Inspection of Wall-thinned Defects Using a Lock-in Technique of IR Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwae Hwan; Kim, Ju Hyun; Na, Man Gyun; Kim, Jin Weon [Chosun Univ., Gwangju (Korea, Republic of)

    2013-10-15

    In this study, a lock-in technique and power adjustment were applied to the cooling device for the IR thermography in order to detect the wall-thinned defects of the pipe specimen in a normal operation NPPs. According as the number of the cooling devices is increased and air volume transferred by the cooling device increases, wall-thinned defects inside pipes are more visible. By cooling the pipe using a lock-in technique in IR thermography, the boundary of the wall-thinned defective part is clear and the defect detection is easy. It is expected to detect the wall-thinned defects of piping during normal operation, to shorten the maintenance time of the NPPs, and to improve the work efficiency of the inspector. Recently, the safety problem of nuclear power plants (NPPs) has emerged as a global concern. As a result, the secondary system equipment in long-term aged NPPs has been growing interest. For these reasons, NDT for checking the integrity of the secondary system equipment is performed. The infrared (IR) thermography is one of the NDT. It is possible for us to solve the problems of the existing NDT. IR thermography can detect without contact the wall-thinned defects in pipes. Also, IR thermography using a lock-in technique for inspection is much safer and faster than other techniques. It is expected to be able to accurately detect the boundary of the non-defect parts and the defect parts, and shows a high utilization in the industrial field. Through this study, we have developed the inspection technique that can detect the defects by using the lock-in technique in IR thermography for inspection of pipes in the NPPs during the normal operation.

  4. Inspection technique of latent flaws on fine polished glass substrates using stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Sakai, Kazufumi; Nonaka, Kazuhiro

    2014-05-01

    The fine polishing technique, e.g. Chemical Mechanical Polishing treatment (CMP), is one of the most important techniques in the glass substrate manufacturing. However, mechanical interaction, e.g. friction, occurs between the abrasive and the surface of substrates. Therefore, latent flaws are formed in the surfaces of glass substrates depending on the polishing condition. In the case of the cleaning process of the glass substrate in which the latent flaws existed, latent flaws become obvious because glass surfaces were eaten away by chemical interaction of cleaning liquid. Therefore, latent flaws are the cause of decrease the yield of products. In general, non-destructive inspection techniques, e.g. light scattering method, foreign matter on the surface of glass substrates. Though, it is difficult to detect the latent flaws by these method, because these are closed. The present authors propose a novel inspection technique of latent flaws which occurred by the fine polishing technique, using light scattering method with stress concentration (Stress-Induced Light scattering Method; SILSM). SILSM is possible to classify and separately detect latent flaws and particles on the surfaces. Samples are deformed by the actuator and stress concentrations are occurred around the tip of latent flaws. By photo-elastic effect, the refractive index of around the tip of latent flaws is changed. And then, changed refractive index is detected by cooled CCD camera as the light scattering intensity. In this report, applying SILSM to glass substrates, latent flaws on the surface of glass substrates are detected non-destructively, and the usefulness of SILSM is evaluated as novel inspection technique of latent flaws.

  5. Risk Based Optimal Inspection and Repair Planning for Ship Structures Subjected to Corrosion Deterioration

    Institute of Scientific and Technical Information of China (English)

    李典庆; 张圣坤; 唐文勇

    2004-01-01

    A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where the expected lifetime costs were minimized with a constraint on the minimum acceptable reliability index. The safety margins were established for the inspection events, the repair events and the failure events for ship structures. Moreover, the formulae were derived to calculate failure probabilities and repair probabilities. Based on them, a component subjected to corrosion is investigated for illustration of the process of selecting the optimal inspection and repair strategy. Furthermore, some sensitivity studies were provided. The results show that the optimal inspection instants should take place before the reliability index reaches the minimum acceptable reliability index. The optimal target failure probability is 10-3. In addition, a balance can be achieved between the risk cost and total expected inspection and repair costs by means of the risk-based optimal inspection and repair method, which is very effective in selecting the optimal inspection and repair strategy.

  6. In service inspection of pipes based on risk methods; Inspeccion en servicio de tuberias basada en metodos de riesgo

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza G, G.; Viais J, J.; Carmona C, M. [ININ, Centro Nuclear ' Dr. Nabor Carrillo Flores' , Carretera Mexico Toluca, S/N. La Marquesa, Ocoyoacac, Mexico, C. P. 52750 (Mexico)]. e-mail: gmg@nuclear.inin.mx

    2006-07-01

    The politics of the Nuclear Regulatory Commission (by its initials in English NRC) of the United States of America on the use of the Probabilistic Safety Analysis (PSA) in activities of nuclear regulation it foments the use of this analysis technique to improve the decisions making, to reduce the unnecessary work in maintenance aspects, inspection and tests and to improve the regulatory efficiency. The inspection programs in service (ISI by its initials in English) developed by the American Society of Mechanical Engineers (by its initials in English ASME) it has been the one primary mechanism to prove the mechanical equipment in plants of nuclear energy, these programs indeed have been carried out in plants of nuclear energy by more of two decades. Their purpose is to identify the conditions, such as indications of cracks that are precursory of flights and ruptures which violate the integrity principles of the pressure frontier. The inspection in service activities include ultrasonic tests, surface tests and penetrating liquids test, also activities that include the scaffolds construction, removal of insulations and welding polishing. The inspections in service every 18 months during the times outside of service are executed. One of the objectives is to lower the costs of the inspections during the times outside of service and to reduce the exposure to the radiation by part of the personnel during these times out for inspections, while it is increased or it maintains the personnel's safety and the reliability. As part of the methodology a pipe segment is selected for which a fault in any point has the same consequences, being calculated the fault probability of the tube using the dimensions of the segment. In this work the inspection in service methodology is applied based on risk to an aspersion system of low pressure of the Laguna Verde Nucleo electric Central. For this system a reduction in the number of welding to inspect of 103 to only 15 is obtained

  7. State Inspection for Transmission Lines Based on Independent Component Analysis

    Institute of Scientific and Technical Information of China (English)

    REN Li-jia; JIANG Xiu-chen; SHENG Ge-hao; YANG Wei-wei

    2009-01-01

    Monitoring transmission towers is of great importance to prevent severe thefts on them and ensure the reliability and safety of the power grid operation. Independent component analysis (ICA) is a method for finding underlying factors or components from multivariate statistical data based on dimension reduction methods, and it is applicable to extract the non-stationary signals. FastICA based on negentropy is presented to effectively extract and separate the vibration signals caused by human activity in this paper. A new method combined empirical mode decomposition (EMD) technique with the adaptive threshold method is applied to extract the vibration pulses, and suppress the interference signals. The practical tests demonstrate that the method proposed in the paper is effective in separating and extracting the vibration signals.

  8. Research on automatic inspection system for defects on precise optical surface based on machine vision

    Institute of Scientific and Technical Information of China (English)

    WANG Xue; XIE Zhi-jiang

    2006-01-01

    In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products' surfaces after precise machining in order to obtain high quality in both functionality and aesthetics. The existing methods for detecting and classifying defects all are low accuracy or efficiency or high cost in inspection process. In this paper, a new inspection system based on machine vision has been introduced, which uses automatic focusing and image mosaic technologies to rapidly acquire distinct surface image, and employs Case-Based Reasoning(CBR)method in defects classification. A modificatory fuzzy similarity algorithm in CBR has been adopted for more quick and robust need of pattern recognition in practice inspection. Experiments show that the system can inspect surface diameter of 500mm in half an hour with resolving power of 0.8μm diameter according to digs or 0.5μm transverse width according to scratches. The proposed inspection principles and methods not only have meet manufacturing requirements of precise optical products, but also have great potential applications in other fields of precise surface inspection.

  9. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  10. Wavelet Based Image Denoising Technique

    Directory of Open Access Journals (Sweden)

    Sachin D Ruikar

    2011-03-01

    Full Text Available This paper proposes different approaches of wavelet based image denoising methods. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. Wavelet algorithms are useful tool for signal processing such as image compression and denoising. Multi wavelets can be considered as an extension of scalar wavelets. The main aim is to modify the wavelet coefficients in the new basis, the noise can be removed from the data. In this paper, we extend the existing technique and providing a comprehensive evaluation of the proposed method. Results based on different noise, such as Gaussian, Poisson’s, Salt and Pepper, and Speckle performed in this paper. A signal to noise ratio as a measure of the quality of denoising was preferred.

  11. Cost Optimal Reliability Based Inspection and Replacement Planning of Piping Subjected to CO2 Corrosion

    DEFF Research Database (Denmark)

    Hellevik, S. G.; Langen, I.; Sørensen, John Dalsgaard

    1999-01-01

    A methodology for cost optimal reliability based inspection and replacement planning of piping subjected to CO2 corrosion is described. Both initial (design phase) and in-service planning are dealt with. The methodology is based on the application of methods for structural reliability analysis......, the inspection times and methods. In the design phase the nominal design wall thickness is also treated as an optimization parameter. The most important benefits gained through the application of the methodology are consistent evaluation of the consequences of different inspection and replacement plans...... within the framework of Bayesian decision theory. The planning problem is formulated as an optimization problem where the expected lifetime costs are minimized with a constraint on the minimum acceptable reliability level. The optimization parameters are the number of inspections in the expected lifetime...

  12. Research and development on plant inspection presentation system cooperative with mobile robots and maintenance knowledge base

    International Nuclear Information System (INIS)

    In order to upgrade safety and reliability of nuclear power plants it is very important to develop a system of early detection of anomalies and realize adequate inspections responding to them. Based on accumulated basic technologies of cooperative active sensing systems for autonomous inspection mobile robots having active visual sensing and acoustic sensors with movable lighting and intelligent multimodal systems, 3D data processing visualization transmission technologies have been incorporated for compact storage of time and space dependent enormous inspection knowledge base. Surrounding server, simulating plant's environments with mobile robots and mockup systems, has been prepared and tested to realize this concept. Long-term operation of the server will be needed to accumulate inspection database and their efficient utilization. (T. Tanaka)

  13. An artificial immune approach for optical image based vision inspection

    Institute of Scientific and Technical Information of China (English)

    Hong Zheng(郑宏); Nanfeng Xiao(肖南风); Jinhui Lan(蓝金辉)

    2003-01-01

    This paper presents a novel approach of visual inspection for texture surface defects. The approach usesartificial immune theory in learning the detection of texture defects. In this paper, texture defects areregards as non-self, and normal textures are regarded as self. Defect filters and segmentation thresholdsused for defect detection are regarded as antibodies. The clonal selection algorithm stemmed from thenatural immune system is employed to learn antibodies. Experimental results on textile image inspectionare presented to illustrate the merit and feasibility of the proposed method.

  14. Design of inspection and maintenance models based on the CCC-chart

    OpenAIRE

    Chan, LY

    2003-01-01

    In this research, six maintenance models are constructed based on whether minor inspection, major inspection, minor maintenance and major maintenance are performed on a system. The system to study is a production process in which items produced can be classified as either conforming or nonconforming, and a statistical process control chart called CCC-chart (cumulative count control chart) can be applied to monitor the process. The maintenance models are analyzed quantitatively, and selection ...

  15. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  16. Development and validation of a real-time SAFT-UT [synthetic aperture focusing technique for ultrasonic testing] system for the inspection of light water reactor components: Annual report, October 1985-September 1986

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is designed to perform inservice inspection of light-water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering data base to support ASME Code acceptance of the technology. This progress report covers the programmatic work from October 1985 through September 1986. 45 figs., 8 tabs

  17. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  18. Epidemiologic and economic evaluation of risk-based meat inspection for bovine cysticercosis in Danish cattle

    DEFF Research Database (Denmark)

    Calvo Artavia, Francisco Fernando; Nielsen, Liza Rosenbaum; Alban, L.

    2013-01-01

    Under the current EU meat inspection regulation, every single carcase from all bovines above 6 weeks of age has to be examined for bovine cysticercosis (BC). This is time-consuming, costly, and is of limited value in countries with low prevalence. The aim of this study was to develop a stochastic...... simulation model for analysis of tentative risk-based meat inspection systems for BC in Danish cattle with regard to system sensitivity (SSSe), specificity and potential monetary benefits compared to the current system, which has an estimated SSSe of 15%. The relevant risk factors used to construct three...... at meat inspection. All animals in the low-risk groups (i.e. males, non-grazing or no access to risky water sources, respectively) would be subjected to visual inspection only. It was assumed that half of the cattle were slaughtered in abattoirs that would be able to reorganise the work...

  19. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology

    Science.gov (United States)

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40–50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  20. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.

    Science.gov (United States)

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  1. Development of an automatic post-weld inspection system based on laser vision

    Institute of Scientific and Technical Information of China (English)

    Fu Xibin; Lin Sanbao; Fan Chenglei; Yang Chunli; Luo Lu

    2008-01-01

    In order to overcome the limitations of manual post-weld visual inspection approach, an automated inspection system is developed which uses three-dimensional laser vision system based on the principle of optical triangulation. The system hardware consists of a modular development kit (MDK), a computer, an actuating mechanism and so on. In image processing algorithms, extraction accuracy of centric line of laser stripe is the critical factor that determines the system performance. So according to the features of laser stripe image, a novel algorithm is developed to detect the central line of laser stripe fast and accurately. Experiments have demonstrated that this system can be used in various weld features inspection of both butt and fillet types of weld. Compared with traditional manual inspection method, this method has obvious dominance. The three-dimensional reconstruction result shows that this system has high accuracy and reliability.

  2. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes: Flaw detection and characterization [Phase 1

    International Nuclear Information System (INIS)

    Nuclear power plants with heavy water reactors (HWRs) comprise nine percent of today's operating nuclear units, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems are an important factor in assuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Programme (CRP) on Inter-comparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the frame of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of the IAEA's project on advanced technologies for HWRs. The objective of the CRP was to inter-compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP, participants have investigated the capability of different techniques to detect and characterize flaws. During the second phase of this CRP, participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in Zirconium alloys. The intent was to identify the most effective pressure tube inspection and diagnostic methods, and to identify further development needs. The organizations that have participated in this CRP are: - The Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL); Chalk River Laboratories (CRL), Canada; - The Research Institute of Nuclear Power Operations (RINPO), China National Nuclear Corporation (CNNC), China; - Bhabha Atomic Research Centre (BARC), India; - The Korea Electric Power Research Institute (KEPRI), Republic of Korea; - The Korea Atomic Energy

  3. Robotized system for in-pipe inspection using pressure tolerant electronics technique

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ramon R.; Hsu, Liu; Peixoto, Alessandro J.; Gomes, Luiz P.C.S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (UFRJ/COPPE), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica. Grupo de Simulacao e Controle em Automacao e Robotica (GSCAR)]. E-mail: ramon, liu, jacoud, lpgomes@coep.ufrj.br; Reis, Ney R.S. dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Lab. de Robotica]. E-mail: salvireis@cenpes.petrobras.com.br

    2003-07-01

    This paper reports the development and experimental evaluation of a robotized system devised to perform two kinds of measurements inside a pipeline: the thickness of the internal wall painting layer and the internal radius. The thickness measurement allows the inspection of the painting layer quality and by measuring several radii it is possible to estimate the pipeline transversal section shape. The proposed scheme is shown to yield very satisfactory results on an actual 14'' (inches) pipeline in a real site. (author)

  4. Pre-service and inservice inspection of heat exchanger tube bundles by means of ultrasonics; A new and powerful technique

    International Nuclear Information System (INIS)

    For the inservice inspection of ferritic steam generator tubes of LFMBR's a new and complete inservice inspection system has been developed, based upon ultrasound. This method measures wallthickness and registrates eventually faulting areas in one and the same relatively fast run in all kinds of tube geometries. In addition its potential to recognize, to size and to evaluate even very small eefects appears to be very large. The system shows a very good defect detection reliability and it can be applied in most areas where eddy current meets either unfriendly conditions or cannot even be applied. On-line data handling provides the desired output even in graphical representation directly after the measurements have been made

  5. 3D VISION-BASED DIETARY INSPECTION FOR THE CENTRAL KITCHEN AUTOMATION

    Directory of Open Access Journals (Sweden)

    Yue-Min Jiang

    2014-12-01

    Full Text Available This paper proposes an intelligent and automatic dietary inspection system which can be applied to the dietary inspection for the application of central kitchen automation. The diet specifically designed for the patients are required with providing personalized diet such as low sodium intake or some necessary food. Hence, the proposed system can benefit the inspection process that is often performed manually. In the proposed system, firstly, the meal box can be detected and located automatically with the vision-based method and then all the food ingredients can be identified by using the color and LBP-HF texture features. Secondly, the quantity for each of food ingredient is estimated by using the image depth information. The experimental results show that the dietary inspection accuracy can approach 80%, dietary inspection efficiency can reach1200ms, and the food quantity accuracy is about 90%. The proposed system is expected to increase the capacity of meal supply over 50% and be helpful to the dietician in the hospital for saving the time in the diet inspection process.

  6. Potential of Uav-Based Laser Scanner and Multispectral Camera Data in Building Inspection

    Science.gov (United States)

    Mader, D.; Blaskow, R.; Westfeld, P.; Weller, C.

    2016-06-01

    Conventional building inspection of bridges, dams or large constructions in general is rather time consuming and often cost expensive due to traffic closures and the need of special heavy vehicles such as under-bridge inspection units or other large lifting platforms. In consideration that, an unmanned aerial vehicle (UAV) will be more reliable and efficient as well as less expensive and simpler to operate. The utilisation of UAVs as an assisting tool in building inspections is obviously. Furthermore, light-weight special sensors such as infrared and thermal cameras as well as laser scanner are available and predestined for usage on unmanned aircraft systems. Such a flexible low-cost system is realized in the ADFEX project with the goal of time-efficient object exploration, monitoring and damage detection. For this purpose, a fleet of UAVs, equipped with several sensors for navigation, obstacle avoidance and 3D object-data acquisition, has been developed and constructed. This contribution deals with the potential of UAV-based data in building inspection. Therefore, an overview of the ADFEX project, sensor specifications and requirements of building inspections in general are given. On the basis of results achieved in practical studies, the applicability and potential of the UAV system in building inspection will be presented and discussed.

  7. GASVOL 18'' gas pipeline - risk based inspection study

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernoey, Ola H.; Etterdal, Birger A. [Det Norske Veritas (DNV), Oslo (Norway); Guarize, Rosimar; Oliveira, Luiz F.S. [Det Norske Veritas (DNV) (Brazil); Faertes, Denise; Dias, Ricardo [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper describes a risk based approach and inspection planning as part of the Pipeline Integrity Management (PIM) system for the 95.5 km long 18'' GASVOL gas pipeline in the South eastern region of Brazil transporting circa 5 000 000 m3 dry gas per day. Pipeline systems can be subject to several degradation mechanisms and inspection and monitoring are used to ensure system integrity. Modern pipeline regulations and codes are normally based on a core safety or risk philosophy. The detailed design requirements presented in design codes are practical interpretations established so as to fulfill these core objectives. A given pipeline, designed, constructed and installed according to a pipeline code is therefore the realization of a structure, which, along its whole length, meets the applicable safety objectives of that code. The main objective of Pipeline Integrity Management (PIM) is to control and document the integrity of the pipeline for its whole service life, and to do this in a cost-effective manner. DNV has a specific approach to RBI planning, starting with an initial qualitative assessment where pipelines and damage type are ranked according to risk and potential risk reduction by an inspection and then carried forward to a quantitative detailed assessment where the level of complexity and accuracy can vary based on availability of information and owner needs. Detailed assessment requires significant effort in data gathering. The findings are dependent upon the accuracy of the inspection data, and on DNV's interpretation of the pipeline reference system and simplifications in the inspection data reported. The following specific failure mechanisms were investigated: internal corrosion, external corrosion, third party interference, landslides and black powder. RBI planning, in general words, is a 'living process'. In order to optimize future inspections, it is essential that the analyses utilize the most recent information regarding

  8. Nondestructive, in-process inspection of inertia friction welding : an investigation into a new sensing technique.

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, D. A. (Daniel A.); Cola, M. J. (Mark J.); Dave, V. R. (Vivek R.); Dozhier, N. G. (Nathan G.); Carpenter, R. W. (Robert W.)

    2002-01-01

    This paper investigates the capabilities of a new sensor for in-process monitoring of quality during friction welding. The non-contact sensor is composed of microphones that are mounted in an aluminum ring which surrounds the weld joint. The sensor collects the acoustical energy (in the form of sound pressure) that is emitted during the plastic deformation and phase transformations (if applicable) in friction welding processes. The focus in this preliminary investigation is to search for and identify features within the acoustical emission that are indicative of bond quality. Bar-to-bar inertia friction welding (one form of friction welding) of copper to 304L stainless steel is used in this proof-of-concept study. This material combination exhibits only marginal weldability and is ideally suited for validating the capabilities of this new sensing technique. A probabilistic neural network is employed in this work to analyze the acoustical emission's frequency spectrum in an attempt to classify acceptable, conditional, and unacceptable welds. Our preliminary findings indicate that quality-based process features do exist within the frequency spectrum of the acoustical signature. The results from this analysis are presented. Future work in improving the sensing and interpretation of the data is discussed in an effort to develop a robust method of quality-based, in-process monitoring of friction welds.

  9. Two non-destructive neutron inspection techniques: prompt gamma-ray activation analysis and cold neutron tomography

    OpenAIRE

    Baechler, Sébastien; Dousse, Jean-Claude; Jolie, Jan

    2005-01-01

    Deux techniques d’inspection non-destructives utilisant des faisceaux de neutrons froids ont été développées à la source de neutrons SINQ de l’Institut Paul Scherrer : (1) l’analyse par activation neutronique prompte (PGAA) et (2) la tomographie neutronique. L’analyse par PGA (Prompt Gamma-ray Activation) est une méthode nucléaire qui permet de déterminer la concentration d’éléments présents dans un échantillon. Cette technique consiste à détecter les rayons gamma prompts émis par l’échantill...

  10. Epidemiologic and economic evaluation of risk-based meat inspection for bovine cysticercosis in Danish cattle.

    Science.gov (United States)

    Calvo-Artavia, F F; Nielsen, L R; Alban, L

    2013-03-01

    Under the current EU meat inspection regulation, every single carcase from all bovines above 6 weeks of age has to be examined for bovine cysticercosis (BC). This is time-consuming, costly, and is of limited value in countries with low prevalence. The aim of this study was to develop a stochastic simulation model for analysis of tentative risk-based meat inspection systems for BC in Danish cattle with regard to system sensitivity (SSSe), specificity and potential monetary benefits compared to the current system, which has an estimated SSSe of 15%. The relevant risk factors used to construct three alternative scenario trees were identified from previous Danish risk factor studies (1) gender, (2) grazing and (3) access to risky water sources. Thus, females, animals that had been grazing or animals with access to risky water sources were considered high-risk and would be subjected to invasive inspection at meat inspection. All animals in the low-risk groups (i.e. males, non-grazing or no access to risky water sources, respectively) would be subjected to visual inspection only. It was assumed that half of the cattle were slaughtered in abattoirs that would be able to reorganise the work at the slaughterline, allowing them to do with one meat inspector less. All abattoirs would gain on the price of sold uncut beef from the masseter muscles from visually inspected cattle. Under these assumptions, using gender and grazing were preferable due to them having SSSe only slightly lower than the current system, and highest effectiveness ratios, but they had a lower net economic effect (NEE) than the scenario using risky water sources. Using gender to differentiate high and low-risk groups was judged preferable over grazing due to feasibility, because the information is readily available at the slaughter line. The exact total NEE for the cattle sector depends on how many and which of the abattoirs that would be able to reorganise the work at the slaughter line to save money on

  11. Risk-Based Inspection and Maintenance Planning Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    A risk-based inspection planning (RBI) approach applied to offshore wind turbines (OWT) is presented, based on RBI methodology developed in the last decades in the oil and gas industry. In wind farm (IWF) and single-alone locations are considered using a code-established turbulence models including...

  12. Risk-based prioritization and its application to inspection of valves in the water sector

    International Nuclear Information System (INIS)

    Isolation valves facilitate the effective operation and maintenance of water supply networks, but their sheer number presents a significant asset management challenge. If left unmanaged, valve reliability issues can become widespread. Inspections provide a means of increasing reliability, but a survey of industry practices indicated that some utilities did not have such a program in place. To improve asset management and reduce business risk exposure, such utilities need an effective means of commencing inspection programs. From a theoretical perspective, risk concepts provide a means of optimizing maintenance effort. However, in the face of poor data on reliability or condition, pragmatic approaches to risk-based prioritization are needed. One such approach, risk indexing, is considered in this paper. Background on the research is presented, including the application of risk-based inspection concepts within the water sector. The development of a risk indexing scheme is then investigated, drawing on two industry workshops in which the analytical hierarchy process was used to set relative weights. It is concluded that risk indexing provides the basis for a rational prioritization process in the absence of data on valve reliability or condition. - Highlights: ► Importance of valve inspections to water network reliability. ► Theoretical perspective of risk concepts that provide a means of optimizing inspection programs. ► Pragmatic approaches to prioritization in light of poor valve data. ► Development and assessment of a risk index scheme. ► Use of the analytical hierarchy process to set relative weights of risk factors.

  13. An Empirical Comparative Study of Checklist based and Ad Hoc Code Reading Techniques in a Distributed Groupware Environment

    CERN Document Server

    Akinola, Olalekan S

    2009-01-01

    Software inspection is a necessary and important tool for software quality assurance. Since it was introduced by Fagan at IBM in 1976, arguments exist as to which method should be adopted to carry out the exercise, whether it should be paper based or tool based, and what reading technique should be used on the inspection document. Extensive works have been done to determine the effectiveness of reviewers in paper based environment when using ad hoc and checklist reading techniques. In this work, we take the software inspection research further by examining whether there is going to be any significant difference in defect detection effectiveness of reviewers when they use either ad hoc or checklist reading techniques in a distributed groupware environment. Twenty final year undergraduate students of computer science, divided into ad hoc and checklist reviewers groups of ten members each were employed to inspect a medium sized java code synchronously on groupware deployed on the Internet. The data obtained were...

  14. Generative inspection process planner for integrated production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.W. (Allied-Signal Aerospace Co., Kansas City, MO (USA). Kansas City Div.); Gyorog, D.A. (Kansas Univ., Lawrence, KS (USA). Dept. of Mechanical Engineering)

    1990-04-01

    This work describes the design prototype development of a generative process planning system for dimensional inspection. The system, IPPEX (Inspection Process Planning EXpert), is a rule-based expert system for integrated production. Using as advanced product modeler, relational databases, and artificial intelligence techniques, IPPEX generates the process plan and part program for the dimensional inspection of products using CMMs. Through an application interface, the IPPEX system software accesses product definition from the product modeler. The modeler is a solid geometric modeler coupled with a dimension and tolerance modeler. Resource data regarding the machines, probes, and fixtures are queried from databases. IPPEX represents inspection process knowledge as production rules and incorporates an embedded inference engine to perform decision making. The IPPEX system, its functional architecture, system architecture, system approach, product modeling environment, inspection features, inspection knowledge, hierarchical planning strategy, user interface formats, and other fundamental issues related to inspection planning and part programming for CMMs are described. 27 refs., 16 figs., 4 tabs.

  15. The API methodology for risk-based inspection (RBI) analysis for the petroleum and petrochemical industry

    International Nuclear Information System (INIS)

    Twenty-one petroleum and petrochemical companies are currently sponsoring a project within the American Petroleum Institute (API) to develop risk-based inspection (RBI) methodology for application in the refining and petrochemical industry. This paper describes that particular RBI methodology and provides a summary of the three levels of RBI analysis developed by the project. Also included is a review of the first pilot project to validate the methodology by applying RBI to several existing refining units. The failure for pressure equipment in a process unit can have several undesirable effects. For the purpose of RBI analysis, the API RBI program categorizes these effects into four basic risk outcomes: flammable events, toxic releases, major environmental damage, and business interruption losses. API RBI is a strategic process, both qualitative and quantitative, for understanding and reducing these risks associated with operating pressure equipment. This paper will show how API RBI assesses the potential consequences of a failure of the pressure boundary, as well as assessing the likelihood (probability) of failure. Risk-based inspection also prioritizes risk levels in a systematic manner so that the owner-user can then plan an inspection program that focuses more resources on the higher risk equipment; while possibly saving inspection resources that are not doing an effective job of reducing risk. At the same time, if consequence of failure is a significant driving force for high risk equipment items, plant management also has the option of applying consequence mitigation steps to minimize the impact of a hazardous release, should one occur. The target audience for this paper is engineers, inspectors, and managers who want to understand what API Risk-Based Inspection is all about, what are the benefits and limitations of RBI, and how inspection practices can be changed to reduce risks and/or save costs without impacting safety risk. (Author)

  16. Automatic Inspection and Processing of Accessory Based on Vision Stitching and Spectral Illumination

    Directory of Open Access Journals (Sweden)

    Wen-Yang Chang

    2014-08-01

    Full Text Available The study investigates automatic inspection and processing of the stem accessories based on vision stitching and spectral illumination. The vision stitching mainly involves algorithms of white balance, scale-invariant feature transforms (SIFT and roundness for whole image of automatic accessory inspection. The illumination intensities, angles, and spectral analyses of light sources are analyzed for image optimal inspections. The unrealistic color casts of feature inspection is removed using a white balance algorithm for global automatic adjustment. The SIFT is used to extract and detect the image features for big image stitching. The Hough transform is used to detect the parameters of a circle for roundness of the bicycle accessories. The feature inspections of a stem contain geometry size, roundness, and image stitching. Results showed that maximum errors of 0°, 10°, 30°, and 50° degree for the spectral illumination of white light LED arrays with differential shift displacements are 4.4, 4.2, 6.8, and 3.5 %, respectively. The deviation error of image stitching for the stem accessory in x and y coordinates are 2 pixels. The SIFT and RANSAC enable to transform the stem image into local feature coordinates.

  17. A PCA and ELM Based Adaptive Method for Channel Equalization in MFL Inspection

    OpenAIRE

    Zhenning Wu; Huaguang Zhang; Jinhai Liu; Zongjie Qiu; Mo Zhao

    2014-01-01

    Magnetic flux leakage (MFL) as an efficient method for pipeline flaw detection plays important role in pipeline safety. This nondestructive test technique assesses the health of the buried pipeline. The signal is gathered by an array of hall-effect sensors disposed at the magnetic neutral plane of a pair of permanent magnet in the pipeline inspection gauge (PIG) clinging to the inner surface of the pipe wall. The magnetic flux measured by the sensors reflects the health condition of the pipe....

  18. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    OpenAIRE

    Niederleithinger E.; Wiggenhauser H.

    2013-01-01

    Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultra...

  19. Automated signal processing applied to volatile-based inspection of greenhouse crops

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Bouwmeester, H.J.; Henten, van E.J.

    2010-01-01

    Gas chromatograph–mass spectrometers (GC-MS) have been used and shown utility for volatile-based inspection of greenhouse crops. However, a widely recognized difficulty associated with GC-MS application is the large and complex data generated by this instrument. As a consequence, experienced analyst

  20. Reliability Assessment and Reliability-Based Inspection and Maintenance of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    to optimize inspection and maintenance (I&M) efforts, entailing to a suitable life-cycle performance without neglecting the economical aspect. Moreover, the integration of condition monitoring information (CMI) can be done through probabilistic inference. In this work, a reliability-based I&M planning OWT...

  1. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    Science.gov (United States)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  2. Preliminary study on the development of an in-service inspection technique for graphite components in the HTTR

    International Nuclear Information System (INIS)

    Development of a nondestructive measuring method on a residual strain and/or stress accumulating in the graphite component is one of major research subjects in the HTTR. For the purpose of the development of the method deformation characteristic under a small magnitude of a pressure load was measured using graphite specimens on which several levels of residual strains were produced. The pressure load was applied using a microhardness testing machine. In the experiment indentation load to depth characteristic and a microhardness were measured as a function of the residual strain. In this paper we describe the deformation characteristic influenced by the residual strain, and discuss the applicability of the micro-indentation method to the estimation of the residual strain arising in graphite components as an inservice inspection technique. (author)

  3. GIS-based automated management of highway surface crack inspection system

    Science.gov (United States)

    Chung, Hung-Chi; Shinozuka, Masanobu; Soeller, Tony; Girardello, Roberto

    2004-07-01

    An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system that can provide convenient and efficient pavement inspection and management.

  4. BONDING OF MINIATURE PARTS WITH ADHESIVES AND VISION BASED PROCEDURE INSPECTION

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaodong; Jürgen Hesselbach

    2004-01-01

    Bonding with adhesives is an important technique for building up hybrid microsystems.Some adhesives are tested with capillary dispensing system for microassembly,and volume of droplets less than 10 nl with good repeatability can be acquired.1-part UV curing adhesive hardens rapidly and is suitable for bonding of transparent microparts.Light-activated adhesive starts the curing process in an adjustable short period of time after the radiation of visible light,and thus suits bonding of non-transparent microparts.A method is proposed for bonding the guides of a miniature linear motor being developed by collaborate research center 516 (SFB516) in Germany.With the method high assembly accuracy in the vertical direction can be guaranteed.By making small grooves on the stator for containing adhesive,the deterioration of the accuracy due to the thickness of adhesive layer can be avoided.The criteria on deciding the size of the groove are given and analyzed.Vision based inspection method is introduced for automatic assembly of the guides.The dispensing volume and position of dispensed adhesive droplets can be detected for ensuring the bonding quality.

  5. Nontraditional manufacturing technique-Nano machining technique based on SPM

    Institute of Scientific and Technical Information of China (English)

    DONG Shen; YAN Yongda; SUN Tao; LIANG Yingchun; CHENG Kai

    2004-01-01

    Nano machining based on SPM is a novel, nontraditional advanced manufacturing technique. There are three main machining methods based on SPM, i.e.single atom manipulation, surface modification using physical or chemical actions and mechanical scratching. The current development of this technique is summarized. Based on the analysis of mechanical scratching mechanism, a 5 μm micro inflation hole is fabricated on the surface of inertial confinement fusion (ICF) target. The processing technique is optimized. The machining properties of brittle material, single crystal Ge, are investigated. A micro machining system combining SPM and a high accuracy stage is developed. Some 2D and 3D microstructures are fabricated using the system. This method has broad applications in the field of nano machining.

