WorldWideScience

Sample records for based hydrogeological vulnerability

  1. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    International Nuclear Information System (INIS)

    Kumar, Prashant; Bansod, Baban K.S.; Debnath, Sanjit K.; Thakur, Praveen Kumar; Ghanshyam, C.

    2015-01-01

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper

  2. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prashant, E-mail: prashantkumar@csio.res.in [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Bansod, Baban K.S.; Debnath, Sanjit K. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Thakur, Praveen Kumar [Indian Institute of Remote Sensing (ISRO), Dehradun 248001 (India); Ghanshyam, C. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India)

    2015-02-15

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.

  3. Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)

    Science.gov (United States)

    Baldi, B.; Guastaldi, E.; Rossetto, R.

    2009-04-01

    During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers

  4. Economic and hydrogeologic disparities govern the vulnerability of shared groundwater to strategic overdraft

    Science.gov (United States)

    Mullen, C.; Muller, M. F.

    2017-12-01

    Groundwater resources are depleting globally at an alarming rate. When the resource is shared, exploitation by individual users affects groundwater levels and increases pumping costs to all users. This incentivizes individual users to strategically over-pump, an effect that is challenging to keep in check because the underground nature of the resource often precludes regulations from being effectively implemented. As a result, shared groundwater resources are prone to tragedies of the commons that exacerbate their rapid depletion. However, we showed in a recent study that the vulnerability of aquifer systems to strategic overuse is strongly affected by local economic and physical characteristics, which suggests that not all shared aquifers are subject to tragedies of the commons. Building on these findings, we develop a vulnerability index based on coupled game theoretical and groundwater flow models. We show that vulnerability to strategic overdraft is driven by four intuitively interpretable adimensional parameters that describe economic and hydrogeologic disparities between the agents exploiting the aquifer. This suggests a scale-independent relation between the vulnerability of groundwater systems to common-pool overdraft and their economic and physical characteristics. We investigate this relation for a sample of existing aquifer systems and explore implications for enforceable groundwater agreements that would effectively mitigate strategic overdraft.

  5. Vulnerability and Hydrogeologic Risk of the Guarani Aquifer System in the outcropping area located in Rivera Uruguay

    International Nuclear Information System (INIS)

    Montano, J.; Collazo, P.; Auge, M.

    2004-01-01

    The Project named Vulnerability and Hydrogeologic Risk of the Guarani Aquifer System in the outcropping area located in Rivera, Uruguay is developed by the Faculty of Science University of the Republic, together with the Faculty of Natural and Exact Sciences of the University of Buenos Aires, and it is financed by the Guarani Fund of Universities - Project for the Environmental Protection and Sustainable Development of the Guarani Aquifer System. This project has the aim of researching the characteristics and the hydrogeologic behavior of the Guarani Aquifer in the North portion of Uruguay, Department of Rivera (outcropping area). Moreover, to propose measures directed to their preservation through their sustainable use. The Hydrogeologic Study of the Guarani Aquifer System in this area will contribute not only with the best knowledge in its dynamics, but also helping to take measures in the water management and to avoid potential risks of contamination [es

  6. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    Science.gov (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  7. Environmental Groundwater Vulnerability Assessment in Urban Water Mines (Porto, NW Portugal

    Directory of Open Access Journals (Sweden)

    Maria José Afonso

    2016-11-01

    Full Text Available A multidisciplinary approach was developed to estimate urban groundwater vulnerability to contamination combining hydrogeology, hydrogeochemistry, subterranean hydrogeotechnics, groundwater ecotoxicology and isotope tracers. Paranhos and Salgueiros spring waters in Porto City were used as a case study. Historical and current vulnerability scenarios were compared using hydrogeological GIS-based modelling. Potential contamination sources were mapped around the spring galleries. Most of these were point sources and their potential contamination load was moderate. The ecotoxicological assessment indicated a low acute toxicity potential. Groundwater radionuclides appeared to be mainly controlled by geological factors and biomineralisation. Vulnerability maps suggest that most of the area has a moderate to low vulnerability to contamination. However, some surface sources such as sewage systems cause contamination and contribute to increased vulnerability. This integrated approach was demonstrated to be adequate for a better knowledge of urban hydrogeological processes and their dynamics, and highlighted the importance of a vulnerability assessment in urban areas.

  8. Determining shallow aquifer vulnerability by the DRASTIC model ...

    Indian Academy of Sciences (India)

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been ...

  9. An holistic view on aquifer vulnerability based on a distinction of different types of vulnerability

    Science.gov (United States)

    De Luca, Domenico Antonio; Lasagna, Manuela; Franchino, Elisa

    2016-04-01

    AN HOLISTIC VIEW ON AQUIFER VULNERABILITY BASED ON A DISTINCTION OF DIFFERENT TYPES OF VULNERABILITY D.A. De Luca1 , M. Lasagna1, E. Franchino1 1Department of Earth Sciences, University of Turin The concept of vulnerability is certainly useful in the field of groundwater protection. Nevertheless, within the scientific community, the definition of groundwater vulnerability is still debatable and not clear and conclusive. This is probably due to the fact that researchers often have very different experiences and education. A positive effect of it is a constant exchange of ideas, but there are also negative consequences and difficulties in deepening the issue. The different approaches are very important but they are usable only if the concept of vulnerability is standardized: thus, for the sake of clarity, a number of definitions should be laid down, based on the different types of vulnerability. These definitions can then provide the necessary holistic view for the aquifer vulnerability assessment. Nowadays vulnerability methods focus on the degree of vulnerability and the parameters needed for its evaluation, often neglecting to clarify what is the type of vulnerability the proposed methods are referred. The type of vulnerability, indeed, is both logically and hierarchically superior to the degree of vulnerability. More specifically the type of vulnerability represents the evaluation of the hydrogeological conditions considered in the vulnerability assessment and able to influence the way in which the contamination can take place. Currently the only distinction, based on of the type of vulnerability, is referred to intrinsic and specific vulnerability. Intrinsic vulnerability assesses the susceptibility of the receptor based on the natural properties of the land and subsurface; specific vulnerability also includes properties of the analyzed contaminant. This distinction is useful but not exhaustive. In addition to this, e.g., a distinction of vertical vulnerability

  10. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    Science.gov (United States)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  11. Developing a probability-based model of aquifer vulnerability in an agricultural region

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei

    2013-04-01

    SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.

  12. GIS based Hydrogeological Vulnerability Mapping of Groundwater Resources in Jerash Area-Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hammouri, N [Department of Earth and Environmental Sciences, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan); El-Naqa, A [Department of Water Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan)

    2008-04-15

    This paper presents groundwater vulnerability mapping for Jerash area, north Jordan generated using EPIK and DRASTIC models. These models have been implemented using GIS to delineate groundwater protection zones and to suggest a protection plan to improve groundwater quality of the major springs and wells. Most of the groundwater resources in the study area are polluted and bacteria and nitrate levels are high. Different sources of groundwater pollution have been identified. Domestic wastewater is considered as a major source of pollution. Urban runoff, fertilizers from agricultural return flows and solid waste disposal appear to be secondary sources. The most relevant vulnerability class of EPIK map is very high which accounts for about 41 % of the total area. While in the DRASTIC vulnerability map, areas with high vulnerability were only about 23 % of the total area. There is a good correlation between vulnerability maps obtained from both models with microbiological and chemical pollution evidences. There is also a good agreement between the areas classified as highly vulnerable and those that have high levels of pollution. [Spanish] El estudio de vulnerabilidad de aguas subterraneas en la region de Yerash, Jordania fue obtenido mediante las metodologias de EPIK y DRASTIC. Se uso GIS para mapear las zonas protegidas y para sugerir un plan de proteccion para mejorar la calidad del agua subterranea en los principales manantiales y pozos. Los niveles de contaminacion bacteriana y de nitratos son elevados. El efluente domestico es la fuente mas importante de contaminacion; vienen en segundo lugar la precipitacion en zonas urbanas, los fertilizantes agricolas y los desechos solidos. En el mapa de EPIK, la vulnerabilidad extrema abarca hasta 41% del area total; en cambio, en el mapa de DRASTIC las areas de alta vulnerabilidad ocupan solo un 23% del area. La correlacion de los datos de contaminacion microbiana y quimica con ambos mapas der vulnerabilidad es buena

  13. Applicability of vulnerability maps

    International Nuclear Information System (INIS)

    Andersen, L.J.; Gosk, E.

    1989-01-01

    A number of aspects to vulnerability maps are discussed: the vulnerability concept, mapping purposes, possible users, and applicability of vulnerability maps. Problems associated with general-type vulnerability mapping, including large-scale maps, universal pollutant, and universal pollution scenario are also discussed. An alternative approach to vulnerability assessment - specific vulnerability mapping for limited areas, specific pollutant, and predefined pollution scenario - is suggested. A simplification of the vulnerability concept is proposed in order to make vulnerability mapping more objective and by this means more comparable. An extension of the vulnerability concept to the rest of the hydrogeological cycle (lakes, rivers, and the sea) is proposed. Some recommendations regarding future activities are given

  14. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  15. Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida

    Science.gov (United States)

    Arthur, J.D.; Wood, H.A.R.; Baker, A.E.; Cichon, J.R.; Raines, G.L.

    2007-01-01

    The Florida Aquifer Vulnerability Assessment (FAVA) was designed to provide a tool for environmental, regulatory, resource management, and planning professionals to facilitate protection of groundwater resources from surface sources of contamination. The FAVA project implements weights-of-evidence (WofE), a data-driven, Bayesian-probabilistic model to generate a series of maps reflecting relative aquifer vulnerability of Florida's principal aquifer systems. The vulnerability assessment process, from project design to map implementation is described herein in reference to the Floridan aquifer system (FAS). The WofE model calculates weighted relationships between hydrogeologic data layers that influence aquifer vulnerability and ambient groundwater parameters in wells that reflect relative degrees of vulnerability. Statewide model input data layers (evidential themes) include soil hydraulic conductivity, density of karst features, thickness of aquifer confinement, and hydraulic head difference between the FAS and the watertable. Wells with median dissolved nitrogen concentrations exceeding statistically established thresholds serve as training points in the WofE model. The resulting vulnerability map (response theme) reflects classified posterior probabilities based on spatial relationships between the evidential themes and training points. The response theme is subjected to extensive sensitivity and validation testing. Among the model validation techniques is calculation of a response theme based on a different water-quality indicator of relative recharge or vulnerability: dissolved oxygen. Successful implementation of the FAVA maps was facilitated by the overall project design, which included a needs assessment and iterative technical advisory committee input and review. Ongoing programs to protect Florida's springsheds have led to development of larger-scale WofE-based vulnerability assessments. Additional applications of the maps include land-use planning

  16. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    Science.gov (United States)

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Assessments of the vulnerability to contamination of ground-water sources used by public-water systems, as mandated by the Federal Safe Drinking Water Act Amendments of 1996, commonly have involved qualitative evaluations based on existing information on the geologic and hydrologic setting. The U.S. Geological Survey National Water-Quality Assessment Program has identified ground-water-age dating; detailed water-quality analyses of nitrate, pesticides, trace elements, and wastewater-related organic compounds; and assessed natural processes that affect those constituents as potential, unique improvements to existing methods of qualitative vulnerability assessment. To evaluate the improvement from use of these methods, in 2002 and 2003, the U.S. Geological Survey, in cooperation with the City of Richmond, Indiana, compiled and interpreted hydrogeologic data and chemical analyses of water samples from seven wells in a part of the Whitewater Valley aquifer system in a former glacial valley near Richmond. This study investigated the application of ground-water-age dating, dissolved-gas analyses, and detailed water-quality analyses to quantitatively evaluate the vulnerability of ground water to contamination and to identify processes that affect the vulnerability to specific contaminants in an area of post-1972 greenfield development.

  17. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  18. Use of stratigraphic, petrographic, hydrogeologic and geochemical information for hydrogeologic modelling based on geostatistical simulation

    International Nuclear Information System (INIS)

    Rohlig, K.J.; Fischer, H.; Poltl, B.

    2004-01-01

    This paper describes the stepwise utilization of geologic information from various sources for the construction of hydrogeological models of a sedimentary site by means of geostatistical simulation. It presents a practical application of aquifer characterisation by firstly simulating hydrogeological units and then the hydrogeological parameters. Due to the availability of a large amount of hydrogeological, geophysical and other data and information, the Gorleben site (Northern Germany) has been used for a case study in order to demonstrate the approach. The study, which has not yet been completed, tries to incorporate as much as possible of the available information and to characterise the remaining uncertainties. (author)

  19. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Heinzen, W.; Santana, J.

    1987-01-01

    This work shows the hydrogeological study and well drilling carried out in the Teaching Formation Institute San Jose de Mayo Province Uruguay. It was developed a geological review in the National Directorate of Geology and Mining data base as well as field working, geology and hydrogeology recognition and area well drilling inventory.

  20. GIS-based evaluation of groundwater vulnerability in the Russeifa area, Jordan

    OpenAIRE

    El-Naqa, Ali; Hammouri, Nezar; Kuisi, Mustafa

    2006-01-01

    In recent years, groundwater quality has been deteriorating in many parts of Jordan as result of agriculture expansion, solid waste disposal, and industrialization. A preliminary assessment of vulnerability to groundwater contamination in Russeifa watershed area was undertaken because of the presence of the largest solid waste disposal site in Jordan, which is known as Russeifa landfill. The major geological and hydrogeological factors that affect and control groundwater contamination were in...

  1. On the combination of isotope hydrogeology with regional flow and transport modelling

    International Nuclear Information System (INIS)

    Barmen, G.A.

    1992-01-01

    Many different methods and tools can be used when trying to improve the information basis on which decisions are made for maintaining a quantitatively and qualitatively safe, long-term use of groundwater resources. In this thesis, classical hydrogeological examinations, hydrochemical investigations, environmental isotope studies, computerized groundwater flow modelling and radioisotope transport modelling have been applied to the large system of reservoirs in the sedimentary deposits of southwestern Scania, Sweden. The stable isotopes 2 H, 18 O and 13 C and the radioactive 3 H and 14 C have been measured and the results obtained can improve the estimations of the periods of recharge and the average circulation times of the groundwater reservoirs studied. A groundwater flow model based on finite difference techniques and a continuum approach has been modified by data from traditional hydrogeological studies. The computer code, NEWSAM, has been used to simulate steady-state and transient isotope transport in the area studied, taking into account advective transport with radioactive decay. The interacting groundwater resevoirs studied have been represented by a three-dimensional system of grids in the numerical model. A major merit of this combination of isotope hydrogeology and regional flow and transport modelling is that the isotope transport simulations help to demonstrate where zones particularly vulnerable to pollution are situated. These locations are chiefly the results of the hydrogeological characteristics traditionally examined, but they are revealed by means of the transport model. Subsequent, more detailed investigations can then be focussed primarily on these vulnerable zones. High contents of radioisotopes in the main aquifer of southwestern Scania may indicate that groundwater withdrawals have stimulated recharge from shallow aquifers and surface waters and that the risk of pollution has increased. (196 refs.) (au)

  2. GIS BASED AQUIFER VULNERABILITY ASSESSMENT IN HANGZHOU-JIAXINGHUZHOU PLAIN, CHINA

    Directory of Open Access Journals (Sweden)

    Jean de Dieu Bazimenyera

    2014-01-01

    Full Text Available Hangzhou-Jiaxing-Huzhou plain is among the regions which faces the shortage of water due to its increasing population, industrialization, agriculture and domestic use; hence the high dependence on groundwater. In China, the exploitation of aquifers has been historically undertaken without proper concern for environmental impacts or even the concept of sustainable yield. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out whether certain locations in this groundwater basin are susceptible to receive and transmit pollution, this is why the main objective of this research is to find out the groundwater vulnerable zones using Geographical Information System (GIS model in Hangzhou-Jiaxing-Huzhou plain. GIS was used to create groundwater vulnerability map by overlaying hydro-geological data. The input of the model was provided by the following seven data layers: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity. This study showed that Hangzhou-Jiaxing-Huzhou area is grouped into three categories: High vulnerable zone with 27.4% of the total area, moderate vulnerable zone which occupy the great part of that area 60.5% and low vulnerable zone with 12.1%. This research suggests first the prioritization of high vulnerable areas in order to prevent the further pollution to already polluted areas; next the frequent monitoring of vulnerable zones to monitor the changing level of pollutants; and finally suggests that this model can be an effective tool for local authorities who are responsible for managing groundwater resources in that area.

  3. Delineating Groundwater Vulnerability and Protection Zone Mapping in Fractured Rock Masses: Focus on the DISCO Index

    Directory of Open Access Journals (Sweden)

    Helen Meerkhan

    2016-10-01

    Full Text Available Hard-rock catchments are considered to be source of valuable water resources for water supply to inhabitants and ecosystems. The present work aims to develop a groundwater vulnerability approach in the Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal in order to improve the hydrogeological conceptual site model. Different types of information were overlaid, generating several thematic maps to achieve an integrated framework of key sectors in the study site. Thus, a multi-technical approach was used, encompassing field and laboratory techniques, whereby different types of data were collected from fields such as geology, hydrogeology, applied geomorphology and geophysics and hydrogeomechanics, with the fundamental aim of applying the so-called DISCO index method. All of these techniques were successfully performed and an intrinsic groundwater vulnerability to contamination assessment, based on the multicriteria methodology of GOD-S, DRASTIC-Fm, SINTACS, SI and DISCO indexes, was delineated. Geographic Information Systems (GIS provided the basis on which to organize and integrate the databases and to produce all the thematic maps. This multi-technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualization, contributing to improving the decision-making process regarding water resources management and sustainability.

  4. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  5. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales

  6. Hydrogeologic correlations for selected wells on Long Island, New York; a data base with retrieval program

    Science.gov (United States)

    Buxton, H.T.; Shernoff, P.K.; Smolensky, D.A.

    1989-01-01

    Accurate delineation of the internal hydrogeologic structure of Long Island, NY is integral to the understanding and management of the groundwater system. This report presents a computerized data base of hydrogeologic correlations for 3,146 wells on Long Island and adjacent parts of New York City. The data base includes the well identification number, the latitude-longitude of the well location, the altitude of land surface at the well and of the bottom of the drilled hole, and the altitude of the top of the major hydrogeologic units penetrated by the well. A computer program is included that allows retrieval of selected types of data for all of, or any local area of, Long Island. These data retrievals are a valuable aid to the construction of hydrogeologic surface maps. (USGS)

  7. Waterborne toxoplasmosis investigated and analysed under hydrogeological assessment: new data and perspectives for further research.

    Science.gov (United States)

    Vieira, Flávia Pereira; Alves, Maria da Glória; Martins, Livia Mattos; Rangel, Alba Lucínia Peixoto; Dubey, Jitender Prakash; Hill, Dolores; Bahia-Oliveira, Lilian Maria Garcia

    2015-11-01

    We present a set of data on human and chicken Toxoplasma gondii seroprevalence that was investigated and analysed in light of groundwater vulnerability information in an area endemic for waterborne toxoplasmosis in Brazil. Hydrogeological assessment was undertaken to select sites for water collection from wells for T. gondii oocyst testing and for collecting blood from free-range chickens and humans for anti-T. gondii serologic testing. Serologic testing of human specimens was done using conventional commercial tests and a sporozoite-specific embryogenesis-related protein (TgERP), which is able to differentiate whether infection resulted from tissue cysts or oocysts. Water specimens were negative for the presence of viable T. gondii oocysts. However, seroprevalence in free-range chickens was significantly associated with vulnerability of groundwater to surface contamination (p toxoplasmosis in light of groundwater vulnerability information associated with prevalence in humans estimated by oocyst antigens recognition have implications for the potential role of hydrogeological assessment in researching waterborne toxoplasmosis at a global scale.

  8. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  9. HydroCube: an entity-relationship hydrogeological data model

    Science.gov (United States)

    Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain

    2010-12-01

    Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

  10. Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain)

    International Nuclear Information System (INIS)

    Andreo, Bartolome; Goldscheider, Nico; Vadillo, Inaki; Vias, Jesus Maria; Neukum, Christoph; Sinreich, Michael; Jimenez, Pablo; Brechenmacher, Julia; Carrasco, Francisco; Hoetzl, Heinz; Perles, Maria Jesus; Zwahlen, Francois

    2006-01-01

    The European COST action 620 proposed a comprehensive approach to karst groundwater protection, comprising methods of intrinsic and specific vulnerability mapping, validation of vulnerability maps, hazard and risk mapping. This paper presents the first application of all components of this Pan-European Approach to the Sierra de Libar, a karst hydrogeology system in Andalusia, Spain. The intrinsic vulnerability maps take into account the hydrogeological characteristics of the area but are independent from specific contaminant properties. Two specific vulnerability maps were prepared for faecal coliforms and BTEX. These maps take into account the specific properties of these two groups of contaminants and their interaction with the karst hydrogeological system. The vulnerability assessment was validated by means of tracing tests, hydrological, hydrochemical and isotope methods. The hazard map shows the localization of potential contamination sources resulting from human activities, and evaluates those according to their dangerousness. The risk of groundwater contamination depends on the hazards and the vulnerability of the aquifer system. The risk map for the Sierra de Libar was thus created by overlaying the hazard and vulnerability maps

  11. Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Andreo, Bartolome [Group of Hydrogeology, Faculty of Science, University of Malaga, Campus de Teatinos, E-29071 Malaga (Spain)]. E-mail: Andreo@uma.es; Goldscheider, Nico [Centre of Hydrogeology, University of Neuchatel, 11 rue Emile-Argand, CH-2007 Neuchatel (Switzerland); Vadillo, Inaki [Group of Hydrogeology, Faculty of Science, University of Malaga, Campus de Teatinos, E-29071 Malaga (Spain); Vias, Jesus Maria [Group of Hydrogeology, Faculty of Science, University of Malaga, Campus de Teatinos, E-29071 Malaga (Spain); Neukum, Christoph [Department of Applied Geology, University of Karlsruhe, Kaiserstrasse, 12, D-76128 Karlsruhe (Germany); Sinreich, Michael [Centre of Hydrogeology, University of Neuchatel, 11 rue Emile-Argand, CH-2007 Neuchatel (Switzerland); Jimenez, Pablo [Group of Hydrogeology, Faculty of Science, University of Malaga, Campus de Teatinos, E-29071 Malaga (Spain); Brechenmacher, Julia [Department of Applied Geology, University of Karlsruhe, Kaiserstrasse, 12, D-76128 Karlsruhe (Germany); Carrasco, Francisco [Group of Hydrogeology, Faculty of Science, University of Malaga, Campus de Teatinos, E-29071 Malaga (Spain); Hoetzl, Heinz [Department of Applied Geology, University of Karlsruhe, Kaiserstrasse, 12, D-76128 Karlsruhe (Germany); Perles, Maria Jesus [Group of Hydrogeology, Faculty of Science, University of Malaga, Campus de Teatinos, E-29071 Malaga (Spain); Zwahlen, Francois [Centre of Hydrogeology, University of Neuchatel, 11 rue Emile-Argand, CH-2007 Neuchatel (Switzerland)

    2006-03-15

    The European COST action 620 proposed a comprehensive approach to karst groundwater protection, comprising methods of intrinsic and specific vulnerability mapping, validation of vulnerability maps, hazard and risk mapping. This paper presents the first application of all components of this Pan-European Approach to the Sierra de Libar, a karst hydrogeology system in Andalusia, Spain. The intrinsic vulnerability maps take into account the hydrogeological characteristics of the area but are independent from specific contaminant properties. Two specific vulnerability maps were prepared for faecal coliforms and BTEX. These maps take into account the specific properties of these two groups of contaminants and their interaction with the karst hydrogeological system. The vulnerability assessment was validated by means of tracing tests, hydrological, hydrochemical and isotope methods. The hazard map shows the localization of potential contamination sources resulting from human activities, and evaluates those according to their dangerousness. The risk of groundwater contamination depends on the hazards and the vulnerability of the aquifer system. The risk map for the Sierra de Libar was thus created by overlaying the hazard and vulnerability maps.

  12. Groundwater vulnerability to pollution mapping of Ranchi district using GIS

    Science.gov (United States)

    Krishna, R.; Iqbal, J.; Gorai, A. K.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D), net recharge ( R), aquifer media ( A), soil media ( S), topography or slope ( T), impact of vadose zone ( I) and hydraulic Conductivity( C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  13. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    Science.gov (United States)

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D ), net recharge ( R ), aquifer media ( A ), soil media ( S ), topography or slope ( T ), impact of vadose zone ( I ) and hydraulic Conductivity( C )] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  14. Aquifer sensitivity to pesticide leaching: Testing a soils and hydrogeologic index method

    Science.gov (United States)

    Mehnert, E.; Keefer, D.A.; Dey, W.S.; Wehrmann, H.A.; Wilson, S.D.; Ray, C.

    2005-01-01

    For years, researchers have sought index and other methods to predict aquifer sensitivity and vulnerability to nonpoint pesticide contamination. In 1995, an index method and map were developed to define aquifer sensitivity to pesticide leaching based on a combination of soil and hydrogeologic factors. The soil factor incorporated three soil properties: hydraulic conductivity, amount of organic matter within individual soil layers, and drainage class. These properties were obtained from a digital soil association map. The hydrogeologic factor was depth to uppermost aquifer material. To test this index method, a shallow ground water monitoring well network was designed, installed, and sampled in Illinois. The monitoring wells had a median depth of 7.6 m and were located adjacent to corn and soybean fields where the only known sources of pesticides were those used in normal agricultural production. From September 1998 through February 2001, 159 monitoring wells were sampled for 14 pesticides but no pesticide metabolites. Samples were collected and analyzed to assess the distribution of pesticide occurrence across three units of aquifer sensitivity. Pesticides were detected in 18% of all samples and nearly uniformly from samples from the three units of aquifer sensitivity. The new index method did not predict pesticide occurrence because occurrence was not dependent on the combined soil and hydrogeologic factors. However, pesticide occurrence was dependent on the tested hydrogeologic factor and was three times higher in areas where the depth to the uppermost aquifer was <6 m than in areas where the depth to the uppermost aquifer was 6 to <15 m. Copyright ?? 2005 National Ground Water Association.

  15. Comparative studies of groundwater vulnerability assessment

    Science.gov (United States)

    Maria, Rizka

    2018-02-01

    Pollution of groundwater is a primary issue because aquifers are susceptible to contamination from land use and anthropogenic impacts. Groundwater susceptibility is intrinsic and specific. Intrinsic vulnerability refers to an aquifer that is susceptible to pollution and to the geological and hydrogeological features. Vulnerability assessment is an essential step in assessing groundwater contamination. This approach provides a visual analysis for helping planners and decision makers to achieve the sustainable management of water resources. Comparative studies are applying different methodologies to result in the basic evaluation of the groundwater vulnerability. Based on the comparison of methods, there are several advantages and disadvantages. SI can be overlaid on DRASTIC and Pesticide DRASTIC to extract the divergence in sensitivity. DRASTIC identifies low susceptibility and underestimates the pollution risk while Pesticide DRASTIC and SI represents better risk and is recommended for the future. SINTACS method generates very high vulnerability zones with surface waters and aquifer interactions. GOD method could be adequate for vulnerability mapping in karstified carbonate aquifers at small-moderate scales, and EPIK method can be used for large scale. GOD method is suitable for designing large area such as land management while DRASTIC has good accuracy and more real use in geoenvironmental detailed studies.

  16. Survey of geomorphological and hydrogeological data for mapping groundwater vulnerability of the Guarani Aquifer in Portão and Estância Velha/RS using the DRASTIC method

    Directory of Open Access Journals (Sweden)

    Osmar G. Wöhl Coelho

    2010-12-01

    Full Text Available The vulnerability mapping of groundwater contamination has been widely developed and included in municipal plans to guide environmental management policies and it is recommended in CONAMA 396 Resolution (Brasil, 2008. Portão and Estância Velha, RS regions present potencial risk of contamination due to industrial activities. The Guarani Aquifer System (SAG in the study area is composed by the Pirambóia and Botucatu Formations. Both formations are formed by sandstones and they are partially confined by the basalts of the Serra Geral Aquifer. The method DRASTIC was chosen to build the vulnerability map. The shallow water table and the sedimentary lithology are indicative factors of intermediate to high vulnerability. The soils were divided in domains according to their texture. The first domain of claysoil has an impermeable behavior. The infiltration tests and thick layers of clay confirm a low hydraulic conductivity of this pedological unit, providing a natural protection of the aquifer. However, in the study area, the second claysoil domain is dominant and has more diffuse sand in the profile. The restricted presence of expansive clay minerals increases the vulnerability. Occupancy of areas of high vulnerability is directly related to the contamination of the aquifer. The efficiency of the map is related to the interdependence of parameters involving hydrogeological and geomorphological aspects. Thus, it has been observed a high degree of vulnerability to groundwater contamination in 25% of the area, an intermediate vulnerability in 72.4%, and a low degree in only 2.6% of the area.

  17. Waterborne toxoplasmosis investigated and analyzed under hydrogeological assessment: new data and perspectives for further research

    Science.gov (United States)

    We present a set of data on human and chicken Toxoplasma gondii seroprevalence that was investigated and analyzed in light of groundwater vulnerability information in an area of endemic waterborne toxoplasmosis in Brazil. Hydrogeological assessment was undertaken to conduct water collection from wel...

  18. Intrinsic vulnerability assessment of the aquifer in the Rižana spring chatcment by method SINTACS

    Directory of Open Access Journals (Sweden)

    2002-12-01

    Full Text Available In this paper is presented intrinsic vulnerability assessment of the aquifer in the Rižana spring chatcment by the method SINTACS. It is parametric method that takes into consideration seven parameters (depth to ground water, effective infiltration action, unsaturatedzone attenuation capacity, soil/overburden attenuation capacity, hydrogeological characteristics of the aquifer, hydraulic conductivity range of aquifer, hydrologic role of the topographic slope. Parameters are presented in grid information layers that wereelaborated on the basis of interpretation and GIS processing of geological, hydrogeological,speleological, topographical, meteorological and pedological data. According to the parametersimportance for vulnerability assessment, a multiplier (importance weight was assigned to each parameter. Final map of vulnerability is a result of overlaying (summing of weighted information layers (parameters and shows the catchment area of the Rižanaspring subdivided into six vulnerability classes.

  19. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  20. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  1. Hydrogeological controls of variable microbial water quality in a complex subtropical karst system in Northern Vietnam

    Science.gov (United States)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-05-01

    Karst aquifers are particularly vulnerable to bacterial contamination. Especially in developing countries, poor microbial water quality poses a threat to human health. In order to develop effective groundwater protection strategies, a profound understanding of the hydrogeological setting is crucial. The goal of this study was to elucidate the relationships between high spatio-temporal variability in microbial contamination and the hydrogeological conditions. Based on extensive field studies, including mapping, tracer tests and hydrochemical analyses, a conceptual hydrogeological model was developed for a remote and geologically complex karst area in Northern Vietnam called Dong Van. Four different physicochemical water types were identified; the most important ones correspond to the karstified Bac Son and the fractured Na Quan aquifer. Alongside comprehensive investigation of the local hydrogeology, water quality was evaluated by analysis for three types of fecal indicator bacteria (FIB): Escherichia coli, enterococci and thermotolerant coliforms. The major findings are: (1) Springs from the Bac Son formation displayed the highest microbial contamination, while (2) springs that are involved in a polje series with connections to sinking streams were distinctly more contaminated than springs with a catchment area characterized by a more diffuse infiltration. (3) FIB concentrations are dependent on the season, with higher values under wet season conditions. Furthermore, (4) the type of spring capture also affects the water quality. Nevertheless, all studied springs were faecally impacted, along with several shallow wells within the confined karst aquifer. Based on these findings, effective protection strategies can be developed to improve groundwater quality.

  2. HYDROGEOLOGICAL AND HYDROCHEMICAL FEATURES OF KALNIK MASSIF

    Directory of Open Access Journals (Sweden)

    Vinko Mraz

    2008-12-01

    Full Text Available Kalničko gorje consists of Cretaceous – Holocene sediments, which can be in hydrogeological sense classified in three hydrogeological units: (1 northern area from central massive of Kalnik, consists of Cretaceous and low Miocene impermeable and low permeable sediments which are hydrogeological barrier and low permeable Cretaceous eruptive sediments ; (2 Kalnik massive consists of Paleogen and Baden permeable carbonate – clastic sediments, which are aquifer; (3 southern Kalnik area consists of Neogene low permeable sediments and Quaternary medium permeable unconsolidated deposits. In the hydrogelogical units are several aquifers types: (i Paleogen carbonate aquifer consists of limestone – dolomite breccia and this is the most important aquifer in the Kalnik area; (ii Baden carbonate aquifer consists of lithothamnium, lithothamnium limestone, sandstone and breccia-conglomerate and it has high permeability, especially through the karst morphological features; (iii Quaternary alluvial aquifers – the most important is in the valley of the Kamešnica river and it’s permeability varies from poor to good depending on granulometric properties; (iv Cretaceous eruptive aquifer from which in the Apatovac area is abstraction of mineral water. The aquifers of the Kalnik area are very vulnerable considering the hydrogeological properties of the area. Nevertheless, physical, physicalchemical, and chemical properties of groundwater in the Kalnik area are showing that waters are of very good quality. The reasons of good quality of waters are that the area is poorly populated and there is no potential pollutant. The area is very valuable and important natural resource for water supply of whole region. In the future it is necessary to provide good protection and sustainable water management to obtain today’s good quality and quantity of groundwater (the paper is published in Croatian.

  3. Tono regional hydrogeological study project. Annual report 2004

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Ota, Kunio; Takeuchi, Shinji; Amano, Kenji; Takeuchi, Ryuji; Saegusa, Hiromitsu; Osawa, Hideaki

    2005-09-01

    Tono Geoscience Center, Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build firm scientific and technological basis for the research and development of geological disposal. One of the geoscientific research programme is a Regional Hydrogeological Study (RHS) project in the Tono region, central Japan. This report mainly summarizes the results of research in DH-14 and DH-15 boreholes at Toki city and Mizunami city in fiscal year 2004 which were carried out to support and improve the results in fiscal year 2003. The research in the regional scale area shows the reliability of conceptual hydrogeological model and numerical simulation for the evaluation of regional hydrogeology. On the other hand, the geological and geophysical investigation, and borehole investigation during the surface-based investigations in the local scale area provide the pragmatic distribution of hydrogeological structure that may control regional groundwater hydrology. Hydrogeological simulations regarding the geological structure such as fault and hydrogeological property demonstrate the priority of investigation of geological structure for the evaluation of hydrogeology. The fault perpendicular to groundwater flow direction crucially affects on regional hydrology. Such fault is necessary to be investigated by priority. Hydrochemical investigation shows that chemical evolution process in this groundwater illustrated is mixing between groundwaters with different salinities. Principal component analysis and mass balance calculation reveal reliable chemistry of end-member waters for mixing. Regarding methodology development, the strategy and procedure of investigations are summarized based on the results of surface-based investigation. Moreover the multi interval monitoring system for water pressure and temperature has developed and started to monitor the in-situ condition of groundwater. The geology, geological structure, hydraulic

  4. Groundwater vulnerability assessment: from overlay methods to statistical methods in the Lombardy Plain area

    Directory of Open Access Journals (Sweden)

    Stefania Stevenazzi

    2017-06-01

    Full Text Available Groundwater is among the most important freshwater resources. Worldwide, aquifers are experiencing an increasing threat of pollution from urbanization, industrial development, agricultural activities and mining enterprise. Thus, practical actions, strategies and solutions to protect groundwater from these anthropogenic sources are widely required. The most efficient tool, which helps supporting land use planning, while protecting groundwater from contamination, is represented by groundwater vulnerability assessment. Over the years, several methods assessing groundwater vulnerability have been developed: overlay and index methods, statistical and process-based methods. All methods are means to synthesize complex hydrogeological information into a unique document, which is a groundwater vulnerability map, useable by planners, decision and policy makers, geoscientists and the public. Although it is not possible to identify an approach which could be the best one for all situations, the final product should always be scientific defensible, meaningful and reliable. Nevertheless, various methods may produce very different results at any given site. Thus, reasons for similarities and differences need to be deeply investigated. This study demonstrates the reliability and flexibility of a spatial statistical method to assess groundwater vulnerability to contamination at a regional scale. The Lombardy Plain case study is particularly interesting for its long history of groundwater monitoring (quality and quantity, availability of hydrogeological data, and combined presence of various anthropogenic sources of contamination. Recent updates of the regional water protection plan have raised the necessity of realizing more flexible, reliable and accurate groundwater vulnerability maps. A comparison of groundwater vulnerability maps obtained through different approaches and developed in a time span of several years has demonstrated the relevance of the

  5. Masteŕ s Programme at Stockholm University: Hydrology, Hydrogeology and Water Resources

    Science.gov (United States)

    Jarsjö, J.; Destouni, G.; Lyon, S. W.; Seibert, J.

    2009-04-01

    Many environmental risks and societal concerns are directly related to the way we manage our land and water environments. The two-year master's programme "Hydrology, Hydrogeology and Water Resources" at Stockholm University, Sweden, is based on a system perspective and provides extended knowledge about water and soil-rock-sediment systems and how these interact with each other and with land use, socio-economic and water resource policy and management systems. This water system perspective includes the spreading of dissolved substances and pollutants in various water systems and associated risks for society. Questions related to water resources are also covered: the management of water resources and conflicts as well as collaborations caused by shared water resources on local, regional and global scales. A common learning objective for the courses in the programme is to be able to identify, extract and combine relevant information from databases and scientific publications, and use the resulting dataset in hydrological, hydrogeological and water resources analyses, on local, regional or global levels. Traditional classroom teaching is to large extent complemented by case study analyses, performed as project assignments. The importance of water resources for both the society and the environment is emphasized through applications to practical water resources management challenges in society. The courses in this program include the following topics: · Hydrological and hydrogeological processes, main components of the water cycle (e.g., precipitation, evapotranspiration, discharge) and the spreading of dissolved substances and pollutants in various water systems. · Water resources and water quality, pollution spreading through surface, ground and coastal water systems, as well as vulnerability and resilience of water resources. · Regional analyses related to global water resource vulnerability and resilience. · Models and information systems as important tools for

  6. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  7. Preliminary survey of the vulnerability to the contamination of the aquifers of Morondava river catchments

    International Nuclear Information System (INIS)

    Randrianasolo, A.F.

    2004-01-01

    The objective of this work is to make a preliminary survey of the vulnerability to the contamination of the aquifers of Morondava river catchments. The methods used are the geological and hydrogeological surveys, the hydrochemistry and isotopic techniques. This survey allows us to have an overview of the chemical features of groundwaters, conditions of recharge, and especially to determine the potential and active zone of nitrate pollution. Two field works have been carried out within the frame of MAG/8/003 project. The first one is focused on groundwater sampling and surface water sampling, and the second one is based on the geological and hydrogeological surveys. The samples were sent for isotope ( 18 O, 2 H, 15 N, 87 Sr, 3 H) and chemical analysis to the I.A.E.A laboratories. The survey gave the following conclusions: the groundwaters are affected by evaporation before or during infiltration and saline intrusion. The region of Morondava is submitted to a regime of simple oceanic precipitation (excess in deuterium). The boreholes waters is of sodic-bicarbonate chemical type, whereas well waters belong to the calcic-bicarbonate. The superficial aquifers (subsurface water) trapped by the wells are more vulnerable than deep aquifers (homogeneous aquifers) trapped by boreholes. These hypotheses are proven by geological and hydrogeological investigations, by the groundwaters nitrate analyses results, and are confirmed by radioactive isotope. [fr

  8. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya

    2007-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  9. Hydrogeology of Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George; Bruce, T. Scott; Bailey, Christopher M.; Sherwood, W. Cullen; Eaton, L. Scott; Powars, David S.

    2016-01-01

    The hydrogeology of Virginia documented herein is in two parts. Part 1 consists of an overview and description of the hydrogeology within each regional aquifer system in the Commonwealth. Part 2 includes discussions of hydrogeologic research topics of current relevance including: 1. the Chesapeake Bay impact structure, 2. subsidence/compaction in the Coastal Plain, 3. groundwater age and aquifer susceptibility, 4. the occurrence of groundwater at depth in fractured-rock and karst terrains, and 5. hydrologic response of wells to earthquakes around the world.

  10. Determining shallow aquifer vulnerability by the DRASTIC model and hydrochemistry in granitic terrain, southern India

    Science.gov (United States)

    Mondal, N. C.; Adike, S.; Singh, V. S.; Ahmed, S.; Jayakumar, K. V.

    2017-08-01

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been cross-verified with hydrochemical signatures such as total dissolved solids (TDS), Cl-, HCO3-, SO4^{2-} and Cl-/HCO3- molar ratios. The results show four zones of aquifer vulnerability (i.e., negligible, low, moderate and high) based on the variation of DRASTIC Vulnerability Index (DVI) between 39 and 132. About 57% area in the central part is found moderately and highly contaminated due to the 80 functional tannery disposals and is more prone to groundwater aquifer vulnerability. The high range values of TDS (2304-39,100 mg/l); Na+(239- 6,046 mg/l) and Cl- (532-13,652 mg/l) are well correlated with the observed high vulnerable zones. The values of Cl-/HCO3- (molar ratios: 1.4-106.8) in the high vulnerable zone obviously indicate deterioration of the aquifer due to contamination. Further cumulative probability distributions of these parameters indicate several threshold values which are able to demarcate the diverse vulnerability zones in granitic terrain.

  11. Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model.

    Science.gov (United States)

    Rebolledo, Boris; Gil, Antonia; Flotats, Xavier; Sánchez, José Ángel

    2016-04-15

    In the present study an overlay method to assess groundwater vulnerability is proposed. This new method based on multicriteria decision analysis (MCDA) was developed and validated using an appropriate case study in Aragon area (NE Spain). The Vulnerability Index to Nitrates from Agricultural Sources (VINAS) incorporates a novel Logic Scoring of Preferences (LSP) approach, and it has been developed using public geographic information from the European Union. VINAS-LSP identifies areas with five categories of vulnerability, taking into account the hydrogeological and environmental characteristics of the territory as a whole. The resulting LSP map is a regional screening tool that can provide guidance on the potential risk of nitrate pollution, as well as highlight areas where specific research and farming planning policies are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. HYDROGEOLOGICAL RELATIONS ON KARSTIFIED ISLANDS - VIS ISLAND CASE STUDY

    Directory of Open Access Journals (Sweden)

    Josip Terzić

    2004-12-01

    Full Text Available An approach to the hydrogeological investigations on Adriatic islands is presented on the Island of Vis case study. Infiltration, accumulation and discharge of the groundwater occur in karstified rock mass. Hydrogeological relations are mostly a consequence of the geological setting, because of the complete hydrogeologic barrier in Komiža bay, and relative barrier in the area of karst poljes. Significant research was performed in the 1999 – 2000 period aimed of better understanding of hydrogeological relations. These investigations, as well as reinterpretation of some previously known data, included structural geology, hydrogeology, hydrology and hydrochemistry. Approximate rock mass hydraulic conductivity calculation is also shown, as well as level of its usability in such terrain. Based on all these methods, it is possible to conclude that on the Island of Vis there is no saline water present underneath the entire island. There is only a saline water wedge which is formed on the top of relatively impermeable base rock, some few tens of meters under recent sea level. With such a model, and taking in account the hydrological balance, it is possible to conclude that there is possibility of higher amount of groundwater exploitation then it is today (the paper is published in Croatian.

  13. Undergraduate Education in Hydrogeology.

    Science.gov (United States)

    Tinker, John Richard, Jr.

    1989-01-01

    Discusses a course at the University of Wisconsin-Eau Claire which improved instruction in physical hydrogeology, chemical hydrogeology, and water resources. Describes 14 laboratory activities including objectives, methods, and a list of equipment needed. (Author/MVL)

  14. Bedrock Hydrogeology-Groundwater flow modelling. Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven; Oden, Magnus

    2013-05-01

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain

  15. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  16. Vulnerability curves vs. vulnerability indicators: application of an indicator-based methodology for debris-flow hazards

    Science.gov (United States)

    Papathoma-Köhle, Maria

    2016-08-01

    The assessment of the physical vulnerability of elements at risk as part of the risk analysis is an essential aspect for the development of strategies and structural measures for risk reduction. Understanding, analysing and, if possible, quantifying physical vulnerability is a prerequisite for designing strategies and adopting tools for its reduction. The most common methods for assessing physical vulnerability are vulnerability matrices, vulnerability curves and vulnerability indicators; however, in most of the cases, these methods are used in a conflicting way rather than in combination. The article focuses on two of these methods: vulnerability curves and vulnerability indicators. Vulnerability curves express physical vulnerability as a function of the intensity of the process and the degree of loss, considering, in individual cases only, some structural characteristics of the affected buildings. However, a considerable amount of studies argue that vulnerability assessment should focus on the identification of these variables that influence the vulnerability of an element at risk (vulnerability indicators). In this study, an indicator-based methodology (IBM) for mountain hazards including debris flow (Kappes et al., 2012) is applied to a case study for debris flows in South Tyrol, where in the past a vulnerability curve has been developed. The relatively "new" indicator-based method is being scrutinised and recommendations for its improvement are outlined. The comparison of the two methodological approaches and their results is challenging since both methodological approaches deal with vulnerability in a different way. However, it is still possible to highlight their weaknesses and strengths, show clearly that both methodologies are necessary for the assessment of physical vulnerability and provide a preliminary "holistic methodological framework" for physical vulnerability assessment showing how the two approaches may be used in combination in the future.

  17. Editors' message--Hydrogeology Journal in 2003

    Science.gov (United States)

    Voss, Clifford; Olcott, Perry; Schneider, Robert

    2004-01-01

    Hydrogeology Journal appeared in six issues containing a total of 710 pages and 48 major articles, including 31 Papers and 14 Reports, as well as some Technical Notes and Book Reviews. The number of submitted manuscripts continues to increase. The final issue of 2003 also contained the annual volume index. Hydrogeology Journal (HJ) is an international forum for hydrogeology and related disciplines and authors in 2003 were from about 28 countries. Articles advanced hydrogeologic science and described hydrogeologic systems in many regions worldwide. These articles focused on a variety of general topics and on studies of hydrogeology in 24 countries: Afghanistan, Algeria, Argentina, Australia, Bangladesh, Belgium, Canada, Chile, China, Denmark, France, India, Italy, Mexico, Netherlands, New Zealand, Nigeria, Norway, Portugal, Russia, South Africa, Switzerland, Turkey, and U.S.A. The Guest Editor of the 2003 HJ theme issue on “Hydromechanics in Geology and Geotechnics”, Ove Stephansson, assembled a valuable collection of technical reviews and research papers from eminent authors on important aspects of the subject area.

