WorldWideScience

Sample records for based hydrogen storage

  1. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Jianding Li

    2018-02-01

    Full Text Available Magnesium (Mg-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed.

  2. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  3. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  4. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  5. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    Sneddon, Larry G.

    2011-01-01

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH 3 BH 3 (AB), 19.6-wt% H 2 , and ammonia triborane NH 3 B 3 H 7 (AT), 17.7-wt% H 2 , were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H 2 -release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H 2 -release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H 2 -release, the tunability of both their H 2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These

  6. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  7. New insights into designing metallacarborane based room temperature hydrogen storage media.

    Science.gov (United States)

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  8. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  9. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    Science.gov (United States)

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  10. Prospects for hydrogen storage in graphene.

    Science.gov (United States)

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  11. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  12. Magnesium mechanical alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Ivanov, E.; Konstanchuk, I.; Stepanov, A.; Boldyrev, V.

    1985-01-01

    Metal hybrides are currently being used to store and handle hydrogen and its isotopes. They are also being tested in hydrogen compressors and in heat energy, refrigerators and in hydrogen and thermal storage devices. Metal hydrides have been proposed as one of the possible media for hydrogen storage to overcome the limitations of other techniques in regard to safety hydrogen weight and volume ration. The suitability of metal hybrides as a hydrogen storage media depends on a number of factors such as storage capacity, reactivity with hydrogen at various pressures and temperatures, and the cost of base materials. Magnesium based alloys are promising materials for storing hydrogen. They are generally made by argon melting and no attention has been payed to other fabrication techniques such as mechanical alloying or powder technique

  13. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  14. Progress on first-principles-based materials design for hydrogen storage.

    Science.gov (United States)

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  15. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  16. NRCan's hydrogen storage R and D program

    International Nuclear Information System (INIS)

    Scepanovic, V.

    2004-01-01

    'Full text:' Natural Resources Canada (NRCan) has been working in partnership with industry, other government departments and academia to expedite the development of hydrogen technologies. NRCan's Hydrogen and Fuel Cell R and D Program covers all aspects of hydrogen technologies: production, storage, utilization and codes and standards. Hydrogen storage is a key enabling technology for the advancement of fuel cell power systems in transportation, stationary, and portable applications. NRCan's storage program has been focused on developing storage materials and technologies for a range of applications with the emphasis on transportation. An overview of most recent hydrogen storage projects including pressurized hydrogen, liquid hydrogen and storage in hydrides and carbon-based materials will be given. (author)

  17. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    Science.gov (United States)

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  19. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  20. Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls

    International Nuclear Information System (INIS)

    Pinkerton, F.E.; Wicke, B.G.; Olk, C.H.; Tibbetts, G.G.; Meisner, G.P.; Meyer, M.S.; Herbst, J.F.

    2000-01-01

    We have used a thermogravimetric analyzer (TGA) to measure the hydrogen absorption capacity of a variety of carbon-based storage materials, including Li- and K-intercalated graphite and Li-doped multi-wall nanotubes. The TGA uses weight gain/loss as a function of time and temperature to monitor hydrogen absorption/desorption in flowing hydrogen gas. Creating and maintaining a contaminant-free atmosphere is critical to the accurate TGA measurement of hydrogen absorption in carbon-based materials; even low concentrations of impurity gases such as O 2 or H 2 O are sufficient to masquerade as hydrogen absorption. We will discuss examples of this effect relevant to recent reports of hydrogen storage appearing in the literature. The precautions required are non-trivial. In our TGA, for instance, about 16% of the original atmosphere remains after a two-hour purge; at least 15 hours is required to fully purge the apparatus. Furthermore, we cover the TGA with a protective atmosphere enclosure during sample loading to minimize the introduction of impurity gases. With these precautions it is possible to unambiguously measure hydrogen storage. For example, we have determined the hydrogen absorption capacity of our K-intercalated graphite samples to be 1.3 wt% total hydrogen absorption above 50 o C, of which 0.2 wt% can be reproducibly recovered with temperature cycling. With due care, TGA measurements provide complementary information to that obtained from standard pressure techniques for measuring hydrogen sorption, which rely on measuring the loss of gas pressure in a known volume. Taken together, TGA and pressure measurements provide a powerful combination for determining verifiable hydrogen storage capacity. (author)

  1. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    Science.gov (United States)

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  2. Energetic and economic evaluations on hydrogen storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Arca, S.; Di Profio, P.; Germani, R. [Perugia Univ., Perugia (Italy). Centro di Eccellenza Materiali Innovativi Nanostrutturati, Dip. Chimica; Savelli, G.; Cotana, F.; Rossi, F.; Amantini, M. [Universita degli Studi di Perugia, Perugia (Italy). Dipartimento di Ingegneria Industriale, Sezione di Fisica Tecnica

    2008-07-01

    With the development of the hydrogen economy and fuel cell vehicles, a major technological issue has emerged regarding the storage and delivery of large amounts of hydrogen. Several hydrogen storage methodologies are available while other technologies are being developed aside from the classical compression and liquefaction of hydrogen. A novel technology is also in rapid process, which is based on clathrate hydrates of hydrogen. The features and performances of available storage systems were evaluated in an effort to determine the best technology throughout the hydrogen chain. For each of the storage solutions presented, the key parameters were compared. These key parameters included interaction energy between hydrogen and support; real and practical storage capacity; and specific energy consumption. The paper presented the study methods and discussed hydrogen storage technologies using compressed hydrogen; metal hydrides; liquefied hydrogen; carbon nanotubes; ammonia; and gas hydrates. Carbon dioxide emissions were also evaluated for each storage system analyzed. The paper also presented the worst scenario. It was concluded that a technology based on clathrate hydrates of hydrogen, while being far from optimized, was highly competitive with the classical approaches. 21 refs., 9 figs.

  3. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  4. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  5. High-pressure torsion for new hydrogen storage materials.

    Science.gov (United States)

    Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji

    2018-01-01

    High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials.

  6. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  7. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    Science.gov (United States)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  8. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  9. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  10. Chemical-clathrate hybrid hydrogen storage: storage in both guest and host.

    Science.gov (United States)

    Strobel, Timothy A; Kim, Yongkwan; Andrews, Gary S; Ferrell, Jack R; Koh, Carolyn A; Herring, Andrew M; Sloan, E Dendy

    2008-11-12

    Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.

  11. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  12. Hydrogen storage compositions

    Science.gov (United States)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  13. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  14. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    Science.gov (United States)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  15. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  16. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  17. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  18. Hydrogen storage using borohydrides

    International Nuclear Information System (INIS)

    Bernard BONNETOT; Laetitia LAVERSENNE

    2006-01-01

    The possibilities of hydrogen storage using borohydrides are presented and discussed specially in regard of the recoverable hydrogen amount and related to the recovering conditions. A rapid analysis of storage possibilities is proposed taking in account the two main ways for hydrogen evolution: the dehydrogenation obtained through thermal decomposition or the hydrolysis of solids or solutions. The recoverable hydrogen is related to the dehydrogenation conditions and the real hydrogen useful percentage is determined for each case of use. The high temperature required for dehydrogenation even when using catalyzed compounds lead to poor outlooks for this storage way. The hydrolysis conditions direct the chemical yield of the water consuming, and this must be related to the experimental conditions which rule the storage capacity of the 'fuel' derived from the borohydride. (authors)

  19. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  20. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    Novel developments regarding materials for solid-state hydrogen storage show promising prospects. These complex hydrides exhibit high mass-related storage capacities and thus great technical potential to store hydrogen in an efficient and safe way. However, a comprehensive evaluation of economic competitiveness is still lacking, especially in the case of the LiBH4 / MgH2 storage material. In this study, an assessment with respect to the economic feasibility of implementing complex hydrides as hydrogen storage materials is presented. The cost structure of hydrogen storage systems based on NaAlH4 and LiBH4 / MgH2 is discussed and compared with the conventional high pressure (700 bar) and liquid storage systems. Furthermore, the properties of LiBH4 / MgH2, so-called Li-RHC (Reactive Hydride Composite), are scientifically compared and evaluated on the lab and pilot plant scale. To enhance the reaction rate, the addition of TiCl3 is investigated and high energy ball milling is evaluated as processing technique. The effect of the additive in combination with the processing technique is described in detail. Finally, an optimum set of processing parameters and additive content are identified and can be applied for scaled-up production of the material based on simple models considering energy input during processing. Furthermore, thermodynamic, heat transfer and kinetic properties are experimentally determined by different techniques and analysed as a basis for modelling and designing scaled-up storage systems. The results are analysed and discussed with respect to the reaction mechanisms and reversibility of the system. Heat transfer properties are assessed with respect to the scale-up for larger hydrogen storage systems. Further improvements of the heat transfer were achieved by compacting the material. In this regard, the influence of the compaction pressure on the apparent density, thermal conductivity and sorption behaviour, was investigated in detail. Finally, scaled

  1. Review of theoretical calculations of hydrogen storage in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2001-02-01

    In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)

  2. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    B Buczek; E Wolak

    2005-01-01

    temperatures than liquefaction. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage

  3. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  4. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  5. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  6. Metal-functionalized silicene for efficient hydrogen storage.

    Science.gov (United States)

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tool for optimal design and operation of hydrogen storage based autonomous energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Oberschachtsiek, B.; Lemken, D. [ZBT - Duisburg (Germany); Stark, M.; Krost, G. [Duisburg-Essen Univ. (Germany)

    2010-07-01

    Decentralized small scale electricity generation based on renewable energy sources usually necessitates decoupling of volatile power generation and consumption by means of energy storage. Hydrogen has proven as an eligible storage medium for mid- and long-term range, which - when indicated - can be reasonably complemented by accumulator short term storage. The selection of appropriate system components - sources, storage devices and the appertaining peripherals - is a demanding task which affords a high degree of freedom but, on the other hand, has to account for various operational dependencies and restrictions of system components, as well as for conduct of load and generation. An innovative tool facilitates the configuration and dimensioning of renewable energy based power supply systems with hydrogen storage paths, and allows for applying appropriate operation strategies. This tool accounts for the characteristics and performances of relevant power sources, loads, and types of energy storage, and also regards safety rules the energy system has to comply with. In particular, the tool is addressing small, detached and autonomous supply systems. (orig.)

  9. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  10. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  11. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    Buczek, B.; Wolak, E.

    2005-01-01

    higher temperatures than liquefaction [3]. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation [4]. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor [5]. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage. [1]G. D. Berry, A. D. Pastemak, G. D. Rambach, J. R. Smith, N. Schock, Energy. 21, 289, 1996; [2]L. Czepirski, Przem. Chem. 70, 129, 1991 (in Polish); [3]B. Buczek, L. Czepirski, Inz. Chem. Proc., 24, 545, 2003; [4]U. Huczko, Przem. Chem. 81, 19, 2002 (in Polish); [5]U. Buenger, W. Zittel, Appl. Phys. A 72, 147, 2001. (authors)

  12. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  13. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model

    International Nuclear Information System (INIS)

    Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D.