  6. Single Mode Guided Wave Technique For Pipe Inspection Using Laser Ultrasound

    International Nuclear Information System (INIS)

    The laser ultrasonic technique has been considered as a useful non-contact method to generate the ultrasonic guided wave in pipe. In practical applications of the guided wave technique, however, it is very important, though often difficult, to identify propagating modes. In this paper, we propose a wavelength-matched method using the ring-arrayed laser illumination that enables to generate only the specific longitudinal mode of which wavelength is determined by the array pitch. The effect of ring-arrayed illumination is uniformly launching the wavelength-matched guided wave along the circumferential direction. In this paper, experimental system is constructed, and pipe specimens are tested. The detector is the air-coupled transducer that is able to detect only a single mode by tuning its detection angle. Experimental results show that the predicted mode is clearly generated and detected. The proposed technique is fully non-contact, and it also has the advantage of greatly enhanced mode selectivity.

  7. PWR nozzle 'crotch corner' inspection: an effective additional ultrasonic technique for radial cracks

    International Nuclear Information System (INIS)

    An ultrasonic non-destructive technique for testing the integrity of the nozzle crotch corner of a PWR pressure vessel is described which uses two angled probes to detect the specular reflection from one probe to the other via a crack lying in the important radial plane of the nozzle. (U.K.)

  8. A new track inspection car based on a laser camera system

    Institute of Scientific and Technical Information of China (English)

    Shengwei Ren; Shiping Gu; Guiyang Xu; Zhan Gao; Qibo Feng

    2011-01-01

    @@ We develop and build a new type of inspection car.A beam that is not rigidly connected to the train axle boxes and can absorb the vibration and impact caused by the high speed train is used, and a laser-camera measurement system based on the machine vision method is adopted.This method projects structural light onto the track and measures gauge and longitudinal irregularity.The measurement principle and model are discussed.Through numerous practical experiments, the rebuilt car is found to considerably eliminate the measurement errors caused by vibration and impact, thereby increasing measurement stability under high speeds.This new kind of inspection cars have been used in several Chinese administration bureaus.%We develop and build a new type of inspection car. A beam that is not rigidly connected to the train axle boxes and can absorb the vibration and impact caused by the high speed train is used, and a laser-camera measurement system based on the machine vision method is adopted. This method projects structural light onto the track and measures gauge and longitudinal irregularity. The measurement principle and model are discussed. Through numerous practical experiments, the rebuilt car is found to considerably eliminate the measurement errors caused by vibration and impact, thereby increasing measurement stability under high speeds. This new kind of inspection cars have been used in several Chinese administration bureaus.

  9. Railroad inspection based on ACFM employing a non-uniform B-spline approach

    Science.gov (United States)

    Chacón Muñoz, J. M.; García Márquez, F. P.; Papaelias, M.

    2013-11-01

    The stresses sustained by rails have increased in recent years due to the use of higher train speeds and heavier axle loads. For this reason surface and near-surface defects generate by Rolling Contact Fatigue (RCF) have become particularly significant as they can cause unexpected structural failure of the rail, resulting in severe derailments. The accident that took place in Hatfield, UK (2000), is an example of a derailment caused by the structural failure of a rail section due to RCF. Early detection of RCF rail defects is therefore of paramount importance to the rail industry. The performance of existing ultrasonic and magnetic flux leakage techniques in detecting rail surface-breaking defects, such as head checks and gauge corner cracking, is inadequate during high-speed inspection, while eddy current sensors suffer from lift-off effects. The results obtained through rail inspection experiments under simulated conditions using Alternating Current Field Measurement (ACFM) probes, suggest that this technique can be applied for the accurate and reliable detection of surface-breaking defects at high inspection speeds. This paper presents the B-Spline approach used for the accurate filtering the noise of the raw ACFM signal obtained during high speed tests to improve the reliability of the measurements. A non-uniform B-spline approximation is employed to calculate the exact positions and the dimensions of the defects. This method generates a smooth approximation similar to the ACFM dataset points related to the rail surface-breaking defect.

  10. Automatic classification and defect verification based on inspection technology with lithography simulation

    Science.gov (United States)

    Kato, Masaya; Inuzuka, Hideki; Kosuge, Takeshi; Yoshikawa, Shingo; Kanno, Kayoko; Imai, Hidemichi; Miyashita, Hiroyuki; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2015-10-01

    Even small defects on the main patterns can create killer defects on the wafer, whereas the same defect on or near the decorative patterns may be completely benign to the wafer functionality. This ambiguity often causes operators and engineers to put a mask "on hold" to be analyzed by an AIMS™ tool which slows the manufacturing time and increases mask cost. In order to streamline the process, mask shops need a reliable way to quickly identify the wafer impact of defects during mask inspection review reducing the number of defects requiring AIMS™ analysis. Source Mask Optimization (SMO) techniques are now common on sub 20nm node critical reticle patterns These techniques create complex reticle patterns which often makes it difficult for inspection tool operators to identify the desired wafer pattern from the surrounding nonprinting patterns in advanced masks such as SMO, Inverse Lithography Technology (ILT), Negative Tone Development (NTD). In this study, we have tested a system that generates aerial simulation images directly from the inspection tool images. The resulting defect dispositions from a program defect test mask along with numerous production mask defects have been compared to the dispositions attained from AIMS™ analysis. The results of our comparisons are presented, as well as the impact to mask shop productivity.

  11. Computational defect review for actinic mask inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram

    2013-04-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The limitation of 1.35 NA posed by water-based lithography has led to the application of various resolution enhancement techniques (RET), for example, use of strong phase-shifting masks, aggressive OPC and sub-resolution assist features, customized illuminators, etc. The adoption of these RET techniques combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for a mask inspection engineer. Inspecting masks under their actinic-aerial image conditions would detect defects that are more likely to print under those exposure conditions. However, this also makes reviewing such defects in their low-contrast aerial images very challenging. On the other hand, inspecting masks under higher resolution inspection optics would allow for better viewing of defects post-inspection. However, such inspections generally would also detect many more defects, including printable and nuisance, thereby making it difficult to judge which are of real concern for printability on wafer. Often, an inspection engineer may choose to use Aerial and/or high resolution inspection modes depending on where in the process flow the mask is and the specific device-layer characteristics of the mask. Hence, a comprehensive approach is needed in handling defects both post-aerial and post-high resolution inspections. This analysis system is designed for the Applied Materials Aera™ mask inspection platform, all data reported was collected using the Aera.

  12. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S. [Pacific Northwest Lab., Richland, WA (United States)

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained.

  13. Opportunistic condition-based maintenance and aperiodic inspections for a two-unit series system

    OpenAIRE

    Olde Keizer, Minou C.A.; Ruud H. Teunter

    2014-01-01

    Condition-Based Maintenance (CBM) intends to perform maintenance right before a failure occurs by estimating the pending moment of failure based on monitoring a certain condition, such as vibration or temperature. This paper considers a two-unit series system with economic dependencies. The aperiodic inspection moments are optimized simultaneously with the critical levels at which maintenance is performed in order to minimize cost and/or maximize availability. For this purpose, a stochastic m...

  14. Reactive underwater object inspection based on artificial electric sense.

    Science.gov (United States)

    Lebastard, Vincent; Boyer, Frédéric; Lanneau, Sylvain

    2016-07-26

    Weakly electric fish can perform complex cognitive tasks based on extracting information from blurry electric images projected from their immediate environment onto their electro-sensitive skin. In particular they can be trained to recognize the intrinsic properties of objects such as their shape, size and electric nature. They do this by means of novel perceptual strategies that exploit the relations between the physics of a self-generated electric field, their body morphology and the ability to perform specific movement termed probing motor acts (PMAs). In this article we artificially reproduce and combine these PMAs to build an autonomous control strategy that allows an artificial electric sensor to find electrically contrasted objects, and to orbit around them based on a minimum set of measurements and simple reactive feedback control laws of the probe's motion. The approach does not require any simulation models and could be implemented on an autonomous underwater vehicle (AUV) equipped with artificial electric sense. The AUV has only to satisfy certain simple geometric properties, such as bi-laterally (left/right) symmetrical electrodes and possess a reasonably high aspect (length/width) ratio.

  15. Reactive underwater object inspection based on artificial electric sense.

    Science.gov (United States)

    Lebastard, Vincent; Boyer, Frédéric; Lanneau, Sylvain

    2016-01-01

    Weakly electric fish can perform complex cognitive tasks based on extracting information from blurry electric images projected from their immediate environment onto their electro-sensitive skin. In particular they can be trained to recognize the intrinsic properties of objects such as their shape, size and electric nature. They do this by means of novel perceptual strategies that exploit the relations between the physics of a self-generated electric field, their body morphology and the ability to perform specific movement termed probing motor acts (PMAs). In this article we artificially reproduce and combine these PMAs to build an autonomous control strategy that allows an artificial electric sensor to find electrically contrasted objects, and to orbit around them based on a minimum set of measurements and simple reactive feedback control laws of the probe's motion. The approach does not require any simulation models and could be implemented on an autonomous underwater vehicle (AUV) equipped with artificial electric sense. The AUV has only to satisfy certain simple geometric properties, such as bi-laterally (left/right) symmetrical electrodes and possess a reasonably high aspect (length/width) ratio. PMID:27458187

  16. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    Science.gov (United States)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  17. A Multi-Objective Genetic Algorithm for determining efficient Risk-Based Inspection programs

    International Nuclear Information System (INIS)

    This paper proposes a coupling between Risk-Based Inspection (RBI) methodology and Multi-Objective Genetic Algorithm (MOGA) for defining efficient inspection programs in terms of inspection costs and risk level, which also comply with restrictions imposed by international standards and/or local government regulations. The proposed RBI+MOGA approach has the following advantages: (i) a user-defined risk target is not required; (ii) it is not necessary to estimate the consequences of failures; (iii) the inspection expenditures become more manageable, which allows assessing the impact of prevention investments on the risk level; (iv) the proposed framework directly provides, as part of the solution, the information on how the inspection budget should be efficiently spent. Then, genetic operators are tailored for solving this problem given the huge size of the search space. The ability of the proposed RBI+MOGA in providing efficient solutions is evaluated by means of two examples, one of them involving an oil and gas separator vessel subject to internal and external corrosion that cause thinning. The obtained results indicate that the proposed genetic operators significantly reduce the search space to be explored and RBI+MOGA is a valuable method to support decisions concerning the mechanical integrity of plant equipment. - Highlights: • This paper proposes an original RBI multi-objective-based framework. • The exhaustive evaluation of these feasible programs is impossible in practice. • Thus, the effort to accomplish the analysis is fairly reduced. • Tool to support efficient decisions related to mechanical integrity of equipment

  18. Reliability-Based Design and Planning of Inspection and Monitoring of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio

    Maintaining and developing a sustainable wind industry is the main motivation of this PhD thesis entitled “Reliability-based design and planning of inspection and monitoring of offshore wind turbines”. In this thesis, statistical methods and probability theory are important mathematical tools used...... between the costs of the substructures and the annual wind energy production as well as to maximize the benefits coming from adequate operational control configurations which will increase the material saving in the substructures. The key goal is to decrease the cost of energy (CoE) considering...... and offshore wind turbine foundations with the aim of improving the design, decreasing structural costs and increasing benefits. Recently, wind energy technology has started to adopt risk and reliability based inspection planning (RBI) as a methodology based on Bayesian decision theories together...

  19. Development of fluorescence based handheld imaging devices for food safety inspection

    Science.gov (United States)

    Lee, Hoyoung; Kim, Moon S.; Chao, Kuanglin; Lefcourt, Alan M.; Chan, Diane E.

    2013-05-01

    For sanitation inspection in food processing environment, fluorescence imaging can be a very useful method because many organic materials reveal unique fluorescence emissions when excited by UV or violet radiation. Although some fluorescence-based automated inspection instrumentation has been developed for food products, there remains a need for devices that can assist on-site inspectors performing visual sanitation inspection of the surfaces of food processing/handling equipment. This paper reports the development of an inexpensive handheld imaging device designed to visualize fluorescence emissions and intended to help detect the presence of fecal contaminants, organic residues, and bacterial biofilms at multispectral fluorescence emission bands. The device consists of a miniature camera, multispectral (interference) filters, and high power LED illumination. With WiFi communication, live inspection images from the device can be displayed on smartphone or tablet devices. This imaging device could be a useful tool for assessing the effectiveness of sanitation procedures and for helping processors to minimize food safety risks or determine potential problem areas. This paper presents the design and development including evaluation and optimization of the hardware components of the imaging devices.

  20. Earthworm-based miniature robot for intestinal inspection

    Science.gov (United States)

    Chi, Dongxiang; Yan, Guozheng

    2001-10-01

    As a part of MIS (Minimally Invasive Surgery), the endoscope plays an important role in the field of diagnosis and treatment. To combine a miniature robot with an endoscope is a new dimension in the field of medical robotics in recent years. Overcoming the shortcomings of the traditional endoscope, robotic endoscope applies new materials and technologies into the design of a endoscope and booms the development of a new type of endoscope. In this paper, an earthworm based electromagnetic robotic endoscope system is introduced whose structure and locomotion mechanism are analyzed. The motion characteristics in time and frequency domain of a single component are also discussed in detail and a modified waveform and a suitable driving frequency are put forward through which an effective movement control can be achieved and the heat generation of the robot reduced. The robot, 7mm in diameter, 64mm in length and 9.8g in weight, is small enough to pass through the neck of intestine easily and flexible enough (gimbal mounts of 2 degree of freedom) to wind through the intestine. Though the running of the robot is good, there are still problems, such as heat generation and locomotion mechanism on the inner intestinal surface, to be solved.

  1. Reliability-Based Planning of Inspection, Operation and Maintenance for Offshore Oil & Gas Structures and Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based cost-optimal planning of inspection, maintenance and operation has many applications. In this paper applications for planning of inspections for oil & gas jacket structures and of operation and maintenance of offshore wind turbines are described and illustrated by examples....

  2. Bridging of inspection with corrosion management

    International Nuclear Information System (INIS)

    Formerly, Inspection and Corrosion Engineers have less interaction and sharing of information to each other even they are working in the same plant or organization. Inspection finding either from visual inspection or NDT techniques rarely shared with corrosion engineers. Similarly corrosion engineers rarely discussed their corrosion prediction and potential damage mechanism with inspection engineers. A demanding request of more holistic plant safety and asset integrity promoted the introduction and implementation of Risk Based Inspection (RBI). RBI analysis demands the input mainly from both disciplines i.e. Inspection and Corrosion Engineers. Most of RBI methodologies are once-off analysis approach which also promoted once-off interaction between Inspection and Corrosion Engineers. PETRONAS has developed a methodology with supporting software, integrating both Inspection and Corrosion disciplines. PETRONAS Risk Based Inspection (PRBI) is intended to promote continuous integration of Inspection and Corrosion management of the plant through out the whole life cycle starting from the design stage to fabrication, operation and decommissions stage. (author)

  3. The Potential of Acousto-Ultrasonic Techniques for Inspection of Baked Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Moez Ben Boubaker

    2016-07-01

    Full Text Available High quality baked carbon anodes contribute to the optimal performance of aluminum reduction cells. However, the currently decreasing quality and increasing variability of anode raw materials (coke and pitch make it challenging to manufacture the anodes with consistent overall quality. Intercepting faulty anodes (e.g., presence of cracks and pores before they are set in reduction cells and deteriorate their performance is therefore important. This is a difficult task, even in modern and well-instrumented anode plants, because lab testing using core samples can only characterize a small proportion of the anode production due to the costly, time-consuming, and destructive nature of the analytical methods. In addition, these results are not necessarily representative of the whole anode block. The objective of this work is to develop a rapid and non-destructive method for quality control of baked anodes using acousto-ultrasonic (AU techniques. The acoustic responses of anode samples (sliced sections were analyzed using a combination of temporal features computed from AU signals and principal component analysis (PCA. The AU signals were found sensitive to pores and cracks and were able to discriminate the two types of defects. The results were validated qualitatively by submitting the samples to X-ray Computed Tomography (CT scan.

  4. Reliability Assessment and Reliability-Based Inspection and Maintenance of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramirez, José Rangel

    Wind power installations have become the second largest contributor to installation of electricity capacity in the European Union during the last decade. With this increase in production capability and size, technical and economical efforts should be directed to achieving the optimal structural...... actions are the most relevant and effective means of control of deterioration. The risk-based inspection planning methodology, based on Bayesian decision theory, represents an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind...... to their offshore location, no pollution risks and low human risks since they are unmanned. This allows the allocation of lower reliability level compared to e.g. oil & gas installations. With the incursion to water depths between 20 and 50 meters, the use of jacket and tripod structures represents a feasible...

  5. The Theory of Theft: An Inspection Game Model of the Stolen Base Play in Baseball

    OpenAIRE

    Theodore L. Turocy

    2004-01-01

    This paper applies the theory of equilibrium in mixed strategies in an inspection game model to describe the strategic interaction in the stolen base play in baseball. A parsimonious simultaneous-move game model offers predictions about how the observable conduct of the teams on offense and defense responds as the characteristics of the players involved change. The theory organizes observations from play-by-play data from Major League Baseball, where highly-motivated, experienced professional...

  6. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  7. Automated Visual Inspection: Position Identification of Object for Industrial Robot Application based on Color and Shape

    Directory of Open Access Journals (Sweden)

    Muralindran Mariappan

    2016-01-01

    Full Text Available Inspection task is traditionally carried out by human. However, Automated Visual Inspection (AVI has gradually become more popular than human inspection due to the advantageous in the aspect of high precision and short processing time. Therefore, this paper proposed a system which identifies the object’s position for industrial robot based on colors and shapes where, red, green, blue and circle, square, triangle are recognizable. The proposed system is capable to identify the object’s position in three modes, either based on color, shape or both color and shape of the desired objects. During the image processing, RGB color space is utilized by the proposed system while winner take all approach is used to classify the color of the object through the evaluation of the pixel’s intensity value of the R, G and B channel. Meanwhile, the shapes and position of the objects are determined based on the compactness and the centroid of the region respectively. Camera settings, such as brightness, contrast and exposure is another important factor which can affect the performance of the proposed system. Lastly, a Graphical User Interface was developed. The experimental result shows that the developed system is highly efficient when implemented in the selected database.

  8. The Liquisolid Technique: Based Drug Delivery System

    OpenAIRE

    Izhar Ahmed Syed; E. Pavani

    2012-01-01

    The “Liquisolid” technique is a novel and capable addition towards such an aims for solubility enhancement and dissolution improvement, thereby it increases the bioavailability. It contains liquid medications in powdered form. This technique is an efficient method for formulating water insoluble and water soluble drugs. This technique is based upon the admixture of drug loaded solutions with appropriate carrier and coating materials. The use of non-volatile solvent causes improved wettability...

  9. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  10. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection.

    Science.gov (United States)

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  11. Report on inspection of the performance based incentive program at the Richland Operations Office

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-10

    The Fiscal Year (FY) 1995 Performance Based Incentive (PBI) Program at the Department of Energy`s (DOE) Richland Operations Office (Richland) was initiated by Richland as one part of the broader DOE Contract Reform Initiative being implemented at the Hanford Site in FY 1995. This program was identified as an area of concern by the Office of Inspections as a result of previous inspection work. Specifically, during a limited review of the construction of an Effluent Treatment Facility at the Hanford Site, we were unable to identify any written policies describing PBI program controls or implementation procedures. We were told that Richland Operations Office Program Management personnel were not directly involved in the selection of the Effluent Treatment Facility project for the PBI Program, or in the determination that this particular PBI would be established with a potential fee of $1 million.

  12. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT Based on a Permanent Magnet Chain for Pipe Inspection

    Directory of Open Access Journals (Sweden)

    Ming Cong

    2016-05-01

    Full Text Available A new electromagnetic acoustic transducer (EMAT design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2 guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency.

  13. Surface defect inspection of TFT-LCD panels based on 1D Fourier method

    Science.gov (United States)

    Zhang, Teng-da; Lu, Rong-sheng

    2016-01-01

    Flat panel displays have been used in a wide range of electronic devices. The defects on their surfaces are an important factor affecting the product quality. Automated optical inspection (AOI) method is an important and effective means to perform the surface defection inspection. In this paper, a kind of defect extraction algorithm based on one dimensional (1D) Fourier theory for the surface defect extraction with periodic texture background is introduced. In the algorithm, the scanned surface images are firstly transformed from time domain to frequency domain by 1D Fourier transform. The periodic texture background on the surface is then removed by using filtering methods in the frequency domain. Then, a dual-threshold statistical control method is applied to separate the defects from the surface background. Traditional 1D Fourier transform scheme for detecting ordinary defects is very effective; however, the method is not where the defect direction is close to horizontal in periodic texture background. In order to tackle the problem, a mean threshold method based on faultless image is put forward. It firstly calculates the upper and lower control limits of the every reconstructed line scanned image with faultless and then computes the averages of the upper and lower limits. The averages then act as the constant double thresholds to extract the defects. The experimental results of different defects show that the method developed in the paper is very effective for TFT-LCD panel surface defect inspection even in the circumstance that the defect directions are close to horizontal.

  14. The Model Transformation-based Tool Building Techniques and Their Implementation

    OpenAIRE

    Edgars Rencis

    2012-01-01

    Abstract In Doctoral Thesis „The Model Transformation-based Tool Building Techniques and Their Implementation” a model transformation- and metamodel-based domainspecific tool building area is inspected paying the main attention to the problem of making the development and usage of such tools easier. The tool building platform GRAF is examined since it has been partly developed by the author. This platform is supplemented with several services alleviating both the development...

  15. Complete robotic inspection line using PC-based control, supervision and parameterization software

    OpenAIRE

    Norberto Pires, J.; Paulo, Sérgio

    2005-01-01

    Non-flat ceramic products, like toilets and bidets, are fully inspected at the end of the production process, to search for structural, surface and functional defects. Ceramic pieces are transported to the inspection lines assembled in pallets, carried by electro-mechanical fork-lifters or automatic guided vehicles. Pallets need to be disassembled, while feeding with the inspection lines where human operators execute the inspection tasks. Also, the pieces that pass inspection need to be palle...

  16. An Empirical Comparative Study of Checklist-based and Ad Hoc Code Reading Techniques in a Distributed Groupware Environment

    Directory of Open Access Journals (Sweden)

    Adenike O. Osofisan

    2009-09-01

    Full Text Available Software inspection is a necessary and important tool for software quality assurance. Since it was introduced by Fagan at IBM in 1976, arguments exist as to which method should be adopted to carry out the exercise, whether it should be paper-based or tool-based, and what reading technique should be used on the inspection document. Extensive works have been done to determine the effectiveness of reviewers in paper-based environment when using ad hoc and checklist reading techniques. In this work, we take the software inspection research further by examining whether there is going to be any significant difference in defect detection effectiveness of reviewers when they use either ad hoc or checklist reading techniques in a distributed groupware environment. Twenty final year undergraduate students of computer science, divided into ad hoc and checklist reviewers groups of ten members each were employed to inspect a medium-sized java code synchronously on groupware deployed on the Internet. The data obtained were subjected to tests of hypotheses using independent t-test and correlation coefficients. Results from the study indicate that there are no significant differences in the defect detection effectiveness, effort in terms of time taken in minutes and false positives reported by the reviewers using either ad hoc or checklist based reading techniques in the distributed groupware environment studied.Key words: Software Inspection, Ad hoc, Checklist, groupware.

  17. The Application of Non-Destructive Techniques in the Quality Control Inspection and Testing of Fuel Materials for the Dragon Reactor Experiment

    International Nuclear Information System (INIS)

    The O.E.C.D. high temperature gas-cooled reactor experiment. Dragon, is graphite-moderated and helium-cooled and employs fission product-retaining fuel of the coated-particle type. The development and use of this new type of fuel have required the application of a variety of non-destructive techniques for quality control, inspection and testing. This paper describes certain of the methods which are employed in the inspection of fuel materials both in the development phase and subsequently in production. Physical methods of analysis are used for control of the chemical analysis of fuel cartridges and assessment of fuel contamination of fuel-particle coatings, and particular gamma spectrometric and alpha-scintillation counting techniques are described. The general quality of coated particles is assessed and metrology of coatings performed by means of micro-radiography with the X-ray projection microscope; the procedure is outlined and typical results are presented. Fuel cartridges which consist of fuel particles in a graphite matrix are inspected for homogeneity of fuel distribution and freedom from defects by fluoroscopy and panoramic slit-scanning radiography. Colour radiography is also employed to a limited extent and the various techniques are presented together with illustrative examples of the results obtained. The fuel elements are fabricated almost entirely from various grades of graphite, and eddy-current non-destructive testing techniques are being developed to permit inspection of raw materials and finished machined components for freedom from significant defects. A brief description of these techniques is given. (author)

  18. Flow Modeling Based Wall Element Technique

    Directory of Open Access Journals (Sweden)

    Sabah Tamimi

    2012-08-01

    Full Text Available Two types of flow where examined, pressure and combination of pressure and Coquette flow of confined turbulent flow with a one equation model used to depict the turbulent viscosity of confined flow in a smooth straight channel when a finite element technique based on a zone close to a solid wall has been adopted for predicting the distribution of the pertinent variables in this zone and examined even with case when the near wall zone was extended away from the wall. The validation of imposed technique has been tested and well compared with other techniques.

  19. 农产品农药残留速测技术的应用探讨%Application of Instant Inspection Techniques of Pesticide Residues in Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    王娇

    2012-01-01

    The application of instant inspection techniques in detecting pesticides residues in vegetables can effectively prevent poisonous vegetables into the market, creating positive social benefits. This article examines the necessity and feasibility in applying instant inspection techniques as well as its advantages and drawbacks in a bid to provide reference for its promotion and application.%应用农药残留速测技术检测蔬菜的农药残留,可有效的防止“毒菜”进入市场,具有良好的社会效益。分析应用农药残留速测技术的必要性和可行性,通过适用性试验,探讨此法的优点及存在的问题,为其推广应用提供参考。

  20. Techniques of Image Processing Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    LI Wei-qing; WANG Qun; WANG Cheng-biao

    2006-01-01

    This paper presented an online quality inspection system based on artificial neural networks. Chromatism classification and edge detection are two difficult problems in glass steel surface quality inspection. Two artificial neural networks were made and the two problems were solved. The one solved chromatism classification. Hue,saturation and their probability of three colors, whose appearing probabilities were maximum in color histogram,were selected as input parameters, and the number of output node could be adjusted with the change of requirement. The other solved edge detection. In this neutral network, edge detection of gray scale image was able to be tested with trained neural networks for a binary image. It prevent the difficulty that the number of needed training samples was too large if gray scale images were directly regarded as training samples. This system is able to be applied to not only glass steel fault inspection but also other product online quality inspection and classification.

  1. Evaluation of ray-based methods for the simulation of UT welds inspection

    International Nuclear Information System (INIS)

    The reliability of ray-based approaches for the simulation of inspection of austenitic or bimetallic welds is assessed. A first modeling approach consists in describing the weld as a set of several anisotropic homogeneous domains with a given grain orientation. In this case, the rays travel in straight lines inside each domain. A second modeling approach uses dynamic ray tracing, considering a smooth description of the crystallographic orientation. Simulation results using both approaches are presented, discussed and compared to finite elements results. (authors)

  2. Coplanarity inspection of BGA solder balls based on laser interference structure light

    Science.gov (United States)

    Wei, Zhe; Xiao, Zexin; Zhang, Xuefei; Zhou, Haiying

    2011-11-01

    Using laser interference structure light for profilometry is a rapid, non-contact, full-field profile and high accuracy measuring method.And it has been a promising technique in complicated geometrical shape measurement. In this paper, a fast and cost-effective measurement method of coplanarity inspection of ball grid array (BGA) solder balls is proposed. Laser interference structure light can be obtained by using the principle of shearing interferometry. The collimated and beam expanded laser produced interference fringe by the high reflection rate optical flat. After laser interference fringe project on the surface of object and the structured light would modulated. The light signal pass through the image optical grabber and captured by the CCD image sensor. The height of each point on object can be demodulated by the imaging processing software.This method to construct the measurement appliance for coplanarity inspection of ball grid array (BGA) chip solder ball. Experiments have shown that the coplanarity measurement of BGA solder balls is very efficient and effective with the measurement. The measurement accuracy achieve micrometer level. The processing time of the measurement accuracy is less than 3s on a personal computer. This measurement appliance could completely meet the demand of measure.

  3. A Shape Based Image Search Technique

    Directory of Open Access Journals (Sweden)

    Aratrika Sarkar

    2014-08-01

    Full Text Available This paper describes an interactive application we have developed based on shaped-based image retrieval technique. The key concepts described in the project are, imatching of images based on contour matching; iimatching of images based on edge matching; iiimatching of images based on pixel matching of colours. Further, the application facilitates the matching of images invariant of transformations like i translation ; ii rotation; iii scaling. The key factor of the system is, the system shows the percentage unmatched of the image uploaded with respect to the images already existing in the database graphically, whereas, the integrity of the system lies on the unique matching techniques used for optimum result. This increases the accuracy of the system. For example, when a user uploads an image say, an image of a mango leaf, then the application shows all mango leaves present in the database as well other leaves matching the colour and shape of the mango leaf uploaded.

  4. Monte-Carlo simulations of neutron-induced activation in a Fast-Neutron and Gamma-Based Cargo Inspection System

    Science.gov (United States)

    Bromberger, B.; Bar, D.; Brandis, M.; Dangendorf, V.; Goldberg, M. B.; Kaufmann, F.; Mor, I.; Nolte, R.; Schmiedel, M.; Tittelmeier, K.; Vartsky, D.; Wershofen, H.

    2012-03-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.

  5. Studi Aplikasi Metode Risk Based Inspection (RBI Semi-Kuantitatif API 581 pada Production Separator

    Directory of Open Access Journals (Sweden)

    Moamar Al Qathafi

    2015-03-01

    Full Text Available Risk Based Inspection (RBI merupakan sebuah metode untuk merancang inspeksi dengan menggunakan dasar resiko yang dimiliki oleh alat pada unit kerja. Pada tugas akhir ini peralatan yang diteliti adalah Production Separator. Dimana production separator merupakan salah satu jenis pressure vessel. Pressure vessel adalah alat yang memiliki tekanan dan temperatur berbeda dengan kondisi lingkungan untuk menyesuaikan dengan fluida. Sebagaimana yang telah diketahui, bahwa setiap alat yang menggunakan tekanan dalam kerjanya diperlukan sebuah inspeksi untuk meyakinkan alat dapat berkerja secara baik. Hal ini dikarenakan jika terjadi kegagalan maka akibat yang ditimbulkan sangat besar baik pada manusia maupun lingkungan. Metode yang digunakan dalam tugas akhir ini adalah metode Risk Based Inspection Semi-Kuantitatif API 581, yang nantinya akan menghasilkan nilai resiko dan risk level dari alat. Hasil dari analisis menunjukkan bahwa terdapat 24 bagian memiliki tingkat resiko medium risk dan 4 bagian memiliki tingkat resiko medium high risk. Dengan mekanisme kerusakan thinning maka disarankan untuk melakukan inspeksi selanjutnya tidak melebihi setengah sisa umur pakai. Untuk metode inspeksi yang disarankan adalah visual examination dan ultrasonic test.

  6. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-05-01

    Full Text Available This paper describes a new low-cost means to detect and locate mechanical impacts (collisions on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach.

  7. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  8. Validation of the ultrasonic and Eddy current techniques to inspect the accommodation of the elements of (CRDH) control rod drive; Validacion de las tecnicas de ultrasonidos y corrientes inducidas para inspeccionar los alojamientos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Gomez, P.; Sanchez, J.; Resa, P.

    2013-07-01

    Tecnatom development in the past with ultrasonic inspection procedures to examine vessels BWR of several Central nuclear (CRDH) control rod drive elements, accommodations. In each case, inspection techniques have relied on both the volume of required test postulated defects. Also, taking into account the possible access to the component, developed mechanical equipments of different characteristics.

  9. Rapid Tooling Technique Based on Stereolithograph Prototype

    Institute of Scientific and Technical Information of China (English)

    丁浩; 狄平; 顾伟生; 朱世根

    2001-01-01

    Rapid tooling technique based on the sterelithograph prototype is investigated. The epoxy tooling technological process was elucidated. It is analyzed in detail that the epoxy resin formula is easy to cast, curing process, and release agents. The transitional plaster model is also proposed. The mold to encrust mutual.inductors with epoxy and mold to inject plastic soapboxes was made with the technique The tooling needs very little time and cost, for the process is only to achieve the nice replica of the prototype. It is benefit for the trial and small batch of production.

  10. Inspection and Repair Techniques and Strategies for Alloy 600 PWSCC in Reactor Vessel Head CRD Nozzles and Welds

    International Nuclear Information System (INIS)

    As a result of the Alloy 600 PWSCC CRD nozzle leaks discovered in the fall of 2000 and spring of 2001 in several US plants, the NRC has recommended a more pro-active effort by U.S. utilities to inspect similarly susceptible nozzles in all US plants. The primary safety concern is circumferential cracks that can permit the nozzle to separate from the head at high velocity and produce a large-break leak in the reactor vessel. A secondary concern is head leakage from any through-wall cracks in the nozzle or J-groove weld area. Although the fundamental weld and seal design are similar for all US PWR plants, the various surrounding geometry and repair probability considerations require multiple inspection and repair alternatives. Geometry issues include the head insulation design that influences the ability to perform visual examinations from above the head, and the presence or absence of thermal sleeves and funnels governing the type of NDE probes than can be used. Repair probability considerations primarily include the likelihood for repair of a small or large number of nozzles and the length of time the repair must last before a head replacement. This paper discusses the various inspection and repair alternatives offered by one service vendor and discusses a decision process for planning the inspection and repair effort. (authors)

  11. Semi-automatic inspecting instrument for watch escape wheel based on machine vision

    Science.gov (United States)

    Wang, Zhong; Wang, Zhen-wei; Zhang, Jin; Cai, Zhen-xing; Liu, Xin-bo

    2011-12-01

    Escape wheel as a typical precision micro-machinery part is one of the most precision parts in one mechanical watch. A new inspecting instrument based on machine vision technology used to achieve semi-automatic inspection of watch escape wheel is introduced in this paper. This instrument makes use of high resolution CCD sensor and independent designed lens as the imaging system. It can not only achieve to image an area with 7mm diameter once, but also has the resolving power in micrometer and cooperates with two-dimensional moving station to achieve a continuous and automatic measurement of the work pieces placed in array type. In which, the following aspects are highlighted: measuring princeple and process, the basic components of array type measuring workbench, positioning process and verticality, parallelism and other precision adjusting mechanism. Cooperating with novelty escape wheel preparation tool this instrument forms an array type semi-automatic measuring mode. At present, the instrument has been successfully running in the industry field.