  18. Seismic Vulnerability Evaluations Within The Structural And Functional Survey Activities Of The COM Bases In Italy

    International Nuclear Information System (INIS)

    Zuccaro, G.; Cacace, F.; Albanese, V.; Mercuri, C.; Papa, F.; Pizza, A. G.; Sergio, S.; Severino, M.

    2008-01-01

    The paper describes technical and functional surveys on COM buildings (Mixed Operative Centre). This activity started since 2005, with the contribution of both Italian Civil Protection Department and the Regions involved. The project aims to evaluate the efficiency of COM buildings, checking not only structural, architectonic and functional characteristics but also paying attention to surrounding real estate vulnerability, road network, railways, harbours, airports, area morphological and hydro-geological characteristics, hazardous activities, etc. The first survey was performed in eastern Sicily, before the European Civil Protection Exercise ''EUROSOT 2005''. Then, since 2006, a new survey campaign started in Abruzzo, Molise, Calabria and Puglia Regions. The more important issue of the activity was the vulnerability assessment. So this paper deals with a more refined vulnerability evaluation technique by means of the SAVE methodology, developed in the 1st task of SAVE project within the GNDT-DPC programme 2000-2002 (Zuccaro, 2005); the SAVE methodology has been already successfully employed in previous studies (i.e. school buildings intervention programme at national scale; list of strategic public buildings in Campania, Sicilia and Basilicata). In this paper, data elaborated by SAVE methodology are compared with expert evaluations derived from the direct inspections on COM buildings. This represents a useful exercise for the improvement either of the survey forms or of the methodology for the quick assessment of the vulnerability

  19. Hydrogeological and hydrogeochemical study in the municipality of Mani, Casanare Dept

    International Nuclear Information System (INIS)

    Veloza Franco, Jairo Alfredo; Morales Arias, Carlos Julio

    2009-01-01

    Geology, Hydrogeology and Hydrogeochemistry play a crucial role in the evaluation of wells and cisterns for drinking water especially in municipalities like Mani because in times of low rainfall has not been sustainable water resources. Mani hydrogeological system is determined by interesting primary porosity reservoirs. However, given the inaccuracy and poor analysis that has been done to the aquifer is necessary to develop this study because the wells and cisterns were built in craft conditions without any professional and technical support. It is important to emphasize that Mani has no a sewer system, so the groundwater resources are highly vulnerable to contamination, which has been analyzed for the temporal and spatial evolution of the aquifer through piezometers maps in times of low and high precipitation. Hydrogeochemistry evaluation becomes more important to confirm the possible hydraulic connections surface water - groundwater, identifying chemical conditions and their behavior in the deposits and geological formations from the Pie de monte Llanero. High PO 4 levels and the presence of As are mainly due to agricultural activities using large amounts of pesticides, fertilizers and insecticides.

  20. Teaching hydrogeology: a review of current practice

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-07-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  1. Hydrogeology of Gypsum formations

    Directory of Open Access Journals (Sweden)

    Klimchouk A.

    1996-01-01

    Full Text Available Detailed explanation of hydrogeological characteristics of gypsum aquifers is given in various situations: deep-seated karst-confined conditions, subjacent, entrenched and denuded karst types-semi-confined, phreatic and vadose conditions. The hydrogeological evolution of barren exposed gypsum karst and flow velocities in gypsum karst aquifers is also discussed.

  2. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  3. Assessing environmental vulnerability in EIA-The content and context of the vulnerability concept in an alternative approach to standard EIA procedure

    International Nuclear Information System (INIS)

    Kvaerner, Jens; Swensen, Grete; Erikstad, Lars

    2006-01-01

    In the traditional EIA procedure environmental vulnerability is only considered to a minor extent in the early stages when project alternatives are worked out. In Norway, an alternative approach to EIA, an integrated vulnerability model (IVM), emphasising environmental vulnerability and alternatives development in the early stages of EIA, has been tried out in a few pilot cases. This paper examines the content and use of the vulnerability concept in the IVM approach, and discusses the concept in an EIA context. The vulnerability concept is best suited to overview analyses and large scale spatial considerations. The concept is particularly useful in the early stages of EIA when alternatives are designed and screened. By introducing analyses of environmental vulnerability at the start of the EIA process, the environment can be a more decisive issue for the creation of project alternatives as well as improving the basis for scoping. Vulnerability and value aspects should be considered as separate dimensions. There is a need to operate with a specification between general and specific vulnerability. The concept of environmental vulnerability has proven useful in a wide range of disciplines. Different disciplines have different lengths of experience regarding vulnerability. In disciplines such as landscape planning and hydrogeology we find elements suitable as cornerstones in the further development of an interdisciplinary methodology. Further development of vulnerability criteria in different disciplines and increased public involvement in the early stages of EIA are recommended

  4. Hydrogeological map of Italy: the preliminary Sheet N. 348 Antrodoco (Central Italy

    Directory of Open Access Journals (Sweden)

    Marco Amanti

    2016-07-01

    Full Text Available The Geological Survey of Italy, Italian National Institute for Environmental Protection and Research is realizing the Sheet N.348 Antrodoco (Central Italy of the Hydrogeological map of Italy as a cartographical test of the Italian hydrogeological survey and mapping guidelines, in the frame of the Italian Geological Cartography Project. The study area is characterized by structural units deeply involved in the Apennine Orogeny (Latium and Abruzzi region territory, Rieti and L’Aquila provinces and including deposits of marine carbonate shelf, slope, basin and foredeep environments hosting relatively large amounts of groundwater resources. The map was realized to obtain the best possible representation of all hydrogeological elements deriving from field surveys, in order to characterize the hydrogeological asset. A control network for monthly measurement of surface and groundwater flow rates and hydrogeochemical parameters was performed. Data were uploaded in a geographic information system to perform the present preliminary hydrogeological cartography consisting in a main map showing the following hydrogeological complexes based on relative permeability degree (from bottom to top: i calcareous (Jurassic-Cretaceous; high permeability; ii calcareous-marly (Upper Cretaceous-Middle Eocene; intermediate permeability; iii marly-calcareous and marly (Upper Eocene- Upper Miocene; low permeability; iv flysch (Upper Miocene; low permeability; v conglomeratic-sandy and detritic (Upper Pliocene- Pleistocene; intermediate permeability; vi alluvial (Quaternary; low permeability. Among other elements shown in the main map there are hydrographical basin and sub-basin boundaries, stream gauging stations, meteo-climatic stations, streamwater-groundwater exchange processes, hydrostructure boundaries, point and linear spring flow rates, groundwater flow directions. Furthermore, complementary smaller-scale sketches at the margin of the main map were realized (e

  5. The Vulnerability of People to Damaging Hydrogeological Events in the Calabria Region (Southern Italy

    Directory of Open Access Journals (Sweden)

    Olga Petrucci

    2017-12-01

    Full Text Available Background: Damaging Hydrogeological Events (DHEs are severe weather periods during which floods, landslides, lightning, windstorms, hail or storm surges can harm people. Climate change is expected to increase the frequency/intensity of DHEs and, consequently, the potential harm to people. Method: We investigated the impacts of DHEs on people in Calabria (Italy over 37 years (1980–2016. Data on 7288 people physically affected by DHEs were gathered from the systematic analysis of regional newspapers and collected in the database named PEOPLE. The damage was codified in three severity levels as follows: fatalities (people who were killed, injured (people who suffered physical harm and involved (people who were present at the place where an accident occurred but survived and were not harmed. During the study period, we recorded 68 fatalities, 566 injured and 6654 people involved in the events. Results: Males were more frequently killed, injured and involved than females, and females who suffered fatalities were older than males who suffered fatalities, perhaps indicating that younger females tended to be more cautious than same-aged males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, suggesting that younger people show greater promptness in reacting to dangerous situations. Floods caused the majority of the fatalities, injured and involved people, followed by landslides. Lightning was the most dangerous phenomenon, and it affected a relatively low number of people, killing 11.63% of them and causing injuries to 37.2%. Fatalities and injuries mainly occurred outdoors, largely along roads. In contrast, people indoors, essentially in public or private buildings, were more frequently involved without suffering harm. Being “dragged by water/mud” and “surrounded by water/mud”, respectively, represented the two extremes of dynamic dangerousness. The dragging

  6. Expert panel on hydrogeology; report to AECL Research (1992)

    International Nuclear Information System (INIS)

    Domenico, P.A.; Grisak, G.E.; Schwartz, F.W.

    1995-02-01

    In 1992 AECL Research convened a panel of external hydrogeological experts consisting of P.A. Domenico, G.E. Grisak, and F.W. Schwartz, to review AECL's proposed approach to siting a geological repository in the rocks of the Canadian Shield for the safe disposal of Canada's nuclear fuel wastes. In particular the panel was asked to provide its opinion on 1) the soundness of the technical approach developed to characterize the groundwater flow systems for the purpose of selecting a location for a disposal vault, 2) the validity and effectiveness of the geological case study used to demonstrate the performance assessment methodology based on the hydrogeological conditions observed at the Whiteshell Research Area, and 3) the adequacy of the hydrogeological information that AECL proposes to use in its Environmental Impact Statement (EIS) of the disposal concept. This report presents the findings, conclusions and recommendations of the hydrogeology review panel. The report was submitted to AECL Research in 1992 December. (author). 24 refs., 2 tabs., 4 figs

  7. Flowing with the changing needs of hydrogeology instruction

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-01-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the diverse background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey of 68 hydrogeology instructors. The literature and survey results suggest there are ~15 topics that are considered crucial by most hydrogeologists and >100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  8. Vulnerability assessment of the Toluca Valley aquifer combining a parametric approach and advective transport

    International Nuclear Information System (INIS)

    Gárfias, J.; Llanos, H.; Franco, R.; Martel, R.

    2017-01-01

    Groundwater vulnerability assessment is an important task in water resources and land management. Depending on the availability of data and the complexity of the hydrogeological conditions, different approaches can be adopted. As an alternative, this study involves the use of a combined approach based on vulnerability methods and advective particle tracking to better understand the susceptibility to contamination in the Toluca valley aquifer. An intrinsic vulnerability map (DRASTIC) was used to identify areas that are more susceptible to ground water contamination. To estimate advective particle tracking, we developed a 3D flow model using VisualModflow and MODPATH to describe the regional flow of groundwater. The vulnerability map demonstrates the problematic application and interpretation of qualitative the vulnerability method of the parametric system group, which indicates a difference of approximately 23% when compared with the modified vulnerability map. Potential contamination sources based on landfill sites were comparatively high; approximately 76% are located in areas that could be susceptible to contamination through vertical infiltration, especially those that are located along the Lerma system of wells. Industrial parks located in the centre of the valley (83%), where continuous extraction of groundwater and land subsidence occurs, have been classified as high vulnerability zones, increasing the risk of contaminants from surface sources reaching the groundwater. In order to understand the susceptibility to contamination in the aquifer, various delineation approaches should be adopted and all the results that validate each other should be considered, thus making a good strategy for implementing different degrees of protection measures. [es

  9. Hydrogeology of Mors

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The covering layers protect the salt in the dome. Ground water velocities are small and the chalk exhibits good retention properties for the radionuclides. As ground water velocities below 500 m are small, knowledge of hydrogeology over only a small area over the dome is necessary (1 km horizontal transport takes about 15 mill. years). Additionally if the retention properties of the chalk together with radioactive decay are taken into account, it becomes obvious that the nuclides can travel only a few metres into the chalk, before they have decayed to safe radioactive levels. Therefore it does not appear to be necessary to investigate the hydrogeology beyond a few metres from the disposal area. The hydrogeological investigations that have been carried out, although they cover only a limited area, thus give an excellent and sufficient basis for a safety evaluation for determining the suitability of the Mors salt dome for waste disposal. (EG)

  10. An evaluation of hydrogeologic data of crystalline rock systems

    International Nuclear Information System (INIS)

    Raven, K.G.; Lafleur, D.W.

    1986-12-01

    This report presents a detailed review of hydrogeologic data collected as part of various research programs investigating fractured crystalline rock around the world. Based on the available information describing the test equipment, test methods and analytical techniques, the data have been assessed in terms of their reliability and representativeness, and likely error ranges have been assigned. The data reviewed include both hydrogeologic parameters, such as permeability, storage coefficient components (principally porosity), and fracture characteristic data

  11. A Mamdani Adaptive Neural Fuzzy Inference System for Improvement of Groundwater Vulnerability.

    Science.gov (United States)

    Agoubi, Belgacem; Dabbaghi, Radhia; Kharroubi, Adel

    2018-01-23

    Assessing groundwater vulnerability is an important procedure for sustainable water management. Various methods have been developed for effective assessment of groundwater vulnerability and protection. However, each method has its own conditions of use and, in practice; it is difficult to return the same results for the same site. The research conceptualized and developed an improved DRASTIC method using Mamdani Adaptive Neural Fuzzy Inference System (M-ANFIS-DRASTIC). DRASTIC and M-ANFIS-DRASTIC were applied in the Jorf aquifer, southeastern Tunisia, and results were compared. Results confirm that M-ANFIS-DRASTIC combined with geostatistical tools is more powerful, generated more precise vulnerability classes with very low estimation variance. Fuzzy logic has a power to produce more realistic aquifer vulnerability assessments and introduces new ways of modeling in hydrogeology using natural human language expressed by logic rules. © 2018, National Ground Water Association.

  12. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method.

    Science.gov (United States)

    Kattaa, Bassam; Al-Fares, Walid; Al Charideh, Abdul Rahman

    2010-05-01

    Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and landuse planning. This contribution aims at estimating aquifer vulnerability by applying the RISKE model in Banyas Catchment Area (BCA), Tartous Prefecture, west Syria. An additional objective is to demonstrate the combined use of the RISKE model and a geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The RISKE model uses five environmental parameters (Rock of aquifer media, Infiltration, Soil media, Karst, and Epikarst) to characterize the hydro-geological setting and evaluate aquifer vulnerability. The elevated eastern and low western part of the study area was dominated by high vulnerability classes, while the middle part was characterized by moderate vulnerability classes. Based on the vulnerability analysis, it was found that 2% and 39% of BCA is under low and high vulnerability to groundwater contamination, respectively, while more than 52% and 5% of the area of BCA can be designated as an area of moderate and very high vulnerability to groundwater contamination, respectively. The GIS technique has provided an efficient environment for analyses and high capabilities of handling a large amount of spatial data. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    T.E. Oni

    2017-12-01

    Full Text Available Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2 of 65 m in (41 different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement. The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer and GLSI (geoelectric layer susceptibility indexing. The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1–0.19 area, while the northern and southern parts have poor protective capacity (<0.1; this is in agreement with the GOD method which shows the northern part of the study area as less vulnerable (0–0.1 while the southern part has low/moderate (0.1–0.3 vulnerability to contamination. The longitudinal conductance exaggerates the degree of susceptibility to contamination than the GOD and GLSI models. From the models, vulnerability to contamination can be considered higher at the southern part than the northern part and therefore, sources of contamination like septic tank, refuse dump should be cited far from groundwater development area. Keywords: Aquifer vulnerability, Longitudinal conductance, GOD and GLSI

  14. Education and Employment in Hydrogeology.

    Science.gov (United States)

    Pederson, Darryll T.

    1987-01-01

    Reports on a study of position descriptions in the field of hydrogeology appearing in want ads, published studies describing the working professional, and published descriptions of hydrogeology programs. Results indicate an increase in positions of ten times that of five years ago. Suggests basic training requirements for beginning…

  15. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA.

    Science.gov (United States)

    Li, Ruopu; Merchant, James W

    2013-03-01

    Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Hydrogeological characterization of deep subsurface structures at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Saegusa, Hiromitsu; Amano, Kenji; Takeuchi, Ryuji

    2013-01-01

    Several hydrogeological investigation techniques have been used at the Mizunami Underground Research Laboratory site to assess hydrogeological structures and their control on groundwater flow. For example, the properties of water-conducting features (WCFs) can be determined using high-resolution electrical conductivity measurements of fluids, and compared to measurements using conventional logging techniques. Connectivity of WCFs can be estimated from transmissivity changes over time, calculated from the pressure derivative of hydraulic pressure data obtained from hydraulic testing results. Hydraulic diffusivity, obtained from hydraulic interference testing by considering the flow dimension, could be a key indicator of the connectivity of WCFs between boreholes. A conceptual hydrogeological model of several hundred square meters to several square kilometers, bounded by flow barrier structures, has been developed from pressure response plots, based on interference hydraulic testing. The applicability of several methods for developing conceptual hydrogeological models has been confirmed on the basis of the hydrogeological investigation techniques mentioned above. (author)

  17. Hydrogeological structure model of the Olkiluoto Site. Update in 2010

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Nummela, J.; Paulamaeki, S.

    2011-09-01

    As part of the programme for the final disposal of spent nuclear fuel, a hydrogeological structure model containing the hydraulically significant zones on Olkiluoto Island has been compiled. The structure model describes the deterministic site scale zones that dominate the groundwater flow. The main objective of the study is to provide the geometry and the hydrogeological properties related to the groundwater flow for the zones and the sparsely fractured bedrock to be used in the numerical modelling of groundwater flow and geochemical transport and thereby in the safety assessment. Also, these zones should be taken into account in the repository layout and in the construction of the disposal facility and they have a long-term impact on the evolution of the site and the safety of the disposal repository. The previous hydrogeological model was compiled in 2008 and this updated version is based on data available at the end of May 2010. The updating was based on new hydrogeological observations and a systematic approach covering all drillholes to assess measured fracture transmissivities typical of the site-scale hydrogeological zones. New data consisted of head observations and interpreted pressure and flow responses caused by field activities. Essential background data for the modelling included the ductile deformation model and the site scale brittle deformation zones modelled in the geological model version 2.0. The GSM combine both geological and geophysical investigation data on the site. As a result of the modelling campaign, hydrogeological zones HZ001, HZ008, HZ19A, HZ19B, HZ19C, HZ20A, HZ20B, HZ21, HZ21B, HZ039, HZ099, OL-BFZ100, and HZ146 were included in the structure model. Compared with the previous model, zone HZ004 was replaced with zone HZ146 and zone HZ039 was introduced for the first time. Alternative zone HZ21B was included in the basic model. For the modelled zones, both the zone intersections, describing the fractures with dominating groundwater

  18. The KINDRA H2020 Project: a knowledge inventory for hydrogeology research

    Science.gov (United States)

    Petitta, Marco; Bodo, Balazs; Caschetto, Mariachiara; Correia, Victor; Cseko, Adrienn; Fernandez, Isabel; Hartai, Eva; Hinsby, Klaus; Madarasz, Tamas; Garcia Padilla, Mercedes; Szucs, Peter

    2015-04-01

    Hydrogeology-related research activities cover a wide spectrum of research areas at EU and national levels. This fact is due to the intrinsic nature of the "water" topic, representing a key-aspect of the modern society: water is not only necessary for human, biological and environmental requirements, but it is one basic "engine" of several interconnected research topics, including energy, health, climate, food, security and others as exemplified by the water-food-energy-climate nexus described by e.g. the World Economic Forum. With respect to the water cycle, the management of groundwater brings additional challenges to the implementation of the Water Framework Directive (WFD) and climate change adaptation (such as integrated transboundary management of groundwater resources). This fact is related to the nature of groundwater, which represents the "hidden" part of the water cycle, difficult to evaluate, communicate and appreciate, although it sustains the health of both humans and ecosystems as well as industrial and agricultural production. In general, groundwater has been considered mainly for its relationships with surface waters, influencing river flow, e-flows, GDE (groundwater-dependent ecosystems), pollutant fate, agricultural practices, water scarcity and others. In this framework, the importance of groundwater inside the WFD has been reinforced by the daughter directive on groundwater. In the last years, particular insights have been developed on surface waters/groundwater interactions and several related research projects have been carried out. Nevertheless, a specific focus on hydrogeology, the science branch studying groundwater, has not looked into until now, despite of its utmost importance as renewable, high-quality, naturally protected (but still vulnerable) resource. At the same time the European knowledge-base that has been acquired on this important topic is widespread into several projects, plans, actions, realized at national and fragmented

  19. GIS-based groundwater vulnerability modelling: A case study of the Witbank, Ermelo and Highveld Coalfields in South Africa

    Science.gov (United States)

    Sakala, E.; Fourie, F.; Gomo, M.; Coetzee, H.

    2018-01-01

    In the last 20 years, the popular mineral systems approach has been used successfully for the exploration of various mineral commodities at various scales owing to its scientific soundness, cost effectiveness and simplicity in mapping the critical processes required for the formation of deposits. In the present study this approach was modified for the assessment of groundwater vulnerability. In terms of the modified approach, water drives the pollution migration processes, with various analogies having been derived from the mineral systems approach. The modified approach is illustrated here by the discussion of a case study of acid mine drainage (AMD) pollution in the Witbank, Ermelo and Highveld coalfields of the Mpumalanga and KwaZulu-Natal Provinces in South Africa. Many AMD cases have been reported in these provinces in recent years and are a cause of concern for local municipalities, mining and environmental agencies. In the Witbank, Ermelo and Highveld coalfields, several areas have been mined out while mining has not yet started in others, hence the need to identify groundwater regions prone to AMD pollution in order to avoid further impacts on the groundwater resources. A knowledge-based fuzzy expert system was built using vulnerability factors (energy sources, ligands sources, pollutant sources, transportation pathways and traps) to generate a groundwater vulnerability model of the coalfields. Highly vulnerable areas were identified in Witbank coalfield and the eastern part of the Ermelo coalfield which are characterised by the presence of AMD sources, good subsurface transport coupled with poor AMD pollution trapping properties. The results from the analysis indicate significant correlations between model values and both groundwater sulphate concentrations as well as pH. This shows that the proposed approach can indeed be used as an alternative to traditional methods of groundwater vulnerability assessment. The methodology only considers the AMD pollution

  20. Hydrogeological investigation for sitting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Lv Chuanhe

    2005-01-01

    Based on the research experiences of our country and some developed countries in the world, the purpose, process and methods, as well as the function of hydrogeological investigation for sitting disposal repository for high radioactive waste are discussed. Meanwhile, the topic related to the acquisition of hydrogeological parameters is described as well, aiming at providing reference for the future study. (authors)

  1. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    Science.gov (United States)

    Michele, Mangiameli; Giuseppe, Mussumeci

    2015-12-01

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks..

  2. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    International Nuclear Information System (INIS)

    Michele, Mangiameli; Giuseppe, Mussumeci

    2015-01-01

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks.

  3. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci [Dept. of Civil Engineering and Architecture, University of Catania, Catania (Italy)

    2015-12-31

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks.

  4. VuWiki: An Ontology-Based Semantic Wiki for Vulnerability Assessments

    Science.gov (United States)

    Khazai, Bijan; Kunz-Plapp, Tina; Büscher, Christian; Wegner, Antje

    2014-05-01

    The concept of vulnerability, as well as its implementation in vulnerability assessments, is used in various disciplines and contexts ranging from disaster management and reduction to ecology, public health or climate change and adaptation, and a corresponding multitude of ideas about how to conceptualize and measure vulnerability exists. Three decades of research in vulnerability have generated a complex and growing body of knowledge that challenges newcomers, practitioners and even experienced researchers. To provide a structured representation of the knowledge field "vulnerability assessment", we have set up an ontology-based semantic wiki for reviewing and representing vulnerability assessments: VuWiki, www.vuwiki.org. Based on a survey of 55 vulnerability assessment studies, we first developed an ontology as an explicit reference system for describing vulnerability assessments. We developed the ontology in a theoretically controlled manner based on general systems theory and guided by principles for ontology development in the field of earth and environment (Raskin and Pan 2005). Four key questions form the first level "branches" or categories of the developed ontology: (1) Vulnerability of what? (2) Vulnerability to what? (3) What reference framework was used in the vulnerability assessment?, and (4) What methodological approach was used in the vulnerability assessment? These questions correspond to the basic, abstract structure of the knowledge domain of vulnerability assessments and have been deduced from theories and concepts of various disciplines. The ontology was then implemented in a semantic wiki which allows for the classification and annotation of vulnerability assessments. As a semantic wiki, VuWiki does not aim at "synthesizing" a holistic and overarching model of vulnerability. Instead, it provides both scientists and practitioners with a uniform ontology as a reference system and offers easy and structured access to the knowledge field of

  5. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    Directory of Open Access Journals (Sweden)

    Jongbin Ko

    2014-01-01

    Full Text Available A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  6. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    Science.gov (United States)

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  7. Land Use Management by Assessing Aquifer Vulnerability in Khovayes Plain Using the DRASTIC and SINTACS Models

    Directory of Open Access Journals (Sweden)

    Fatemeh Mousavi

    2016-07-01

    Full Text Available Land use change is a gradual process that entails dire consequences for groundwater quality and quantity. Quantitative changes in groundwater can be usually monitored by controlling the annual groundwater balance. Monitoring qualitative changes in groundwater, however, is both time-consuming and expensive. DRASTIC and SINTACS models exploit aquifer properties to predict its vulnerability. In this study, aquifer vulnerability assessment was performed by the DRASTIC & SINTACS models for future land use management in Khovayes, southwest Iran. The DRASTIC Model is based on hydrological and hydrogeological parameters involved in contaminant transport. SINTACS parameters are the same as those of the DRASTIC model, except that weighting and ranking the parameters are more flexible. Once vulnerability maps of the study region had been prepared, they were verified against the nitrate map. A correlation coefficient of 0.4 was obtained between the DRASTIC map and the nitrate one while the correlation between the SINTACS and the nitrate maps was found to be 0.8. Map removal and single-parameter sensitivity analyses were carried out, which showed the southwestern stretches of the study area as the region with the highest risk of vulnerability.

  8. Use of a risk-based hydrogeologic model to set remedial goals in a Puget Sound basin watershed

    International Nuclear Information System (INIS)

    Pascoe, G.; Gould, L.; Martin, J.; Riley, M.; Floyd, T.

    1995-01-01

    The Port of Seattle is redeveloping industrial land for a container terminal along the southwest Seattle waterfront. Concrete, asphalt, ballast, and a landfill geomembrane will cover the site and prevent direct contact with surface soils, so remedial goals focused on groundwater contamination from subsurface soils. Groundwater at the site flows along an old stormwater drain, in a filled estuary of a small creek, to Elliott Bay. Remedial goals for a variety of organic chemicals, metals, and TPH in subsurface soils were identified to protect marine receptors in the bay and their consumers. Washington State and federal marine water quality criteria were the starting points in the risk-based model, and corresponding concentrations of chemicals in groundwater were back-calculated through a hydrogeologic model. The hydrogeologic model included a mixing zone component in the bay and dilution/attenuation factors along the groundwater transport pathway that were determined from onsite groundwater and surface water chemical concentrations. A rearranged Summers equation was then applied in a second back-calculation to determine subsurface soil concentrations corresponding to the back calculated groundwater concentrations. The equation was based on calculated aquifer flow rates for the small creek watershed and rates of infiltration through surface materials calculated for each redevelopment soil cover type by the HELP model. Results of the risk-based hydrogeologic back-calculation model indicate that, depending on soil cover type at the site, concentrations in subsurface soils of PCBs from 2 to 1,000 mg/kg and of TPH up to free phase concentration would not result in risks to marine organisms or their consumers in Elliott Bay

  9. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Carrion, R.

    1987-01-01

    This work refers to the hydrogeological study about underground water to domestic uses. It was required by Artigas intendence of Uruguay, in the rural school 10, located belongs to the Chiflero zone around the capital of the Artigas Province.

  10. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  11. Hydrogeology of northern Sierra de Chiapas, Mexico: a conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs

    Science.gov (United States)

    Rosales Lagarde, Laura; Boston, Penelope J.; Campbell, Andrew R.; Hose, Louise D.; Axen, Gary; Stafford, Kevin W.

    2014-09-01

    Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.

  12. Defining Resilience and Vulnerability Based on Ontology Engineering Approach

    Science.gov (United States)

    Kumazawa, T.; Matsui, T.; Endo, A.

    2014-12-01

    It is necessary to reflect the concepts of resilience and vulnerability into the assessment framework of "Human-Environmental Security", but it is also in difficulty to identify the linkage between both concepts because of the difference of the academic community which has discussed each concept. The authors have been developing the ontology which deals with the sustainability of the social-ecological systems (SESs). Resilience and vulnerability are also the concepts in the target world which this ontology covers. Based on this point, this paper aims at explicating the semantic relationship between the concepts of resilience and vulnerability based on ontology engineering approach. For this purpose, we first examine the definitions of resilience and vulnerability which the existing literatures proposed. Second, we incorporate the definitions in the ontology dealing with sustainability of SESs. Finally, we focus on the "Water-Energy-Food Nexus Index" to assess Human-Environmental Security, and clarify how the concepts of resilience and vulnerability are linked semantically through the concepts included in these index items.

  13. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    Science.gov (United States)

    Oni, T. E.; Omosuyi, G. O.; Akinlalu, A. A.

    2017-12-01

    Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2) of 65 m in (41) different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness) were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement). The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer) and GLSI (geoelectric layer susceptibility indexing). The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1-0.19) area, while the northern and southern parts have poor protective capacity (septic tank, refuse dump should be cited far from groundwater development area.

  14. Role of Hydrogeology in Professional Environmental Projects

    Science.gov (United States)

    The purpose of this presentation is to acquaint hydrogeology students how hydrogeological principles are applied in environmental engineering projects. This presentation outlines EPA's Superfund processes of site characterization, feasibility studies, and remediation processes.

  15. Hydrogeological testing in the Sellafield area

    International Nuclear Information System (INIS)

    Sutton, J.S.

    1996-01-01

    A summary of the hydrogeological test methodologies employed in the Sellafield geological investigations is provided in order that an objective appraisal of the quality of the data can be formed. A brief presentation of some of these data illustrates the corroborative nature of different test and measurement methodologies and provides a preliminary view of the results obtained. The programme of hydrogeological testing is an evolving one and methodologies are developing as work proceeds and targets become more clearly defined. As the testing is focused on relatively low permeability rocks at depth, the approach to testing differs slightly from conventional hydrogeological well testing and makes extensive use of oilfield technology. (author)

  16. Direct Push supported geotechnical and hydrogeological characterisation of an active sinkhole area

    Science.gov (United States)

    Tippelt, Thomas; Vienken, Thomas; Kirsch, Reinhard; Dietrich, Peter; Werban, Ulrike

    2017-04-01

    Sinkholes represent a natural geologic hazard in areas where soluble layers are present in the subsurface. A detailed knowledge of the composition of the subsurface and its hydrogeological and geotechnical properties is essential for the understanding of sinkhole formation and propagation. This serves as base for risk evaluation and the development of an early warning system. However, site models often depend on data from drillings and surface geophysical surveys that in many cases cannot resolve the spatial distribution of relevant hydrogeological and geotechnical parameters sufficiently. Therefore, an active sinkhole area in Münsterdorf, Northern Germany, was investigated in detail using Direct Push technology, a minimally invasive sounding method. The obtained vertical high-resolution profiles of geotechnical and hydrogeological characteristics, in combination with Direct Push based sampling and surface geophysical measurements lead to a strong improvement of the geologic site model. The conceptual site model regarding sinkhole formation and propagation will then be tested based on the gathered data and, if necessary, adapted accordingly.

  17. Study on the methodology for hydrogeological site descriptive modelling by discrete fracture networks

    International Nuclear Information System (INIS)

    Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji

    2007-01-01

    This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)

  18. Hydrogeological study simulation associated to the deposition of low and medium radioactive wastes

    International Nuclear Information System (INIS)

    Ferreira, Vinicius Verna Magalhaes; Soares, Wellington Antonio; Alves, James Vieira

    2011-01-01

    In 2006, the Brazilian Nuclear Program foresaw the construction of at least five nuclear power plants until 2030. Like other human activities, the use of nuclear energy generates waste, which can have negative potential impact on the human health and on the environment. This waste must be safely managed, and cannot be released without a previous treatment. This paper presents a study in order to evaluate the implantation of a nuclear waste repository of low and medium level of activity in the Bahia state, Brazil, with the help of the FRACTRAN software. The results showed that the hydrogeological vulnerability is small, what encourages the development of additional studies. (author)

  19. On uncertainty quantification in hydrogeology and hydrogeophysics

    Science.gov (United States)

    Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud

    2017-12-01

    Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.

  20. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  1. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-10-19

    The extent, hydrogeologic framework, and potential well yields of valley-fill aquifers within a 151-square-mile area of eastern Chemung County, New York, were investigated, and the upland distribution of till thickness over bedrock was characterized. The hydrogeologic framework of these valleyfill aquifers was interpreted from multiple sources of surficial and subsurface data and an interpretation of the origin of the glacial deposits, particularly during retreat of glacial ice from the region. Potential yields of screened wells are based on the hydrogeologic framework interpretation and existing well-yield data, most of which are from wells finished with open-ended well casing.

  2. Effectiveness evaluation of remote data application in hydrogeologic explorations

    Energy Technology Data Exchange (ETDEWEB)

    Burleshin, M I; Koloskova, V N

    1981-01-01

    Use of the information approach to evaluate the effectiveness of remote data in hydrogeologic cartography of Ustyurt is discussed. Space image, interval and final diagrams of hydrogeologic interpretation are represented like a communication channel. Using the information approach, quantitative evaluation is carried out, and hydrogeologic maps are compared (that, have been compiled by earth surface methods and via interpretation of remote data.

  3. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  4. HYDROGEOLOGIC CASE STUDIES

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  5. GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability

    Directory of Open Access Journals (Sweden)

    Xiaorui Zhang

    2015-07-01

    Full Text Available Urban ecological vulnerability is measured on the basis of ecological sensitivity and resilience based on the concept analysis of vulnerability. GIS-based multicriteria decision analysis (GIS-MCDA methods are used, supported by the spatial analysis tools of GIS, to define different levels of vulnerability for areas of the urban ecology. These areas are further classified into different types of regulatory zones. Taking the city of Hefei in China as the empirical research site, this study uses GIS-MCDA, including the index system, index weights and overlay rules, to measure the degree of its ecological vulnerability on the GIS platform. There are eight indices in the system. Raking and analytical hierarchy process (AHP methods are used to calculate index weights according to the characteristics of the index system. The integrated overlay rule, including selection of the maximum value, and weighted linear combination (WLC are applied as the overlay rules. In this way, five types of vulnerability areas have been classified as follows: very low vulnerability, low vulnerability, medium vulnerability, high vulnerability and very high vulnerability. They can be further grouped into three types of regulatory zone of ecological green line, ecological grey line and ecological red line. The study demonstrates that ecological green line areas are the largest (53.61% of the total study area and can be intensively developed; ecological grey line areas (19.59% of the total area can serve as the ecological buffer zone, and ecological red line areas (26.80% cannot be developed and must be protected. The results indicate that ecological green line areas may provide sufficient room for future urban development in Hefei city. Finally, the respective regulatory countermeasures are put forward. This research provides a scientific basis for decision-making around urban ecological protection, construction and sustainable development. It also provides theoretical method

  6. Summary of vulnerability related technologies based on machine learning

    Science.gov (United States)

    Zhao, Lei; Chen, Zhihao; Jia, Qiong

    2018-04-01

    As the scale of information system increases by an order of magnitude, the complexity of system software is getting higher. The vulnerability interaction from design, development and deployment to implementation stages greatly increases the risk of the entire information system being attacked successfully. Considering the limitations and lags of the existing mainstream security vulnerability detection techniques, this paper summarizes the development and current status of related technologies based on the machine learning methods applied to deal with massive and irregular data, and handling security vulnerabilities.

  7. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    International Nuclear Information System (INIS)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel; Gylling, Bjoern; Marsic, Niko

    2006-04-01

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes

  8. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-04-15

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes.

  9. Vulnerable Genders, Vulnerable Loves

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2015-01-01

    This chapter analyses religious reflections on vulnerable genders and vulnerable loves from the Hebrew Bible to early Rabbinic literature. It is based on theories by inter alia Donna Haraway on complex identities, Turner and Maryanski on love as a prerequisite for survival, Michel Foucault...... on gathering knowledge and its often unpremeditated effect of recognition and inclusion, and Judith Butler on cultural intelligibility and subversion from within. With these theories as a departing point for the analysis, the chapter links the vulnerability of complex identities with the vulnerability...... of cultures which leads to the overall understanding that culture can accommodate complex identities associated with individual and cultural vulnerability as long as the overall survival of the culture is not threatened. This understanding questions the feasibility of the ethical position of thinkers...

  10. Hydrogeological investigation of Melendiz basin (Aksaray)

    International Nuclear Information System (INIS)

    Dogdu, M.S.

    1995-01-01

    Within the scope of this M.Sc, study entitled Hydrogeologic Investigation of Melendiz basin, the geological, hydrological, hydrogeological and hydrochemical features of a 600 km2 area have been studied and, 1/100.000 scale geological and hydrogeological maps have been prepared. Tetriary-Guaternary aged young volkanic rocks occupy nearly 80% (480 km2 ) of the area. The major aquifers are alluvium and andesite and basalt which are extensively fractured and jointed. Aquitard units comprise of ignimbirite, some of the andesites-basalts and formations that composes of limestone-sandstone-marl intercalations. The youngest geologic unit of the area, Hasandag volcanic ash formation, and also the tuffs have been indentified as aquiclude units. Mean areal precipitation, potential and real evapotranspiration rates and mean annual streamflow have been calculated on the basis of available data and, a hydrologic budget of the basin has been established. Hydrogeologic units have been classified as aquifer, aquitard and aquiclude with respect to their geohydrologic properties, field observations and the results of the pumping tests. On the other hand, hydrodynamic mechanism of the groundwater flow reaching major cold and thermal water discharges have also been explained. A hydrogeologic budget for the area covering Ciftlik township and its vicinity where extensively joint and fractured andesite-basalt and alluvial aquifers outcrop has been established. Major water points as thermal and cold springs, wells and streams have been sampled for major ion analysis. Beyond this, some water points have also been sampled for organic, trace,metal ald environmental isotropic analyses. Environmental isotope data of thermal springs point out a long-deep groundwater flow path

  11. Contribution to optimisation of Environmental Isotopes tracing in Hydrogeology. Case study of Madagascar

    International Nuclear Information System (INIS)

    RAJAOBELISON, J.

    2003-01-01

    The aim of this work is to suggest some improvements on the theory of interpretation and on the methodological approach for the optimum use of environmental isotopes tracing applied to hydrogeological investigation. A review of the theory of environmental isotopes used in hydrogeology has been made. The main constraints have been highlighted and led to some comments and proposals of improvement, in particular with regard to the continental effect on stable isotopes, to the seasonal variation of groundwater 1 4C content, and to the appropriate model for fractured crystalline aquifers. A literature survey on ten specific scientific papers, dealing with isotopic hydrology in miscellaneous types of aquifers and catchments, allowed to draw a synthesis of the hydrogeological, geochemical and isotopic constraints. A proposal of optimum methodological approach, taking into account the above mentioned constraints, have been inferred. The results of an on-going hydrogeological investigation carried out in the Southern crystalline basement and coastal sedimentary aquifers of Madagascar highlights an unusual methodological approach based on the lack of initial basic hydrogeological data. Besides, it shows to what extent the experience of the above mentioned research works can apply in the specific case of the complex aquifers of Madagascar. The lessons gained from this study contribute to enrich the synthesis of environmental isotopes constraints in hydrogeology and lead to a more realistic methodological approach proposal wich is likely to better make profitable the isotope hydrology technology

  12. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  13. Materials of conference: Hydrogeological Problems of South-West Poland

    International Nuclear Information System (INIS)

    1996-01-01

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features

  14. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.

    1967-01-01

    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  15. Crosshole investigations: Hydrogeological results and interpretations

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Brightman, M.A.

    1987-12-01

    The Crosshole Programme was an integrated geophysical and hydrogeological study of a limited volume of rock (known as the Crosshole Site) within the Stripa mine. Borehole radar, borehole seismic and hydraulic methods were developed for specific application to fractured crystalline rock. The hydrogeological investigations contained both single borehole and crosshole test techniques. A novel technique, using a sinusoidal variation of pressure, formed the main method of crosshole testing and was assessed during the programme. The strategy of crosshole testing was strongly influenced by the results from the geophysical measurements. The longer term, larger scale hydrogeological response of the region was asessed by examining the variation of heads over the region. These were responding to the presence of an old drift. A method of overall assessment involving minimising the divergence from a homogeneous response yielded credible values of hydraulic conductivity for the rock as a whole. (orig./DG)

  16. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  17. Hydrogeologic factors to be addressed in disposal guidelines

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report identifies the physical hydrogeologic factors that should be addressed for performance assessment of a radioactive waste disposal facility in plutonic rock. The hydrogeologic factors include theoretical methods, groundwater flow factors and solute transport parameters. Theoretical methods, including different deterministic and stochastic approaches for evaluating physical hydrogeolgic conditions, are evaluated with respect to data requirements, applications and limitations. Preferred methods for measurement and determination of the identified groundwater flow factors and solute transport parameters are discussed. A recommended set of procedures for reliable hydrogeologic characterization of a plutonic rock mass at both regional and site scales is also presented

  18. A computer hydrogeologic model of the Nevada Test Site and surrounding region

    International Nuclear Information System (INIS)

    Gillson, R.; Hand, J.; Adams, P.; Lawrence, S.

    1996-01-01

    A three-dimensional, hydrogeologic model of the Nevada Test Site and surrounding region was developed as an element for regional groundwater flow and radionuclide transport models. The hydrogeologic model shows the distribution, thickness, and structural relationships of major aquifers and confining units, as conceived by a team of experts organized by the U.S. Department of Energy Nevada Operations Office. The model was created using Intergraph Corporation's Geographical Information System based Environmental Resource Management Application software. The study area encompasses more than 28,000 square kilometers in southern Nevada and Inyo County, California. Fifty-three geologic cross sections were constructed throughout the study area to provide a framework for the model. The lithology was simplified to 16 hydrostratigraphic units, and the geologic structures with minimal effect on groundwater flow were removed. Digitized cross sections, surface geology, and surface elevation data were the primary sources for the hydrogeologic model and database. Elevation data for the hydrostratigraphic units were posted, contoured, and gridded. Intergraph Corporation's three-dimensional visualization software, VOXEL trademark, was used to view the results interactively. The hydrogeologic database will be used in future flow modeling activities

  19. Design and implementation based on the classification protection vulnerability scanning system

    International Nuclear Information System (INIS)

    Wang Chao; Lu Zhigang; Liu Baoxu

    2010-01-01

    With the application and spread of the classification protection, Network Security Vulnerability Scanning should consider the efficiency and the function expansion. It proposes a kind of a system vulnerability from classification protection, and elaborates the design and implementation of a vulnerability scanning system based on vulnerability classification plug-in technology and oriented classification protection. According to the experiment, the application of classification protection has good adaptability and salability with the system, and it also approves the efficiency of scanning. (authors)

  20. Urban hydrogeology in Indonesia: A highlight from Jakarta

    Science.gov (United States)

    Lubis, R. F.

    2018-02-01

    In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.

  1. Enhancement of global flood damage assessments using building material based vulnerability curves

    Science.gov (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  2. Incorporating a Watershed-Based Summary Field Exercise into an Introductory Hydrogeology Course

    Science.gov (United States)

    Fryar, Alan E.; Thompson, Karen E.; Hendricks, Susan P.; White, David S.

    2010-01-01

    We have developed and implemented a summary field exercise for an introductory hydrogeology course without a laboratory section. This exercise builds on lectures and problem sets that use pre-existing field data. During one day in April, students measure hydraulic heads, stream and spring flow, and stream-bed seepage within the rural watershed of…

  3. Construction of road network vulnerability evaluation index based on general travel cost

    Science.gov (United States)

    Leng, Jun-qiang; Zhai, Jing; Li, Qian-wen; Zhao, Lin

    2018-03-01

    With the development of China's economy and the continuous improvement of her urban road network, the vulnerability of the urban road network has attracted increasing attention. Based on general travel cost, this work constructs the vulnerability evaluation index for the urban road network, and evaluates the vulnerability of the urban road network from the perspective of user generalised travel cost. Firstly, the generalised travel cost model is constructed based on vehicle cost, travel time, and traveller comfort. Then, the network efficiency index is selected as an evaluation index of vulnerability: the network efficiency index is composed of the traffic volume and the generalised travel cost, which are obtained from the equilibrium state of the network. In addition, the research analyses the influence of traffic capacity decrease, road section attribute value, and location of road section, on vulnerability. Finally, the vulnerability index is used to analyse the local area network of Harbin and verify its applicability.

  4. An integrated theoretical and practical approach for teaching hydrogeology

    Science.gov (United States)

    Bonomi, Tullia; Fumagalli, Letizia; Cavallin, Angelo

    2013-04-01

    their limitations; C) by an evaluation process whose results contribute to the final examination, so that the students are evaluated on the basis of their ability to discuss theoretical subjects and/or projects and to resolving exercises and case studies either by hand calculations or by modelling. The applied hydrogeology examination is an example of the evaluation process. It involves development of a plan to resolve a real hydrogeological issue, such as the design of a hydraulic barrier for a landfill, the design of a well field to meet the supply requirements of a muncipality, or the control of possible seepage from a contaminated site close to to sensitive discharge features such as wells, springs, rivers. The students are allowed to work on computers for three consecutive mornings for a total 15 hours, and in the end are required to produce a technical report and a hydrogeological model. Obviously their solutions are neither unique nor completely optimized (just as in the real world), but the comparisons and debates among the students are important portals to learning and improvement. A second example: the groundwater pollution and remediation examination is based on the discussion of a remediation project elaborated in stages during the course, with the addition of increasing complex types of data and information. The students have one hour a week, during the course, to submit to the teacher their analysis of the problem and possible solutions. In ten years of experience all students have considered this method of examination a challenge, and found it engaging and helpful, even if unusual, at least in Italy. The University of Milano Bicocca has recently drilled a piezometric well both to monitor the flow of groundwater and to allow students to perform aquifer tests and to conduct standard groundwater sampling procedure, without any longer needing to rely on outside private donors for access to a field site. The overall approach, which includes, lectures

  5. Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM).