    2017-01-01

    Highlights: •Techno-economic model of future hydrogen supply chains. •Implementation of liquid organic hydrogen carriers into a hydrogen mobility analysis. •Consideration of large-scale seasonal storage for fluctuating renewable hydrogen production. •Implementation of different technologies for hydrogen storage and transportation. -- Abstract: A viable hydrogen infrastructure is one of the main challenges for fuel cells in mobile applications. Several studies have investigated the most cost-efficient hydrogen supply chain structure, with a focus on hydrogen transportation. However, supply chain models based on hydrogen produced by electrolysis require additional seasonal hydrogen storage capacity to close the gap between fluctuation in renewable generation from surplus electricity and fuelling station demand. To address this issue, we developed a model that draws on and extends approaches in the literature with respect to long-term storage. Thus, we analyse Liquid Organic Hydrogen Carriers (LOHC) and show their potential impact on future hydrogen mobility. We demonstrate that LOHC-based pathways are highly promising especially for smaller-scale hydrogen demand and if storage in salt caverns remains uncompetitive, but emit more greenhouse gases (GHG) than other gaseous or hydrogen ones. Liquid hydrogen as a seasonal storage medium offers no advantage compared to LOHC or cavern storage since lower electricity prices for flexible operation cannot balance the investment costs of liquefaction plants. A well-to-wheel analysis indicates that all investigated pathways have less than 30% GHG-emissions compared to conventional fossil fuel pathways within a European framework.

  14. Advanced nanostructured materials as media for hydrogen storage

    International Nuclear Information System (INIS)

    David, E.; Niculescu, V.; Armeanu, A.; Sandru, C.; Constantinescu, M.; Sisu, C.

    2005-01-01

    Full text: In a future sustainable energy system based on renewable energy, environmentally harmless energy carriers like hydrogen, will be of crucial importance. One of the major impediments for the transition to a hydrogen based energy system is the lack of satisfactory hydrogen storage alternatives. Hydrogen storage in nanostructured materials has been proposed as a solution for adequate hydrogen storage for a number of applications, in particular for transportation. This paper is a preliminary study with the focus on possibilities for hydrogen storage in zeolites, alumina and nanostructured carbon materials. The adsorption properties of these materials were evaluated in correlation with their internal structure. From N 2 physisorption data the BET surface area (S BET ) , total pore volume (PV), micropore volume (MPV) and total surface area (S t ) were derived. H 2 physisorption measurements were performed at 77 K and a pressure value of 1 bar. From these data the adsorption capacities of sorbent materials were determined. Apparently the microporous adsorbents, e.g activated carbons, display appreciable sorption capacities. Based on their micropore volume, carbon-based sorbents have the largest adsorption capacity for H 2 , over 230 cm 3 (STP)/g, at the previous conditions. By increasing the micropore volume (∼ 1 cm 3 /g) of sorbents and optimizing the adsorption conditions it is expected to obtain an adsorption capacity of ∼ 560 cm 3 (STP)/g, close to targets set for mobile applications. (authors)

  15. Role of Nuclear Based Techniques in Development and Characterization of Materials for Hydrogen Storage and Fuel Cells

    International Nuclear Information System (INIS)

    2012-02-01

    Today various materials for fuel cell applications are urgently needed, including potential electrodes for the molten carbonate fuel cells. Identification of appropriate storage concepts are also urgently needed in order to initiate necessary steps for implementation of such technologies in daily life. Recent progress in nuclear analyses and observation/imaging techniques can significantly contribute to a successful achievement of ongoing research challenges. Primary importance is given to areas of characterization and in-situ testing of materials and/or components of hydrogen storage and fuel cell systems. Dedicated attention is addressed to issues related to hydrogen storage concepts, such as metal hydrides and other systems (e.g. fullerene structures) as well as their stability and the changes induced by hydrogen sorption process. In total 14 papers report on various scientific and research issues related to hydrogen storage and conversion technologies. Based on presented results, it can be concluded that nuclear- based techniques, specifically those involving neutrons, X rays and particle beams, play very important roles in ongoing research activities among many IAEA Member States. A short overview of individual reports is summarized below. The presented papers give an overview of typical applications of such techniques and their experimental setups based either on X ray or neutron sources, which can be used effectively to study specific properties of materials for hydrogen storage as well as microstructural features and hydrogen interaction with solid matter. The papers presented by Canadian, Dutch, Italian and Norwegian groups, report on research results related to application of thermal neutron scattering and neutron diffraction in studies of hydrogen containing materials, particularly in situ characterization as a means to study metal hydrides' structure and their modification upon hydrogen sorption. The investigation on solid state hydrogen storage

  16. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  17. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  18. Polyaniline-polypyrrole composites with enhanced hydrogen storage capacities.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-06-13

    A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline-polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  1. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  2. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  3. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...

  4. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  5. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  6. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  7. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  8. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, Mike [Ford Motor Company, Dearborn, MI (United States); Purewal, Justin [Ford Motor Company, Dearborn, MI (United States); Xu, Chunchuan [Ford Motor Company, Dearborn, MI (United States); Yang, Jun [Ford Motor Company, Dearborn, MI (United States); Blaser, Rachel [Ford Motor Company, Dearborn, MI (United States); Sudik, Andrea [Ford Motor Company, Dearborn, MI (United States); Siegel, Don [Univ. of Michigan, Ann Arbor, MI (United States); Ming, Yang [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Dong' an [Univ. of Michigan, Ann Arbor, MI (United States); Chi, Hang [Univ. of Michigan, Ann Arbor, MI (United States); Gaab, Manuela [BASF SE, Ludwigshafen (Germany); Arnold, Lena [BASF SE, Ludwigshafen (Germany); Muller, Ulrich [BASF SE, Ludwigshafen (Germany)

    2015-06-30

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence for materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis

  9. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  10. The methods of hydrogen storage

    International Nuclear Information System (INIS)

    Joubert, J.M.; Cuevas, F.; Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Hydrogen may be an excellent energy vector owing to its high specific energy. Its low density is however a serious drawback for its storage. Three techniques exist to store hydrogen. Storage under pressure is now performed in composite tanks under pressures around 700 bar. Liquid storage is achieved at cryogenic temperatures. Solid storage is possible in reversible metal hydrides or on high surface area materials. The three storage means are compared in terms of performance, energetic losses and risk. (authors)

  11. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    In the last one decade hydrogen has attracted worldwide interest as an energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and applications of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel and richest in energy per unit mass. Hydrogen as a fuel can be used to cook food, drive cars, jet planes, run factories and for all our domestic energy requirements. It can provide cheap electricity. In short, hydrogen shows the solution and also allows the progressive and non-traumatic transition of today's energy sources, towards feasible safe reliable and complete sustainable energy chains. The present article deals with the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials. Many metals combine chemically with Hydrogen to form a class of compounds known as Hydrides. These hydrides can discharge hydrogen as and when needed by raising their temperature or pressure. An optimum hydrogen-storage material is required to have various properties viz. high hydrogen capacity per unit mass and unit volume which determines the amount of available energy, low dissociation temperature, moderate dissociation pressure, low heat of formation in order to minimize the energy necessary for hydrogen release, low heat dissipation during the exothermic hydride formation, reversibility, limited energy loss during charge and discharge of hydrogen, fast kinetics, high stability against O 2 and moisture for long cycle life, cyclibility, low cost of recycling and charging infrastructures and high safety. So far most of the hydrogen storage alloys such as LaNi 5 , TiFe, TiMn 2 , have hydrogen storage capacities, not more than 2 wt% which is not satisfactory for practical application as per DOE Goal. A group of Mg based

  12. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  13. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  14. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  15. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  16. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    H molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise

  17. Storage, transmission and distribution of hydrogen

    Science.gov (United States)

    Kelley, J. H.; Hagler, R., Jr.

    1979-01-01

    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  18. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  19. Hydrogen storage in carbon nanostruc

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Quintel, A.; Skakalova, V.; Choi, M.; Dettlaff-Weglikowska, U.; Roth, S.; Stepanek, I.; Bernier, P.; Leonhardt, A.; Fink, J.

    2002-01-01

    The paper gives a critical review of the literature on hydrogen storage in carbon nanostructures. Furthermore, the hydrogen storage of graphite, graphite nanofibers (GNFs), and single-walled carbon nanotubes (SWNTs) was measured by thermal desorption spectroscopy (TDS). The samples were ball milled

  20. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  1. Influence of oxygen on hydrogen storage and electrode properties for micro-designed V-based battery alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, M.; Takahashi, K.; Isomura, A. [Mater. R and D Co., Ltd., Aichi (Japan). IMRA; Sakai, T. [Osaka National Research Institute, Midorigaoka, Ikeda-shi, Osaka, 563 (Japan)

    1998-01-30

    The influence of oxygen on micro-structure, hydrogen storage and electrode properties were investigated for the alloy V{sub 3}TiNi{sub 0.56}Co{sub 0.14}Nb{sub 0.047}Ta{sub 0.047}. Since titanium in the alloy worked as a deoxidizer to form the oxide phase, the alloy preserved a large hydrogen capacity in the oxygen concentration range below 5000 mass ppm. More oxygen than 6000 mass ppm caused a remarkable contraction of the unit cell of the vanadium-based main phase and then a decrease in the hydrogen storage capacity. The contraction was accompanied by the precipitation of the Ti-based oxide phase. (orig.) 15 refs.

  2. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  3. Analysis of hydrogen content and distribution in hydrogen storage alloys using neutron radiography

    International Nuclear Information System (INIS)

    Sakaguchi, Hiroki; Hatakeyama, Keisuke; Satake, Yuichi; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    2000-01-01

    Small amounts of hydrogen in hydrogen storage alloys, such as Mg 2 Ni, were detected using neutron radiography (NRG). Hydrogen concentrations in a hydrogenated solid solution were determined by this technique. Furthermore, we were able to obtain NRG images for an initial stage of hydrogen absorption in the hydrogen storage alloys. NRG would be a new measurement method to clarify the behavior of hydrogen in hydrogen storage alloys. (author)

  4. Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Christian Pötzinger

    2015-08-01

    Full Text Available This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose, a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems, simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore, the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However, the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV system (nearly 100% self-consumption. Thereby, the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings, some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.

  5. Hydrogen Storage Performance in Pd/Graphene Nanocomposites.

    Science.gov (United States)

    Zhou, Chunyu; Szpunar, Jerzy A

    2016-10-05

    We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).

  6. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  7. Theory of Hydrogen Storage: A New Strategy within Organometallic Chemistry

    Science.gov (United States)

    Zhao, Yufeng

    2006-03-01

    As one of the most vigorous fields in modern chemistry, organometallic chemistry has made vast contributions to a broad variety of technological fields including catalysis, light emitters, molecular devices, liquid crystals, and even superconductivity. Here we show that organometallic chemistry in nanoscale could be the frontier in hydrogen storage. Our study is based on the notion that the 3d transition metal (TM) atoms are superb absorbers for H storage, as their empty d orbital can bind dihydrogen ligands (elongated but non-dissociated H2) with high capacity at nearly ideal binding energy for reversible hydrogen storage. By embedding the TM atoms into a carbon-based nanostructures, high H capacity can be maintained. This presentation contains four parts. First, by comparing the conventional hydrogen storage media, e.g., metal hydrides and carbon-based materials, the general principles for designing hydrogen storage materials are outlined. Second, organometallic buckyballs are studied to demonstrate the novel strategy. The amount of H2 adsorbed on a Sc-coated fullerene, C48B12 [ScH]12, could approach 9 wt%, with binding energies of 30-40 kJ/mol. Third, the method is applied to the transition-metal carbide nanoparticles that have been synthesized experimentally. The similar non-dissociative H2 binding is revealed in our calculation, thereby demonstrating the resilience of the overall mechanism. Moreover, a novel self-catalysis process is identified. In the fourth part, transition-metal functionalization of highly porous carbon-based materials is discussed heuristically to foresee macroscopic media for hydrogen storage. Finally follows the summary and discussion of the remaining challenges to practical hydrogen storage. Work in collaboration with A. C. Dillon, Y.-H. Kim, M. Heben & S. B. Zhang and supported by the U.S. DOE/EERE under contract No. DE-AC36-99GO10337.