  12. Local magnetization unit for GMR array based magnetic flux leakage inspection

    Science.gov (United States)

    Pelkner, M.; Neubauer, A.; Reimund, V.; Kreutzbruck, M.

    2012-05-01

    GMR sensors are increasingly used for magnetic surface inspection due to their high sensitivity and high spatial resolution. In case of simple planar or cylindrical shaped components, the GMR-based inspection procedure can be automated easily. We present GMR measurements of real fatigue cracks. In addition, we present a probe design using a local magnetization unit and commercially available GMR sensors. The design was carried out by means of finite-element method (FEM) simulations. Using the local probe we measured bearings containing artificial reference cracks of different depths and orientations. Cracks with a depth of 40 μm could be resolved with a signal-to-noise ratio better than 6. A further reduction of the measuring time can be obtained using a sensor array. For this purpose we present a study of the optimized size of the sensing GMR-layers for a NDE-adapted sensor array. The geometric sensor parameters were investigated through simulations of the magnetic flux leakage of surface cracks using an analytic model.

  13. The Liquisolid Technique: Based Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Izhar Ahmed Syed

    2012-04-01

    Full Text Available The “Liquisolid” technique is a novel and capable addition towards such an aims for solubility enhancement and dissolution improvement, thereby it increases the bioavailability. It contains liquid medications in powdered form. This technique is an efficient method for formulating water insoluble and water soluble drugs. This technique is based upon the admixture of drug loaded solutions with appropriate carrier and coating materials. The use of non-volatile solvent causes improved wettability and ensures molecular dispersion of drug in the formulation and leads to enhance solubility. By using hydrophobic carriers (non-volatile solvents one can modify release (sustained release of drugs by this technique. Liquisolid system is characterized by flow behavior, wettability, powder bed hydrophilicity, saturation solubility, drug content, differential scanning calorimetry, Fourier transform infra red spectroscopy, powder X-ray diffraction, scanning electron microscopy, in-vitro release and in-vivo evaluation. By using this technique, solubility and dissolution rate can be improved, sustained drug delivery systems be developed for the water soluble drugs.

  14. Application of the perspective-based reading technique in the nuclear I and C context. CORSICA work report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J.

    2012-07-01

    Inspections and reviews are one of the most effective ways of detecting errors in software development. The methods are also cost-effective because defects can be spotted early in the development, and thus the cost of repairing the defects is lower. Reading techniques are the procedures that are used in the inspection or review of a software artefact. The most common procedures are simple ad-hoc reading and a checklist- based reading technique. However, more advanced and detailed procedures have been created for various purposes. This report reviews the state-of-the-art software reading techniques used in inspections and reviews, and briefly reviews some of the empirical research in this context. The majority of the empirical research results indicate that, for example, perspective-based reading is more cost-effective and can detect more defects than more basic reading techniques. This report also describes how perspective-based reading can be applied to the inspection of nuclear-domain requirement specifications. For this purpose, seven perspective-based reading scenarios have been created. (orig.)

  15. Interactive early warning technique based on SVDD

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    After reviewing current researches on early warning,it is found that"bad" data of some systems is not easy to obtain,which makes methods proposed by these researches unsuitable for monitored systems.An interactive early warning technique based on SVDD(support vector data description)is proposed to adopt"good" data as samples to overcome the difficulty in obtaining the"bad"data.The process consists of two parts:(1)A hypersphere is fitted on"good"data using SVDD.If the data object are outside the hypersphere,it would be taken as"suspicious";(2)A group of experts would decide whether the suspicious data is"bad"or"good",early warning messages would be issued according to the decisions.And the detailed process of implementation is proposed.At last,an experiment based on data of a macroeconomic system is conducted to verify the proposed technique.

  16. MATRIX BASED INDEXING TECHNIQUE FOR VIDEO DATA

    Directory of Open Access Journals (Sweden)

    Devarj Saravanan

    2013-01-01

    Full Text Available Due to increasing the usage of media, the utilization of video play central role as it supports various applications. Video is the particular media which contains complex collection of objects like audio, motion, text, color and picture. Due to the rapid growth of this information video indexing process is mandatory for fast and effective retrieval. Many current indexing techniques fails to extract the needed image from the stored data set, based on the users query. Urgent attention in the field of video indexing and image retrieval is the need of the hour. Here a new matrix based indexing technique for image retrieval has been proposed. The proposed method provide better result, experimental results prove this.

  17. Inservice inspection of primary circuit components of VVER 440-Type nuclear power plants

    International Nuclear Information System (INIS)

    The Technical Research Centre of Finland (VTT) has since 1979 performed the inservice inspections of the primary circuits, steam generators and other ASME XI safety class 1 components of the Loviisa reactors (VVER440). A presentation of the performance of the inservice inspections is given in this paper. The main volumetric examination method used in the inservice inspection is the ultrasonic examination. The primary piping of Loviisa reactors is made of austenitic steel and the conventional ultrasonic technique cannot be applied due to the strong attenuation of ultrasonic waves. The special technique developed for the ultrasonic inspection of the welds in the primary piping as well as for the welds of main gate valves will be presented. As these inspections especially in older reactors have to be carried out in a radioactive environment, mechanized inspection equipment has been constructed to perform the work. An inspection manipulator is also used to inspect the base metal of the primary circuit in areas where mixing up of hot and cool water can cause thermal shocks and consequently lead to cracking. Because the ultrasonic inspection of main gate valves is strongly restricted by the valve geometry and material properties, an acoustic emission technique has been developed to improve the reliability of the inservice inspections. For steam generator tubing the eddy current inspection technique has been applied. Due to the different design of steam generators in VVER440 reactors, the performance of the inspection differs from the practice normally applied in U-tube steam generators. For the inspection of studs in primary circuit components both ultrasonic and eddy current techniques have been developed. A mechanized inspection equipment has been constructed to perform both ultrasonic and eddy current inspections simultaneously for large studs. For smaller studs and for threads in stud holes e.g. in steam generators mechanized eddy current inspection technique has

  18. Graph based techniques for tag cloud generation

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...... or citation counts for improved measurement of relevance of tag clouds. We show, that on the given data sets, our approach outperforms the state of the art baseline methods with respect to such relevance by 41 % on Movielens dataset and by 11 % on Bibsonomy data set....

  19. Laser Remote Sensing: Velocimetry Based Techniques

    Science.gov (United States)

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  20. 3D VISION-BASED DIETARY INSPECTION FOR THE CENTRAL KITCHEN AUTOMATION

    OpenAIRE

    Yue-Min Jiang; Ho-Hsin Lee; Cheng-Chang Lien; Chun-Feng Tai; PiChun Chu; Ting-Wei Yang

    2014-01-01

    This paper proposes an intelligent and automatic dietary inspection system which can be applied to the dietary inspection for the application of central kitchen automation. The diet specifically designed for the patients are required with providing personalized diet such as low sodium intake or some necessary food. Hence, the proposed system can benefit the inspection process that is often performed manually. In the proposed system, firstly, the meal box can be detected and loc...

  1. POTENTIAL OF UAV-BASED LASER SCANNER AND MULTISPECTRAL CAMERA DATA IN BUILDING INSPECTION

    OpenAIRE

    Mader, D.; R. Blaskow; Westfeld, P.; Weller, C.

    2016-01-01

    Conventional building inspection of bridges, dams or large constructions in general is rather time consuming and often cost expensive due to traffic closures and the need of special heavy vehicles such as under-bridge inspection units or other large lifting platforms. In consideration that, an unmanned aerial vehicle (UAV) will be more reliable and efficient as well as less expensive and simpler to operate. The utilisation of UAVs as an assisting tool in building inspections is obvio...

  2. Simulation of Specular Surface Imaging Based on Computer Graphics: Application on a Vision Inspection System

    Directory of Open Access Journals (Sweden)

    Ralph Seulin

    2002-07-01

    Full Text Available This work aims at detecting surface defects on reflecting industrial parts. A machine vision system, performing the detection of geometric aspect surface defects, is completely described. The revealing of defects is realized by a particular lighting device. It has been carefully designed to ensure the imaging of defects. The lighting system simplifies a lot the image processing for defect segmentation and so a real-time inspection of reflective products is possible. To bring help in the conception of imaging conditions, a complete simulation is proposed. The simulation, based on computer graphics, enables the rendering of realistic images. Simulation provides here a very efficient way to perform tests compared to the numerous attempts of manual experiments.

  3. Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xuejing [Universite de Technologie de Troyes, Institut Charles Delaunay and STMR UMR CNRS 6279, 12 rue Marie Curie, 10010 Troyes (France); School of mathematics and statistics, Lanzhou University, Lanzhou 730000 (China); Fouladirad, Mitra, E-mail: mitra.fouladirad@utt.f [Universite de Technologie de Troyes, Institut Charles Delaunay and STMR UMR CNRS 6279, 12 rue Marie Curie, 10010 Troyes (France); Berenguer, Christophe [Universite de Technologie de Troyes, Institut Charles Delaunay and STMR UMR CNRS 6279, 12 rue Marie Curie, 10010 Troyes (France); Bordes, Laurent [Universite de Pau et des Pays de l' Adour, LMA UMR CNRS 5142, 64013 PAU Cedex (France)

    2010-08-15

    The aim of this paper is to discuss the problem of modelling and optimising condition-based maintenance policies for a deteriorating system in presence of covariates. The deterioration is modelled by a non-monotone stochastic process. The covariates process is assumed to be a time-homogenous Markov chain with finite state space. A model similar to the proportional hazards model is used to show the influence of covariates on the deterioration. In the framework of the system under consideration, an appropriate inspection/replacement policy which minimises the expected average maintenance cost is derived. The average cost under different conditions of covariates and different maintenance policies is analysed through simulation experiments to compare the policies performances.

  4. Hand-eye-vision based control for an inspection robot’s autonomous line grasping

    Institute of Scientific and Technical Information of China (English)

    王伟; 吴功平; 白玉成; 肖华; 杨智勇; 严宇; 何缘; 徐显金; 苏帆

    2014-01-01

    In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing, a control method is proposed for line grasping based on hand-eye visual servo. On the basis of the transmission line’s geometrical characteristics and the camera’s imaging principle, a line recognition and extraction method based on structure constraint is designed. The line’s intercept and inclination are defined in an imaging space to represent the robot’s change of pose and a law governing the pose decoupling servo control is developed. Under the integrated consideration of the influence of light intensity and background change, noise (from the camera itself and electromagnetic field) as well as the robot’s kinetic inertia on the robot’s imaging quality in the course of motion and the grasping control precision, a servo controller for grasping the line of the robot’s off-line arm is designed with the method of fuzzy control. An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line, where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing. The robot’s autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise, reliable and efficient manner, thus the need of actual operation can be satisfied.

  5. Language Based Techniques for Systems Biology

    DEFF Research Database (Denmark)

    Pilegaard, Henrik

    calculi have similarly been used for the study of bio-chemical reactive systems. In this dissertation it is argued that techniques rooted in the theory and practice of programming languages, language based techniques if you will, constitute a strong basis for the investigation of models of biological......Process calculus is the common denominator for a class of compact, idealised, domain-specific formalisms normally associated with the study of reactive concurrent systems within Computer Science. With the rise of the interactioncentred science of Systems Biology a number of bio-inspired process...... systems as formalised in a process calculus. In particular it is argued that Static Program Analysis provides a useful approach to the study of qualitative properties of such models. In support of this claim a number of static program analyses are developed for Regev’s BioAmbients – a bio-inspired variant...

  6. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  7. Estimation of Characteristics of a Software Team for Implementing Effective Inspection Process through Inspection Performance Metric

    CERN Document Server

    Nair, T R Gopalakrishnan

    2011-01-01

    The continued existence of any software industry depends on its capability to develop nearly zero-defect product, which is achievable through effective defect management. Inspection has proven to be one of the promising techniques of defect management. Introductions of metrics like, Depth of Inspection (DI, a process metric) and Inspection Performance Metric (IPM, a people metric) enable one to have an appropriate measurement of inspection technique. This article elucidates a mathematical approach to estimate the IPM value without depending on shop floor defect count at every time. By applying multiple linear regression models, a set of characteristic coefficients of the team is evaluated. These coefficients are calculated from the empirical projects that are sampled from the teams of product-based and service-based IT industries. A sample of three verification projects indicates a close match between the IPM values obtained from the defect count (IPMdc) and IPM values obtained using the team coefficients usi...

  8. Knowledge-based techniques in software engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jairam, B.N.; Agarwal, A.; Emrich, M.L.

    1988-05-04

    Recent trends in software engineering research focus on the incorporation of AI techniques. The feasibility of an overlap between AI and software engineering is examined. The benefits of merging the two fields are highlighted. The long-term goal is to automate the software development process. Some projects being undertaken towards the attainment of this goal are presented as examples. Finally, research on the Oak Ridge Reservation aimed at developing a knowledge-based software project management aid is presented. 25 refs., 1 tab.

  9. A vision-based self-calibration method for robotic visual inspection systems.

    Science.gov (United States)

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  10. A vision-based self-calibration method for robotic visual inspection systems.

    Science.gov (United States)

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-12-03

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system.

  11. Comparison of a magnetostrictive and an EMAT guided wave technique for the long-range pipe inspection

    International Nuclear Information System (INIS)

    An EMAT sensor and a magnetostrictive sensor were developed for the long-range guided wave inspection of pipe. An array of EMAT were designed and fabricated for the generation and reception of torsional guided waves. Also a magnetostrictive sensor with a circumferentially magnetized Ni strip and coil for alternating magnetization were fabricated for torsional guided waves, T(0,1) mode. These two approaches were applied to the feeder pipe with various artificial notches. The advantages and limitations of the EMAT method and magnetostrictive method compared in the viewpoint of field application.

  12. Reliable evaluation of acceptability of weld for final disposal based on the canister copper weld inspection using different NDT methods

    International Nuclear Information System (INIS)

    The inspection of the sealing weld is an important phase for the evaluation of the acceptability of final disposal canister, but the weld is only a part of the 3D shielding of copper shell. The main tasks for reliable NDT evaluation requires an extensive evaluation of the parameters - which contains typical inspection related items like repeatability, S/N ratio, POD, setting up the equipment for inspection, and all practices for inspections. The other parameters are material parameters, their variation must be taken into account in the evaluation of NDT reliability. Further parameters include human factors, i. e. human inspectors and their interaction with technical systems; their effects were studied on an example of the evaluation of eddy current data. Final parameters are related to evaluation of detected defects, which means sizing and base for acceptance and this can be done in different ways. Some examples are given and results are compared with different methods for instance between radiographic testing and ultrasonic testing by raw data analysis and PA-SAFT results. Also, preliminary curves for the evaluation of metallographic results of 55 defects will be shown by EB weld measurements. Some practical items concerning copper inspections will be also discussed related to acceptability.

  13. A PCA and ELM Based Adaptive Method for Channel Equalization in MFL Inspection

    Directory of Open Access Journals (Sweden)

    Zhenning Wu

    2014-01-01

    Full Text Available Magnetic flux leakage (MFL as an efficient method for pipeline flaw detection plays important role in pipeline safety. This nondestructive test technique assesses the health of the buried pipeline. The signal is gathered by an array of hall-effect sensors disposed at the magnetic neutral plane of a pair of permanent magnet in the pipeline inspection gauge (PIG clinging to the inner surface of the pipe wall. The magnetic flux measured by the sensors reflects the health condition of the pipe. The signal is influenced by not only the condition of the pipe, but also by the lift-off value of the sensors and various properties of electronic component. The consistency of the position of the sensors is almost never satisfied and each sensor measures differently. In this paper, a new scheme of channel equalization is proposed for MFL signal in order to correct sensor misalignments, which eventually improves accuracy of defect characterization. The algorithm proposed in this paper is adaptive to the effects of error on the disposition of the sensor due to manufacturing imperfections and movements of the sensors. The algorithm is tested by data acquired from an experimental pipeline. The results show the effectiveness of the proposed algorithm.

  14. Artificial Intelligence based technique for BTS placement

    Science.gov (United States)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  15. Artificial Intelligence based technique for BTS placement

    International Nuclear Information System (INIS)

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out

  16. A condition-based maintenance policy with non-periodic inspections for a two-unit series system

    Energy Technology Data Exchange (ETDEWEB)

    Castanier, B. [IRCCyN/Ecole des Mines de Nantes, Departement Automatique et Productique, 4 rue Alfred Kastler, F-44307 Nantes (France)]. E-mail: bruno.castanier@emn.fr; Grall, A. [Universite de Technologie de Troyes, ISTIT-CNRS FRE 2732, Equipe Modelisation et Surete des Systemes, 12, rue Marie Curie, BP 2060-10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Berenguer, C. [Universite de Technologie de Troyes, ISTIT-CNRS FRE 2732, Equipe Modelisation et Surete des Systemes, 12, rue Marie Curie, BP 2060-10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr

    2005-01-01

    This paper considers a condition-based maintenance policy for a two-unit deteriorating system. Each unit is subject to gradual deterioration and is monitored by sequential non-periodic inspections. It can be maintained by good as new preventive or corrective replacements. Every inspection or replacement entails a set-up cost and a component-specific unit cost but if actions on the two components are combined, the set-up cost is charged only once. A parametric maintenance decision framework is proposed to coordinate inspection/replacement of the two components and minimize the long-run maintenance cost of the system. A stochastic model is developed on the basis of the semi-regenerative properties of the maintained system state and the associated cost model is used to assess and optimize the performance of the maintenance model. Numerical experiments emphasize the interest of a control of the operation groupings.

  17. Inspection Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — FDA is disclosing the final inspection classification for inspections related to currently marketed FDA-regulated products. The disclosure of this information is...

  18. Plasma etched surface scanning inspection recipe creation based on bidirectional reflectance distribution function and polystyrene latex spheres

    Science.gov (United States)

    Saldana, Tiffany; McGarvey, Steve; Ayres, Steve

    2014-04-01

    The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to

  19. Developing an Inspection Optimization Model Based on the Delay-Time Concept

    Directory of Open Access Journals (Sweden)

    Ehsan Nazemi

    2015-01-01

    Full Text Available Infrastructures are considered as important facilities required for every country and society to be able to work properly. Aging and deterioration of such structures during their lifetime are a major concern both for maintenance researchers in the academic world and for the practitioners. This concern is mainly because the deterioration increases the maintenance costs dramatically and lowers the reliability, availability, and safety of the structural system. Preventive maintenance and inspection activities are the most usual means for keeping the structure in a good condition. This paper utilizes the concept of delay-time for developing the optimal inspection policy for deteriorating structures. In the proposed stochastic model, discrete times of inspection activities are taken as the decision variables of an optimization problem, in a way that the obtained aperiodic (nonuniform inspection schedule minimizes the total downtime ratio of the structure. To illustrate the model capabilities, various numerical examples are solved and results are compared with the traditional periodic (uniform inspection policies. The results indicate the substantial reduction in system downtime due to the wisely planned inspection schedule and the appropriate utilization of delay-time concept, which is indeed a powerful framework for inspection optimization problems.

  20. Modeling and optimizing periodically inspected software rejuvenation policy based on geometric sequences

    International Nuclear Information System (INIS)

    Software aging is characterized by an increasing failure rate, progressive performance degradation and even a sudden crash in a long-running software system. Software rejuvenation is an effective method to counteract software aging. A periodically inspected rejuvenation policy for software systems is studied. The consecutive inspection intervals are assumed to be a decreasing geometric sequence, and upon the inspection times of software system and its failure features, software rejuvenation or system recovery is performed. The system availability function and cost rate function are obtained, and the optimal inspection time and rejuvenation interval are both derived to maximize system availability and minimize cost rate. Then, boundary conditions of the optimal rejuvenation policy are deduced. Finally, the numeric experiment result shows the effectiveness of the proposed policy. Further compared with the existing software rejuvenation policy, the new policy has higher system availability. - Highlights: • A periodically inspected rejuvenation policy for software systems is studied. • A decreasing geometric sequence is used to denote the consecutive inspection intervals. • The optimal inspection times and rejuvenation interval are found. • The new policy is capable of reducing average cost and improving system availability

  1. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    Science.gov (United States)

    Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  2. Automated Signal Processing Applied to Volatile-Based Inspection of Greenhouse Crops

    Directory of Open Access Journals (Sweden)

    Eldert van Henten

    2010-07-01

    Full Text Available Gas chromatograph–mass spectrometers (GC-MS have been used and shown utility for volatile-based inspection of greenhouse crops. However, a widely recognized difficulty associated with GC-MS application is the large and complex data generated by this instrument. As a consequence, experienced analysts are often required to process this data in order to determine the concentrations of the volatile organic compounds (VOCs of interest. Manual processing is time-consuming, labour intensive and may be subject to errors due to fatigue. The objective of this study was to assess whether or not GC-MS data can also be automatically processed in order to determine the concentrations of crop health associated VOCs in a greenhouse. An experimental dataset that consisted of twelve data files was processed both manually and automatically to address this question. Manual processing was based on simple peak integration while the automatic processing relied on the algorithms implemented in the MetAlignTM software package. The results of automatic processing of the experimental dataset resulted in concentrations similar to that after manual processing. These results demonstrate that GC-MS data can be automatically processed in order to accurately determine the concentrations of crop health associated VOCs in a greenhouse. When processing GC-MS data automatically, noise reduction, alignment, baseline correction and normalisation are required.

  3. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    Science.gov (United States)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  4. A portable nondestructive real-time detection system for inspection of pork quality attributes using Vis/NIR spectral technique

    Science.gov (United States)

    Sun, Hongwei; Peng, Yankun

    2016-05-01

    There are many preferences expressing the quality of pork: color, pH, especially TVB-N content. Different quality pork has different spectral feature (in range of 400 to 1000nm). To detect quality attributes of pork easily, real-time, nondestructively, a portable device based on Vis/NIR spectral technique was developed. The device is mainly made up of four units: light source, spectrometer, controller and display screen. After hardware platform established, reflectance spectra of 44 samples were collected from this system. And their physicochemical characteristics such as color parameters, pH value and the content of total volatile basic-nitrogen (TVB-N) were measured in standard methods. Spectrum data acquired were processed by Savitzky-Golay filter(S-G) for noise removal, and then operated by standard normal variable transformation (SNV) for baseline drifts relieving. The partial least squares regression (PLSR) was used to build prediction models for L*, a*, b* pH* and TVB-N content, which could gain good prediction results with Rp of 0.92, 0.91, 0.92, 0.95 and 0.96 respectively. The results demonstrated that this device could be a promising tool applied to detecting pork quality attributes portably, real-time and nondestructively.

  5. Flying Robot Based Viewpoint Selection for the Electricity Transmission Equipment Inspection

    OpenAIRE

    Chang-an Liu; Rui-fang Dong; Hua Wu

    2014-01-01

    In the process of inspection for the electricity transmission equipment using flying robots, an automatic way to find the best viewpoint to get the high quality of image would be beneficial to observe the state of the electricity transmission equipment. Finding the best viewpoint belongs to the viewpoint selection problem. A strategy is proposed in this paper to find the best viewpoint for the electricity transmission equipment inspection, according to which the candidate viewpoints can be ge...

  6. Consideration of arrayed $e$-beam microcolumn based systems potentialities for wafer defects inspection

    CERN Document Server

    Kazmiruk, V V

    2008-01-01

    The $e$-beam column which is intended on defects inspection is considered. The defects which are to be examined or potentially might be examined at inspection stage are briefly considered. Interrelations between the system parameters is ascertaining and the ways of optimization and the technical requirements to the system in whole are discussed. As a result, we find the optimal combinations of the system parameters for the purpose.

  7. 40-Gbps optical backbone network deep packet inspection based on FPGA

    Science.gov (United States)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  8. Modeling of a remote inspection system for NSSS components

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoo Rark; Kim, Jae Hee; Lee, Jae Cheol

    2003-03-01

    Safety inspection for safety-critical unit of nuclear power plant has been processed using off-line technology. Thus we can not access safety inspection system and inspection data via network such as internet. We are making an on-line control and data access system based on WWW and JAVA technologies which can be used during plant operation to overcome these problems. Users can access inspection systems and inspection data only using web-browser. This report discusses about analysis of the existing remote system and essential techniques such as Web, JAVA, client/server model, and multi-tier model. This report also discusses about a system modeling that we have been developed using these techniques and provides solutions for developing an on-line control and data access system.

  9. Modeling of a remote inspection system for NSSS components

    International Nuclear Information System (INIS)

    Safety inspection for safety-critical unit of nuclear power plant has been processed using off-line technology. Thus we can not access safety inspection system and inspection data via network such as internet. We are making an on-line control and data access system based on WWW and JAVA technologies which can be used during plant operation to overcome these problems. Users can access inspection systems and inspection data only using web-browser. This report discusses about analysis of the existing remote system and essential techniques such as Web, JAVA, client/server model, and multi-tier model. This report also discusses about a system modeling that we have been developed using these techniques and provides solutions for developing an on-line control and data access system

  10. Gear inspection and reconstruction based on laser metrology and computer algorithms

    Science.gov (United States)

    Torres Contreras, Ignacio; Muñoz Rodríguez, J. Apolinar; Garnica Campos, Guillermo

    2009-09-01

    An automatic technique for gear reconstruction is presented. In this technique, the gear modeling is performed by means of an approximation network. To carry it out, a vision system is implemented based on laser metrology. The approximation network is performed based on the gear pattern. To perform the contouring, the gear is scanned by a laser line. This process involves image processing of a laser line pattern. The network performs the gear modeling without measurements on the optical setup. In this manner, errors of the measurement are not added to the computational model. Thus, the setup performance and accuracy are improved. To describe the accuracy a mean square of error is calculated using data provided by the network and data given by a contact method. This technique is tested with real gears and its experimental results are presented.

  11. Three-axis magnetic flux leakage in-line inspection simulation based on finite-element analysis

    Institute of Scientific and Technical Information of China (English)

    Feng Jian; Zhang Jun-Feng; Lu Sen-Xiang; Wang Hong-Yang; Ma Rui-Ze

    2013-01-01

    With the increase of pipelines,corrosion leakage accidents happen frequently.Therefore,nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining.In this paper,the structure and principle of magnetic flux leakage (MFL) in-line inspection system is introduced first.Besides,a mathematic model of the system according to the ampere circuit rule,flux continuity theorem,and column coordinate transform is built,and the magnetic flux density in every point of space is calculated based on the theory of finite element analysis.Then we analyze and design the disposition of measurement section probes and sensors combining both three-axis MFL in-line inspection and multi-sensor fusion technology.Its advantage is that the three-axis changes of magnetic flux leakage field are measured by the multi-probes at the same time,so we can determine various defects accurately.Finally,the theory of finite element analysis is used to build a finite element simulation model,and the relationship between defects and MFL inspection signals is studied.Simulation and experiment results verify that the method not only enhances the detection ability to different types of defects but also improves the precision and reliability of the inspection system.

  12. Three-axis magnetic flux leakage in-line inspection simulation based on finite-element analysis

    Science.gov (United States)

    Feng, Jian; Zhang, Jun-Feng; Lu, Sen-Xiang; Wang, Hong-Yang; Ma, Rui-Ze

    2013-01-01

    With the increase of pipelines, corrosion leakage accidents happen frequently. Therefore, nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining. In this paper, the structure and principle of magnetic flux leakage (MFL) in-line inspection system is introduced first. Besides, a mathematic model of the system according to the ampere circuit rule, flux continuity theorem, and column coordinate transform is built, and the magnetic flux density in every point of space is calculated based on the theory of finite element analysis. Then we analyze and design the disposition of measurement section probes and sensors combining both three-axis MFL in-line inspection and multi-sensor fusion technology. Its advantage is that the three-axis changes of magnetic flux leakage field are measured by the multi-probes at the same time, so we can determine various defects accurately. Finally, the theory of finite element analysis is used to build a finite element simulation model, and the relationship between defects and MFL inspection signals is studied. Simulation and experiment results verify that the method not only enhances the detection ability to different types of defects but also improves the precision and reliability of the inspection system.

  13. Non-Destructive Techniques Based on Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Ernesto Vázquez-Sánchez

    2011-02-01

    Full Text Available Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  14. Non-destructive techniques based on eddy current testing.

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  15. Decision making for stable inspection planning of deteriorating structures based on constraint reliability and uncertainties

    Directory of Open Access Journals (Sweden)

    Jalal alsarraf

    2014-06-01

    Full Text Available Life-time cost minimization is considered as the optimal criterion for planning of inspection, repair and maintenance of structures. However, most of the probabilities and the cost items related to the cost analysis generally contain inevitable uncertainties in actual cases. The appropriateness of inspection planning may be lost by several errors induced by such uncertainties. In this study, a cost minimization method with the constraint of reliability is developed in order to obtain stable inspection planning against the estimation errors of the parameters. In the analysis, the life-time cost optimization is carried out under the constraint that the failure probabilities of the members are controlled below the respective target values allowed for the members. First, initial target failure probabilities are assumed for each member. Then, the robustness of the inspection planning is investigated by adjusting the parameters within the range of uncertainties. The initial values of the target failure probabilities are altered until an acceptable result is obtained. The applicability of the proposed method is examined for a structure with several uncertain parameters. A sequential cost minimization method is employed to optimize the life-time cost. It is made clear that by using this approach, the stability of the life-time cost is maintained without losing the benefit of the cost minimization method. Keywords: Crack, Fatigue, Inspection, Numerical Model, Reliability, Structure.

  16. Deposition uniformity inspection in IC wafer surface

    Science.gov (United States)

    Li, W. C.; Lin, Y. T.; Jeng, J. J.; Chang, C. L.

    2014-03-01

    This paper focuses on the task of automatic visual inspection of color uniformity on the surface of integrated circuits (IC) wafers arising from the layering process. The oxide thickness uniformity within a given wafer with a desired target thickness is of great importance for modern semiconductor circuits with small oxide thickness. The non-uniform chemical vapor deposition (CVD) on a wafer surface will proceed to fail testing in Wafer Acceptance Test (WAT). Early detection of non-uniform deposition in a wafer surface can reduce material waste and improve production yields. The fastest and most low-priced inspection method is a machine vision-based inspection system. In this paper, the proposed visual inspection system is based on the color representations which were reflected from wafer surface. The regions of non-uniform deposition present different colors from the uniform background in a wafer surface. The proposed inspection technique first learns the color data via color space transformation from uniform deposition of normal wafer surfaces. The individual small region statistical comparison scheme then proceeds to the testing wafers. Experimental results show that the proposed method can effectively detect the non-uniform deposition regions on the wafer surface. The inspection time of the deposited wafers is quite compatible with the atmospheric pressure CVD time.

  17. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    Directory of Open Access Journals (Sweden)

    Bat-erdene Byambasuren

    2016-02-01

    Full Text Available Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  18. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    Science.gov (United States)

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  19. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    Science.gov (United States)

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-01-01

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results. PMID:26907274

  20. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  1. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2016-08-01

    Full Text Available Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF, the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  2. A Comparative Study of Three Vibration Based Damage Assessment Techniques

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    Three different vibration based damage assessment techniques have been compared. One of the techniques uses the ratios between changes in experimentally and theoretically estimated natural frequencies, respectively, to locate a damage. The second technique relies on updating of an FEM based...... on experimentally estimated natural frequencies where the stiffness matrix is given as a function of damage size and location. The last technique is based on neural networks trained with the relative changes in natural frequencies. It has been found that all techniques seems to be useful. Especially, the neural...... networks based technique seems to be very promising....

  3. Soluble solids content and firmness non-destructive inspection and varieties discrimination of apples based on visible near-infrared hyperspectral imaging

    Science.gov (United States)

    Zhou, Yao

    2014-11-01

    For apples, soluble solids content (SSC) and firmness are two very important internal quality attributes, which play key roles in postharvest quality classification. Visible-near infrared hyper spectral imaging techniques have potentials for nondestructive inspection of apples' internal qualities, which will be used for the SSC and firmness non-destructive inspection and varieties discrimination of apples. Spectrums of 396 apples from four varieties were extracted. There were 264 apples used for calibration and the remaining 132 apples for prediction. After collecting hyper spectral images of calibration apples, the sugar meter and firmness tester was used to measure SSC and firmness's reference values of each calibration apples. Then the principal component analysis (PCA) was used to extract effective wavelengths of calibration apples. The reference values and effective wavelengths' reflectance of apples can be used to set linear regression models based on partial least squares (PLS). Once the prediction model was established, in order to get the SSC and firmness's predicted values of apples, it only need achieve the effective wavelengths' reflectance of apples combing with the program of MATLAB. Finally, the SSC and firmness values of prediction set were used as independent variables of the Linear Discriminant Analysis (LDA) to realize varieties discrimination. The correlation coefficients were 0.9127 for SSC and 0.9608 for firmness values of prediction models. The accuracy of varieties discrimination was 96.97%. The results indicated that the methods to SSC and firmness non-destructive inspection and varieties discrimination of apples based on Vis-NIR hyper spectral imaging was reliable and feasible.