    Science.gov (United States)

    Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Sadeghfam, Sina; Moghaddam, Asghar Asghari

    2017-01-01

    This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (Step 0 and Step 1)

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations, analysis, and evaluations have been conducted using an iterative approach. In this study, hydrogeological modeling and ground water flow analyses have been carried out using the data from surface-based investigations at Step 0 and Step 1, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) As the investigation progresses Step 0 to Step 1, the understanding of groundwater flow was enhanced from Step 0 to Step 1, and the hydrogeological model could be revised, 2) The importance of faults as major groundwater flow pathways was demonstrated, 3) Geological and hydrogeological characteristics of faults with orientation of NNW and NE were shown to be especially significant. The main item specified for further investigations is summarized as follows: geological and hydrogeological characteristics of NNW and NE trending faults are important. (author)

  7. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    OpenAIRE

    Francés, Alain; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. Monteiro; Ardekani, Mohammad R. Mahmoudzadeh

    2014-01-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2)...

  8. Analysis on regional hydrogeological condition of Beishan preselected area for high level radioactive waste disposal repository in Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Liu Shufen; Lu Chuanhe

    2004-01-01

    Based on the field investigation which has been carried out in the Beishan preselected area for high level radioactive waste repository in Gansu province during the last few years and the previous hydrogeological investigation results, the different groundwater types are divided initially and the hydrogeological features of different water-bearing media are described in this paper. Meanwhile, the preliminary evaluation of the regional hydrogeological condition of the study area is carried out. (author)

  9. Hydrogeological and multi-isotopic approach to define nitrate pollution and denitrification processes in a coastal aquifer (Sardinia, Italy)

    Science.gov (United States)

    Pittalis, Daniele; Carrey, Raul; Da Pelo, Stefania; Carletti, Alberto; Biddau, Riccardo; Cidu, Rosa; Celico, Fulvio; Soler, Albert; Ghiglieri, Giorgio

    2018-02-01

    Agricultural coastal areas are frequently affected by the superimposition of various processes, with a combination of anthropogenic and natural sources, which degrade groundwater quality. In the coastal multi-aquifer system of Arborea (Italy)—a reclaimed morass area identified as a nitrate vulnerable zone, according to Nitrate Directive 91/676/EEC—intensive agricultural and livestock activities contribute to substantial nitrate contamination. For this reason, the area can be considered a bench test for tuning an appropriate methodology aiming to trace the nitrate contamination in different conditions. An approach combining environmental isotopes, water quality and hydrogeological indicators was therefore used to understand the origins and attenuation mechanisms of nitrate pollution and to define the relationship between contaminant and groundwater flow dynamics through the multi-aquifer characterized by sandy (SHU), alluvial (AHU), and volcanic hydrogeological (VHU) units. Various groundwater chemical pathways were consistent with both different nitrogen sources and groundwater dynamics. Isotope composition suggests a mixed source for nitrate (organic and synthetic fertilizer), especially for the AHU and SHU groundwater. Moreover, marked heterotrophic denitrification and sulfate reduction processes were detected; although, for the contamination related to synthetic fertilizer, the attenuation was inefficient at removing NO3 - to less than the human consumption threshold of 50 mg/L. Various factors contributed to control the distribution of the redox processes, such as the availability of carbon sources (organic fertilizer and the presence of lagoon-deposited aquitards), well depth, and groundwater flow paths. The characterization of these processes supports water-resource management plans, future actions, and regulations, particularly in nitrate vulnerable zones.

  10. A user exposure based approach for non-structural road network vulnerability analysis.

    Directory of Open Access Journals (Sweden)

    Lei Jin

    Full Text Available Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i the rationality of non-structural road network vulnerability, (ii the metrics for negative consequences accounting for variant road conditions, and (iii the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for "emotionally hurt" of topological road network.

  11. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs

    Science.gov (United States)

    Haaf, Ezra; Barthel, Roland

    2016-04-01

    When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes

  12. Hydrogeological investigation programmes: best practice. Proof of evidence

    International Nuclear Information System (INIS)

    Reeves, G.M.

    1996-01-01

    Proof of Evidence by an expert witness is presented in support of the case by Friends of the Earth (FOE) against the proposed construction by UK Nirex Ltd of an underground Rock Characterisation Facility (RCF) at a site in the Sellafield area. The RCF is part of an investigation by Nirex into a suitable site for an underground repository for the disposal of radioactive waste. The objections were raised at a Planning Inquiry in 1995. Drawing on best practice in hydrogeological investigation from case studies of groundwater assessment in the UK and the Canadian nuclear waste disposal programme, the hydrogeological monitoring work undertaken to date at Sellafield is found to be inadequate in both scope and duration. The lack of adequate equilibrium hydrogeological data is significant in its implications for the RCF both in terms of the effects on local water resources and the proposed repository. It is concluded, therefore, that the construction of the RCF should be postponed pending the establishment of the equilibrium hydrogeological regime. (10 figures; 33 references). (UK)

  13. Comparison analysis on vulnerability of metro networks based on complex network

    Science.gov (United States)

    Zhang, Jianhua; Wang, Shuliang; Wang, Xiaoyuan

    2018-04-01

    This paper analyzes the networked characteristics of three metro networks, and two malicious attacks are employed to investigate the vulnerability of metro networks based on connectivity vulnerability and functionality vulnerability. Meanwhile, the networked characteristics and vulnerability of three metro networks are compared with each other. The results show that Shanghai metro network has the largest transport capacity, Beijing metro network has the best local connectivity and Guangzhou metro network has the best global connectivity, moreover Beijing metro network has the best homogeneous degree distribution. Furthermore, we find that metro networks are very vulnerable subjected to malicious attacks, and Guangzhou metro network has the best topological structure and reliability among three metro networks. The results indicate that the proposed methodology is feasible and effective to investigate the vulnerability and to explore better topological structure of metro networks.

  14. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    Science.gov (United States)

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  15. Seismic-refraction field experiments on Galapagos Islands: A quantitative tool for hydrogeology

    Science.gov (United States)

    Adelinet, M.; Domínguez, C.; Fortin, J.; Violette, S.

    2018-01-01

    Due to their complex structure and the difficulty of collecting data, the hydrogeology of basaltic islands remains misunderstood, and the Galapagos islands are not an exception. Geophysics allows the possibility to describe the subsurface of these islands and to quantify the hydrodynamical properties of its ground layers, which can be useful to build robust hydrogeological models. In this paper, we present seismic refraction data acquired on Santa Cruz and San Cristobal, the two main inhabited islands of Galapagos. We investigated sites with several hydrogeological contexts, located at different altitudes and at different distances to the coast. At each site, a 2D P-wave velocity profile is built, highlighting unsaturated and saturated volcanic layers. At the coastal sites, seawater intrusion is identified and basal aquifer is characterized in terms of variations in compressional sound wave velocities, according to saturation state. At highlands sites, the limits between soils and lava flows are identified. On San Cristobal Island, the 2D velocity profile obtained on a mid-slope site (altitude 150 m), indicates the presence of a near surface freshwater aquifer, which is in agreement with previous geophysical studies and the hydrogeological conceptual model developed for this island. The originality of our paper is the use of velocity data to compute field porosity based on poroelasticity theory and the Biot-Gassmann equations. Given that porosity is a key parameter in quantitative hydrogeological models, it is a step forward to a better understanding of shallow fluid flows within a complex structure, such as Galapagos volcanoes.

  16. VULNERABILITY AND RISK OF CONTAMINATION KARSTIC AQUIFERS

    Directory of Open Access Journals (Sweden)

    Yameli Aguilar

    2013-08-01

    Full Text Available Karstic systems occupy nearly 20% of the surface of the earth and are inhabited by numerous human communities. Karstic aquifers are the most exposed to pollution from human activities. Pollution of karstic aquifers is a severe environmental problem worldwide.  In order to face the vulnerability of karstic aquifers to pollution, researchers have created a diversity of study approaches and models, each one having their own strengths and weaknesses depending on the discipline from which they were originated, thus requiring a thorough discussion within the required multidisciplinary character. The objective of this article was to analyze the theoretical and methodological approaches applied to the pollution of karstic aquifers. The European hydrogeological, land evaluation, hydropedological and a geographic approach were analyzed. The relevance of a geomorphological analysis as a cartographic basis for the analysis of vulnerability and risks were emphasized. From the analysis of models, approaches and methodologies discussed the following recommendation is made: to form an interdisciplinary work team, to elaborate a conceptual model according to the site and the working scale and to e, apply and validate the model.

  17. Evaluating the Potential of Groundwater Pollution in Kherran and Zoweircherry Plains through GIS-based DRASTIC Model

    Directory of Open Access Journals (Sweden)

    Manouchehr Chitsazan

    2006-09-01

    Full Text Available Zoweircherry and Kherran plains are located in the northeast ofAhwazin Khuzestan province. The water supply of these plains is a crucial issue and the quality of groundwater is also under the threat as a result of an increase in the use of agrochemicals. For this reason, assessing the vulnerability is an important factor in any policy-making decision for these plains. Focusing on this issue, this paper attempts to produce a groundwater vulnerability map for Zoweircherry and Kherran plains. The map is designed to show areas of highest potential for groundwater pollution on the basis of hydro-geological conditions and human impacts. Seven major hydro-geological factors (depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity were incorporated into DRASTIC model and Geographical Information System (GIS was used to create a groundwater vulnerability map by overlaying the available hydro-geological data. The results of model exhibit that the west and southwest of the aquifer are dominated by medium vulnerability while small areas on northwest and east of the study area have no risk of pollution. Other parts of aquifer have low vulnerability. The nitrate analysis of groundwater samples shows that the existing nitrate on the west and southwest parts of aquifer is more than the existing nitrate on its other parts which, therefore, confirms the results of the vulnerability assessment.

  18. Hydrogeology baseline study Aurora Mine

    International Nuclear Information System (INIS)

    1996-01-01

    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  19. Evaluation of Uncertainties in hydrogeological modeling and groundwater flow analyses. Model calibration

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Ono, Makoto; Sugihara, Yutaka; Shimo, Michito; Yamamoto, Hajime; Fumimura, Kenichi

    2003-03-01

    This study involves evaluation of uncertainty in hydrogeological modeling and groundwater flow analysis. Three-dimensional groundwater flow in Shobasama site in Tono was analyzed using two continuum models and one discontinuous model. The domain of this study covered area of four kilometers in east-west direction and six kilometers in north-south direction. Moreover, for the purpose of evaluating how uncertainties included in modeling of hydrogeological structure and results of groundwater simulation decreased with progress of investigation research, updating and calibration of the models about several modeling techniques of hydrogeological structure and groundwater flow analysis techniques were carried out, based on the information and knowledge which were newly acquired. The acquired knowledge is as follows. As a result of setting parameters and structures in renewal of the models following to the circumstances by last year, there is no big difference to handling between modeling methods. The model calibration is performed by the method of matching numerical simulation with observation, about the pressure response caused by opening and closing of a packer in MIU-2 borehole. Each analysis technique attains reducing of residual sum of squares of observations and results of numerical simulation by adjusting hydrogeological parameters. However, each model adjusts different parameters as water conductivity, effective porosity, specific storage, and anisotropy. When calibrating models, sometimes it is impossible to explain the phenomena only by adjusting parameters. In such case, another investigation may be required to clarify details of hydrogeological structure more. As a result of comparing research from beginning to this year, the following conclusions are obtained about investigation. (1) The transient hydraulic data are effective means in reducing the uncertainty of hydrogeological structure. (2) Effective porosity for calculating pore water velocity of

  20. Development of hydrogeological modelling tools based on NAMMU

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, N. [Kemakta Konsult AB, Stockholm (Sweden); Hartley, L.; Jackson, P.; Poole, M. [AEA Technology, Harwell (United Kingdom); Morvik, A. [Bergen Software Services International AS, Bergen (Norway)

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  1. Development of hydrogeological modelling tools based on NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Hartley, L.; Jackson, P.; Poole, M.; Morvik, A.

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  2. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model

    International Nuclear Information System (INIS)

    Sahoo, Satiprasad; Dhar, Anirban; Kar, Amlanjyoti

    2016-01-01

    Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.

  3. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Satiprasad [School of Water Resources, Indian Institute of Technology Kharagpur (India); Dhar, Anirban, E-mail: anirban.dhar@gmail.com [Department of Civil Engineering, Indian Institute of Technology Kharagpur (India); Kar, Amlanjyoti [Central Ground Water Board, Bhujal Bhawan, Faridabad, Haryana (India)

    2016-01-15

    Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.

  4. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  5. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    Armenia is a landlocked country located in the mountainous Caucasus region between Asia and Europe. It shares borders with the countries of Georgia on the north, Azerbaijan on the east, Iran on the south, and Turkey and Azerbaijan on the west. The Ararat Basin is a transboundary basin in Armenia and Turkey. The Ararat Basin (or Ararat Valley) is an intermountain depression that contains the Aras River and its tributaries, which also form the border between Armenia and Turkey and divide the basin into northern and southern regions. The Ararat Basin also contains Armenia’s largest agricultural and fish farming zone that is supplied by high-quality water from wells completed in the artesian aquifers that underlie the basin. Groundwater constitutes about 40 percent of all water use, and groundwater provides 96 percent of the water used for drinking purposes in Armenia. Since 2000, groundwater withdrawals and consumption in the Ararat Basin of Armenia have increased because of the growth of aquaculture and other uses. Increased groundwater withdrawals caused decreased springflow, reduced well discharges, falling water levels, and a reduction of the number of flowing artesian wells in the southern part of Ararat Basin in Armenia.In 2016, the U.S. Geological Survey and the U.S. Agency for International Development (USAID) began a cooperative study in Armenia to share science and field techniques to increase the country’s capabilities for groundwater study and modeling. The purpose of this report is to describe the hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia based on data collected in 2016 and previous hydrogeologic studies. The study area includes the Ararat Basin in Armenia. This report was completed through a partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships effort through the Advanced Science and Partnerships for Integrated Resource Development program and associated

  6. Hydrogeological Properties of the Rocks in Adansi Mining Area ...

    African Journals Online (AJOL)

    The hydrogeological properties of an aquifer coupled with climatic conditions and geomorphology determines how much groundwater exists in that location. A hydrogeological study of the rocks in the Adansi area was carried out to obtain the aquifer hydraulic properties. Drilling and pumping test analysis information were ...

  7. SRP Baseline Hydrogeologic Investigation, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  8. Discussion on hydrogeological conditions of metallogenesis of the sandstone type uranium deposit in Burqin basin, Xinjiang autonomous region

    International Nuclear Information System (INIS)

    Li Qirong

    2000-01-01

    Based on a brief introduction to the occurrence and distribution of groundwater, the characteristics of the tectonic-hydrogeological layers of the basin are discussed. Then, the author expounds the groundwater hydrodynamic conditions including recharge, runoff and drainage, and hydrogeochemical characteristics. In the end, the hydrogeological conditions favorable for uranium metallogenesis are summarized

  9. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  10. GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria

    Science.gov (United States)

    Sikakwe, Gregory Udie

    2018-06-01

    This research modeled geological and hydrogeological controls on groundwater occurrence in Oban Massif and environs southeastern Nigeria. Topographical, hydrogeological, and structural maps, including lithology samples from drilled bores, well completion, and pumping test data in the study area were procured. Collection of coordinates of rock sample locations and structural data on strike and dip of rock exposures was collected. Geological and structural information collected was overlaid on the topographical, hydrogeological and structural map and digitized to produce the geological map of the study area. Thematic map on geological groundwater prospect map of the study was prepared using multicriteria evaluation. Relative weights were assigned to various rock types based on their relative contribution to groundwater occurrence and the map was reclassified using geographic information system (ArcGIS10.1) analysis. Depth ranges of the various lithologic units from drilled boreholes were used to construct lithologic correlation section of the boreholes across the study area using RockWorks16 Program software. Hydrogeological parameters such as storativity, specific capacity, transmissivity, drawdown, pumping rate, static water level, total depth, and well yield were computed from well completion reports and aquifer test. Results shows that the geologic groundwater prospect map was categorized into very good (28.73 m2), good (9.66 m2), moderate (35.08 m2), fair (49.38 m2), and poor (77.63 m2) zones. Aquifer parameters showed ranges such as (specific capacity (1.81-31.16 m2/day/m), transmissivity (0.0033-12 m2/day), storativity (9.4 × 10-3-2.3), drawdown (2.2-17.65 m), pumping rate (0.75-3.57 l/s), static water level (0-20.5 m), and total depth (3.3-61 m). Borehole depths obtained in the basement are shallower than those in the sedimentary area. Aquifer test parameters obtained from boreholes across the study indicate better correspondence with zones identified as

  11. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  12. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  13. Stochastic hydrogeology: what professionals really need?

    Science.gov (United States)

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.

  14. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  15. Goal-oriented Site Characterization in Hydrogeological Applications: An Overview

    Science.gov (United States)

    Nowak, W.; de Barros, F.; Rubin, Y.

    2011-12-01

    In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.

  16. Industrial--hydrogeological characteristics of water in the Orenburg Field

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V N; Zhabrev, I P; Uchastkin, Yu V; Alekseeva, I V

    1977-06-01

    An examination is made of the industrial hydrogeological conditions of the Orenburg Field in connection with the beginning of its development. Features of pay dirt water manifestation are demonstrated, genetic types of water brought out by gas flow are described, and methods are suggested for processing hydrogeological information. 3 references, 2 figures, 1 table.

  17. Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning

    International Nuclear Information System (INIS)

    Nicholson, Charles D.; Barker, Kash; Ramirez-Marquez, Jose E.

    2016-01-01

    This work develops and compares several flow-based vulnerability measures to prioritize important network edges for the implementation of preparedness options. These network vulnerability measures quantify different characteristics and perspectives on enabling maximum flow, creating bottlenecks, and partitioning into cutsets, among others. The efficacy of these vulnerability measures to motivate preparedness options against experimental geographically located disruption simulations is measured. Results suggest that a weighted flow capacity rate, which accounts for both (i) the contribution of an edge to maximum network flow and (ii) the extent to which the edge is a bottleneck in the network, shows most promise across four instances of varying network sizes and densities. - Highlights: • We develop new flow-based measures of network vulnerability. • We apply these measures to determine the importance of edges after disruptions. • Networks of varying size and density are explored.

  18. Hydrogeologic study of Cafam area. Melgar (Tolima)

    International Nuclear Information System (INIS)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km 2 with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3

  19. Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability

    International Nuclear Information System (INIS)

    Ouyang, Min; Zhao, Lijing; Hong, Liu; Pan, Zhezhe

    2014-01-01

    Recently numerous studies have applied complex network based models to study the performance and vulnerability of infrastructure systems under various types of attacks and hazards. But how effective are these models to capture their real performance response is still a question worthy of research. Taking the Chinese railway system as an example, this paper selects three typical complex network based models, including purely topological model (PTM), purely shortest path model (PSPM), and weight (link length) based shortest path model (WBSPM), to analyze railway accessibility and flow-based vulnerability and compare their results with those from the real train flow model (RTFM). The results show that the WBSPM can produce the train routines with 83% stations and 77% railway links identical to the real routines and can approach the RTFM the best for railway vulnerability under both single and multiple component failures. The correlation coefficient for accessibility vulnerability from WBSPM and RTFM under single station failures is 0.96 while it is 0.92 for flow-based vulnerability; under multiple station failures, where each station has the same failure probability fp, the WBSPM can produce almost identical vulnerability results with those from the RTFM under almost all failures scenarios when fp is larger than 0.62 for accessibility vulnerability and 0.86 for flow-based vulnerability

  20. Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: statistical vs expert-based modeling.

    Science.gov (United States)

    Hagenlocher, Michael; Delmelle, Eric; Casas, Irene; Kienberger, Stefan

    2013-08-14

    As a result of changes in climatic conditions and greater resistance to insecticides, many regions across the globe, including Colombia, have been facing a resurgence of vector-borne diseases, and dengue fever in particular. Timely information on both (1) the spatial distribution of the disease, and (2) prevailing vulnerabilities of the population are needed to adequately plan targeted preventive intervention. We propose a methodology for the spatial assessment of current socioeconomic vulnerabilities to dengue fever in Cali, a tropical urban environment of Colombia. Based on a set of socioeconomic and demographic indicators derived from census data and ancillary geospatial datasets, we develop a spatial approach for both expert-based and purely statistical-based modeling of current vulnerability levels across 340 neighborhoods of the city using a Geographic Information System (GIS). The results of both approaches are comparatively evaluated by means of spatial statistics. A web-based approach is proposed to facilitate the visualization and the dissemination of the output vulnerability index to the community. The statistical and the expert-based modeling approach exhibit a high concordance, globally, and spatially. The expert-based approach indicates a slightly higher vulnerability mean (0.53) and vulnerability median (0.56) across all neighborhoods, compared to the purely statistical approach (mean = 0.48; median = 0.49). Both approaches reveal that high values of vulnerability tend to cluster in the eastern, north-eastern, and western part of the city. These are poor neighborhoods with high percentages of young (i.e., local expertise, statistical approaches could be used, with caution. By decomposing identified vulnerability "hotspots" into their underlying factors, our approach provides valuable information on both (1) the location of neighborhoods, and (2) vulnerability factors that should be given priority in the context of targeted intervention

  1. Vulnerability and hydrogeologic risk of SAG in the outcroupping zone of Rivera Uruguay

    International Nuclear Information System (INIS)

    Collazo, P.; Montano, J.; Auge, M.; jmont@fcien.edu.uy mpauge@ciudad.com.ar

    2007-01-01

    The studied area belongs to the outcroupping zone of the Guarani Aquifer in the Department of Rivera, Uruguay. It comprises an approximate area of 2900 Km2. The outcropping Guarani Aquifer (AGa) is formed by two sections, an upper one corresponding to the Rivera Unit (UR) and a lower one corresponding to the Tacuarembo Unit (UT), both with vertical hydraulic continuity. The Rivera Unit is entirely represented by the homonymous formation and it consists of medium to fine sandstones with a mean effective porosity of 14% and mean Transmissivity of 88 m2/dia. The Tacuarembo Unit is constituted by fine to very fine sandstone levels interbedded with pelitic sandstone and shales. This unit behaves like unconfined aquifer in the upper section, where it contains the phreatic layer and it passes to semi-confined as the depth increases. The effective porosity is approximatelly of 9% and mean T 24 m2/dia. Chemically, both units are classified as calcicbicarbonated and magnesic-bicarbonated. To determine the vulnerability, it was applied the GOD method yielding high vulnerability for levels lower than 10m and moderate for levels of water larger than 10m. From the study of risk the conclusions are: high risk of groundwater contamination due to the lack of sewage systems and to the rubbish dump leakage. The industrial activity, cemeteries and mining activity represents moderated risks in most of the cases

  2. Socio-hydrogeology and low-income countries: taking science to rural society

    Science.gov (United States)

    Limaye, Shrikant Daji

    2017-11-01

    Rural societies in low-income, high-population countries often faces scarcity of water of suitable quality for domestic use and agriculture. Hydrogeologists should therefore orientate their research work towards solving practical problems and impart basic knowledge about the hydrogeology of local watersheds to the village councils and communities so as to ensure their participation in better management of groundwater resources. Such cooperation between the hydrogeologists and villagers is the foundation of socio-hydrogeology, which aims at broader dissemination of information and discussions with hydrogeologists at village meetings regarding watershed management such as recharge augmentation, groundwater quality issues and prudent use of groundwater. Socio-hydrogeology implies improved accessibility of rural society to hydrogeological experts and better communication through the use of more appropriate and understandable language.

  3. Characterization and hydrogeological modelling of a site for disposal of medium- and low-level radioactive waste

    International Nuclear Information System (INIS)

    Lavie, J.; Peaudecerf, P.

    1993-01-01

    Characterization studies of the French low-and intermediate-level radwaste site in the Aube Department includes a significant hydrogeological appraisal element. These studies are based upon geological, hydrogeological, and hydrodynamic measurements. The data are compiled into a model of the ground water- body. Data collection is continuous. The hydrodynamic model and the transport model is regularly validated for ANDRA (French National Radioactive Waste Disposal Agency) with a reliable and up-dated tool

  4. Performance-based methodology for assessing seismic vulnerability and capacity of buildings

    Science.gov (United States)

    Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li

    2010-06-01

    This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.

  5. Identifying typical patterns of vulnerability: A 5-step approach based on cluster analysis

    Science.gov (United States)

    Sietz, Diana; Lüdeke, Matthias; Kok, Marcel; Lucas, Paul; Carsten, Walther; Janssen, Peter

    2013-04-01

    Specific processes that shape the vulnerability of socio-ecological systems to climate, market and other stresses derive from diverse background conditions. Within the multitude of vulnerability-creating mechanisms, distinct processes recur in various regions inspiring research on typical patterns of vulnerability. The vulnerability patterns display typical combinations of the natural and socio-economic properties that shape a systems' vulnerability to particular stresses. Based on the identification of a limited number of vulnerability patterns, pattern analysis provides an efficient approach to improving our understanding of vulnerability and decision-making for vulnerability reduction. However, current pattern analyses often miss explicit descriptions of their methods and pay insufficient attention to the validity of their groupings. Therefore, the question arises as to how do we identify typical vulnerability patterns in order to enhance our understanding of a systems' vulnerability to stresses? A cluster-based pattern recognition applied at global and local levels is scrutinised with a focus on an applicable methodology and practicable insights. Taking the example of drylands, this presentation demonstrates the conditions necessary to identify typical vulnerability patterns. They are summarised in five methodological steps comprising the elicitation of relevant cause-effect hypotheses and the quantitative indication of mechanisms as well as an evaluation of robustness, a validation and a ranking of the identified patterns. Reflecting scale-dependent opportunities, a global study is able to support decision-making with insights into the up-scaling of interventions when available funds are limited. In contrast, local investigations encourage an outcome-based validation. This constitutes a crucial step in establishing the credibility of the patterns and hence their suitability for informing extension services and individual decisions. In this respect, working at

  6. Vulnerability mapping in kelud volcano based on village information

    Science.gov (United States)

    Hisbaron, D. R.; Wijayanti, H.; Iffani, M.; Winastuti, R.; Yudinugroho, M.

    2018-04-01

    Kelud Volcano is a basaltic andesitic stratovolcano, situated at 27 km to the east of Kediri, Indonesia. Historically, Kelud Volcano has erupted with return period of 9-75 years, had caused nearly 160,000 people living in Tulungagung, Blitar and Kediri District to be in high-risk areas. This study aims to map vulnerability towards lava flows in Kediri and Malang using detailed scale. There are four major variables, namely demography, asset, hazard, and land use variables. PGIS (Participatory Geographic Information System) is employed to collect data, while ancillary data is derived from statistics information, interpretation of high resolution satellite imagery and Unmanned Aerial Vehicles (UAVs). Data were obtained from field checks and some from high resolution satellite imagery and UAVs. The output of this research is village-based vulnerability information that becomes a valuable input for local stakeholders to improve local preparedness in areas prone to improved disaster resilience. The results indicated that the highest vulnerability to lava flood disaster in Kelud Volcano is owned by Kandangan Hamlet, Pandean Hamlet and Kacangan Hamlet, because these two hamlets are in the dominant high vulnerability position of 3 out of 4 scenarios (economic, social and equal).

  7. Socio-economic vulnerability to natural hazards - proposal for an indicator-based model

    Science.gov (United States)

    Eidsvig, U.; McLean, A.; Vangelsten, B. V.; Kalsnes, B.; Ciurean, R. L.; Argyroudis, S.; Winter, M.; Corominas, J.; Mavrouli, O. C.; Fotopoulou, S.; Pitilakis, K.; Baills, A.; Malet, J. P.

    2012-04-01

    Vulnerability assessment, with respect to natural hazards, is a complex process that must consider multiple dimensions of vulnerability, including both physical and social factors. Physical vulnerability refers to conditions of physical assets, and may be modeled by the intensity and magnitude of the hazard, the degree of physical protection provided by the natural and built environment, and the physical robustness of the exposed elements. Social vulnerability refers to the underlying factors leading to the inability of people, organizations, and societies to withstand impacts from the natural hazards. Social vulnerability models can be used in combination with physical vulnerability models to estimate both direct losses, i.e. losses that occur during and immediately after the impact, as well as indirect losses, i.e. long-term effects of the event. Direct impact of a landslide typically includes casualties and damages to buildings and infrastructure while indirect losses may e.g. include business closures or limitations in public services. The direct losses are often assessed using physical vulnerability indicators (e.g. construction material, height of buildings), while indirect losses are mainly assessed using social indicators (e.g. economical resources, demographic conditions). Within the EC-FP7 SafeLand research project, an indicator-based method was proposed to assess relative socio-economic vulnerability to landslides. The indicators represent the underlying factors which influence a community's ability to prepare for, deal with, and recover from the damage associated with landslides. The proposed model includes indicators representing demographic, economic and social characteristics as well as indicators representing the degree of preparedness and recovery capacity. Although the model focuses primarily on the indirect losses, it could easily be extended to include more physical indicators which account for the direct losses. Each indicator is individually

  8. Hydrogeology of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Mazza

    2015-12-01

    Full Text Available In this paper the hydrogeological setting of Rome is figured out. This setting has been strongly influenced by different factors as tectonic activity, volcanism and seal level variations. The conceptual model of the groundwater flow in the roman area is represented by four aquifers, three of which being overlappingones. These aquifers flow from peripheral sectors of the study area toward Tiber and Aniene Rivers and the Sea.

  9. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  10. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  11. Hydrogeologic Case Studies (Seattle, WA)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  12. Contaminant Hydrogeology, 2nd Edition

    Science.gov (United States)

    Smith, James E.

    Groundwater is a valuable resource that has received much attention over the last couple of decades. Extremely large sums of money have been and will be spent on groundwater contamination problems and the public has become increasingly sensitive to groundwater issues. Groundwater contamination has even become the subject of a major Hollywood movie with the recent release of A Civil Action starring John Travolta. The high profile of groundwater contaminant problems, the associated relatively strong job market over the last 20 years, and the general shift toward an environmental emphasis in science and engineering have resulted in a sustained high demand for senior undergraduate courses and graduate programs in hydrogeology Many voice the opinion that we have seen the peak demand for hydrogeologists pass, but the placement of graduates from hydrogeology programs into career-oriented positions has remained very high.

  13. Assessment of Intrinsic Vulnerability to Contamination for the Alluvial Aquifer in El-Fayoum Depression Using the Drastic Method

    International Nuclear Information System (INIS)

    Ahmed, M.A.

    2012-01-01

    Intrinsic vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. The vulnerability for the alluvial aquifer in El-Fayoum depression was assessed by applying the Drastic model as well as utilizing sensitivity analyses to evaluate the reliability of this model. This method uses seven parameters including climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by applying the Generic and Agricultural models according to the Drastic charter. The resulting agricultural Drastic vulnerability map indicates that 23.3%, 22.7% and 12.4% of El-Fayoum depression is under low, low-moderate and moderately high vulnerability of groundwater contamination, respectively, while 41.6% of the area of study can be designated as an area of moderate vulnerability of groundwater contamination. Resulting maps revealed that the potential for polluting groundwater with agricultural chemicals is greater than with Generic Drastic index pollutants. Depth to water table parameter inflicted the largest impact on the intrinsic vulnerability of the alluvial aquifer in El-Fayoum depression. Both the map removal and single-parameter sensitivity analyses indicated that the vulnerability index is the least sensitive to the removal of the recharge and hydraulic conductivity parameters but is highly sensitive to the removal of depth to water parameter.

  14. Study on the methodology of hydrogeological character in preselected site for high-level waste repository in Beishan area, Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Su Rui; Yang Tianxiao

    2003-01-01

    The results of regional hydrogeological investigations conducted during 1996-2000 were summarized. The study was started with the surface hydrogeological, hydrogeochemical, and groundwater isotopic and humic acid investigations. The key-points are focused on the characteristics of water-bearing formation, hydrogeochemistry, groundwater isotopes as well as humic acid. On the bases of a large quantity of hydrogeological data, the hydrogeological conditions of each groundwater unit, groundwater circulation characteristics, groundwater hydrodynamics and hydrgeochemistry are described. In addition, the modeling about groundwater flow state, groundwater chemical balance, interaction among water-rock-nuclear waste is carried out, then the suitability of the Beishan site for the high-level radioactive waste disposal is evaluated. The report comprehensively and deeply shows the hydrogeological characteristics of weak water bearing, low permeability and slow moving as well as the hydrogeochemical features of mild alkalinity and high mineralization in Beishan area. The results will provide an important basis for the evaluation of the site. (authors)

  15. Groundwater availability as constrained by hydrogeology and environmental flows.

    Science.gov (United States)

    Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. © 2013, National Ground Water Association.

  16. Clustering and Bayesian hierarchical modeling for the definition of informative prior distributions in hydrogeology

    Science.gov (United States)

    Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.

    2017-12-01

    In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.

  17. Hydrogeology of exogenic epigenic uranium deposits (sedimentary type) in Uzbekistan

    International Nuclear Information System (INIS)

    Irgashev, Yu.I.; Gavrilov, V.A.; Muslimov, B.A.

    1996-01-01

    Common problems of hydrogeology and geotechnology for uranium deposits (sedimentary type) in the Republic of Uzbekistan are discussed in the paper. Hydrogeology includes studies of texture of water-bearing horizons, occurrences of ore bodies in horizons, hydrochemical survey, hydrodynamics and engineering geology. Features of deposits workable by underground leaching are presented. Such terms as 'water-bearing horizon', 'efficiency', 'water-bearing bed' are explained accounting the results of 30 year investigations conducted during prospecting, designing and exploitation of uranium deposits. Stages of hydrogeological survey are listed and features of each of them are described. Importance of geotechnology for a deposit characterization is shown. (author). 6 refs.; 1 fig.; 1 tab

  18. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    International Nuclear Information System (INIS)

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  19. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  20. Riparian erosion vulnerability model based on environmental features.

    Science.gov (United States)

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  1. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern. Ethiopia. ... zones, quantity and quality of plant and animal life (Tamire H., 1981). Steep to very ... Present research work was proposed to conduct hydrogeological investigation and assess ...... Water Balance of Haromaya basin,.

  2. The study of past damaging hydrogeological events for damage susceptibility zonation

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2008-08-01

    Full Text Available Damaging Hydrogeological Events are defined as periods during which phenomena, such as landslides, floods and secondary floods, cause damage to people and the environment.

    A Damaging Hydrogeological Event which heavily damaged Calabria (Southern Italy between December 1972, and January 1973, has been used to test a procedure to be utilised in the zonation of a province according to damage susceptibility during DHEs. In particular, we analyzed the province of Catanzaro (2391 km2, an administrative district composed of 80 municipalities, with about 370 000 inhabitants.

    Damage, defined in relation to the reimbursement requests sent to the Department of Public Works, has been quantified using a procedure based on a Local Damage Index. The latter, representing classified losses, has been obtained by multiplying the value of the damaged element and the percentage of damage affecting it.

    Rainfall has been described by the Maximum Return Period of cumulative rainfall, for both short (1, 3, 5, 7, 10 consecutive days and long duration (30, 60, 90, 180 consecutive days, recorded during the event.

    Damage index and population density, presumed to represent the location of vulnerable elements, have been referred to Thiessen polygons associated to rain gauges working at the time of the event.

    The procedure allowed us to carry out a preliminary classification of the polygons composing the province according to their susceptibility to damage during DHEs. In high susceptibility polygons, severe damage occurs during rainfall characterised by low return periods; in medium susceptibility polygons maximum return period rainfall and induced damage show equal levels of exceptionality; in low susceptibility polygons, high return period rainfall induces a low level of damage.

    The east and west sectors of the province show the highest susceptibility, while polygons of the N-NE sector show the lowest

  3. Studies on hydrogeological conditions for mineralization of some sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhiming; Li Sen; Xiao Feng; Qi Daneng; Yin Jinshuang

    1996-11-01

    Based on the analysis for regional geology, structural and hydrogeological conditions of Erennaoer Depression, Erlian Basin, the hydrogeological hydraulic zoning was carried out for groundwater in the study area, structural-palaeo-hydrogeological stages and the feature of deep-seated groundwater were studied, and, two important U-mineralization periods were determined. The conditions of recharge, runoff and discharge of groundwater in ore bearing aquifers and the hydraulic mechanism were revealed by isotope hydrology and single-well tracing technique. By study of hydrogeochemistry, it is indicated that both Subeng and Nuheting U-deposit are located at the parts where groundwater characteristics intensely variate, and the ore indicators are determined. Oil and gas transportation and the relationships between groundwater and U-metallogenetic process were discussed by using of organic geochemistry method. It shows that the bleeding of oil and gas is very important for the forming of U-deposits. It is suggested that the interlayered oxidation zone type sandstone U-deposit which is suitable for in-situ leaching could be existed in the Tenggeer formation, Bayanhua group of Lower Cretaceous, accordingly, two prospecting areas are delimited. (4 refs., 3 figs., 2 tabs.)

  4. Effect of β on Seismic Vulnerability Curve for RC Bridge Based on Double Damage Criterion

    International Nuclear Information System (INIS)

    Feng Qinghai; Yuan Wancheng

    2010-01-01

    In the analysis of seismic vulnerability curve based on double damage criterion, the randomness of structural parameter and randomness of seismic should be considered. Firstly, the distribution characteristics of structure capability and seismic demand are obtained based on IDA and PUSHOVER, secondly, the vulnerability of the bridge is gained based on ANN and MC and a vulnerability curve according to this bridge and seismic is drawn. Finally, the analysis for a continuous bridge is displayed as an example, and parametric analysis for the effect of β is done, which reflects the bridge vulnerability overall from the point of total probability, and in order to reduce the discreteness, large value of β are suggested.

  5. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally

  6. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  7. Development of a geodatabase and conceptual model of the hydrogeologic units beneath air force plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 and adjacent Naval Air Station-Joint Reserve Base Carswell Field at Fort Worth, Texas, constitute a government-owned, contractor-operated facility that has been in operation since 1942. Contaminants from AFP4, primarily volatile organic compounds and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. The U.S. Geological Survey developed a comprehensive geodatabase of temporal and spatial environmental information associated with the hydrogeologic units (alluvial aquifer, Goodland-Walnut confining unit, and Paluxy aquifer) beneath the facility and a three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase. The geodatabase design uses a thematic layer approach to create layers of feature data using a geographic information system. The various features are separated into relational tables in the geodatabase on the basis of how they interact and correspond to one another. Using the geodatabase, geographic data at the site are manipulated to produce maps, allow interactive queries, and perform spatial analyses. The conceptual model for the study area comprises computer-generated, three-dimensional block diagrams of the hydrogeologic units. The conceptual model provides a platform for visualization of hydrogeologic-unit sections and surfaces and for subsurface environmental analyses. The conceptual model is based on three structural surfaces and two thickness configurations of the study area. The three structural surfaces depict the altitudes of the tops of the three hydrogeologic units. The two thickness configurations are those of the alluvial aquifer and the Goodland-Walnut confining unit. The surface of the alluvial aquifer was created using a U.S. Geological Survey 10-meter digital elevation model. The 2,130 point altitudes of the top of the Goodland-Walnut unit were compiled from lithologic logs from existing wells, available soil

  8. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    International Nuclear Information System (INIS)

    Foley, M.G.

    1994-05-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters

  9. System for the hydrogeologic analysis of uranium mill waste disposal sites

    International Nuclear Information System (INIS)

    Osiensky, J.L.

    1983-01-01

    Most of the uranium mill wastes generated before 1977 are stored in unlined tailings ponds. Seepage from some of these ponds has been of sufficient severity that the US Nuclear Regulatory Commission (NRC) has required the installation of withdrawal wells to remove the contaminated groundwater. Uranium mill waste disposal facilities typically are located in complex hydrogeologic environments. This research was initiated in 1980 to analyze hydrogeologic data collected at seven disposal sites in the US that have experienced problems with groundwater contamination. The characteristics of seepage migration are site specific and are controlled by the hydrogeologic environment in the vicinity of each tailings pond. Careful monitoring of most seepage plumes was not initiated until approximately 1977. These efforts were accelerated as a consequence of the uranium Mill Tailings Act of 1979. Some of the data collected at uranium mill waste disposal sites in the past are incomplete and some were collected by methods that are outdated. Data frequently were collected in sequences which disrupted the continuity of the hydrogeologic analysis and decreased the effectiveness of the data collection programs. Evaluation of data collection programs for seven uranium mill waste disposal sites in the US has led to the development and presentation herein of a system for the hydrogeologic analysis of disposal sites

  10. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  11. Karst groundwater vulnerability mapping to the pollution: Case of Dir springs located between EL KSIBA and Ouaoumana (High Atlas, Morocco)

    Science.gov (United States)

    Alili, L.; Boukdir, A.; Maslouhi, M. R.; Ikhmerdi, H.

    2018-05-01

    The study area is located in the north of the province of Beni Mellal, it covers the Piedmont of the high Atlas between El Ksiba and Ouaoumana. It is characterized by a poorly developed hydrographic network and the presence of very important karstic forms. These forms condition the rapid infiltration to the karstic springs are the subject of this study. In this work we presented a method of mapping the vulnerability to pollution of Karstic springs located between El Ksiba and Ouaoumana. To do this, we have introduced a vulnerability index called F which takes into account four parameters (EPIK): Development of the Epikarst, importance of the protective cover, infiltration conditions and development of the Karst network. The overlay of the thematic maps of these parameters through a GIS software (ArcGIS) gave us a map of the vulnerability to contamination on the whole hydrogeological basin of the springs.

  12. Hydrogeological characterization of the Stripa site

    International Nuclear Information System (INIS)

    Gale, J.; Macleod, R.; Welhan, J.; Cole, C.; Vail, L.

    1987-06-01

    This study was initiated in January, 1986, to determine a) if the permeability of the rock mass in the immediate mine area was anisotropic, b) the effective and total fracture porosity distributions based on field and laboratory data and c) the three-dimensional configuration of the groundwater flow system at Stripa in order to properly interpret the hydrogeological, geochemical and isotopic data. The total and flow porosities of single fractures from Stripa were determined in the laboratory using a resin impregnation technique. The three-dimensional numerical model gave mine inflows that were consistent with the measured mine inflows with perturbations extending to at least 3,000 m of depth. (orig./DG)

  13. Geological investigations and hydrogeologic model development in support of DoD and DOE environmental programs on Kirtland Air Force Base, New Mexico, U.S.A

    International Nuclear Information System (INIS)

    Gibson, J.D.; Pratt, G.; Davidson, H.; DeWitt, C.; Hitchcock, C.; Kelson, K.; Noller, J.; Sawyer, T.; Thomas, E.

    1994-01-01

    This paper presents results of preliminary geologic site characterization and hydrogeologic conceptual model development for the 250-km 2 Kirtland Air Force Base (KAFB) and associated lands in central New Mexico. The research, development, and other operational activities of the Department of Defense (DoD) and Department of Energy (DOE) on KAFB over the last 50 years have resulted in diverse hazardous, radioactive, and mixed-waste environmental concerns. Because multiple federal, state, and local agencies are responsible for administrating the involved lands and because of the nature of many U.S. environmental regulations, individual contaminated and potentially contaminated DoD and DOE environmental restoration (ER) sites on KAFB are commonly handled as distinct entities with little consideration for the cumulative environmental and health risk from all sites. A site-wide characterization program has been undertaken at Sandia National Laboratories/New Mexico (SNL/NM), under the auspices of the DOE, to construct a conceptual hydrogeologic model for the base. This conceptual model serves as the basis for placing each ER site into a broader context for evaluating background (i.e., non-contaminated) conditions and for modeling of possible contaminant pathways and travel-times. Regional and local hydrogeologic investigations from KAFB can be used as models for characterizing and evaluating other sites around the world where combined civilian and military environmental programs must work together to resolve environmental problems that may present health risks to workers and the general public

  14. An atmospheric vulnerability assessment framework for environment management and protection based on CAMx.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Li, Yu

    2018-02-01

    This paper presents an atmospheric vulnerability assessment framework based on CAMx that should be helpful to assess potential impacts of changes in human, atmospheric environment, and social economic elements of atmospheric vulnerability. It is also a useful and effective tool that can provide policy-guidance for environmental protection and management to reduce the atmospheric vulnerability. The developed framework was applied to evaluate the atmospheric environment vulnerability of 13 cities in the Beijing-Tianjin-Hebei (BTH) region for verification. The results indicated that regional disparity of the atmospheric vulnerability existed in the study site. More specifically, the central and southern regions show more atmospheric environment vulnerability than the northern regions. The impact factors of atmospheric environment vulnerability in the BTH region mainly derived from increasing population press, frequently unfavorable meteorological conditions, extensive economic growth of secondary industry, increased environmental pollution, and accelerating population aging. The framework shown in this paper is an interpretative and heuristic tool for a better understanding of atmospheric vulnerability. This framework can also be replicated at different spatial and temporal scales using context-specific datasets to straightly support environmental managers with decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. On the significance of contaminant plume-scale and dose-response models in defining hydrogeological characterization needs

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R.; Bai, H.

    2007-12-01

    Defining rational and effective hydrogeological data acquisition strategies is of crucial importance since financial resources available for such efforts are always limited. Usually such strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of the impacts of uncertainty. This paper presents an approach for determining site characterization needs based on human health risk factors. The main challenge is in striking a balance between improved definition of hydrogeological, behavioral and physiological parameters. Striking this balance can provide clear guidance on setting priorities for data acquisition and for better estimating adverse health effects in humans. This paper addresses this challenge through theoretical developments and numerical testing. We will report on a wide range of factors that affect the site characterization needs including contaminant plume's dimensions, travel distances and other length scales that characterize the transport problem, as well as health risk models. We introduce a new graphical tool that allows one to investigate the relative impact of hydrogeological and physiological parameters in risk. Results show that the impact of uncertainty reduction in the risk-related parameters decreases with increasing distances from the contaminant source. Also, results indicate that human health risk becomes less sensitive to hydrogeological measurements when dealing with ergodic plumes. This indicates that under ergodic conditions, uncertainty reduction in human health risk may benefit from better understanding of the physiological component as opposed to a detailed hydrogeological characterization

  16. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Science.gov (United States)

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  17. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  18. Hydrogeology - HYDROGEOL_SETTINGS_IN: Hydrogeologic Terrains and Settings of Indiana (Indiana Geological Survey, 1:100,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGEOL_SETTINGS_IN is a polygon shapefile that shows hydrogeologic terrains and settings of Indiana. The methodology of the investigation and definitions of terms...