  8. The electrochemistry and modelling of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Vermeulen, P.; Ledovskikh, A.V.; Danilov, D.; Notten, P.H.L.

    2007-01-01

    Mg-based alloys are promising hydrogen storage materials because of the high gravimetric energy density of MgH 2 (7.6 wt.%). A major disadvantage, however, is its very slow desorption kinetics. It has been argued that, in contrast to the well-known rutile-structured Mg hydride, hydrided Mg-transition metal alloys have a much more open crystal structure facilitating faster hydrogen transport. In this paper, the electrochemical aspects of new Mg-Sc and Mg-Ti materials will be reviewed. Storage capacities as high as 6.5 wt.% hydrogen have been reached with very favourable discharge kinetics. A theoretical description of hydrogen storage materials has also been developed by our group. A new lattice gas model is presented and successfully applied to simulate the thermodynamic properties of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, for example mutual atomic hydrogen interaction energies. A good fit of the lattice gas model to the experimental data is found in all cases

  9. Hydrogen storage stability of nanoconfined MgH2 upon cycling

    DEFF Research Database (Denmark)

    Huen, Priscilla; Paskevicius, Mark; Richter, Bo

    2017-01-01

    It is of utmost importance to optimise and stabilise hydrogen storage capacity during multiple cycles of hydrogen release and uptake to realise a hydrogen-based energy system. Here, the direct solvent-based synthesis of magnesium hydride, MgH2, from dibutyl magnesium, MgBu2, in four different...... issues are highlighted relating to the presence of unwanted gaseous by-products, Mg/MgH2 containment within the scaffold, and the purity of the carbon aerogel scaffold. The results presented provide a research path for future researchers to improve the nanoconfinement process for hydrogen storage...... carbon aerogels with different porosities, i.e., pore sizes, 15 hydrogenations, are conducted for each scaffold...

  10. Enhanced hydrogen storage by using lithium decoration on phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyuan; Wan, Neng, E-mail: wn@seu.edu.cn, E-mail: lsy@seu.edu.cn; Lei, Shuangying, E-mail: wn@seu.edu.cn, E-mail: lsy@seu.edu.cn; Yu, Hong [Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096 (China)

    2016-07-14

    The hydrogen storage characteristics of Li decorated phosphorene were systematically investigated based on first-principle density functional theory. It is revealed that the adsorption of H{sub 2} on pristine phosphorene is relatively weak with an adsorption energy of 0.06 eV. While this value can be dramatically enhanced to ∼0.2 eV after the phosphorene was decorated by Li, and each Li atom can adsorb up to three H{sub 2} molecules. The detailed mechanism of the enhanced hydrogen storage was discussed based on our density functional theory calculations. Our studies give a conservative prediction of hydrogen storage capacity to be 4.4 wt. % through Li decoration on pristine phosphorene. By comparing our calculations to the present molecular dynamic simulation results, we expect our adsorption system is stable under room temperature and hydrogen can be released after moderate heating.

  11. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  12. Hydrogen storage materials with focus on main group I-II elements

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-07-01

    A future hydrogen based society, viz. a society in which hydrogen is the primary energy carrier, is viewed by many as a solution to many of the energy related problems of the world {integral} the ultimate problem being the eventual depletion of fossil fuels. Although, for the hydrogen based society to become realizable, several technical difficulties must be dealt with. Especially, the transport sector relies on a cheap, safe and reliable way of storing hydrogen with high storage capacity, fast kinetics and favourable thermodynamics. No potential hydrogen storage candidate has been found yet, which meets all the criteria just summarized. The hydrogen storage solution showing the greatest potential in fulfilling the hydrogen storage criteria with respect to storage capacity, is solid state storage in light metal hydrides e.g. alkali metals and alkali earth metals. The remaining issues to be dealt with mainly concerns the kinetics of hydrogen uptake/release and the thermal stability of the formed hydride. In this thesis the hydrogen storage properties of some magnesium based hydrides and alkali metal tetrahydridoaluminates, a subclass of the so called complex hydrides, are explored in relation to hydrogen storage. After briefly reviewing the major energy related problems of the world, including some basic concepts of solid state hydrogen storage the dehydrogenation kinetics of various magnesium based hydrides are investigated. By means of time resolved in situ X-ray powder diffraction, quantitative phase analysis is performed for air exposed samples of magnesium, magnesium-copper, and magnesium-aluminum based hydrides. From kinetic analysis of the different samples it is generally found that the dehydrogenation kinetics of magnesium hydride is severely hampered by the presence of oxide impurities whereas alloying with both Cu and Al creates compounds significantly less sensitive towards contamination. This leads to a phenomenological explanation of the large

  13. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  14. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  15. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  16. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  18. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  19. Enhanced hydrogen storage in sandwich-structured rGO/Co1-xS/rGO hybrid papers through hydrogen spillover

    Science.gov (United States)

    Han, Lu; Qin, Wei; Jian, Jiahuang; Liu, Jiawei; Wu, Xiaohong; Gao, Peng; Hultman, Benjamin; Wu, Gang

    2017-08-01

    Reduced graphene oxide (rGO) based two-dimensional (2D) structures have been fabricated for electrochemical hydrogen storage. However, the effective transfer of atomic hydrogen to adjacent rGO surfaces is suppressed by binders, which are widely used in conventional electrochemical hydrogen storage electrodes, leading to a confining of the performance of rGO for hydrogen storage. As a proof of concept experiment, a novel strategy is developed to fabricate the binder-free sandwich-structured rGO/Co1-xS/rGO hybrid paper via facile ball milling and filtration process. Based on the structure investigation, Co1-xS is immobilized in the space between the individual rGO sheets by the creation of chemical "bridges" (Csbnd S bonds). Through the Csbnd S bonds, the atomic hydrogen is transferred from Co1-xS to rGO accompanying a Csbnd H chemical bond formation. When used as an electrode, the hybrid paper exhibits an improved hydrogen storage capacity of 3.82 wt% and, most importantly, significant cycling stability for up to 50 cycles. Excluding the direct hydrogen storage contribution from the Co1-xS in the hybrid paper, the hydrogen storage ability of rGO is enhanced by 10× through the spillover effects caused by the Co1-xS modifier.

  20. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  1. Tetrahydroborates: Development and Potential as Hydrogen Storage Medium

    Directory of Open Access Journals (Sweden)

    Julián Puszkiel

    2017-10-01

    Full Text Available The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative, hydrogen is widely regarded as a key element for a potential energy solution. However, different from fossil fuels such as oil, gas, and coal, the production of hydrogen requires energy. Alternative and intermittent renewable sources such as solar power, wind power, etc., present multiple advantages for the production of hydrogen. On one hand, the renewable sources contribute to a remarkable reduction of pollutants released to the air. On the other hand, they significantly enhance the sustainability of energy supply. In addition, the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of the renewable energy sources. In this regard, hydrogen storage technology presents a key roadblock towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen, solid-state storage is the most attractive alternative both from the safety and the volumetric energy density points of view. Because of their appealing hydrogen content, complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review, the progresses made over the last century on the development in the synthesis and research on the decomposition reactions of homoleptic tetrahydroborates is summarized. Furthermore, theoretical and experimental investigations on the thermodynamic and kinetic tuning of tetrahydroborates for hydrogen storage purposes are herein reviewed.

  2. Storage of hydrogen in metals

    International Nuclear Information System (INIS)

    Wiswall, R.

    1981-01-01

    A review is dedicated to a problem of hydrogen storage as fuel of future, that can be used under various conditions, is easily obtained with the help of other types of energy and can be transformed into them. Data on reversible metal-hydrogen systems, where hydrogen can be obtained by the way of reaction of thermal decomposition are presented. Pressure-temperature-content diagrams, information on concrete Pd-H, TiFe-H, V-N systems are presented and analyzed from the point of view of thermodynamics. A table with thermodynamical characteristics of several hydrides is presented. The majority of known solid hydrides in relation to their use for hydrogen storage are characterized. The review includes information on real or supposed uses in concrete systems: in fuel cells, for levelling of loading of electric plants, in automobile engines, in hydride engines, for heat storage [ru

  3. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  4. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  5. Hydrogen storage materials at INCDTIM Cluj - Napoca. Achievements and outlook

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A.R.; Misan, I.

    2005-01-01

    Introducing hydrogen fuel to the transportation area poses key challenges for research on hydrogen storage materials. As one of the most promising alternative fuels for transport, hydrogen offers the long-term potential for an energy system that produces near-zero emissions and can be based on renewable energy sources. The Joint Research Centre (JRC), a Directorate-General of the European Commission fosters research for safe methods for storing hydrogen, for use in fuel cells or modified combustion engines in cars and other road vehicles. Hydrogen storage materials focused, in the last 30 years, the attention of the research programs in the many countries. Due to the fast development of the fuel cell technologies, the subject is much more stringent now. For mobile applications to fuel cell powered vehicles, on-board storage materials with hydrogen absorption/desorption capacities of at least 6.5%H are needed. For an efficient storage system the goal is to pack hydrogen as close as possible. Hydrogen storage implies the reduction of an enormous volume of H 2 gas (1 kg of gas has a volume of 11 m 3 at ambient temperature and pressure). To reach the high volumetric and gravimetric density suitable for mobile applications, basically six reversible storage methods are known today according to A. Zuettel: 1) high-pressure gas cylinders, 2) liquid in cryogenic tanks, 3) physisorbed on a solid surface e.g. carbon-nanotubes 4) metal hydrides of the metals or intermetallic compounds. 5) complex hydrides of light elements such as alanates and boranates, 6) storage via chemical reactions. Recently, the storage as hydrogen hydrates at 50 bar using promoters has been reported by F. Peetom. The paper discusses the feasibility of each of these storing alternatives. The authors presents their experience and results of the work in the field of metal hydrides and application obtained since 1975. All classes of hydrogen absorbing intermetallic compounds were studied: LaNi 5 , FeTi, Ti

  6. Multi-component hydrogen storage material

    Science.gov (United States)

    Faheem, Syed A.; Lewis, Gregory J.; Sachtler, J.W. Adriaan; Low, John J.; Lesch, David A.; Dosek, Paul M.; Wolverton, Christopher M.; Siegel, Donald J.; Sudik, Andrea C.; Yang, Jun

    2010-09-07

    A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0hydrogen storage compared to binary systems such as MgH.sub.2--LiNH.sub.2.

  7. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  8. Hydrogen storage in engineered carbon nanospaces.

    Science.gov (United States)

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  9. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  10. The potential of organic polymer-based hydrogen storage materials.

    Science.gov (United States)

    Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan

    2007-04-21

    The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.

  11. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  12. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  13. Safety considerations for compressed hydrogen storage systems

    International Nuclear Information System (INIS)

    Gleason, D.

    2006-01-01

    An overview of the safety considerations for various hydrogen storage options, including stationary, vehicle storage, and mobile refueling technologies. Indications of some of the challenges facing the industry as the demand for hydrogen fuel storage systems increases. (author)

  14. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  15. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  17. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  18. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  19. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  20. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  1. Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage.

    Science.gov (United States)

    Fujita, Ken-Ichi; Wada, Tomokatsu; Shiraishi, Takumi

    2017-08-28

    A new hydrogen storage system based on the hydrogenation and dehydrogenation of nitrogen heterocyclic compounds, employing a single iridium catalyst, has been developed. Efficient hydrogen storage using relatively small amounts of solvent compared with previous systems was achieved by this new system. Reversible transformations between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine, accompanied by the uptake and release of three equivalents of hydrogen, could be repeated almost quantitatively at least four times without any loss of efficiency. Furthermore, hydrogen storage under solvent-free conditions was also accomplished. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hydrogen storage alloy electrode for nickel-hydrogen storage battery use; Nikkeru-suiso chikudenchiyo suiso kyuzo gokin denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Nagase, H.; Tadokoro, M.