  4. FLOWCER - a flowmeter based on radiotracer techniques

    International Nuclear Information System (INIS)

    One of the most difficult problems in the field of flow measurement is the lack of a portable, clamp-on type of flowmeter of good accuracy. This is a serious restriction in non-continuous flow measurements and on-site calibrations of flow meters. One possibility of constructing a meter capable for these measurements is to use tracer techniques, particularly radioisotope tracers. A flow measurement instrument, FLOWCER, has been developed in the Reactor Laboratory of the Technical Research Centre of Finland (VTT). The instrument is based on the radioisotope transit time method. The device can be used for the accurate instantaneous measurement of volume flow rate in ducts. The tracer used is 137mBa produced in a portable isotope generator. Because of the short half-life (2.6 min) of 137mBa the measurement is radiologically very safe. The device consists of the isotope generator, an injection device for the tracer, radiation detectors, a data logger unit and a micro-computer. Also a transducer for various other quantities than flow may be connected to the analog input channels of the FLOWCER. The measurement program can be modified for measurements of different types. The FLOWCER has been used for the measurememts of energy and material balances, for the on-site calibrations of flow meters and for pump efficiency analysis. The application most frequently used has been the on-site calibration of flow meters. According to the present experience (over 100 calibrated flow meters) the accuracy level of flow measurements can be increased by a factor of ten or more by using the transit time method for on-site calibration

  5. Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes

    Science.gov (United States)

    Rao, Prahalad Krishna

    This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions: 1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses. 2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%). 3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant

  6. DEVELOPMENT OF INSPECTION SYSTEM FOR CORROSION CRACK IN R.C. FOR SECOND TUNNEL LINING BY USING KNOWLEDGE-BASED SYSTEM

    Directory of Open Access Journals (Sweden)

    Yousif Abdulwahid Mansoor

    2012-01-01

    Full Text Available During the last two or three decades, incidence of failure of reinforced concrete structures has been seen widely for many reasons, such as increasing service loads and/or durability problems and the economic losses due to such failures are costly. Nowadays, the size and the form of repair and rehabilitation market are too large since there has been an increased emphasis on repair and retrofitting of defected structures over demolition and new construction. For safety in concrete tunnel, periodic inspection has been conducted using many testing technologies and techniques. However, these technologies cannot replace visual inspection because of their slow and complicated procedures. For this reason, the Knowledge-Based Systems (KBS are used with lab tests results to diagnose R.C tunnel lining corrosion crack damage (DICRCTL. In this study, we attempt to propose an alternative to the human expert, to give technical decisions in diagnosing corrosion crack damages in second segment of R.C. tunnel lining. To overcome this requirement, an expert system is developed to achieve the research aim. This proposed system was constructed on a knowledge base that incorporates with the gathered information, tests in the form of rules which is suitable to implement in an expert system environment to diagnostic advisory nature. The proposed application results show an easy, fast and satisfactory answer to engineering needs.

  7. 承压设备的电磁检测新技术检验%The Experiment Research of New Electromagnetic Testing Technique in Pressure Equipment Inspection

    Institute of Scientific and Technical Information of China (English)

    姚力; 巩德兴; 马学荣; 乐开白; 左继锋

    2012-01-01

    Electromagnetic testing new techniques include eddy-current testing(ET), magnetic flux leakage (MFL) testing, metal magnetic memory(MMM) testing, micro-magnetic detection and so on. And it was hotspot in the research range of pressure equipments nondestructive testing for the past few years. In this paper, the basic conception, characters and the state of arts of new electromagnetic testing technique were introduced. An experiment on the electromagnetic testing was carried out. Then, some problems and improvement measures were analyzed preliminary for electromagnetic testing technique in pressure equipment inspection.%电磁检测包括涡流检测、漏磁检测、磁记忆检测、微磁检测等,是近年来承压类特种设备无损检测研究领域的热点。文章介绍了电磁检测新技术的基本概念、特点、国内外发展和应用现状,开展了电磁检测相关试验,并对试验结果进行了初步分析,探讨了目前电磁检测新技术在承压类特种设备检验检测领域中存在的应用问题,提出了改进的技术措施。

  8. DCT-based cyber defense techniques

    Science.gov (United States)

    Amsalem, Yaron; Puzanov, Anton; Bedinerman, Anton; Kutcher, Maxim; Hadar, Ofer

    2015-09-01

    With the increasing popularity of video streaming services and multimedia sharing via social networks, there is a need to protect the multimedia from malicious use. An attacker may use steganography and watermarking techniques to embed malicious content, in order to attack the end user. Most of the attack algorithms are robust to basic image processing techniques such as filtering, compression, noise addition, etc. Hence, in this article two novel, real-time, defense techniques are proposed: Smart threshold and anomaly correction. Both techniques operate at the DCT domain, and are applicable for JPEG images and H.264 I-Frames. The defense performance was evaluated against a highly robust attack, and the perceptual quality degradation was measured by the well-known PSNR and SSIM quality assessment metrics. A set of defense techniques is suggested for improving the defense efficiency. For the most aggressive attack configuration, the combination of all the defense techniques results in 80% protection against cyber-attacks with PSNR of 25.74 db.

  9. Inspection qualification as a tool to risk based ET ISI of VVER type SG tubes

    Energy Technology Data Exchange (ETDEWEB)

    Horacek, L. [Nuclear Research Institue Rez plc (Czech Republic)

    2002-07-01

    A Pilot study on Eddy current inspection qualification of VVER 440 steam generator tubes, discussed in this paper, followed the ENIQ methodology principles and covered briefly the assumed scope of ET qualification, relevant elaborated qualification documents, known ISI limitations and a review of input information on component and defects determined for Eddy current inspection qualification of VVER 440 steam generator tubes. The information includes the fabrication of the test blocks with SG tube segments provided by intended defect simulations of realistic SCC type and basic data on the realistic SCC type defects manufacturing technology. Lessons learned from the development of manufacturing technology of SSC type of defects, regional blind tests, elaboration of the preliminary technical justification for Eddy current automated inspections, potential optimisation of inspection procedures, laboratory and practical open trials are summarised in the paper. The results of the Pilot study also especially in relation to POD curve being determined seem to be useful for practical operational ISI programme and Risk informed ISI decisions and the establishment of plugging criteria of VVER 440 and VVER 1000 type steam generator tubes. (orig.)

  10. Identification of seagrasses in the gut of a marine herbivorous fish using DNA barcoding and visual inspection techniques.

    Science.gov (United States)

    Chelsky Budarf, A; Burfeind, D D; Loh, W K W; Tibbetts, I R

    2011-07-01

    Traditional visual diet analysis techniques were compared with DNA barcoding in juvenile herbivorous rabbitfish Siganus fuscescens collected in Moreton Bay, Australia, where at least six species of seagrass occur. The intergenic spacer trnH-psbA, suggested as the optimal gene for barcoding angiosperms, was used for the first time to identify the seagrass in fish guts. Four seagrass species and one alga were identified visually from gut contents; however, there was considerable uncertainty in visual identification with 38 of 40 fish having unidentifiable plant fragments in their gut. PCR and single-strand conformational polymorphism (SSCP) were able to discriminate three seagrass families from visually cryptic gut contents. While effective in identifying cryptic gut content to family level, this novel method is likely to be most efficient when paired with visual identification techniques.

  11. Development of an in-service inspection technique for the intermediate heat exchanger tubes of the High-Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    An experimental study is carried out to clarify the performance of an eddy current testing probe and probe-inserting equipment for the in-service inspection of the intermediate heat exchanger tubes of the High-Temperature Engineering Test Reactor. Artificial discontinuities are made with reference to the American Society of Mechanical Engineers standards for steam generator tubes in a light water reactor. It is confirmed that the probe can detect these discontinuities as well as smaller ones, such as a 0.5-mm-diam 100% through-wall hole and a 0.5-mm-wide groove, in a base-metal tube. For the welded joints, the back-excess weld metal is a main noise contributor, and a multiple-frequency method can remove the noise. The inspection performance, however, is lower. The probe-inserting equipment can smoothly insert and extract the probe. The winding of the cable causes a scattering in the probe traveling velocity values an a measurement error regarding the probe's location in the tube

  12. Drum inspection robots: Application development

    International Nuclear Information System (INIS)

    Throughout the Department of Energy (DOE), drums containing mixed and low level stored waste are inspected, as mandated by the Resource Conservation and Recovery Act (RCRA) and other regulations. The inspections are intended to prevent leaks by finding corrosion long before the drums are breached. The DOE Office of Science and Technology (OST) has sponsored efforts towards the development of robotic drum inspectors. This emerging application for mobile and remote sensing has broad applicability for DOE and commercial waste storage areas. Three full scale robot prototypes have been under development, and another project has prototyped a novel technique to analyze robotically collected drum images. In general, the robots consist of a mobile, self-navigating base vehicle, outfitted with sensor packages so that rust and other corrosion cues can be automatically identified. They promise the potential to lower radiation dose and operator effort required, while improving diligence, consistency, and documentation

  13. Flood alert system based on bayesian techniques

    Science.gov (United States)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    The problem of floods in the Mediterranean regions is closely linked to the occurrence of torrential storms in dry regions, where even the water supply relies on adequate water management. Like other Mediterranean basins in Southern Spain, the Guadalhorce River Basin is a medium sized watershed (3856 km2) where recurrent yearly floods occur , mainly in autumn and spring periods, driven by cold front phenomena. The torrential character of the precipitation in such small basins, with a concentration time of less than 12 hours, produces flash flood events with catastrophic effects over the city of Malaga (600000 inhabitants). From this fact arises the need for specific alert tools which can forecast these kinds of phenomena. Bayesian networks (BN) have been emerging in the last decade as a very useful and reliable computational tool for water resources and for the decision making process. The joint use of Artificial Neural Networks (ANN) and BN have served us to recognize and simulate the two different types of hydrological behaviour in the basin: natural and regulated. This led to the establishment of causal relationships between precipitation, discharge from upstream reservoirs, and water levels at a gauging station. It was seen that a recurrent ANN model working at an hourly scale, considering daily precipitation and the two previous hourly values of reservoir discharge and water level, could provide R2 values of 0.86. BN's results slightly improve this fit, but contribute with uncertainty to the prediction. In our current work to Design a Weather Warning Service based on Bayesian techniques the first steps were carried out through an analysis of the correlations between the water level and rainfall at certain representative points in the basin, along with the upstream reservoir discharge. The lower correlation found between precipitation and water level emphasizes the highly regulated condition of the stream. The autocorrelations of the variables were also

  14. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  15. User interface inspection methods a user-centered design method

    CERN Document Server

    Wilson, Chauncey

    2014-01-01

    User Interface Inspection Methods succinctly covers five inspection methods: heuristic evaluation, perspective-based user interface inspection, cognitive walkthrough, pluralistic walkthrough, and formal usability inspections. Heuristic evaluation is perhaps the best-known inspection method, requiring a group of evaluators to review a product against a set of general principles. The perspective-based user interface inspection is based on the principle that different perspectives will find different problems in a user interface. In the related persona-based inspection, colleagues assume the

  16. Segmentation of Color Images Based on Different Segmentation Techniques

    OpenAIRE

    Purnashti Bhosale; Aniket Gokhale

    2013-01-01

    In this paper, we propose an Color image segmentation algorithm based on different segmentation techniques. We recognize the background objects such as the sky, ground, and trees etc based on the color and texture information using various methods of segmentation. The study of segmentation techniques by using different threshold methods such as global and local techniques and they are compared with one another so as to choose the best technique for threshold segmentation. Further segmentation...

  17. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    Science.gov (United States)

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-10-13

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  18. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Directory of Open Access Journals (Sweden)

    Xiuyun Zhou

    2015-10-01

    Full Text Available In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT. Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  19. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    Directory of Open Access Journals (Sweden)

    Ketsaya Vacharanukul

    2006-06-01

    Full Text Available To achieve dynamic error compensation in CNC machine tools, a non-contactlaser probe capable of dimensional measurement of a workpiece while it is being machinedhas been developed and presented in this paper. The measurements are automatically fedback to the machine controller for intelligent error compensations. Based on a well resolvedlaser Doppler technique and real time data acquisition, the probe delivers a very promisingdimensional accuracy at few microns over a range of 100 mm. The developed opticalmeasuring apparatus employs a differential laser Doppler arrangement allowing acquisitionof information from the workpiece surface. In addition, the measurements are traceable tostandards of frequency allowing higher precision.

  20. Autofluorescence based diagnostic techniques for oral cancer

    OpenAIRE

    Balasubramaniam, A. Murali; Sriraman, Rajkumari; Sindhuja, P; Mohideen, Khadijah; Parameswar, R. Arjun; Muhamed Haris, K. T.

    2015-01-01

    Oral cancer is one of the most common cancers worldwide. Despite of various advancements in the treatment modalities, oral cancer mortalities are more, particularly in developing countries like India. This is mainly due to the delay in diagnosis of oral cancer. Delay in diagnosis greatly reduces prognosis of the treatment and also cause increased morbidity and mortality rates. Early diagnosis plays a key role in effective management of oral cancer. A rapid diagnostic technique can greatly aid...

  1. Hospital Inspections

    Data.gov (United States)

    U.S. Department of Health & Human Services — Welcome to hospitalinspections.org, a website run by the Association of Health Care Journalists (AHCJ) that aims to make federal hospital inspection reports easier...

  2. Comparative study of Palito inspection and MFL Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Anne A. de; Miranda, Ivan Vicente Janvrot; Silva, Jose Augusto Pereira da [Pipeway Engenharia, Rio de Janeiro, RJ (Brazil); Guimaraes, Frederico S.; Magalhaes, Joao Alfredo P. [Minds at Work, Rio de Janeiro, RJ (Brazil); Sabino, Joao Marcos [Petroleo Brasileiro S.A. (PETROBRAS/UN-RN/CE), Natal, RN (Brazil). Unidade de Negocios Rio Grande do Norte e Ceara

    2009-07-01

    A 16 inches oil pipeline was surveyed with MFL and Palito pig in 2007. The MFL inspection was performed by Pipeway Engenharia while Palito inspection was performed by PETROBRAS. A comparison between the results of these two ILI inspections has been made to validate Palito Pig and to assess main characteristics and differences between the two techniques. The purpose of this paper is to detail the methodology applied to perform the comparison and to present a comparative study of results registered in the MFL and Palito inspections by Pipeway Engenharia, PETROBRAS/CENPES and CPTI/PUC-Rio. (author)

  3. Path Based Mapping Technique for Robots

    Directory of Open Access Journals (Sweden)

    Amiraj Dhawan

    2013-05-01

    Full Text Available The purpose of this paper is to explore a new way of autonomous mapping. Current systems using perception techniques like LAZER or SONAR use probabilistic methods and have a drawback of allowing considerable uncertainty in the mapping process. Our approach is to break down the environment, specifically indoor, into reachable areas and objects, separated by boundaries, and identifying their shape, to render various navigable paths around them. This is a novel method to do away with uncertainties, as far as possible, at the cost of temporal efficiency. Also this system demands only minimum and cheap hardware, as it relies on only Infra-Red sensors to do the job.

  4. Inspection of disposal canisters components

    International Nuclear Information System (INIS)

    This report presents the inspection techniques of disposal canister components. Manufacturing methods and a description of the defects related to different manufacturing methods are described briefly. The defect types form a basis for the design of non-destructive testing because the defect types, which occur in the inspected components, affect to choice of inspection methods. The canister components are to nodular cast iron insert, steel lid, lid screw, metal gasket, copper tube with integrated or separate bottom, and copper lid. The inspection of copper material is challenging due to the anisotropic properties of the material and local changes in the grain size of the copper material. The cast iron insert has some acoustical material property variation (attenuation, velocity changes, scattering properties), which make the ultrasonic inspection demanding from calibration point of view. Mainly three different methods are used for inspection. Ultrasonic testing technique is used for inspection of volume, eddy current technique, for copper components only, and visual testing technique are used for inspection of the surface and near surface area

  5. Comparison of Vibration-Based Damage Assessment Techniques

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1995-01-01

    Three different vibration-based damage assessment techniques have been compared. One of the techniques uses the ratios between changes in experimentally and theoretically estimated natural frequencies, respectively, to locate a damage. The second technique relies on updating of a finite element...

  6. Information-Driven Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL; Whitaker, J Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA

    2010-01-01

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  7. Radiation Protection and Nuclear Safety Regulatory Inspection: a happy marriage?

    International Nuclear Information System (INIS)

    As the subsidiary of the Belgian Federal Agency for Nuclear Control (FANC), Bel V performs the regulatory inspections and safety assessments in nuclear installations, according to the Belgian Royal Decree of July 20. 2001. This Royal Decree is not meant to give a recipe on how to perform inspections and therefore requires interpretation. This paper presents the inspection techniques and practices applied by the Bel V inspectors in order to comply with the spirit of the Royal Decree, using the available resources. AT Bel V the inspections are based on the sampling principle in combination with the experience feedback process. Inspections occur frequently, typically once a week. Concerning documentation, the inspector looks at a sample of documents, the licensee knows he has to produce high-quality documents that have to be correct and as a consequence the licensee has to set internal independent review. If the inspector were to look at every document, the licensee may consider the inspector as a mere reviewer as he checks every document and the global quality of the documentation may decrease. In order to optimize the inspections, the inspection reports circulate among all the members of Bel V (inspectors and experts). Everyone is invited to comment these reports if he deems that the inspector should be made aware of an important issue, that the inspector should take a closer look at a certain aspect,.... These remarks help the inspector to prepare the next inspection. The slides of the presentation have been added at the end of the paper

  8. An Authentication Technique Based on Classification

    Institute of Scientific and Technical Information of China (English)

    李钢; 杨杰

    2004-01-01

    We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different to the original watermark, and different kinds of modification lead to different extracted watermarks. In this paper, different kinds of modification are considered as classes, and we used classification algorithm to recognize the modifications with high probability. Simulation results show that the proposed method is potential and effective.

  9. NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.

    2015-10-01

    A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.

  10. Surface Inspection Of Automotive Bodies By Reflective Computer Vision

    Science.gov (United States)

    Hung, Y. Y.; Jin, G. C.; Tang, S. H.

    1988-12-01

    A simple but practical optical technique for automated surface inspection of car bodies is presented. The method which is based on light reflection is applicable to inspecting specularly reflective surfaces such as painted car bodies. A structured light signal consists of linear grating is imaged by a video camera via the surface to be inspected. With this arrangement, the surface being inspected acts as a mirror. Presence of surface flaws causes the grating to be locally perturbed. The grating-image is digitized and analyzed by a computer. Several algorithms are developed which automatically identifies the surface flaws by analyzing the perturbation in the grating-image. The technique allows surface flaws to be quantified in terms of slope deviation or depth variation. The sensitivity of the technique is very high permitting minute flaws to be detected. In the paper the theory of the technique will be presented together with experimental validation. The technique possesses numerous practical features such as requiring no special surface preparation, allowing evaluation in place, requiring minimum environmental safeguards, allowing rapid testing and evaluation, providing reliable and quantitative results, and it can be automated. Therefore the technique has clearly exhibited a great potential for being developed into a production-line inspection tool.

  11. FDI and Accommodation Using NN Based Techniques

    Science.gov (United States)

    Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro

    Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.

  12. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal

    2010-09-01

    The size of embedded software is increasing at a rapid pace. It is often challenging and time consuming to fit an amount of required software functionality within a given hardware resource budget. Code compression is a means to alleviate the problem by providing substantial savings in terms of code size. In this article we introduce a novel and efficient hardware-supported compression technique that is based on Huffman Coding. Our technique reduces the size of the generated decoding table, which takes a large portion of the memory. It combines our previous techniques, Instruction Splitting Technique and Instruction Re-encoding Technique into new one called Combined Compression Technique to improve the final compression ratio by taking advantage of both previous techniques. The instruction Splitting Technique is instruction set architecture (ISA)-independent. It splits the instructions into portions of varying size (called patterns) before Huffman coding is applied. This technique improves the final compression ratio by more than 20% compared to other known schemes based on Huffman Coding. The average compression ratios achieved using this technique are 48% and 50% for ARM and MIPS, respectively. The Instruction Re-encoding Technique is ISA-dependent. It investigates the benefits of reencoding unused bits (we call them reencodable bits) in the instruction format for a specific application to improve the compression ratio. Reencoding those bits can reduce the size of decoding tables by up to 40%. Using this technique, we improve the final compression ratios in comparison to the first technique to 46% and 45% for ARM and MIPS, respectively (including all overhead that incurs). The Combined Compression Technique improves the compression ratio to 45% and 42% for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures

  13. Inspection scheme

    International Nuclear Information System (INIS)

    As part of the Danish RERTR Program, three fuel elements with LEU U3O8-Al fuel and three fuel elements with LEU U3Si2-Al fuel were manufactured by NUKEM for irradiation testing in the DR-3 reactor at the Risoe National Laboratory in Denmark. The inspection scheme for the elements with U3O8-Al fuel is presented here as an illustration only. The inspection scheme for the elements with U3Si2-Al fuel was very similar. In this example, all document numbers, drawing numbers, and form numbers have been deleted or replaced with a generic identification. (author)

  14. Robust inspection and interpretation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.L. (Stress Engineering Services, Cincinnati, OH (United States))

    1993-05-01

    This paper explores the value of approximate methods of a specific type, as an efficient aid to performing residual life assessments, particularly when input data are incomplete. These methods, referred to as [open quotes]robust[close quotes] have the desirable attributes of providing satisfactory answers using less-than-perfect input, and being very economical in time of execution. Some examples of robust methods, which have been used successfully in high temperature design and fracture evaluations, are presented. 17 refs., 12 figs.

  15. Automatic noncontact ultrasonic inspection technique

    International Nuclear Information System (INIS)

    A system for EMAT, which generates ultrasound by electro-magnectic forces and performs nondestructive testing in noncontact, was established. By linking it with a 3 axis scanning system and a data acquisition and processing system the automation of EMAT testing was attempted. A EMAT sensor was fabricated and the directivity pattern of it was measured. To be suitable automation ir has a transmitter and a receiver in one case and the main beam direction of it can be controlled by the frequency of driving signal. A program which controls the EMAT system, the 3 axis scanner and the data acquisition and processing system was developed. It also processes acquired data and displays the processing results. IBM-PC/AT compatible PC was used as main controller and the stratage of the program is emulation of real devices on the PC monitor. To provide the performance of the established EMAT system, two aluminium blocks containing artificial flaws and a welded aluminium block were tested. The result of the tests were satisfactory.

  16. Advanced ultrasonic inspection system for the ID-inspection of reactor pressure vessels of BWRs

    International Nuclear Information System (INIS)

    A newly-developed, modular ultrasonic examination system has been developed by Siemens for the ID inspection of BWR RPV'S. It is based on the phased-array technique with hybrid probes using the latest in manipulator and control equipment technology to allow the often hard-to-access weld areas of older reactor pressure vessels in US BWR plants to be examined within a very short time and with minimal radiation exposure of the examination personnel. New NRC stipulations requiring almost complete ultrasonic examination of all RPV welds can be fully satisfied using this system for the ID inspection of all longitudinal and circumferential welds above the jet pump baffle plate

  17. Personnel neutron monitoring based on albedo technique

    International Nuclear Information System (INIS)

    This work deals with the study, design and test of a personal neutron monitor based on the detection of albedo neutrons from the body and its further relation to the incident flux. By this method, neutrons of energies below about 100 KeV can be efficiently detected, providing good information in the region where the biological effectiveness of neutron radiation starts to rise. The system consists of a pair of Thermoluminescent Detectors (6 LiF - 7 LiF) ∼ inside a polyethylene moderating body, in order to increase the sensitivity. The surface of the dosimeter facing away from the body is covered by a layer of a borated resin to assure appropriate shielding of incident low energy neutrons. The response of the dosimeter to monoenergetic neutrons from a 3 MeV Van de Graaff, to Am Be neutrons and to neutrons from a thermal column was investigated. The directional sensitivity, the effect of beam divergence was well as the effect of changes in dosimeter-to-body distances were also studied. (author)

  18. Earthquake Analysis of Structure by Base Isolation Technique in SAP

    OpenAIRE

    T. Subramani; J. Jothi

    2014-01-01

    This paper presents an overview of the present state of base isolation techniques with special emphasis and a brief on other techniques developed world over for mitigating earthquake forces on the structures. The dynamic analysis procedure for isolated structures is briefly explained. The provisions of FEMA 450 for base isolated structures are highlighted. The effects of base isolation on structures located on soft soils and near active faults are given in brief. Simple case s...

  19. Computer-vision-based registration techniques for augmented reality

    Science.gov (United States)

    Hoff, William A.; Nguyen, Khoi; Lyon, Torsten

    1996-10-01

    Augmented reality is a term used to describe systems in which computer-generated information is superimposed on top of the real world; for example, through the use of a see- through head-mounted display. A human user of such a system could still see and interact with the real world, but have valuable additional information, such as descriptions of important features or instructions for performing physical tasks, superimposed on the world. For example, the computer could identify and overlay them with graphic outlines, labels, and schematics. The graphics are registered to the real-world objects and appear to be 'painted' onto those objects. Augmented reality systems can be used to make productivity aids for tasks such as inspection, manufacturing, and navigation. One of the most critical requirements for augmented reality is to recognize and locate real-world objects with respect to the person's head. Accurate registration is necessary in order to overlay graphics accurately on top of the real-world objects. At the Colorado School of Mines, we have developed a prototype augmented reality system that uses head-mounted cameras and computer vision techniques to accurately register the head to the scene. The current system locates and tracks a set of pre-placed passive fiducial targets placed on the real-world objects. The system computes the pose of the objects and displays graphics overlays using a see-through head-mounted display. This paper describes the architecture of the system and outlines the computer vision techniques used.

  20. Knowledge-based inspection:modelling complex processes with the integrated Safeguards Modelling Method (iSMM)

    International Nuclear Information System (INIS)

    Increased level of complexity in almost every discipline and operation today raises the demand for knowledge in order to successfully run an organization whether to generate profit or to attain a non-profit mission. Traditional way of transferring knowledge to information systems rich in data structures and complex algorithms continue to hinder the ability to swiftly turnover concepts into operations. Diagrammatic modelling commonly applied in engineering in order to represent concepts or reality remains to be an excellent way of converging knowledge from domain experts. The nuclear verification domain represents ever more a matter which has great importance to the World safety and security. Demand for knowledge about nuclear processes and verification activities used to offset potential misuse of nuclear technology will intensify with the growth of the subject technology. This Doctoral thesis contributes with a model-based approach for representing complex process such as nuclear inspections. The work presented contributes to other domains characterized with knowledge intensive and complex processes. Based on characteristics of a complex process a conceptual framework was established as the theoretical basis for creating a number of modelling languages to represent the domain. The integrated Safeguards Modelling Method (iSMM) is formalized through an integrated meta-model. The diagrammatic modelling languages represent the verification domain and relevant nuclear verification aspects. Such a meta-model conceptualizes the relation between practices of process management, knowledge management and domain specific verification principles. This fusion is considered as necessary in order to create quality processes. The study also extends the formalization achieved through a meta-model by contributing with a formalization language based on Pattern Theory. Through the use of graphical and mathematical constructs of the theory, process structures are formalized enhancing

  1. Array-based techniques for fingerprinting medicinal herbs

    Directory of Open Access Journals (Sweden)

    Xue Charlie

    2011-05-01

    Full Text Available Abstract Poor quality control of medicinal herbs has led to instances of toxicity, poisoning and even deaths. The fundamental step in quality control of herbal medicine is accurate identification of herbs. Array-based techniques have recently been adapted to authenticate or identify herbal plants. This article reviews the current array-based techniques, eg oligonucleotides microarrays, gene-based probe microarrays, Suppression Subtractive Hybridization (SSH-based arrays, Diversity Array Technology (DArT and Subtracted Diversity Array (SDA. We further compare these techniques according to important parameters such as markers, polymorphism rates, restriction enzymes and sample type. The applicability of the array-based methods for fingerprinting depends on the availability of genomics and genetics of the species to be fingerprinted. For the species with few genome sequence information but high polymorphism rates, SDA techniques are particularly recommended because they require less labour and lower material cost.

  2. Ultrasonic Inspection Technique and Qualification for Reactor Pressure Vessel Weld of Nuclear Power Plant%核电站反应堆压力容器焊缝的超声检测及验证

    Institute of Scientific and Technical Information of China (English)

    许远欢; 聂勇

    2013-01-01

      The ultrasonic inspection technique for reactor pressure vessel weld of nuclear power plant was described.The ultrasonic transmission characterization and the influence factors of defects detection and sizing are analyzed in detail .A serial of testing is done to verify the UT technique .The ultrasonic tech-nique can effectively detect and size the defects and has been qualified by the separate qualification cen -ter UK-IVC.The technique meets the requirement of ultrasonic inspection of in -service inspection rules for the mechanical components of PWR nuclear islands (RES-M 1997).%  通过对反应堆压力容器焊缝超声波传播特性以及超声波缺陷探测和定量影响因素的分析,并通过大量的试验测试研究,确定了反应堆压力容器焊缝超声检测技术。此反应堆压力容器超声检测技术,能有效地进行缺陷探测和缺陷定量,并通过了英国验证中心的第三方独立验证,满足核电站役前和在役检查规范(RSE-M 1997)的超声检测技术要求。

  3. Proof of pipeline strength based on measurements of inspection pigs; Festigkeitsnachweis von Pipelines aufgrund der Messergebnisse von Pruefmolchen

    Energy Technology Data Exchange (ETDEWEB)

    De la Camp, H.J.; Feser, G.; Hofmann, A.; Wolf, B.; Schmidt, H. [TUeV Sueddeutschland Bau und Betrieb GmbH, Muenchen (Germany); Herforth, H.E.; Juengling, K.H.; Schmidt, W. [TUeV Anlagentechnik GmbH, Berlin-Schoeneberg (Germany). Unternehmensgruppe TUeV Rheinland/Berlin-Brandenburg

    2002-01-01

    The report is aimed at collecting and documenting the state of the art and the extensive know how of experts and pipeline operators with regard to judging the structural integrity of pipelines. In order to assess the actual mechanical strength of pipelines based on measurement results obtained by inspection pigs, guidance is given for future processing, which eventually can be used as a basis for an industry standard. A literature study of the commercially available types of inspection pigs describes and synoptically lists the respective pros and cons. In essence the report comprises besides check lists of operating data for the pipeline and the pig runs mainly the evaluation of defects and respective calculating procedures. Included are recommendations regarding maintenance planning, verification of defects as well as repetition of pig runs. (orig.) [German] Ziel des Berichtes ist die Erfassung und Dokumentation zum derzeitigen Stand der Technik und des vorhandenen umfangreichen Know-how von Sachverstaendigen und Pipelinebetreibern auf dem Gebiet der sicherheitstechnischen Beurteilung von Pipelines. Fuer den Festigkeitsnachweis von Pipelines aufgrund der Messergebnisse von Pruefmolchen wurde ein Leitfaden als Basis fuer die zukuenftige Vorgehensweise erstellt, der eventuell die Grundlage eines normativen Regelwerkes bilden kann. In einer Literaturstudie wurden die auf dem Markt befindlichen Pruefmolchtypen zusammenfassend beschrieben und ihre Vor- und Nachteile tabellarisch gegenuebergestellt und bewertet. Neben der Erstellung von Checklisten fuer notwendige Daten zum Betrieb der Pipeline und der Molchlaeufe bildet die Fehlerbewertung mit entsprechenden Berechnungsverfahren den Hauptteil dieses Berichtes. Hinweise zur Instandhaltungsplanung (Fehlerverifikation und Molchlaufwiederholung) werden gegeben. (orig.)

  4. Fusion Based Neutron Sources for Security Applications: Neutron Techniques

    OpenAIRE

    Albright, S.; Seviour, Rebecca

    2014-01-01

    The current reliance on X-Rays and intelligence for na- tional security is insufficient to combat the current risks of smuggling and terrorism seen on an international level. There are a range of neutron based security techniques which have the potential to dramatically improve national security. Neutron techniques can be broadly grouped into neutron in/neutron out and neutron in/photon out tech- niques. The use of accelerator based fusion devices will potentially enable to wide spread applic...

  5. Apparatus for inspecting a group of containers and method of using same

    Science.gov (United States)

    Lee, Jr., James H.; Salton, Jonathan R.; Spletzer, Barry L.

    2012-02-28

    An apparatus and method for inspecting a plurality of containers are provided. Each container has an outer surface for housing at least one material therein. The techniques provided involve at least one inspection vehicle and at least one detector. Each inspection vehicle has a plurality of wheels for movably positioning about the plurality of containers. The wheels may have at least one magnet for selectively adhering to the outer surface of at least one of the containers whereby the inspection vehicle traverses the container(s). The detector is positionable proximate at least one of the containers. The detector may be deployable from the inspection vehicle to a position adjacent the container(s). The detector has at least one sensor for measuring at least one characteristic of the plurality of containers. At least one base station may be provided for communicating with the inspection vehicle(s) and/or detector(s).

  6. Model-based POD study of manual ultrasound inspection and sensitivity analysis using metamodel

    Science.gov (United States)

    Ribay, Guillemette; Artusi, Xavier; Jenson, Frédéric; Reece, Christopher; Lhuillier, Pierre-Emile

    2016-02-01

    The reliability of NDE can be quantified by using the Probability of Detection (POD) approach. Former studies have shown the potential of the model-assisted POD (MAPOD) approach to replace expensive experimental determination of POD curves. In this paper, we make use of CIVA software to determine POD curves for a manual ultrasonic inspection of a heavy component, for which a whole experimental POD campaign was not available. The influential parameters were determined by expert analysis. The semi-analytical models used in CIVA for wave propagation and beam-defect interaction have been validated in the range of variation of the influential parameters by comparison with finite element modelling (Athena). The POD curves are computed for « hit/miss » and « â versus a » analysis. The verification of Berens hypothesis is evaluated by statistical tools. A sensitivity study is performed to measure the relative influence of parameters on the defect response amplitude variance, using the Sobol sensitivity index. A meta-model is also built to reduce computing cost and enhance the precision of estimated index.

  7. The detection of bulk explosives using nuclear-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  8. Application of glyph-based techniques for multivariate engineering visualization

    Science.gov (United States)

    Glazar, Vladimir; Marunic, Gordana; Percic, Marko; Butkovic, Zlatko

    2016-01-01

    This article presents a review of glyph-based techniques for engineering visualization as well as practical application for the multivariate visualization process. Two glyph techniques, Chernoff faces and star glyphs, uncommonly used in engineering practice, are described, applied to the selected data set, run through the chosen optimization methods and user evaluated. As an example of how these techniques function, a set of data for the optimization of a heat exchanger with a microchannel coil is adopted for visualization. The results acquired by the chosen visualization techniques are related to the results of optimization carried out by the response surface method and compared with the results of user evaluation. Based on the data set from engineering research and practice, the advantages and disadvantages of these techniques for engineering visualization are identified and discussed.