  19. Recent hydrogeologic study of the Vis island

    Directory of Open Access Journals (Sweden)

    Janislav Kapelj

    2002-12-01

    Full Text Available The Vis Island belongs to the group of the Middle Dalmatian islands. It comprises an area of about 90.2 km2. Morphologically, three belts of highlands and two depressions with karst poljes are significant. The highest point on the island is Hum with 587 m a.s.l. theisland’s water supply is organized from the water-supply station “Korita”, situated in the central part of island, in tectonically formed depression. There are two additional capturedobjects: the well K-1 above the Komiža town and the spring “Pizdica”. The most important hydrogeological role on the island have two hydrogeological barriers, one in the KomižaBay, completely made of impermeable igneous and clastic rocks, and another one, the recently recognized relative barrier in the area of Dra~evo, Plisko and Velo polje. Since the island karst aquifer is in permanent dynamic relation with seawater, classical geologic,structural and hydrogeologic investigations have been performed with application of hydrogeochemical methods taking into account the natural chemical tracer content of groundwater and its variations in different hydrologic and vegetation conditions. Precipitationregime is very unfavorable with regard to the recharging of island’s aquifer, because dry periods are usually very long. During the summer tourist season, when the number of inhabitants and fresh water consumption considerably increase, amounts of island’sgroundwater suitable for water supply and irrigation rapidly decrease. Sometimes, insufficient quantity of fresh water on the Vis Island causes restrictions. Concerning the development of tourist potential and the present agricultural activities, summer lack ofwater is a serious restrictive factor. Some results of the performed hydrogeological study, important as a basis for island’s fresh water potential assessment, will be presented.

  20. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  1. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  2. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (step 2)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-02-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at Step 2, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The understanding of groundwater flow is enhanced, and the hydrogeological model has renewed; 2) The importance of faults as major groundwater flow pathways has been demonstrated; 3) The importance of iterative approach as progress of investigations has been demonstrated; 4) Geological and hydraulic characteristics of faults with orientation of NNW, NW and NE were shown to be especially significant; 5) the hydraulic properties of the Lower Sparsely Fractured Domain (LSFD) significantly influence the groundwater flow. The main items specified for further investigations are summarized as follows: 1) Geological and hydraulic characteristics of NNW, NW and NE trending faults; 2) Hydraulic properties of the LSFD; 3) More accuracy upper and lateral boundary conditions of the site scale model. (author)

  3. The use of historical data for the characterisation of multiple damaging hydrogeological events

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2003-01-01

    Full Text Available Landslides, floods and secondary floods (hereinafter called phenomena triggered by rainfall and causing extensive damage are reviewed in this paper. Damaging Hydrogeological Events (DHEs are defined as the occurrence of one or more simultaneous aforementioned phenomena. A method for the characterisation of DHEs based upon historic data is proposed. The method is aimed at assessing DHE-related hazard in terms of recurrence, severity, damage, and extent of the affected area. Using GIS, the DHEs historical and climatic data collection, the geomorphological and hydrogeological characterisation of the hit areas, the characterisation of induced damage, the evaluation of triggering rainfall return period and critical duration of each DHE were carried out. The approach was applied to a test site in Southern Italy (Calabria for validation purposes. A database was set up including data from 24 events which have occurred during an 80-year period. The spatial distribution of phenomena was analysed together with the return period of cumulative rainfall. The trend of the occurred phenomena was also compared with the climatic trend. Four main types of Damaging Hydrogeological Events were identified in the study area.

  4. The geology and hydrogeology of Sellafield: an overview

    International Nuclear Information System (INIS)

    Chaplow, Robert

    1996-01-01

    Nirex is responsible for providing and managing a national facility for solid intermediate-level and low-level radioactive waste. Geological and hydrogeological investigations have been in progress at Sellafield in west Cumbria since 1989 aimed at determining whether or not the site is suitable for such a deep repository. Geological investigations have included the drilling of 20 deep boreholes with over 20 000 metres of drilling, together with almost 2000 line kilometres of seismic surveys and over 8000 line kilometres of airborne geophysical surveys. Hydrogeological testing and groundwater sampling and testing have provided additional information on the ground conditions at the site. (author)

  5. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  6. Predictability of the evolution of hydrogeological and hydrogeochemical systems; geological disposal of nuclear waste in crystalline rocks

    International Nuclear Information System (INIS)

    Murphy, W.M.; Diodato, D.M.

    2009-01-01

    Confidence in long-term geologic isolation of high-level nuclear waste and spent nuclear fuel requires confidence in predictions of the evolution of hydrogeological and hydrogeochemical systems. Prediction of the evolution of hydrogeological and hydrogeochemical systems is based on scientific understanding of those systems in the present - an understanding that can be tested with data from the past. Crystalline rock settings that have been geologically stable for millions of years and longer offer the potential of predictable, long-term waste isolation. Confidence in predictions of geologic isolation of radioactive waste can measured by evaluating the extent to which those predictions and their underlying analyses are consistent with multiple independent lines of evidence identified in the geologic system being analysed, as well as with evidence identified in analogs to that geologic system. The proposed nuclear waste repository at Yucca Mountain, Nevada, United States, differs in significant ways from potential repository sites being considered by other nations. Nonetheless, observations of hydrogeological and hydrogeochemical systems of Yucca Mountain and Yucca Mountain analogs present multiple independent lines of evidence that can be used in evaluating long-term predictions of the evolution of hydrogeological and hydrogeochemical systems at Yucca Mountain. (authors)

  7. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (The former part of the step 3)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-07-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at the former part of Step 3 (deep borehole investigations without vertical seismic profiling investigations), in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The uncertainty of hydrogeological model of the site scale is decreased as stepwise research; 2) Borehole investigations combined with hydraulic monitoring are useful for decreasing the uncertainty of hydrogeological model; The main items specified for further investigations are summarized as follows: 1) Trend, length, and hydraulic parameters of faults confirmed in the MIU construction site; 2) Shape of boundary of geological layer, and hydraulic parameters of rock; 3) Hydraulic head distribution of deep underground. (author)

  8. Assessing flash flood vulnerability using a multi-vulnerability approach

    Directory of Open Access Journals (Sweden)

    Karagiorgos Konstantinos

    2016-01-01

    Full Text Available In the framework of flood risk assessment, while the understanding of hazard and exposure has significantly improved over the last years, knowledge on vulnerability remains one of the challenges. Current approaches in vulnerability research are characterised by a division between social scientists and natural scientists. In order to close this gap, we present an approach that combines information on physical and social vulnerability in order to merge information on the susceptibility of elements at risk and society. With respect to physical vulnerability, the study is based on local-scale vulnerability models using nonlinear regression approaches. Modified Weibull distributions were fit to the data in order to represent the relationship between process magnitude and degree of loss. With respect to social vulnerability we conducted a door-to-door survey which resulted in particular insights on flood risk awareness and resilience strategies of exposed communities. In general, both physical and social vulnerability were low in comparison with other European studies, which may result from (a specific building regulations in the four Mediterranean test sites as well as general design principles leading to low structural susceptibility of elements at risk, and (b relatively low social vulnerability of citizens exposed. As a result it is shown that a combination of different perspectives of vulnerability will lead to a better understanding of exposure and capacities in flood risk management.

  9. Integrating advanced 3D Mapping into Improved Hydrogeologic Frameworks, a Future path for Groundwater Modeling? Results from Western Nebraska

    Science.gov (United States)

    Cannia, J. C.; Abraham, J. D.; Peterson, S. M.; Sibray, S. S.

    2012-12-01

    The U.S. Geological Survey and its partners have collaborated to provide an innovative, advanced 3 dimensional hydrogeologic framework which was used in a groundwater model designed to test water management scenarios. Principal aquifers for the area mostly consist of Quaternary alluvium and Tertiary-age fluvial sediments which are heavily used for irrigation, municipal and environmental uses. This strategy used airborne electromagnetic (AEM) surveys, validated through sensitivity analysis of geophysical and geological ground truth to provide new geologic interpretation to characterize the hydrogeologic framework in the area. The base of aquifer created through this work leads to new interpretations of saturated thickness and groundwater connectivity to the surface water system. The current version of the groundwater model which uses the advanced hydrogeologic framework shows a distinct change in flow path orientation, timing and amount of base flow to the streams of the area. Ongoing efforts for development of the hydrogeologic framework development include subdivision of the aquifers into new hydrostratigraphic units based on analysis of geophysical and lithologic characteristics which will be incorporated into future groundwater models. The hydrostratigraphic units are further enhanced by Nuclear Magnetic Resonance (NMR) measurements to characterize aquifers. NMR measures the free water in the aquifer in situ allowing for a determination of hydraulic conductivity. NMR hydraulic conductivity values will be mapped to the hydrostratigraphic units, which in turn are incorporated into the latest versions of the groundwater model. The addition of innovative, advanced 3 dimensional hydrogeologic frameworks, which incorporates AEM and NMR, for groundwater modeling, has a definite advantage over traditional frameworks. These groundwater models represent the natural system at a level of reality not achievable by other methods, which lead to greater confidence in the

  10. Drilling methods to keep the hydrogeological parameters of natural aquifer

    International Nuclear Information System (INIS)

    Chen Xiaoqin

    2004-01-01

    In hydrogeological drilling, how to keep the hydrogeological parameters of natural aquifer unchanged is a deeply concerned problem for the technicians, this paper introduces the methods taken by the state-owned 'Red Hill' geological company of Uzbekistan. By the research and contrast of different kinds of flush liquid, the company has found the methods to reduce the negative effects of drilling on the permeability of the vicinal aquifer. (author)

  11. Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington

    International Nuclear Information System (INIS)

    Liikala, T.L.

    1994-09-01

    US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management

  12. Hydrogeological Characteristics of Groundwater Yield in Shallow ...

    African Journals Online (AJOL)

    Hydrogeological Characteristics of Groundwater Yield in Shallow Wells of the ... of Water Resources and Lower Niger River Basin Development Authority in Ilorin. ... moment correlation, multiple and stepwise multiple regression analysis.

  13. Changes in climate, catchment vegetation and hydrogeology as the causes of dramatic lake-level fluctuations in the Kurtna Lake District, NE Estonia

    Directory of Open Access Journals (Sweden)

    Marko Vainu

    2014-02-01

    Full Text Available Numerous lakes in the world serve as sensitive indicators of climate change. Water levels for lakes Ahnejärv and Martiska, two vulnerable oligotrophic closed-basin lakes on sandy plains in northeastern Estonia, fell more than 3 m in 1946–1987 and rose up to 2 m by 2009. Earlier studies indicated that changes in rates of groundwater abstraction were primarily responsible for the changes, but scientifically sound explanations for water-level fluctuations were still lacking. Despite the inconsistent water-level dataset, we were able to assess the importance of changing climate, catchment vegetation and hydrogeology in water-level fluctuations in these lakes. Our results from water-balance simulations indicate that before the initiation of ground­water abstraction in 1972 a change in the vegetation composition on the catchments triggered the lake-level decrease. The water-level rise in 1990–2009 was caused, in addition to the reduction of groundwater abstraction rates, by increased precipitation and decreased evaporation. The results stress that climate, catchment vegetation and hydrogeology must all be considered while evaluating the causes of modern water-level changes in lakes.

  14. Perspectives of natural isotopes application for solving hydrogeological problems of mineral deposits

    International Nuclear Information System (INIS)

    Rozkowski, A.

    1978-01-01

    Results of hydrogeological studies made with use of natural isotopes and carried out within the Lublin Coal Field are presented in the paper. The studies have proved advantageous possibilities of isotope technique application for solving the hydrogeological problems of mineral deposits. Examination of isotope relations in ground waters complements traditional hydrogeological methods. This trend of complex investigations enables solving some peculiar hydrodynamic and hydrochemical problems. Exact recognition of these conditions is required to elaborate out proper prognosis on water content degree in given deposit and on value of ground water inflow into areas of designed mines. (author)

  15. Mineralization of the ancient hydrogeological conditions in the northeast of Ordos basin

    International Nuclear Information System (INIS)

    Gao Junyi

    2012-01-01

    Ordos basin, North East, to the Eocene as a turning point, in the generation of the ancient hydrogeological conditions have distinct changes experienced at least two ancient evolution of hydrogeological conditions, that is closed in the early flow into basin Late open drain basin. Closed in the early period of the inner flow basin, since the purpose of layer deposition, the direction of the ancient hydrodynamic interlayer oxidation is consistent with the direction of oxidation. Hydrogeological conditions of the ancient point of view, in the Ordos basin, North East looking for interlayer oxidation zone type uranium has a guiding role. (author)

  16. Synthetic hydrogeological study on Beishan preselected area for high-level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Ji Ruili; Wang Hailong; Liu Shufen; Zong Zihua; Dong Jiannan; Zhang Ming

    2014-01-01

    On the basis of large scale field hydrogeological investigation, synthetic hydrogeological studies related to groundwater system characteristics, permeability of rock bodies, groundwater dynamic, hydrogeochemistry, isotopic hydrology, CFC's of groundwater and groundwater flow field simulation were carried out for Beishan area, Gansu province. According to analysis on a large amount of hydrogeological data, the characteristics of groundwater circulation, groundwater hydrodynamics and hydrgeochemistry were described and the suitability of Beishan area as the potential area of high-level radioactive waste disposal was evaluated in the paper. Through this study, the hydrogeological study and evaluation methods in the siting of China's high level radioactive waste repository were set up. Furthermore, the important hydrogeological scientific evidence was provided for optimal site filtration of China's high-level radioactive waste repository in Beishan area. (authors)

  17. Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model.

    Science.gov (United States)

    Yang, Weichao; Xu, Kui; Lian, Jijian; Bin, Lingling; Ma, Chao

    2018-05-01

    Flood is a serious challenge that increasingly affects the residents as well as policymakers. Flood vulnerability assessment is becoming gradually relevant in the world. The purpose of this study is to develop an approach to reveal the relationship between exposure, sensitivity and adaptive capacity for better flood vulnerability assessment, based on the fuzzy comprehensive evaluation method (FCEM) and coordinated development degree model (CDDM). The approach is organized into three parts: establishment of index system, assessment of exposure, sensitivity and adaptive capacity, and multiple flood vulnerability assessment. Hydrodynamic model and statistical data are employed for the establishment of index system; FCEM is used to evaluate exposure, sensitivity and adaptive capacity; and CDDM is applied to express the relationship of the three components of vulnerability. Six multiple flood vulnerability types and four levels are proposed to assess flood vulnerability from multiple perspectives. Then the approach is applied to assess the spatiality of flood vulnerability in Hainan's eastern area, China. Based on the results of multiple flood vulnerability, a decision-making process for rational allocation of limited resources is proposed and applied to the study area. The study shows that multiple flood vulnerability assessment can evaluate vulnerability more completely, and help decision makers learn more information about making decisions in a more comprehensive way. In summary, this study provides a new way for flood vulnerability assessment and disaster prevention decision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Security Vulnerabilities of the Web Based Open Source Information ...

    African Journals Online (AJOL)

    This paper exposes security vulnerabilities of the web based Open Source Information Systems (OSIS) from both system angle and human perspectives.It shows the extent of risk that can likely hinder adopting organization from attaning full intended benefits of using OSIS software. To undertake this study, a case study ...

  19. Factors affecting public-supply well vulnerability in two karst aquifers.

    Science.gov (United States)

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  20. Hydrogeological research at the site of the Asse salt mine

    International Nuclear Information System (INIS)

    Batsche, H.; Rauert, W.; Klarr, K.

    1980-01-01

    In connection with the storage of radioactive wastes in the abandoned Asse salt mine near Brunswick (Federal Republic of Germany), the hydrogeology of the ridge of hills of Asse has been investigated. In order to obtain as detailed information as possible on the hydrogeological conditions, a long-term investigation programme has been set up and many methods of investigation have been used. Hydrogeological boring operations resulted in important scientific findings regarding, for example, the course of the salt table and the main anhydrite which towers up above the salt table into the overlying collapsed rocks. Hydrochemical data showed the hydraulic effect of transverse faults. Isotopic hydrological measurements permitted distinction between the flow behaviour of the groundwater in different aquifers. The origin of the salt springs at the northwest end of the structure can be explained. Some additional pumping and labelling tests are expected to yield quantitative results concerning hydraulic interrelationships recognized to date. The very complex hydrogeological structure of the ridge of hills of Asse is the result of the multiple succession of permeable and impermeable layers on the flanks of the structure, and, furthermore, is possibly due to the fact that in some individual faults groundwater may seep through normally impermeable layers as well as via waterways at the salt table. (author)

  1. Retooling CalEnviroScreen: Cumulative Pollution Burden and Race-Based Environmental Health Vulnerabilities in California

    Science.gov (United States)

    2018-01-01

    The California Community Environmental Health Screening Tool (CalEnviroScreen) advances research and policy pertaining to environmental health vulnerability. However, CalEnviroScreen departs from its historical foundations and comparable screening tools by no longer considering racial status as an indicator of environmental health vulnerability and predictor of cumulative pollution burden. This study used conceptual frameworks and analytical techniques from environmental health and inequality literature to address the limitations of CalEnviroScreen, especially its inattention to race-based environmental health vulnerabilities. It developed an adjusted measure of cumulative pollution burden from the CalEnviroScreen 2.0 data that facilitates multivariate analyses of the effect of neighborhood racial composition on cumulative pollution burden, net of other indicators of population vulnerability, traffic density, industrial zoning, and local and regional clustering of pollution burden. Principal component analyses produced three new measures of population vulnerability, including Latina/o cumulative disadvantage that represents the spatial concentration of Latinas/os, economic disadvantage, limited English-speaking ability, and health vulnerability. Spatial error regression analyses demonstrated that concentrations of Latinas/os, followed by Latina/o cumulative disadvantage, are the strongest demographic determinants of adjusted cumulative pollution burden. Findings have implications for research and policy pertaining to cumulative impacts and race-based environmental health vulnerabilities within and beyond California. PMID:29659481

  2. Retooling CalEnviroScreen: Cumulative Pollution Burden and Race-Based Environmental Health Vulnerabilities in California

    Directory of Open Access Journals (Sweden)

    Raoul S. Liévanos

    2018-04-01

    Full Text Available The California Community Environmental Health Screening Tool (CalEnviroScreen advances research and policy pertaining to environmental health vulnerability. However, CalEnviroScreen departs from its historical foundations and comparable screening tools by no longer considering racial status as an indicator of environmental health vulnerability and predictor of cumulative pollution burden. This study used conceptual frameworks and analytical techniques from environmental health and inequality literature to address the limitations of CalEnviroScreen, especially its inattention to race-based environmental health vulnerabilities. It developed an adjusted measure of cumulative pollution burden from the CalEnviroScreen 2.0 data that facilitates multivariate analyses of the effect of neighborhood racial composition on cumulative pollution burden, net of other indicators of population vulnerability, traffic density, industrial zoning, and local and regional clustering of pollution burden. Principal component analyses produced three new measures of population vulnerability, including Latina/o cumulative disadvantage that represents the spatial concentration of Latinas/os, economic disadvantage, limited English-speaking ability, and health vulnerability. Spatial error regression analyses demonstrated that concentrations of Latinas/os, followed by Latina/o cumulative disadvantage, are the strongest demographic determinants of adjusted cumulative pollution burden. Findings have implications for research and policy pertaining to cumulative impacts and race-based environmental health vulnerabilities within and beyond California.

  3. Retooling CalEnviroScreen: Cumulative Pollution Burden and Race-Based Environmental Health Vulnerabilities in California.

    Science.gov (United States)

    Liévanos, Raoul S

    2018-04-16

    The California Community Environmental Health Screening Tool (CalEnviroScreen) advances research and policy pertaining to environmental health vulnerability. However, CalEnviroScreen departs from its historical foundations and comparable screening tools by no longer considering racial status as an indicator of environmental health vulnerability and predictor of cumulative pollution burden. This study used conceptual frameworks and analytical techniques from environmental health and inequality literature to address the limitations of CalEnviroScreen, especially its inattention to race-based environmental health vulnerabilities. It developed an adjusted measure of cumulative pollution burden from the CalEnviroScreen 2.0 data that facilitates multivariate analyses of the effect of neighborhood racial composition on cumulative pollution burden, net of other indicators of population vulnerability, traffic density, industrial zoning, and local and regional clustering of pollution burden. Principal component analyses produced three new measures of population vulnerability, including Latina/o cumulative disadvantage that represents the spatial concentration of Latinas/os, economic disadvantage, limited English-speaking ability, and health vulnerability. Spatial error regression analyses demonstrated that concentrations of Latinas/os, followed by Latina/o cumulative disadvantage, are the strongest demographic determinants of adjusted cumulative pollution burden. Findings have implications for research and policy pertaining to cumulative impacts and race-based environmental health vulnerabilities within and beyond California.

  4. Insights and participatory actions driven by a socio-hydrogeological approach for groundwater management: the Grombalia Basin case study (Tunisia)

    Science.gov (United States)

    Tringali, C.; Re, V.; Siciliano, G.; Chkir, N.; Tuci, C.; Zouari, K.

    2017-08-01

    Sustainable groundwater management strategies in water-scarce countries need to guide future decision-making processes pragmatically, by simultaneously considering local needs, environmental problems and economic development. The socio-hydrogeological approach named `Bir Al-Nas' has been tested in the Grombalia region (Cap Bon Peninsula, Tunisia), to evaluate the effectiveness of complementing hydrogeochemical and hydrogeological investigations with the social dimension of the issue at stake (which, in this case, is the identification of groundwater pollution sources). Within this approach, the social appraisal, performed through social network analysis and public engagement of water end-users, allowed hydrogeologists to get acquainted with the institutional dimension of local groundwater management, identifying issues, potential gaps (such as weak knowledge transfer among concerned stakeholders), and the key actors likely to support the implementation of the new science-based management practices resulting from the ongoing hydrogeological investigation. Results, hence, go beyond the specific relevance for the Grombaila basin, showing the effectiveness of the proposed approach and the importance of including social assessment in any given hydrogeological research aimed at supporting local development through groundwater protection measures.

  5. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2015-10-30

    ://www.ajol.info/index.php/jasem http://www.bioline.org.br/ja. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater System in Parts of. Benin Metropolis, Benin City Nigeria: The Key to Groundwater Sustainability.

  6. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  7. Novel Kinds of Random Access Memory and New Vulnerabilities of Computer Aids based on Them

    Directory of Open Access Journals (Sweden)

    Alexander Mihaylovich Korotin

    2014-09-01

    Full Text Available The article discusses vulnerabilities of computer aids based on existing RAM and mechanisms for restricting exploitation of such vulnerabilities. In addition, the article discusses features and work methods of different RAM.

  8. A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Liem T., E-mail: ltran1@utk.edu [Department of Geography, University of Tennessee, Knoxville, TN (United States); O& #x27; Neill, Robert V. [OTIE and Associates, Oak Ridge, TN (United States); Smith, Elizabeth R. [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC (United States)

    2012-04-15

    The paper presents a method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. The method is based on the concept of 'self-/peer-appraisal' of a watershed in term of vulnerability. The self-/peer-appraisal process is facilitated by two separate linear optimization programs. The analysis provided insights on the environmental conditions, in general, and the relative vulnerability pattern, in particular, of the Mid-Atlantic region. The suggested method offers a simple but effective and objective way to perform a regional environmental vulnerability assessment. Consequently the method can be used in various steps in environmental assessment and planning. - Highlights: Black-Right-Pointing-Pointer We present a method for regional environmental vulnerability assessment. Black-Right-Pointing-Pointer It is based on the self-/peer-appraisal concept in term of vulnerability. Black-Right-Pointing-Pointer The analysis is facilitated by two separate linear optimization programs. Black-Right-Pointing-Pointer The method provides insights on the regional relative vulnerability pattern.

  9. A vulnerability-centric requirements engineering framework : Analyzing security attacks, countermeasures, and requirements based on vulnerabilities

    NARCIS (Netherlands)

    Elahi, G.; Yu, E.; Zannone, N.

    2010-01-01

    Many security breaches occur because of exploitation of vulnerabilities within the system. Vulnerabilities are weaknesses in the requirements, design, and implementation, which attackers exploit to compromise the system. This paper proposes a methodological framework for security requirements

  10. [Medical hydrogeology is an independent interdisciplinary branch of the science about groundwater].

    Science.gov (United States)

    Elpiner, L I

    The use of groundwater in population water supply systems gains more and more importance because of increasing degradation of the quality of surface water sources. At the same time there are changed concepts on ubiquitous high quality of groundwater. The executed analysis offoreign and domestic literature allowed authors to determine the character and causes of negative changes in the composition of groundwater. In the large body of investigations there were established cause-and-effect relationships between a number of noninfectious (including cardiovascular and cancer) and infectious diseases and anthropogenic pollution and the natural composition of groundwater. In the article there is substantiated the formation of a new interdisciplinary scientific direction - medical hydrogeology. On the basis of current data on the medical and ecological significance of the quality, quantity and regime of the groundwater, geological conditions of the shaping of their composition, there was shown the need of the consideration of the hydrological situation in making water supply management solutions safe for the health of the population. In this regard, there were considered the interrelationship and interdependence of allied disciplines - hygiene, ecological toxicology and epidemiology, hydrogeochemistry, hydrogeology. There was pointed the importance of the acquisition of based on hydrogeology medical specialists of the water supply profile for sharing with hygienists of the effective solution of tasks of the management of groundwater sources.

  11. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan (Golder Associates AB (Sweden)); Follin, Sven (SF GeoLogic (Sweden))

    2010-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  12. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven

    2010-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  13. Bedrock Hydrogeology-Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Bockgaard, Niclas; Follin, Sven

    2012-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  14. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  15. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  16. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  17. Application of GIS in hydrogeology and engineering geology

    Directory of Open Access Journals (Sweden)

    Lucia Mihalová

    2007-06-01

    Full Text Available Hydrogeology as a specific science discipline has a multi spectral interest focused to officiating sources in drink water and utilization water and also in area aimed for pure mineral water sources. Although engineering geology works exercise with piece of knowledge, geosciences are focused to territorial planning, investment construction and protection environment. Application of GIS in appointed problems purvey possibility quality, quick and high special analysis appointed problems and take advantage all accessible quality and quantity related information of water focused to hydrogeology, as to occurrence varied basement soil, appropriate for building activity, possibly appointed for protection. Solution of this probleme is on first name terms definite interest area, as to adjudication sources focused economic significance state.

  18. Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring

    Science.gov (United States)

    Wendland, E.; Barreto, C.; Gomes, L. H.

    2007-09-01

    SummaryMain objective of this work was the study of the infiltration and recharge mechanisms in the Guarani Aquifer System (GAS) outcrop zone. The study was based on hydrogeologic monitoring, evapotranspiration and water balance in a pilot watershed. The pilot watershed (Ribeirão da Onça) is situated in the outcrop zone of the Guarani Aquifer between parallels 22°10' and 22°15' (south latitude) and meridians 47°55' and 48°00' (west longitude). For the execution of the research project, a monitoring network (wells, rain gauge and linigraph) was installed in the watershed. Data have been systematically collected during the period of a hydrological year. Water level fluctuation has been used to estimate deep recharge and subsurface storage variation. The method used to estimate the direct recharge adopted the hypothesis that the recession of the groundwater level obeys a function of power law type. Direct recharge is obtained through the difference between the actual level of an unconfined aquifer and the level indicated by extrapolation of the recession curve, in a given period. Base outflow is estimated through a mixed function (linear and exponential). Outflow in the creek has been measured with current meter and monitored continuously with a linigraph. The annual infiltration in 2005 was estimated to be 350 mm, while the deep recharge, based on water balance, appears to be 3.5% of the precipitation (1410 mm). These results indicate that the estimated long term water availability of the Guarani Aquifer System should be studied more carefully.

  19. Hydrogeological and geophysical study for deeper groundwater ...

    Indian Academy of Sciences (India)

    lected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological ... a rainwater harvesting structure to recharge the subsurface in ... southwest trend. The drainage pattern is dendritic.

  20. Hydrogeological characterization and surveillance of the Asse site

    International Nuclear Information System (INIS)

    Stempel, C. Von; Brewitz, W.

    1995-01-01

    The Asse salt mine is located about 20 km southeast of Braunschweig in Northern Germany and the testing of radioactive waste disposal took place in the mine during 1967 to 1978. Observations of the hydrogeological conditions have been carried out for 25 years in the covering rock strata above the caprock and at the flanks of the Asse salt anticline. For geological and hydrogeological investigations 27 large diameter boreholes, 19 piezometers and 5 deep boreholes were sunk into the rock formations above the Asse salt anticline and 29 hydrological observation points (mostly measuring weirs) were constructed. Hydraulic conductivities between 10 -4 and 10 -9 m/s, mostly between 10 -5 and 10 -8 m/s were determined in the Triassic formations by pumping tests, the oscillation method and packer-tests. The groundwater recharge rate is between 10 and 20% of the yearly precipitation. Isotopic analyses showed that in the rocks above the Asse salt anticline there are three kinds of groundwater: near-surface precipitation; an intermediate-depth ground water corresponding to near-surface 2H/18O but without tritium from young precipitations; and deep groundwater below 740 m, without any tritium. In the vicinity of the Asse mine, the surface rocks above the Asse salt anticline, shows good conditions as a hydrogeological barrier

  1. Exploration of method determining hydrogeologic parameters of low permeability sandstone uranium deposits

    International Nuclear Information System (INIS)

    Ji Hongbin; Wu Liwu; Cao Zhen

    2012-01-01

    A hypothesis of regarding injecting test as 'anti-pumping' test is presented, and pumping test's 'match line method' is used to process data of injecting test. Accurate hydrogeologic parameters can be obtained by injecting test in the sandstone uranium deposits with low permeability and small pumping volume. Taking injecting test in a uranium deposit of Xinjiang for example, the hydrogeologic parameters of main ore-bearing aquifer were calculated by using the 'anti-pumping' hypothesis. Results calculated by the 'anti-pumping' hypothesis were compared with results calculated by water level recovery method. The results show that it is feasible to use 'anti-pumping' hypothesis to calculate the hydrogeologic parameters of main ore-bearing aquifer. (authors)

  2. Use of radioactive and neutron-activatable tracers to determine effective hydrogeologic parameters

    International Nuclear Information System (INIS)

    Yu, C.; Jester, W.A.; Jarrett, A.R.

    1985-01-01

    The migration of nuclides in a geologic medium is controlled by the hydrogeologic parameters of the medium such as the dispersion coefficient, pore water velocity, retardation factor, degradation rate, mass transfer coefficient, water content, and fraction of dead-end pores. The breakthrough curve (BTC), which is the graphical relationship between the tracer concentration and the elapsed time since introduction, is an integrated picture of the hydrogeologic parameters that produced the BTC. Both radioactive and neutron-activatable tracers have been used to generate BTCs. The BTC of a 92 Br radioactive tracer generated under saturated conditions in a nonhomogeneous (fractured) soil column is shown. From BTCs, the effective hydrogeologic parameters can be identified if appropriate techniques are applied

  3. Mapping eco-environmental vulnerability patterns: An assessment framework based on remote sensing, GIS, and AHP

    Science.gov (United States)

    Anh, N. K.; Liou, Y. A.; Li, M. H.

    2016-12-01

    The motivation for this study is assessment of the eco-environment vulnerability based on four independent determinants: hydro-meteorology, topography, land resources, and human activities. An assessment framework is proposed to assess the vulnerable eco-environment by using 16 variables with 6 of them constructed from Landsat 8 satellite images. The remaining variables were extracted from digital maps. Each variable was evaluated and spatially mapped with the aid of an analytical hierarchy process (AHP) and geographical information system (GIS). The Thua Thien - Hue Province that has been experiencing natural disasters and urbanization in the recent decades is selected as our study area. An eco-environmental vulnerability map is assorted into six vulnerable levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities, representing 14%, 27%, 17%, 26%, 13%, 3% of the study area, respectively. It is found that heavy and very heavy vulnerable areas appear mainly in the low and medium lands with high intensification of social-economic activities and often suffer from flooding. Tiny percentages of medium and heavy vulnerable levels occur in high land areas probably caused by agricultural practices in highlands, slash and burn cultivation and removal of natural forests with new plantation forests and these regions are usually influenced by landslides, flash flooding. Based on our results, three ecological zones requiring different development and protection solutions are proposed to restore local eco-environment toward sustainable development. Our findings support the idea that eco-environmental vulnerability is driven by anthropogenic processes and enhanced by natural disaster in the Thua Thien-Hue Province.

  4. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    Science.gov (United States)

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  5. ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability

    Directory of Open Access Journals (Sweden)

    Milos Bogdanovic

    2013-08-01

    Full Text Available Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

  6. ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.

    Science.gov (United States)

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-08-15

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

  7. ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability

    Science.gov (United States)

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-01-01

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435

  8. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  9. Description of hydrogeological data in SKB's database GEOTAB

    International Nuclear Information System (INIS)

    Gentzschein, B.

    1986-12-01

    Since 1977 Swedish Nuclear Fuel and Waste Management Co., SKB has been performing a research and development programme for final disposal and spent nuclear fuel. The purpose of the programme is to acquire knowledge and data of radioactive waste. Measurement for the characterisation of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects. A database, called GEOTAB, was investigated. It is based on a concept from Mimer Information System, and have been further developed by Ergo-Data. The hardware is a VAX 750 computer located at KRAB (Kraftverksbolagens Redovisningsavdelning AB) in Stockholm. (orig./DG)

  10. California GAMA Program: A Contamination Vulnerability Assessment for the Bakersfield Area

    International Nuclear Information System (INIS)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-01

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MTBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey (USGS), the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the groundwater basin that underlies Bakersfield, in the southern San Joaquin Valley. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements help determine the recharge water

  11. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    Science.gov (United States)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 - concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 - concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually

  12. Development of a process-oriented vulnerability concept for water travel time in karst aquifers-case study of Tanour and Rasoun springs catchment area.

    Science.gov (United States)

    Hamdan, Ibraheem; Sauter, Martin; Ptak, Thomas; Wiegand, Bettina; Margane, Armin; Toll, Mathias

    2017-04-01

    Key words: Karst aquifer, water travel time, vulnerability assessment, Jordan. The understanding of the groundwater pathways and movement through karst aquifers, and the karst aquifer response to precipitation events especially in the arid to semi-arid areas is fundamental to evaluate pollution risks from point and non-point sources. In spite of the great importance of the karst aquifer for drinking purposes, karst aquifers are highly sensitive to contamination events due to the fast connections between the land-surface and the groundwater (through the karst features) which is makes groundwater quality issues within karst systems very complicated. Within this study, different methods and approaches were developed and applied in order to characterise the karst aquifer system of the Tanour and Rasoun springs (NW-Jordan) and the flow dynamics within the aquifer, and to develop a process-oriented method for vulnerability assessment based on the monitoring of different multi-spatially variable parameters of water travel time in karst aquifer. In general, this study aims to achieve two main objectives: 1. Characterization of the karst aquifer system and flow dynamics. 2. Development of a process-oriented method for vulnerability assessment based on spatially variable parameters of travel time. In order to achieve these aims, different approaches and methods were applied starting from the understanding of the geological and hydrogeological characteristics of the karst aquifer and its vulnerability against pollutants, to using different methods, procedures and monitored parameters in order to determine the water travel time within the aquifer and investigate its response to precipitation event and, finally, with the study of the aquifer response to pollution events. The integrated breakthrough signal obtained from the applied methods and procedures including the using of stable isotopes of oxygen and hydrogen, the monitoring of multi qualitative and quantitative parameters

  13. Allocating risk capital for a brownfields redevelopment project under hydrogeological and financial uncertainty.

    Science.gov (United States)

    Yu, Soonyoung; Unger, Andre J A; Parker, Beth; Kim, Taehee

    2012-06-15

    In this study, we defined risk capital as the contingency fee or insurance premium that a brownfields redeveloper needs to set aside from the sale of each house in case they need to repurchase it at a later date because the indoor air has been detrimentally affected by subsurface contamination. The likelihood that indoor air concentrations will exceed a regulatory level subject to subsurface heterogeneity and source zone location uncertainty is simulated by a physics-based hydrogeological model using Monte Carlo realizations, yielding the probability of failure. The cost of failure is the future value of the house indexed to the stochastic US National Housing index. The risk capital is essentially the probability of failure times the cost of failure with a surcharge to compensate the developer against hydrogeological and financial uncertainty, with the surcharge acting as safety loading reflecting the developers' level of risk aversion. We review five methodologies taken from the actuarial and financial literature to price the risk capital for a highly stylized brownfield redevelopment project, with each method specifically adapted to accommodate our notion of the probability of failure. The objective of this paper is to develop an actuarially consistent approach for combining the hydrogeological and financial uncertainty into a contingency fee that the brownfields developer should reserve (i.e. the risk capital) in order to hedge their risk exposure during the project. Results indicate that the price of the risk capital is much more sensitive to hydrogeological rather than financial uncertainty. We use the Capital Asset Pricing Model to estimate the risk-adjusted discount rate to depreciate all costs to present value for the brownfield redevelopment project. A key outcome of this work is that the presentation of our risk capital valuation methodology is sufficiently generalized for application to a wide variety of engineering projects. Copyright © 2012 Elsevier

  14. Hydrogeological challenges through gender approaches

    Science.gov (United States)

    Di Lorenzo, Maria Rosaria; Saltari, Davide; Di Giacomo, Tullia Valeria

    2017-04-01

    Women and Men play a different role in the society, tied from the differences (physical, biological, somatic, etc…) typical of each one. In the last decades, more gender approach has been introduced in a number of fields including the hydrogeological risk. Experiences, needs and potential of each one, women and men, covers both the risk reduction before the occurrence of extreme events (vulnerability assessment and prediction of the expected risk), then in the next emergency and intervention in follow-up actions to the overcoming of the event for the return to everyday life. The response of the extreme hydrological events are also subordinated from gender participation and it is closely related from other aspects, as natural disasters (flood events), gender inequalities and urban floodings. These aspects are also scheduled by the different approaches: a woman focuses different primary and social aspects than a man. How women can help organizations offering new 'policies' and government is the main aspect to be considered and how a gender approach can mitigate disasters to hydrological risk. It depends on some factors: gender inequalities (gender perception and sensibility), importance of natural disasters and urban floodings. Gender inequalities can match both in the natural disasters and urban floodings in a relevant way. ICT solutions can also give a helpful framework to accelerate and focus the quicker condition to get the better approach and solution. Gender has a particular significant, explanatory variable in disaster research. Many studies, show how women have higher mortality and morbidity rates than men during natural disasters, especially in lower income countries. In the aftermath disasters, at the same time, specific responsibilities on women are imposed from the gendered division of labour. Furthermore gender differences are sometimes attributed to traditional women's roles, discrimination, lower physical strength, nutritional deficiencies, etc. as

  15. Hydrogeological characterization of peculiar Apenninic springs

    Science.gov (United States)

    Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L.

    2014-09-01

    In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012-2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs.

  16. Small Scale Multisource Site – Hydrogeology Investigation

    Science.gov (United States)

    A site impacted by brackish water was evaluated using traditional hydrogeologic and geochemical site characterization techniques. No single, specific source of the brine impacted ground water was identified. However, the extent of the brine impacted ground water was found to be...

  17. PSA based vulnerability and protectability analysis for NPPs

    International Nuclear Information System (INIS)

    Gopika, V.; Sanyasi Rao, V.V.S.; Ghosh, A.K.; Kushwaha, H.S.

    2012-01-01

    Highlights: ► The paper describes the generation of location sets and protection sets. ► Vulnerability and protectability used to rank location sets and protection sets. ► Ranking helps in adequacy of protection measures employed in various locations. ► The procedure for PSA based vital area identification is demonstrated. ► This method has found practical applicability for Indian NPP. -- Abstract: Identification of vital areas in a facility involves assessing the facility and the locations, whose sabotage can result in undesirable (radiological) consequences. Probabilistic Safety Assessment (PSA) technique can find the component failures leading to core damage (a surrogate for radiological consequence) in a systematic manner, which can be extended to identification of vital areas. This paper describes the procedure for the generation of location sets (set of locations whose sabotage can lead to possible core damage) and protection sets (set of locations that must be protected to prevent possible core damage). In addition, measures such as vulnerability and protectability have been introduced, which can be used to rank location sets and protection sets.

  18. A rainfall risk analysis thanks to an GIS based estimation of urban vulnerability

    Science.gov (United States)

    Renard, Florent; Pierre-Marie, Chapon

    2010-05-01

    heavy rains, to locate areas of risk in the urban area. The targets that share the same rank of this vulnerability index do not possess the same importance, or the same sensitivity to the flood hazard. Therefore, the second part of this work is to define the priorities and sensitivities of different targets based on the judgments of experts. Multicriteria decision methods are used to prioritize elements and are therefore adapted to the modelling of the sensitivity of the issues of greater Lyon (Griot, 2008). The purpose of these methods is the assessment of priorities between the different components of the situation. Thomas Saaty's analytic hierarchy process (1980) is the most frequently used because of its many advantages. On this basis, the formal calculations of priorities and sensitivities of the elements have been conducted. These calculations are based on the judgments of experts. Indeed, during semi-structured interview, the 38 experts in our sample delivered a verdict on issues that seem relatively more important than others by binary comparison. They carry the same manner to determine sensitivity's stakes to hazard flooding. Finally, the consistency of answers given by experts is validated by calculating a ratio of coherence, and their results are aggregated to provide functions of priority (based on the relative importance of each stakes), and functions of sensitivity (based on the relative sensitivity of each stakes). From these functions of priority and sensitivity is obtained the general function of vulnerability. The vulnerability functions allow defining the importance of the stakes of Greater Lyon and their sensitivity to hydrological hazards. The global vulnerability function is obtained from sensitivity and priority functions and shows the great importance of human issues (75 %). The vulnerability factor of environmental targets represents 12 % of the global vulnerability function, as much as the materials issues. However, it can be seen that the

  19. METHODOLOGICAL APPROACH TO ANALYSIS AND EVALUATION OF INFORMATION PROTECTION IN INFORMATION SYSTEMS BASED ON VULNERABILITY DANGER

    Directory of Open Access Journals (Sweden)

    Y. M. Krotiuk

    2008-01-01

    Full Text Available The paper considers a methodological approach to an analysis and estimation of information security in the information systems which is based on the analysis of vulnerabilities and an extent of their hazard. By vulnerability hazard it is meant a complexity of its operation as a part of an information system. The required and sufficient vulnerability operational conditions  have  been  determined in the paper. The paper proposes a generalized model for attack realization which is used as a basis for construction of an attack realization model for an operation of a particular vulnerability. A criterion for estimation of information protection in the information systems which is based on the estimation of vulnerability hazard is formulated in the paper. The proposed approach allows to obtain a quantitative estimation of the information system security on the basis of the proposed schemes on realization of typical attacks for the distinguished classes of vulnerabilities.The methodical approach is used for choosing variants to be applied for realization of protection mechanisms in the information systems as well as for estimation of information safety in the operating information systems.

  20. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers approximately 44,000 square miles of northeastern Oregon, southeastern Washington, and western Idaho. The area supports a $6 billion per year agricultural industry, leading the Nation in production of apples and nine other commodities (State of Washington Office of Financial Management, 2007; U.S. Department of Agriculture, 2007). Groundwater availability in the aquifers of the area is a critical water-resource management issue because the water demand for agriculture, economic development, and ecological needs is high. The primary aquifers of the CPRAS are basalts of the Columbia River Basalt Group (CRBG) and overlying basin-fill sediments. Water-resources issues that have implications for future groundwater availability in the region include (1) widespread water-level declines associated with development of groundwater resources for irrigation and other uses, (2) reduction in base flow to rivers and associated effects on temperature and water quality, and (3) current and anticipated effects of global climate change on recharge, base flow, and ultimately, groundwater availability. As part of a National Groundwater Resources Program, the U.S. Geological Survey began a study of the CPRAS in 2007 with the broad goals of (1) characterizing the hydrologic status of the system, (2) identifying trends in groundwater storage and use, and (3) quantifying groundwater availability. The study approach includes documenting changes in the status of the system, quantifying the hydrologic budget for the system, updating the regional hydrogeologic framework, and developing a groundwater-flow simulation model for the system. The simulation model will be used to evaluate and test the conceptual model of the system and later to evaluate groundwater availability under alternative development and climate scenarios. The objectives of this study were to update the hydrogeologic framework for the CPRAS using the available

  1. Summary of field operations Technical Area I well PGS-1. Site-Wide Hydrogeologic Characterization Project

    International Nuclear Information System (INIS)

    Fritts, J.E.; McCord, J.P.

    1995-02-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories, New Mexico is managing the project to assess and, when necessary, to remediate sites contaminated by the lab operations. Within the ER project, the site-wide hydrogeologic characterization task is responsible for the area-wide hydrogeologic investigation. The purpose of this task is to reduce the uncertainty about the rate and direction of groundwater flow beneath the area and across its boundaries. This specific report deals with the installation of PGS-1 monitoring well which provides information on the lithology and hydrology of the aquifer in the northern area of the Kirtland Air Force Base. The report provides information on the well design; surface geology; stratigraphy; structure; drilling, completion, and development techniques; and borehole geophysics information

  2. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  3. Stepwise hydrogeological characterisation utilising a geo-synthesis methodology - A case study from the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Saegusa, H.; Osawa, H.; Onoe, H.; Ohyama, T.; Takeuchi, R.; Takeuchi, S.

    2009-01-01

    The Mizunami Underground Research Laboratory (MIU) is now under construction by Japan Atomic Energy Agency (JAEA) in the Cretaceous Toki granite in the Tono area of central Japan. One of the main goals of the MIU project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. For this purpose, a geo-synthesis methodology has been developed and will be tested in a dry run to determine if it produces the data required for repository design and associated integrated safety assessment modelling. Surface-based hydrogeological characterisation, intended to develop conceptual models of the deep geological environment based on an understanding of the undisturbed conditions before excavation of this URL, was carried out in a stepwise manner. This allows field investigations, construction of geological and hydrogeological models and interpretation of resultant groundwater flow simulations to develop in an iterative manner. Investigations have the goal of obtaining information on factors relevant to repository design, associated construction, operational and postclosure safety assessment, evaluation of the practicality of implementation and environmental impact assessment. Such factors include bulk hydraulic conductivity, the locations and properties of water conducting features, direct and indirect indicators of regional and local flow (e.g. based on chemistry or isotopes), etc. Following evaluation of pre-existing site information, field investigations began with fault mapping. This was followed by reflection seismic and vertical seismic profile surveys. In addition, a large programme of investigations was carried out in boreholes, including cross-hole tomography and hydraulic tests. Such input is utilised for the construction

  4. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    Science.gov (United States)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  5. spatially identifying vulnerable areas

    African Journals Online (AJOL)

    The model structure is aimed at understanding the critical vulnerable factors that ... This paper incorporates multiple criteria and rank risk factors. ..... In terms of quantifying vulnerable areas within the country, the analysis is done based on 9 ...