    1995-06-16

    In the conventional hydrogen storage alloy electrode, water soluble polymer is employed as for the binder. Employing the water soluble polymer as for the binder may cause the film formation on the surface of the hydrogen storage alloy to hinder the hydrogen absorption at the alloy surface, resulting in the decrease in activity of electrode and in the discharge characteristic at a low temperature. This invention proposes the addition of Vinylon fiber in the binder of the hydrogen storage alloy electrode made by kneading the hydrogen storage alloy and the binder. The Vinylon fiber improves the strength of the electrode, as it forms a network in the electrode. Furthermore, the point contact between the alloy and the Vinylon fiber in the electrode prevents the film formation which hinders the oxygen absorption and chemical reaction on the surface of the alloy. As for the binder, carboxymethyl cellulose is used. The preferable size of Vinylon fiber is fiber diameter of 0.1 - 0.5 denier and fiber length of 0.5 - 5.0 mm. 4 figs., 4 tabs.

  3. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  4. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  5. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Mitlin, D. [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, T6G 2V4, Edmonton, Alberta (Canada); Poirier, E.; Fritzsche, H. [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2010-03-15

    This study focused on hydrogen sorption properties of 1.5 {mu}m thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg-Al-Ti, Mg-Fe-Ti and Mg-Al-Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 C the films are capable of absorbing 4-6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg-Al-Ti and Mg-Fe-Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg-Al-Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. (author)

  6. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  7. Hydrogen-based energy storage unit for stand alone PV systems

    International Nuclear Information System (INIS)

    Labbe, J.

    2006-12-01

    Stand alone systems supplied only by a photovoltaic generator need an energy storage unit to be fully self sufficient. Lead acid batteries are commonly used to store energy because of their low cost, despite several operational constraints. A hydrogen-based energy storage unit (HESU) could be another candidate, including an electrolyser, a fuel cell and a hydrogen tank. However many efforts still need to be carried out for this technology to reach an industrial stage. In particular, market outlets must be clearly identified. The study of small stationary applications (few kW) is performed by numerical simulations. A simulator is developed in the Matlab/Simulink environment. It is mainly composed of a photovoltaic field and a storage unit (lead acid batteries, HESU, or hybrid storage HESU/batteries). The system component sizing is achieved in order to ensure the complete system autonomy over a whole year of operation. The simulator is tested with 160 load profiles (1 kW as a yearly mean value) and three locations (Algeria, France and Norway). Two coefficients are set in order to quantify the correlation between the power consumption of the end user and the renewable resource availability at both daily and yearly scales. Among the tested cases, a limit value of the yearly correlation coefficient came out, enabling to recommend the use of the most adapted storage to a considered case. There are cases for which using HESU instead of lead acid batteries can increase the system efficiency, decrease the size of the photovoltaic field and improve the exploitation of the renewable resource. In addition, hybridization of HESU with batteries always leads to system enhancements regarding its sizing and performance, with an efficiency increase by 10 to 40 % depending on the considered location. The good agreement between the simulation data and field data gathered on real systems enabled the validation of the models used in this study. (author)

  8. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  9. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.

    Science.gov (United States)

    Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin

    2008-02-15

    In this work, the hydrogen storage behaviors of porous graphite nanofibers (GNFs) decorated by Pt nanoparticles were investigated. The Pt nanoparticles were introduced onto the GNF surfaces using a well-known chemical reduction method. We investigated the hydrogen storage capacity of the Pt-doped GNFs for the platinum content range of 1.3-7.5 mass%. The microstructure of the Pt/porous GNFs was characterized by X-ray diffraction and transmission electron microscopy. The hydrogen storage behaviors of the Pt/GNFs were studied using a PCT apparatus at 298 K and 10 MPa. It was found that amount of hydrogen stored increased with increasing Pt content to 3.4 mass%, and then decreased. This result indicates that the hydrogen storage capacity of porous carbons is based on both their metal content and dispersion rate.

  10. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1994-04-20

    New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

  11. Low-cost storage options for solar hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Suhaib Muhammad Ali; John Andrews

    2006-01-01

    Equipment for storing hydrogen gas under pressure typically accounts for a significant proportion of the total capital cost of solar-hydrogen systems for remote area power supply (RAPS). RAPS remain a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. In the present paper the storage requirements of PV-based solar-hydrogen RAPS systems employing PEM electrolysers and fuel cells to meet a range of typical remote area daily and annual demand profiles are investigated using a spread sheet-based simulation model. It is found that as the costs of storage are lowered the requirement for longer-term storage from summer to winter is increased with consequent potential gains in the overall economics of the solar-hydrogen system. In many remote applications, there is ample space for hydrogen storages with relatively large volumes. Hence it may be most cost-effective to store hydrogen at low to medium pressures achievable by using PEM electrolysers directly to generate the hydrogen at the pressures required, without a requirement for separate electrically-driven compressors. The latter add to system costs while requiring significant parasitic electricity consumption. Experimental investigations into a number of low-cost storage options including plastic tanks and low-to-medium pressure metal and composite cylinders are reported. On the basis of these findings, the economics of solar-hydrogen RAPS systems employing large-volume low-cost storage are investigated. (authors)

  12. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  13. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  14. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  15. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  16. Storage of hydrogen in nanostructured carbon materials

    OpenAIRE

    Yürüm, Yuda; Yurum, Yuda; Taralp, Alpay; Veziroğlu, T. Nejat; Veziroglu, T. Nejat

    2009-01-01

    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing trait...

  17. Capacity retention in hydrogen storage alloys

    Science.gov (United States)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  18. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  19. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  20. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  1. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  2. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  3. Increasing hydrogen storage capacity using tetrahydrofuran.

    Science.gov (United States)

    Sugahara, Takeshi; Haag, Joanna C; Prasad, Pinnelli S R; Warntjes, Ashleigh A; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-21

    Hydrogen hydrates with tetrahydrofuran (THF) as a promoter molecule are investigated to probe critical unresolved observations regarding cage occupancy and storage capacity. We adopted a new preparation method, mixing solid powdered THF with ice and pressurizing with hydrogen at 70 MPa and 255 +/- 2 K (these formation conditions are insufficient to form pure hydrogen hydrates). All results from Raman microprobe spectroscopy, powder X-ray diffraction, and gas volumetric analysis show a strong dependence of hydrogen storage capacity on THF composition. Contrary to numerous recent reports that claim it is impossible to store H(2) in large cages with promoters, this work shows that, below a THF mole fraction of 0.01, H(2) molecules can occupy the large cages of the THF+H(2) structure II hydrate. As a result, by manipulating the promoter THF content, the hydrogen storage capacity was increased to approximately 3.4 wt % in the THF+H(2) hydrate system. This study shows the tuning effect may be used and developed for future science and practical applications.

  4. Synthesis and electrochemical properties of binary MgTi and ternary MgTiX (X=Ni, Si) hydrogen storage alloys

    NARCIS (Netherlands)

    Gobichettipalayam Manivasagam, T.; Iliksu, M.; Danilov, D.L.; Notten, P.H.L.

    2017-01-01

    Mg-based hydrogen storage alloys are promising candidate for many hydrogen storage applications because of the high gravimetric hydrogen storage capacity and favourable (de)hydrogenation kinetics. In the present study we have investigated the synthesis and electrochemical hydrogen storage properties

  5. Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Jafari-Asl, Mehdi; Nabiyan, Afshin; Rezaei, Behzad; Dinari, Mohammad

    2016-01-01

    New efficient hydrogen storage hybrids were fabricated based on hydrogen spillover mechanism, including chemisorptions and dissociation of H_2 on the surface of LDH (layered double hydroxides) and diffusion of H to rGO (reduced graphene oxide). The structures and compositions of all of the hybrids (LDHs/rGO) have been verified using different methods including transmission electron microscopy, X ray diffraction spectroscopy, infrared spectroscopy and Brunauer–Emmett–Teller analysis. Then, the abilities of the LDHs/rGOs, as hydrogen spillover, were investigated by electrochemical methods. In addition, the LDHs/rGOs were decorated with palladium, using redox replacement process, and their hydrogen spillover properties were studied. The results showed that the hydrogen adsorption/desorption kinetics, hydrogen storage capacities and stabilities of Pd"#LDH/rGOs are better than Pd/rGO. Finally presence of different polymers (synthesis with monomers, 4–aminophenol, 4–aminothiophenol, o-phenylenediamine and p-phenylenediamine) at the surface of the Pd#LDH/rGOs on hydrogen storage were studied. The results showed that presence of o-phenylenediamine and p-phenylenediamine improves the kinetics of the hydrogen adsorption/desorption and increase the capacity of the hydrogen storage. - Highlights: • Efficient hydrogen storage sorbents are introduced. • The sorbents are synthesized based on hybrids of layered double hydroxide. • The compositions of all of the hybrids are verified using different methods. • Pd nanoparticles modified nanohybrids are investigated for hydrogen storage. • Presence of different polymers beside the hydrogen sorbents are investigated.

  6. Treatment and storage of hydrogen isotopes

    International Nuclear Information System (INIS)

    Jung, H. S.; Lee, H. S.; An, D. H.; Kim, K. R.; Lee, S. H.; Choi, H. J.; Back, S. W.; Kang, H. S.; Eom, K. Y.; Lee, M. S.

    2000-01-01

    Storage of gaseous hydrogen isotopes in a cylinder is a well-established technology. However, Immobilization in the solid form is preferred for long-term storage of radioactive isotope gas because of the concern for leakage of the gas. The experimental thermodynamic p-c-T data show that Ti and U soak up hydrogen isotope gas at a temperature of a few hundred .deg. C and modest pressures. It was found that more hydrogen is dissolved in the metal than deuterium at constant pressure. Thus, the lighter isotope tends to be enriched in the solid phase

  7. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  8. Economical Aspects of Sodium Borohydride for Hydrogen Storage

    International Nuclear Information System (INIS)

    Ture, I. Engin; Tabakoglu, F. Oznur; Kurtulus, Gulbahar

    2006-01-01

    Hydrogen is the best fuel among others, which can minimize the cause to global warming. Turkey has an important location with respect to hydrogen energy applications. Moreover, Turkey has 72.2% of the world's total boron reserves. Sodium borohydride (NaBH 4 ) which can be produced from borax has high hydrogen storage capacity. Hence, it is important for Turkey to lead studies about sodium borohydride to make it one of the most feasible hydrogen storage methods. In this paper an approximate process cost analysis of a NaBH 4 -H 2 system is given, starting with NaBH 4 production till recycling of it. It is found that, the usage of NaBH 4 as hydrogen storage material is relatively an expensive method but after improving reactions and by-product removal in the system and reducing the energy and reactant costs, sodium borohydride is one of the best candidates among hydrogen storage technologies. (authors)

  9. High capacity hydrogen storage nanocomposite materials

    Science.gov (United States)

    Zidan, Ragaiy; Wellons, Matthew S.

    2017-12-12

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  10. New ternary intermetallics, based magnesium, for hydrogen storage

    International Nuclear Information System (INIS)

    Roquefere, J.G.