  9. Rapid analysis of steels using laser-based techniques

    International Nuclear Information System (INIS)

    Based on the data obtained by this study, we conclude that laser-based techniques can be used to provide at least semi-quantitative information about the elemental composition of molten steel. Of the two techniques investigated here, the Sample-Only method appears preferable to the LIBS (laser-induced breakdown spectroscopy) method because of its superior analytical performance. In addition, the Sample-Only method would probably be easier to incorporate into a steel plant environment. However, before either technique can be applied to steel monitoring, additional research is needed

  10. Mobile X-ray inspection of light weight materials

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, Uwe; Redmer, Bernhard; Raedel, Christoph; Osterloh, Kurt [Federal Inst. for Materials Research and Testing (BAM), Berlin (Germany); Schnars, Ulf; Henrich, Rudolf; Schimmelmann, Olaf [Airbus, Bremen/Stade (Germany); Bavendiek, Klaus; Jahn, Mirko [YXLON International, Hamburg (Germany)

    2008-07-01

    Digital detectors such as phosphor imaging plates (IP) and digital detector arrays (DDA) allow radiographic inspection with higher efficiency and improved image quality in comparison to the classic film technique. Mobile X-ray flash tubes are used routinely for veterinarian and security applications. New high sensitive IPs and DDAs enable to apply them for inspection of light materials with low X-ray attenuation as in aluminium, plastics and composites. A versatile computed tomography (CT) system was developed for in situ inspection of large aircraft components under production conditions. A gate based planar computed tomograph was developed and tested for inspection of integrity of the stringer incorporation. Successful test trials were performed to prove the detection rate of cracks in embedded stringers. Honey comb structures of aircrafts have to be inspected for water inclusions during in-service inspections. Thermography is a powerful method for in house inspections when variations in temperature caused e.g. by sunshine can be excluded. A new X-ray diaphragm was developed for mobile back scatter measurements of large components. This method is insensitive to heat alterations in the field and thus can be applied also outdoors. (orig.)

  11. Near-field microwave inspection and characterization of cement based materials

    Science.gov (United States)

    Bois, Karl Joseph

    The objective of this research project has been to investigate the potential of correlating the near-field microwave reflection coefficient properties of hardened cement paste (water and cement powder), mortar (water, cement powder and sand) and concrete (water, cement powder, sand and coarse aggregate) specimens to their various constituent make-up and compressive strengths. The measurements were conducted using open-ended rectangular waveguide probes operating at various microwave frequencies and in-contact with cubic specimens. For each material, various properties of the measured microwave reflection coefficient, such as the mean of the measured magnitude of reflection coefficient, and the standard deviation of the measured magnitude of reflection coefficient at various frequencies were monitored. Subsequently, the measurements were correlated to important parameters such as w/c ratio, s/c ratio, ca/c ratio, cure-state, constituent volume content and compressive strength. Other issues such as the detection of aggregate segregation in concrete as well as the detection chloride in cement paste and mortar were also addressed. Other related issues such as the detection of grout in masonry blocks were also investigated. In achieving these objectives, several theoretical modeling efforts were required, constituting significant contributions to the available literature. A complete analytical full wave expression (i.e. inclusion of higher-order modes) for the fields at the aperture of an open-ended waveguide probe radiating into a dielectric infinite half-space was derived. Also a novel two-port transmission line dielectric property measurement technique for granular and liquid materials was developed. A decision making process, based on the maximum likelihood scheme, was also implemented to determine w/c, s/c and ca/c ratios from the measured mean and standard deviation of reflection coefficient at two frequency bands. Finally, the issue of non-contact measurement was

  12. Enabling inspection solutions for future mask technologies through the development of massively parallel E-Beam inspection

    Science.gov (United States)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-09-01

    The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the

  13. Ultrasonic inspection methodology

    International Nuclear Information System (INIS)

    Steam generator tubes are known to be susceptible to stress corrosion cracking (SCC). Primary water SCC (PWSCC) and more recently secondary water SCC (SWSCC) have been observed in some Belgian plants. To help dealing with these problems, Laborelec developed an ultrasonic (UT) inspection system. It has been used for the last two years on a sampling basis in several plants. The field and laboratory measurements confirmed the advantage of using UT for the early detection of small circumferential cracks while an excellent correlation was demonstrated between eddy current RPC and UT for axial PWSCC. In conclusion: The latest in-service inspections demonstrated an average measurement cycle of 50 to 60 seconds per tube including the manipulator displacement from tube to tube. A sample of about 250 tubes with axial cracks was measured on-site with the eddy current RPC technique and the new UT system. All the UT measured lengths were within ± 1.5 mm of the RPC results. The same results were obtained from the inspection of the tubes repaired with the nickel process (Doel 3). Some indications of circumferential secondary side stress corrosion cracking were recently observed. A comparison with the eddy current rotating pancake coil confirmed the improved detectability of the UT system. The field and laboratory results obtained with this UT inspection system demonstrated the advantage of applying the ultrasonic technique for the detection and sizing of small volume cracks like SCC. Also, the small focal spot of the UT beam provided a clear advantage for the detection of circumferential PWSCC in the presence of multiple axial cracks. With an average rate dose to 60 tubes per hour for the top of the tubesheet area, this UT system can be considered as an industrial tool for the inspection of steam generator tubes

  14. An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Yan; HUANG Cong-ming

    2006-01-01

    An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases.

  15. Power system stabilizers based on modern control techniques

    Energy Technology Data Exchange (ETDEWEB)

    Malik, O.P.; Chen, G.P.; Zhang, Y.; El-Metwally, K. [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering

    1994-12-31

    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  16. An Agent Communication Framework Based on XML and SOAP Technique

    Institute of Scientific and Technical Information of China (English)

    李晓瑜

    2009-01-01

    This thesis introducing XML technology and SOAP technology,present an agent communication fi-amework based on XML and SOAP technique,and analyze the principle,architecture,function and benefit of it. At the end, based on KQML communication primitive lan- guages.

  17. Decomposition Techniques and Effective Algorithms in Reliability-Based Optimization

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1995-01-01

    The common problem of an extensive number of limit state function calculations in the various formulations and applications of reliability-based optimization is treated. It is suggested to use a formulation based on decomposition techniques so the nested two-level optimization problem can be solved...

  18. Data Mining and Neural Network Techniques in Case Based System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper first puts forward a case-based system framework basedon data mining techniques. Then the paper examines the possibility of using neural n etworks as a method of retrieval in such a case-based system. In this system we propose data mining algorithms to discover case knowledge and other algorithms.

  19. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  20. Periodic inspections of the primary system

    International Nuclear Information System (INIS)

    An impression is given of the inspection techniques, preparations and background for periodic examinations of the primary system of the Dodewaard Nuclear Reactor over the past 10 years. Unfortunately reliable integral inspection techniques to enable 'listening-in' to developing faults, are not yet available. Until they are, inspections will continue to be executed from a distance using different continuous methods, often under water and with a shortage of space and in the presence of ionising radiations. (C.F.)

  1. A Hough Transform based Technique for Text Segmentation

    CERN Document Server

    Saha, Satadal; Nasipuri, Mita; Basu, Dipak Kr

    2010-01-01

    Text segmentation is an inherent part of an OCR system irrespective of the domain of application of it. The OCR system contains a segmentation module where the text lines, words and ultimately the characters must be segmented properly for its successful recognition. The present work implements a Hough transform based technique for line and word segmentation from digitized images. The proposed technique is applied not only on the document image dataset but also on dataset for business card reader system and license plate recognition system. For standardization of the performance of the system the technique is also applied on public domain dataset published in the website by CMATER, Jadavpur University. The document images consist of multi-script printed and hand written text lines with variety in script and line spacing in single document image. The technique performs quite satisfactorily when applied on mobile camera captured business card images with low resolution. The usefulness of the technique is verifie...

  2. Planning Annual Shutdown Inspection for BFB Boiler

    OpenAIRE

    Sorsa, Tatu

    2014-01-01

    The goal of this thesis was to create an illustrative guidebook of annual inspection planning for BFB boiler to help power plant operator when planning of annual inspection is topical. This thesis was made for Andritz Oy and it is based on inspection reports and experiences of BFB boiler’s maintenance and inspection staff. In this thesis it is shown how to plan an annual inspection for BFB boiler and thesis gives good tools and hints for operator to manage inspection from the beginning ...

  3. Optical fiber hydrogen sensor based on photothermal reflectance detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Yarai, A; Nakanishi, T, E-mail: yarai@osaka-sandai.ac.j [Department of Electronics, Information and Communication Engineering Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan)

    2010-03-01

    This article proposes an optical fiber hydrogen (H{sub 2}) sensor based on photothermal reflectance [hereinafter modulated optical reflectance (MOR)] technique. Our H{sub 2} sensor is based on a technique that detects the changes of MOR signals in palladium film, which is widely known to absorb H{sub 2} gas. The sensor element is a palladium film deposited on a 2.5-mm-diameter FC-ferrule made from zirconium to realize the optical fiber sensor. Our recently developed 'laptop' MOR instrument assembled with optical fiber components is applied to this technique. Thus, an extremely compact photothermal H{sub 2} gas sensor system can be constructed. We certified that our technique has hypersensitive less than 1% with a concentration of H{sub 2} gas and also demonstrated that the response time is approximately 5 seconds when the sensor head is filled with H{sub 2} gas.

  4. Face Recognition Approach Based on Wavelet - Curvelet Technique

    Directory of Open Access Journals (Sweden)

    Muzhir Shaban Al-Ani

    2012-04-01

    Full Text Available In this paper, a novel face recognition approach based on wavelet-curvelet technique, is proposed. This algorithm based on the similarities embedded in the images, That utilize the wavelet-curvelet technique to extract facial features. The implemented technique can overcome on the other mathematical image analysis approaches. This approaches may suffered from the potential for a high dimensional feature space, Therefore it aims to reduce the dimensionality that reduce the required computational power and memory size. Then the Nearest Mean Classifier (NMC is adopted to recognize different faces. In this work, three major experiments were done. two face databases (MAFD & ORL, and higher recognition rate is obtained by the implementation of this techniques.

  5. Satellite-based enhancement of archaeological marks through data fusion techniques

    Science.gov (United States)

    Lasaponara, Rosa; Masini, Nicola; Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano

    2008-10-01

    The application of space technology to archaeological research has been paid great attention worldwide, mainly because the current availability of very high resolution (VHR) satellite imagery, such as, IKONOS (1999) and QuickBird (2001), provide valuable data for searching large areas to find potential archaeological sites. Data from VHR satellite can be very useful for the identification, management and documentation of archaeological resources. Archaeological investigation based on the use of VHR satellite images may take benefits from the integration and synergic use of both panchromatic and multispectral data. This can be achieved by using pansharpening techniques, which allow multispectral and panchromatic images to be merged. The two basic frameworks of pansharpening techniques are Component Substitution (CS), such as Intensity-Hue-Saturation (IHS) Gram-Schmidt (GS), and multiresolution analysis (MRA), such as wavelets and Laplacian pyramids (LP). In this paper, both Gram-Schmidt and Laplacian pyramids with context adaptive (CA) detail injection models were used. QB images were processed for a relevant archaeological area in Southern Italy, the ancient Siris-Heraclea, a very significant test area because it is characterized by the presence of both surface and subsurface ancient remains. Outcomes of different pansharpening techniques have been qualitatively evaluated for both surface and subsurface remains. The visual inspection clearly suggests that the quantitative evaluation of the fusion performance for archaeological applications is a critical issue, and "ad hoc" local (i.e. context-adaptive) indices need to be developed.

  6. LiDAR-based Localization and Mapping System using Ellipse Distance Correction Models for UAV Wind Turbine Blade Inspection

    DEFF Research Database (Denmark)

    Nikolov, Ivan Adriyanov; Madsen, Claus B.

    2016-01-01

    The wind energy sector faces a constant need for annual inspections of wind turbine blades for damage, erosion and cracks. These inspections are an important part of the wind turbine life cycle and can be very constly and hazardous to specialists. This has led to the use of automated drone...

  7. Risk-based school inspections in the Netherlands: A critical reflection on intended effects and causal mechanisms

    NARCIS (Netherlands)

    Ehren, M.C.M.; Honingh, M.

    2012-01-01

    This paper compares and contrasts the program theory of the reenacted Supervision Act to the Supervision Act of 2003. We describe how the expectations about how schools should be inspected, the effect such inspections are expected to have, and how these effects should be realized have changed over t

  8. MPPT Technique Based on Current and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira Vicente

    2015-01-01

    Full Text Available This paper presents a new maximum power point tracking (MPPT method based on the measurement of temperature and short-circuit current, in a simple and efficient approach. These measurements, which can precisely define the maximum power point (MPP, have not been used together in other existing techniques. The temperature is measured with a low cost sensor and the solar irradiance is estimated through the relationship of the measured short-circuit current and its reference. Fast tracking speed and stable steady-state operation are advantages of this technique, which presents higher performance when compared to other well-known techniques.

  9. 基于机器视觉的端子尺寸检测系统%Terminal Dimension Inspection System Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    雷敏华; 陈良

    2013-01-01

    This article introduced a terminal dimension inspection system based on machine vision. For inspecting the terminal dimension online in automotive electronics industry, used a single actuator to send the product to inspection position, then used a CCTV lens and CCD sensor to get the image of the terminal, the image processor processed the image by doing binaryzation, sharpening, edge extracting, then inspect the terminal’ s dimension. According to the feedback from workshop, this inspection system has advantages, such as no contact,real-time and appropriate accuracy.%  介绍了一个基于机器视觉的端子尺寸检测系统。针对汽车电子产品中的端子在线尺寸检测,采用单轴机械手将产品送到检测位置,用LED背光照明,用CCTV镜头和视觉传感器获得端子图像,用图像处理单元对图像进行二值化、锐化、边缘提取后对端子的尺寸进行检查。从实际应用来看,此检测系统具有非接触性、在线实时、精度合适等优点。

  10. A Pipeline Inspection Micro Robot Based on Screw Motion Wheels%采用螺旋驱动轮的管道检测用微机器人

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The micro robot based on screw motion wheels, which features high payload/mass ratio, fast and continuous motion, adaptation to pipe diameter or roundness variations, is suitable for locomotion and inspection inside small-diameter pipelines. The robot inspection system, Tubot I, developed at Shanghai University is composed of locomotion mechanism with an inner motor, a micro CCD camera and a monitor outside the pipeline. In the paper, the kinematics and statics analyses are presented for the screw locomotion system of Tubot I.The moving characteristics are obtained from experiments on the robot prototype.

  11. Runtime Monitoring Technique to handle Tautology based SQL Injection Attacks

    Directory of Open Access Journals (Sweden)

    Ramya Dharam

    2015-05-01

    Full Text Available Software systems, like web applications, are often used to provide reliable online services such as banking, shopping, social networking, etc., to users. The increasing use of such systems has led to a high need for assuring confidentiality, integrity, and availability of user data. SQL Injection Attacks (SQLIAs is one of the major security threats to web applications. It allows attackers to get unauthorized access to the back-end database consisting of confidential user information. In this paper we present and evaluate a Runtime Monitoring Technique to detect and prevent tautology based SQLIAs in web applications. Our technique monitors the behavior of the application during its post- deployment to identify all the tautology based SQLIAs. A framework called Runtime Monitoring Framework, that implements our technique, is used in the development of runtime monitors. The framework uses two pre-deployment testing techniques, such as basis-path and data-flow to identify a minimal set of all legal/valid execution paths of the application. Runtime monitors are then developed and integrated to perform runtime monitoring of the application, during its post-deployment for the identified valid/legal execution paths. For evaluation we targeted a subject application with a large number of both legitimate inputs and illegitimate tautology based inputs, and measured the performance of the proposed technique. The results of our study show that runtime monitor developed for the application was successfully able to detect all the tautology based attacks without generating any false positives.

  12. PCA Based Rapid and Real Time Face Recognition Technique

    Directory of Open Access Journals (Sweden)

    T R Chandrashekar

    2013-12-01

    Full Text Available Economical and efficient that is used in various applications is face Biometric which has been a popular form biometric system. Face recognition system is being a topic of research for last few decades. Several techniques are proposed to improve the performance of face recognition system. Accuracy is tested against intensity, distance from camera, and pose variance. Multiple face recognition is another subtopic which is under research now a day. Speed at which the technique works is a parameter under consideration to evaluate a technique. As an example a support vector machine performs really well for face recognition but the computational efficiency degrades significantly with increase in number of classes. Eigen Face technique produces quality features for face recognition but the accuracy is proved to be comparatively less to many other techniques. With increase in use of core processors in personal computers and application demanding speed in processing and multiple face detection and recognition system (for example an entry detection system in shopping mall or an industry, demand for such systems are cumulative as there is a need for automated systems worldwide. In this paper we propose a novel system of face recognition developed with C# .Net that can detect multiple faces and can recognize the faces parallel by utilizing the system resources and the core processors. The system is built around Haar Cascade based face detection and PCA based face recognition system with C#.Net. Parallel library designed for .Net is used to aide to high speed detection and recognition of the real time faces. Analysis of the performance of the proposed technique with some of the conventional techniques reveals that the proposed technique is not only accurate, but also is fast in comparison to other techniques.

  13. Generic data base for security equipment and its utility in the safeguards inspection process. Final report 8151-79-FR-16

    International Nuclear Information System (INIS)

    This report contains material presented at the Nuclear Regulatory Commission (NRC) conference of regional inspectors in Atlanta, Georgia, on January 17, 1979. It describes the contents of the generic data base for security equipment, which was developed by SRI for NRC under a Sandia Laboratories' subcontract, and examines its potential utility in the process of inspection of NRC-licensed facilities

  14. Mask pattern recovery by level set method based inverse inspection technology (IIT) and its application on defect auto disposition

    Science.gov (United States)

    Park, Jin-Hyung; Chung, Paul D. H.; Jeon, Chan-Uk; Cho, Han Ku; Pang, Linyong; Peng, Danping; Tolani, Vikram; Cecil, Tom; Kim, David; Baik, KiHo

    2009-10-01

    At the most advanced technology nodes, such as 32nm and 22nm, aggressive OPC and Sub-Resolution Assist Features (SRAFs) are required. However, their use results in significantly increased mask complexity, making mask defect disposition more challenging than ever. This paper describes how mask patterns can first be recovered from the inspection images by applying patented algorithms using Level Set Methods. The mask pattern recovery step is then followed by aerial/wafer image simulation, the results of which can be plugged into an automated mask defect disposition system based on aerial/wafer image. The disposition criteria are primarily based on wafer-plane CD variance. The system also connects to a post-OPC lithography verification tool that can provide gauges and CD specs, thereby enabling them to be used in mask defect disposition as well. Results on both programmed defects and production defects collected at Samsung mask shop are presented to show the accuracy and consistency of using the Level Set Methods and aerial/wafer image based automated mask disposition.

  15. A Knowledge—Based Specification Technique for Protocol Development

    Institute of Scientific and Technical Information of China (English)

    张尧学; 史美林; 等

    1993-01-01

    is paper proposes a knowledge-based specification technique(KST)for protocol development.This technique semi-automatically translates a protocol described in an informal description(natural languages or graphs)into one described in forml specifications(Estells and SDL).The translation processes are suported by knowledge stored in the knowledge base.This paper discusses the concept,the specification control mechanism of KST and the rules and algorithms for production of FSM's which is the basis of Estelle and SDL.

  16. Computational mask defect review for contamination and haze inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram; Wolf, Yulian; Shah, Pinkesh

    2013-09-01

    the mask manufacturing process. The latter characterization qualifies real defect signatures, such as pin-dots or pin-holes, extrusions or intrusions, assist-feature or dummy-fill defects, writeerrors or un-repairable defects, chrome-on-shifter or missing chrome-from-shifter defects, particles, etc., and also false defect signatures, such as those due to inspection tool registration or image alignment, interlace artifacts, CCD camera artifacts, optical shimmer, focus errors, etc. Such qualitative characterization of defects has enabled better inspection tool SPC and process defect control in the mask shop. In this paper, the same computational approach to defect review has been extended to contamination style defect inspections, including Die-to-Die reflected, and non Die-to-Die or single-die inspections. In addition to the computational methods used for transmitted aerial images, defects detected in die-to-die reflected light mode are analyzed based on special defect and background coloring in reflected-light, and other characteristics to determine the exact type and severity. For those detected in the non Die-to-Die mode, only defect images are available from the inspection tool. Without a reference, i.e., defect-free image, it is often difficult to determine the true nature or impact of the defect in question. Using a combination of inspection-tool modeling and image inversion techniques, Luminescent's LAIPHTM system generates an accurate reference image, and then proceeds with automated defect characterization as if the images were simply from a die-to-die inspection. The disposition of contamination style defects this way, filters out >90% of false and nuisance defects that otherwise would have been manually reviewed or measured on AIMSTM. Such computational defect review, unifying defect disposition across all available inspection modes, has been imperative to ensuring no yield losses due to errors in operator defect classification on one hand, and on the other

  17. Modelling in Optimal Inspection and Repair

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rackwitz, R.; Faber, M.H.;

    1991-01-01

    A model for reliability based optimal inspection and repair strategies is described. The total expected costs in the lifetime is minimized with the number of inspections, the inspection times and efforts, the repair crack size limit and a design parameter as optimization variables. The equivalenc...

  18. Least-squares based iterative multipath super-resolution technique

    CERN Document Server

    Nam, Wooseok

    2011-01-01

    In this paper, we study the problem of multipath channel estimation for direct sequence spread spectrum signals. To resolve multipath components arriving within a short interval, we propose a new algorithm called the least-squares based iterative multipath super-resolution (LIMS). Compared to conventional super-resolution techniques, such as the multiple signal classification (MUSIC) and the estimation of signal parameters via rotation invariance techniques (ESPRIT), our algorithm has several appealing features. In particular, even in critical situations where the conventional super-resolution techniques are not very powerful due to limited data or the correlation between path coefficients, the LIMS algorithm can produce successful results. In addition, due to its iterative nature, the LIMS algorithm is suitable for recursive multipath tracking, whereas the conventional super-resolution techniques may not be. Through numerical simulations, we show that the LIMS algorithm can resolve the first arrival path amo...

  19. Dimensionality Reduction using SOM based Technique for Face Recognition

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2008-05-01

    Full Text Available Unsupervised or Self-Organized learning algorithms have become very popular for discovery of significant patterns or features in the input data. The three prominent algorithms namely Principal Component Analysis (PCA, Self Organizing Maps (SOM, and Independent Component Analysis (ICA have widely and successfully been used for face recognition. In this paper a SOM based technique for dimensionality reduction has been proposed. This technique has also been successfully used for face recognition. A comparative study of PCA, SOM and ICA along with the proposed technique for face recognition has also been given. Simulation results indicate that SOM is better than the other techniques for the given face database and the classifier used. The results also show that the performance of the system decreases as the number of classes increase.

  20. A novel TMR-based MFL sensor for steel wire rope inspection using the orthogonal test method

    Science.gov (United States)

    Wu, B.; Wang, Y. J.; Liu, X. C.; He, C. F.

    2015-07-01

    Magnetic flux leakage (MFL) sensors, with their compact configuration and high sensitivity to small defects, have attracted much attention in recent years for the non-destructive testing of ferromagnetic structures. Tunnel magneto-resistive (TMR) devices have superior performances in sensitivity and linear operation range over conventional magneto-resistive devices. In this paper, a commercial TMR device is employed for developing an electromagnet-based MFL sensor. The electromagnet magnetizer includes Helmholtz-like coils together with a custom-made magnetic shield. The orthogonal test method is applied to aid the structural parameter optimization to the magnetizer based on the finite element analysis results of magnetic field distribution. In this study a prototype of a TMR-based MFL sensor is developed, and its performances on detecting various types of defects are tested on a scanning apparatus. The experimental results show that the MFL signal induced by a blind hole with dimensions of 0.3 mm in both depth and diameter is detectable. In addition, two adjacent notches located more than 2.0 mm from each other can be clearly distinguished from the received MFL signal. The detectable angular detection range for a single TMR device is estimated as 52° in the tested linear shaft rod. The consistency between the simulated and received MFL signal induced by a row of notches inspires confidence in the proposed sensor design method, which in the future can be transplanted for TMR-based sensor array design. Finally, the TMR-based MFL sensor is used for detecting a flaw of a single broken wire with a diameter of 0.5 mm, and the induced MFL signal can be clearly recognized from the oscillation signal that is generated by the twisted rope surface. Therefore, the presented TMR-based MFL sensor has great potential for steel wire rope inspection with enhanced sensitivity to small defects, and it is capable of being integrated into production lines due to its compact

  1. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  2. Wavelet transformation based watermarking technique for human electrocardiogram (ECG).

    Science.gov (United States)

    Engin, Mehmet; Cidam, Oğuz; Engin, Erkan Zeki

    2005-12-01

    Nowadays, watermarking has become a technology of choice for a broad range of multimedia copyright protection applications. Watermarks have also been used to embed prespecified data in biomedical signals. Thus, the watermarked biomedical signals being transmitted through communication are resistant to some attacks. This paper investigates discrete wavelet transform based watermarking technique for signal integrity verification in an Electrocardiogram (ECG) coming from four ECG classes for monitoring application of cardiovascular diseases. The proposed technique is evaluated under different noisy conditions for different wavelet functions. Daubechies (db2) wavelet function based technique performs better than those of Biorthogonal (bior5.5) wavelet function. For the beat-to-beat applications, all performance results belonging to four ECG classes are highly moderate. PMID:16235811

  3. Inspection of dissimilar metal welds in reactor pressure vessels in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gadea, J.R.; Regidor, J.J.; Pelaez, J.A.; Serrano, P. [Tecnatom, S.A., San Sebastian de los Reyes, Madrid (Spain)

    2011-07-01

    MRP-139 recommendations for inspection of dissimilar metal (DM) welds in PWR vessels were launched in the last years in the USA. Basically, it increases the frequency of the examinations in these type of welds, with major emphasis in the hot loops, adding one intermediate inspection at the ten years interval in outlet nozzles. The spanish nuclear power plants (NPP's) have begun the implementation of this type of inspections on the vessel nozzles DM welds. As this type of inspections could have an impact in the critical path duration of the outage, it is necessary the use of a mechanical equipment able to examine the nozzles DM welds in a short vessel occupation time (VOT) with high quality, qualified techniques and minimum requirements of the refuelling platform. Tecnatom undertook the design and development of a new more advanced equipment, named TENIS-DM, for implementing the reactor pressure vessel (RPV) nozzles examination. This equipment was designed in order to accomplish the stringent requirements and the updated examination techniques; it was used for the inspection of the DM welds of Asco 1 NPP inlet and outlet nozzles in March 2011. Examination techniques and procedures were qualified through the GRUVAL validation program, based on ENIC methodology. Mechanical scanner was equipped with a large number of examination probes, and TV cameras -for visual inspection and also for monitoring the ultrasonic inspections. A remote operated submarine was also used to give support to the operational personnel during the manipulation of the equipment and its movements from one nozzle to the others. During two months before the inspection, tests of the complete inspection system were made on a nozzle mock-up installed in a 4 meters deep well at Tecnatom's facilities; this scenario was also used during the training sessions of the inspection crew. The defined technical and practical objectives were achieved: use of qualified techniques and minimal impact on the

  4. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    Science.gov (United States)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-07-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  5. Visual inspection for CTBT verification

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, W.; Wohletz, K.

    1997-03-01

    On-site visual inspection will play an essential role in future Comprehensive Test Ban Treaty (CTBT) verification. Although seismic and remote sensing techniques are the best understood and most developed methods for detection of evasive testing of nuclear weapons, visual inspection can greatly augment the certainty and detail of understanding provided by these more traditional methods. Not only can visual inspection offer ``ground truth`` in cases of suspected nuclear testing, but it also can provide accurate source location and testing media properties necessary for detailed analysis of seismic records. For testing in violation of the CTBT, an offending party may attempt to conceal the test, which most likely will be achieved by underground burial. While such concealment may not prevent seismic detection, evidence of test deployment, location, and yield can be disguised. In this light, if a suspicious event is detected by seismic or other remote methods, visual inspection of the event area is necessary to document any evidence that might support a claim of nuclear testing and provide data needed to further interpret seismic records and guide further investigations. However, the methods for visual inspection are not widely known nor appreciated, and experience is presently limited. Visual inspection can be achieved by simple, non-intrusive means, primarily geological in nature, and it is the purpose of this report to describe the considerations, procedures, and equipment required to field such an inspection.

  6. A thermopneumatic micropump based on micro-engineering techniques

    NARCIS (Netherlands)

    Pol, van de F.C.M.; Lintel, van H.T.G.; Elwenspoek, M.; Fluitman, J.H.J.

    1990-01-01

    The design, working principle and realization of an electro-thermopneumatic liquid pump based on micro-engineering techniques are described. The pump, which is of the reciprocating displacement type, comprises a pump chamber, a thin silicon pump membrane and two silicon check valves to direct the fl

  7. "Ayeli": Centering Technique Based on Cherokee Spiritual Traditions.

    Science.gov (United States)

    Garrett, Michael Tlanusta; Garrett, J. T.

    2002-01-01

    Presents a centering technique called "Ayeli," based on Cherokee spiritual traditions as a way of incorporating spirituality into counseling by helping clients identify where they are in their journey, where they want to be, and how they can get there. Relevant Native cultural traditions and meanings are explored. (Contains 25 references.) (GCP)

  8. Modal Analysis Based on the Random Decrement Technique

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    1998-01-01

    This article describes the work carried out within the project: Modal Analysis Based on the Random Decrement Technique - Application to Civil Engineering Structures. The project is part of the research programme: Dynamics of Structures sponsored by the Danish Technical Research Counsil. The planned...

  9. Ultrasonic Inspection Of Thick Sections

    Science.gov (United States)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  10. The Real-Time Image Processing Technique Based on DSP

    Institute of Scientific and Technical Information of China (English)

    QI Chang; CHEN Yue-hua; HUANG Tian-shu

    2005-01-01

    This paper proposes a novel real-time image processing technique based on digital singnal processor (DSP). At the aspect of wavelet transform(WT) algorithm, the technique uses algorithm of second generation wavelet transform-lifting scheme WT that has low calculation complexity property for the 2-D image data processing. Since the processing effect of lifting scheme WT for 1-D data is better than the effect of it for 2-D data obviously, this paper proposes a reformative processing method: Transform 2-D image data to 1-D data sequence by linearization method, then process the 1-D data sequence by algorithm of lifting scheme WT. The method changes the image convolution mode,which based on the cross filtering of rows and columns. At the aspect of hardware realization, the technique optimizes the program structure of DSP to exert the operation power with the in-chip memorizer of DSP. The experiment results show that the real-time image processing technique proposed in this paper can meet the real-time requirement of video-image transmitting in the video surveillance system of electric power. So the technique is a feasible and efficient DSP solution.

  11. Hardware-based image processing for high-speed inspection of grains

    Science.gov (United States)

    A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with slight color differences and small defects on grains The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) which...

  12. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    Science.gov (United States)

    Ibrahim, Mohamed M.; Abdel Kader, Neamat S.; Zorkany, M.

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth. PMID:25587570

  13. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  14. Ultrasonic inspection of turbine rotor discs for stress corrosion cracking

    International Nuclear Information System (INIS)

    Stress corrosion cracking in turbine discs and keyways has been recognised for a number of years as a problem. Magnox Electric has devised and implemented a strategy to manage the threat from SCC, based on a probabilistic risk assessment technique. An important input to the risk assessment is a knowledge of existing defects and Magnox Electric has undertaken a major programme of work to develop ultrasonic inspection techniques and equipment for SCC detection and sizing in the relevant disc geometries. (author)

  15. Waste inspection tomography (WIT)

    International Nuclear Information System (INIS)

    The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented

  16. Knowledge based systems advanced concepts, techniques and applications

    CERN Document Server

    1997-01-01

    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  17. Proposing a Wiki-Based Technique for Collaborative Essay Writing

    Directory of Open Access Journals (Sweden)

    Mabel Ortiz Navarrete

    2014-10-01

    Full Text Available This paper aims at proposing a technique for students learning English as a foreign language when they collaboratively write an argumentative essay in a wiki environment. A wiki environment and collaborative work play an important role within the academic writing task. Nevertheless, an appropriate and systematic work assignment is required in order to make use of both. In this paper the proposed technique when writing a collaborative essay mainly attempts to provide the most effective way to enhance equal participation among group members by taking as a base computer mediated collaboration. Within this context, the students’ role is clearly defined and individual and collaborative tasks are explained.

  18. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi......The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...

  19. An Observed Voting System Based On Biometric Technique

    Directory of Open Access Journals (Sweden)

    B. Devikiruba

    2015-08-01

    Full Text Available ABSTRACT This article describes a computational framework which can run almost on every computer connected to an IP based network to study biometric techniques. This paper discusses with a system protecting confidential information puts strong security demands on the identification. Biometry provides us with a user-friendly method for this identification and is becoming a competitor for current identification mechanisms. The experimentation section focuses on biometric verification specifically based on fingerprints. This article should be read as a warning to those thinking of using methods of identification without first examine the technical opportunities for compromising mechanisms and the associated legal consequences. The development is based on the java language that easily improves software packages that is useful to test new control techniques.