  6. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  7. A preliminary analysis and assessment of hydrogeological conditions for in-situ leach mining of sandstone-type uranium deposit in northern Ordos basin

    International Nuclear Information System (INIS)

    Chen Fazheng; Zhao Jinfeng; Chang Baocheng; Gao Junyi

    2006-01-01

    A systematic analysis and assessment on hydrogeologic condition, the lithology and hydrogeologic structure of ore-hosting aquitfers, hydrodynamic condition, hydrochemical characteristics at a sandstone-type uranium deposit in northern Ordos basin is made in this paper. It has been concluded, that hydrogeologic condition in the study area is favorable, meeting the requirements for in-situ leach mining of the deposit. Aimed at the low artesian pressure head and low water output and based on the results of pumping-injection tests which led to the significant increase of water output, a technical scheme of pressured water injection has been proposed to artificially raise the artesian pressure head and increase the output of groundwater to satisfy the requirements of in-situ leach mining. (authors)

  8. Hydrogeological evaluation of geological formations in Ashanti ...

    African Journals Online (AJOL)

    This study, therefore, employed Geographical Information System to assess some of these hydrogeological parameters in the Ashanti Region using the ordinary kriging interpolation method. Data on 2,788 drilled boreholes in the region were used and the assessment focused on the various geological formations in the ...

  9. Materials of conference: Hydrogeological Problems of South-West Poland; Materialy konferencji: Problemy Hydrogeologiczne Poludniowo-Zachodniej Polski

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features.

  10. Analysis on hydrogeological conditions of uranium formation in mulaamite sag in Kumux basin

    International Nuclear Information System (INIS)

    Wang Chengwei; Chen Liyun; Wang Juntang

    2008-01-01

    Based on the comprehensive analysis on the materials, hydrogeological conditions, features of water-bearing rock formation, relationship amoung the hydrogeochemical features and interlayer oxidation zone and uranium formation are analyzed from the point of view of basic geological conditions, it is preliminarily considered that Kuluketage fore-mountain zone has a good potential to develop the interlayer oxidation belt and uranium mineralization. (authors)

  11. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Pentti, E. [Poeyry Finland Oy, Vantaa (Finland)

    2013-11-15

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  12. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    International Nuclear Information System (INIS)

    Vaittinen, T.; Pentti, E.

    2013-11-01

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  13. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    Science.gov (United States)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  14. Identifying novel phenotypes of vulnerability and resistance to activity-based anorexia in adolescent female rats.

    Science.gov (United States)

    Barbarich-Marsteller, Nicole C; Underwood, Mark D; Foltin, Richard W; Myers, Michael M; Walsh, B Timothy; Barrett, Jeffrey S; Marsteller, Douglas A

    2013-11-01

    Activity-based anorexia is a translational rodent model that results in severe weight loss, hyperactivity, and voluntary self-starvation. The goal of our investigation was to identify vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats. Sprague-Dawley rats were maintained under conditions of restricted access to food (N = 64; or unlimited access, N = 16) until experimental exit, predefined as a target weight loss of 30-35% or meeting predefined criteria for animal health. Nonlinear mixed effects statistical modeling was used to describe wheel running behavior, time to event analysis was used to assess experimental exit, and a regressive partitioning algorithm was used to classify phenotypes. Objective criteria were identified for distinguishing novel phenotypes of activity-based anorexia, including a vulnerable phenotype that conferred maximal hyperactivity, minimal food intake, and the shortest time to experimental exit, and a resistant phenotype that conferred minimal activity and the longest time to experimental exit. The identification of objective criteria for defining vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats provides an important framework for studying the neural mechanisms that promote vulnerability to or protection against the development of self-starvation and hyperactivity during adolescence. Ultimately, future studies using these novel phenotypes may provide important translational insights into the mechanisms that promote these maladaptive behaviors characteristic of anorexia nervosa. Copyright © 2013 Wiley Periodicals, Inc.

  15. Groundwater vulnerability map for South Africa

    African Journals Online (AJOL)

    Chiedza Musekiwa

    Coastal vulnerability is the degree to which a coastal system is susceptible to, ... methods, indicator-based approaches, GIS-based decision support systems and ..... E 2005, 'Coastal Vulnerability and Risk Parameters', European Water, vol.

  16. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  17. Analysis on paleo-hydrogeological conditions of uranium formation in Sawafuqi uranium deposit

    International Nuclear Information System (INIS)

    Lin Xiaobin; Hao Weilin; Wang Zhiming

    2013-01-01

    Sawafuqi uranium deposit is located in Kuergan intermontane basin of the South Tianshan (STS) fold belt. On the basis of regional tectonics, paleogeography, paleoclimate and related data, the evolution of intermontane basin could be divided into three hydrogeological cycles. The relationship of uranium mineralization to each cycle was analyzed from the perspective of the evolution of palaeo-hydrogeological conditions, and the uranium metallogenic model in palaeohydrogeology under strongly constructive background was established. (authors)

  18. Assessment of intrinsic vulnerability of an alluvial aquifer under anthropogenic pressure: cross comparison of 4 index-based groundwater vulnerability mapping models within the Biguglia lagoon watershed (Corsica, France).

    Science.gov (United States)

    Jaunat, Jessy; Huneau, Frédéric; Garel, Emilie; Devos, Alain; Lejeune, Olivier

    2016-04-01

    KEYWORDS: Alluvial aquifer, Vulnerability mapping, Index-based methods, DRASTIC, SINTACS, SI, GOD The geographical position of the Biguglia lagoon watershed south of the Bastia city (80 000 inhabitants), lead to a highly vulnerable hydrosystem setting. This littoral plain is the unique territory available for the urbanisation and for the agriculture activities (cattle breeding). All the activities developed are likely to have a qualitative impact on water infiltration and therefore on groundwater, which is in hydraulic connection with the lagoon system. Beyond this ecological issue, groundwater of this watershed is intensively used as drinking water supply. It appears essential to control the long-term groundwater quality of the Biguglia plain which is the major economic zone of Corsica. Achievement of this issue requires the identification of the areas where the alluvial aquifer is mostly vulnerable to anthropogenic activities. The results given by 4 of the most popular index-based vulnerability mapping methods (DRASTIC, SI, SINTACS and GOD) are compared. The water table, net recharge, aquifer and soils properties, topography, vadose zone and land uses have been precisely mapped and numerically translated in GIS with a 25m precision. 4 final maps were finally compiled according to the weighting factors of each methods. Hydrochemical investigations were also carried out on 30 sampling points (major ions and anthropogenic tracers) to evaluate the effect of anthropogenic activities on groundwater quality and also to validate the results of the vulnerability mapping. A comparison between the parametric models shows a significant agreement between the DRASTIC, SINTACS and SI results (2% to 5% of the total area in very low vulnerability class, 10% to 13% in low vulnerability, 16% to 23% in medium vulnerability, 31% to 53% in high vulnerability and 14% to 23% in very high vulnerability). The two first methods are quite similar, which explains the proximity of the

  19. Hydrogeological And Geotechnical Investigations Of Gully Erosion ...

    African Journals Online (AJOL)

    Consequently, hydrogeological and geotechnical studies of gully erosion sites were carried out in order to provide information on the genesis and continual expansion of gullies in the area. The results indicate that gullies are located in the upper aquifer of the Benin Formation (Coastal Plain Sands). The estimated hydraulic ...

  20. An Exploitability Analysis Technique for Binary Vulnerability Based on Automatic Exception Suppression

    Directory of Open Access Journals (Sweden)

    Zhiyuan Jiang

    2018-01-01

    Full Text Available To quickly verify and fix vulnerabilities, it is necessary to judge the exploitability of the massive crash generated by the automated vulnerability mining tool. While the current manual analysis of the crash process is inefficient and time-consuming, the existing automated tools can only handle execute exceptions and some write exceptions but cannot handle common read exceptions. To address this problem, we propose a method of determining the exploitability based on the exception type suppression. This method enables the program to continue to execute until an exploitable exception is triggered. The method performs a symbolic replay of the crash sample, constructing and reusing data gadget, to bypass the complex exception, thereby improving the efficiency and accuracy of vulnerability exploitability analysis. The testing of typical CGC/RHG binary software shows that this method can automatically convert a crash that cannot be judged by existing analysis tools into a different crash type and judge the exploitability successfully.

  1. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  2. [Integrated assessment of eco-environmental vulnerability in Pearl River Delta based on RS and GIS].

    Science.gov (United States)

    Xu, Qing-Yong; Huang, Mei; Liu, Hong-Sheng; Yan, Hui-Min

    2011-11-01

    Based on the remote sensing data and with the help of geographic information system, an integrated assessment was conducted on the eco-environmental vulnerability of Pearl River Delta in 2004-2008. Spatial principal component analysis was used to generate the evaluation indicators, and analytic hierarchy process (AHP) was applied to determine the weights of the evaluation factors. The reasons causing the vulnerability of the eco- environment in Pearl River Delta were discussed. In the study area, its middle part was the most vulnerable region, occupying 34.0% of the total, eastern part was the moderately vulnerable region, accounting for 25.5%, and western part was the lightly and slightly vulnerable areas, accounting for 28.7 and 11.8%, respectively. Totally, the moderately and lightly vulnerable areas occupied 54.2%, indicating that a majority of the Delta was under moderate and light vulnerability. The natural factors affecting the eco-environmental vulnerability of the Delta were altitude, heavy rain days, water and soil erosion rate, flooded infield rate, normalized difference vegetation index (ND VI) and landscape diversity index, whereas the human factors were population density, waste discharge per unit area, exhaust emission per unit area, land use change, chemical fertilization intensity, pesticide application intensity, amount of motor vehicles possessed by ten thousands people, and index of environmental protection investment. The main characteristics of the extremely and heavily vulnerable regions were low altitude, high frequency of flood disaster, large flooded infield, serious vegetation degradation, high pollution level and low environment protection investment index.

  3. Hydrogeological and isotopic studies for selected springs in Sinai Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, M S; Awad, M A; El-gamal, S A [Atomic Energy Authority, Cairo Egypt and Middle Eastern Regional Radioisotope Center for The Arab Countries, Dokki, 12311, Cairo (Egypt); Hammad, F A [Desert Research Centre, Materia, Cairo, (Egypt)

    1995-10-01

    This paper deals with the hydrogeology and isotopic composition of water samples collected from selected spring in sinai (e.g. Algudierate, Alqusiema, qidis and Isram) in order to identify their genesis, their interaction with the host rocks and mixing trend. Results of isotopic composition have indicated the similarity in the hydrogeologic situation of Ain qidis and Ain-al-gudierate, while Ain Isram has shown a marked difference in its stable isotope and this could be due to evaporation effect. The isotopic and hydrochemical constituents of the studied springs reflect eater of a meteoric origin with a possible contamination from surficial materials (evaporates) and deeper aquifers. 6 figs., 2 tabs.

  4. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes.

    Science.gov (United States)

    Ali, Bako; Awad, Ali Ismail

    2018-03-08

    The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or "things" to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes.

  5. The hydrological vulnerability of western North American boreal tree species based on ground-based observations of tree mortality

    Science.gov (United States)

    Hember, R. A.; Kurz, W. A.; Coops, N. C.

    2017-12-01

    Several studies indicate that climate change has increased rates of tree mortality, adversely affecting timber supply and carbon storage in western North American boreal forests. Statistical models of tree mortality can play a complimentary role in detecting and diagnosing forest change. Yet, such models struggle to address real-world complexity, including expectations that hydrological vulnerability arises from both drought stress and excess-water stress, and that these effects vary by species, tree size, and competitive status. Here, we describe models that predict annual probability of tree mortality (Pm) of common boreal tree species based on tree height (H), biomass of larger trees (BLT), soil water content (W), reference evapotranspiration (E), and two-way interactions. We show that interactions among H and hydrological variables are consistently significant. Vulnerability to extreme droughts consistently increases as H approaches maximum observed values of each species, while some species additionally show increasing vulnerability at low H. Some species additionally show increasing vulnerability to low W under high BLT, or increasing drought vulnerability under low BLT. These results suggest that vulnerability of trees to increasingly severe droughts depends on the hydraulic efficiency, competitive status, and microclimate of individual trees. Static simulations of Pm across a 1-km grid (i.e., with time-independent inputs of H, BLT, and species composition) indicate complex spatial patterns in the time trends during 1965-2014 and a mean change in Pm of 42 %. Lastly, we discuss how the size-dependence of hydrological vulnerability, in concert with increasingly severe drought events, may shape future responses of stand-level biomass production to continued warming and increasing carbon dioxide concentration in the region.

  6. Geophysical Characterization of Serpentinite Hosted Hydrogeology at the McLaughlin Natural Reserve, Coast Range Ophiolite

    Science.gov (United States)

    Ortiz, Estefania; Tominaga, Masako; Cardace, Dawn; Schrenk, Matthew O.; Hoehler, Tori M.; Kubo, Michael D.; Rucker, Dale F.

    2018-01-01

    Geophysical remote sensing both on land and at sea has emerged as a powerful approach to characterize in situ water-rock interaction processes in time and space. We conducted 2-D Electrical Resistivity Tomography (ERT) surveys to investigate in situ hydrogeological architecture within the Jurassic age tectonic mélange portion of the Coast Range Ophiolite Microbial Observatory (CROMO) during wet and dry seasons, where water-rock interactive processes are thought to facilitate a subsurface biosphere. Integrating survey tracks traversing two previously drilled wells, QV1,1 and CSW1,1 at the CROMO site with wireline and core data, and the Serpentine Valley site, we successfully documented changes in hydrogeologic properties in the CROMO formation, i.e., lateral and vertical distribution of conductive zones and their temporal behavior that are dependent upon seasonal hydrology. Based on the core-log-ERT integration, we propose a hydrogeological architectural model, in which the formation is composed of three distinct aquifer systems: perched serpentinite aquifer without seasonal dependency (shallow system), well-cemented serpentine confining beds with seasonal dependency (intermediate system), serpentinite aquifer (deep system), and the ultramafic basement that acts as a quasi-aquiclude (below the deep system). The stunning contrast between the seasonality in the surface water availability and groundwater storativity in the formation allowed us to locate zones where serpentinite weathering and possibly deeper serpentinization processes might have taken place. We based our findings primarily on lithological composition and the distribution of the conductive formation, our work highlights the link between serpentinite weathering processes and possible sources of water in time and space.

  7. Hydrogeological analysis applied to regional evaluation of sandstone-type uranium ore-formation in sedimentary basins

    International Nuclear Information System (INIS)

    Xu Laisheng

    2005-01-01

    The main purpose of regional evaluation of uranium ore-formation is to preliminarily divide environmental zones and to delineate favourable areas for uranium ore-formation in order to provide basis for further detailed prospecting work. Of the various kinds of prospecting work, the hydrogeologic work should be mainly carried out in following aspects: division of hydrogeological units, the determination of artesian water-bearing system and the identification of prospecting target horizon; the analysis on hydrodynamic regime, the analysis on hydrogeochemical environments, the paleo-hydrogeologic analysis and the delineation of redox front and favourable area for uranium ore-formation. (author)

  8. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds

    Science.gov (United States)

    Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip

    2017-06-01

    The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.

  9. Integrated Hydrogeological Investigation on the Vulnerability of a Pumping Station at a Losing Stream

    Science.gov (United States)

    Ngueleu Kamangou, Stephane; Vogt, Tobias; Cirpka, Olaf

    2010-05-01

    River restoration usually includes alteration of the river channel morphology. Thereby the interaction between river and groundwater can be modified. For the design of a river restoration project - especially in the vicinity of a groundwater pumping well for drinking water production - this impact must be predicted. But a good prediction requires a proper understanding of the existing situation. Numerical models help to improve the strategy of a successful river restoration project. The main objective of this study was to investigate the vulnerability of a pumping station located at losing river in northeast Switzerland. Besides the effect that river restoration could create, a particular attention was placed on the effect of a beaver dam in a side channel close to the pumping station. Analysis of field measurements coupled with numerical modeling of the pumping station area improved the understanding of the interactions in the river corridor between the river, side channels and the alluvial aquifer.

  10. Preliminary stratigraphic and hydrogeologic cross sections and seismic profile of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2013-01-01

    To help water-resource managers evaluate the Floridan aquifer system (FAS) as an alternative water supply, the U.S. Geological Survey initiated a study, in cooperation with the Broward County Environmental Protection and Growth Management Department, to refine the hydrogeologic framework of the FAS in the eastern part of Broward County. This report presents three preliminary cross sections illustrating stratigraphy and hydrogeology in eastern Broward County as well as an interpreted seismic profile along one of the cross sections. Marker horizons were identified using borehole geophysical data and were initially used to perform well-to-well correlation. Core sample data were integrated with the borehole geophysical data to support stratigraphic and hydrogeologic interpretations of marker horizons. Stratigraphic and hydrogeologic units were correlated across the county using borehole geophysical data from multiple wells. Seismic-reflection data were collected along the Hillsboro Canal. Borehole geophysical data were used to identify and correlate hydrogeologic units in the seismic-reflection profile. Faults and collapse structures that intersect hydrogeologic units were also identified in the seismic profile. The information provided in the cross sections and the seismic profile is preliminary and subject to revision.

  11. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-09-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  12. Constructing the Indicators of Assessing Human Vulnerability to Industrial Chemical Accidents: A Consensus-based Fuzzy Delphi and Fuzzy AHP Approach.

    Science.gov (United States)

    Fatemi, Farin; Ardalan, Ali; Aguirre, Benigno; Mansouri, Nabiollah; Mohammadfam, Iraj

    2017-04-10

    Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations. The indicators were established in the present study based on the Fuzzy Delphi method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP). The reliability of FDM and FAHP was calculated. The indicators of human vulnerability were explored in two sets of social and physical domains. Thirty-five relevant experts participated in this study during March-July 2015. According to experts, the top three indicators of human vulnerability according to the FDM and FAHP were vulnerable groups, population density, and awareness. Detailed sub-vulnerable groups and awareness were developed based on age, chronic or severe diseases, disability, first responders, and residents, respectively. Each indicator and sub-indicator was weighted and ranked and had an acceptable consistency ratio. The importance of social vulnerability indicators are about 7 times more than physical vulnerability indicators. Among the extracted indicators, vulnerable groups had the highest weight and the greatest impact on human vulnerability. however, further research is needed to investigate the applicability of established indicators and generalizability of the results to other studies. Fuzzy Delphi; Fuzzy AHP; Human vulnerability; Chemical hazards.

  13. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  14. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  15. Regional assessment of groundwater resources (hydrogeological map of Younggwang area, Korea vol.8)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S H; Kim, Y K; Hong, Y K; Cho, M J; Lee, D W; Bae, D J; Lee, C W; Kim, H C; Kim, S J; Park, S W; Lee, P K; Yum, B W; Moon, S H; Lee, S K; Lee, S R; Park, Y S; Lim, M T; Sung, K S; Park, I H; Ham, S Y; Kim, Y J; Woo, N C [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This study is objected to characterize groundwater resources, to assess groundwater contamination, and to produce hydrogeological and related thematic maps of the study area. The study area, Younggwang County, Chonnam Province, covers the area of 460 km{sup 2}. To accomplish the objectives various studies have been carried out including general and structural geology, GIS, hydrogeology, geophysics and hydrogeochemical analysis. Geophysical explorations, dipole-dipole resistivity, Schulumberger sounding and magnetic method, were executed for investigating geologic structure and determining test borehole sites. Some test boreholes such as, Honggok, Donggan, Weolsan and Seolmae hit aquifer structures. Geophysical logging, such as gamma ray, temperature, water conductivity, electrical resistivity, self-potential were also executed for petrological differentiation and in out flow of groundwater. The recharge rate of granitic region is more than the others, which derived by the analysis of 7 low-flow measurements in 10 small watersheds in the area. The recharge rate has been estimated at 7.2%(99.3 mm/year) in the vicinity. Well inventory of the area included 197 deep wells and 43 shallow wells. In addition, 10 stream samples and one spring were surveyed for water level, water temperature, pH, EC, TDS and the concentration of dissolved oxygen(DO). Regional groundwater pollution susceptibility was analyzed using GIS technique. A standard method, `DRASTIC` developed by US EPA, was applied to evaluate groundwater pollution potential and aquifer susceptibility. Resulting DRASTIC indices ranged from 52 to 141, and the Pesticide indices from 61 to 187. Seawater intrusion phenomena in Sangsari-Hasari are considered and evaluated by well inventory and the selected borehole`s electric conductivity(EC) logging. Seawater intrusion to the vulnerable coastal alluvium aquifers is generally depleted with time. The amount of potential groundwater resources in the study area is estimated

  16. HYDROGEOLOGIC CHARACTERIZATION OF THE U-3bl COLLAPSE ZONE

    International Nuclear Information System (INIS)

    Bechtel Nevada and National Security Technologies, LLC

    2006-01-01

    The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing

  17. Model based on diffuse logic for the construction of indicators of urban vulnerability in natural phenomena

    International Nuclear Information System (INIS)

    Garcia L, Carlos Eduardo; Hurtado G, Jorge Eduardo

    2003-01-01

    Upon considering the vulnerability of a urban system in a holistic way and taking into account some natural, technological and social factors, a model based upon a system of fuzzy logic, allowing to estimate the vulnerability of any system under natural phenomena potentially catastrophic is proposed. The model incorporates quantitative and qualitative variables in a dynamic system, in which variations in one of them have a positive or negative impact over the rest. An urban system model and an indicator model to determine the vulnerability due to natural phenomena were designed

  18. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  19. The SAVI vulnerability assessment model

    International Nuclear Information System (INIS)

    Winblad, A.E.

    1987-01-01

    The assessment model ''Systematic Analysis of Vulnerability to Intrusion'' (SAVI) presented in this report is a PC-based path analysis model. It can provide estimates of protection system effectiveness (or vulnerability) against a spectrum of outsider threats including collusion with an insider adversary. It calculates one measure of system effectiveness, the probability of interruption P(I), for all potential adversary paths. SAVI can perform both theft and sabotage vulnerability analyses. For theft, the analysis is based on the assumption that adversaries should be interrupted either before they can accomplish removal of the target material from its normal location or removal from the site boundary. For sabotage, the analysis is based on the assumption that adversaries should be interrupted before completion of their sabotage task

  20. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    International Nuclear Information System (INIS)

    Wang, Bing; Liang, Xiao-Jie; Zhang, Hao; Wang, Lu; Wei, Yi-Ming

    2014-01-01

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  1. Seismic Failure Mechanism of Reinforced Cold-Formed Steel Shear Wall System Based on Structural Vulnerability Analysis

    Directory of Open Access Journals (Sweden)

    Jihong Ye

    2017-02-01

    Full Text Available A series of structural vulnerability analyses are conducted on a reinforced cold-formed steel (RCFS shear wall system and a traditional cold-formed steel (CFS shear wall system subjected to earthquake hazard based on forms in order to investigate their failure mechanisms. The RCFS shear wall adopts rigid beam-column joints and continuous concrete-filled CFS tube end studs rather than coupled-C section end studs that are used in traditional CFS shear walls, to achieve the rigid connections in both beam-column joints and column bases. The results show that: the RCFS and traditional CFS shear wall systems both exhibit the maximum vulnerability index associated with the failure mode in the first story. Therefore, the first story is likely to be a weakness of the CFS shear wall system. Once the wall is damaged, the traditional CFS shear wall system would collapse because the shear wall is the only lateral-resisting component. However, the collapse resistance of the RCFS shear wall system is effectively enhanced by the second defense, which is provided by a framework integrated by rigid beam-column joints and fixed column bases. The predicted collapse mode with maximum vulnerability index that was obtained by structural vulnerability analysis agrees well with the experimental result, and the structural vulnerability method is thereby verified to be reasonable to identify the weaknesses of framed structures and predict their collapse modes. Additionally, the quantitative vulnerability index indicates that the RCFS shear wall system exhibits better robustness compared to the traditional one. Furthermore, the “strong frame weak wallboard” and the “strong column weak beam” are proposed in this study as conceptional designations for the RCFS shear wall systems.

  2. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes

    Directory of Open Access Journals (Sweden)

    Bako Ali

    2018-03-01

    Full Text Available The Internet of Things (IoT is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes.

  3. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes

    Science.gov (United States)

    2018-01-01

    The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes. PMID:29518023

  4. The drought risk of maize in the farming-pastoral ecotone in Northern China based on physical vulnerability assessment

    Science.gov (United States)

    Wang, Zhiqiang; Jiang, Jingyi; Ma, Qing

    2016-12-01

    Climate change is affecting every aspect of human activities, especially the agriculture. In China, extreme drought events caused by climate change have posed a great threat to food safety. In this work we aimed to study the drought risk of maize in the farming-pastoral ecotone in Northern China based on physical vulnerability assessment. The physical vulnerability curve was constructed from the relationship between drought hazard intensity index and yield loss rate. The risk assessment of agricultural drought was conducted from the drought hazard intensity index and physical vulnerability curve. The probability distribution of drought hazard intensity index decreased from south-west to north-east and increased from south-east to north-west along the rainfall isoline. The physical vulnerability curve had a reduction effect in three parts of the farming-pastoral ecotone in Northern China, which helped to reduce drought hazard vulnerability on spring maize. The risk of yield loss ratio calculated based on physical vulnerability curve was lower compared with the drought hazard intensity index, which suggested that the capacity of spring maize to resist and adapt to drought is increasing. In conclusion, the farming-pastoral ecotone in Northern China is greatly sensitive to climate change and has a high probability of severe drought hazard. Risk assessment of physical vulnerability can help better understand the physical vulnerability to agricultural drought and can also promote measurements to adapt to climate change.

  5. a significant site for hydrogeological investigation in crystalline ...

    Indian Academy of Sciences (India)

    Estimating the hydrogeologic control of fractured aquifers in hard crystalline and metamorphosed rocks is challenging due to complexity in the development of secondary porosity. The present study in the Precambrian metamorphic terrain in and around the Balarampur of Purulia district, West Bengal, India, aims to estimate ...

  6. Subsoil Characteristics and Hydrogeology of the Export Processing ...

    African Journals Online (AJOL)

    The subsoil characterization and hydrogeological investigation of the Export Processing Zone (EPZ), Calabar Southeastern Nigeria was undertaken using geotechnical analysis of soils and water level monitoring. Geotechnical analysis of soils in the EPZ show that the grain size range from poorly graded (well sorted) to well ...

  7. A method proposal for cumulative environmental impact assessment based on the landscape vulnerability evaluation

    International Nuclear Information System (INIS)

    Pavlickova, Katarina; Vyskupova, Monika

    2015-01-01

    Cumulative environmental impact assessment deals with the occasional use in practical application of environmental impact assessment process. The main reasons are the difficulty of cumulative impact identification caused by lack of data, inability to measure the intensity and spatial effect of all types of impacts and the uncertainty of their future evolution. This work presents a method proposal to predict cumulative impacts on the basis of landscape vulnerability evaluation. For this purpose, qualitative assessment of landscape ecological stability is conducted and major vulnerability indicators of environmental and socio-economic receptors are specified and valuated. Potential cumulative impacts and the overall impact significance are predicted quantitatively in modified Argonne multiple matrixes while considering the vulnerability of affected landscape receptors and the significance of impacts identified individually. The method was employed in the concrete environmental impact assessment process conducted in Slovakia. The results obtained in this case study reflect that this methodology is simple to apply, valid for all types of impacts and projects, inexpensive and not time-consuming. The objectivity of the partial methods used in this procedure is improved by quantitative landscape ecological stability evaluation, assignment of weights to vulnerability indicators based on the detailed characteristics of affected factors, and grading impact significance. - Highlights: • This paper suggests a method proposal for cumulative impact prediction. • The method includes landscape vulnerability evaluation. • The vulnerability of affected receptors is determined by their sensitivity. • This method can increase the objectivity of impact prediction in the EIA process

  8. Nitrate attenuation in the Salburua wetland (Basque Country). Hydrogeological context; Atenuacion de nitratos en el Humedal de Salburua (Pais Vasco). Contexto hidrogeologico

    Energy Technology Data Exchange (ETDEWEB)

    Antiguedad, I.; Martinez-Santos, M.; Martinez, M.; Munoz, B.; Zabaleta, A.; Uriarte, J.; Morales, T.; Iribar, V.; Sanchez, J. M.; Ruiz, E.

    2009-07-01

    The Salburua wetland is located within a vulnerable zone (quaternary aquifer) related to the farming origin nitrate pollution. The restoration of the wetland, which was drained some decades ago, has evidenced the attenuation of nitrates in groundwater entering from farmlands, which exceed 50 mg/l NO{sub 3}. The recently installation of piezo metric network has allowed to characterize the groundwater flow pattern and determine the hydrogeological context of nitrate loss processes. Despite the dilution is happening the most important process seems to be the denitrification, either heterotrophic or auto trophic, probably depending on marly substratum position. The potential of denitrification has been measured in the soils and the values are really highs. This paper focuses on the right conditions for denitrification in the wetland. (Author) 23 refs.

  9. A near real time scenario at regional scale for the hydrogeological risk

    Science.gov (United States)

    Ponziani, F.; Stelluti, M.; Zauri, R.; Berni, N.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C.

    2012-04-01

    The early warning systems dedicated to landslides and floods represent the Umbria Region Civil Protection Service new generation tools for hydraulic and hydrogeological risk reduction. Following past analyses performed by the Functional Centre (part of the civil protection service dedicated to the monitoring and the evaluation of natural hazards) on the relationship between saturated soil conditions and rainfall thresholds, we have developed an automated early warning system for the landslide risk, called LANDWARN, which generates daily and 72h forecast risk matrix with a dense mesh of 100 x 100m, throughout the region. The system is based on: (a) the 20 days -observed and 72h -predicted rainfall, provided by the local meteorological network and the Local scale Meteorological Model COSMO ME, (b) the assessment of the saturation of soils by: daily extraction of ASCAT satellite data, data from a network of 16 TDR sensors, and a water balance model (developed by the Research Institute for Geo-Hydrological Protection, CNR, Perugia, Italy) that allows for the prediction of a saturation index for each point of the analysis grid up to a window of 72 h, (c) a Web-GIS platform that combines the data grids of calculated hazard indicators with layers of landslide susceptibility and vulnerability of the territory, in order to produce dynamic risk scenarios. The system is still under development and it's implemented at different scales: the entire region, and a set of known high-risk landslides in Umbria. The system is monitored and regularly reviewed through the back analysis of landslide reports for which the activation date is available. Up to now, the development of the system involves: a) the improvement of the reliability assessment of the condition of soil saturation, a key parameter which is used to dynamically adjust the values of rainfall thresholds used for the declaration of levels of landslide hazard. For this purpose, a procedure was created for the ASCAT

  10. Vulnerability

    Science.gov (United States)

    Taback, I.

    1979-01-01

    The discussion of vulnerability begins with a description of some of the electrical characteristics of fibers before definiting how vulnerability calculations are done. The vulnerability results secured to date are presented. The discussion touches on post exposure vulnerability. After a description of some shock hazard work now underway, the discussion leads into a description of the planned effort and some preliminary conclusions are presented.

  11. Numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area, South Dakota

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2009-01-01

    The city of Rapid City and other water users in the Rapid City area obtain water supplies from the Minnelusa and Madison aquifers, which are contained in the Minnelusa and Madison hydrogeologic units. A numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area was developed to synthesize estimates of water-budget components and hydraulic properties, and to provide a tool to analyze the effect of additional stress on water-level altitudes within the aquifers and on discharge to springs. This report, prepared in cooperation with the city of Rapid City, documents a numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units for the 1,000-square-mile study area that includes Rapid City and the surrounding area. Water-table conditions generally exist in outcrop areas of the Minnelusa and Madison hydrogeologic units, which form generally concentric rings that surround the Precambrian core of the uplifted Black Hills. Confined conditions exist east of the water-table areas in the study area. The Minnelusa hydrogeologic unit is 375 to 800 feet (ft) thick in the study area with the more permeable upper part containing predominantly sandstone and the less permeable lower part containing more shale and limestone than the upper part. Shale units in the lower part generally impede flow between the Minnelusa hydrogeologic unit and the underlying Madison hydrogeologic unit; however, fracturing and weathering may result in hydraulic connections in some areas. The Madison hydrogeologic unit is composed of limestone and dolomite that is about 250 to 610 ft thick in the study area, and the upper part contains substantial secondary permeability from solution openings and fractures. Recharge to the Minnelusa and Madison hydrogeologic units is from streamflow loss where streams cross the outcrop and from infiltration of precipitation on the outcrops (areal recharge). MODFLOW-2000, a finite-difference groundwater

  12. International excursion hydrogeology, Slovakia, [September 8 - 15, 1996

    NARCIS (Netherlands)

    Dijksma, R.

    1996-01-01

    This is a report of the hydrogeological excursion to Slovakia, held in the period from September 8 up to September 15, 1996. This report is a compilation of the work of the participating students, parts of the excursion guide and also information, provided by the Slovak excursion guides.

  13. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    Science.gov (United States)

    Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of

  14. hydrogeological caracterization and modeling of the aquifer of oued ...

    African Journals Online (AJOL)

    K. Baba-Hamed

    1 janv. 2018 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. HYDROGEOLOGICAL CARACTERIZATION AND MODELING OF THE AQUIFER.

  15. RESEARCH INTO THE HYDROGEOLOGY OF THE SAVA RIVER BASIN IN EASTERN SLAVONIA AND ITS KNOWLEDGE

    Directory of Open Access Journals (Sweden)

    Andrija Capar

    1992-12-01

    Full Text Available Geological explorations, especially hydrogeology of quaternary waterbearing deposits of Eastern Slavonia are presented. Hydro-geological and hydrochemical parameters are discussed and evaluation of groundwater reserves is done. Critical approach to the results of exploration is provided by some suggestions for future quaternary deposits exploration in the area (the paper is published in Croatian.

  16. Review Article: A comparison of flood and earthquake vulnerability assessment indicators

    Science.gov (United States)

    de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.

    2017-07-01

    In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.

  17. Marine hydrogeology: recent accomplishments and future opportunities

    Science.gov (United States)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  18. Modelling of the site scale hydrogeological situation at Beberg using NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Gylling, B.; Grundfelt, B.; Hartley, L.

    2000-02-01

    The purpose of the present study is to perform modelling of the site scale hydrogeological situation at Beberg using the finite element code NAMMU and compare the results with those from HYDRASTAR reported in SR 97. NAMMU was used in the large scale regional hydrogeological modelling at Beberg. The hypothetical repository layout at Beberg is based on geological data from the Finnsjoen site. Four model variants were created in this study. Two variants were compared with the deterministic freshwater case in the HYDRASTAR modelling. The other two variants were created to study the effect of a regionally distributed permeability anisotropy and variable density groundwater on the groundwater flow pattern. These processes are not considered in HYDRASTAR. The NAMMU results, including the pathline patterns, agree with those from the HYDRASTAR modelling. The effect of anisotropy and saline groundwater is found significant for the pathlines. The difference in canister flux between the NAMMU and the HYDRASTAR models is small, while the difference in travel time is more significant. The discrepancies between the results from the NAMMU and the HYDRASTAR simulations can be ascribed to the different numerical discretisation, i.e. different representation of the permeability, and the different pathline algorithms used in the two models

  19. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  20. Modeling groundwater vulnerability to pollution using Optimized DRASTIC model

    International Nuclear Information System (INIS)

    Mogaji, Kehinde Anthony; Lim, Hwee San; Abdullar, Khiruddin

    2014-01-01

    The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. The AHP technique was utilized to compute the normalized weights for the seven parameters of the CDM to generate an optimized DRASTIC model (ODM) algorithm. The DRASTIC parameters integrated with the ODM algorithm predicted which among the study areas is more likely to become contaminated as a result of activities at or near the land surface potential. Five vulnerability zones, namely: no vulnerable(NV), very low vulnerable (VLV), low vulnerable (LV), moderate vulnerable (MV) and high vulnerable (HV) were identified based on the vulnerability index values estimated with the ODM algorithm. Results show that more than 50% of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM).The prediction accuracy of the ODM-based – GVPM with the groundwater pH and manganese (Mn) concentrations established correlation factors (CRs) result of 90 % and 86 % compared to the CRs result of 62 % and 50 % obtained for the validation accuracy of the CDM – based GVPM. The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM – based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment

  1. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This report presents a compilation of both fracture properties and hydrogeological parameters relevant to the flow of groundwater in fractured rock systems. Methods of data acquisition as well as the scale of and conditions during the measurement are recorded. Measurements and analytical techniques for each of the parameters under consideration have been reviewed with respect to their methodology, assumptions and accuracy. Both the rock type and geologic setting associated with these measurements have also been recorded. 373 refs

  2. Delineation of the hydrogeologic framework of the Big Sioux aquifer near Sioux Falls, South Dakota, using airborne electromagnetic data

    Science.gov (United States)

    Valseth, Kristen J.; Delzer, Gregory C.; Price, Curtis V.

    2018-03-21

    resistivity distribution. Contact lines were drawn using a geographic information system to delineate interpreted geologic stratigraphy. The contact lines were converted to points and then interpolated into a raster surface. The methods used to develop elevation and depth maps of the hydrogeologic framework of the Big Sioux aquifer are described herein.The final AEM interpreted aquifer thickness ranged from 0 to 31 meters with an average thickness of 12.8 meters. The estimated total volume of the aquifer was 1,060,000,000 cubic meters based on the assumption that the top of the aquifer is the land-surface elevation. A simple calculation of the volume (length times width times height) of a previous delineation of the aquifer estimated the aquifer volume at 378,000,000 cubic meters; thus, the estimation based on AEM data is more than twice the previous estimate. The depth to top of Sioux Quartzite, which ranged in depth from 0 to 90 meters, also was delineated from the AEM data.

  3. Storage of low-level radioactive wastes in the ground hydrogeologic and hydrochemical factors (with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: current knowledge and data needs for a quantitative hydrogeologic evaluation)

    International Nuclear Information System (INIS)

    Papadopulos, S.S.; Winograd, I.J.

    1974-01-01

    Hydrogeologic criteria presented by Cherry and others (1973) are adopted as a guideline to define the hydrogeologic and hydrochemical data needs for the evaluation of the suitability of proposed or existing low-level radioactive waste burial sites. Evaluation of the suitability of a site requires the prediction of flow patterns and of rates of nuclide transport in the regional hydrogeologic system. Such predictions can be made through mathematical simulation of flow and solute transport in porous media. The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first, because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and, second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (U.S.)

  4. Vulnerability assessment of archaeological sites to earthquake hazard: An indicator based method integrating spatial and temporal aspects

    Directory of Open Access Journals (Sweden)

    Despina Minos-Minopoulos

    2017-07-01

    Full Text Available Across the world, numerous sites of cultural heritage value are at risk from a variety of human-induced and natural hazards such as war and earthquakes. Here we present and test a novel indicator-based method for assessing the vulnerability of archaeological sites to earthquakes. Vulnerability is approached as a dynamic element assessed through a combination of spatial and temporal parameters. The spatial parameters examine the susceptibility of the sites to the secondary Earthquake Environmental Effects of ground liquefaction, landslides and tsunami and are expressed through the Spatial Susceptibility Index (SSi. Parameters of physical vulnerability, economic importance and visitors density examine the temporal vulnerability of the sites expressed through the Temporal Vulnerability Index (TVi. The equally weighted sum of the spatial and temporal indexes represents the total Archaeological Site Vulnerability Index (A.S.V.I.. The A.S.V.I method is applied at 16 archaeological sites across Greece, allowing an assessment of their vulnerability. This then allows the establishment of a regional and national priority list for considering future risk mitigation. Results indicate that i the majority of the sites have low to moderate vulnerability to earthquake hazard, ii Neratzia Fortress on Kos and Heraion on Samos are characterised as highly vulnerable and should be prioritised for further studies and mitigation measures, and iii the majority of the sites are susceptible to at least one Earthquake Environmental Effect and present relatively high physical vulnerability attributed to the existing limited conservation works. This approach highlights the necessity for an effective vulnerability assessment methodology within the existing framework of disaster risk management for cultural heritage.

  5. Overview--Development of a geodatabase and conceptual model of the hydrogeologic units beneath Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS–JRB) at Fort Worth, Tex., constitute a contractor-owned, government-operated facility that has been in operation since 1942. Contaminants from the 3,600-acre facility, primarily volatile organic compounds (VOCs) and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. Environmental data collected at AFP4 and NAS–JRB during 1993–2002 created the need for consolidation of the data into a comprehensive temporal and spatial geodatabase. The U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force Aeronautical Systems Center Environmental Management Directorate, developed a comprehensive geodatabase of temporal and spatial environmental data associated with the hydrogeologic units beneath the facility. A three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase was designed concurrently. Three hydrogeologic units—from land surface downward, the alluvial aquifer, the GoodlandWalnut confining unit, and the Paluxy aquifer—compose the subsurface of interest at AFP4 and NAS–JRB. The alluvial aquifer consists primarily of clay and silt with sand and gravel channel deposits that might be interconnected or interfingered. The Goodland-Walnut confining unit directly underlies the alluvial aquifer and consists of limestone, marl, shale, and clay. The Paluxy aquifer is composed of dense mudstone and fine- to coarse-grained sandstone

  6. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Yang Tianxiao; Liu Shufen

    2001-01-01

    Groundwater is the major carrier for radionuclide migration in the high-level radioactive waste disposal. For this reason the hydrogeological study is one of the main contents in repository siting. According to the field investigation which has been carried out during the last few years and some data from the previous study, the author describes the general hydrogeological situation and groundwater circulation, as well as chemical characteristics of groundwater in Beishan preselected area, Gansu province. The research shows that main hydrogeological characteristics of the Beishan area is water-bearing character, low permeability and slow water movement while the major chemical feature of groundwater is high mineralization. This recognition will provide an important basis for repository siting in the site area

  7. Vulnerability maps for Druzba crude oil pipeline

    International Nuclear Information System (INIS)

    Hladik, P.; Hosnedl, P.; Buresova, H.; Corbet, J.

    2012-01-01

    Maps of risk for individual environmental aspects within the protection zone of the Czech part of the Druzba crude oil pipeline (505.7 km) were developed based on a modified 'H and V index' method. Risk data were added into a GIS of the Druzba pipeline so that the system could be used as conceptual material in the field of environmental protection (a base for the new SCADA system). Considered environmental aspects were assessed in terms of their vulnerability. The criteria were defined as the vulnerability of the aquatic environment (surface waters and ground waters), the vulnerability of soil environment and the vulnerability of biotic components of the environment. (authors)

  8. Predictability of solute transport in diffusion-controlled hydrogeologic regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.; Cherry, J.A.

    1983-01-01

    Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods

  9. Inventory and review of existing PRISM hydrogeologic data for the Islamic Republic of Mauritania, Africa

    Science.gov (United States)

    Friedel, Michael J.

    2008-01-01

    The USGS entered into an agreement with the Mauritania Ministry of Mines and Industry to inventory and review the quality of information collected as part of the Project for Strengthening of the Institutions in the Mining Sector (PRISM). Whereas the PRISM program collected geophysical, geochemical, geological, satellite, and hydrogeologic information, this report focuses on an inventory and review of available hydrogeologic data provided to the USGS in multiple folders, files, and formats. Most of the information pertained to the hydrogeologic setting and the water budget of evaporation, evapotranspiration, and precipitation in the Choum-Zouerate area in northwestern Mauritania, and the country of Mauritania itself. Other information about the quantity and quality of groundwater was found in the relational Access database. In its present form, the limited hydrogeologic information was not amenable to conducting water balance, geostatistical, and localized numerical modeling studies in support of mineral exploration and development. Suggestions are provided to remedy many of the data's shortcomings, such as performing quality assurance on all SIPPE2 data tables and sending questionnaires to appropriate agencies, mining and other companies to populate the database with additional meteorology, hydrology, and groundwater data.

  10. Uruguay Hydrogeological map scale 1/1.000.000

    International Nuclear Information System (INIS)

    Heinzen, W.; Carrion, R.; Massa, E.; Pena, S.; Stapff, M.

    2003-06-01

    Between the main items the Uruguayan Hydrogeological map show us: aquifers productivity, geographical references, well information, depth, level, caudal, dry waste, from Hydrologic unit cuaternario differenced, Villa Soriano, Chuy, Raigon, Salto, Cretacico Superior, Tacuarembo, Las Arenas, Del Terciario, Cretacico Superior, Tres Islas, Cerrezuelo, Arapey, Neoproterozoico, Paleoproterozoico. It shows a brief map about Guarani Aquifer

  11. Hydrogeologic subdivision of the Wolfcamp series and Pennsylvanian system of the Swisher Study Area, Texas: Revision 1: Topical report

    International Nuclear Information System (INIS)

    Siminitz, P.C.; Warman, E.A.