    2009-05-01

    The use of fossil fuels (non-renewable energy) is responsible for increasing the concentration of greenhouse gases in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy vector. The storage in intermetallics makes it possible to obtain mass and volume capacities (e.g. 140 g/L) higher than those obtained by liquid form or under pressure (respectively 71 and 40 g/L). We have synthesised Mg and Rare Earth based compounds (RE = Y, Ce and Gd), derived from the cubic Laves phases AB2. Their physical and chemical properties have been studied (hydrogenation, electrochemistry, magnetism,...). The conditions of sorption (P and T) are particularly favorable (i.e. absorption at room temperature and atmospheric pressure). Besides, to improve the sorption kinetics of metallic magnesium, the compounds developed previously were used as catalysts. Thus, GdMgNi4 was milled with magnesium and the speeds of absorption and desorption of the mixture are found higher than those obtained for the composites Mg+Ni or Mg+V, which are reference systems. A theoretical approach (DFT) was used to model the electronic structure of the ternary compounds (i.e. REMgNi4) and thus to predict or confirm the experimental results. (authors)

  11. High-capacity hydrogen storage in Li-adsorbed g-C{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianfeng; Huang, Chengxi; Wu, Haiping, E-mail: mrhpwu@njust.edu.cn; Kan, Erjun, E-mail: ekan@njust.edu.cn

    2016-09-01

    Since hydrogen is a kind of potential source of efficient and pollution-free energy, it has attracted great research interests in recent years. However, the lack of safe and efficient hydrogen storage materials has blocked the rapid development of hydrogen energy. Here, we explored the possibility of Li-decorated g-C{sub 3}N{sub 4} as a kind of potential hydrogen storage materials based on first-principles calculations. Our results demonstrated that the adsorption energy of Li atoms on g-C{sub 3}N{sub 4} is much larger than the cohesive energy of bulk Li. Importantly, we find that the binding energy of each H{sub 2} molecule is about 0.29 eV, which is quite suitable for hydrogen storage. Furthermore, the estimated hydrogen storage capacity is around 9.2 wt %, which beyonds the goal of DOE. Thus, we predicted that Li-decorated g-C{sub 3}N{sub 4} may act as the potential hydrogen storage materials. - Highlights: • We explored the possibility of Li-decorated g-C{sub 3}N{sub 4} as a kind of potential hydrogen storage material. • We demonstrated the binding energy of each H{sub 2} molecule is 0.29 eV, which is quite suitable for hydrogen storage materials. • The hydrogen storage capacity is estimated around 9.2 wt %.

  12. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  13. Hydrogen storage in planetary physics

    International Nuclear Information System (INIS)

    Baltensperger, W.

    1984-01-01

    Hydrogen in contact with most substances undergoes first order phase transitions with increasing pressure during which hydrides are formed. This applies to the core of hydrogen rich planets. It is speculated that a partial hydrogen storage in the early history of the earth could have lead to the formation of continents. Primordial carbon hydrides are synthesized during this process. (Author) [pt

  14. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  15. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  16. Combined Solid State and High Pressure Hydrogen Storage

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Jensen, Torben René

    Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia.......Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia....

  17. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  18. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  19. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy

    International Nuclear Information System (INIS)

    O’Malley, Kathleen; Ordaz, Grace; Adams, Jesse; Randolph, Katie; Ahn, Channing C.; Stetson, Ned T.

    2015-01-01

    Highlights: • Overview of U.S. DOE-supported hydrogen storage technology development efforts. • Physical and materials-based strategy for developing hydrogen storage systems. • Materials requirements for automotive storage systems. • Key R&D developments. - Abstract: To enable the wide-spread commercialization of hydrogen fuel cell technologies, the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technology Office, maintains a comprehensive portfolio of R&D activities to develop advanced hydrogen storage technologies. The primary focus of the Hydrogen Storage Program is development of technologies to meet the challenging onboard storage requirements for hydrogen fuel cell electric vehicles (FCEVs) to meet vehicle performance that consumers have come to expect. Performance targets have also been established for materials handling equipment (e.g., forklifts) and low-power, portable fuel cell applications. With the imminent release of commercial FCEVs by automobile manufacturers in regional markets, a dual strategy is being pursued to (a) lower the cost and improve performance of high-pressure compressed hydrogen storage systems while (b) continuing efforts on advanced storage technologies that have potential to surpass the performance of ambient compressed hydrogen storage

  20. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Kathleen [SRA International, Inc., Fairfax, VA 22033 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); Ahn, Channing C. [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); California Institute of Technology, Pasadena, CA 91125 (United States); Stetson, Ned T., E-mail: Ned.Stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States)

    2015-10-05

    Highlights: • Overview of U.S. DOE-supported hydrogen storage technology development efforts. • Physical and materials-based strategy for developing hydrogen storage systems. • Materials requirements for automotive storage systems. • Key R&D developments. - Abstract: To enable the wide-spread commercialization of hydrogen fuel cell technologies, the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technology Office, maintains a comprehensive portfolio of R&D activities to develop advanced hydrogen storage technologies. The primary focus of the Hydrogen Storage Program is development of technologies to meet the challenging onboard storage requirements for hydrogen fuel cell electric vehicles (FCEVs) to meet vehicle performance that consumers have come to expect. Performance targets have also been established for materials handling equipment (e.g., forklifts) and low-power, portable fuel cell applications. With the imminent release of commercial FCEVs by automobile manufacturers in regional markets, a dual strategy is being pursued to (a) lower the cost and improve performance of high-pressure compressed hydrogen storage systems while (b) continuing efforts on advanced storage technologies that have potential to surpass the performance of ambient compressed hydrogen storage.

  1. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  2. Metalized T graphene: A reversible hydrogen storage material at room temperature

    International Nuclear Information System (INIS)

    Ye, Xiao-Juan; Zhong, Wei; Du, You-Wei; Liu, Chun-Sheng; Zeng, Zhi

    2014-01-01

    Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7 wt. %) with an optimal adsorption energy of 0.19 eV/H 2 . The adsorption/desorption of H 2 at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

  3. Hydrogen storage: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Tzimas, E.; Filiou, C.; Peteves, S.D.; Veyret, J.B.

    2003-01-01

    The EU aims at establishing a sustainable energy supply, able to provide affordable and clean energy without increasing green house gas emissions. Hydrogen and fuel cells are seen by many as key energy system solutions for the 21. century, enabling clean and efficient production of power and heat from a broad range of primary energy sources. To be effective, there is a crucial need for well-coordinated research, development and deployment at European Level. The particular segment of hydrogen storage is one key element of the full hydrogen chain and it must meet a number of challenges before it is introduced into the global energy system. Regarding its energy characteristics, the gravimetric energy density of hydrogen is about three times higher than gasoline, but its energy content per volume is about a quarter. Therefore, the most significant problem for hydrogen (in particular for on-board vehicles) is to store sufficient -amounts of hydrogen. The volumetric energy density of hydrogen can be increased by compression or liquefaction which are both the most mature technologies. Still the energy required for both compression and liquefaction is one element to be properly assessed in considering the different pathways in particular for distribution. As far as on-board vehicle storage is concerned all possible options (compressed, liquid, metal hydrides and porous structures) have their own advantages and disadvantages with respect to weight, volume, energy efficiency, refuelling times, cost and safety aspects. To address these problems, long-term commitments to scientific excellence in research, coupled with co-ordination between the many different stakeholders, is required. In the current state-of-the-art in hydrogen storage, no single technology satisfies all of the criteria required by manufacturers and end-users, and a large number of obstacles have to be overcome. The current hydrogen storage technologies and their associated limitations/needs for improvement

  4. Size effects on rhodium nanoparticles related to hydrogen-storage capability.

    Science.gov (United States)

    Song, Chulho; Yang, Anli; Sakata, Osami; Kumara, L S R; Hiroi, Satoshi; Cui, Yi-Tao; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2018-06-06

    To unveil the origin of the hydrogen-storage properties of rhodium nanoparticles (Rh NPs), we investigated the electronic and crystal structures of the Rh NPs using various synchrotron based X-ray techniques. Electronic structure studies revealed that the hydrogen-storage capability of Rh NPs could be attributed to their more unoccupied d-DOSs than that of the bulk near the Fermi level. Crystal structure studies indicated that lattice distortion and mean-square displacement increase while coordination number decreases with decreasing particle size and the hydrogen-absorption capability of Rh NPs improves to a greater extent with increased structural disorder in the local structure than with that in the mean structure. The smallest Rh NPs, having the largest structural disorder/increased vacancy spaces and the smallest coordination number, exhibited excellent hydrogen-storage capacity. Finally, from the bond-orientational order analysis, we confirmed that the localized disordering is distributed more over the surface part than the core part and hydrogen can be trapped on the surface part of Rh NPs which increases with a decrease in NP diameter.

  5. A lumped-parameter model for cryo-adsorber hydrogen storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, V.; Raghunathan, K. [India Science Lab, General Motors R and D, Creator Building, International Technology Park, Bangalore 560066 (India); Kumar, Sudarshan [Chemical and Environmental Sciences Lab, General Motors R and D, 30500 Mound Road, Warren, MI 48090 (United States)

    2009-07-15

    One of the primary requirements for commercialization of hydrogen fuel-cell vehicles is the on-board storage of hydrogen in sufficient quantities. On-board storage of hydrogen by adsorption on nano-porous adsorbents at around liquid nitrogen temperatures and moderate pressures is considered viable and competitive with other storage technologies: liquid hydrogen, compressed gas, and metallic or complex hydrides. The four cryo-adsorber fuel tank processes occur over different time scales: refueling over a few minutes, discharge over a few hours, dormancy over a few days, and venting over a few weeks. The slower processes i.e. discharge, dormancy and venting are expected to have negligible temperature gradients within the bed, and hence are amenable to a lumped-parameter analysis. Here we report a quasi-static lumped-parameter model for the cryo-adsorber fuel tank, and discuss the results for these slower processes. We also describe an alternative solution method for dormancy and venting based on the thermodynamic state description. (author)

  6. Hydrogen storage in carbon nano-materials. Elaboration, characterization and properties

    International Nuclear Information System (INIS)

    Luxembourg, D.

    2004-10-01

    This work deals with hydrogen storage for supplying fuel cells. Hydrogen storage by adsorption in carbon nano-tubes and nano-fibers is a very controversial issue because experimental results are very dispersed and adsorption mechanisms are not yet elucidated. Physi-sorption cannot explain in fact all the experimental results. All the potential adsorption sites, physical and chemical, are discussed as detailed as possible in a state of the art. Experimental works includes the steps of elaboration, characterization, and measurements of the hydrogen storage properties. Nano-fibers are grown using a CVD approach. Single wall carbon nano-tubes (SWNT) synthesis is based on the vaporization/condensation of a carbon/catalysts mixture in a reactor using a fraction of the available concentrated solar energy at the focus of the 1000 kW solar facility of IMP-CNRS at Odeillo. Several samples are produced using different synthesis catalysts (Ni, Co, Y, Ce). SWNT samples are purified using oxidative and acid treatments. Hydrogen storage properties of these materials are carefully investigated using a volumetric technique. The applied pressure is up to 6 MPa and the temperature is 253 K. Hydrogen uptake of the investigated materials are less than 1 % wt. at 253 K and 6 MPa. (author)

  7. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo-Jin; Lee, Seul-Yi [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2010-12-15

    In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N{sub 2}/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. (author)

  8. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  10. Experimental study of hydrogen isotopes storage on titanium bed

    International Nuclear Information System (INIS)

    Vasut, Felicia; Zamfirache, Marius; Bornea, Anisia; Pearsica, Claudia; Bidica, Nicolae