  20. A Survey on Statistical Based Single Channel Speech Enhancement Techniques

    Directory of Open Access Journals (Sweden)

    Sunnydayal. V

    2014-11-01

    Full Text Available Speech enhancement is a long standing problem with various applications like hearing aids, automatic recognition and coding of speech signals. Single channel speech enhancement technique is used for enhancement of the speech degraded by additive background noises. The background noise can have an adverse impact on our ability to converse without hindrance or smoothly in very noisy environments, such as busy streets, in a car or cockpit of an airplane. Such type of noises can affect quality and intelligibility of speech. This is a survey paper and its object is to provide an overview of speech enhancement algorithms so that enhance the noisy speech signal which is corrupted by additive noise. The algorithms are mainly based on statistical based approaches. Different estimators are compared. Challenges and Opportunities of speech enhancement are also discussed. This paper helps in choosing the best statistical based technique for speech enhancement

  1. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  2. Improve mask inspection capacity with Automatic Defect Classification (ADC)

    Science.gov (United States)

    Wang, Crystal; Ho, Steven; Guo, Eric; Wang, Kechang; Lakkapragada, Suresh; Yu, Jiao; Hu, Peter; Tolani, Vikram; Pang, Linyong

    2013-09-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The adoption of RET techniques like aggressive OPC, sub-resolution assist features combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for mask inspection operators and engineers. Therefore a comprehensive approach is required in handling defects post-inspections by correctly identifying and classifying the real killer defects impacting the printability on wafer, and ignoring nuisance defect and false defects caused by inspection systems. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at the SMIC mask shop for the 40nm technology node. Traditionally, each defect is manually examined and classified by the inspection operator based on a set of predefined rules and human judgment. At SMIC mask shop due to the significant total number of detected defects, manual classification is not cost-effective due to increased inspection cycle time, resulting in constrained mask inspection capacity, since the review has to be performed while the mask stays on the inspection system. Luminescent Technologies Automated Defect Classification (ADC) product offers a complete and systematic approach for defect disposition and classification offline, resulting in improved utilization of the current mask inspection capability. Based on results from implementation of ADC in SMIC mask production flow, there was around 20% improvement in the inspection capacity compared to the traditional flow. This approach of computationally reviewing defects post mask-inspection ensures no yield loss by qualifying reticles without the errors associated with operator mis-classification or human error. The ADC engine retrieves the high resolution inspection images and uses a decision-tree flow to classify a given defect. Some identification mechanisms adopted by ADC to

  3. Inspection systems for valves monitoring at EDF

    International Nuclear Information System (INIS)

    Electricite de France (EDF) makes increasing use of valve inspection systems to guarantee safety in its pressurized water reactor plants, improve plant availability and facilitate condition-based maintenance. A portable system known as SAMIR has been developed for inspection of motor-operated valves, and is now used on EDF's 900-MW sites. For its 1300-MW units, EDF has chosen a more complete system which enables measuring thrust on the valve stem during a maneuver, using a sensor mounted on the yoke. To detect internal vale leaks, an on-site assessment has demonstrated the economic benefits of acoustic emission techniques. EDF has equipped its sites with analog leak detection systems which may soon be replaced by a digital model now being developed. (authors)

  4. Multivariate discrimination technique based on the Bayesian theory

    Institute of Scientific and Technical Information of China (English)

    JIN Ping; PAN Chang-zhou; XIAO Wei-guo

    2007-01-01

    A multivariate discrimination technique was established based on the Bayesian theory. Using this technique, P/S ratios of different types (e.g., Pn/Sn, Pn/Lg, Pg/Sn or Pg/Lg) measured within different frequency bands and from different stations were combined together to discriminate seismic events in Central Asia. Major advantages of the Bayesian approach are that the probability to be an explosion for any unknown event can be directly calculated given the measurements of a group of discriminants, and at the same time correlations among these discriminants can be fully taken into account. It was proved theoretically that the Bayesian technique would be optimal and its discriminating performance would be better than that of any individual discriminant as well as better than that yielded by the linear combination approach ignoring correlations among discriminants. This conclusion was also validated in this paper by applying the Bayesian approach to the above-mentioned observed data.

  5. RANKINGTHEREFACTORING TECHNIQUES BASED ON THE INTERNAL QUALITY ATTRIBUTES

    Directory of Open Access Journals (Sweden)

    Sultan Alshehri

    2014-01-01

    Full Text Available The analytic hierarchy process (AHP has been applied in many fields and especially to complex engineering problems and applications. The AHP is capable of structuring decision problems and finding mathematically determined judgments built on knowledge and experience. This suggests that AHP should prove useful in agile software development where complex decisions occur routinely. In this paper, the AHP is used to rank the refactoring techniques based on the internal code quality attributes. XP encourages applying the refactoring where the code smells bad. However, refactoring may consume more time and efforts.So, to maximize the benefits of the refactoring in less time and effort, AHP has been applied to achieve this purpose. It was found that ranking the refactoring techniques helped the XP team to focus on the technique that improve the code and the XP development process in general.

  6. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    Science.gov (United States)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  7. The development of PC-based real time ultrasonic metal thickness inspection system

    International Nuclear Information System (INIS)

    This paper discusses the development of a PC-Based Real Time Ultrasonic Thickness Measurement system (UTMS) for metallic components such as pipes, pressure vessels and metal slabs. Metal thickness measurement for these components is crucial in industrial plants with dangerous environment, such as in oil and gas industry. From the measured metal thickness, a number of deductions could be made, for example the state and the rate of corrosion propagation inside a pipe or pressure vessel, etc. One of the most widely used methods in assessing metal thickness in industry is through the use of Ultrasonic technology. The benefits of using UTMS lies in the flexibility of data analysis, which includes signal processing, feature extraction, visualization capability and intelligent diagnosis. Data can be acquired in real-time and stored for future usage and application. The system was developed as a standalone computer software using Microsoft Visual-BASIC 6. (Author)

  8. An Efficient Image Compression Technique Based on Arithmetic Coding

    Directory of Open Access Journals (Sweden)

    Prof. Rajendra Kumar Patel

    2012-12-01

    Full Text Available The rapid growth of digital imaging applications, including desktop publishing, multimedia, teleconferencing, and high visual definition has increased the need for effective and standardized image compression techniques. Digital Images play a very important role for describing the detailed information. The key obstacle for many applications is the vast amount of data required to represent a digital image directly. The various processes of digitizing the images to obtain it in the best quality for the more clear and accurate information leads to the requirement of more storage space and better storage and accessing mechanism in the form of hardware or software. In this paper we concentrate mainly on the above flaw so that we reduce the space with best quality image compression. State-ofthe-art techniques can compress typical images from 1/10 to 1/50 their uncompressed size without visibly affecting image quality. From our study I observe that there is a need of good image compression technique which provides better reduction technique in terms of storage and quality. Arithmetic coding is the best way to reducing encoding data. So in this paper we propose arithmetic coding with walsh transformation based image compression technique which is an efficient way of reduction

  9. Rules for Supervision and Inspection of Offshore Oil Industry

    Institute of Scientific and Technical Information of China (English)

    Dai Zhongliang; Song Lisong

    1994-01-01

    @@ In short,safety supervision and technique inspection mean the safety supervision by the government,and the inspection by technical organization,and those are put into practice by a series of administrative rules and regulations.

  10. Finding Within Cluster Dense Regions Using Distance Based Technique

    Directory of Open Access Journals (Sweden)

    Wesam Ashour

    2012-03-01

    Full Text Available One of the main categories in Data Clustering is density based clustering. Density based clustering techniques like DBSCAN are attractive because they can find arbitrary shaped clusters along with noisy outlier. The main weakness of the traditional density based algorithms like DBSCAN is clustering the different density level data sets. DBSCAN calculations done according to given parameters applied to all points in a data set, while densities of the data set clusters may be totally different. The proposed algorithm overcomes this weakness of the traditional density based algorithms. The algorithm starts with partitioning the data within a cluster to units based on a user parameter and compute the density for each unit separately. Consequently, the algorithm compares the results and merges neighboring units with closer approximate density values to become a new cluster. The experimental results of the simulation show that the proposed algorithm gives good results in finding clusters for different density cluster data set.

  11. Inspection tools : tool selection and execution

    Energy Technology Data Exchange (ETDEWEB)

    Van Aelst, A. [Cimarron Engineering Ltd., Calgary, AB (Canada); Parker, C. [TransCanada PipeLines Ltd., Calgary, AB (Canada); Lussier, S.; Gates, J.; Revie, W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2007-07-01

    Working Group 8 discussed oil and gas pipeline integrity issues with particular reference to inspection tools and techniques used by the upstream and downstream pipeline industries. The group addressed other options besides in-line inspection (ILI) for integrity assessments and presented emerging concerns with non-piggable piping. Inspection techniques such as hydrotesting, direct assessment, cameras, and X-ray imaging were reviewed. The actions taken in response to recommendations from past workshops were also presented, including measures to improve standardization of reporting practices. It was noted that tools currently available have limitations that vary with the environment in which they are used, the depth to which the pipeline is buried, and the size and orientation of the pipeline. It was determined that economics plays a key role in the selection of pipeline inspection techniques, and that failure modes should be considered when choosing inspection techniques. Given that environmental consequences are different for natural gas and liquid pipelines, this may influence the choice of inspection needed in environmentally sensitive areas. It was determined that new technologies have yet to gain the confidence of industry and that while some existing technologies (such as cameras) can provide data, they are not suitable as the only tool used in an integrity assessment. The accuracy of inspections was found to depend on the tools, methods and personnel, with variation in accuracy depending primarily on personnel. It was concluded that research and development of new inspection techniques should continue. tabs., figs.

  12. Vibration based fault detection techniques for mechanical structures

    International Nuclear Information System (INIS)

    Fault detection techniques for mechanical structures and their application are becoming more important in recent years in the field of structure health monitoring. The intention of this paper is to present available state of the art methods that could be implemented in mechanical structures. Global based methods that contribute on detection, isolation and analysis of fault from changes in vibration characteristics of the structure are presented. Techniques are based on the idea that modal frequencies, mode shapes and modal damping as model properties of the structure can be determine as function of physical properties. In addition, if a fault appears in mechanical structure, this can be recognized as changes in the physical properties, which leads to cause changes in the modal properties of the structure. (Author)

  13. A thermopneumatic micropump based on micro-engineering techniques

    OpenAIRE

    Pol, van der, P.; Lintel, van, H.T.G.; Elwenspoek, M; Fluitman, J.H.J.

    1990-01-01

    The design, working principle and realization of an electro-thermopneumatic liquid pump based on micro-engineering techniques are described. The pump, which is of the reciprocating displacement type, comprises a pump chamber, a thin silicon pump membrane and two silicon check valves to direct the flow. The dynamic pressure of an amount of gas contained in a cavity, controlled by resistive heating, actuates the pump membrane. The cavity, chambers, channels and valves are realized in silicon wa...

  14. Safety Justification of Software Systems. Software Based Safety Systems. Regulatory Inspection Handbook

    International Nuclear Information System (INIS)

    The introduction of new software based technology in the safety systems in nuclear power plants also makes it necessary to develop new strategies for regulatory review and assessment of these new systems that is more focused on reviewing the processes at the different phases in design phases during the system life cycle. It is a general requirement that the licensee shall perform different kinds of reviews. From a regulatory point of view it is more cost effective to assess that the design activities at the suppliers and the review activities within the development project are performed with good quality. But the change from more technical reviews over to the development process oriented approach also cause problems. When reviewing development and quality aspects there are no 'hard facts' that can be judged against some specified criteria, the issues are more 'soft' and are more to build up structure of arguments and evidences that the requirements are met. The regulatory review strategy must therefore change to follow the development process over the whole life cycle from concept phase until installation and operation. Even if we know what factors that is of interest we need some guidance on how to interpret and judge the information.For that purpose SKl started research activities in this area at the end of the 1990s. In the first phase, in co-operation with Gustav Dahll at the Halden project, a life cycle model was selected. For the different phases a qualitative influence net was constructed of the type that is used in Bayesian Believe Network together with a discussion on different issues involved. In the second phase of the research work, in co-operation with Norman Wainwright, a former NII inspector, information from a selection of the most important sources as guidelines, IAEA and EC reports etc, was mapped into the influence net structure (the total list on used sources are in the report). The result is presented in the form of questions (Q) and a

  15. Safety Justification of Software Systems. Software Based Safety Systems. Regulatory Inspection Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dahll, Gustav (OECD Halden Project, Halden (NO)); Liwaang, Bo (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); Wainwright, Norman (Wainwright Safety Advice (GB))

    2006-07-01

    The introduction of new software based technology in the safety systems in nuclear power plants also makes it necessary to develop new strategies for regulatory review and assessment of these new systems that is more focused on reviewing the processes at the different phases in design phases during the system life cycle. It is a general requirement that the licensee shall perform different kinds of reviews. From a regulatory point of view it is more cost effective to assess that the design activities at the suppliers and the review activities within the development project are performed with good quality. But the change from more technical reviews over to the development process oriented approach also cause problems. When reviewing development and quality aspects there are no 'hard facts' that can be judged against some specified criteria, the issues are more 'soft' and are more to build up structure of arguments and evidences that the requirements are met. The regulatory review strategy must therefore change to follow the development process over the whole life cycle from concept phase until installation and operation. Even if we know what factors that is of interest we need some guidance on how to interpret and judge the information.For that purpose SKl started research activities in this area at the end of the 1990s. In the first phase, in co-operation with Gustav Dahll at the Halden project, a life cycle model was selected. For the different phases a qualitative influence net was constructed of the type that is used in Bayesian Believe Network together with a discussion on different issues involved. In the second phase of the research work, in co-operation with Norman Wainwright, a former NII inspector, information from a selection of the most important sources as guidelines, IAEA and EC reports etc, was mapped into the influence net structure (the total list on used sources are in the report). The result is presented in the form of

  16. A newly developed technique of wireless remote controlled visual inspection system for neutron guides of cold neutron research facilities at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    KAERI developed a neutron guide system for cold neutron research facilities at HANARO from 2003 to 2010. In 2008, the old plug shutter and instruments were removed, and a new plug and primary shutter were installed as the first cold neutron delivery system at HANARO. At the beginning of 2010, all the neutron guides and accessories had been successfully installed as well. The neutron guide system of HANARO consists of the in pile plug assembly with in pile guides, the primary shutter with in shutter guides, the neutron guides in the guide shielding room with secondary shutter, and the neutron guides in the neutron guide hall. Three kinds of glass materials were selected with optimum lengths by considering their lifetime, shielding, maintainability and cost as well. Radiation damage of the guides can occur on the coating and glass by neutron capturing in the glass. It is a big challenge to inspect a guide failure because of the difficult surrounding environment, such as high level radiation, limited working space, and massive hard work for removing and reinstalling the shielding blocks as shown in Fig 1. Therefore, KAERI has developed a wireless remote controlled visual inspection system for neutron guides using an infrared light camera mounted on the vehicle moving in the guide.

  17. Design of a facility for the automated receipt inspection and characterization of LILW using integrated non-destructive examination and assay techniques

    International Nuclear Information System (INIS)

    KHNP is constructing two repositories, located in Bonggil-ri, Yangbukmyun, Gyeongju-si, Gyeongbuk, Korea, for Low and Intermediate Level radioactive waste (LILW). The waste received is required to be inspected and characterized prior to being placed into storage at the repository. This paper describes the design of an integrated system of non destructive examination (X-ray), and non destructive assay (radiometric) instrument systems, waste package integrity checking systems, waste handling mechanisms and data management and archival provisions, which comprise the Waste Receipt and Inspection Facility (WRIF). The WRIF is designed to uncap transport containers, unload waste drums from containers, safely examine the drums, to ensure they meet the waste acceptance criteria established by the LILW facility. The drums are then loaded into waste disposal containers for transfer to the repository. The WRIF also receives larger waste containers, which are characterized in a separate section of the WRIF, before being transferred to the repository. Remote control and handling of the waste is a design requirement, as well as the management, processing archival and retrieval system for all data generated during waste characterization. (authors)

  18. Inspection Technique for Green Food Bee Products%绿色食品蜂产品生产检查技术

    Institute of Scientific and Technical Information of China (English)

    唐伟

    2013-01-01

    Bee products are important nutrient products for export.Bee products are high risk products for certification because of the disorderly competition.Green Food certification could make producers obey the standard and produce more safety bee products.This article analyzed the key point for Green Food bee products production and inspection to improve the normalization of inspection and the bee products quality.%蜂产品是我国传统营养食品也是重要出口产品,我国蜂产品由于无序竞争等原因使产品质量风险较高.绿色食品认证作为提高农产品标准化水平的重要抓手,对于提高蜂产品质量有重要作用.本文将对绿色食品蜂产品生产检查关键点进行分析,以进一步提高生产检查的规范性,提高蜂产品质量.

  19. Methodology to identify risk-significant components for inservice inspection and testing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.; Kido, C.; Phillips, J.H.

    1992-08-01

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues.

  20. NEW VERSATILE CAMERA CALIBRATION TECHNIQUE BASED ON LINEAR RECTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Pan Feng; Wang Xuanyin

    2004-01-01

    A new versatile camera calibration technique for machine vision using off-the-shelf cameras is described. Aimed at the large distortion of the off-the-shelf cameras, a new camera distortion rectification technology based on line-rectification is proposed. A full-camera-distortion model is introduced and a linear algorithm is provided to obtain the solution. After the camera rectification intrinsic and extrinsic parameters are obtained based on the relationship between the homograph and absolute conic. This technology needs neither a high-accuracy three-dimensional calibration block, nor a complicated translation or rotation platform. Both simulations and experiments show that this method is effective and robust.

  1. An image morphing technique based on optimal mass preserving mapping.

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  2. Comparing Four Touch-Based Interaction Techniques for an Image-Based Audience Response System

    NARCIS (Netherlands)

    Jorritsma, Wiard; Prins, Jonatan T.; van Ooijen, Peter M. A.

    2015-01-01

    This study aimed to determine the most appropriate touch-based interaction technique for I2Vote, an image-based audience response system for radiology education in which users need to accurately mark a target on a medical image. Four plausible techniques were identified: land-on, take-off, zoom-poin

  3. A Different Web-Based Geocoding Service Using Fuzzy Techniques

    Science.gov (United States)

    Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.

    2015-12-01

    Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.

  4. Ultrasonic inspection of inpile tubes

    International Nuclear Information System (INIS)

    The in-service inspection (ISI) of inpile tubes can be performed accurately and safely with a semiautomatic ultrasonic inspection system. The ultrasonic technique uses a set of multiple transducers to detect and size cracks, voids, and laminations radially and circumferentially. Welds are also inspected for defects. The system is designed to inspect stainless steel and Inconel tubes ranging from 53.8 mm (2.12 in.) to 101.6 mm (4 in.) inner diameter with wall thickness on the order of 5 mm. The inspection head contains seven transducers mounted in a surface-following device. Six angle-beam transducers generate shear waves in the tubes. Two of the six are oriented to detect circumferential cracks, and two detect axial cracks. Although each of these four transducers is used in the pulse-echo mode, they are oriented in aligned sets so pitch-catch operation is possible if desired. The remaining angle-beam transducers are angulated to detect flaws that are off axial or circumferential orientation. The seventh transducer is used for longitudinal inspection and detects and sizes laminar-type defects

  5. 基于GPIB总线的机载校验平台射频组件%The RF component of airborne inspection platform based on GPIB

    Institute of Scientific and Technical Information of China (English)

    都伟伟; 王成林; 李娜

    2012-01-01

    为实现机载飞行校验平台射频通路的自动切换,提出了一种基于GPIB总线的天线控制单元(antenna control unit)的设计.天线控制单元是机载校验平台的重要射频组件,主要用于控制前端天线接收到的射频信号或者航空标准信号源产生的信号与对应接收机的准确自动化的连通.上位机选定不同的校验科目,通过GPIB总线发送命令至天线控制单元,实现相应射频通路的连通和切换.经过测试,可成功实现不同科目的校验,已经应用于国内首套自主研发先进机载飞行校验平台中.%In order to fulfill the automatic switching of RF signal path in airborne flight inspection platform,a design of antenna control unit based on general-purpose interface bus is presented in this paper. Antenna control unit (ACU) is a very critical radio frequency component of airborne inspection platform. It is used for controlling the automatic connecting from RF signals received by front-end antennas or generated by standard aeronautic signal generators to relevant receivers accurately. The upper computers choose different inspection subjects and send messages to ACU by means of GPIB, and then realize connecting and switching of relevant RF signal path. After testing, it has already achieved inspection of different subjects and been applied in the first advanced airborne flight inspection platform designed and developed by China.

  6. Performance Based Novel Techniques for Semantic Web Mining

    Directory of Open Access Journals (Sweden)

    Mahendra Thakur

    2012-01-01

    Full Text Available The explosive growth in the size and use of the World Wide Web continuously creates new great challenges and needs. The need for predicting the users preferences in order to expedite and improve the browsing though a site can be achieved through personalizing of the websites. Most of the research efforts in web personalization correspond to the evolution of extensive research in web usage mining, i.e. the exploitation of the navigational patterns of the web site visitors. When a personalization system relies solely on usage-based results, however, valuable information conceptually related to what is finally recommended may be missed. Moreover, the structural properties of the web site are often disregarded. In this paper, we propose novel techniques that use the content semantics and the structural properties of a web site in order to improve the effectiveness of web personalization. In the first part of our work we present standing for Semantic Web Personalization, a personalization system that integrates usage data with content semantics, expressed in ontology terms, in order to compute semantically enhanced navigational patterns and effectively generate useful recommendations. To the best of our knowledge, our proposed technique is the only semantic web personalization system that may be used by non-semantic web sites. In the second part of our work, we present a novel approach for enhancing the quality of recommendations based on the underlying structure of a web site. We introduce UPR (Usage-based PageRank, a PageRank-style algorithm that relies on the recorded usage data and link analysis techniques. Overall, we demonstrate that our proposed hybrid personalization framework results in more objective and representative predictions than existing techniques.

  7. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    Science.gov (United States)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  8. Flight route Designing and mission planning Of power line inspecting system Based On multi-sensor UAV

    International Nuclear Information System (INIS)

    In order to obtain various information of power facilities such as spatial location, geometry, images data and video information in the infrared and ultraviolet band and so on, Unmanned Aerial Vehicle (UAV) power line inspecting system needs to integrate a variety of sensors for data collection. Low altitude and side-looking imaging are required for UAV flight to ensure sensors to acquire high-quality data and device security. In this paper, UAV power line inspecting system is deferent from existing ones that used in Surveying and Mapping. According to characteristics of UAV for example equipped multiple sensor, side-looking imaging, working at low altitude, complex terrain conditions and corridor type flight, this paper puts forward a UAV power line inspecting scheme which comprehensively considered of the UAV performance, sensor parameters and task requirements. The scheme is finally tested in a region of Guangdong province, and the preliminary results show that the scheme is feasible

  9. Locating Mechanical Damages Using Magnetic Flux Leakage Inspection in Gas Pipeline System

    International Nuclear Information System (INIS)

    Gas transmission pipelines are often inspected and monitored using the magnetic flux leakage method. An inspection vehicle known as a 'pig' is launched into the pipeline and conveyed along the pipe by the pressure of natural gas. The pig contains a magnetizer, an array of sensors and a microprocessor-based data acquisition system for logging data. This paper describes magnetic flux leakage (MFL) signal processing used for detecting mechanical damages during an in-line inspection. The overall approach employs noise removal and clustering technique. The proposed method is computationally efficient and can easily be implemented. Results are presented and verified by field tests from an application of the signal processing

  10. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  11. Development of pressure tube inspection equipment for the Fugen (ATR)

    International Nuclear Information System (INIS)

    A remote-controlled in-service inspection device has been developed for inspecting the pressure tubes of the Fugen, which is a heavy-water-moderated, boiling light-water-cooled pressure-tube-type reactor. The equipment is capable of performing three kinds of inspection: ultrasonic flaw detection, measurement of inside diameter and visual inspection of the internal surface. To reduce the radiation exposure of inspectors, the three kinds of detectors, with their associated electronics and drive mechanisms for vertical and rotating movements, are housed in the inspection tool assembly, which can be mounted on or removed from the pressure tubes by remote control using a refuelling machine. The ultrasonic technique has been adopted for measurement of the internal diameter in order to shorten the inspection time. The detectors, TV camera and electronic components used in the inspection tool assembly were selected on the basis of irradiation test results. Before inspection of the Fugen reactor, the total system was tested on a mock-up pressure tube to confirm its functions, performance, durability and reliability. The test results were: (1) the ultrasonic flaw detector can detect an artificial flaw of 2.0 mm in length, 0.1 mm in width and 0.1 mm in depth with S/N=7 dB; (2) the inside diameter measurement system can measure the inside diameter, ranging from 117.5 to 119.5 mm, with an accuracy of +-20 μm; (3) an artificial flaw of 2.0 mm in length, 0.1 mm in width and 0.1 mm in depth can be observed by the internal surface observation system. The equipment was used for the inspection of ten pressure tubes of the Fugen reactor during the May 1984 annual inspection. No degradation of the performance of the equipment was observed even after 55 hours of inspection under a maximum dose rate of 2.5x105 R/h. Based on these results, the functions and performance of the equipment in practical use were fully confirmed. (author)

  12. Studying Satellite Image Quality Based on the Fusion Techniques

    CERN Document Server

    Al-Wassai, Firouz Abdullah; Al-Zaky, Ali A

    2011-01-01

    Various and different methods can be used to produce high-resolution multispectral images from high-resolution panchromatic image (PAN) and low-resolution multispectral images (MS), mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its original images. There is also a lack of measures for assessing the objective quality of the spatial resolution for the fusion methods. Therefore, an objective quality of the spatial resolution assessment for fusion images is required. So, this study attempts to develop a new qualitative assessment to evaluate the spatial quality of the pan sharpened images by many spatial quality metrics. Also, this paper deals with a comparison of various image fusion techniques based on pixel and feature fusion techniques.

  13. An Improved Face Recognition Technique Based on Modular LPCA Approach

    Directory of Open Access Journals (Sweden)

    Mathu S.S. Kumar

    2011-01-01

    Full Text Available Problem statement: A face identification algorithm based on modular localized variation by Eigen Subspace technique, also called modular localized principal component analysis, is presented in this study. Approach: The face imagery was partitioned into smaller sub-divisions from a predefined neighborhood and they were ultimately fused to acquire many sets of features. Since a few of the normal facial features of an individual do not differ even when the pose and illumination may differ, the proposed method manages these variations. Results: The proposed feature selection module has significantly, enhanced the identification precision using standard face databases when compared to conservative and modular PCA techniques. Conclusion: The proposed algorithm, when related with conservative PCA algorithm and modular PCA, has enhanced recognition accuracy for face imagery with illumination, expression and pose variations.

  14. 在用医疗器械的检验技术要求%Requirements on the Inspection Technique of In-Use Medical Devices

    Institute of Scientific and Technical Information of China (English)

    李澍; 王权; 张艳丽; 任海萍

    2014-01-01

    本文首先介绍了国外医疗器械质量控制现状,然后从安全性、基本性能、生命周期、标准化的器械检测车等四个方面对我国医疗器械检验现状及问题进行分析,并提出相应的意见,以期提高在用医疗器械管理和质量控制水平。%This paper ifrstly introduced the overseas quality control status of medical devices, and then analyzed the current situation and problems of medical devices inspection in China from the perspectives of safety, basic performance, lifecycle and standardized instruments checkout vehicles. Finally, corresponding suggestions were put forward in order to improve the management and quality control levels of in-use medical devices.

  15. 在用医疗器械的检验技术要求%Requirements on the Inspection Technique of In-Use Medical Devices

    Institute of Scientific and Technical Information of China (English)

    李澍; 王权; 张艳丽; 任海萍

    2014-01-01

    This paper ifrstly introduced the overseas quality control status of medical devices, and then analyzed the current situation and problems of medical devices inspection in China from the perspectives of safety, basic performance, lifecycle and standardized instruments checkout vehicles. Finally, corresponding suggestions were put forward in order to improve the management and quality control levels of in-use medical devices.%本文首先介绍了国外医疗器械质量控制现状,然后从安全性、基本性能、生命周期、标准化的器械检测车等四个方面对我国医疗器械检验现状及问题进行分析,并提出相应的意见,以期提高在用医疗器械管理和质量控制水平。

  16. Feature-based multiresolution techniques for product design

    Institute of Scientific and Technical Information of China (English)

    LEE Sang Hun; LEE Kunwoo

    2006-01-01

    3D computer-aided design (CAD) systems based on feature-based solid modelling technique have been widely spread and used for product design. However, when part models associated with features are used in various downstream applications,simplified models in various levels of detail (LODs) are frequently more desirable than the full details of the parts. In particular,the need for feature-based multiresolution representation of a solid model representing an object at multiple LODs in the feature unit is increasing for engineering tasks. One challenge is to generate valid models at various LODs after an arbitrary rearrangement of features using a certain LOD criterion, because composite Boolean operations consisting of union and subtraction are not commutative. The other challenges are to devise proper topological framework for multiresolution representation, to suggest more reasonable LOD criteria, and to extend applications. This paper surveys the recent research on these issues.

  17. Waste inspection tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  18. An Active Endoscopy Robotic System for Direct Tracheal Inspection

    Institute of Scientific and Technical Information of China (English)

    YU Lian-zhi; YAN Guo-zheng; MA Guan-ying; ZAN Peng

    2007-01-01

    The development of active endoscopy techniques is one important area of medical robot. This paper designed a new flexible and active endoscopy robotic system for direct tracheal inspection. The mobile mechanism of the robot is based on the inchworm movement actuated by pneumatic rubber actuator. There are five air chambers controlled independently, by adjusting pressures in air chambers, the robot can move in a straight mode or in a bending mode. The inspection sensors and some therapy surgery tools can be equipped in the front of the robot.The prototype was made and its mechanical characteristics were analyzed. The robot could move smoothly in a small plastic tube, and the robot is respectable to be used for inspection in human trachea directly.

  19. Water-based technique to produce porous PZT materials

    Science.gov (United States)

    Galassi, C.; Capiani, C.; Craciun, F.; Roncari, E.

    2005-09-01

    Water based colloidal processing of PZT materials was investigated in order to reduce costs and employ more environmental friendly manufacturing. The technique addressed was the production of porous thick samples by the so called “starch consolidation”. PZT “soft” compositions were used. The “starch consolidation” process allows to obtain the green body by raising the temperature of a suspension of PZT powder, soluble starch and water, cast into a metal mould. The influence of the processing parameters and composition on the morphology, pore volumes, pore size distributions and piezoelectric properties are investigated. Zeta potential determination and titration with different deflocculants were essential tools to adjust the slurry formulation.

  20. Transformer-based design techniques for oscillators and frequency dividers

    CERN Document Server

    Luong, Howard Cam

    2016-01-01

    This book provides in-depth coverage of transformer-based design techniques that enable CMOS oscillators and frequency dividers to achieve state-of-the-art performance.  Design, optimization, and measured performance of oscillators and frequency dividers for different applications are discussed in detail, focusing on not only ultra-low supply voltage but also ultra-wide frequency tuning range and locking range.  This book will be an invaluable reference for anyone working or interested in CMOS radio-frequency or mm-Wave integrated circuits and systems.

  1. Simultaneous algebraic reconstruction technique based on guided image filtering.

    Science.gov (United States)

    Ji, Dongjiang; Qu, Gangrong; Liu, Baodong

    2016-07-11

    The challenge of computed tomography is to reconstruct high-quality images from few-view projections. Using a prior guidance image, guided image filtering smoothes images while preserving edge features. The prior guidance image can be incorporated into the image reconstruction process to improve image quality. We propose a new simultaneous algebraic reconstruction technique based on guided image filtering. Specifically, the prior guidance image is updated in the image reconstruction process, merging information iteratively. To validate the algorithm practicality and efficiency, experiments were performed with numerical phantom projection data and real projection data. The results demonstrate that the proposed method is effective and efficient for nondestructive testing and rock mechanics. PMID:27410859

  2. Radiation synthesized protein-based nanoparticles: A technique overview

    International Nuclear Information System (INIS)

    Seeking for alternative routes for protein engineering a novel technique – radiation induced synthesis of protein nanoparticles – to achieve size controlled particles with preserved bioactivity has been recently reported. This work aimed to evaluate different process conditions to optimize and provide an overview of the technique using γ-irradiation. Papain was used as model protease and the samples were irradiated in a gamma cell irradiator in phosphate buffer (pH=7.0) containing ethanol (0–35%). The dose effect was evaluated by exposure to distinct γ-irradiation doses (2.5, 5, 7.5 and 10 kGy) and scale up experiments involving distinct protein concentrations (12.5–50 mg mL−1) were also performed. Characterization involved size monitoring using dynamic light scattering. Bityrosine detection was performed using fluorescence measurements in order to provide experimental evidence of the mechanism involved. Best dose effects were achieved at 10 kGy with regard to size and no relevant changes were observed as a function of papain concentration, highlighting very broad operational concentration range. Bityrosine changes were identified for the samples as a function of the process confirming that such linkages play an important role in the nanoparticle formation. - Highlights: • Synthesis of protein-based nanoparticles by γ-irradiation. • Optimization of the technique. • Overview of mechanism involved in the nanoparticle formation. • Engineered papain nanoparticles for biomedical applications

  3. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  4. A Comparative Analysis of Exemplar Based and Wavelet Based Inpainting Technique

    Directory of Open Access Journals (Sweden)

    Vaibhav V Nalawade

    2012-06-01

    Full Text Available Image inpainting is the process of filling in of missing region so as to preserve its overall continuity. Image inpainting is manipulation and modification of an image in a form that is not easily detected. Digital image inpainting is relatively new area of research, but numerous and different approaches to tackle the inpainting problem have been proposed since the concept was first introduced. This paper compares two separate techniques viz, Exemplar based inpainting technique and Wavelet based inpainting technique, each portraying a different set of characteristics. The algorithms analyzed under exemplar technique are large object removal by exemplar based inpainting technique (Criminisi’s and modified exemplar (Cheng. The algorithm analyzed under wavelet is Chen’s visual image inpainting method. A number of examples on real and synthetic images are demonstrated to compare the results of different algorithms using both qualitative and quantitative parameters.

  5. On HTML and XML based web design and implementation techniques

    International Nuclear Information System (INIS)

    Web implementation is truly a multidisciplinary field with influences from programming, choosing of scripting languages, graphic design, user interface design, and database design. The challenge of a Web designer/implementer is his ability to create an attractive and informative Web. To work with the universal framework and link diagrams from the design process as well as the Web specifications and domain information, it is essential to create Hypertext Markup Language (HTML) or other software and multimedia to accomplish the Web's objective. In this article we will discuss Web design standards and the techniques involved in Web implementation based on HTML and Extensible Markup Language (XML). We will also discuss the advantages and disadvantages of HTML over its successor XML in designing and implementing a Web. We have developed two Web pages, one utilizing the features of HTML and the other based on the features of XML to carry out the present investigation. (author)

  6. ONLINE GRINDING WHEEL WEAR COMPENSATION BY IMAGE BASED MEASURING TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    WAN Daping; HU Dejin; WU Qi; ZHANG Yonghong

    2006-01-01

    Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evaluated by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 μm. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.