    1987-08-01

    The Pennsylvanian-Wolfcamp section in the Palo Duro Basin includes brine aquifers that are considered to be the most important ground- water flow paths in the deep-basin system. This report provides summary documentation of studies that subdivide the section into hydrogeologic units based on their judged relative capacities for transmitting water. This particular study area comprises eight counties in Texas, including Swisher County. Underground patterns of rock distribution are delineated from a hydrologic perspective and at a level of detail appropriate for numerical modeling of regional ground-water flow. Hydrogeologic units are defined and characterized so that appropriate porosity and permeability values can be assigned to each during construction of the numerical models and so that modelers can combine units where necessary. Hydrogeologic units have been defined as mappable, physically continuous rock bodies that function in bulk as water-transmitting or water-retarding units relative to adjacent rocks. Interpretations are made primarily from geophysical logs. Hydrologic characteristics are assessed on the basis of properties typically associated with certain lithologies (e.g., sandstones are more pervious than shales) and on the basis of gross variations in effective porosity (particularly in carbonate sequences). 15 refs., 52 figs., 1 tab

  12. Evolution of wetland in Honghe National Nature Reserve from the view of hydrogeology.

    Science.gov (United States)

    Wu, Xiancang; Dong, Weihong; Lin, Xueyu; Liang, Yukai; Meng, Ying; Xie, Wei

    2017-12-31

    There is wide concern about the evolution of wetlands, an important component of the global ecosystem. The Honghe National Nature Reserve (HNNR) is an internationally important marsh wetland in China that is at risk of degradation. To gain an improved understanding of how the HNNR wetland developed from 1975 to 2014, typical years, including 1975, 1988, 1996, 2002 and 2014, were selected based on precipitation date. And land cover types of the different years were classified using TM images. The results showed that the wetland evolution mainly reflects transformations between the meadow and wetland land cover types. The landscape index suggests the wetland is degrading. The main drivers of wetland evolution were a warmer and drier climate, the establishment of an irrigation system, and a decrease in the groundwater level. These factors resulted in changes in the quantity of water in the HNNR. We can therefore say that the evolution was driven by changes in the water quantity. Because there have been very few hydrogeological studies in the HNNR, we examined the relationships among precipitation, surface water, and groundwater, all of which significantly influence water quantity. We found that precipitation was the only source of surface water and, while there was certain amount of surface water recharge into the shallow groundwater, the recharge range was limited, which increased the vulnerability of the wetlands. Thus, it is difficult to recharge surface water but easy to lose surface water from the HNNR, which suggests that efforts need to be directed at maintaining the surface water at the optimal level to prevent degradation of the wetland. Copyright © 2017. Published by Elsevier B.V.

  13. A compressed sensing based 3D resistivity inversion algorithm for hydrogeological applications

    Science.gov (United States)

    Ranjan, Shashi; Kambhammettu, B. V. N. P.; Peddinti, Srinivasa Rao; Adinarayana, J.

    2018-04-01

    Image reconstruction from discrete electrical responses pose a number of computational and mathematical challenges. Application of smoothness constrained regularized inversion from limited measurements may fail to detect resistivity anomalies and sharp interfaces separated by hydro stratigraphic units. Under favourable conditions, compressed sensing (CS) can be thought of an alternative to reconstruct the image features by finding sparse solutions to highly underdetermined linear systems. This paper deals with the development of a CS assisted, 3-D resistivity inversion algorithm for use with hydrogeologists and groundwater scientists. CS based l1-regularized least square algorithm was applied to solve the resistivity inversion problem. Sparseness in the model update vector is introduced through block oriented discrete cosine transformation, with recovery of the signal achieved through convex optimization. The equivalent quadratic program was solved using primal-dual interior point method. Applicability of the proposed algorithm was demonstrated using synthetic and field examples drawn from hydrogeology. The proposed algorithm has outperformed the conventional (smoothness constrained) least square method in recovering the model parameters with much fewer data, yet preserving the sharp resistivity fronts separated by geologic layers. Resistivity anomalies represented by discrete homogeneous blocks embedded in contrasting geologic layers were better imaged using the proposed algorithm. In comparison to conventional algorithm, CS has resulted in an efficient (an increase in R2 from 0.62 to 0.78; a decrease in RMSE from 125.14 Ω-m to 72.46 Ω-m), reliable, and fast converging (run time decreased by about 25%) solution.

  14. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  15. Hydrogeology, waste disposal, science and politics: Proceedings

    International Nuclear Information System (INIS)

    Link, P.K.

    1994-01-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database

  16. Hydrogeology, waste disposal, science and politics: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Link, P.K. [ed.

    1994-07-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  17. Hydrogeological assessment of Acid mine Drainage impacts in the West Rand Basin, Gauteng Province

    CSIR Research Space (South Africa)

    Hobbs, PJ

    2007-08-01

    Full Text Available HYDROGEOLOGICAL ASSESSMENT OF ACID MINE DRAINAGE IMPACTS IN THE WEST RAND BASIN, GAUTENG PROVINCE Principal Author PJ Hobbs (Pr.Sci.Nat.) Co-author JE Cobbing (Pr.Sci.Nat.) August 2007 Report prepared for CSIR / THRIP Document... it is published. A Hydrogeological Assessment of Acid Mine Drainage Report No. Impacts in the West Rand Basin, Gauteng Province CSIR/NRE/WR/ER/2007/0097/C CSIR Natural Resources and the Environment (i) The “Lodge” spring rising...

  18. Hydrogeological and geochemical investigations of elevated arsenic (As) abundances in groundwater in Ireland

    International Nuclear Information System (INIS)

    Gilligan, M.; Feely, M.; Morrison, L.; Henry, T.; Higgins, T.M.; Zhang, C.

    2009-01-01

    Full text: This study will use hydrogeology, geochemistry and chemical speciation studies to investigate the presence of elevated arsenic (As) abundances in groundwater in Ireland. Comparative studies of groundwater, bedrock and mineral chemistry will be linked to hydrogeology, GIS and statistical studies. This approach will facilitate characterization of the temporal and spatial distribution of As as a function of groundwater and bedrock geology using the pressures, pathways and receptors approach. Arsenic speciation studies will determine As toxicity, bioavailability and potential for migration in this environment thus addressing human health issues. (author)

  19. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  20. Preliminary hydrogeological evaluation of geological units from the Mesa de los Santos, Santander

    International Nuclear Information System (INIS)

    Diaz, Eliana Jimena; Contreras, Nathalia Maria; Pinto, Jorge Eduardo; Velandia, Francisco; Morales, Carlos Julio; Hincapie, Gloria

    2009-01-01

    This paper present a preliminary hydrogeological evaluation of La Mesa de Los Santos' lithostratigraphic formations, based on the geological mapping, stratigraphy and inventory of water points. All this is supplemented with the analysis of primary porosity by means of the petrographic study and the secondary porosity related statistically with the quantity of fractures of each formation, as well as opening, interconnection and dip. It is made an approach to hydrogeological potential of the geologic outcropping formations in La Mesa de Los Santos, Department of Santander, from the stratigraphic and petrographic analysis and the structural features of these formations. The Upper Member of Los Santos Formation presents the highest potential because of rock's fracturing, continued by the Lower Member with low primary porosity and half fracturing. Silgara Formation, Granito de Pescadero, Jordan Formation and some sections of the sandy levels of the Rosablanca Formation presents a lowest potential due to its low porosity and low grade of fracturing. Low permeability is presented in the Middle Member of the Los Santos Formation, Paja and Tablazo formations, as well as in sectors of the fore mentioned formations and in the Quaternary deposits.

  1. Description of hydrogeological data in SKB's database GEOTAB. Version 2

    International Nuclear Information System (INIS)

    Gerlach, M.

    1991-12-01

    During the research and development program performed by SKB for the final disposal of spent nuclear fuel, a large quantity of geoscientific data was collected. Most of this data was stored in a database called GEOTAB. The data is organized into eight groups (subjects) as follows: - Background information. - Geological data. - Borehole geophysical measurements. - Ground surface geophysical measurements. - Hydrogeological and meteorological data. - Hydrochemical data. - Petrophysical measurements. - Tracer tests. Except for the case of borehole geophysical data, ground surface geophysical data and petrophysical data, described in the same report, the data in each group is described in a separate SKB report. The present report described data within the hydrogeological data group. The hydrogeological data groups (subject), called HYDRO, is divided into several subgroups (methods). BHEQUIPE: equipments in borehole. CONDINT: electrical conductivity in pumped water. FLOWMETE: flowmeter tests. GRWB: groundwater level registrations in boreholes. HUFZ: hydraulic unit fracture zones. HURM: hydraulic unit rock mass. HYCHEM: hydraulic test during chemical Sampling. INTER: interference tests. METEOR: meteorological and hydrological measurements. PIEZO: piezometric measurements at depths in boreholes. RECTES: recovery tests. ROCKRM: hydraulic unit rock types in the rock mass. SFHEAD: single hole falling head test. SHBUP: single hole build up test. SHSINJ: single hole steady state tests. SHTINJ: single hole transient injection tests. SHTOLD: single hole transient injections tests - old data. A method consists of one or several data tables. In each chapter a method and its data tables are described. (au)

  2. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  3. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  4. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  5. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Science.gov (United States)

    Aceto, Luigi; Aurora Pasqua, A.; Petrucci, Olga

    2017-07-01

    Damaging Hydrogeological Events (DHE) are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy) in the period 2000-2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt) were stored in the database named PEOPLE, made of three sections: (1) event identification, (2) victim-event interaction, (3) effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 %) than females (25 %), and fatalities were older (average age 49 years) than injured (40.1 years) and involved people (40.5 years). The average ages of females killed (67.5 years), injured (43.4 years) and involved (44.6 years) were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %), injured (55 %) and involved people (55.3 %) than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %). These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  6. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  7. Groundwater Vulnerability Map for South Africa | Musekiwa | South ...

    African Journals Online (AJOL)

    Vulnerability of groundwater is a relative, non-measurable and dimensionless property which is based on the concept that some land areas are more vulnerable to groundwater contamination than others. Maps showing groundwater vulnerability assist with the identification of areas more susceptible to contamination than ...

  8. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    Science.gov (United States)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  9. Progress in Geo-Electrical Methods for Hydrogeological Mapping?

    DEFF Research Database (Denmark)

    Schrøder, Niels

    2014-01-01

    In most of the 20th century the geo-electrical methods were primarily used for groundwater exploration and the application of the methods were normally followed by a borehole, and a moment of truth. In this process the use of DC (direct current) soundings have been developed to a high grade...... of excellence. In the last 25 years the geo-electrical methods are more used in connection with groundwater protection and planning, and new methods, as transient electromagnetic (TEM) soundings, have been developed that provide more measurements per hour. In Denmark this change is very explicit, and a paper....... The test area was earlier mapped by DC-soundings, so it is possible to test the methods against each other. It is concluded that well performed DC-soundings with a Schlumberger configuration still provide the best base for hydrogeological mapping...

  10. Windows Server 2012 vulnerabilities and security

    Directory of Open Access Journals (Sweden)

    Gabriel R. López

    2015-09-01

    Full Text Available This investigation analyses the history of the vulnerabilities of the base system Windows Server 2012 highlighting the most critic vulnerabilities given every 4 months since its creation until the current date of the research. It was organized by the type of vulnerabilities based on the classification of the NIST. Next, given the official vulnerabilities of the system, the authors show how a critical vulnerability is treated by Microsoft in order to countermeasure the security flaw. Then, the authors present the recommended security approaches for Windows Server 2012, which focus on the baseline software given by Microsoft, update, patch and change management, hardening practices and the application of Active Directory Rights Management Services (AD RMS. AD RMS is considered as an important feature since it is able to protect the system even though it is compromised using access lists at a document level. Finally, the investigation of the state of the art related to the security of Windows Server 2012 shows an analysis of solutions given by third parties vendors, which offer security products to secure the base system objective of this study. The recommended solution given by the authors present the security vendor Symantec with its successful features and also characteristics that the authors considered that may have to be improved in future versions of the security solution.

  11. Mining Bug Databases for Unidentified Software Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic; Jason Wright; Miles McQueen

    2012-06-01

    Identifying software vulnerabilities is becoming more important as critical and sensitive systems increasingly rely on complex software systems. It has been suggested in previous work that some bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities are known as hidden impact vulnerabilities. This paper discusses the feasibility and necessity to mine common publicly available bug databases for vulnerabilities that are yet to be identified. We present bug database analysis of two well known and frequently used software packages, namely Linux kernel and MySQL. It is shown that for both Linux and MySQL, a significant portion of vulnerabilities that were discovered for the time period from January 2006 to April 2011 were hidden impact vulnerabilities. It is also shown that the percentage of hidden impact vulnerabilities has increased in the last two years, for both software packages. We then propose an improved hidden impact vulnerability identification methodology based on text mining bug databases, and conclude by discussing a few potential problems faced by such a classifier.

  12. Determining Vulnerability Importance in Environmental Impact Assessment

    International Nuclear Information System (INIS)

    Toro, Javier; Duarte, Oscar; Requena, Ignacio; Zamorano, Montserrat

    2012-01-01

    The concept of vulnerability has been used to describe the susceptibility of physical, biotic, and social systems to harm or hazard. In this sense, it is a tool that reduces the uncertainties of Environmental Impact Assessment (EIA) since it does not depend exclusively on the value assessments of the evaluator, but rather is based on the environmental state indicators of the site where the projects or activities are being carried out. The concept of vulnerability thus reduces the possibility that evaluators will subjectively interpret results, and be influenced by outside interests and pressures during projects. However, up until now, EIA has been hindered by a lack of effective methods. This research study analyzes the concept of vulnerability, defines Vulnerability Importance and proposes its inclusion in qualitative EIA methodology. The method used to quantify Vulnerability Importance is based on a set of environmental factors and indicators that provide a comprehensive overview of the environmental state. The results obtained in Colombia highlight the usefulness and objectivity of this method since there is a direct relation between this value and the environmental state of the departments analyzed. - Research Highlights: ► The concept of vulnerability could be considered defining Vulnerability Importance included in qualitative EIA methodology. ► The use of the concept of environmental vulnerability could reduce the subjectivity of qualitative methods of EIA. ► A method to quantify the Vulnerability Importance proposed provides a comprehensive overview of the environmental state. ► Results in Colombia highlight the usefulness and objectivity of this method.

  13. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  14. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    Science.gov (United States)

    Williams, John H.; Kappel, William M.

    2015-12-22

    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  15. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Hartley, Lee; Roberts, David

    2013-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  16. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  17. Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model.

    Science.gov (United States)

    Kaliraj, S; Chandrasekar, N; Peter, T Simon; Selvakumar, S; Magesh, N S

    2015-01-01

    The south west coast of Kanyakumari district in Tamil Nadu, India, is significantly affected by seawater intrusion and diffusion of pollutants into the aquifers due to unregulated beach placer mining and other anthropogenic activities. The present study investigates the vulnerability of the coastal aquifers using Geographic Information System (GIS)-based DRASTIC model. The seven DRASTIC parameters have been analyzed using the statistical equation of this model to demarcate the vulnerable zones for aquifer contamination. The vulnerability index map is prepared from the weighted spatial parameters, and an accounting of total index value ranged from 85 to 213. Based on the categorization of vulnerability classes, the high vulnerable zones are found near the beach placer mining areas between Manavalakurichi and Kodimanal coastal stretches. The aquifers associated with settlements and agricultural lands in the middle-eastern part have experienced high vulnerability due to contaminated water bodies. Similarly, the coastal areas of Thengapattinam and Manakudi estuary and around the South Tamaraikulam have also been falling under high vulnerability condition due to backwater and saltpan. In general, the nearshore region except the placer mining zone and the backwater has a moderately vulnerable condition, and the vulnerability index values range from 149 to180. Significantly, the northern and northeastern uplands and some parts of deposition zones in the middle-south coast have been identified as low to no vulnerable conditions. They are structurally controlled by various geological features such as charnockite, garnet biotite gneiss and granites, and sand dunes, respectively. The aquifer vulnerability assessment has been cross-verified by geochemical indicators such as total dissolved solids (TDS), Cl(-), HCO₃(-), and Cl(-)/HCO₃(-) ratio. The high ranges of TDS (1,842--3,736 mg/l) and Cl(-) (1,412--2,112 mg/l) values are well correlated with the observed high

  18. Proceedings of the joint Russian-American hydrogeology seminar

    International Nuclear Information System (INIS)

    Tsang, C.F.; Mironenko, V.

    1997-01-01

    Hydrogeology research has been very active in both Russia and the US because of the concerns for migration of radioactive and chemical contaminants in soils and geologic formations, as well as for water problems related to mining and other industrial operations. Russian hydrogeologists have developed various analysis and field testing techniques, sometimes in parallel with US counterparts. These Proceedings come out of a Seminar held to bring together a small group (about 15) of active Russian researchers in geologic flow and transport associated with the disposal of radioactive and chemical wastes either on the soils or through deep injection wells, with a corresponding group (about 25) of American hydrogeologists. The meeting was intentionally kept small to enable informal, detailed and in-depth discussions on hydrogeological issues of common interest. Out of this interaction, the authors hope that, firstly, they will have learned from each other and secondly, that research collaborations will be established where there is the opportunity. This proceedings presents the summaries and viewgraphs from the presentations. What cannot be conveyed here is the warm and cooperative atmosphere of these interactions, both inside and outside the formal sessions, which may well lead to future collaborations

  19. Mental vulnerability, Helicobacter pylori, and incidence of hospital-diagnosed peptic ulcer over 28 years in a population-based cohort

    DEFF Research Database (Denmark)

    Levenstein, Susan; Jacobsen, Rikke Kart; Rosenstock, Steffen J

    2017-01-01

    Objective: To examine whether mental vulnerability, an enduring personality characteristic, predicts incident hospital-diagnosed ulcer over three decades. Materials and methods: A population-based cohort study enrolled 3365 subjects with no ulcer history, ages 30–60, in 1982–3. Mental vulnerabili......: A vulnerable personality raises risk for hospital-diagnosed peptic ulcer, in part because of an association with health risk behaviors. Its impact is seen in ‘idiopathic’ and Helicobacter pylori-associated ulcers, and in acute surgical cases.......Objective: To examine whether mental vulnerability, an enduring personality characteristic, predicts incident hospital-diagnosed ulcer over three decades. Materials and methods: A population-based cohort study enrolled 3365 subjects with no ulcer history, ages 30–60, in 1982–3. Mental vulnerability......, Helicobacter pylori IgG antibodies, socioeconomic status, and sleep duration were determined at baseline; non-steroidal antiinflammatory drug use, smoking, leisure time physical activity, and alcohol consumption both at baseline and in 1993–4. Hospital diagnoses of incident ulcer through 2011 were detected...

  20. Hydrogeological approach to the regional analysis of low flow in medium and small streams of the hilly and mountainous areas of Serbia

    Directory of Open Access Journals (Sweden)

    Nikić Zoran

    2006-01-01

    Full Text Available During the long rainless spells of the dry season, flows in medium and small streams get reduced to what is generally known as "low flow". For ungauged streams, the controlling "low flows" are determined using the regional analysis method. In the presently described exploration, the method applied was based on the assumption that dry weather discharges in medium and small rivers depended on the hydrogeological conditions. The controlling effect of hydrogeology on the natural low flow in medium and small streams of the hilly and mountainous part of Serbia was analyzed applying the theory of multiple linear regression. The thirty-day minimum mean 80 and 95 per cent exceedance flows were taken for dependent variables, and quantified hydrogeological elements as independent variables. The analysis covered streams that had small or medium size catchment areas. The treated example encompassed sixty-one gauged catchments. The resulting regional relations for the thirty day minimum mean 80 and 95 per cent exceedance flows are presented in this paper. The quality of the established relation was controlled by relevant statistic tests.

  1. Remote Sensing-based Models of Soil Vulnerability to Compaction and Erosion from Off-highway Vehicles

    Science.gov (United States)

    Villarreal, M. L.; Webb, R. H.; Norman, L.; Psillas, J.; Rosenberg, A.; Carmichael, S.; Petrakis, R.; Sparks, P.

    2014-12-01

    Intensive off-road vehicle use for immigration, smuggling, and security of the United States-Mexico border has prompted concerns about long-term human impacts on sensitive desert ecosystems. To help managers identify areas susceptible to soil erosion from vehicle disturbances, we developed a series of erosion potential models based on factors from the Revised Universal Soil Loss Equation (RUSLE), with particular focus on the management factor (P-factor) and vegetation cover (C-factor). To better express the vulnerability of soils to human disturbances, a soil compaction index (applied as the P-factor) was calculated as the difference in saturated hydrologic conductivity (Ks) between disturbed and undisturbed soils, which was then scaled up to remote sensing-based maps of vehicle tracks and digital soils maps. The C-factor was improved using a satellite-based vegetation index, which was better correlated with estimated ground cover (r2 = 0.77) than data derived from regional land cover maps (r2 = 0.06). RUSLE factors were normalized to give equal weight to all contributing factors, which provided more management-specific information on vulnerable areas where vehicle compaction of sensitive soils intersects with steep slopes and low vegetation cover. Resulting spatial data on vulnerability and erosion potential provide land managers with information to identify critically disturbed areas and potential restoration sites where off-road driving should be restricted to reduce further degradation.

  2. A metric-based assessment of flood risk and vulnerability of rural communities in the Lower Shire Valley, Malawi

    Science.gov (United States)

    Adeloye, A. J.; Mwale, F. D.; Dulanya, Z.

    2015-06-01

    In response to the increasing frequency and economic damages of natural disasters globally, disaster risk management has evolved to incorporate risk assessments that are multi-dimensional, integrated and metric-based. This is to support knowledge-based decision making and hence sustainable risk reduction. In Malawi and most of Sub-Saharan Africa (SSA), however, flood risk studies remain focussed on understanding causation, impacts, perceptions and coping and adaptation measures. Using the IPCC Framework, this study has quantified and profiled risk to flooding of rural, subsistent communities in the Lower Shire Valley, Malawi. Flood risk was obtained by integrating hazard and vulnerability. Flood hazard was characterised in terms of flood depth and inundation area obtained through hydraulic modelling in the valley with Lisflood-FP, while the vulnerability was indexed through analysis of exposure, susceptibility and capacity that were linked to social, economic, environmental and physical perspectives. Data on these were collected through structured interviews of the communities. The implementation of the entire analysis within GIS enabled the visualisation of spatial variability in flood risk in the valley. The results show predominantly medium levels in hazardousness, vulnerability and risk. The vulnerability is dominated by a high to very high susceptibility. Economic and physical capacities tend to be predominantly low but social capacity is significantly high, resulting in overall medium levels of capacity-induced vulnerability. Exposure manifests as medium. The vulnerability and risk showed marginal spatial variability. The paper concludes with recommendations on how these outcomes could inform policy interventions in the Valley.

  3. Hydrogeological Study of Mangrove Areas Around Guanabara Bay, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Gerson Cardoso da Silva Júnior;

    2003-01-01

    Full Text Available The study area covers part of the mangrove belt located around Guanabara Bay, Rio de Janeiro, Brazil. Representing a continental-marine transition, the mangrove ecosystem is very susceptible to environmental variations and impacts. The vegetation cover plays an important role in prevention of erosion and contamination processes in those areas. An ongoing extensive research effort in the Petrochemical Complex of Duque de Caxias, Rio de Janeiro State, Brazil, focuses on the man-induced changes in the physical environment (soils, groundwater flow system, type and volumes of contaminants, geochemical aspects and the consequences on the neighboring mangrove ecosystem. This article describes the importance of hydrogeological studies in mangrove areas as part of an appropriate environmental assessment, taking as an example an industrial dumping area located in that Petrochemical Complex. Field work included extensive drilling and sampling to obtain basic geological and hydrogeological parameters and data in the pilot area, such as hydraulic conductivity and piezometric heads; emphasizing the tracking of possible contamination by industrial effluents and the marine influence; validation of the conceptual model with mathematical models (numerical and analytical models was carried out. Results show the great importance of well conducted and detailed hydrogeological studies to properly address environmental problems caused by industrial plants in mangrove areas.

  4. Hydrogeology and Analysis of Aquifer Characteristics in West-Central Pinellas County, Florida

    National Research Council Canada - National Science Library

    Broska, James C; Barnette, Holly L

    1999-01-01

    The U.S. Geological Survey, in cooperation with Pinellas County, Florida, conducted an investigation to describe the hydrogeology and analyze the aquifer characteristics in west-central Pinellas County...

  5. The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment

    Directory of Open Access Journals (Sweden)

    Tullia Bonomi

    2014-06-01

    Full Text Available At the Department of Earth and Environmental Sciences of the University of Milano-Bicocca (DISAT-UNIMIB, a hydrogeological well database, called TANGRAM©, has been developed and published on line at www.TANGRAM.samit.unimib.it, developing an earlier 1989 DOS version. This package can be used to store, display, and process all data related to water wells, including administrative information, well characteristics, stratigraphic logs, water levels, pumping rates, and other hydrogeological information. Currently, the database contains more than 39.200 wells located in the Italian region of Lombardy (90%, Piedmont (9% and Valle d’Aosta (1%. TANGRAM© has been created both as a tool for researches and for public administration’s administrators who have projects in common with DISAT-UNIMIB. Indeed, transferring wells data from paper into TANGRAM© offers both an easier and more robust way to correlate hydrogeological data and a more organized management of the administrative information. Some Administrations use TANGRAM© regularly as a tool for wells data management (Brescia Province, ARPA Valle Aosta. An innovative aspect of the database is the quantitative extraction of stratigraphic data. In the part of the software intended for research purposes, all well logs are translated into 8-digit alphanumeric codes and the user composes the code interpreting the description at each stratigraphic level. So the stratigraphic well data can be coded, then quantified and processed. This is made possible by attributing a weight to the digits of the code for textures. The program calculates the weighted percentage of the chosen lithology, as related to each individual layer. These extractions are the starting point for subsequent hydrogeological studies: well head protection area, reconstruction of the dynamics of flow, realization of the quarry plans and flux and transport hydrogeological models. The results of a two-dimensional distribution of coarse

  6. Assessment of bullet effectiveness based on a human vulnerability model.

    Science.gov (United States)

    Liu, Susu; Xu, C; Wen, Y; Li, G; Zhou, J

    2017-12-25

    Penetrating wounds from explosively propelled fragments and bullets are the most common causes of combat injury. There is a requirement to assess the potential effectiveness of bullets penetrating human tissues in order to optimise preventive measures and wound trauma management. An advanced voxel model based on the Chinese Visible Human data was built. A digital human vulnerability model was established in combination with wound reconstruction and vulnerability assessment rules, in which wound penetration profiles were obtained by recreating the penetration of projectiles into ballistic gelatin. An effectiveness evaluation method of bullet penetration using the Abbreviated Injury Scale (AIS) was developed and solved using the Monte Carlo sampling method. The effectiveness of rifle bullets was demonstrated to increase with increasing velocity in the range of 300-700 m/s. When imparting the same energy, the effectiveness of the 5.56 mm bullet was higher than the 7.62 mm bullet in this model. The superimposition of simulant penetration profiles produced from ballistic gelatin simulant has been used to predict wound tracts in damaged tissues. The authors recognise that determining clinical effectiveness based on the AIS scores alone without verification of outcome by review of clinical hospital records means that this technique should be seen more as a manner of comparing the effectiveness of bullets than an injury prediction model. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  8. Beyond exposure, sensitivity and adaptive capacity: A response based ecological framework to assess species climate change vulnerability

    Science.gov (United States)

    Fortini, Lucas B.; Schubert, Olivia

    2017-01-01

    As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By instead defining vulnerability as the degree to which a species is unable to exhibit any of the responses necessary for persistence under climate change (i.e., toleration of projected changes, migration to new climate-compatible areas, enduring in microrefugia, and evolutionary adaptation), we can bring VAs into the realm of ecological science without applying borrowed abstract concepts that have consistently challenged species-centric research and management. This response-based framework to assess species vulnerability to climate change allows better integration of relevant ecological data and past research, yielding results with much clearer implications for conservation and research prioritization.

  9. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Directory of Open Access Journals (Sweden)

    L. Aceto

    2017-07-01

    Full Text Available Damaging Hydrogeological Events (DHE are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy in the period 2000–2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt were stored in the database named PEOPLE, made of three sections: (1 event identification, (2 victim-event interaction, (3 effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 % than females (25 %, and fatalities were older (average age 49 years than injured (40.1 years and involved people (40.5 years. The average ages of females killed (67.5 years, injured (43.4 years and involved (44.6 years were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %, injured (55 % and involved people (55.3 % than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %. These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  10. Groundwater pathway sensitivity analysis and hydrogeologic parameters identification for waste disposal in porous media

    International Nuclear Information System (INIS)

    Yu, C.

    1986-01-01

    The migration of radionuclides in a geologic medium is controlled by the hydrogeologic parameters of the medium such as dispersion coefficient, pore water velocity, retardation factor, degradation rate, mass transfer coefficient, water content, and fraction of dead-end pores. These hydrogeologic parameters are often used to predict the migration of buried wastes in nuclide transport models such as the conventional advection-dispersion model, the mobile-immobile pores model, the nonequilibrium adsorption-desorption model, and the general group transfer concentration model. One of the most important factors determining the accuracy of predicting waste migration is the accuracy of the parameter values used in the model. More sensitive parameters have a greater influence on the results and hence should determined (measured or estimated) more accurately than less sensitive parameters. A formal parameter sensitivity analysis is carried out in this paper. Parameter identification techniques to determine the hydrogeologic parameters of the flow system are discussed. The dependence of the accuracy of the estimated parameters upon the parameter sensitivity is also discussed

  11. Assessment of urban vulnerability towards floods using an indicator-based approach – a case study for Santiago de Chile

    Directory of Open Access Journals (Sweden)

    A. Müller

    2011-08-01

    Full Text Available Regularly occurring flood events do have a history in Santiago de Chile, the capital city of Chile and study area for this research. The analysis of flood events, the resulting damage and its causes are crucial prerequisites for the development of risk prevention measures. The goal of this research is to empirically investigate the vulnerability towards floods in Santiago de Chile as one component of flood risk. The analysis and assessment of vulnerability is based on the application of a multi-scale (individual, household, municipal level set of indicators and the use of a broad range of data. The case-specific set of indicators developed in this study shows the relevant variables and their interrelations influencing the flood vulnerability in the study area. It provides a decision support tool for stakeholders and allows for monitoring and evaluating changes over time. The paper outlines how GIS, census, and remote sensing data as well as household surveys and expert interviews are used as an information base for the derivation of a vulnerability map for two municipalities located in the eastern part of Santiago de Chile. The generation of vulnerability maps representing the two different perspectives of local decision makers (experts and affected households is exemplified and discussed using the developed methodology.

  12. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains a continuation of the fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. The sites discussed in this volume are the following: Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  13. Vulnerability assessment in a participatory approach to design and implement community based adaptation to drought in the Peruvian Andes

    Science.gov (United States)

    Lasage, Ralph; Muis, Sanne; Sardella, Carolina; van Drunen, Michiel; Verburg, Peter; Aerts, Jeroen

    2015-04-01

    The livelihoods of people in the Andes are expected to be affected by climate change due to their dependence on glacier meltwater during the growing season. The observed decrease in glacier volume over the last few decades is likely to accelerate during the current century, which will affect water availability in the region. This paper presents the implementation of an approach for the participatory development of community-based adaptation measures to cope with the projected impacts of climate change, which was implemented jointly by the local community and by a team consisting of an NGO, Peruvian ministry of environment, research organisations and a private sector organisation. It bases participatory design on physical measurements, modelling and a vulnerability analysis. Vulnerability to drought is made operational for households in a catchment of the Ocoña river basin in Peru. On the basis of a household survey we explore how a vulnerability index (impacts divided by the households' perceived adaptive capacity) can be used to assess the distribution of vulnerability over households in a sub catchment. The socio-economic factors water entitlement, area of irrigated land, income and education are all significantly correlate with this vulnerability to drought. The index proved to be appropriate for communicating about vulnerability to climate change and its determining factors with different stakeholders. The water system research showed that the main source of spring water is local rainwater, and that water use efficiency in farming is low. The adaptation measures that were jointly selected by the communities and the project team aimed to increase water availability close to farmland, and increase water use efficiency, and these will help to reduce the communities vulnerability to drought.

  14. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  15. Placental miR-340 mediates vulnerability to activity based anorexia in mice.

    Science.gov (United States)

    Schroeder, Mariana; Jakovcevski, Mira; Polacheck, Tamar; Drori, Yonat; Luoni, Alessia; Röh, Simone; Zaugg, Jonas; Ben-Dor, Shifra; Albrecht, Christiane; Chen, Alon

    2018-04-23

    Anorexia nervosa (AN) is a devastating eating disorder characterized by self-starvation that mainly affects women. Its etiology is unknown, which impedes successful treatment options leading to a limited chance of full recovery. Here, we show that gestation is a vulnerable window that can influence the predisposition to AN. By screening placental microRNA expression of naive and prenatally stressed (PNS) fetuses and assessing vulnerability to activity-based anorexia (ABA), we identify miR-340 as a sexually dimorphic regulator involved in prenatal programming of ABA. PNS caused gene-body hypermethylation of placental miR-340, which is associated with reduced miR-340 expression and increased protein levels of several target transcripts, GR, Cry2 and H3F3b. MiR-340 is linked to the expression of several nutrient transporters both in mice and human placentas. Using placenta-specific lentiviral transgenes and embryo transfer, we demonstrate the key role miR-340 plays in the mechanism involved in early life programming of ABA.

  16. Hydrogeologic study of Cafam area. Melgar (Tolima); Estudio hidrogeologico del area Cafam - Melgar (Tolima)

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km{sup 2} with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3.

  17. 3D geological and hydrogeological modeling as design tools for the Conawapa generating station

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.; Sharif, S.; Smith, B. [KGS Group, Winnipeg, MB (Canada); Cook, G.N.; Osiowy, B.J. [Manitoba Hydro, Winnipeg, MB (Canada)

    2008-07-01

    Following the project's suspension in the early 1990s, part of Manitoba Hydro's recommitment study involved digital modeling of geological and hydrogeological data for the foundation design and analysis of the proposed Conawapa generating station in northern Manitoba. Three-dimensional geological and hydrogeological models have been developed to consolidate and improve the designer's ability to understand all of the information, and to assist in developing engineering alternatives which will improve the overall confidence of the design. The tools are also being leveraged for use in environmental studies. This paper provided an overview of the Conawapa site and 3-dimensional modeling goals. It described the geology and hydrogeology of the Conawapa site as well as the bedrock structure and Karst development. The paper also presented the central concepts of 3-dimensional modeling studies, including the flow of information from database to modeling software platforms. The construction of the Conawapa geological model was also presented, with particular reference to an overview of the MVS software; mesh design; and model buildup logic. The construction of the Conawapa hydrogeological model was discussed in terms of the finite element code FEFLOW software; conceptual model design; and initial observations of Conawapa groundwater flow modeling. It was concluded that recent advancement and application of 3-dimensional geological visualization software to engineering and environmental projects, including at the future Conawapa site using MVS and FEFLOW, have shown that complicated geological data can be organized, displayed, and analysed in a systematic way, to improve site visualization, understanding, and data relationships. 19 refs., 9 figs.

  18. Geologic framework and hydrogeologic characteristics of the outcrops of the Edwards and Trinity aquifers, Medina Lake area, Texas

    Science.gov (United States)

    Small, Ted A.; Lambert, Rebecca B.

    1998-01-01

    The hydrogeologic subdivisions of the Edwards aquifer outcrop in the Medina Lake area in Medina and Bandera Counties generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The porosity of the rocks in the Edwards aquifer outcrop is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, and distribution of pores.

  19. Research and application of ARP protocol vulnerability attack and defense technology based on trusted network

    Science.gov (United States)

    Xi, Huixing

    2017-03-01

    With the continuous development of network technology and the rapid spread of the Internet, computer networks have been around the world every corner. However, the network attacks frequently occur. The ARP protocol vulnerability is one of the most common vulnerabilities in the TCP / IP four-layer architecture. The network protocol vulnerabilities can lead to the intrusion and attack of the information system, and disable or disable the normal defense function of the system [1]. At present, ARP spoofing Trojans spread widely in the LAN, the network security to run a huge hidden danger, is the primary threat to LAN security. In this paper, the author summarizes the research status and the key technologies involved in ARP protocol, analyzes the formation mechanism of ARP protocol vulnerability, and analyzes the feasibility of the attack technique. Based on the summary of the common defensive methods, the advantages and disadvantages of each defense method. At the same time, the current defense method is improved, and the advantage of the improved defense algorithm is given. At the end of this paper, the appropriate test method is selected and the test environment is set up. Experiment and test are carried out for each proposed improved defense algorithm.

  20. Final Technical Report - Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, John M

    2012-11-05

    The three major components of this research were: 1. Application of minimally invasive, cost effective hydrogeophysical techniques (surface and borehole), to generate fine scale (~1m or less) 3D estimates of subsurface heterogeneity. Heterogeneity is defined as spatial variability in hydraulic conductivity and/or hydrolithologic zones. 2. Integration of the fine scale characterization of hydrogeologic parameters with the hydrogeologic facies to upscale the finer scale assessment of heterogeneity to field scale. 3. Determination of the relationship between dual-domain parameters and practical characterization data.

  1. North-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  2. North-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  3. Hydrogeological modelling for migration of radioactivity

    International Nuclear Information System (INIS)

    Sunny, Faby; Chopra, Manish; Oza, R.B.

    2016-01-01

    The hydrogeological modelling for migration of radionuclides basically involves modelling of groundwater flow and contaminant transport through the groundwater. The water that occurs below the land surface or within the lithosphere is called groundwater. The groundwater constitutes about 4 % of the total water on the earth and about 30 % of freshwater on the earth. Groundwater models describe groundwater flow and contaminant transport processes using mathematical equations that are based on certain simplifying assumptions. These assumptions typically involve the direction of flow, geometry of the aquifer, the heterogeneity or anisotropy of sediments or bedrock within the aquifer, the contaminant transport mechanisms and chemical reactions. Because of the simplifying assumptions and the many uncertainties in the values of data, a model must be viewed as an approximation and not an exact duplication of field conditions. However, these models are useful investigation tool for a number of applications such as prediction of the possible fate and migration of contaminants for risk evaluation; tracking the possible pathway of groundwater contamination; evaluation of design of hydraulic containment and pump-and-treat systems; design of groundwater monitoring networks; evaluation of regional groundwater resources and prediction of the effect of future groundwater withdrawals on groundwater levels

  4. Assessment of well vulnerability for groundwater source protection based on a solute transport model: a case study from Jilin City, northeast China

    Science.gov (United States)

    Huan, Huan; Wang, Jinsheng; Lai, Desheng; Teng, Yanguo; Zhai, Yuanzheng

    2015-05-01

    Well vulnerability assessment is essential for groundwater source protection. A quantitative approach to assess well vulnerability in a well capture zone is presented, based on forward solute transport modeling. This method was applied to three groundwater source areas (Jiuzhan, Hadawan and Songyuanhada) in Jilin City, northeast China. The ratio of the maximum contaminant concentration at the well to the released concentration at the contamination source ( c max/ c 0) was determined as the well vulnerability indicator. The results indicated that well vulnerability was higher close to the pumping well. The well vulnerability in each groundwater source area was low. Compared with the other two source areas, the cone of depression at Jiuzhan resulted in higher spatial variability of c max/ c 0 and lower minimum c max/ c 0 by three orders of magnitude. Furthermore, a sensitivity analysis indicated that the denitrification rate in the aquifer was the most sensitive with respect to well vulnerability. A process to derive a NO3-N concentration at the pumping well is presented, based on determining the maximum nitrate loading limit to satisfy China's drinking-water quality standards. Finally, the advantages, disadvantages and prospects for improving the precision of this well vulnerability assessment approach are discussed.

  5. Vulnerability of families with children with intestinal stomas

    Directory of Open Access Journals (Sweden)

    Clara Ferraz Lazarini Zacarin

    2014-06-01

    Full Text Available Intestinal stomas cause transformations in the body and create specific and continuous needs for care that imply in hospitalization and surgeries. In this context, we applied the concept of family vulnerability in order to identify the vulnerability of the family living with a child who has intestinal stoma. It is a qualitative study which interviewed the mothers of children with this chronic condition. We used narrative analysis based on the concept of family vulnerability. The results display that the family has gone through previous noteworthy experiences associated with the child’s condition. The family cares for the child on their own and seeks ways to control the situation and regain autonomy, hoping for stoma reversal. Based on the concept of vulnerability, we observed that these families can be considered vulnerable, for they experience threats to their autonomy, but are moved by the hope of reversal and intestinal tract reconstruction. doi: 10.5216/ree.v16i2.26639.

  6. Morphometric analysis with open source software to explore shallow hydrogeological features in Senegal and Guinea

    Science.gov (United States)

    Fussi, Fabio; Di Leo, Margherita; Bonomi, Tullia; Di Mauro, Biagio; Fava, Francesco; Fumagalli, Letizia; Hamidou Kane, Cheikh; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto

    2015-04-01

    Water represents a vital resource for everyone on this Planet, but, for some populations, the access to potable water is not given for granted. Recently, the interest in low cost technical solutions to improve access to ground water in developing countries, especially for people located in remote areas, has increased. Manual drilling (techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries and represents a valid alternative to increase water access. Lately, this practice has raised the attention of national governments and international organizations. This technique is applicable only where hydrogeological conditions are suitable, namely in presence of thick layers of unconsolidated sediments and a shallow water table Aim of this study is exploring the potential of morphometric analysis to improve the methodology to identify areas with suitable hydrogeological conditions for manual drilling, supporting the implementation of water supply programs that can have great impact on living condition of the population. The characteristics of shallow geological layers are strongly dependent from geomorphological processes and are usually reflected in the morphological characteristics of landforms. Under these hypotheses, we have been investigating the geo-statistical correlation between several morphometric variables and a set of hydrogeological variables used in the estimation of suitability for manual drilling: thickness of unconsolidated sediments, texture, hydraulic conductivity of shallow aquifer, depth of water table. The morphology of two study areas with different landscape characteristics in Guinea and Senegal has been investigated coupling the Free and Open Source Software GRASS GIS and R. Several morphometric parameters have been extracted from ASTER GDEM digital elevation model, and have been compared with a set of hydrogeological characteristics obtained from semi-automatic analysis of

  7. Vulnerability

    NARCIS (Netherlands)

    Issa, Sahar; van der Molen, Irna; Stel, Nora

    2015-01-01

    This chapter reviews the literature on vulnerability. Together with Chapter 3, that offers a literature review specifically focused on resilience, it lays the conceptual foundations for the empirical chapters in this edited volume. Vulnerability symbolizes the susceptibility of a certain system to

  8. Analysis of the Hazard, Vulnerability, and Exposure to the Risk of Flooding (Alba de Yeltes, Salamanca, Spain

    Directory of Open Access Journals (Sweden)

    Sergio Veleda

    2017-02-01

    Full Text Available The present work has developed a method using GIS technology to evaluate the danger, vulnerability, and exposure to the risk of flooding in the Alba de Yeltes area (Salamanca, Spain. It is a non-structural measure for the prevention and mitigation of the risk of extraordinary flooding. After completing a full analysis of the physical environment (climate, geology, geomorphology, hydrology, hydrogeology, and land use, hydrological-hydraulic modeling was carried out using the GeoHecRas river analysis software. The results obtained from the analysis and the models have generated a danger map that facilitates the efficient evaluation of the spatial distribution of the different severity parameters (depth of the watersheet, current flow rate, and flood-prone areas. Also, map algebra and the databases associated with GIS tools, together with the vulnerability and exposure cartography, have allowed the risk to be analyzed in an integrate manner and the production of an environmental diagnostic map. The results of this study propose that there are inhabited areas close to the Yeltes-Morasverdes riverbed that have a high risk of flooding, indicating the need for proper land planning and the implementation of a series of measures that will help to reduce the risk of flooding and its impact.

  9. Manual on mathematical models in isotope hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.

  10. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  11. Nuclear material production cycle vulnerability analysis

    International Nuclear Information System (INIS)

    Bott, T.F.

    1996-01-01

    This paper discusses a method for rapidly and systematically identifying vulnerable equipment in a nuclear material or similar production process and ranking that equipment according to its attractiveness to a malevolent attacker. A multistep approach was used in the analysis. First, the entire production cycle was modeled as a flow diagram. This flow diagram was analyzed using graph theoretical methods to identify processes in the production cycle and their locations. Models of processes that were judged to be particularly vulnerable based on the cycle analysis then were developed in greater detail to identify equipment in that process that is vulnerable to intentional damage

  12. Software for hydrogeologic time series analysis, interfacing data with physical insight

    NARCIS (Netherlands)

    Asmuth, Jos R. von; Maas, K.; Knotters, M.; Bierkens, M.F.P.; Bakker, M.; Olsthoorn, T.; Cirkel, D.; Leunk, I.; Schaars, F.; Asmuth, Daniel C. von

    2012-01-01

    The program Menyanthes combines a variety of functions for managing, editing, visualizing, analyzing and modeling hydrogeologic time series. Menyanthes was initially developed within the scope of the PhD research of the first author, whose primary aimwas the integration of data and

  13. Structural vulnerability in transmission systems: Cases of Colombia and Spain

    International Nuclear Information System (INIS)

    Correa, Gabriel J.; Yusta, José M.

    2014-01-01

    Highlights: • Vulnerability analysis of transmission electric systems in Colombia and Spain. • Based on scale-free graph statistic indexes. • Evaluating both current conditions and expansion plans of infrastructures. • Comparison of random error and deliberate attack tolerance evaluation. - Abstract: In this paper the authors apply methodological strategies for the structural vulnerability assessment in high voltage power networks based upon the combination of power flow models and scale-free graph statistic indexes. Thus, it is possible to study risk scenarios based on events that may trigger cascading failures within a power system. The usefulness of graph theory techniques has been validated on previous works of the authors, and may be applied in analysis of the vulnerability of different power electric networks. A case study for vulnerability analysis is carried out through methodologies that allow comparison on random error and deliberate attack tolerance evaluation in transmission electric systems from countries like Colombia and Spain. Such vulnerability assessment methodology takes into account the current conditions of the power networks (base case), as well as the impact of expansion plans into infrastructures as defined by their governments. Consequently, the authors show the advantage on the use of graph theory based techniques for vulnerability analysis of electrical power systems

  14. Assessment of vulnerability zones for ground water pollution using GIS-DRASTIC-EC model: A field-based approach

    Science.gov (United States)

    Anantha Rao, D.; Naik, Pradeep K.; Jain, Sunil K.; Vinod Kumar, K.; Dhanamjaya Rao, E. N.

    2018-06-01

    Assessment of groundwater vulnerability to pollution is an essential pre-requisite for better planning of an area. We present the groundwater vulnerability assessment in parts of the Yamuna Nagar District, Haryana State, India in an area of about 800 km2, considered to be a freshwater zone in the foothills of the Siwalik Hill Ranges. Such areas in the Lower Himalayas form good groundwater recharge zones, and should always be free from contamination. But, the administration has been trying to promote industrialization along these foothill zones without actually assessing the environmental consequences such activities may invite in the future. GIS-DRASTIC model has been used with field based data inputs for studying the vulnerability assessment. But, we find that inclusion electrical conductivity (EC) as a model parameter makes it more robust. Therefore, we rename it as GIS-DRASTIC-EC model. The model identifies three vulnerability zones such as low, moderate and high with an areal extent of 5%, 80% and 15%, respectively. On the basis of major chemical parameters alone, the groundwater in the foothill zones apparently looks safe, but analysis with the help of GIS-DRASTIC-EC model gives a better perspective of the groundwater quality in terms of identifying the vulnerable areas.