    2002-01-01

    As known, the Nuclear Power Plant Cernavoda equipped with a Canadian reactor, of CANDU type, is the most powerful tritium source from Europe. On long term, due to a 6·10 16 Bq/year, Cernavoda area will be contaminated due to the increasing tritium quantity. Also, the continuous contamination of heavy water from the reactor, induces a reduction of moderation's capacity. Therefore, one considers that it is improperly to use heavy water if its activity level is higher than 40 Ci/kg in the moderator and 2 Ci/kg in the cooling fluid. For these reasons, we have developed a detritiation technology, based on catalytic isotopic exchange and cryogenic distillation. Tritium will be removed from the tritiated heavy water, so it appears the necessity of storage of tritium in a special vessel that can provide a high level of protection and safety of environment and personal. There several metals were tested as storage beds for hydrogen isotopes. One of the reference materials used for storage of hydrogen isotopes is uranium, a material with a great storage capacity, but unfortunately it is a radioactive metal and also can react with the impurities from the stored gas. Other metals and alloys as ZrCo, Ti, FeTi are also adequate as storage beds at normal temperature. The paper presents studies about the reaction between hydrogen and titanium used as storage bed for the hydrogen isotopes resulted after the detritiation of tritiated heavy water. The experiments that were carried out used protium and mixture of deuterium and protium at different storage parameters as process gas. (authors)

  11. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and carbon containing alloys

  12. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  13. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  14. Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks

    International Nuclear Information System (INIS)

    Liu Xiu-Ying; He Jie; Yu Jing-Xin; Fan Zhi-Qin; Li Zheng-Xin

    2014-01-01

    Molecular hydrogen and spiltover hydrogen storages on five two-dimensional (2D) covalent-organic frameworks (COFs) (PPy-COF, TP-COF, BTP-COF, COF-18 Å, and HHTP-DPB COF) are investigated using the grand canonical Monte Carlo (GCMC) simulations and the density functional theory (DFT), respectively. The GCMC simulated results show that HHTP-DPB COF has the best performance for hydrogen storage, followed by BTP-COF, TP-COF, COF-18 Å, and PPy-COF. However, their adsorption amounts at room temperature are all too low to meet the uptake target set by US Department of Energy (US-DOE) and enable practical applications. The effects of pore size, surface area, and isosteric heat of hydrogen on adsorption amount are considered, which indicate that these three factors are all the important factors for determining the H 2 adsorption amount. The chemisorptions of spiltover hydrogen atoms on these five COFs represented by the cluster models are investigated using the DFT method. The saturation cluster models are constructed by considering all possible adsorption sites for these cluster models. The average binding energy of a hydrogen atom and the saturation hydrogen storage density are calculated. The large average binding energy indicates that the spillover process may proceed smoothly and reversibly. The saturation hydrogen storage density is much larger than the physisorption uptake of H 2 molecules at 298 K and 100 bar (1 bar = 10 5 Pa), and is close to or exceeds the 2010 US-DOE target of 6 wt% for hydrogen storage. This suggests that the hydrogen storage capacities of these COFs by spillover may be significantly enhanced. Thus 2D COFs studied in this paper are suitable hydrogen storage media by spillover

  15. Positron annihilation study of hydrogen storage alloys

    International Nuclear Information System (INIS)

    Shirai, Yasuharu; Araki, Hideki; Sakaki, Kouji

    2003-01-01

    Some AB 5 and AB 2 hydrogen storage alloys have been characterized by using positron-annihilation lifetime spectroscopy. It has been shown that they contain no constitutional vacancies and that deviations from the stoichiometric compositions are all compensated by antistructure atoms. Positron lifetimes in fully-annealed LaNi 5-x Al x and MmNi 5-x Al x alloys show good correlation with their hydrogen desorption pressures. On the other hand, surprising amounts of vacancies together with dislocations have been found to be generated during the first hydrogen absorption process of LaNi 5 and ZrMn 2 . These lattice defects play important role in hydrogen absorption-desorption processes of hydrogen storage alloys. (author)

  16. Solid-State Hydrogen Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a method for converting metals to metal hydrides at low pressures for hydrogen storage systems with high efficiency with respect to volume...

  17. Potassium doped MWCNTs for hydrogen storage enhancement

    International Nuclear Information System (INIS)

    Adabi Qomi, S.; Gashtasebi, M.; Khoshnevisan, B.

    2012-01-01

    Here we have used potassium doped MWCNTs for enhancement of hydrogen storage process. XRD and SEM images have confirmed the doping of potassium. For studying the storage process a hydrogenic battery set up has been used. In the battery the working electrode has been made of the silver foam deposited by the doped MWCNTs electrophoretically.

  18. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  19. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-02-28

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. This analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers. This paper will describe the matching of current glass microspheres with the useful application in commercial hydrogen bulk transport and storage.

  20. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  1. Composite high-pressure vessels for hydrogen storage in mobile application. Pt. 1 / Light weight composite cylinders for compressed hydrogen. Pt. 2 - custom made hydrogen storage tanks and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, C. [MCS Cylinder Systems GmbH, Dinslaken (Germany)

    2000-07-01

    Recent developments on fuel cell technology demonstrated the feasibility of propelling vehicles by converting fuel directly into electricity. Fuel cells conveniently use either compressed (CGH{sub 2}) or liquid hydrogen (LH{sub 2}) or methanol as the fuel source from a tank. Mobile storage of these fuelling will become an urgent need as this technology will come into series production expected for 2010. Due to the requirements on mobile hydrogen storage and the energy losses in the hydrogen-to-application-chain, a light-weight and energetic qualities and minimise ist bulky nature. Mobile storage of hydrogen can be realised either at high pressure values (> 20 MPa) or at deep temperatures (<-253 C). CGH{sub 2}: In the last few years, the introduction of natural gas driven vehicles has seen the development of compact mobile pressurised gas tanks in principle, this storage technique is also applicable for the compressed storage of hydrogen at filling pressures of > 20 MPa. LH{sub 2} : Storing hydrogen or natural gases in general in the liquid phase is accomplished either by applying a overpressure or keeping it below the phase transition temperature at ambient pressure in super insulated devices. (orig.)

  2. Porous polymeric materials for hydrogen storage

    Science.gov (United States)

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  3. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  4. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    International Nuclear Information System (INIS)

    Tang Xia; Opalka, Susanne M.; Laube, Bruce L.; Wu Fengjung; Strickler, Jamie R.; Anton, Donald L.

    2007-01-01

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH 4 has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH 4 has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments

  5. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of Automotive Liquid Hydrogen Storage Systems

    Science.gov (United States)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  7. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.

    Science.gov (United States)

    Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor

    2018-01-24

    Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO 2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO 2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO 2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

  8. Low-Cost Precursors to Novel Hydrogen Storage Materials

    International Nuclear Information System (INIS)

    Linehan, Suzanne W.; Chin, Arthur A.; Allen, Nathan T.; Butterick, Robert; Kendall, Nathan T.; Klawiter, I. Leo; Lipiecki, Francis J.; Millar, Dean M.; Molzahn, David C.; November, Samuel J.; Jain, Puja; Nadeau, Sara; Mancroni, Scott

    2010-01-01

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH 4 ), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH 4 from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H 2 ) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH 4 as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH 4 is a key building block to most boron-based fuels, and the ability to produce NaBH 4 in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering

  9. Improving the hydrogen storage properties of metal-organic framework by functionalization.

    Science.gov (United States)

    Xia, Liangzhi; Liu, Qing; Wang, Fengling; Lu, Jinming

    2016-10-01

    Based on the structure of MOF-808, different substituents were introduced to replace hydrogen atom on the phenyl ring of MOF-808. The GCMC method was used to study the effect of functional groups on the hydrogen storage properties of MOF-808-X (X = -OH, -NO 2 , -CH 3 , -CN, -I). The H 2 uptakes and isosteric heat of adsorption were simulated at 77 K. The results indicate that all these substituents have favorable impact on the hydrogen storage capacity, and -CN is found to be the most promising substituent to improve H 2 uptake. These results may be helpful for the design of MOFs with higher hydrogen storage capacity. Graphical abstract Atomistic structures of MOFs. (a) The structures of MOF-808-X. (b) Model of organic linker. Atom color scheme: C, gray; H, white; O, red; X, palegreen (X = -OH, -NO 2 , -CH 3 , -CN, -I).

  10. Cloning single wall carbon nanotubes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M [Rice Univ., Houston, TX (United States); Kittrell, Carter [Rice Univ., Houston, TX (United States)

    2012-08-30

    The purpose of this research is to development the technology required for producing 3-D nano-engineered frameworks for hydrogen storage based on sp2 carbon media, which will have high gravimetric and especially high volumetric uptake of hydrogen, and in an aligned fibrous array that will take advantage of the exceptionally high thermal conductivity of sp2 carbon materials to speed up the fueling process while minimizing or eliminating the need for internal cooling systems. A limitation for nearly all storage media using physisorption of the hydrogen molecule is the large amount of surface area (SA) occupied by each H2 molecule due to its large zero-point vibrational energy. This creates a conundrum that in order to maximize SA, the physisorption media is made more tenuous and the density is decreased, usually well below 1 kg/L, so that there comes a tradeoff between volumetric and gravimetric uptake. Our major goal was to develop a new type of media with high density H2 uptake, which favors volumetric storage and which, in turn, has the capability to meet the ultimate DoE H2 goals.

  11. Lunar-derived titanium alloys for hydrogen storage

    Science.gov (United States)

    Love, S.; Hertzberg, A.; Woodcock, G.

    1992-01-01

    Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.

  12. Functional nanometers for hydrogen storage produced by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Czujko, T. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering]|[Military Univ. of Technology, Warsaw (Poland). Dept. of Advanced Materials and Technologies; Varin, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering; Wronski, Z.S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre, Hydrogen Fuel Cells and Transportation; Zaranski, Z. [Military Univ. of Technology, Warsaw (Poland). Dept. of Advanced Materials and Technologies

    2008-07-01

    It is becoming increasingly important to switch to cleaner alternative energy carriers such as hydrogen, as environmental concerns over greenhouse gas emissions from the burning of fossil fuel increase. Specifically, there is a need for efficient on-board hydrogen storage technologies for vehicular applications. This paper discussed three different methods of hydrogen desorption temperature reduction and desorption kinetics of nanostructured hydrides. The first method was based on substantial hydride particle size refinement. The second method utilized catalytic effects of nanometric n-alumina (Al{sub 2}O{sub 3}), n-yttrium oxide powder (Y{sub 2}O{sub 3}) and n-nickel (Ni) additives. The third method was based on a composite of nanohydride mixtures. The composite approach was applied to the magnesium hydride (MgH{sub 2}) plus sodium tetrahydridoborate (NaBH{sub 4}) and lithium aluminum hydride (LiAlH{sub 4}) systems. The paper presented the effects of nanostructuring and nanocatalytic additives on Mg hydride desorption properties as well as a composite behaviour of nanostructured complex hydrides. It was concluded that milling of commercial MgH{sub 2} with the nano-oxide additives had a limited effect on improving the hydrogen storage properties. The addition of specialty Inco nanometric Ni reduced the hydrogen desorption temperature considerably. 28 refs., 1 tab., 9 figs.

  13. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  14. Study of the storage of hydrogen in carbon nanostructures

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Cossement, D.; Tessier, A.; Belanger, M.; Bose, T.K.; Dodelet, J-P.; Dellero, T.