  7. Automated visual inspection for polished stone manufacture

    Science.gov (United States)

    Smith, Melvyn L.; Smith, Lyndon N.

    2003-05-01

    Increased globalisation of the ornamental stone market has lead to increased competition and more rigorous product quality requirements. As such, there are strong motivators to introduce new, more effective, inspection technologies that will help enable stone processors to reduce costs, improve quality and improve productivity. Natural stone surfaces may contain a mixture of complex two-dimensional (2D) patterns and three-dimensional (3D) features. The challenge in terms of automated inspection is to develop systems able to reliably identify 3D topographic defects, either naturally occurring or resulting from polishing, in the presence of concomitant complex 2D stochastic colour patterns. The resulting real-time analysis of the defects may be used in adaptive process control, in order to avoid the wasteful production of defective product. An innovative approach, using structured light and based upon an adaptation of the photometric stereo method, has been pioneered and developed at UWE to isolate and characterize mixed 2D and 3D surface features. The method is able to undertake tasks considered beyond the capabilities of existing surface inspection techniques. The approach has been successfully applied to real stone samples, and a selection of experimental results is presented.

  8. Hash Based Least Significant Bit Technique For Video Steganography

    Directory of Open Access Journals (Sweden)

    Prof. Dr. P. R. Deshmukh ,

    2014-01-01

    Full Text Available The Hash Based Least Significant Bit Technique For Video Steganography deals with hiding secret message or information within a video.Steganography is nothing but the covered writing it includes process that conceals information within other data and also conceals the fact that a secret message is being sent.Steganography is the art of secret communication or the science of invisible communication. In this paper a Hash based least significant bit technique for video steganography has been proposed whose main goal is to embed a secret information in a particular video file and then extract it using a stego key or password. In this Least Significant Bit insertion method is used for steganography so as to embed data in cover video with change in the lower bit.This LSB insertion is not visible.Data hidding is the process of embedding information in a video without changing its perceptual quality. The proposed method involve with two terms that are Peak Signal to Noise Ratio (PSNR and the Mean Square Error (MSE .This two terms measured between the original video files and steganographic video files from all video frames where a distortion is measured using PSNR. A hash function is used to select the particular position for insertion of bits of secret message in LSB bits.

  9. Semantic-based technique for thai documents plagiarism detection

    Directory of Open Access Journals (Sweden)

    Sorawat Prapanitisatian

    2014-03-01

    Full Text Available Plagiarism is the act of taking another person's writing or idea without referring to the source of information. This is one of major problems in educational institutes. There is a number of plagiarism detection software available on the Internet. However, a few numbers of them works. Typically, they use a simple method for plagiarism detection e.g. string matching. The main weakness of this method is it cannot detect the plagiarism when the author replaces some words using synonyms. As such, this paper presents a new technique for a semantic-based plagiarism detection using Semantic Role Labeling (SRL and term weighting. SRL is deployed in order to calculate the semantic-based similarity. The main different from the existing framework is terms in a sentence are weighted dynamically depending on their roles in the sentence e.g. subject, verb or object. This technique enhances the plagiarism detection mechanism more efficiently than existing system although positions of terms in a sentence are reordered. The experimental results show that the proposed method can detect the plagiarism document more effective than the existing methods, Anti-kobpae, Turnit-in and Traditional Semantic Role Labeling.

  10. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  11. 带包覆层铁磁性管道腐蚀脉冲涡流检测技术%Pulsed Eddy Current Inspection Technique in for Corrosion under Insulation in Ferromagnetic Tubes

    Institute of Scientific and Technical Information of China (English)

    康小伟; 付跃文

    2011-01-01

    In this paper, we applied pulsed eddy current(PEC} inspection technique to detect ferromagnetic tubes corrosion under insulation. By detecting corrosion of different thickness insulation and different defect areas and deepness, variation of detection sensitivity was analyzed. It was proved that as for corrosion defect with a large area, pulsed eddy current had a very good ability in testing under appropriate inspection parameters, even with a thick insulation.%应用脉冲涡流检测技术,对带包覆层的铁磁性管道腐蚀进行了检测。对不同厚度的包覆层、不同面积和深度的腐蚀缺陷进行了试验,分析检测灵敏度的变化。试验结果表明,对于较大面积的腐蚀缺陷,即使包覆层较厚,在合适的检测参数下,脉冲涡流也具有很好的检测能力。

  12. Enhancing the effectiveness of IST through risk-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, S.D.

    1996-12-01

    Current IST requirements were developed mainly through deterministic-based methods. While this approach has resulted in an adequate level of safety and reliability for pumps and valves, insights from probabilistic safety assessments suggest a better safety focus can be achieved at lower costs. That is, some high safety impact pumps and valves are currently not tested under the IST program and should be added, while low safety impact valves could be tested at significantly greater intervals than allowed by the current IST program. The nuclear utility industry, through the Nuclear Energy Institute (NEI), has developed a draft guideline for applying risk-based techniques to focus testing on those pumps and valves with a high safety impact while reducing test frequencies on low safety impact pumps and valves. The guideline is being validated through an industry pilot application program that is being reviewed by the U.S. Nuclear Regulatory Commission. NEI and the ASME maintain a dialogue on the two groups` activities related to risk-based IST. The presenter will provide an overview of the NEI guideline, discuss the methodological approach for applying risk-based technology to IST and provide the status of the industry pilot plant effort.

  13. An interactive tutorial-based training technique for vertebral morphometry.

    Science.gov (United States)

    Gardner, J C; von Ingersleben, G; Heyano, S L; Chesnut, C H

    2001-01-01

    The purpose of this work was to develop a computer-based procedure for training technologists in vertebral morphometry. The utility of the resulting interactive, tutorial based training method was evaluated in this study. The training program was composed of four steps: (1) review of an online tutorial, (2) review of analyzed spine images, (3) practice in fiducial point placement and (4) testing. During testing, vertebral heights were measured from digital, lateral spine images containing osteoporotic fractures. Inter-observer measurement precision was compared between research technicians, and between technologists and radiologist. The technologists participating in this study had no prior experience in vertebral morphometry. Following completion of the online training program, good inter-observer measurement precision was seen between technologists, showing mean coefficients of variation of 2.33% for anterior, 2.87% for central and 2.65% for posterior vertebral heights. Comparisons between the technicians and radiologist ranged from 2.19% to 3.18%. Slightly better precision values were seen with height measurements compared with height ratios, and with unfractured compared with fractured vertebral bodies. The findings of this study indicate that self-directed, tutorial-based training for spine image analyses is effective, resulting in good inter-observer measurement precision. The interactive tutorial-based approach provides standardized training methods and assures consistency of instructional technique over time.

  14. Inspection for tread pattern based on 3D digital model%运用3D数字化模型的轮胎花纹检测

    Institute of Scientific and Technical Information of China (English)

    邹付群; 成思源; 李苏洋; 刘楷新

    2011-01-01

    A new method based on 3D digital model is introduced for geometrical inspection of tread pattern. Firstly,the surface data of tread pattern are acquired through the measuring equipment of REVscan laser scanner. Then, the obtained data are compared in the software of Ceomagic Qualify,and the results of inspection could be shown in visualization intuitively. This research provides a convenient and swift method for inspection of tread pattern.%针对轮胎花纹的几何形状,提出基于3D数字化模型的检测方法.利用测量设备REVscan激光扫描仪获取轮胎花纹的表面数据,并利用Geomagic Qualify软件对获得的数据进行检测,检测结果以图文方式直观进行显示.该研究为轮胎花纹的检测提供了方便、快捷的方法.

  15. Evaluations of mosquito age grading techniques based on morphological changes.

    Science.gov (United States)

    Hugo, L E; Quick-Miles, S; Kay, B H; Ryan, P A

    2008-05-01

    Evaluations were made of the accuracy and practicality of mosquito age grading methods based on changes to mosquito morphology; including the Detinova ovarian tracheation, midgut meconium, Polovodova ovariole dilatation, ovarian injection, and daily growth line methods. Laboratory maintained Aedes vigilax (Skuse) and Culex annulirostris (Skuse) females of known chronological and physiological ages were used for these assessments. Application of the Detinova technique to laboratory reared Ae. vigilax females in a blinded trial enabled the successful identification of nulliparous and parous females in 83.7-89.8% of specimens. The success rate for identifying nulliparous females increased to 87.8-98.0% when observations of ovarian tracheation were combined with observations of the presence of midgut meconium. However, application of the Polovodova method only enabled 57.5% of nulliparous, 1-parous, 2-parous, and 3-parous Ae. vigilax females to be correctly classified, and ovarian injections were found to be unfeasible. Poor correlation was observed between the number of growth lines per phragma and the calendar age of laboratory reared Ae. vigilax females. In summary, morphological age grading methods that offer simple two-category predictions (ovarian tracheation and midgut meconium methods) were found to provide high-accuracy classifications, whereas methods that offer the separation of multiple age categories (ovariolar dilatation and growth line methods) were found to be extremely difficult and of low accuracy. The usefulness of the morphology-based methods is discussed in view of the availability of new mosquito age grading techniques based on cuticular hydrocarbon and gene transcription changes. PMID:18533427

  16. Aspects of Inspection Planning

    DEFF Research Database (Denmark)

    Faber, M. H.; Sørensen, John Dalsgaard

    2000-01-01

    Inspection planning for systems is considered with special emphasis to the effect of the quality of inspections on the system reliability and the probability of repair. Inspection quality is described and discussed in terms of inspection reliability and inspection coverage where the latter is set...... in relation to the correlation between the failure modes of the considered system. The inspection planning problem is described in general terms taking basis in the Bayesian decision theory. Practical applicable approaches are derived from the more general but also more involving formulations. The theoretical...

  17. Computer vision technology in log volume inspection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Log volume inspection is very important in forestry research and paper making engineering. This paper proposed a novel approach based on computer vision technology to cope with log volume inspection. The needed hardware system was analyzed and the details of the inspection algorithms were given. A fuzzy entropy based on image enhancement algorithm was presented for enhancing the image of the cross-section of log. In many practical applications the cross-section is often partially invisible, and this is the major obstacle for correct inspection. To solve this problem, a robust Hausdorff distance method was proposed to recover the whole cross-section. Experiment results showed that this method was efficient.

  18. Design of an Infrared Imaging System for Robotic Inspection of Gas Leaks in Industrial Environments

    Directory of Open Access Journals (Sweden)

    Miguel A. Rodriguez-Conejo

    2015-03-01

    The mobile platform where the gas sensing system is going to be implemented is a robot called TurtleBot. The control of the mobile base and of the inspection device is integrated in ROS architecture. The exploration system is based on the technique of Simultaneous Localization and Mapping (SLAM that makes it possible to locate the gas leak in the map.

  19. Assessing the Usability of a Telemedicine-based Medication Delivery Unit for Older Adults through Inspection Methods

    OpenAIRE

    Ligons, Frank M.; Romagnoli, Katrina M.; Browell, Suzanne; Hochheiser, Harry S.; Handler, Steven M.

    2011-01-01

    Polypharmacy and medication non-adherence are common in older adults, potentially leading to medication-related problems and increased healthcare expenditures. Medication Delivery Units (MDUs) may improve adherence, but their interfaces may present usability challenges for older adults with age-related impairments. We used a combination of three inspection methods – heuristic evaluation, cognitive walkthrough, and simulated elderly interaction, to identify potential concerns with the usabilit...

  20. Recipe creation for automated defect classification with a 450mm surface scanning inspection system based on the bidirectional reflectance distribution function of native defects

    Science.gov (United States)

    Yathapu, Nithin; McGarvey, Steve; Brown, Justin; Zhivotovsky, Alexander

    2016-03-01

    This study explores the feasibility of Automated Defect Classification (ADC) with a Surface Scanning Inspection System (SSIS). The defect classification was based upon scattering sensitivity sizing curves created via modeling of the Bidirectional Reflectance Distribution Function (BRDF). The BRDF allowed for the creation of SSIS sensitivity/sizing curves based upon the optical properties of both the filmed wafer samples and the optical architecture of the SSIS. The elimination of Polystyrene Latex Sphere (PSL) and Silica deposition on both filmed and bare Silicon wafers prior to SSIS recipe creation and ADC creates a challenge for light scattering surface intensity based defect binning. This study explored the theoretical maximal SSIS sensitivity based on native defect recipe creation in conjunction with the maximal sensitivity derived from BRDF modeling recipe creation. Single film and film stack wafers were inspected with recipes based upon BRDF modeling. Following SSIS recipe creation, initially targeting maximal sensitivity, selected recipes were optimized to classify defects commonly found on non-patterned wafers. The results were utilized to determine the ADC binning accuracy of the native defects and evaluate the SSIS recipe creation methodology. A statistically valid sample of defects from the final inspection results of each SSIS recipe and filmed substrate were reviewed post SSIS ADC processing on a Defect Review Scanning Electron Microscope (SEM). Native defect images were collected from each statistically valid defect bin category/size for SEM Review. The data collected from the Defect Review SEM was utilized to determine the statistical purity and accuracy of each SSIS defect classification bin. This paper explores both, commercial and technical, considerations of the elimination of PSL and Silica deposition as a precursor to SSIS recipe creation targeted towards ADC. Successful integration of SSIS ADC in conjunction with recipes created via BRDF

  1. Helium injection inspection for the evaluation of septifoil seating

    International Nuclear Information System (INIS)

    This report describes the design development process and proof-of- concept testing for the Septifoil Helium Injection Inspection Technique. This inspection technique may be used to demonstrate that a reactor septifoil is properly installed on its supply pin. The inspection technique has been shown to successfully identify correct and incorrect (mis-seated) installation of a septifoil with little likelihood of a false indication

  2. Chemistry research and chemical techniques based on research reactors

    International Nuclear Information System (INIS)

    Chemistry has occupied an important position historically in the sciences associated with nuclear reactors and it continues to play a prominent role in reactor-based research investigations. This Panel of prominent scientists in the field was convened by the International Atomic Energy Agency (IAEA) to assess the present state of such chemistry research for the information of its Member States and others interested in the subject. There are two ways in which chemistry is associated with nuclear reactors: (a) general applications to many scientific fields in which chemical techniques are involved as essential service functions; and (b) specific applications of reactor facilities to the solution of chemical problems themselves. Twenty years of basic research with nuclear reactors have demonstrated a very widespread, and still increasing, demand for radioisotopes and isotopically-labelled molecules in all fields of the physical and biological sciences. Similarly, the determination of the elemental composition of a material through the analytical technique of activation analysis can be applied throughout experimental science. Refs, figs and tabs

  3. Investigations on landmine detection by neutron-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Csikai, J. E-mail: csikai@delfin.klte.hu; Doczi, R.; Kiraly, B

    2004-07-01

    Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1 m{sup 2}/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13 MeV gamma-ray emitted in the {sup 16}O(n,n'{gamma}) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.

  4. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  5. NVC Based Model for Selecting Effective Requirement Elicitation Technique

    Directory of Open Access Journals (Sweden)

    Md. Rizwan Beg

    2012-10-01

    Full Text Available Requirement Engineering process starts from gathering of requirements i.e.; requirements elicitation. Requirementselicitation (RE is the base building block for a software project and has very high impact onsubsequent design and builds phases as well. Accurately capturing system requirements is the major factorin the failure of most of software projects. Due to the criticality and impact of this phase, it is very importantto perform the requirements elicitation in no less than a perfect manner. One of the most difficult jobsfor elicitor is to select appropriate technique for eliciting the requirement. Interviewing and Interactingstakeholder during Elicitation process is a communication intensive activity involves Verbal and Nonverbalcommunication (NVC. Elicitor should give emphasis to Non-verbal communication along with verbalcommunication so that requirements recorded more efficiently and effectively. In this paper we proposea model in which stakeholders are classified by observing non-verbal communication and use it as a basefor elicitation technique selection. We also propose an efficient plan for requirements elicitation which intendsto overcome on the constraints, faced by elicitor.

  6. Investigations on landmine detection by neutron-based techniques.

    Science.gov (United States)

    Csikai, J; Dóczi, R; Király, B

    2004-07-01

    Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1m(2)/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13MeV gamma-ray emitted in the (16)O(n,n'gamma) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.

  7. A New Particle Swarm Optimization Based Stock Market Prediction Technique

    Directory of Open Access Journals (Sweden)

    Essam El. Seidy

    2016-04-01

    Full Text Available Over the last years, the average person's interest in the stock market has grown dramatically. This demand has doubled with the advancement of technology that has opened in the International stock market, so that nowadays anybody can own stocks, and use many types of software to perform the aspired profit with minimum risk. Consequently, the analysis and prediction of future values and trends of the financial markets have got more attention, and due to large applications in different business transactions, stock market prediction has become a critical topic of research. In this paper, our earlier presented particle swarm optimization with center of mass technique (PSOCoM is applied to the task of training an adaptive linear combiner to form a new stock market prediction model. This prediction model is used with some common indicators to maximize the return and minimize the risk for the stock market. The experimental results show that the proposed technique is superior than the other PSO based models according to the prediction accuracy.

  8. Process window impact of progressive mask defects: its inspection and disposition techniques (go/no-go criteria) via a lithographic detector

    Science.gov (United States)

    Huang, Jerry; Peng, Lan-Hsin; Chu, Chih-Wei; Bhattacharyya, Kaustuve; Eynon, Ben; Mirzaagha, Farzin; Dibiase, Tony; Son, Kong; Cheng, Jackie; Chen, Ellison; Wang, Den

    2005-11-01

    Progressive mask defect problem is an industry wide mask reliability issue. During the start of this problem when the defects on masks are just forming and are still non-critical, it is possible to continue to run such a problem mask in production with relatively low risk of yield impact. But when the defects approach more critical state, a decision needs to be made whether to pull the mask out of production to send for clean (repair). As this problem increases on the high-end masks running DUV lithography where masks are expensive, it is in the interest of the fab to sustain these problem masks in production as long as possible and take these out of production only when absolutely necessary; i.e., when the defects have reached such a critical condition on these masks that it will impact the process window. During the course of this technical work, investigation has been done towards understanding the impact of such small progressive defects on process window. It was seen that a small growing defect may not print at the best focus exposure condition, but it can still influence the process window and can shrink it significantly. With the help of a high-resolution direct reticle inspection, early detection of these defects is possible, but fabs are still searching for a way to disposition (make a go / no-go decision) on these defective masks. But it is not an easy task as the impact of these defects will depend on not only their size, but also on their transmission and MEEF. A lithographic detector has been evaluated to see if this can predict the criticality of such progressive mask defects.

  9. Inspection of advanced computational lithography logic reticles using a 193-nm inspection system

    Science.gov (United States)

    Yu, Ching-Fang; Lin, Mei-Chun; Lai, Mei-Tsu; Hsu, Luke T. H.; Chin, Angus; Lee, S. C.; Yen, Anthony; Wang, Jim; Chen, Ellison; Wu, David; Broadbent, William H.; Huang, William; Zhu, Zinggang

    2010-09-01

    We report inspection results of early 22-nm logic reticles designed with both conventional and computational lithography methods. Inspection is performed using a state-of-the-art 193-nm reticle inspection system in the reticleplane inspection mode (RPI) where both rule-based sensitivity control (RSC) and a newer modelbased sensitivity control (MSC) method are tested. The evaluation includes defect detection performance using several special test reticles designed with both conventional and computational lithography methods; the reticles contain a variety of programmed critical defects which are measured based on wafer print impact. Also included are inspection results from several full-field product reticles designed with both conventional and computational lithography methods to determine if low nuisance-defect counts can be achieved. These early reticles are largely single-die and all inspections are performed in the die-to-database inspection mode only.

  10. Periodic and in-service inspection programs

    International Nuclear Information System (INIS)

    Periodic and in-service inspection programs for Cernavoda NPP consists of periodic inspections of CANDU NPP components CSAN N-285.4 and CSAN N-285.4, in-service inspections and repair and modifications general inspection. Periodic inspection program document (PIPD) determines the systems and components subject to inspection, the category of the inspection, techniques, areas and other details.The current status of the inspection programs is presented, including containment , erosion/corrosion, pressure vessel support and snubbers, main steam lines inspection programs. Qualification program in Cernavoda NPP involves equipment qualification in the on-site laboratory, yearly certification, special equipment qualification in the National Institute of Metrology. All procedures are approved by the ISCIR (regulatory body for pressure vessel and lifting equipment) and CNCAN (National Commission on Nuclear Activities Control). Qualification of the personnel is performed according to the ISCIR Technical prescription CR 11/82 for up to 3 year period. Final qualification and licensing is performed by CNCAN

  11. Safety and Inspection Planning of Older Installations

    OpenAIRE

    Sørensen, John Dalsgaard; Ersdal, G.

    2008-01-01

    A basic assumption often made in risk- and reliability-based inspection planning is that a Bayesian approach can be used. This implies that probabilities of failure can be updated in a consistent way when new information (from inspections and repairs) becomes available. The Bayesian approach and a no-crack detection assumption imply that the inspection time intervals usually become longer and longer with time. For ageing platforms several small cracks should be expected to be observed accordi...

  12. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    Directory of Open Access Journals (Sweden)

    J. Schindler

    2011-01-01

    Full Text Available This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties — high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei and the optical transient of GRB (gamma ray bursts searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric point of view. The first method is based on a statistical approach, using the Karhunen-Loeve transform (KLT with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC coder based on adaptive median regression.

  13. Demand Management Based on Model Predictive Control Techniques

    Directory of Open Access Journals (Sweden)

    Yasser A. Davizón

    2014-01-01

    Full Text Available Demand management (DM is the process that helps companies to sell the right product to the right customer, at the right time, and for the right price. Therefore the challenge for any company is to determine how much to sell, at what price, and to which market segment while maximizing its profits. DM also helps managers efficiently allocate undifferentiated units of capacity to the available demand with the goal of maximizing revenue. This paper introduces control system approach to demand management with dynamic pricing (DP using the model predictive control (MPC technique. In addition, we present a proper dynamical system analogy based on active suspension and a stability analysis is provided via the Lyapunov direct method.

  14. Crop Yield Forecasted Model Based on Time Series Techniques

    Institute of Scientific and Technical Information of China (English)

    Li Hong-ying; Hou Yan-lin; Zhou Yong-juan; Zhao Hui-ming

    2012-01-01

    Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point.

  15. Clustering economies based on multiple criteria decision making techniques

    Directory of Open Access Journals (Sweden)

    Mansour Momeni

    2011-10-01

    Full Text Available One of the primary concerns on many countries is to determine different important factors affecting economic growth. In this paper, we study some factors such as unemployment rate, inflation ratio, population growth, average annual income, etc to cluster different countries. The proposed model of this paper uses analytical hierarchy process (AHP to prioritize the criteria and then uses a K-mean technique to cluster 59 countries based on the ranked criteria into four groups. The first group includes countries with high standards such as Germany and Japan. In the second cluster, there are some developing countries with relatively good economic growth such as Saudi Arabia and Iran. The third cluster belongs to countries with faster rates of growth compared with the countries located in the second group such as China, India and Mexico. Finally, the fourth cluster includes countries with relatively very low rates of growth such as Jordan, Mali, Niger, etc.

  16. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  17. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2015-10-01

    Full Text Available Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.

  18. Complete denture impression techniques: Evidence-based or philosophical

    Directory of Open Access Journals (Sweden)

    Singla Shefali

    2007-01-01

    Full Text Available Code of practice is dangerous and ever-changing in today′s world. Relating this to complete denture impression technique, we have been provided with a set of philosophies - "no pressure, minimal pressure, definite pressure and selective pressure". The objectives and principles of impression-making have been clearly defined. Do you think any philosophy can satisfy any operator to work on these principles and achieve these objectives? These philosophies take into consideration only the tissue part and not the complete basal seat, which comprises the periphery, the tissues and the bone structure. Under such circumstances, should we consider a code of practice dangerous or should we develop an evidence-based approach having a scientific background following certain principles, providing the flexibility to adapt to clinical procedures and to normal biological variations in patients rather than the rigidity imposed by strict laws?

  19. Dynamic analysis of granite rockburst based on the PIV technique

    Institute of Scientific and Technical Information of China (English)

    Wang Hongjian; Liu Da’an; Gong Weili; Li Liyun

    2015-01-01

    This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rock-burst process. Based on the PIV (Particle Image Velocimetry) technique, quantitative analysis of a rock-burst, the images of tracer particle, displacement and strain fields can be obtained, and the debris trajectory described. According to the observation of on-site tests, the dynamic rockburst is actually a gas–solid high speed flow process, which is caused by the interaction of rock fragments and surrounding air. With the help of analysis on high speed video and PIV images, the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection. Meanwhile, the elastic energy for these six stages has been calculated to study the energy variation. The results indicate that the rockburst process can be summarized as:an initiating stage, intensive developing stage and gradual decay stage. This research will be helpful for our further understanding of the rockburst mechanism.

  20. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  1. A Novel Technique Based on Node Registration in MANETs

    Directory of Open Access Journals (Sweden)

    Rashid Jalal Qureshi

    2012-09-01

    Full Text Available In ad hoc network communication links between the nodes are wireless and each node acts as a router for the other node and packet is forward from one node to other. This type of networks helps in solving challenges and problems that may arise in every day communication. Mobile Ad Hoc Networks is a new field of research and it is particularly useful in situations where network infrastructure is costly. Protecting MANETs from security threats is a challenging task because of the MANETs dynamic topology. Every node in a MANETs is independent and is free to move in any direction, therefore change its connections to other nodes frequently. Due to its decentralized nature different types of attacks can be occur. The aim of this research paper is to investigate different MANETs security attacks and proposed nodes registration based technique by using cryptography functions.

  2. An RSS based location estimation technique for cognitive relay networks

    KAUST Repository

    Qaraqe, Khalid A.

    2010-11-01

    In this paper, a received signal strength (RSS) based location estimation method is proposed for a cooperative wireless relay network where the relay is a cognitive radio. We propose a method for the considered cognitive relay network to determine the location of the source using the direct and the relayed signal at the destination. We derive the Cramer-Rao lower bound (CRLB) expressions separately for x and y coordinates of the location estimate. We analyze the effects of cognitive behaviour of the relay on the performance of the proposed method. We also discuss and quantify the reliability of the location estimate using the proposed technique if the source is not stationary. The overall performance of the proposed method is presented through simulations. ©2010 IEEE.

  3. Selection of procedures for inservice inspections; Auswahl der Verfahren fuer wiederkehrende Pruefungen

    Energy Technology Data Exchange (ETDEWEB)

    Brast, G. [Preussische Elektrizitaets-AG (Preussenelektra), Hannover (Germany); Britz, A. [Bayernwerk AG, Muenchen (Germany); Maier, H.J. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Seidenkranz, T. [TUEV Energie- und Systemtechnik GmbH, Mannheim (Germany)

    1998-11-01

    At present, selection of procedures for inservice inspection has to take into account the legal basis, i.e. the existing regulatory codes, and the practical aspects, i.e. experience and information obtained by the general, initial inservice inspection or performance data obtained by the latest, recurrent inspection. However, regulatory codes are being reviewed to a certain extent in order to permit integration of technological progress. Depending on the degree of availability in future, of inspection task-specific, sensitive and qualified NDE techniques for inservice inspections (`risk based ISI`), the framework of defined inspection intervals, sites, and detection limits will be broken up and altered in response to progress made. This opens up new opportunities for an optimization of inservice inspections for proof of component integrity. (orig./CB) [Deutsch] Zur Zeit muss sich die Auswahl der Pruefverfahren an den gueltigen Regelwerken und, da es sich um wiederkehrende Pruefungen handelt, an der Basispruefung bzw. der letzten wiederkehrenden Pruefung orientieren. Jedoch vollzieht sich zur Zeit eine Oeffnung der Regelwerke, mit der man auch der Weiterentwicklung der Prueftechniken Rechnung traegt. In dem Masse, wie zukuenftig auf die Pruefaufgabe/Pruefaussage optimal abgestimmte und qualifizierte Prueftechniken mit einer hohen Nachweisempfindlichkeit am Bauteil fuer zielgerichtete wiederkehrende Pruefungen (als `risk based ISI`) zur Verfuegung stehen, wird der Rahmen mit festgelegten Pruefintervallen, Prueforten und festen Registriergrenzen gesprengt und variabel gestaltet werden koennen. Damit ergeben sich neue Moeglichkeiten fuer eine Optimierung der WKP zum Nachweis der Integritaet des Bauteils. (orig./MM)

  4. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    Science.gov (United States)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  5. An investigation of a video-based patient repositioning technique

    International Nuclear Information System (INIS)

    Purpose: We have investigated a video-based patient repositioning technique designed to use skin features for radiotherapy repositioning. We investigated the feasibility of the clinical application of this system by quantitative evaluation of performance characteristics of the methodology. Methods and Materials: Multiple regions of interest (ROI) were specified in the field of view of video cameras. We used a normalized correlation pattern-matching algorithm to compute the translations of each ROI pattern in a target image. These translations were compared against trial translations using a quadratic cost function for an optimization process in which the patient rotation and translational parameters were calculated. Results: A hierarchical search technique achieved high-speed (compute correlation for 128x128 ROI in 512x512 target image within 0.005 s) and subpixel spatial accuracy (as high as 0.2 pixel). By treating the observed translations as movements of points on the surfaces of a hypothetical cube, we were able to estimate accurately the actual translations and rotations of the test phantoms used in our experiments to less than 1 mm and 0.2 deg. with a standard deviation of 0.3 mm and 0.5 deg. respectively. For human volunteer cases, we estimated the translations and rotations to have an accuracy of 2 mm and 1.2 deg. Conclusion: A personal computer-based video system is suitable for routine patient setup of fractionated conformal radiotherapy. It is expected to achieve high-precision repositioning of the skin surface with high efficiency

  6. Cryptanalysis of a technique to transform discrete logarithm based cryptosystems into identity-based cryptosystems

    OpenAIRE

    TANG, QIANG; MITCHELL, CHRIS J.

    2005-01-01

    In this paper we analyse a technique designed to transform any discrete logarithm based cryptosystem into an identity-based cryptosystem. The transformation method is claimed to be efficient and secure and to eliminate the need to invent new identity-based cryptosystems. However, we show that the identity-based cryptosystem created by the proposed transformation method suffers from a number of security and efficiency problems.

  7. AECL experience in fuel channel inspection

    International Nuclear Information System (INIS)

    Inspection of CANDU fuel channels (FC) is performed to ensure safe and economic reactor operation. CANDU reactor FCs have features that make them a unique non-destructive testing (NDT) challenge. The thin, 4 mm pressure-tube wall means flaws down to about 0.1 mm deep must be reliably detected and characterized. This is one to two orders of magnitude smaller than is usually considered of significant concern for steel piping and pressure vessels. A second unique feature is that inspection sensors must operate in the reactor core--often within 20 cm of highly radioactive fuel. Work on inspection of CANDU reactor FCs at AECL dates back over three decades. In that time, AECL staff have provided equipment and conducted or supervised in-service inspections in about 250 FCs, in addition to over 8000 pre-service FCs. These inspections took place at every existing CANDU reactor except those in India and Romania. Early FC inspections focussed on measurement of changes in dimensions (gauging) resulting from exposure to a combination of neutrons, stress and elevated temperature. Expansion of inspection activities to include volumetric inspection (for flaws) started in the mid-1970s with the discovery of delayed hydride cracking in Pickering 3 and 4 rolled joints. Recognition of other types of flaw mechanisms in the 1980s led to further expansion in both pre-service and in-service inspections. These growing requirements, to meet regulatory as well as economic needs, led to the development of a wide spectrum of inspection technology that now includes tests for hydrogen concentration, structural integrity of core components, flaws, and dimensional change. This paper reviews current CANDU reactor FC inspection requirements. The equipment and techniques developed to satisfy these requirements are also described. The paper concludes with a discussion of work in progress in AECL aimed at providing state-of-the-art FC inspection services. (author)

  8. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  9. A study on in-pipe inspection mobile robots, 3; Basic strategy of inspection path planning for inspection mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Toshio (Nagoya Univ. (Japan). Faculty of Engineering); Hosokai, Hidemi; Uemura, Masahiro

    1990-01-01

    This paper deals with inspection path planning for in-pipe inspection mobile robots which have the capability of moving through complicated pipeline networks. It is imperative that the robot systems have an inspection path planning system for such networks for their reasonable and rational operation, controlled by themselves or by the operators. The planning mainly requires two projects: the selection of the place to put the robot in or out, and the generation of the paths in the networks. This system provides the for complicated problems with plural inspection points using a basic strategy of systematically producing patterns and dividing partial problems of simple searches based on rules. (author).

  10. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  11. Implementation of a tolerance model in a computer aided design and inspection system

    Directory of Open Access Journals (Sweden)

    R. Hunter

    2006-04-01

    Full Text Available Purpose: Purpose of this paper is present a detailed framework to integrate the Computer Aided Design (CAD and Inspection (CAI systems through the integration of the Geometric Dimensioning and Tolerancing (GD&T with the inspection process in coordinate measuring machines (CMMs.Design/methodology/approach: The approach used to develop a prototype of a Knowledge Based System (KBS applied to inspection process establishes a new methodology for integrate the geometric dimensioning and tolerancing (GD&T. The integration is achieved through the definition of the knowledge units for functional properties of GD&T, inspection resources and inspection operations in a common knowledge model. The manufacturing and processing applications are the main topics approach of this paper.Findings: The findings are focused in modeling the features and interactions between knowledge units associated to topology, geometry and tolerances with the inspection process activities. The implementation of the product knowledge model is presented in a computer platform that extracts and represents the GD&T information in a CAI system.Research limitations/implications: The implications are focused on the automation of the inspection process in a KBS application. The future research is focused on the use of artificial intelligent technique, such as genetic algorithms and neural networks, to optimize the time to execute the inspection process.Practical implications: The main outcomes and implication of the KBS prototype application are focused on the reduction of the time spend to develop the inspection process. This KBS application provides the needed information to elaborate this process without the human interface.Originality/value: The original value of this paper is the integration of the design and inspection specification in a unique prototype application. The knowledge model has been defined in a common modeling language (UML and can be implemented in different

  12. Nuclear data needs for non-intrusive inspection.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. L.; Michlich, B. J.