  15. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  16. Hydrogeological characterization of Back Forty area, Albany Research Center, Albany, Oregon

    International Nuclear Information System (INIS)

    Tsai, S.Y.; Smith, W.H.

    1983-12-01

    Radiological surveys were conducted to determine the potential migration of radionuclides from the waste area to the area commonly referred to as the Back Forty, located in the southern portion of the ARC site. The survey results indicated that parts of the Back Forty contain soils contaminated with uranium, thorium, and their associated decay products. A hydrogeologic characterization study was conducted at the Back Forty as part of an effort to more thoroughly assess radionuclide migration in the area. The objectives of the study were: (1) to define the soil characteristics and stratigraphy at the site, (2) to describe the general conditions of each geologic unit, and (3) to determine the direction and hydraulic gradient of areal groundwater flow. The site investigation activities included literature review of existing hydrogeological data for the Albany area, onsite borehold drilling, and measurement of groundwater levels. 7 references, 9 figures, 2 tables

  17. The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

    2012-12-01

    Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

  18. Social vulnerability to climate-induced natural disasters

    DEFF Research Database (Denmark)

    Rubin, Olivier

    2014-01-01

    This paper conducts an analysis of the socioeconomic determinants of Vietnam's cross-provincial variations in natural disaster vulnerability. The purpose is twofold: (i) to capture disaggregated vulnerability variations normally obscured by national statistics, thereby providing more nuanced...... insights into Vietnam's vulnerability to natural disasters; and (ii) to take advantage of the fact that the overall political system and key institutional structures to a large extent are constant across Vietnam's provinces, which makes the analysis a novel addition to the many disaster studies based...

  19. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the permeability data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  20. Hydrogeologic analysis of remedial alternatives for the solar ponds plume, RFETS

    International Nuclear Information System (INIS)

    McLane, C.F. III; Whidden, J.A.; Hopkins, J.K.

    1998-01-01

    The focus of this paper is to develop a conceptual model and a hydrogeologic analysis plan for remedial alternatives being considered for the remediation of a ground water contaminant plume consisting of chiefly nitrate and uranium. The initial step in this process was to determine the adequacy of the existing data from the vast database of site information. Upon concluding that the existing database was sufficient to allow for the development of a conceptual model and then constructing the conceptual model, a hydrogeologic analysis plan was developed to evaluate several alternatives for plume remediation. The plan will be implemented using a combination of analytical and simple numerical ground water flow and contaminant transport models. This allows each portion of the study to be addressed using the appropriate tool, without having to develop a large three-dimensional numerical ground water flow and transport model, thereby reducing project costs. The analysis plan will consist of a preliminary phase of screening analyses for each of the remedial alternative scenarios, and a second phase of more comprehensive and in-depth analyses on a selected subset of remedial alternative scenarios. One of the alternatives which will be analyzed is phytoremediation (remediation of soil and ground water via uptake of chemicals by plants) because of the potential for relatively low capital and operation and maintenance costs, passive nature, and potential to provide long-term protection of the surface water. The results of these hydrogeological analyses will be factored into the selection of the preferred remedial alternative, or combination of alternatives, for the contaminant plume

  1. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.

    Science.gov (United States)

    Leone, A; Ripa, M N; Uricchio, V; Deák, J; Vargay, Z

    2009-07-01

    In recent years, the significant improvement in point source depuration technologies has highlighted problems regarding, in particular, phosphorus and nitrogen pollution of surface and groundwater caused by agricultural non-point (diffuse) sources (NPS). Therefore, there is an urgent need to determine the relationship between agriculture and chemical and ecological water quality. This is a worldwide problem, but it is particularly relevant in countries, such as Hungary, that have recently become members of the European Community. The Italian Foreign Ministry has financed the PECO (Eastern Europe Countries Project) projects, amongst which is the project that led to the present paper, aimed at agricultural sustainability in Hungary, from the point of view of NPS. Specifically, the aim of the present work has been to study nitrates in Hungary's main aquifer. This study compares a model showing aquifer intrinsic vulnerability to pollution (using the DRASTIC parameter method; Aller et al. [Aller, L., Truman, B., Leher, J.H., Petty, R.J., 1986. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US NTIS, Springfield, VA.]) with a field-scale model (GLEAMS; Knisel [Knisel, W.G. (Ed.), 1993. GLEAMS--Groudwater Leaching Effects of Agricultural Management Systems, Version 3.10. University of Georgia, Coastal Plain Experimental Station, Tifton, GA.]) developed to evaluate the effects of agricultural management systems within and through the plant root zone. Specifically, GLEAMS calculates nitrate nitrogen lost by runoff, sediment and leachate. Groundwater monitoring probes were constructed for the project to measure: (i) nitrate content in monitored wells; (ii) tritium (3H) hydrogen radioisotope, as a tool to estimate the recharge conditions of the shallow groundwater; (iii) nitrogen isotope ratio delta15N, since nitrogen of organic and inorganic origin can easily be distinguished. The results obtained are satisfactory

  2. Stability of radioactive minerals in an oxidizing hydrogeological environment: new results from an alluvial placer deposit, Naegi district, central Japan

    International Nuclear Information System (INIS)

    Sasao, Eiji; Komuro, Kosei; Nakata, Masataka

    2009-01-01

    Study of the stability of radioactive minerals in a placer deposit in the Naegi District, southeastern Gifu Prefecture, Central Japan contributes to understanding the modes of nuclide migration under various hydrogeological environments in the tectonically active Japanese Island Arc system. The placer deposit is embedded in basal conglomerates of the lower-most alluvial sequences, exposed to a near-surface, oxidizing hydrogeological environment. The mineral samples, ranging in mesh size from 120 to 250, were identified after sieving and magnetic separation to be mainly cassiterite, thorite, monazite, and topaz, with subordinate amounts of zircon, fergusonite-(Y), xenotime and wolframite. Observations using optical and scanning microscopy indicated that many grains of zircon have well-preserved crystal faces. Most monazite and fergusonite-(Y) grains are partly abraded and corroded whereas thorite grains are highly abraded and corroded. This indicates that under an oxidizing hydrogeological environment, the mechanical durability and geological stability decrease from zircon to monazite/fergusonite-(Y) to thorite, which correlates well with the Mohs's hardness scale. Cut and polished thorite grains display a high degree of alteration. The altered portions have higher Th, Fe and Y contents, and lower U and Si contents in comparison with the unaltered portions, indicating leaching of U and Si. In the fergusonite-(Y) grains, the altered portions have higher Th, Nb and Ta contents, and lower U and Y contents in comparison with the unaltered portions, indicate leaching of U and Y. Thus it is determined that uranium is strongly leached in an oxidizing hydrogeological environment. The leaching behaviour is dependent on mineralogy and is consistent with thermodynamic estimates. The alteration rate of fergusonite-(Y) was calculated to range from 0.05 to 0.000025 μm/year based on the thickness of the external alteration film and the duration of exposure to the oxidizing

  3. Modelling farm vulnerability to flooding: A step toward vulnerability mitigation policies appraisal

    Science.gov (United States)

    Brémond, P.; Abrami, G.; Blanc, C.; Grelot, F.

    2009-04-01

    are needed to implement the model and to collect them, specifically using the focus group method; Based on the conceptual model, to program a mathematical model which will be used to simulate damage (direct and indirect) on farm due to flood. This last objective should enable us to appraise policy to mitigate vulnerability which is planned to be implemented on Rhône River at the individual and regional scale. Finally, we discuss the possibility to use the UML modelling to develop a multi-agent system approach which could be interesting to take into account ties between farmers (solidarity, loan of equipment) or systemic effects due to the damage incurred by economic partners (loss of market share). Keywords vulnerability, UML modelling, farming systems, flood, mitigation policy, economic valuation

  4. Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks.

    Directory of Open Access Journals (Sweden)

    Li Gou

    Full Text Available With an increasing emphasis on network security, much more attentions have been attracted to the vulnerability of complex networks. In this paper, the fractal dimension, which can reflect space-filling capacity of networks, is redefined as the origin moment of the edge betweenness to obtain a more reasonable evaluation of vulnerability. The proposed model combining multiple evaluation indexes not only overcomes the shortage of average edge betweenness's failing to evaluate vulnerability of some special networks, but also characterizes the topological structure and highlights the space-filling capacity of networks. The applications to six US airline networks illustrate the practicality and effectiveness of our proposed method, and the comparisons with three other commonly used methods further validate the superiority of our proposed method.

  5. Modelling the changing cumulative vulnerability to climate-related hazards for river basin management using a GIS-based multicriteria decision approach

    Science.gov (United States)

    Hung, Hung-Chih; Wu, Ju-Yu; Hung, Chih-Hsuan

    2017-04-01

    1. Background Asia-Pacific region is one of the most vulnerable areas of the world to climate-related hazards and extremes due to rapid urbanization and over-development in hazard-prone areas. It is thus increasingly recognized that the management of land use and reduction of hazard risk are inextricably linked. This is especially critical from the perspective of integrated river basin management. A range of studies has targeted existing vulnerability assessments. However, limited attention has been paid to the cumulative effects of multiple vulnerable factors and their dynamics faced by local communities. This study proposes a novel methodology to access the changing cumulative vulnerability to climate-related hazards, and to examine the relationship between the attraction factors relevant to the general process of urbanization and vulnerability variability with a focus on a river basin management unit. 2. Methods and data The methods applied in this study include three steps. First, using Intergovernmental Panel on Climate Change's (IPCC) approach, a Cumulative Vulnerability Assessment Framework (CVAF) is built with a goal to characterize and compare the vulnerability to climate-related hazards within river basin regions based on a composition of multiple indicators. We organize these indicator metrics into three categories: (1) hazard exposure; (2) socioeconomic sensitivity, and (3) adaptive capacity. Second, the CVAF is applied by combining a geographical information system (GIS)-based spatial statistics technique with a multicriteria decision analysis (MCDA) to assess and map the changing cumulative vulnerability, comparing conditions in 1996 and 2006 in Danshui River Basin, Taiwan. Third, to examine the affecting factors of vulnerability changing, we develop a Vulnerability Changing Model (VCM) using four attraction factors to reflect how the process of urban developments leads to vulnerability changing. The factors are transport networks, land uses

  6. Vulnerability and resilience of competing land-based livelihoods in south eastern Zimbabwe

    NARCIS (Netherlands)

    Murungweni, C.

    2011-01-01

    Key words: vulnerability; resilience; livelihood; drought; Great Limpopo Transfrontier Conservation Area; south eastern Zimbabwe.

    Vulnerability and resilience have emerged as powerful analytical concepts in the study of socio-ecological systems. In this research these concepts are used

  7. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  8. Numerical modelling of levee stability based on coupled mechanical, thermal and hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Dwornik Maciej

    2016-01-01

    Full Text Available The numerical modelling of coupled mechanical, thermal and hydrogeological processes for a soil levee is presented in the paper. The modelling was performed for a real levee that was built in Poland as a part of the ISMOP project. Only four parameters were changed to build different flood waves: the water level, period of water increase, period of water decrease, and period of low water level after the experiment. Results of numerical modelling shows that it is possible and advisable to calculate simultaneously changes of thermal and hydro-mechanical fields. The presented results show that it is also possible to use thermal sensors in place of more expensive pore pressure sensors, with some limitations. The results of stability analysis show that the levee is less stable when the water level decreases, after which factor of safety decreases significantly. For all flooding wave parameters described in the paper, the levee is very stable and factor of safety variations for any particular stage were not very large.

  9. Goat-based aid programme in Central Java: An effective intervention for the poor and vulnerable?

    NARCIS (Netherlands)

    Budisatria, I.G.S.; Udo, H.M.J.

    2013-01-01

    This study evaluated a goat-based aid programme developed to facilitate the recovery of vulnerable people in an earthquake affected area in Central Java, Indonesia. Farmers, organised in farmers’ groups, received a package of one male and four female goats. In total, 72 farmers from 6 farmers’

  10. Hydrogeologic characterization of the Cachoeira Deposit Massif, Caetite, state of Bahia, Brazil

    International Nuclear Information System (INIS)

    Bottura, J.A.; Albuquerque Filho, J.L.; Ojima, L.M.

    1984-01-01

    The hydrogeologic applications for the characterization of rock massifs in future mining activity areas are presented. The study was performed in the Cachoeira uranium deposit (Anomaly no.13 - Lagoa Real Project) located in the south-central portion of the state of Bahia, Caetite municipality, belonging to the Brazilian Nuclear Enterprise - NUCLEBRAS. The massif occuring in the area is composed of a group or series of rocks classified generically as gneisses, displaying different geotechnical classes. In order to consubstantiate the hydrogeologic/ hydrogeotechnical characterization, pumping and infiltration tests were performed, as well as periodic water level measurements in piezometers and drill-holes. In this manner, a hydrogeotechnical classification was made possible and a quantitative evaluation of the volume of water that will be drained was elaborated, orviding necessary contributions for research diggings and exploration. (D.J.M.) [pt

  11. Impact of river stage prediction methods on stream-aquifer exchanges in a hydro(geo)logical model at the regional scale

    Science.gov (United States)

    Saleh, F.; Flipo, N.; de Fouquet, C.

    2012-04-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. The study focuses on the Oise basin (17 000 km2, part of the 65 000 km2 Seine basin in Northern France) where stream-aquifer exchanges cannot be assessed directly by experimental methods. Nowadays numerical methods are the most appropriate approaches for assessing stream-aquifer exchanges at this scale. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used, which aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using the Darcy law. Three methods for assessing in-stream river stages are explored to determine the most appropriate representation at regional scale over 25 years (1980-2005). The first method consists in defining rating curves for each cell of a 1D Saint-Venant hydraulic model. The second method consists in interpolating observed rating curves (at gauging stations) onto the river cells of the hydro(geo)logical model. The interpolation technique is based on geostatistics. The last method assesses river stage using Manning equation with a simplified rectangular cross-section (water depth equals the hydraulic radius). Compared to observations, the geostatistical and the Manning methodologies lead to slightly less accurate (but still acceptable) results offering a low computational cost opportunity

  12. Indicator-based model to assess vulnerability to landslides in urban areas. Case study of Husi city (Eastern Romania)

    Science.gov (United States)

    Grozavu, Adrian; Ciprian Margarint, Mihai; Catalin Stanga, Iulian

    2013-04-01

    In the last three or four decades, vulnerability evolved from physical fragility meanings to a more complex concept, being a key element of risk assessment. In landslide risk assessment, there are a large series of studies regarding landslide hazard, but far fewer researches focusing on vulnerability measurement. Furthermore, there is still no unitary understanding on the methodological framework, neither any internationally agreed standard for landslide vulnerability measurements. The omnipresent common element is the existence of elements at risk, but while some approaches are limited to exposure, other focus on the degree of losses (human injuries, material damages and monetary losses, structural dysfunctions etc.). These losses are differently assessed using both absolute and relative values on qualitative or quantitative scales and they are differently integrated to provide a final vulnerability value. This study aims to assess vulnerability to landslides at local level using an indicator-based model applied to urban areas and tested for Husi town (Eastern Romania). The study region is characterized by permeable and impermeable alternating sedimentary rocks, monoclinal geological structure and hilly relief with impressive cuestas, continental temperate climate, and precipitation of about 500 mm/year, rising to 700 m and even more in some rainy years. The town is a middle size one (25000 inhabitants) and it had an ascending evolution in the last centuries, followed by an increasing human pressure on lands. Methodologically, the first step was to assess the landslide susceptibility and to identify in this way those regions within which any asset would be exposed to landslide hazards. Landslide susceptibility was assessed using the logistic regression approach, taking into account several quantitative and qualitative factors (elements of geology, morphometry, rainfall, land use etc.). The spatial background consisted in the Digital Elevation Model and all derived

  13. Simple method for quick estimation of aquifer hydrogeological parameters

    Science.gov (United States)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  14. THE METHOD FOR IDENTIFYING THE MOST VULNERABLE AREAS CAUSED BY EXOGENOUS PROCESSES UNDER ARIDIFICATION/HUMIDIFICATION (BASED ON GIS AND RS

    Directory of Open Access Journals (Sweden)

    D. A. Chupina

    2017-01-01

    Full Text Available The paper presents the method of identifying the most vulnerable territories under exogenous processes caused by aridification/humidification. It is based on the assumption that some forms and types of relief increase resistance of terrestrial ecosystems to external influences, while other kinds of relief make them vulnerable. The relationship between landscape and moistening (ground and climatic is of great importance to plains which have groundwater close to the surface. We have used morphometric analysis to divide the territory into hydromorphic and automorphic landscapes. Hydromorphic territories are those that are affected by additional surface moistening and groundwater, while automorphic landscapes are less dependent on groundwater under normal atmospheric moisture. The territory is ranked according to the degree of vulnerability by expert evaluation method. The developed approach is based entirely on using GIS software (ArcGIS 10.2.1 and processing the DEM SRTM. As a result, two models of vulnerability of natural terrestrial ecosystems to exogenic processes on Baraba Plain (Western Siberia have been created for both aridification and humidification cases. The opportunity to estimate the vulnerability is the novel feature for these models of terrestrial ecosystems, in both regional and local scales. The results obtained confirm the existing ideas about the discrete mosaic character of changes in spatial landscape patterns in the area under consideration. For the southern part of Western Siberia where farming is risky the assessment of the potential degree of vulnerability for ecosystems under conditions of increasing climate aridity and extremes is relevant.

  15. LASTRIG -A Multiple Parametric Method of Assessment of Salinization Vulnerability of a Coastal Aquifer in Pennar Delta, India

    Science.gov (United States)

    Kesireddy, K.; Mareddy, A.

    2007-05-01

    Coastal populations are critically dependent upon the coastal aquifers for their freshwater requirements. Excessive withdrawal of groundwater leads to saline incursion and the consequent degradation of quality and quantity of freshwater. The paper describes a multiple parametric method of assessment of vulnerability of the coastal aquifer in Pennar delta, south India, in the context of the hydrogeological, biophysical, geochemical and socioeconomic environments of the delta. Seven parameters, forming the acronym LASTRIG viz. landuse, aquifer type, soil depth, groundwater table, rainfall, soil infiltration and geomorphology are made use in the assessment, and involve the use of remote sensing, GIS and modeling tools. The parameters are weighted, and a suitable ranking system has been designed to quantify the degree of vulnerability of the aquifer for salinization. It has been found that zones with high vulnerability index correlate well with zones of high TDS and chloride contents of groundwater. This observation thus validates the geochemical basis of the proposed LASTRIG system. The new system has been found useful in the management of the groundwater resources of the delta region. It has been made use of identify the aquifer segments which are in danger of being degraded, to enable the decision- makers to design counter measures to avoid further deterioration in water quality. Where the groundwater has already been rendered non-potable because of saline incursion, the LASTRIG index could be made use to identify possible use of that water for drinking by cattle, and for growing of salt-tolerant vegetables (e.g. beetroot and lettuce), and trees (e.g. casuarinas obese, Prosopis juliflora)

  16. Spatial variation of vulnerability in geographic areas of North Lebanon

    NARCIS (Netherlands)

    Issa, Sahar; van der Molen, I.; Nader, M.R.; Lovett, Jonathan Cranidge

    2014-01-01

    This paper examines the spatial variation in vulnerability between different geographical areas of the northern coastal region of Lebanon within the context of armed conflict. The study is based on the ‘vulnerability of space’ approach and will be positioned in the academic debate on vulnerability

  17. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A. [Univ. of Florence (Italy)] [and others

    1993-11-01

    Geochemical and hydrogeological research has been carried out in Florence, to evaluate conductivity and main chemistry of groundwaters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO{sub 2}, NO{sub 3}), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. Most waters show conductivity values around 1000-1200 {mu}S, and almost all of them have an alkaline-earth-bicarbonate chemical character. In western areas higher salt content of the groundwaters is evident. Heavy metal and NO{sub 2}, NO{sub 3} analyses point out that no important pollution phenomena affect the groundwaters; all mean values are below the maximum admissible concentration (MAC) for drinkable waters. Some anomalies of NO{sub 2}, NO{sub 3}, Fe, Mn, and Zn are present. The most plausible causes can be recognized in losses of the sewage system; use of nitrate compounds in agriculture; oxidation of well pipes. All the observations of Cr, Cu, and Pb are below the MAC; the median values of <3, 3.9, and 1.1 {mu}g/l, respectively, could be considered reference concentrations for groundwaters in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered could significantly increase the self-purification capacity of the aquifer, such asdilution of groundwaters, bacteria oxidation of nitrogenous species, and sorption capacity of clay minerals and organic matter. 31 refs., 6 figs., 5 tabs.

  18. VULNERABILITY OF COMPANIES

    Directory of Open Access Journals (Sweden)

    ARMEAN ANDREEA

    2013-06-01

    Full Text Available In present, the study of vulnerability of companies is increasing in every field due to the unstable economic environment influences. The object of this research is to define and identify vulnerabilities of companies and the establishment of evaluation methods at their level. This article emphasizes the importance and usefulness of one of the best known model in this way, from our point of view, namely Băileşteanu, Negrila Pattern. This pattern covers both external factors and internal ones, that increase vulnerabilities of companies, and fit the companies in which the state of vulnerability are (vitality, viability, vulnerability, high vulnerability, difficulty and high difficulty, with a matrix. The result of the research is that any company belonging to any field, can be analyzed using this model, and assigned to one of the conditions defined within.

  19. Regional hydrogeological study in the Tono area

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Ota, Kunio; Hama, Katsuhiro; Tsubota, Kouji

    1998-01-01

    Regional hydrogeological studies have been carried out since fiscal 1992 to determine the regional groundwater flow in the Tono area of Japan. The following items have been investigated: 1) Understanding the geological structure, groundwater flow and groundwater chemistry of the deep geological environment in the Tono area. 2) Constructing conceptual models of the geological structure, groundwater flow and groundwater chemistry. 3) Developing appropriate techniques to investigate the geological structure, groundwater flow and groundwater chemistry of the deep geological environment. This report presents the results of the last six years of the study in the Tono area. (author)

  20. The SAVI Vulnerability Analysis Software Package

    International Nuclear Information System (INIS)

    Mc Aniff, R.J.; Paulus, W.K.; Key, B.; Simpkins, B.

    1987-01-01

    SAVI (Systematic Analysis of Vulnerability to Intrusion) is a new PC-based software package for modeling Physical Protection Systems (PPS). SAVI utilizes a path analysis approach based on the Adversary Sequence Diagram (ASD) methodology. A highly interactive interface allows the user to accurately model complex facilities, maintain a library of these models on disk, and calculate the most vulnerable paths through any facility. Recommendations are provided to help the user choose facility upgrades which should reduce identified path vulnerabilities. Pop-up windows throughout SAVI are used for the input and display of information. A menu at the top of the screen presents all options to the user. These options are further explained on a message line directly below the menu. A diagram on the screen graphically represents the current protection system model. All input is checked for errors, and data are presented in a logical and clear manner. Print utilities provide the user with hard copies of all information and calculated results

  1. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  2. Assessment of agricultural drought vulnerability in the Philippines using remote sensing and GIS-based techniques

    International Nuclear Information System (INIS)

    Macapagal, Marco D.; Olivares, Resi O.; Perez, Gay Jane P.

    2015-01-01

    Drought is a recurrent extreme climate event that can cause crop damage and yield loss, thereby inflicting negative socioeconomic impacts all over the world. According to several climate studies, drought events may be more frequent and more severe as global warming progresses. As an agricultural country, the Philippines is highly susceptible to adverse impacts of drought using remotely sensed information and geographic processing techniques. An agricultural drought vulnerability map identifying croplands that are least vulnerable, moderately vulnerable, and most vulnerable to crop water-related stress, was developed. Vulnerability factors, including land use system, irrigation support. Available soil-water holding capacity, as well as satellite-derived evapotranspiration and rainfall, were taken into consideration in classifying and mapping agricultural drought vulnerability at a national level. (author)

  3. Increasing Android Security using a Lightweight OVAL-based Vulnerability Assessment Framework

    OpenAIRE

    Barrère , Martín; Hurel , Gaëtan; Badonnel , Rémi; Festor , Olivier

    2012-01-01

    International audience; Mobile computing devices and the services offered by them are utilized by millions of users on a daily basis. However, they operate in hostile environments getting exposed to a wide variety of threats. Accordingly, vulnerability management mechanisms are highly required. We present in this paper a novel approach for increasing the security of mobile devices by efficiently detecting vulnerable configurations. In that context, we propose a modeling for performing vulnera...

  4. No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitis vinifera).

    Science.gov (United States)

    Jacobsen, Anna L; Pratt, R Brandon

    2012-06-01

    Vulnerability to cavitation curves are used to estimate xylem cavitation resistance and can be constructed using multiple techniques. It was recently suggested that a technique that relies on centrifugal force to generate negative xylem pressures may be susceptible to an open vessel artifact in long-vesselled species. Here, we used custom centrifuge rotors to measure different sample lengths of 1-yr-old stems of grapevine to examine the influence of open vessels on vulnerability curves, thus testing the hypothesized open vessel artifact. These curves were compared with a dehydration-based vulnerability curve. Although samples differed significantly in the number of open vessels, there was no difference in the vulnerability to cavitation measured on 0.14- and 0.271-m-long samples of Vitis vinifera. Dehydration and centrifuge-based curves showed a similar pattern of declining xylem-specific hydraulic conductivity (K(s)) with declining water potential. The percentage loss in hydraulic conductivity (PLC) differed between dehydration and centrifuge curves and it was determined that grapevine is susceptible to errors in estimating maximum K(s) during dehydration because of the development of vessel blockages. Our results from a long-vesselled liana do not support the open vessel artifact hypothesis. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. Hydrogeologic studies for CRNL's proposed shallow land burial site

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Devgun, J.S.

    1986-09-01

    The first phase of conversion from storage to disposal of low- and intermediate-level radioactive wastes at CRNL is focussed on solids with hazardous lifetimes less than 500 years. In order to use a facility buried above the water table and to achieve maximum use of radionuclide migration information from studies of existing facilities, the proposed site is located in sands above an active groundwater flow system. The selection of a permeable and geologically-simple slow system has allowed application of a wide variety of techniques for hydrogeologic evaluation of the site. Ground-probing radar in conjunction with continuously cored boreholes have provided stratigraphic data and sediments for testing. Field hydrogeologic testing has included a detailed network of piezometers for hydraulic head mapping and a series of borehole dilution tests. Measurements of contaminant sorption behaviour are also being made in the field to reduce variations in uncontrolled parameters. Mathematical models successfully simulate the real system in terms of groundwater flow. Simulations of reactive contaminant transport are more difficult, but the application of data from field tests of radionuclide migration behaviour and from existing contaminant plumes will, we believe, provide acceptably reliable predictions of the impact of failures in the engineered disposal structure

  6. Spatial-temporal eco-environmental vulnerability assessment and its influential factors based on Landsat data

    Science.gov (United States)

    Anh, N. K.; Liou, Y. A.; Ming-Hsu, L.

    2016-12-01

    Regional land use/land cover (LULC) changes lead to various changes in ecological processes and, in turn, alter regional micro-climate. To understand eco-environmental responses to LULC changes, eco-environmental evaluation is thus required with aims to identify vulnerable regions and influential factors, so that practical measures for environmental protection and management may be proposed. The Thua Thien - Hue Province has been experiencing urbanization at a rapid rate in both population and physical size. The urban land, agricultural land, and aquaculture activities have been invasively into natural space and caused eco-environment deterioration by land desertification, soil erosion, shrinking forest resources,…etc. In this study, an assessment framework that is composed by 11 variables with 9 of them constructed from Landsat time series is proposed to serve as basis to examine eco-environmental vulnerability in the Thua Thien - Hue Province in years 1989, 2003, and 2014. An eco-environmental vulnerability map is assorted into six vulnerability levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities. Result shows that there is an increasing trend in eco-environmental vulnerability in general with expected evolving distributions in heavy and very heavy vulnerability levels, which mainly lying on developed land, bare land, semi bare land, agricultural land, and poor and recovery forests. In contrast, there is a significant decline in potential vulnerability level. The contributing factors of an upward trend in medium, heavy, and very heavy levels include: (i) a large natural forest converted to plantation forest and agriculture land; and (ii) significant expansion of developed land leading to difference in thermal signatures in urban areas as compared with those of the surrounding areas. It is concluded that anthropogenic processes with transformation on LULC has amplified the vulnerability of eco-environment in the study

  7. Coastal vulnerability: climate change and natural hazards perspectives

    Science.gov (United States)

    Romieu, E.; Vinchon, C.

    2009-04-01

    Introduction Studying coastal zones as a territorial concept (Integrated coastal zone management) is an essential issue for managers, as they have to consider many different topics (natural hazards, resources management, tourism, climate change…). The recent approach in terms of "coastal vulnerability" studies (since the 90's) is the main tool used nowadays to help them in evaluating impacts of natural hazards on coastal zones, specially considering climate change. This present communication aims to highlight the difficulties in integrating this concept in risk analysis as it is usually practiced in natural hazards sciences. 1) Coastal vulnerability as a recent issue The concept of coastal vulnerability mainly appears in the International panel on climate change works of 1992 (IPCC. 2001), where it is presented as essential for climate change adaptation. The concept has been defined by a common methodology which proposes the assessment of seven indicators, in regards to a sea level rise of 1m in 2100: people affected, people at risk, capital value at loss, land at loss, wetland at loss, potential adaptation costs, people at risk assuming this adaptation. Many national assessments have been implemented (Nicholls, et al. 1995) and a global assessment was proposed for three indicators (Nicholls, et al. 1999). The DINAS-Coast project reuses this methodology to produce the DIVA-tool for coastal managers (Vafeidis, et al. 2004). Besides, many other methodologies for national or regional coastal vulnerability assessments have been developed (review by (UNFCCC. 2008). The use of aggregated vulnerability indicators (including geomorphology, hydrodynamics, climate change…) is widespread: the USGS coastal vulnerability index is used worldwide and was completed by a social vulnerability index (Boruff, et al. 2005). Those index-based methods propose a vulnerability mapping which visualise indicators of erosion, submersion and/or socio economic sensibility in coastal zones

  8. Hydrogeology in North America: past and future

    Science.gov (United States)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  9. Áreas vulnerables en el centro de Madrid

    Directory of Open Access Journals (Sweden)

    Agustín Hernández Aja

    2007-07-01

    This document shows an vulnerability analysis of the central area of Madrid taken it as the field of APE-00.01. Its objective is to delimit “vulnerable areas” so there can be evaluated the opportunities for interve trough them and then define the best tools in detriment of their vulnerability reasons. To determinate those areas we have developed a sociodemographic analysis where we have found those units of population with vulnerable values. Once determinated, we have synthetize them to define them as easy drafts that makes understandable the work area for later on establish a vulnerable areas catalogue with spatial homogeneity and significant size. The basic nucleus of the análisis has been the sociodemographic fact, based on homogeneus data sources for all the area so they could be referenced to specific spacial areas. In each case has been advised other possible indicators of vulnerability including a signifier selection of thrm on the fifth chapter.

  10. Statistics of software vulnerability detection in certification testing

    Science.gov (United States)

    Barabanov, A. V.; Markov, A. S.; Tsirlov, V. L.

    2018-05-01

    The paper discusses practical aspects of introduction of the methods to detect software vulnerability in the day-to-day activities of the accredited testing laboratory. It presents the approval results of the vulnerability detection methods as part of the study of the open source software and the software that is a test object of the certification tests under information security requirements, including software for communication networks. Results of the study showing the allocation of identified vulnerabilities by types of attacks, country of origin, programming languages used in the development, methods for detecting vulnerability, etc. are given. The experience of foreign information security certification systems related to the detection of certified software vulnerabilities is analyzed. The main conclusion based on the study is the need to implement practices for developing secure software in the development life cycle processes. The conclusions and recommendations for the testing laboratories on the implementation of the vulnerability analysis methods are laid down.

  11. Soft computing and hydrogeologic characterization of the Serra Geral-Guarani aquifer system, Parana state, Brazil

    Science.gov (United States)

    Iwashita, F.; Friedel, M. J.; Ferreira, F. J.; Fraser, S. J.

    2011-12-01

    The Self-organizing map (SOM) technique is used to estimate missing hydrogeologic (hydraulic and hydrochemical) properties and evaluate potential connectivity between the Serra Geral and Guarani aquifer system. K-means clustering of SOM neurons is useful for identifying hydrogeologic units (conceptual models) in which the Serra Geral waters are carbonate-calcium and carbonate-magnesium, and Guarani waters are sodium, chloride, fluoride and sulfate as characteristic elements. SOM predictions appear generally consistent with current connectivity models with vertical fluxes from Guarani aquifer strongly influenced by geological structures. Additionally, we identify other new hydrochemical facies in the Serra Geral aquifer indicating areas with potential connections between the two aquifers.

  12. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  13. Quantitative assessment of key parameters in qualitative vulnerability methods applied in karst systems based on an integrated numerical modelling approach

    Science.gov (United States)

    Doummar, Joanna; Kassem, Assaad

    2017-04-01

    In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.

  14. Vulnerability Assessment of Mangrove Habitat to the Variables of the Oceanography Using CVI Method (Coastal Vulnerability Index) in Trimulyo Mangrove Area, Genuk District, Semarang

    Science.gov (United States)

    Ahmad, Rifandi Raditya; Fuad, Muhammad

    2018-02-01

    Some functions of mangrove areas in coastal ecosystems as a green belt, because mangrove serves as a protector of the beach from the sea waves, as a good habitat for coastal biota and for nutrition supply. Decreased condition or degradation of mangrove habitat caused by several oceanographic factors. Mangrove habitats have some specific characteristics such as salinity, tides, and muddy substrates. Considering the role of mangrove area is very important, it is necessary to study about the potential of mangrove habitat so that the habitat level of mangrove habitat in the east coast of Semarang city is known. The purpose of this research is to obtain an index and condition of habitat of mangrove habitat at location of research based on tidal, salinity, substrate type, coastline change. Observation by using purposive method and calculation of habitat index value of mangrove habitat using CVI (Coastal Vulnerability Index) method with scores divided into 3 groups namely low, medium and high. The results showed that there is a zone of research belonging to the medium vulnerability category with the most influential variables is because there is abrasion that sweeps the mangrove substrate. Trimulyo mangrove habitat has high vulnerable variable of tidal frequency, then based on value variable Salinity is categorized as low vulnerability, whereas for mangrove habitat vulnerability based on variable type of substrate belong to low and medium vulnerability category. The CVI values of mangrove habitats divided into zones 1; 2; and 3 were found to varying values of 1.54; 3.79; 1.09, it indicates that there is a zone with the vulnerability of mangrove habitat at the study site belonging to low and medium vulnerability category.

  15. Home and Community-Based Service Use by Vulnerable Older Adults.

    Science.gov (United States)

    Weaver, Raven H; Roberto, Karen A

    2017-06-01

    The purpose of this study was to identify different types of clients who use home and community-based services. Enrollment characteristics of 76 clients at risk of nursing home placement and Medicaid spend-down who were enrolled in the Virginia Community Living Program were analyzed. Two-step cluster analysis identified 4 groups of service users. Enabling resources (caregiver relationship to participant, participant living arrangement, and length of time caregiver provided assistance to participant) and disability type (physical, cognitive, traumatic brain injury, or other) differentiated the client groups. Groups differed on average service cost per day and likelihood of nursing home placement if services were not provided. Findings point to the value of having practitioners assist vulnerable clients in tailoring services to meet different care needs and the need for refining policies guiding home and community-based care. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. An appraisal of the hydrogeological processes involved in shallow subsurface radioactive waste management in Canadian terrain

    International Nuclear Information System (INIS)

    Grisak, G.E.; Jackson, R.E.

    1978-01-01

    The hydrogeological aspects of the problem of low-level radioactive waste management are introduced with a discussion of the Canadian nuclear power program; the nature of radioactive wastes and their rates of production; and the half-lives and health effects of ''waste'' radionuclides. As well, a general account is given of the present Canadian policy and procedures for licensing radioactive waste management sites. Following this introductory material, a detailed account is presented of the geohydrologic processes controlling the transport of radionuclides in groundwater flow systems and the attendant geochemical processes causing the retardation of the radionuclides. These geohydrologic and geochemical processes (i.e., hydrogeological processes) can be evaluated by the measurement of certain variables such as aquifer dispersivity, groundwater velocity, hydraulic conductivity, cation-exchange capacity, and total competing cations. To assess the possible importance of each variable in Canadian terrain, a comprehensive discussion of presently available (Canadian) data that have been compiled pertaining to each variable is presented. A description is then given of the hydrogeology of and the waste management experiences at radioactive waste management sites at Chalk River, Ontario; Bruce, Ontario; Whiteshell, Manitoba; and Suffield, Alberta. Along with this description there is a brief evaluation of those geohydrologic and geochemical processes that may be of importance at these sites. As a consequence of the above, site criteria outlining the nature of desirable hydrogeological environments for radioactive waste management areas are presented for those situations where the groundwater flow system acts as (a) a barrier to the migration of escaped radioactivity and (b) a joint dispersion-retardation system for liquid wastes. (author)

  17. Identifying Vulnerabilities and Hardening Attack Graphs for Networked Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sudip; Vullinati, Anil K.; Halappanavar, Mahantesh; Chatterjee, Samrat

    2016-09-15

    We investigate efficient security control methods for protecting against vulnerabilities in networked systems. A large number of interdependent vulnerabilities typically exist in the computing nodes of a cyber-system; as vulnerabilities get exploited, starting from low level ones, they open up the doors to more critical vulnerabilities. These cannot be understood just by a topological analysis of the network, and we use the attack graph abstraction of Dewri et al. to study these problems. In contrast to earlier approaches based on heuristics and evolutionary algorithms, we study rigorous methods for quantifying the inherent vulnerability and hardening cost for the system. We develop algorithms with provable approximation guarantees, and evaluate them for real and synthetic attack graphs.

  18. Hydrogeology of the Judith River Formation in southwestern Saskatchewan, Canada

    Science.gov (United States)

    Ferris, David; Lypka, Morgan; Ferguson, Grant

    2017-11-01

    The Judith River Formation forms an important regional aquifer in southwestern Saskatchewan, Canada. This aquifer is used for domestic and agricultural purposes in some areas and supports oil and gas production in other areas. As a result, the available data come from a range of sources and integration is required to provide an overview of aquifer characteristics. Here, data from oil and gas databases are combined with data from groundwater resource assessments. Analysis of cores, drill-stem tests and pumping tests provide a good overview of the physical hydrogeology of the Judith River Aquifer. Water chemistry data from oil and gas databases were less helpful in understanding the chemical hydrogeology due contamination of samples and unreliable laboratory analyses. Analytical modeling of past pumping in the aquifer indicates that decreases in hydraulic head exceeding 2 m are possible over distances of 10s of kilometers. Similar decreases in head should be expected for additional large withdrawals of groundwater from the Judith River Aquifer. Long-term groundwater abstraction should be limited by low pumping rates. Higher pumping rates appear to be possible for short-term uses, such as those required by the oil and gas industry.

  19. Reducing Vulnerability to Sexual and Gender-Based Violence in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Of those cases, 80% were rapes, 9% physical assaults, 7% domestic violence, ... This study explores strategies that will reduce the vulnerability of women to SGBV ... The research findings will be used to strengthen linkages between Kenya's ...

  20. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones - A GIS based approach for the Odisha coast.

    Science.gov (United States)

    Sahoo, Bishnupriya; Bhaskaran, Prasad K

    2018-01-15

    The coastal region bordering the East coast of India is a thickly populated belt exposed to high risk and vulnerability from natural hazards such as tropical cyclones. Tropical cyclone frequencies that develop over the Bay of Bengal (average of 5-6 per year) region are much higher as compared to the Arabian Sea thereby posing a high risk factor associated with storm surge, inland inundation, wind gust, intense rainfall, etc. The Odisha State in the East coast of India experiences the highest number of cyclone strikes as compared to West Bengal, Andhra Pradesh, and Tamil Nadu. To express the destructive potential resulting from tropical cyclones the Power Dissipation Index (PDI) is a widely used metric globally. A recent study indicates that PDI for cyclones in the present decade have increased about six times as compared to the past. Hence there is a need to precisely ascertain the coastal vulnerability and risk factors associated with high intense cyclones expected in a changing climate. As such there are no comprehensive studies attempted so far on the determination of Coastal Vulnerability Index (CVI) for Odisha coast that is highly prone to cyclone strikes. With this motivation, the present study makes an attempt to investigate the physical, environmental, social, and economic impacts on coastal vulnerability associated with tropical cyclones for the Odisha coast. The study also investigates the futuristic projection of coastal vulnerability over this region expected in a changing climate scenario. Eight fair weather parameters along with storm surge height and onshore inundation were used to estimate the Physical Vulnerability Index (PVI). Thereafter, the PVI along with social, economic, and environmental vulnerability was used to determine the overall CVI using the GIS based approach. The authors believe that the comprehensive nature of this study is expected to benefit coastal zone management authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal

    Directory of Open Access Journals (Sweden)

    Paulo Fernandez

    2016-07-01

    Full Text Available Over the last decade, flood disasters have affected millions of people and caused massive economic losses. Social vulnerability assessment uses a combination of several factors to represent a population's differential access to resources and its ability to cope with and respond to hazards. In this paper, social vulnerability assessment to flood risk was applied to the third most populous Portuguese municipality. The study was developed at the neighbourhood level, allowing for social vulnerability analysis at inter civil parish, intra civil parish, and municipality scales. A geographic information system-based multicriteria decision analysis (GIS-MCDA was applied to social vulnerability and allows for an increased understanding and improved monitoring of social vulnerability over space, identifying ‘hot spots’ that require adaptation policies. Mafamude, Oliveira do Douro, Vila Nova de Gaia, and Avintes civil parishes display the greatest vulnerability to flooding. According to the most pessimistic scenario 57%–68% of the area of these civil parishes is classed at a high or very high level of social vulnerability. The GIS-MCDA helps to assess what and who is at risk, and where targeted impact-reduction strategies should be implemented. The results demonstrate the importance of an urban-scale approach instead of a river basin scale to urban flood risk management plans.

  2. Climate change: are we all vulnerable?: Reconsidering inequalities

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2013-01-01

    This bibliographical note presents a book in which the author reviews two generally accepted ideas: first, the poorest communities would be the most vulnerable to climate change due to their weak adaptation capacities, and second, such an adaptation would only be an issue of projection on a long term. Based on his works on coastal areas and on his experience on issues of vulnerability and adaptation to climate change he shows that all societies are potentially vulnerable. He uses the notion of 'impact chains', introduces three global parameters for these chains (temperatures, sea level, and precipitation regime), and outlines the always increasing complexity of causes-consequences relationships. He discusses two key concepts: vulnerability as the degree at which a system might be affected by climate changes, and the adaptation capacity which is developed by societies to reduce their vulnerability to environmental changes

  3. Hydrophysical logging: A new wellbore technology for hydrogeologic and contaminant characterization of aquifers

    International Nuclear Information System (INIS)

    Pedler, W.H.; Williams, L.L.; Head, C.L.

    1992-01-01

    In the continuing search for improved groundwater characterization technologies, a new wellbore fluid logging method has recently been developed to provide accurate and cost effective hydrogeologic and contaminant characterization of bedrock aquifers. This new technique, termed hydrophysical logging, provides critical information for contaminated site characterization and water supply studies and, in addition, offers advantages compared to existing industry standards for aquifer characterization. Hydrophysical logging is based on measuring induced electrical conductivity changes in the fluid column of a wellbore by employing advanced downhole water quality instrumentation specifically developed for the dynamic borehole environment. Hydrophysical logging contemporaneously identifies the locations of water bearing intervals, the interval-specific inflow rate during pumping, and in-situ hydrochemistry of the formation waters associated with each producing interval. In addition, by employing a discrete point downhole fluid sampler during hydrophysical logging, this technique provides evaluation of contaminant concentrations and migration of contaminants vertically within the borehole. Recently, hydrophysical logging was applied in a deep bedrock wellbore at an industrial site in New Hampshire contaminated with dense nonaqueous phase liquids (DNAPLs). The results of the hydrophysical logging, conducted as part of a hydrogeologic site investigation and feasibility study, facilitated investigation of the site by providing information which indicated that the contamination had not penetrated into deeper bedrock fractures at concentrations of concern. This information was used to focus the pending Remedial Action Plan and to provide a more cost-effective remedial design

  4. Assessment of aquifer intrinsic vulnerability using GIS based Drastic model in Sialkot area, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Khan

    2016-06-01

    Full Text Available The intrinsic vulnerability of a shallow aquifer of Sialkot is assessed using DRASTIC index method. The information required as input for all seven parameters, i.e. depth to water table, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity data were collected from literature surveys and on field surveys. A cumulative vulnerability map was developed using the indices obtained as a result of DRASTIC methodology. The values obtained from DRASTIC model for the study area were between 112 and 151. The area was dominated by medium and moderate vulnerable zones covering an area of 446 km2 and 442 km2 respectively. An area of 79 km2 was covered by the low vulnerable zone while the high vulnerable zone encompassed a total area of 38 km2. Least covered area i-e., 09 km2 was found in the vicinity of the very high vulnerable zone. The validation of the DRASTIC model using the nitrate distribution revealed that very high and high indices have the lower percentage of reliability than of the low to moderate zones as compared with the nitrate distribution in the groundwater.

  5. Identification of protective actions to reduce the vulnerability of safety-critical systems to malevolent acts: A sensitivity-based decision-making approach

    International Nuclear Information System (INIS)

    Wang, Tai-Ran; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    A classification model based on the Majority Rule Sorting method has been previously proposed by the authors to evaluate the vulnerability of safety-critical systems (e.g., nuclear power plants) with respect to malevolent intentional acts. In this paper, we consider a classification model previously proposed by the authors based on the Majority Rule Sorting method to evaluate the vulnerability of safety-critical systems (e.g., nuclear power plants) with respect to malevolent intentional acts. The model is here used as the basis for solving an inverse classification problem aimed at determining a set of protective actions to reduce the level of vulnerability of the safety-critical system under consideration. To guide the choice of the set of protective actions, sensitivity indicators are originally introduced as measures of the variation in the vulnerability class that a safety-critical system is expected to undergo after the application of a given set of protective actions. These indicators form the basis of an algorithm to rank different combinations of actions according to their effectiveness in reducing the safety-critical systems vulnerability. Results obtained using these indicators are presented with regard to the application of: (i) one identified action at a time, (ii) all identified actions at the same time or (iii) a random combination of identified actions. The results are presented with reference to a fictitious example considering nuclear power plants as the safety-critical systems object of the analysis. - Highlights: • We use a hierarchical framework to represent the vulnerability. • We use an empirical classification model to evaluate vulnerability. • Sensitivity indicators are introduced to rank protective actions. • Constraints (e.g., budget limitations) are accounted for. • Method is applied to fictitious Nuclear Power Plants.