    2000-01-01

    The storage of hydrogen is one of the points of development in industrial applications of fuel cells (CAP) of type PEMFC (Proton Exchange Membrane Fuel Cell). An effective system of storage would be a major step in the large scale utilization of this energy source. Process improvements concerning the storage density of energy, the cost, and facilities and the reliability of the storage must be sought in particular for the mobile applications. Among the different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seems the most promising way.The storage of hydrogen gas at ambient temperature today appears as the technical solution simplest, more advanced and more economic. However the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  15. Hydrogen storage capacity of titanium met-cars

    International Nuclear Information System (INIS)

    Akman, N; Durgun, E; Yildirim, T; Ciraci, S

    2006-01-01

    The adsorption of hydrogen molecules on the titanium metallocarbohedryne (met-car) cluster has been investigated by using the first-principles plane wave method. We have found that, while a single Ti atom at the corner can bind up to three hydrogen molecules, a single Ti atom on the surface of the cluster can bind only one hydrogen molecule. Accordingly, a Ti 8 C 12 met-car can bind up to 16 H 2 molecules and hence can be considered as a high-capacity hydrogen storage medium. Strong interaction between two met-car clusters leading to the dimer formation can affect H 2 storage capacity slightly. Increasing the storage capacity by directly inserting H 2 into the met-car or by functionalizing it with an Na atom have been explored. It is found that the insertion of neither an H 2 molecule nor an Na atom could further promote the H 2 storage capacity of a Ti 8 C 12 cluster. We have also tested the stability of the H 2 -adsorbed Ti 8 C 12 met-car with ab initio molecular dynamics calculations which have been carried out at room temperature

  16. Ageing of Mg-Ni-H hydrogen storage alloys

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2012-01-01

    Roč. 37, OCT (2012), s. 14257-14264 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA106/09/0814; GA ČR(CZ) GAP108/11/0148 Institutional research plan: CEZ:AV0Z20410507 Keywords : Magnesium alloys * Hydrogen desorption * Hydrogen storage * Hydrogen-storage materials * Ageing Subject RIV: JG - Metallurgy Impact factor: 3.548, year: 2012

  17. The development of hydrogen storage electrode alloys for nickel hydride batteries

    Science.gov (United States)

    Hong, Kuochih

    The development of hydrogen storage electrode alloys in the 1980s resulted in the birth and growth of the rechargeable nickel hydride (Ni/MH) battery. In this paper we describe briefly a semi-empirical electrochemical/thermodynamic approach to develop/screen a hydrogen storage alloy for electrochemical application. More specifically we will discuss the AB x Ti/Zr-based alloys. Finally, the current state of the Ni/MH batteries including commercial manufacture processes, cell performance and applications is given.

  18. Li-Decorated β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study.

    Science.gov (United States)

    Liu, Tingting; Chen, Yuhong; Wang, Haifeng; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-12-07

    The hydrogen storage properties of pristine β 12 -borophene and Li-decorated β 12 -borophene are systemically investigated by means of first-principles calculations based on density functional theory. The adsorption sites, adsorption energies, electronic structures, and hydrogen storage performance of pristine β 12 -borophene/H₂ and Li- β 12 -borophene/H₂ systems are discussed in detail. The results show that H₂ is dissociated into Two H atoms that are then chemisorbed on β 12 -borophene via strong covalent bonds. Then, we use Li atom to improve the hydrogen storage performance and modify the hydrogen storage capacity of β 12 -borophene. Our numerical calculation shows that Li- β 12 -borophene system can adsorb up to 7 H₂ molecules; while 2Li- β 12 -borophene system can adsorb up to 14 H₂ molecules and the hydrogen storage capacity up to 10.85 wt %.

  19. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2016-11-01

    Full Text Available Among the several typologies of storage technologies, mainly on different physical principles (mechanical, electrical and chemical, hydrogen produced by power to gas (P2G from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe, analysing current and potential locations, regulatory framework, governments’ outlooks, economic issues, and available renewable energy amounts. The expert opinion survey, already used in many research articles on different topics including energy, has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.

  20. A novel method for producing magnesium based hydrogen storage alloys

    International Nuclear Information System (INIS)

    Walton, A.; Matthews, J.; Barlow, R.; Almamouri, M.M.; Speight, J.D.; Harris, I.R.

    2003-01-01

    Conventional melt casting techniques for producing Mg 2 Ni often result in no stoichiometric compositions due to the excess Mg which is added to the melt in order to counterbalance sublimation during processing. In this work a vapour phase process known as Low Pressure Pack Sublimation (LPPS) has been used to coat Ni substrates with Mg at 460-600 o C producing layers of single phase Mg 2 Ni. Ni substrates coated to date include powder, foils and wire. Using Ni-Fe substrates it has also been demonstrated that Fe can be distributed through the Mg 2 Ni alloy layer which could have a beneficial effect on the hydrogen storage characteristics. The alloy layers formed have been characterised by XRD and SEM equipped with EDX analysis. Hydrogen storage properties have been evaluated using an Intelligent Gravimetric Analyser (IGA). LPPS avoids most of the sintering of powder particles during processing which is observed in other vapour phase techniques while producing a stoichiometric composition of Mg 2 Ni. It is also a simple, low cost technique for producing these alloys. (author)

  1. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  2. McPhy-Energy’s proposal for solid state hydrogen storage materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    Jehan, Michel, E-mail: michel.jehan@mcphy.com [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Fruchart, Daniel, E-mail: daniel.fruchart@grenoble.cnrs.fr [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Institut Néel and CRETA, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •Mechanical alloying with nano-structurizing highly reactive magnesium metal hydrides particles. •Solid reversible hydrogen storage at scale of kg to tons of hydrogen using MgH{sub 2} composite discs. •Natural Expanded Graphite draining heat of reaction during sorption. •Change Phase Material storing reversibly heat of reaction within tank storage as adiabatic system. •Technology fully adapted for renewable energy storage and network energy peak shavings through H{sub 2}. -- Abstract: The renewable resources related, for instance, to solar energies exhibit two main characteristics. They have no practical limits in regards to the efficiency and their various capture methods. However, their intermittence prevents any direct and immediate use of the resulting power. McPhy-Energy proposes solutions based on water electrolysis for hydrogen generation and storage on reversible metal hydrides to efficiently cover various energy generation ranges from MW h to GW h. Large stationary storage units, based on MgH{sub 2}, are presently developed, including both the advanced materials and systems for a total energy storage from ∼70 to more than 90% efficient. Various designs of MgH{sub 2}-based tanks are proposed, allowing the optional storage of the heat of the Mg–MgH{sub 2} reaction in an adjacent phase changing material. The combination of these operations leads to the storage of huge amounts of hydrogen and heat in our so-called adiabatic-tanks. Adapted to intermittent energy production and consumption from renewable sources (wind, sun, tide, etc.), nuclear over-production at night, or others, tanks distribute energy on demand for local applications (on-site domestic needs, refueling stations, etc.) via turbine or fuel cell electricity production.

  3. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  4. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  5. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  6. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  7. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system

    International Nuclear Information System (INIS)

    Cau, Giorgio; Cocco, Daniele; Petrollese, Mario; Knudsen Kær, Søren; Milan, Christian

    2014-01-01

    Highlights: • Energy management strategy for hybrid stand-alone power plant with hydrogen storage. • Optimal scheduling of storage devices to minimize the utilization costs. • A scenario tree method is used to manage uncertainties of weather and load forecasts. • A reduction of operational costs and energy losses is achieved. - Abstract: This paper presents a novel energy management strategy (EMS) to control an isolated microgrid powered by a photovoltaic array and a wind turbine and equipped with two different energy storage systems: electric batteries and a hydrogen production and storage system. In particular, an optimal scheduling of storage devices is carried out to maximize the benefits of available renewable resources by operating the photovoltaic systems and the wind turbine at their maximum power points and by minimizing the overall utilization costs. Unlike conventional EMS based on the state-of-charge (SOC) of batteries, the proposed EMS takes into account the uncertainty due to the intermittent nature of renewable resources and electricity demand. In particular, the uncertainties are evaluated with a stochastic approach through the construction of different scenarios with corresponding probabilities. The EMS is defined by minimizing the utilization costs of the energy storage equipment. The weather conditions recorded in four different weeks between April and December are used as case studies to test the proposed EMS and the results obtained are compared with a conventional EMS based on the state-of-charge of batteries. The results show a reduction of utilization costs of about 15% in comparison to conventional SOC-based EMS and an increase of the average energy storage efficiency

  8. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    Science.gov (United States)

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  9. Borazine-boron nitride hybrid hydrogen storage system

    Science.gov (United States)

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  10. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  11. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  12. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  13. Hydriding properties of an Mg-Al-Ni-Nd hydrogen storage alloy

    International Nuclear Information System (INIS)

    Duarte, G.I.; Bustamante, L.A.C.; Miranda, P.E.V. de

    2007-01-01

    This work presents the development of an Mg-Al-Ni-Nd alloy for hydrogen storage purposes. The hydrogen storage properties of the alloy were analyzed using pressure-composition isotherms and hydrogen desorption kinetic curves at different temperatures. The characterization of the microstructures, before and after hydrogenation, was performed using X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Hydrogenation caused significant changes in the alloy microstructure. Two pressure plateaus were observed. The maximum hydrogen storage reversible capacity measured was 4 wt.% at 573 K

  14. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  15. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  16. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  17. Properties of thermoplastic polymers used for hydrogen storage under pressure

    International Nuclear Information System (INIS)

    Jousse, F.; Mazabraud, P.; Icard, B.; Mosdale, R.; Serre-Combe, P.

    2000-01-01

    The storage of hydrogen is one of the points of development of industrial applications of fuel cells of type PEMFC ( Proton Exchange Membrane Fuel Cell). Developing an effective system of storage remains major. Ameliorations concerning the storage density of energy, the cost and facilities and the storage must be considered especially for the mobile applications. Among different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seem the most promising way. The storage of hydrogen gas at ambient temperature today appears as the simplest technical solution, the most advanced and the most economic solution. However, the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  18. Hydrogen storage inside graphene-oxide frameworks

    International Nuclear Information System (INIS)

    Chan Yue; Hill, James M

    2011-01-01

    In this paper, we use applied mathematical modelling to investigate the storage of hydrogen molecules inside graphene-oxide frameworks, which comprise two parallel graphenes rigidly separated by perpendicular ligands. Hydrogen uptake is calculated for graphene-oxide frameworks using the continuous approximation and an equation of state for both the bulk and adsorption gas phases. We first validate our approach by obtaining results for two parallel graphene sheets. This result agrees well with an existing theoretical result, namely 1.85 wt% from our calculations, and 2 wt% arising from an ab initio and grand canonical Monte Carlo calculation. This provides confidence to the determination of the hydrogen uptake for the four graphene-oxide frameworks, GOF-120, GOF-66, GOF-28 and GOF-6, and we obtain 1.68, 2, 6.33 and 0 wt%, respectively. The high value obtained for GOF-28 may be partly explained by the fact that the benzenediboronic acid pillars between graphene sheets not only provide mechanical support and porous spaces for the molecular structure but also provide the higher binding energy to enhance the hydrogen storage inside graphene-oxide frameworks. For the other three structures, this binding energy is not as large in comparison to that of GOF-28 and this effect diminishes as the ligand density decreases. In the absence of conflicting data, the present work indicates GOF-28 as a likely contender for practical hydrogen storage.

  19. Low-Cost Precursors to Novel Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This

  20. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.

    Science.gov (United States)

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling; Zhang, Cairong

    2017-08-02

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H₂ molecules is four with the average adsorption energy of -0.429 eV/H₂. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of -0.296 eV/H₂. The adsorption of H₂ molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H₂ molecules and positively charged Sc atoms.

  1. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  2. Hydrogen storage composition and method

    Science.gov (United States)

    Heung, Leung K; Wicks, George G.

    2003-01-01

    A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form C.sub.n H.sub.2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

  3. Hydrogen Storage using Physisorption : Modified Carbon Nanofibers and Related Materials

    NARCIS (Netherlands)

    Nijkamp, Marije Gessien

    2002-01-01

    This thesis describes our research on adsorbent systems for hydrogen storage for small scale, mobile application. Hydrogen storage is a key element in the change-over from the less efficient and polluting internal combustion engine to the pollution-free operating hydrogen fuel cell. In general,

  4. Production method of hydrogen storage alloy electrode and hydrogen storage alloy for rechageable battery; Suiso kyuzo gokin denkyoku oyobi chikudenchiyo suiso kyuzo gokin no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Mizutaki, F.; Ishimaru, M.