    2000-11-29

    Various nuclear-based techniques are being explored for use in non-intrusive inspection. Their development is motivated by the need to prevent the proliferation of nuclear weapons, to thwart trafficking in illicit narcotics, to stop the transport of explosives by terrorist organizations, to characterize nuclear waste, and to deal with various other societal concerns. Non-intrusive methods are sought in order to optimize inspection speed, to minimize damage to packages and containers, to satisfy environmental, health and safety requirements, to adhere to legal requirements, and to avoid inconveniencing the innocent. These inspection techniques can be grouped into two major categories: active and passive. They almost always require the use of highly penetrating radiation and therefore are generally limited to neutrons and gamma rays. Although x-rays are widely employed for these purposes, their use does not constitute nuclear technology and therefore is not discussed here. This paper examines briefly the basic concepts associated with nuclear inspection and investigates the related nuclear data needs. These needs are illustrated by considering four of the methods currently being developed and tested.

  13. Technical objectives of inspection

    International Nuclear Information System (INIS)

    The various technical objectives of inspection are discussed in a very general manner. The discussion includes how the inspection function is related to the assumed threat, the various degrees of assurance and reliance on criteria, and the hierarchy of assurance which is obtained from the various types or levels of inspection

  14. Structural design systems using knowledge-based techniques

    International Nuclear Information System (INIS)

    Engineering information management and the corresponding information systems are of a strategic importance for industrial enterprises. This thesis treats the interdisciplinary field of designing computing systems for structural design and analysis using knowledge-based techniques. Specific conceptual models have been designed for representing the structure and the process of objects and activities in a structural design and analysis domain. In this thesis, it is shown how domain knowledge can be structured along several classification principles in order to reduce complexity and increase flexibility. By increasing the conceptual level of the problem description and representation of the domain knowledge in a declarative form, it is possible to enhance the development, maintenance and use of software for mechanical engineering. This will result in a corresponding increase of the efficiency of the mechanical engineering design process. These ideas together with the rule-based control point out the leverage of declarative knowledge representation within this domain. Used appropriately, a declarative knowledge representation preserves information better, is more problem-oriented and change-tolerant than procedural representations. 74 refs

  15. Damage detection technique by measuring laser-based mechanical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  16. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    Science.gov (United States)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  17. Introducing Risk Management Techniques Within Project Based Software Engineering Courses

    Science.gov (United States)

    Port, Daniel; Boehm, Barry

    2002-03-01

    In 1996, USC switched its core two-semester software engineering course from a hypothetical-project, homework-and-exam course based on the Bloom taxonomy of educational objectives (knowledge, comprehension, application, analysis, synthesis, and evaluation). The revised course is a real-client team-project course based on the CRESST model of learning objectives (content understanding, problem solving, collaboration, communication, and self-regulation). We used the CRESST cognitive demands analysis to determine the necessary student skills required for software risk management and the other major project activities, and have been refining the approach over the last 5 years of experience, including revised versions for one-semester undergraduate and graduate project course at Columbia. This paper summarizes our experiences in evolving the risk management aspects of the project course. These have helped us mature more general techniques such as risk-driven specifications, domain-specific simplifier and complicator lists, and the schedule as an independent variable (SAIV) process model. The largely positive results in terms of review of pass / fail rates, client evaluations, product adoption rates, and hiring manager feedback are summarized as well.

  18. Parameter tuning of PVD process based on artificial intelligence technique

    Science.gov (United States)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  19. Crack identification based on synthetic artificial intelligent technique

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Mun Bo; Suh, Myung Won [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2001-07-01

    It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a Continuous Evolutionary Algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  20. Electron tomography based on a total variation minimization reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B., E-mail: bart.goris@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Broek, W. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Heidari Mezerji, H.; Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2012-02-15

    The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms. -- Highlights: Black-Right-Pointing-Pointer A reconstruction algorithm for electron tomography is investigated based on total variation minimization. Black-Right-Pointing-Pointer Missing wedge artefacts are reduced by this algorithm. Black-Right-Pointing-Pointer The reconstruction is easier to segment. Black-Right-Pointing-Pointer More reliable quantitative information can be obtained.

  1. Magnetic Particle Technique: Lab Case of CAMAN

    Directory of Open Access Journals (Sweden)

    Sonia Ruth Rincón Urbina

    2015-10-01

    Full Text Available This article presents the general procedure for the use of the technique of magnetic particles; generally describes the main characteristics of the test and inspection procedure from CAMAN Lab developed at the Graduate School of the Colombian Air Force. The method used in the research and development of the project was documentary, in order to establish the rules and regulations required for certification of the magnetic particles technique in nondestructive testing laboratory by the Aeronautical Authority. Finally, based on the data analysis, an Inspection Procedure Manual was developed in order to certify the magnetic particles technique.

  2. Safety and Inspection Planning of Older Installations

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Ersdal, G.

    2008-01-01

    A basic assumption often made in risk- and reliability-based inspection planning is that a Bayesian approach can be used. This implies that probabilities of failure can be updated in a consistent way when new information (from inspections and repairs) becomes available. The Bayesian approach and a...... (and coalescence of small cracks) and increased crack growth. This should imply shorter inspection time intervals for ageing structures. Different approaches for updating inspection plans for older installations are proposed. The most promisingmethod consists of increasing the rate of crack initiations...... at the end of the expected lifetime - corresponding to a bath-tub hazard rate effect. The approach illustrated is for welded steel details in platforms. Systems effects are considered, including the use of dependence between inspection and failure events in different components for inspection...

  3. Optimization of an Optical Inspection System Based on the Taguchi Method for Quantitative Analysis of Point-of-Care Testing

    Directory of Open Access Journals (Sweden)

    Chia-Hsien Yeh

    2014-09-01

    Full Text Available This study presents an optical inspection system for detecting a commercial point-of-care testing product and a new detection model covering from qualitative to quantitative analysis. Human chorionic gonadotropin (hCG strips (cut-off value of the hCG commercial product is 25 mIU/mL were the detection target in our study. We used a complementary metal-oxide semiconductor (CMOS sensor to detect the colors of the test line and control line in the specific strips and to reduce the observation errors by the naked eye. To achieve better linearity between the grayscale and the concentration, and to decrease the standard deviation (increase the signal to noise ratio, S/N, the Taguchi method was used to find the optimal parameters for the optical inspection system. The pregnancy test used the principles of the lateral flow immunoassay, and the colors of the test and control line were caused by the gold nanoparticles. Because of the sandwich immunoassay model, the color of the gold nanoparticles in the test line was darkened by increasing the hCG concentration. As the results reveal, the S/N increased from 43.48 dB to 53.38 dB, and the hCG concentration detection increased from 6.25 to 50 mIU/mL with a standard deviation of less than 10%. With the optimal parameters to decrease the detection limit and to increase the linearity determined by the Taguchi method, the optical inspection system can be applied to various commercial rapid tests for the detection of ketamine, troponin I, and fatty acid binding protein (FABP.

  4. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  5. Qualification according to PDI's techniques UT EPRI methodology Phased Array for the inspection of vessels of PWR reactor with advanced robotic equipment

    International Nuclear Information System (INIS)

    The techniques and procedures qualified in the program EPRI PDI are directly applicable in plants whose reference code is ASME XI - specifically the Appendix VIII-, mainly USA and countries in which it is established American PWR technology. While countries with reactors in operation technology ABB (Sweden) or type VVER (Finland and Eastern countries) requires a qualification of specific technical type ENIQ, PDI qualification is a valuable reference since it allows to deal with such qualifications with guarantees. (Author)

  6. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  7. Inspection of Candu Nuclear Reactor Fuel Channels

    International Nuclear Information System (INIS)

    The Channel Inspection and Gauging Apparatus of Reactors (CIGAR) is a fully atomated, remotely operated inspection system designed to perform multi-channel, multi-task inspection of CANDU reactor fuel channels. Ultrasonic techniques are used for flaw detection, (with a sensitivity capable of detecting a 0.075 mm deep notch with a signal to noise ratio of 10 dB) and pressure tube wall thickness and diameter measurements. Eddy currrent systems are used to detect the presence of spacers between the coaxial pressure tube and calandria tube, as well as to measure their relative spacing. A servo-accelerometer is used to estimate the sag of the fuel channels. This advanced inspection system was commissioned and declared in service in September 1985. The paper describes the inspection systems themselves and discussed the results achieved to-date. (author)

  8. TOFD Technique Applied to Weld Inspection of Special Strartures%TOFD技术在特殊结构焊缝检测中的应用

    Institute of Scientific and Technical Information of China (English)

    洪作友; 唐兴军

    2009-01-01

    The working principle of TOFD technique was described. The testing effects were compared between radiographic testing and ultrasonic testing method for the detection of volute plate and seam weld. The actual weld section showed that the planar defects, which were difficult to detect by conventional ultrasonic testing and radiographic testing method, were easy to TOFD technique, but there was some error for the porosity, inclusions and such as volume-like defects between TOFD testing and actual section. Due to its high defect detection rate,sensitive to planar defects, less limits by direction, fast testing speed, intuitive scanning image and with no radiation and so on, TOFD technique had good prospect on the safety evaluation at petrochemical installations and so on special equipments.%叙述了TOFD技术的工作原理.在蜗壳焊缝试板及焊缝检测中将超声波和射线检测技术进行了对比.焊缝的缺陷解剖试验表明,TOFD技术能检出常规超声和射线检测方法难以检出的平面状缺陷,对气孔、夹杂等体积状缺陷的检测结果与实际解剖结果有出入.鉴于TOFD技术缺陷检出率高,对面状缺陷灵敏、不受方向性限制、检测速度快、扫描图显示直观并且无辐射等优点,因此在石化装置等在役特种设备的安全评定中具有很好的推广价值.

  9. Approximations in Inspection Planning

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.;

    2000-01-01

    Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations....... One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found...... by the inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....

  10. Research on technique of wavefront retrieval based on Foucault test

    Science.gov (United States)

    Yuan, Lvjun; Wu, Zhonghua

    2010-05-01

    During finely grinding the best fit sphere and initial stage of polishing, surface error of large aperture aspheric mirrors is too big to test using common interferometer. Foucault test is widely used in fabricating large aperture mirrors. However, the optical path is disturbed seriously by air turbulence, and changes of light and dark zones can not be identified, which often lowers people's judging ability and results in making mistake to diagnose surface error of the whole mirror. To solve the problem, the research presents wavefront retrieval based on Foucault test through digital image processing and quantitative calculation. Firstly, real Foucault image can be gained through collecting a variety of images by CCD, and then average these image to eliminate air turbulence. Secondly, gray values are converted into surface error values through principle derivation, mathematical modeling, and software programming. Thirdly, linear deviation brought by defocus should be removed by least-square method to get real surface error. At last, according to real surface error, plot wavefront map, gray contour map and corresponding pseudo color contour map. The experimental results indicates that the three-dimensional wavefront map and two-dimensional contour map are able to accurately and intuitively show surface error on the whole mirrors under test, and they are beneficial to grasp surface error as a whole. The technique can be used to guide the fabrication of large aperture and long focal mirrors during grinding and initial stage of polishing the aspheric surface, which improves fabricating efficiency and precision greatly.

  11. A formal model for integrity protection based on DTE technique

    Institute of Scientific and Technical Information of China (English)

    JI Qingguang; QING Sihan; HE Yeping

    2006-01-01

    In order to provide integrity protection for the secure operating system to satisfy the structured protection class' requirements, a DTE technique based integrity protection formalization model is proposed after the implications and structures of the integrity policy have been analyzed in detail. This model consists of some basic rules for configuring DTE and a state transition model, which are used to instruct how the domains and types are set, and how security invariants obtained from initial configuration are maintained in the process of system transition respectively. In this model, ten invariants are introduced, especially, some new invariants dealing with information flow are proposed, and their relations with corresponding invariants described in literatures are also discussed.The thirteen transition rules with well-formed atomicity are presented in a well-operational manner. The basic security theorems correspond to these invariants and transition rules are proved. The rationalities for proposing the invariants are further annotated via analyzing the differences between this model and ones described in literatures. At last but not least, future works are prospected, especially, it is pointed out that it is possible to use this model to analyze SE-Linux security.

  12. Image content authentication technique based on Laplacian Pyramid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper proposes a technique of image content authentication based on the Laplacian Pyramid to verify the authenticity of image content.First,the image is decomposed into Laplacian Pyramid before the transformation.Next,the smooth and detail properties of the original image are analyzed according to the Laplacian Pyramid,and the properties are classified and encoded to get the corresponding characteristic values.Then,the signature derived from the encrypted characteristic values is embedded in the original image as a watermark.After the reception,the characteristic values of the received image are compared with the watermark drawn out from the image.The algorithm automatically identifies whether the content is tampered by means of morphologic filtration.The information of tampered location is Presented at the same time.Experimental results show that the pro posed authentication algorithm can effectively detect the event and location when the original image content is tampered.Moreover,it can tolerate some distortions produced by compression,filtration and noise degradation.

  13. Using Satellite Based Techniques to Combine Volcanic Ash Detection Methods

    Science.gov (United States)

    Hendrickson, B. T.; Kessinger, C.; Herzegh, P.; Blackburn, G.; Cowie, J.; Williams, E.

    2006-12-01

    Volcanic ash poses a serious threat to aircraft avionics due to the corrosive nature of the silicate particles. Aircraft encounters with ash have resulted in millions of dollars in damage and loss of power to aircraft engines. Accurate detection of volcanic ash for the purpose of avoiding these hazardous areas is of the utmost importance to ensure aviation safety as well as to minimize economic loss. Satellite-based detection of volcanic ash has been used extensively to warn the aviation community of its presence through the use of multi-band detection algorithms. However, these algorithms are generally used individually rather than in combination and require the intervention of a human analyst. Automation of the detection and warning of the presence of volcanic ash for the aviation community is a long term goal of the Federal Aviation Administration Oceanic Weather Product Development Team. We are exploring the use of data fusion techniques within a fuzzy logic framework to perform a weighted combination of several multi-band detection algorithms. Our purpose is to improve the overall performance of volcanic ash detection and to test whether automation is feasible. Our initial focus is on deep, stratospheric eruptions.

  14. A response surface methodology based damage identification technique

    International Nuclear Information System (INIS)

    Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and outputs of a physical system by explicit functions. This methodology has been widely employed in many applications such as design optimization, response prediction and model validation. But so far the literature related to its application in structural damage identification (SDI) is scarce. Therefore this study attempts to present a systematic SDI procedure comprising four sequential steps of feature selection, parameter screening, primary response surface (RS) modeling and updating, and reference-state RS modeling with SDI realization using the factorial design (FD) and the central composite design (CCD). The last two steps imply the implementation of inverse problems by model updating in which the RS models substitute the FE models. The proposed method was verified against a numerical beam, a tested reinforced concrete (RC) frame and an experimental full-scale bridge with the modal frequency being the output responses. It was found that the proposed RSM-based method performs well in predicting the damage of both numerical and experimental structures having single and multiple damage scenarios. The screening capacity of the FD can provide quantitative estimation of the significance levels of updating parameters. Meanwhile, the second-order polynomial model established by the CCD provides adequate accuracy in expressing the dynamic behavior of a physical system

  15. WORMHOLE ATTACK MITIGATION IN MANET: A CLUSTER BASED AVOIDANCE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Subhashis Banerjee

    2014-01-01

    Full Text Available A Mobile Ad-Hoc Network (MANET is a self configuring, infrastructure less network of mobile devices connected by wireless links. Loopholes like wireless medium, lack of a fixed infrastructure, dynamic topology, rapid deployment practices, and the hostile environments in which they may be deployed, make MANET vulnerable to a wide range of security attacks and Wormhole attack is one of them. During this attack a malicious node captures packets from one location in the network, and tunnels them to another colluding malicious node at a distant point, which replays them locally. This paper presents a cluster based Wormhole attack avoidance technique. The concept of hierarchical clustering with a novel hierarchical 32- bit node addressing scheme is used for avoiding the attacking path during the route discovery phase of the DSR protocol, which is considered as the under lying routing protocol. Pinpointing the location of the wormhole nodes in the case of exposed attack is also given by using this method.

  16. Orientation of student entrepreneurial practices based on administrative techniques

    Directory of Open Access Journals (Sweden)

    Héctor Horacio Murcia Cabra

    2005-07-01

    Full Text Available As part of the second phase of the research project «Application of a creativity model to update the teaching of the administration in Colombian agricultural entrepreneurial systems» it was decided to re-enforce student planning and execution of the students of the Agricultural business Administration Faculty of La Salle University. Those finishing their studies were given special attention. The plan of action was initiated in the second semester of 2003. It was initially defined as a model of entrepreneurial strengthening based on a coherent methodology that included the most recent administration and management techniques. Later, the applicability of this model was tested in some organizations of the agricultural sector that had asked for support in their planning processes. Through an investigation-action process the methodology was redefined in order to arrive at a final model that could be used by faculty students and graduates. The results obtained were applied to the teaching of Entrepreneurial Laboratory of ninth semester students with the hope of improving administrative support to agricultural enterprises. Following this procedure more than 100 students and 200 agricultural producers have applied this procedure between June 2003 and July 2005. The methodology used and the results obtained are presented in this article.

  17. A new membrane-based crystallization technique: tests on lysozyme

    Science.gov (United States)

    Curcio, Efrem; Profio, Gianluca Di; Drioli, Enrico

    2003-01-01

    The great importance of protein science both in industrial and scientific fields, in conjunction with the intrinsic difficulty to grow macromolecular crystals, stimulates the development of new observations and ideas that can be useful in initiating more systematic studies using novel approaches. In this regard, an innovative technique, based on the employment of microporous hydrophobic membranes in order to promote the formation of lysozyme crystals from supersaturated solutions, is introduced in this work. Operational principles and possible advantages, both in terms of controlled extraction of solvent by acting on the concentration of the stripping solution and reduced induction times, are outlined. Theoretical developments and experimental results concerning the mass transfer, in vapour phase, through the membrane are presented, as well as the results from X-ray diffraction to 1.7 Å resolution of obtained lysozyme crystals using NaCl as the crystallizing agent and sodium acetate as the buffer. Crystals were found to be tetragonal with unit cell dimensions of a= b=79.1 Å and c=37.9 Å; the overall Rmerge on intensities in the resolution range from 25 to 1.7 Å was, in the best case, 4.4%.

  18. Light based techniques for improving health care: studies at RRCAT

    International Nuclear Information System (INIS)

    The invention of Lasers in 1960, the phenomenal advances in photonics as well as the information processing capability of the computers has given a major boost to the R and D activity on the use of light for high resolution biomedical imaging, sensitive, non-invasive diagnosis and precision therapy. The effort has resulted in remarkable progress and it is widely believed that light based techniques hold great potential to offer simpler, portable systems which can help provide diagnostics and therapy in a low resource setting. At Raja Ramanna Centre for Advanced Technology (RRCAT) extensive studies have been carried out on fluorescence spectroscopy of native tissue. This work led to two important outcomes. First, a better understanding of tissue fluorescence and insights on the possible use of fluorescence spectroscopy for screening of cancer and second development of diagnostic systems that can serve as standalone tool for non-invasive screening of the cancer of oral cavity. The optical coherence tomography setups and their functional extensions (polarization sensitive, Doppler) have also been developed and used for high resolution (∼10 µm) biomedical imaging applications, in particular for non-invasive monitoring of the healing of wounds. Chlorophyll based photo-sensitisers and their derivatives have been synthesized in house and used for photodynamic therapy of tumors in animal models and for antimicrobial applications. Various variants of optical tweezers (holographic, Raman etc.) have also been developed and utilised for different applications notably Raman spectroscopy of optically trapped red blood cells. An overview of these activities carried out at RRCAT is presented in this article. (author)

  19. Structuring Task-based Interaction through Collaborative Learning Techniques (2)

    Institute of Scientific and Technical Information of China (English)

    William Littlewood

    2004-01-01

    @@ Techniques for collaborative learning In this section the focus will move from broad strategies to specific techniques (often also called "structures") through which the strategies can be realized. It gives a selection of techniques which have proved (in my own experience as well as that of others) particularly useful in pro-viding contexts for practice, exploration and /or interaction in the second language classroom.

  20. Annual Radioactive Waste Tank Inspection Program - 1997

    International Nuclear Information System (INIS)

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  1. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  2. Inspection Principle and Defect Quantitative Estimation of Pulsed Remote Field Eddy Current Technique%基于脉冲激励的远场涡流检测机理及缺陷定量评估技术

    Institute of Scientific and Technical Information of China (English)

    杨宾峰; 张辉; 荆毅飞; 李龙军; 崔文岩

    2012-01-01

    Remote field eddy current (RFEC) technique has been widely used for the inspection of ferromagnetic pipes and it's not restricted by the skin-depth effect. However, the technique under the sinusoidal excitation needs a long probe and a high power dissipation, which restricts the application of RFEC in real inspection. The pulse exciting signal has the advantages of rich frequency components, the disadvantages of the traditional RFEC can be overcome by using pulse excitation instead of sinusoidal excitation. On the basis of analyzing the principle of pulsed RFEC, the distributions of the magnetic field and eddy current a-round the pipeline and exciting coil are simulated and analyzed, the changing rule of transient state detecting signals in different field regions is studied and obtained with finite element simulation method, then, the remote field region is confirmed. The zero-crossing time and negative peak value are extracted as the eigenvectors for defect quantification. Finally, the performances of quantifying the axial defect length and depth by the pulsed RFEC are verified by performing an experiment, the result shows that this technique can be used to realize the quantitative estimation of the defect.%脉冲激励信号包含非常丰富的频谱成分,以脉冲激励代替传统的正弦激励为克服远场涡流技术的不足提供了新的解决途径.在分析了脉冲激励下远场涡流检测机理的基础上,仿真分析了激励线圈和管道周围磁场和涡流的分布,得到了检测线圈处于不同场区时瞬态检测信号的变化规律,确定了远场区的范围.并从检测信号中提取了过零时间作为缺陷定量的特征量.最后,采用实验的方法验证了脉冲激励下的远场涡流技术对管道中轴向裂纹缺陷长度和深度的定量检测能力,实验结果表明该技术可以很好的实现对缺陷的定量评估.

  3. Inservice inspection of Halden BWR pressure vessel

    International Nuclear Information System (INIS)

    A description is given of how the recertification inspection of the 20 years old Halden Reactor pressure vessel was carried out in accordance with the latest ASME-CODES, despite the fact that inspection accessibility was poor. As no volumetric inspection had been carried out since the preservice radiography in 1957, the ultrasonic inspection included the high flux region of all welds. In total 70% of longitudinal welds and 20% of bottom circumferential welds were inspected as well as the bottom nozzle connection. The vessel was not designed with provisions for inservice inspection, the welds are unaccessible from the outside and removal of the lid is virtually impossible. The ultrasonic probes could only be loaded through 77 mm diameter holes in the top lid and remotely positioned inside the vessel. The inspection was performed using 450C and 60OC 1 MHz angle probes and 2.25 MHz normal probes in immersion technique. In a zone around the welds, small regions with lack of bonding between the stainless steel cladding and the boiler steel were revealed. One root defect known and accepted from the preservice radiographs was examined. The defect was found to be 6x30mm as a maximum and well within acceptable limits according to the fracture mechanics analysis method recommended in ASME X1. The inspection required a period of three weeks' work in the reactor hall. (UK)

  4. Improvement of foundation for inspection

    International Nuclear Information System (INIS)

    Japan Nuclear Energy Safety Organization has been carrying out improvement of inspection system for nuclear plants in Japan since 2003FY. The new inspection system was introduced into nuclear power plants in-2008FY. In this project, improvement of comprehensive plant performance assessment and management tool for the new inspection system are developed. In 2012FY, a trend analysis method of the plant performance was developed with reference to the IAEA literature. And the trend analysis was tried based on the results of the comprehensive plant performance assessment of all domestic plants except Fukushima-Daiichi Nuclear Power Station. In addition, the teaching materials for QMS training guideline were made. And improvement of a quality management system evaluation support tool was performed. (author)

  5. Park-based and zero sequence-based relaying techniques with application to transformers protection

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, G.; Arboleya, P.; Gomez-Aleixandre, J. [University of Oviedo (Spain). Dept. of Electrical Engineering

    2004-09-01

    Two relaying techniques for protecting power transformers are presented and discussed. Very often, differential relaying is used for this purpose. A comparison between the two proposed techniques and conventional differential relaying is thus presented. The first technique, based on the measurements of zero sequence current within a delta winding, performs best in multiwinding transformers, since only measurement of the coil currents is needed. Thus, great simplicity is achieved. The second one is based on the differential procedure, but its analysis of asymmetries in the plot in Park's plane avoids problems related to spectral analysis in conventional differential relaying. The technique is justified from the analysis of symmetrical components. Misoperation in conventional differential relaying has been observed in some cases as a function of switching instant and fault location. This issue is discussed in the paper, and a statistical analysis of a large number of laboratory tests, in which both factors were controlled, is presented. As a conclusion, both relaying techniques proposed succeed in protecting the transformer. Additionally, the Park-based relay exhibits three characteristics of most importance: fastest performance, robustness and simplicity in its formulation. (author)

  6. Adoption of farm-based irrigation water-saving techniques in the Guanzhong Plain, China

    NARCIS (Netherlands)

    Tang, Jianjun; Folmer, Henk; Xue, Jianhong

    2016-01-01

    This article analyses adoption of farm-based irrigation water saving techniques, based on a cross-sectional data set of 357 farmers in the Guanzhong Plain, China. Approximately 83% of the farmers use at least one farm-based water-saving technique. However, the traditional, inefficient techniques bor

  7. Robotic inspection technology-process an toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Markus [ROSEN Group (United States). R and D Dept.

    2005-07-01

    Pipeline deterioration grows progressively with ultimate aging of pipeline systems (on-plot and cross country). This includes both, very localized corrosion as well as increasing failure probability due to fatigue cracking. Limiting regular inspecting activities to the 'scrapable' part of the pipelines only, will ultimately result into a pipeline system with questionable integrity. The confidence level in the integrity of these systems will drop below acceptance levels. Inspection of presently un-inspectable sections of the pipeline system becomes a must. This paper provides information on ROSEN's progress on the 'robotic inspection technology' project. The robotic inspection concept developed by ROSEN is based on a modular toolbox principle. This is mandatory. A universal 'all purpose' robot would not be reliable and efficient in resolving the postulated inspection task. A preparatory Quality Function Deployment (QFD) analysis is performed prior to the decision about the adequate robotic solution. This enhances the serviceability and efficiency of the provided technology. The word 'robotic' can be understood in its full meaning of Recognition - Strategy - Motion - Control. Cooperation of different individual systems with an established communication, e.g. utilizing Bluetooth technology, support the robustness of the ROSEN robotic inspection approach. Beside the navigation strategy, the inspection strategy is also part of the QFD process. Multiple inspection technologies combined on a single carrier or distributed across interacting container must be selected with a clear vision of the particular goal. (author)

  8. Optimisation of sonic thermographic inspection

    Science.gov (United States)

    Tsoi, Kelly A.; Yousif, Khalid; Rajic, Nik; Powlesland, Ian

    2009-03-01

    A versatile and broad-field technique, sonic thermography uses high intensity acoustic waves to induce frictional heating at defect locations and the thermal signature is then detected using IR imaging. Sonic thermography has the potential to be used as a quantitative technique for difficult inspection problems. One example is the inspection of interference fit fasteners. In the case of poorly fitted interference fasteners, the acoustic waves induce relative motion between the fastener and host, causing frictional heating which can then be detected. The preliminary results of an inspection of interference fit levels in fastened metallic plates, reminiscent of the F-111C wing skin, are discussed. By improving the repeatability of the acoustic energy transfer, the heat detected using the IR thermographic system can be correlated to the interference fit levels of the fasteners. The results provide encouragement for the development of a quantitative assessment capability, however one of the remaining critical issues, which has hindered the use of sonic thermography as a quantitative technique, is the poor repeatability of acoustic excitations. This paper will also report on an experimental study which investigates this repeatability issue, in particular the role of the interface material used between the horn tip and the structure to enhance energy transfer.

  9. Numerical Techniques for Simulation of Tsunami Based on Finite Elements

    OpenAIRE

    Watanabe, Masaji; Liu, Ying; Wang, Ming Jun

    2006-01-01

    Numerical techniques to simulate tsunamis are described. Partial differential equations are reduced to a system of ordinary differential equations to which appropriate numerical solvers can be applied. The techniques are illustrated with an example in which tsunami due to an earthquake is simulated.

  10. A Technique for Volumetric CSG Based on Morphology

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2001-01-01

    In this paper, a new technique for volumetric CSG is presented. The technique requires the input volumes to correspond to solids which fulfill a voxelization suitability criterion. Assume the CSG operation is union. The volumetric union of two such volumes is defined in terms of the voxelization...

  11. Evidence-based surgical techniques for caesarean section

    DEFF Research Database (Denmark)

    Aabakke, Anna J M; Secher, Niels Jørgen; Krebs, Lone

    2014-01-01

    Caesarean section (CS) is a common surgical procedure, and in Denmark 21% of deliveries is by CS. There is an increasing amount of scientific evidence to support the different surgical techniques used at CS. This article reviews the literature regarding CS techniques. There is still a lack of evi...

  12. Study on Inspection of Tobacco Leaves Based on Image Processing%基于机器视觉的烟草分拣系统的设计

    Institute of Scientific and Technical Information of China (English)

    汪庭春; 梅健; 朱文燕; 张乐年

    2011-01-01

    文中介绍的烟草在线分拣方法是利用数字图像处理及模式识别技术实现的,简要说明了烟草实时光电分拣系统的原理和结构.着重讨论了烟草杂物识别算法,详尽地阐述了利用阈值选取来建立合格烟草颜色表以及目标杂物的区域标记与确定开阀位置的方法.此分拣设备的应用表明了算法的实时性好,可靠性高,能很好地满足工业生产要求,大大提高了烟草剔除杂物的自动化与智能化.%The method of online inspection of tobacco leaves introduced in this paper is realized base no digital image processing and pattern recognition,The principle and structure of the real-time optical electrical inspection of tobacco leaves (ROEITL) is described in brief. At the same time,the inspection algorithm of tobacco leaves is also emphasized. The method of building the color sheet of eligible tobacco leaves through the threshold value selection and marking the region of target impurities is expounded,as well as the turning on position of gas valves is determined. The application of the ROEITL shows that its algorithm is real-time and reliable. It also can meet the need of the industrial production well,and enhance the automatization and intelligentization of impurities being removed from tobacco leaves greatly.

  13. 500kv substation communication equipment based on LBS intelligent inspection system%基于LBS的500KV变电站通信设备智能巡检系统

    Institute of Scientific and Technical Information of China (English)

    谢小军; 卓文合; 胡鹏

    2016-01-01

    针对电力巡检环节存在巡检效率低、巡检人员不到位、作业报表杜撰、任意修改等诸多不足,从500kV变电站通信设备巡检应用现状及存在的问题出发进行分析,提出利用LBS技术,实现基于百度地图的智能巡检系统。应用结果表明,系统能满足变电站设备巡检和缺陷管理的工作需求,实现通信设备巡检信息的综合处理,同时,提高巡检效率,并使巡检作业规范化、科学化。%Because in electric power inspection work efficiency is low, personnel does not reach the designated position, assignment statements fabricated, tamper with the problems, therefore, is put forward based on LBS technology, realize the intelligent inspection system based on baidu map. Results show that the system can meet the job requirements of the substation equipment inspection and defect management, the realization of communication equipment inspection information integrated processing, at the same time, improve the efficiency of inspection. and make inspection assignments standardized, scientific.

  14. A Lossless Data Hiding Technique based on AES-DWT

    Directory of Open Access Journals (Sweden)

    Gustavo Fernandaacute;ndez Torres2

    2012-09-01

    Full Text Available In this paper we propose a new data hiding technique. The new technique uses steganography and cryptography on images with a size of 256x256 pixels and an 8-bit grayscale format. There are design restrictions such as a fixed-size cover image, and reconstruction without error of the hidden image. The steganography technique uses a Haar-DWT (Discrete Wavelet Transform with hard thresholding and LSB (Less Significant Bit technique on the cover image. The algorithms used for compressing and ciphering the secret image are lossless JPG and AES, respectively. The proposed technique is used to generate a stego image which provides a double type of security that is robust against attacks. Results are reported for different thresholds levels in terms of PSNR.

  15. Anterolateral Ligament Reconstruction Technique: An Anatomic-Based Approach.

    Science.gov (United States)

    Chahla, Jorge; Menge, Travis J; Mitchell, Justin J; Dean, Chase S; LaPrade, Robert F

    2016-06-01

    Restoration of anteroposterior laxity after an anterior cruciate ligament reconstruction has been predictable with traditional open and endoscopic techniques. However, anterolateral rotational stability has been difficult to achieve in a subset of patients, even with appropriate anatomic techniques. Therefore, differing techniques have attempted to address this rotational laxity by augmenting or reconstructing lateral-sided structures about the knee. In recent years, there has been a renewed interest in the anterolateral ligament as a potential contributor to residual anterolateral rotatory instability in anterior cruciate ligament-deficient patients. Numerous anatomic and biomechanical studies have been performed to further define the functional importance of the anterolateral ligament, highlighting the need for surgical techniques to address these injuries in the unstable knee. This article details our technique for an anatomic anterolateral ligament reconstruction using a semitendinosus tendon allograft. PMID:27656361

  16. Application of laser-based ultrasonic technique for evaluation of corrosion and defeats in pipeline

    International Nuclear Information System (INIS)

    There are many tube and pipe-line in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects can evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

  17. Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Woo; Lee, Joon Hyun; Cho, Youn Ho [Pusan National University, Busan (Korea, Republic of)

    2005-04-15

    There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique

  18. Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline

    International Nuclear Information System (INIS)

    There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique

  19. Application of laser-based ultrasonic technique for evaluation of corrosion and defeats in pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Woo; Lee, Joon Hyun; Cho, Youn Ho [Pusan National University, Pusan (Korea, Republic of)

    2004-05-15

    There are many tube and pipe-line in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects can evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

  20. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.