  6. Vulnerability, Health Agency and Capability to Health.

    Science.gov (United States)

    Straehle, Christine

    2016-01-01

    One of the defining features of the capability approach (CA) to health, as developed in Venkatapuram's book Health Justice, is its aim to enable individual health agency. Furthermore, the CA to health hopes to provide a strong guideline for assessing the health-enabling content of social and political conditions. In this article, I employ the recent literature on the liberal concept of vulnerability to assess the CA. I distinguish two kinds of vulnerability. Considering circumstantial vulnerability, I argue that liberal accounts of vulnerability concerned with individual autonomy, align with the CA to health. Individuals should, as far as possible, be able to make health-enabling decisions about their lives, and their capability to do so should certainly not be hindered by public policy. The CA to health and a vulnerability-based analysis then work alongside to define moral responsibilities and designate those who hold them. Both approaches demand social policy to address circumstances that hinder individuals from taking health-enabling decisions. A background condition of vulnerability, on the other hand, even though it hampers the capability for health, does not warrant the strong moral claim proposed by the CA to health to define health as a meta-capability that should guide social policy. Nothing in our designing social policy could change the challenge to health agency when we deal with background conditions of vulnerability. © 2016 John Wiley & Sons Ltd.

  7. Social vulnerability assessment: a growing practice in Europe?

    Science.gov (United States)

    Tapsell, S.; McC arthy, S.

    2012-04-01

    This paper builds upon work on social vulnerability from the CapHaz-Net consortium, an ongoing research project funded by the European Commission in its 7th Framework Programme. The project focuses on the social dimensions of natural hazards, as well as on regional practices of risk prevention and management, and aims at improving the resilience of European societies to natural hazards, paying particular attention to social capacity building. The topic of social vulnerability is one of seven themes being addressed in the project. There are various rationales for examining the relevance of social vulnerability to natural hazards. Vulnerability assessment has now been accepted as a requirement for the effective development of emergency management capability, and assessment of social vulnerability has been recognised as being integral to understanding the risk to natural hazards. The aim of our research was to examine social vulnerability, how it might be understood in the context of natural hazards in Europe, and how social vulnerability can be addressed to increase social capacity. The work comprised a review of research on social vulnerability to different natural hazards within Europe and included concepts and definitions of social vulnerability (and related concepts), the purpose of vulnerability assessment and who decides who is vulnerable, different approaches to assessing or measuring social vulnerability (such as the use of 'classical' quantitative vulnerability indicators and qualitative community-based approaches, along with the advantages and disadvantages of both), conceptual frameworks for assessing social vulnerability and three case studies of social vulnerability studies within Europe: flash floods in the Italian Alps, fluvial flooding in Germany and heat waves in Spain. The review reveals variable application of social vulnerability analysis across Europe and there are indications why this might be the case. Reasons could range from the scale of

  8. Numerical modeling of the hydrogeological effects of ONKALO in 2009

    International Nuclear Information System (INIS)

    Raemae, T.

    2011-10-01

    The underground rock characterization facility ONKALO is currently being excavated in the bedrock of the Olkiluoto Island. The construction work of the ONKALO begun in 2004 and the tunnel will remain open for the whole period of the operation of the planned repository for spent nuclear fuel. The open tunnels cause a disturbance on the local groundwater system. The leakage water flowing into the open tunnels withdraw water from the bedrock and locally alter the natural flow routes. One of the possible consequences of the convergent flow towards the ONKALO is that the highly saline deeper groundwater might be drawn towards the ONKALO, this process is called upconing. The purpose of this work is to estimate the possible upconing of the deep saline waters up to the repository level. A numerical flow and transport simulation is conducted with conservative approach to ensure overestimation of the effects of the ONKALO. In this study a 3D model of the hydrogeological system of the Olkiluoto is used as the basis for numerical flow and transport modeling of the saline groundwater movement in the bedrock of Olkiluoto. The numerical modelling is conducted using the commercial Comsol 3.5a code. The modelled geometry of the ONKALO includes the already excavated ONKALO and the extension according to the layout plan used in this work. The ONKALO and the hydrogeological zones are simplified for this study. In addition the used hydrogeological zones are modelled as 3D blocks with constant thickness of 50 meters. With the used boundary conditions upconing occurs even with the lowest leakage values. The influence of the leakage water is small on the maximum TDS-value at the depth near ONKALO. In this work this phenomenon is explained by the increase in the fresh water infiltration rate as the leakage water is increased, since the low density fresh water is transported more easily downwards than the high density saline water transported upwards towards the ONKALO. Further away from

  9. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Alison [Arup, 50 Ringsend Road, Dublin 4 (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Nitsche, Janka [RPS, West Pier Business Campus, Dun Laoghaire, Co. Dublin (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Archbold, Marie [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Deakin, Jenny [Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Department of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland); Ofterdinger, Ulrich; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom)

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ{sup 15}N and δ{sup 18}O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. - Graphical abstract: Contrasting nitrate isotope signatures of groundwater in a free draining catchment underlain by a karstified aquifer and a poorly drained catchment underlain by a low transmissivity aquifer. - Highlights: • Comparison of N fate and

  10. Hydrogeological constraints on riparian buffers for reduction of diffuse pollution: examples from the Bear Creek watershed in Iowa, USA.

    Science.gov (United States)

    Simpkins, W W; Wineland, T R; Andress, R J; Johnston, D A; Caron, G C; Isenhart, T M; Schultz, R C

    2002-01-01

    Riparian Management Systems (RiMS) have been proposed to minimize the impacts of agricultural production and improve water quality in Iowa in the Midwestern USA. As part of RiMS, multispecies riparian buffers have been shown to decrease nutrient, pesticide, and sediment concentrations in runoff from adjacent crop fields. However, their effect on nutrients and pesticides moving in groundwater beneath buffers has been discussed only in limited and idealized hydrogeologic settings. Studies in the Bear Creek watershed of central Iowa show the variability inherent in hydrogeologic systems at the watershed scale, some of which may be favorable or unfavorable to future implementation of buffers. Buffers may be optimized by choosing hydrogeologic systems where a shallow groundwater flow system channels water directly through the riparian buffer at velocities that allow for processes such as denitrification to occur.

  11. Groundwater vulnerability maps for pesticides for Flanders

    Science.gov (United States)

    Dams, Jef; Joris, Ingeborg; Bronders, Jan; Van Looy, Stijn; Vanden Boer, Dirk; Heuvelmans, Griet; Seuntjens, Piet

    2017-04-01

    Pesticides are increasingly being detected in shallow groundwater and and are one of the main causes of the poor chemical status of phreatic groundwater bodies in Flanders. There is a need for groundwater vulnerability maps in order to design monitoring strategies and land-use strategies for sensitive areas such as drinking water capture zones. This research focuses on the development of generic vulnerability maps for pesticides for Flanders and a tool to calculate substance-specific vulnerability maps at the scale of Flanders and at the local scale. (1) The generic vulnerability maps are constructed using an index based method in which maps of the main contributing factors in soil and saturated zone to high concentrations of pesticides in groundwater are classified and overlain. Different weights are assigned to the contributing factors according to the type of pesticide (low/high mobility, low/high persistence). Factors that are taken into account are the organic matter content and texture of soil, depth of the unsaturated zone, organic carbon and redox potential of the phreatic groundwater and thickness and conductivity of the phreatic layer. (2) Secondly a tool is developed that calculates substance-specific vulnerability maps for Flanders using a hybrid approach where a process-based leaching model GeoPEARL is combined with vulnerability indices that account for dilution in the phreatic layer. The GeoPEARL model is parameterized for Flanders in 1434 unique combinations of soil properties, climate and groundwater depth. Leaching is calculated for a 20 year period for each 50 x 50 m gridcell in Flanders. (3) At the local scale finally, a fully process-based approach is applied combining GeoPEARL leaching calculations and flowline calculations of pesticide transport in the saturated zone to define critical zones in the capture zone of a receptor such as a drinking water well or a river segment. The three approaches are explained more in detail and illustrated

  12. Hydrogeological framework and geometry modeling via joint gravity and borehole parameters, the Nadhour-Sisseb-El Alem basin (central-eastern Tunisia)

    Science.gov (United States)

    Souei, Ali; Atawa, Mohamed; Zouaghi, Taher

    2018-03-01

    The Nadhour-Sisseb-El Alem basin, in the central-eastern part of Tunisia, is characterized by the scarcity of surface and subsurface water resources. Although the aquifer systems of this basin are not well understood, the scarce water resources are subject to a high rate of exploitation leading to a significant drop in the level of the water table. This work presents correlation of gravity data with hydrogeological data in order to improve the knowledge of the deep structures and aquifer systems. Various geophysical filtering techniques (e.g., residual anomaly, upward continuation, horizontal gradient, and Euler deconvolution) applied to the complete Bouguer anomaly, deduce the deep structures and geometry of the basin and highlight gravity lineaments that correspond to the tectonic features. The structural framework of the Nadhour-Sisseb-El Alem hydrogeological basin shows N-S to NNE-SSW and E-W oriented structures that should be related to tectonic deformations. In addition to the faults, previously recognized, new lineaments are highlighted by the present work. They correspond to NE-, NW-, E- and N- trending faults that have controlled structuring and geometry of the basin. 2D gravity forward modeling, based on the interpretation of geophysical, geological and hydrogeological data, led to a better understanding of the basin geometry and spatial distribution of the Campanian-Maastrichtian and Cenozoic potential aquifers. Three hydrogeological sub-basins identified include the Nadhour sub-basin in the north, the El Alem sub-Basin in the South and the Etrabelsia sub-Basin in the East. These sub-basins are marked by a thickening of deposits, are separated by the Sisseb-Fadeloun raised structure of Neogene and Quaternary thinned series. The results allow the determination of limit conditions for the basin hydrodynamic evolution and explain some anomalies on the quantity and quality of the groundwater. They provide a management guide for water resources prospection in

  13. Using a Large CYC-Based Ontology to Model and Predict Vulnerabilities at the Real-World Info-System Boundary

    National Research Council Canada - National Science Library

    Shepard, Blake

    2001-01-01

    ...'. In this effort, we have added a tremendous amount of knowledge to the Cyc Knowledge Base that enables Cyc to reason about cyber and non-cyber vulnerabilities, electronic attacks, and the relation...

  14. A Connection Entropy Approach to Water Resources Vulnerability Analysis in a Changing Environment

    Directory of Open Access Journals (Sweden)

    Zhengwei Pan

    2017-11-01

    Full Text Available This paper establishes a water resources vulnerability framework based on sensitivity, natural resilience and artificial adaptation, through the analyses of the four states of the water system and its accompanying transformation processes. Furthermore, it proposes an analysis method for water resources vulnerability based on connection entropy, which extends the concept of contact entropy. An example is given of the water resources vulnerability in Anhui Province of China, which analysis illustrates that, overall, vulnerability levels fluctuated and showed apparent improvement trends from 2001 to 2015. Some suggestions are also provided for the improvement of the level of water resources vulnerability in Anhui Province, considering the viewpoint of the vulnerability index.

  15. Evaluating Aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivuty, biological traits, and toxic mode of action

    NARCIS (Netherlands)

    Rico, A.; Brink, van den P.J.

    2015-01-01

    In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus,

  16. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  17. Environmental assessment of a uranium experimental rock blasting in Portugal, using geophysical and hydrogeological methods

    International Nuclear Information System (INIS)

    Ramalho, E C; Midões, C; Costa, A; Lourenço, M C; Monteiro Santos, F A

    2012-01-01

    The Nisa uranium deposit, located in Central Portugal, has been known since the late 1960s. Some areas were explored at that time. Today, a few open pits and dumps remain in place and are a concern to local authorities. To assess the geoenvironmental problems caused by the main mining exploration composed of an experimental rock blasting, 3D electrical conductivity and resistivity models were made to develop a hydrogeological model to understand the possibility of contaminants transportation, such as uranium, from the dumps towards a dam located nearby. These 3D models were the support to show alteration layer thickness variations and fault zones at depths controlling groundwater circulation. Spectrometric surveys were also carried out and correlated with geology and geoelectrical structure. All this information was used in the construction of the 3D steady state hydrogeological model of the experimental rock blasting of Nisa. In this model, groundwater flow and the contaminant pathways were simulated. Some areas have very high radioactive values resulting from the geological formation characteristics and old dumps. However, results of the environmental assessment using geophysical and hydrogeological methods point to a critical situation restricted only to the area of the experimental rock blasting of the Nisa uranium deposit and its dumps. (paper)

  18. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia).

    Science.gov (United States)

    Re, V; Sacchi, E; Kammoun, S; Tringali, C; Trabelsi, R; Zouari, K; Daniele, S

    2017-09-01

    Nitrate contamination still remains one of the main groundwater quality issues in several aquifers worldwide, despite the perduring efforts of the international scientific community to effectively tackle this problem. The classical hydrogeological and isotopic investigations are obviously of paramount importance for the characterization of contaminant sources, but are clearly not sufficient for the correct and long-term protection of groundwater resources. This paper aims at demonstrating the effectiveness of the socio-hydrogeological approach as the best tool to tackle groundwater quality issues, while contributing bridging the gap between science and society. An integrated survey, including land use, hydrochemical (physicochemical parameters and major ions) and isotopic (δ 15 N NO3 and δ 18 O NO3 ) analyses, coupled to capacity building and participatory activities was carried out to correctly attribute the nitrate origin in groundwater from the Grombalia Basin (North Tunisia), a region where only synthetic fertilizers have been generally identified as the main source of such pollution. Results demonstrates that the basin is characterized by high nitrate concentrations, often exceeding the statutory limits for drinking water, in both the shallow and deep aquifers, whereas sources are associated to both agricultural and urban activities. The public participation of local actors proved to be a fundamental element for the development of the hydrogeological investigation, as it permitted to obtain relevant information to support data interpretation, and eventually guaranteed the correct assessment of contaminant sources in the studied area. In addition, such activity, if adequately transferred to regulators, will ensure the effective adoption of management practices based on the research outcomes and tailored on the real needs of the local population, proving the added value to include it in any integrated investigation. Copyright © 2017 Elsevier B.V. All rights

  19. Importance of biometrics to addressing vulnerabilities of the U.S. infrastructure

    Science.gov (United States)

    Arndt, Craig M.; Hall, Nathaniel A.

    2004-08-01

    Human identification technologies are important threat countermeasures in minimizing select infrastructure vulnerabilities. Properly targeted countermeasures should be selected and integrated into an overall security solution based on disciplined analysis and modeling. Available data on infrastructure value, threat intelligence, and system vulnerabilities are carefully organized, analyzed and modeled. Prior to design and deployment of an effective countermeasure; the proper role and appropriateness of technology in addressing the overall set of vulnerabilities is established. Deployment of biometrics systems, as with other countermeasures, introduces potentially heightened vulnerabilities into the system. Heightened vulnerabilities may arise from both the newly introduced system complexities and an unfocused understanding of the set of vulnerabilities impacted by the new countermeasure. The countermeasure's own inherent vulnerabilities and those introduced by the system's integration with the existing system are analyzed and modeled to determine the overall vulnerability impact. The United States infrastructure is composed of government and private assets. The infrastructure is valued by their potential impact on several components: human physical safety, physical/information replacement/repair cost, potential contribution to future loss (criticality in weapons production), direct productivity output, national macro-economic output/productivity, and information integrity. These components must be considered in determining the overall impact of an infrastructure security breach. Cost/benefit analysis is then incorporated in the security technology deployment decision process. Overall security risks based on system vulnerabilities and threat intelligence determines areas of potential benefit. Biometric countermeasures are often considered when additional security at intended points of entry would minimize vulnerabilities.

  20. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A.

    1994-07-01

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  1. A Comprehensive Assessment and Spatial Analysis of Vulnerability of China’s Provincial Economies

    Directory of Open Access Journals (Sweden)

    Chongqiang Ren

    2018-04-01

    Full Text Available Vulnerability theory is a fundamental scientific knowledge system in sustainable development, and vulnerability assessment is important in vulnerability studies. Economic vulnerability affects economic growth sustainability. Comprehensive assessment of economic vulnerability in the process of economic growth under the theoretical framework of vulnerability will provide a new perspective for vulnerability studies. Based on a vulnerability scoping diagram assessment model, this study selected 22 economic sensitivity indexes and 25 economic adaptability indexes from the economic, social, and nature–resource–environmental subsystems to comprehensively assess and spatially analyse the vulnerability of China’s provincial economies since the year 2000, while applying the entropy method, multilevel extension assessment, spatial measurement method, and geographic information system technology. The results showed the following: (1 There are great differences in the vulnerability of China’s provincial economies. Western China’s vulnerability is higher and the fluctuation range of economic vulnerability is larger. The vulnerability increased significantly based on spatial differential features; (2 Regional differences in economic vulnerability, mainly caused by differences within a region, increased gradually. Eastern and Western China showed the spatial pattern characteristics of prominent and reinforcing regional imbalance, while Central and Northeast China showed declining regional imbalance. The spatial structure evolution of economic vulnerability is characterized by a volatility curve, and regional separation and divergence are strengthened; (3 Growth of China’s provincial economies and economic vulnerability are related negatively. In Eastern, Central, and Northeast China, vulnerability of the provincial economies has a negative spillover effect on neighbouring provinces’ economic growth, while in Western China it has a slight positive

  2. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  3. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece

    KAUST Repository

    Tziritis, E.

    2016-03-01

    The intrinsic vulnerability of a karstic aquifer system in central Greece was jointly assessed with the use of a statistical approach and PI method, as a function of topography, protective cover effectiveness and the degree to which this cover is bypassed due to flow conditions. The input data for the index-overlay PI method were derived from field works and 71 boreholes of the area; the information was obtained, subsequently its critical factors were compiled which included lithology, fissuring and karstification of bedrock, soil characteristics, hydrology, hydrogeology, topography and vegetation. The aforementioned parameters were processed jointly with the aid of a GIS and yielded the final estimation of intrinsic aquifer vulnerability to contamination. Results were compared with an equivalent spatially distributed probability map obtained through a stochastic approach. The calibration and test phase of the latter relied on morphometric conditions derived by terrain analyses of a digital elevation model as well as on geology and land use from thematic maps. This procedure allowed taking into account the topographic influences with respect to a deep system such as the local karstic aquifer of eastern Kopaida basin. Finally, results were validated with ground truth nitrate values obtained from 41 groundwater samples, highlighted the spatial delineation of susceptible areas to contamination in both cases and provided a robust tool for regional planning actions and water resources management schemes.

  4. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy Y- 12 Plant. These sites are located south of the Y- 12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the CRHR. An overview of the hydrogeologic system in the CRHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater quality in the regime are presented

  5. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.

    Science.gov (United States)

    Green, Stephanie J; Côté, Isabelle M

    2014-11-01

    Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly

  6. Neutron-activation analysis of natural water applied to hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, O [AB Atomenergi, Stockholm (Sweden); Wenner, C G [Stockholm Univ. (Sweden). Dept. of Quaternary Research

    1965-12-15

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers.

  7. Neutron-activation analysis of natural water applied to hydrogeology

    International Nuclear Information System (INIS)

    Landstroem, O.; Wenner, C.G.

    1965-12-01

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers

  8. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Stigsson, Martin [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2006-04-15

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  9. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2006-04-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  10. Temporal dimensions of vulnerability to crime in economic sectors

    OpenAIRE

    Klima, Noel

    2011-01-01

    This paper presents the results of research into vulnerability to crime in two economic sectors in Belgium. Vulnerability to crime is an integration of diverse temporal factors. We address pre-crime and post-crime aspects of vulnerability, arising before and after the criminal event in an economic context. Based on interviews with professionals, security staff, law enforcement agents and with criminals in the transport sector and the hotel and catering industry, a study of police files, and i...

  11. Contribution of the geophysical and radon techniques to characterize hydrogeological setting in the western volcanic zone of Yarmouk basin: Case study Deir El-Adas

    International Nuclear Information System (INIS)

    Al-Fares, W.; Soliman, E.; Al-Ali, A.

    2009-01-01

    The aim of this study is to illustrate the geophysical and radon techniques in characterizing ''at local scale'' a hydrogeological setting in the volcanic zone of Yarmouk basin. And to employ the obtained results to understand and explain similar hydrogeological situation related to particular subsurface geologic and tectonic structure. Based on the field observations and failed wells drilled at Deir El-Adas, and the occurrence of successful well out of that zone, all these reasons, have given us the incentive to verify and provide realistic explanation of this phenomena in the basaltic outcrops of Yarmouk basin. The interpretation of the vertical electrical surveys (VES), indicates to the presence of local faulted anticline structure of Palaeogene located under the volcanic outcrops. This structure has led to complex hydrogeological conditions, represented by limited recharge in this area which occurs through fractures and secondary faults in addition to the low direct precipitation. Piezometric map indicates to water divide in the north-west of Deir El-Adas related to the tectonic setting. Meanwhile, discharge map show low reproducibility of drilled wells in Deir El-Adas and its periphery. Due to limited radon data, it was difficult to draw concrete conclusions from this technique. (author)

  12. Human Rights and Vulnerability. Examples of Sexism and Ageism

    Directory of Open Access Journals (Sweden)

    Mª DEL CARMEN BARRANCO AVILÉS

    2015-12-01

    Full Text Available A human rights based approach applied to the idea of ‘vulnerable group’ connects vulnerability and structural discrimination. The Convention on the Rights of Persons with Disability provides some elements that allow to state that we are facing a new paradigm in the International Human Rights Law. One of the keys for the understanding of this new framework is the assumption of the disadvantage related to vulnerability as, at least in a part, socially built and ideologically justified. Sexism and ageism are examples of how ideologies reinforce vulnerability of women, children and aged persons transforming them in groups which members are in risk of discrimination.

  13. Hydrogeology of Montserrat review and new insights

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-03-01

    Full Text Available Study region: The tropical, active volcanic arc island of Montserrat, Lesser Antilles, Caribbean. Study focus: New insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat are combined with a review of the current understanding of volcanic island hydrology. The aim is to begin to develop a conceptual model for the hydrology of Montserrat, and to inform and stimulate further investigation into the hydrology of volcanic arc islands, by combining a review of the current understanding of essential components of the hydrological system with fresh analysis of existing data, and new observations, data collection and analysis. This study provides new insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat. New hydrological insights for the region: A new groundwater recharge model predicts whole island recharge of 266 mm/year, between 10% and 20% of annual rainfall. Core scale permeability tests reveal ranges from 10−14 to 10−12 m2 for volcaniclastic rocks with coarse matrix, to a minimum of 10−18 m2 for andesitic lavas and volcaniclastics with fine or altered matrix. Analysis of historical pumping tests on aquifers in reworked, channel and alluvial sediment indicate permeabilities ∼10−10 m2. Springs at elevations between 200 and 400 m above mean sea level on Centre Hills currently discharge over 45 L/s. High discharge require a reasonably laterally continuous low permeability body. Contrasting conceptual models are presented to illustrate two potential hydrogeological scenarios. New field observations also reveal systematic spatial variations in spring water temperature and specific electrical conductivity indicating that meteoric waters supplying the springs are mixed with a deeper groundwater source at some sites. Keywords: Volcanic island

  14. Hydrogeological impacts evaluation like a subsidy for the hydroelectric reservoir installation in the Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Albuquerque Filho, Jose Luiz; Bottura, Joao Alberto; Borin Junior, Tarcisio; Correa, Wilson Aparecido Garcia

    1994-01-01

    Hydrogeological studies developed in the influence areas of the big reservoirs at the Sao Paulo State, Sao Paulo/Mato Grosso do Sul and Sao Paulo/Parana, dedicated to the pre-filling situation evaluation, facilitated the preventive, corrective or alleviative actions adoption of the possible alterations in the adjacent free aquifers and, consequently, in the land use and occupation, as well as the planning of the rational usage of non-occupied areas in the reservoir margin. It presents the origin, the history and the objectives of the studies as well as the foreseen and confirmed hydrogeological impacts in monitored reservoirs

  15. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2010-2012

    Energy Technology Data Exchange (ETDEWEB)

    Pentti, E.; Penttinen, T.; Vaittinen, T. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2010-2012. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses, head drawdown at the end of 2012 is estimated as well as reasons for changes in it during 2010-2012. The temporary drawdowns during the studied period were mainly related to leaks from pregrouting holes in the vertical shafts that penetrate the hydrogeological system HZ20. Drawdowns that have so far remained resulted from the raise boring of the exhaust air shaft through the HZ20 system and from connections of low-transmissivity structures to leaks in the ONKALO at repository depth. According to present understanding, the

  16. Defining energy vulnerability in mobility. Measuring energy vulnerability in mobility. Acting against energy vulnerability in mobility. Discussing energy vulnerability in mobility. Task no. 4

    International Nuclear Information System (INIS)

    Jouffe, Yves; Massot, Marie-Helene; Noble, Cyprien

    2015-01-01

    Extensive expansion of urban areas generates transportation needs and energy expenses for mobility. Households already impacted by fuel poverty also suffer from energy vulnerability in their mobility. This report was prepared in the framework of the study of fuel poverty in France in the light of several indicators from existing inquiries, databases and modeling tools. The report is organised in 4 parts dealing with: the definition of energy vulnerability in mobility, its measurement, the possible remedial actions, and the discussions about energy vulnerability in mobility through working group meetings, respectively

  17. [Hegemonic masculinity, vulnerability and the prevention of HIV/AIDS].

    Science.gov (United States)

    Marques, Joilson Santana; Gomes, Romeu; do Nascimento, Elaine Ferreira

    2012-02-01

    The study aims to examine the relationship between masculinity, vulnerability and the prevention of HIV/AIDS, based on reports from young men from the so-called urban working classes, taking into account not only the meanings attributed to prevention by these subjects, but also considering the dialectical relationship between the individual and society. The conceptual framework encompasses the three main aspects of hegemonic masculinity, prevention and vulnerability. This involves qualitative research based on the perspective of dialectical hermeneutics that uses the method of interpretation of meanings. The analysis yielded two main results, namely hegemonic masculinity as a vulnerability factor, and myths and prejudices as factors of vulnerability to HIV/AIDS. By way of conclusion, it reinforces the need for discussion of prevention encompassing the need to put on the agenda the construction of the sex/gender system around which to articulate the social meanings of masculinity and femininity that influence the structural plan of affective sexual relations in general and HIV/AIDS in particular.

  18. Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    Science.gov (United States)

    Foden, Wendy B.; Butchart, Stuart H. M.; Stuart, Simon N.; Vié, Jean-Christophe; Akçakaya, H. Resit; Angulo, Ariadne; DeVantier, Lyndon M.; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D.; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A.; Hughes, Adrian F.; O’Hanlon, Susannah E.; Garnett, Stephen T.; Şekercioğlu, Çagan H.; Mace, Georgina M.

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability

  19. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    objective of this study is to support the development of a preliminary Site Description of the Simpevarp area on a regional-scale based on the available data of August 2004 (Data Freeze S1.2) and the previous Site Description. A more specific objective of this study is to assess the role of known and unknown hydrogeological conditions for the present-day distribution of saline groundwater in the Simpevarp area on a regional-scale. An improved understanding of the paleo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale as well as predictions of future hydrogeological conditions. Other key objectives were to identify the model domain required to simulate regional flow and solute transport at the Simpevarp area and to incorporate a new geological model of the deformation zones produced for Version S1.2.Another difference with Version S1.1 is the increased effort invested in conditioning the hydrogeological property models to the fracture boremap and hydraulic data. A new methodology was developed for interpreting the discrete fracture network (DFN) by integrating the geological description of the DFN (GeoDFN) with the hydraulic test data from Posiva Flow-Log and Pipe-String System double-packer techniques to produce a conditioned Hydro-DFN model. This was done in a systematic way that addressed uncertainties associated with the assumptions made in interpreting the data, such as the relationship between fracture transmissivity and length. Consistent hydraulic data was only available for three boreholes, and therefore only relatively simplistic models were proposed as there isn't sufficient data to justify extrapolating the DFN away from the boreholes based on rock domain, for example. Significantly, a far greater quantity of hydro-geochemical data was available for calibration in the

  20. Use of Multi-class Empirical Orthogonal Function for Identification of Hydrogeological Parameters and Spatiotemporal Pattern of Multiple Recharges in Groundwater Modeling

    Science.gov (United States)

    Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; Hsieh, I. H.

    2017-12-01

    using EOF techniques can capture the groundwater flow tendency and detects the correction vector of the simulated error sources. Hence, the established EOF-based methodology can effectively and accurately identify the multiple recharges and hydrogeological parameters.

  1. Meteorological, hydrological and hydrogeological monitoring data and near-surface hydrogeological properties data from Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Werner, Kent; Oehman, Johan; Holgersson, Bjoern; Roennback, Kristoffer; Marelius, Fredrick

    2008-12-01

    This report presents and analyses meteorological, hydrological and hydrogeological time-series data and near-surface hydrogeological properties data from the Laxemar-Simpevarp area, available in SKB's Sicada database at time of the Laxemar 2.3 data freeze (Aug. 31, 2007). The meteorological data set includes data from two local stations, located on the island of Aespoe and at Plittorp, located further inland. In addition, the data evaluation uses a longer-term data set from 7 surrounding stations, operated by SMHI. As part of this study, a time series is constructed of the water content of snow. According to the data evaluation, the site-average annual precipitation and potential evapotranspiration can be estimated to be on the order of 600 and 535 mm, respectively. In particular, precipitation demonstrates a near-coastal gradient, with less precipitation at the coast compared to areas further inland. The surface-water level data set includes data from 4 lake-level gauging stations and 3 sea-level gauging stations. All lakes are located above sea level, including the near-coastal Lake Soeraa. Hence, no intrusion of sea water to lakes takes place. There is a strong co-variation among the monitored lake-water levels, typically with maxima during spring and minima during late summer and early autumn. Concerning the sea as a hydraulic boundary, the maximum and minimum sea levels (daily averages) during the site-investigation period were -0.52 and 0.71 metres above sea level, respectively, whereas the average sea level was 0.03 metres above sea level (RHB 70). The data set on stream discharge, surface-water temperature and electrical conductivity includes data from 9 discharge-gauging stations in 7 streams. Based on the discharge data, the site-average specific discharge for the years 2005-2007 can be estimated to 165 mm/y, which is within the interval of the estimated long-term average. Overall, discharge-data errors are likely to be small. The hydrogeological time

  2. A socioeconomic profile of vulnerable land to desertification in Italy.

    Science.gov (United States)

    Salvati, Luca

    2014-01-01

    Climate changes, soil vulnerability, loss in biodiversity, and growing human pressure are threatening Mediterranean-type ecosystems which are increasingly considered as a desertification hotspot. In this region, land vulnerability to desertification strongly depends on the interplay between natural and anthropogenic factors. The present study proposes a multivariate exploratory analysis of the relationship between the spatial distribution of land vulnerability to desertification and the socioeconomic contexts found in three geographical divisions of Italy (north, center and south) based on statistical indicators. A total of 111 indicators describing different themes (demography, human settlements, labor market and human capital, rural development, income and wealth) were used to discriminate vulnerable from non-vulnerable areas. The resulting socioeconomic profile of vulnerable areas in northern and southern Italy diverged significantly, the importance of demographic and economic indicators being higher in southern Italy than in northern Italy. On the contrary, human settlement indicators were found more important to discriminate vulnerable and non-vulnerable areas in northern Italy, suggesting a role for peri-urbanization in shaping the future vulnerable areas. An in-depth knowledge of the socioeconomic characteristics of vulnerable land may contribute to scenarios' modeling and the development of more effective policies to combat desertification. © 2013 Elsevier B.V. All rights reserved.

  3. Efforts toward validation of a hydrogeological model of the Asse area

    International Nuclear Information System (INIS)

    Fein, E.; Klarr, K.; von Stempel, C.

    1995-01-01

    The Asse anticline (8 x 3 km) near Braunschweig (Germany) is part of the Subhercynian Basin and is characterized by a NW-SE orientation. In 1965, the GSF Research Center for Environment and Health acquired the former Asse salt mine on behalf of the FRG in order to carry out research and development work with a view of safe disposal of radioactive waste. To assess long term safety and predict groundwater flow nd radionuclide transport, an experimental program was carried out to validate hydrogeological models of the overburden of the Asse salt mine and to provide these with data. Five deep boreholes from 700 to 2250 m and 4 geological exploration shallow boreholes where drilled in the Asse area. Moreover, 19 piezometers and 27 exploration boreholes were sunk to perform pumping and tracer tests and yearly borehole loggings. In the end, about 50 boreholes and wells, 25 measuring weirs and about 70 creeks, drainage and springs were available to collect hydrological data and water samples. The different experiments and their evaluations as well as different hydrogeological models are presented and discussed. (J.S.). 9 refs., 7 figs

  4. The efficiency of the use of penetration nuclear logging in hydrogeology and engineering geology

    International Nuclear Information System (INIS)

    Ferronsky, V.I.

    1992-01-01

    The latest developments in equipment and techniques for nuclear and combined non-nuclear logging in friable unconsolidated deposits, including marine bottom sediments are described. The effectiveness of these techniques in hydrogeological and engineering geological investigations is discussed. (Author)

  5. [Vulnerability of eco-economy in northern slope region of Tianshan Mountains].

    Science.gov (United States)

    Wu, Jian-zhai; Li, Bo; Zhang, Xin-shi; Zhao, Wen-wu; Jiang, Guang-hui

    2008-04-01

    Based on the theoretical meaning of vulnerability, a vulnerability assessment of eco-econom in fifteen counties in the northern slope region of Tianshan Mountains was conducted. The ecosystem services change to land use was regarded as the impact, and based on the fourteen indices from resource holding, society development, and economy development statistic data, the adaptive ability was evaluated by using the methods of analytic hierarchy process (AHP) and fuzzy synthetic evaluation. On the basis of assessment results of impact and adaptive capacity, the fifteen counties were divided into five classes under the assessment principles, and the district with higher-class number was of more vulnerability. The first class included Usu City and Changji City, the second class included Hutubi County, Miquan County, Fukang City, Jimsar County, Qitai County and Mori Kazak Autonomous County, the third class included Karamay City and Urumqi City, the fourth class included Kuitun City and Shawan County, and the fifth class included Jinghe County, Shihezi City and Manas County. The vulnerability reflected the level of eco-environment change and socioeconomic development, and the vulnerability assessment could be a good way to ensure the sustainable development. Aiming to decrease the vulnerability, various districts belonging to different class of vulnerability should establish relevant tactics according to the vulnerability factors to accelerate the region's sustainable development.

  6. Are older people a vulnerable group? Philosophical and bioethical perspectives on ageing and vulnerability.

    Science.gov (United States)

    Bozzaro, Claudia; Boldt, Joachim; Schweda, Mark

    2018-05-01

    The elderly are often considered a vulnerable group in public and academic bioethical debates and regulations. In this paper, we examine and challenge this assumption and its ethical implications. We begin by systematically delineating the different concepts of vulnerability commonly used in bioethics, before then examining whether these concepts can be applied to old age. We argue that old age should not, in and of itself, be used as a marker of vulnerability, since ageing is a process that can develop in a variety of different ways and is not always associated with particular experiences of vulnerability. We, therefore, turn to more fundamental phenomenological considerations in order to reconstruct from a first person perspective the intricate interconnections between the experiences of ageing and vulnerability. According to this account, ageing and old age are phenomena in which the basic anthropological vulnerability of human beings can manifest itself in an increased likelihood of harm and exploitation. Thus, we plead for a combined model of vulnerability that helps to avoid problems related to the current concepts of vulnerability. We conclude first that old age as such is not a sufficient criterion for being categorized as vulnerable in applied ethics, and second that reflections on ageing can help to develop a better understanding of the central role of vulnerability in human existence and in applied ethics. © 2018 John Wiley & Sons Ltd.

  7. Hydrogeologic study and underground drainage test; Estudio Hidrogeologico y Ensayo de Drenaje de Labores

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Pauline mine belongs to the company Minero Siderurgica de Ponferrada, S. A., and is an underground mountain mine located in west area of Villablino colliery, in the north of Spain. Water invasion caused serious troubles in faces when the working level went deeper, in the new mining areas. In order to get control on this problems, the present HYDROGEOLOGIC STUDY AND UNDERGROUND DRAINAGE TEST was carry out, with the double aim of quantifying the amount of water to be pumped in future and of minimizing the undesirable effects of water invasions in underground mining. The development of the hydrogeologic study states some alternative solutions for draining, focusing on a reliable forecasting of the quantity of water to be exhausted and the means to be undertaken in order to minimize pump costs. These options were technically and economically evaluated and the more feasible recommended.

  8. 1C software vulnerabilities description

    Directory of Open Access Journals (Sweden)

    Ivanov Oleg

    2017-01-01

    Full Text Available This article is devoted to the vulnerability of the application solution based on the “1C: Enterprise 8” platform, which can be used by only built-in tools of the platform. Possible threats and attack algorithm are described.

  9. A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies

    Science.gov (United States)

    Bedrosian, Paul A.; Schamper, Cyril; Auken, Esben

    2016-01-01

    The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near-surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.

  10. Social vulnerability indicators as a sustainable planning tool

    International Nuclear Information System (INIS)

    Lee, Yung-Jaan

    2014-01-01

    In the face of global warming and environmental change, the conventional strategy of resource centralization will not be able to cope with a future of increasingly extreme climate events and related disasters. It may even contribute to inter-regional disparities as a result of these events. To promote sustainable development, this study offers a case study of developmental planning in Chiayi, Taiwan and a review of the relevant literature to propose a framework of social vulnerability indicators at the township level. The proposed framework can not only be used to measure the social vulnerability of individual townships in Chiayi, but also be used to capture the spatial developmental of Chiayi. Seventeen social vulnerability indicators provide information in five dimensions. Owing to limited access to relevant data, the values of only 13 indicators were calculated. By simply summarizing indicators without using weightings and by using zero-mean normalization to standardize the indicators, this study calculates social vulnerability scores for each township. To make social vulnerability indicators more useful, this study performs an overlay analysis of social vulnerability and patterns of risk associated with national disasters. The social vulnerability analysis draws on secondary data for 2012 from Taiwan's National Geographic Information System. The second layer of analysis consists of the flood potential ratings of the Taiwan Water Resources Agency as an index of biophysical vulnerability. The third layer consists of township-level administrative boundaries. Analytical results reveal that four out of the 18 townships in Chiayi not only are vulnerable to large-scale flooding during serious flood events, but also have the highest degree of social vulnerability. Administrative boundaries, on which social vulnerability is based, do not correspond precisely to “cross-administrative boundaries,” which are characteristics of the natural environment. This study adopts

  11. Social vulnerability indicators as a sustainable planning tool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung-Jaan, E-mail: yungjaanlee@gmail.com

    2014-01-15

    In the face of global warming and environmental change, the conventional strategy of resource centralization will not be able to cope with a future of increasingly extreme climate events and related disasters. It may even contribute to inter-regional disparities as a result of these events. To promote sustainable development, this study offers a case study of developmental planning in Chiayi, Taiwan and a review of the relevant literature to propose a framework of social vulnerability indicators at the township level. The proposed framework can not only be used to measure the social vulnerability of individual townships in Chiayi, but also be used to capture the spatial developmental of Chiayi. Seventeen social vulnerability indicators provide information in five dimensions. Owing to limited access to relevant data, the values of only 13 indicators were calculated. By simply summarizing indicators without using weightings and by using zero-mean normalization to standardize the indicators, this study calculates social vulnerability scores for each township. To make social vulnerability indicators more useful, this study performs an overlay analysis of social vulnerability and patterns of risk associated with national disasters. The social vulnerability analysis draws on secondary data for 2012 from Taiwan's National Geographic Information System. The second layer of analysis consists of the flood potential ratings of the Taiwan Water Resources Agency as an index of biophysical vulnerability. The third layer consists of township-level administrative boundaries. Analytical results reveal that four out of the 18 townships in Chiayi not only are vulnerable to large-scale flooding during serious flood events, but also have the highest degree of social vulnerability. Administrative boundaries, on which social vulnerability is based, do not correspond precisely to “cross-administrative boundaries,” which are characteristics of the natural environment. This study

  12. Community vulnerability to health impacts of wildland fire smoke exposure

    Science.gov (United States)

    Identifying communities vulnerable to adverse health effects from exposure to wildfire smoke may help prepare responses, increase the resilience to smoke and improve public health outcomes during smoke days. We developed a Community Health-Vulnerability Index (CHVI) based on fact...

  13. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Calibration of groundwater vulnerability mapping using the generalized reduced gradient method.

    Science.gov (United States)

    Elçi, Alper

    2017-12-01

    Groundwater vulnerability assessment studies are essential in water resources management. Overlay-and-index methods such as DRASTIC are widely used for mapping of groundwater vulnerability, however, these methods mainly suffer from a subjective selection of model parameters. The objective of this study is to introduce a calibration procedure that results in a more accurate assessment of groundwater vulnerability. The improvement of the assessment is formulated as a parameter optimization problem using an objective function that is based on the correlation between actual groundwater contamination and vulnerability index values. The non-linear optimization problem is solved with the generalized-reduced-gradient (GRG) method, which is numerical algorithm based optimization method. To demonstrate the applicability of the procedure, a vulnerability map for the Tahtali stream basin is calibrated using nitrate concentration data. The calibration procedure is easy to implement and aims the maximization of correlation between observed pollutant concentrations and groundwater vulnerability index values. The influence of each vulnerability parameter in the calculation of the vulnerability index is assessed by performing a single-parameter sensitivity analysis. Results of the sensitivity analysis show that all factors are effective on the final vulnerability index. Calibration of the vulnerability map improves the correlation between index values and measured nitrate concentrations by 19%. The regression coefficient increases from 0.280 to 0.485. It is evident that the spatial distribution and the proportions of vulnerability class areas are significantly altered with the calibration process. Although the applicability of the calibration method is demonstrated on the DRASTIC model, the applicability of the approach is not specific to a certain model and can also be easily applied to other overlay-and-index methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Summary of Available Hydrogeologic Data for the Northeast Portion of the Alluvial Aquifer at Louisville, Kentucky

    National Research Council Canada - National Science Library

    Unthank, Michael D; Nelson, Jr., Hugh L

    2006-01-01

    The hydrogeologic characteristics of the unconsolidated glacial outwash sand and gravel deposits that compose the northeast portion of the alluvial aquifer at Louisville, Kentucky, indicate a prolific...

  16. The hydrological and the hydrogeological framework of the Lottenbachtal, Bochum, Germany

    Science.gov (United States)

    Alhamed, Mohammad

    2017-03-01

    This study was performed to investigate the hydrological and the hydrogeological framework of the Lottenbachtal, Germany. Long-term climatic data were statistically analyzed, water and soil samples were collected and analyzed, stream flow discharge was measured and separated, the hydrological balance of this catchment was calculated and a hydrological and hydrogeological conceptual model was constructed. The study area is characterized mainly by the precipitation value ranged between 0.1 and 5 mm/day. The actual evapotranspiration constitutes 31.90 % of the total precipitation, the direct surface runoff constitutes 61.04 %, the soil storage constitutes 3 % and the groundwater recharge of the Lottenbachtal constitutes only 4 % of the total precipitation. The Lottenbachtal has largely affected the diversity of the land use, which includes forests, arable areas, abandoned coal mines and settlement areas. The soil of the forested area is represented by relatively high acidic conditions and relatively high sulfate concentrations, while the soil of the arable areas is represented by near-neutral conditions associated with relatively high concentrations of nutrients and other chemical elements (calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate). The settlement areas are characterized by huge blocks of concrete and backfills, which are rich in calcium and magnesium carbonates. The effects of this diversity in the land use on groundwater and surface water quality resulting by leaching the chemical elements from the soil covers and the other materials. These effects are represented by the following complex water types of Ca-Na-Mg-Cl-SO4-HCO3, Ca-Mg-HCO3-SO4, Ca-Na-Mg-Cl-SO4, Ca-Na-Mg-Cl-SO4 and Ca-HCO3, which represent the diversity of the flow paths of the water as well as to mixing processes. The diversity of the land use also affected the physical hydrological-hydrogeological characteristics of the study area by increasing the direct surface runoff and

  17. Recognizing Risk and Vulnerability in Research Ethics: Imagining the "What Ifs?"

    Science.gov (United States)

    Peter, Elizabeth; Friedland, Judith

    2017-04-01

    Research ethics committees (RECs) may misunderstand the vulnerability of participants, given their distance from the field. What RECs identify as the vulnerabilities that were not adequately recognized in protocols and how they attempt to protect the perceived vulnerability of participants and mitigate risks were examined using the response letters sent to researchers by three university-based RECs. Using a critical qualitative method informed by feminist ethics, we identified an overarching theme of recognizing and responding to cascading vulnerabilities and four subthemes: identifying vulnerable groups, recognizing potentially risky research, imagining the "what ifs," and mitigating perceived risks. An ethics approach that is up-close, as opposed to distant, is needed to foster closer relationships among participants, researchers, and RECs and to understand participant vulnerability and strength better.

  18. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius (Bergab Consulting Geologists, Goeteborg (Sweden))

    2010-09-15

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  19. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    International Nuclear Information System (INIS)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius

    2010-09-01

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  20. Hydrogeological reconnaissance study: Dyfi Valley, Wales

    International Nuclear Information System (INIS)

    Glendining, S.J.

    1981-10-01

    This report describes work carried out for the Department of the Environment as part of its research programme into radioactive waste management. It presents an account of a hydrogeological reconnaissance study in the Dyfi Valley area of Central Wales. Initially the purposes of such a study are given and the assumptions used in deriving parameters such as flow volume, path length and transit time in areas of massive fractured rocks are described. Using these assumptions with geological, topographic and hydrometeorological data the potential ranges in properties such as bulk hydraulic conductivity, path lengths, hydraulic gradients and volumes of groundwater flow have been determined. These ranges have been used to estimate solute transport model parameters. The limitations and usefulness of the reconnaissance study in planning research and siting exploratory boreholes in the Dyfi area are discussed. (author)