    1995-04-07

    This invention relates to the hydrogen storage alloy electrode in which the misch metal-nickel system hydrogen storage alloy is employed. The grain of the hydrogen storage alloy is controlled so as to reduce the dendrite cell size. Since the hydrogen storage alloy having such small dendrite cell size has no part where the metal structure is too brittle, the alloy has a sufficient mechanical strength. It can stand for the swell and shrink stress associated with the sorption and desorption of hydrogen. The disintegration, therefore, due to the cracking of the alloy is hardly to take place. In addition, the quenching of molten alloy at a cooling rate of 1000{degree}C/sec or faster suppresses the occurrence of segregation of any alloy element at the grain boundary, making it possible to produce the homogeneous and mechanically strong alloy. In other words, it can be achieved to produce a hydrogen storage alloy electrode having an excellent cycle property. 4 figs., 1 tab.

  5. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  6. Sizing and economic analysis of stand alone photovoltaic system with hydrogen storage

    Science.gov (United States)

    Nordin, N. D.; Rahman, H. A.

    2017-11-01

    This paper proposes a design steps in sizing of standalone photovoltaic system with hydrogen storage using intuitive method. The main advantage of this method is it uses a direct mathematical approach to find system’s size based on daily load consumption and average irradiation data. The keys of system design are to satisfy a pre-determined load requirement and maintain hydrogen storage’s state of charge during low solar irradiation period. To test the effectiveness of the proposed method, a case study is conducted using Kuala Lumpur’s generated meteorological data and rural area’s typical daily load profile of 2.215 kWh. In addition, an economic analysis is performed to appraise the proposed system feasibility. The finding shows that the levelized cost of energy for proposed system is RM 1.98 kWh. However, based on sizing results obtained using a published method with AGM battery as back-up supply, the system cost is lower and more economically viable. The feasibility of PV system with hydrogen storage can be improved if the efficiency of hydrogen storage technologies significantly increases in the future. Hence, a sensitivity analysis is performed to verify the effect of electrolyzer and fuel cell efficiencies towards levelized cost of energy. Efficiencies of electrolyzer and fuel cell available in current market are validated using laboratory’s experimental data. This finding is needed to envisage the applicability of photovoltaic system with hydrogen storage as a future power supply source in Malaysia.

  7. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  8. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  9. Redox Flow Batteries, Hydrogen and Distributed Storage.

    Science.gov (United States)

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  10. Improving hydrogen storage in Ni-doped carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Menendez, J.A.; Pis, J.J.; Arenillas, A. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2009-04-15

    The effect of nickel distribution and content in Ni-doped carbon nanospheres on hydrogen storage capacity under conditions of moderate temperature and pressure was studied. It was found that the nickel distribution, obtained by using different doping techniques and conditions, has a noticeable influence on hydrogen storage capacity. The samples with the most homogeneous nickel distribution, obtained by pre-oxidising the carbon nanospheres, displayed the highest storage capacity. In addition, storage capacity is influenced by the amount of nickel. It was found a higher storage capacity in samples containing 5 wt.% of Ni. This is due to the greater interactions between the nickel and the support that produce a higher activation of the solid through a spillover effect. (author)

  11. (LiNH2-MgH2): a viable hydrogen storage system

    International Nuclear Information System (INIS)

    Luo Weifang

    2004-01-01

    One of the problems related to the employment of hydrogen-based fuel cells for vehicular transportation is 'on board' storage. Hydrogen storage in solids has long been recognized as one of the most practical approaches for this purpose. The capacity of existing storage materials is markedly below that needed for vehicular use. Recently Chen et al. [Nature 420 (21) (2002) 302; J. Phys. Chem. B 107 (2003) 10967] reported a lithium nitride/imide system, with a high capacity, 11.5 wt.%, however, its operating temperature and pressure are not satisfactory for vehicular application. In this research a new storage material has been developed, which is from the partial substitution of lithium by magnesium in the nitride/imide system. The plateau pressure of this new Mg-substituted system is about 30 bar and 200 deg. C with a H capacity of 4.5 wt.% and possibly higher. This is a very promising H-storage material for 'on board' storage for vehicular applications

  12. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-04-18

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for our engineered glass microspheres is about 150,000 psi, permitting a threefold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers.

  13. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  14. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  15. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  16. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    Science.gov (United States)

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  18. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  19. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    Science.gov (United States)

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  20. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  1. Experimental study on uranium alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Deaconu, M.; Meleg, T.; Dinu, A.; Mihalache, M.; Ciuca, I.; Abrudeanu, M.

    2013-01-01

    The heaviest isotope of hydrogen is one of critically important elements in the field of fusion reactor technology. Conventionally, uranium metal is used for the storage of heavier isotopes of hydrogen (D and T). Under appropriate conditions, uranium absorbs hydrogen to form a stable UH 3 compound when exposed to molecular hydrogen at the temperature range of 300-500 O C at varied operating pressure below one atmosphere. However, hydriding-dehydriding on pure uranium disintegrates the specimen into fine powder. The powder is highly pyrophoric and has low heat conductivity, which makes it difficult to control the temperature, and has a high possibility of contamination Due to the powdering effect as hydrogen in uranium, alloying uranium with other metal looks promising for the use of hydrogen storage materials. This paper has the aim to study the hydriding properties of uranium alloys, including U-Ti U-Mo and U-Ni. The uranium alloys specimens were prepared by melting the constituent elements by means of simultaneous measurements of thermo-gravimetric and differential thermal analyses (TGA-DTA) and studied in as cast condition as hydrogen storage materials. Then samples were thermally treated under constant flow of hydrogen, at various temperatures between 573-973 0 K. The structural and absorption properties of the products obtained were examined by thermo-gravimetric analysis (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM). They slowly reacted with hydrogen to form the ternary hydride and the hydrogenated samples mainly consisted of the pursued ternary hydride bat contained also U or UO 2 and some transient phase. (authors)

  2. Theoretical maximal storage of hydrogen in zeolitic frameworks.

    Science.gov (United States)

    Vitillo, Jenny G; Ricchiardi, Gabriele; Spoto, Giuseppe; Zecchina, Adriano

    2005-12-07

    Physisorption and encapsulation of molecular hydrogen in tailored microporous materials are two of the options for hydrogen storage. Among these materials, zeolites have been widely investigated. In these materials, the attained storage capacities vary widely with structure and composition, leading to the expectation that materials with improved binding sites, together with lighter frameworks, may represent efficient storage materials. In this work, we address the problem of the determination of the maximum amount of molecular hydrogen which could, in principle, be stored in a given zeolitic framework, as limited by the size, structure and flexibility of its pore system. To this end, the progressive filling with H2 of 12 purely siliceous models of common zeolite frameworks has been simulated by means of classical molecular mechanics. By monitoring the variation of cell parameters upon progressive filling of the pores, conclusions are drawn regarding the maximum storage capacity of each framework and, more generally, on framework flexibility. The flexible non-pentasils RHO, FAU, KFI, LTA and CHA display the highest maximal capacities, ranging between 2.86-2.65 mass%, well below the targets set for automotive applications but still in an interesting range. The predicted maximal storage capacities correlate well with experimental results obtained at low temperature. The technique is easily extendable to any other microporous structure, and it can provide a method for the screening of hypothetical new materials for hydrogen storage applications.

  3. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  4. Hydrogen storage of catalyst-containing activated carbon fibers and effect of surface modification

    International Nuclear Information System (INIS)

    Ikpyo Hong; Seong Young Lee; Kyung Hee Lee; Sei Min Park

    2005-01-01

    Introduction: The hydrogen storage capacities of many kind of carbon nano materials have been reported with possibility and improbability. It is reported that specific surface area of carbon nano material has not a close relation to hydrogen storage capacity. This result shows that there is difference between specific surface area measured by isothermal nitrogen adsorption and direct measurement of adsorption with hydrogen and suggests that the carbon material with relatively low specific surface area can have high hydrogen storage capacity when they have effective nano pore. In this study, petroleum based isotropic pitch was hybridized with several kinds of transitional metal base organometallic compound solved with organic solvent and spun by electro-spinning method. The catalyst-dispersed ACFs were prepared and characterized and hydrogen storage capacity was measured. The effect of surface modification of ACFs by physical and chemical treatment was also investigated. Experimental: The isotropic precursor pitch prepared by nitrogen blowing from naphtha cracking bottom oil was hybridized with transitional metal based acetyl acetonates and spun by solvent electro-spinning. Tetrahydrofuran and quinoline were used as solvent with various mixing ratio. High voltage DC power generator which could adjust in the range of 0-60000 V and 2 mA maximum current was used to supply electrostatic force. At the solvent electro-spinning, solvent mixing ratio and pitch concentration, voltage and spinning distance were varied and their influences were investigated. The catalyst-dispersed electro-spun pitch fibers were thermal stabilized, carbonized and activated by conventional heat treatment for activated carbon fiber. Prepared fibers were observed by high resolution SEM and pore properties were characterized by Micromeritics ASAP2020 model physi-sorption analyzer. Hydrogen storage capacities were measured by equipment modified from Thermo Cahn TherMax 500 model high pressure

  5. Hydrogen storage in thin film magnesium-scandium alloys

    International Nuclear Information System (INIS)

    Niessen, R.A. H.; Notten, P.H. L.

    2005-01-01

    Thorough electrochemical materials research has been performed on thin films of novel magnesium-scandium hydrogen storage alloys. It was found that palladium-capped thin films of Mg x Sc (1-x) with different compositions (ranging from x=0.50 -0.90) show an increase in hydrogen storage capacity of more than 5-20% as compared to their bulk equivalents using even higher discharge rates. The maximum reversible hydrogen storage capacity at the optimal composition (Mg 80 Sc 20 ) amounts to 1795-bar mAh/g corresponding to a hydrogen content of 2.05 H/M or 6.7-bar wt.%, which is close to five times that of the commonly used hydride-forming materials in commercial NiMH batteries. Galvanostatic intermittent titration technique (GITT) measurements show that the equilibrium pressure during discharge is lower than that of bulk powders by one order of magnitude (10 -7 -bar mbar versus 10 -6 -bar mbar, respectively)

  6. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    Science.gov (United States)

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-05

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Sprik, Sam; Tamburello, David; Thornton, Matthew

    2018-05-03

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.

  8. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brooks, Kriston P. [Pacific Northwest National Laboratory; Tamburello, David A. [Savannah River National Laboratory

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3).

  9. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.

    Science.gov (United States)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E

    2011-03-01

    The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.

  10. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Yuhong Chen

    2017-08-01

    Full Text Available The generalized gradient approximation (GGA function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG. It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms.

  11. Hydrogen storage in microwave-treated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Hong-Zhang [BK21 Physics Division, Department of Energy Science, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea); School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Kim, Tae Hyung; Lim, Seong Chu; Jeong, Hae-Kyung; Jin, Mei Hua; Jo, Young Woo; Lee, Young Hee [BK21 Physics Division, Department of Energy Science, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea)

    2010-03-15

    Multiwalled carbon nanotubes (MWCNTs) treated by microwave and heat treatment were used for hydrogen storage. Their storage capacity was measured using a quadruple quartz crystal microbalance in a moisture-free chamber at room temperature and at relatively low pressure (0.5 MPa). Deuterium was also used to monitor the presence of moisture. The hydrogen storage capacity of the microwave-treated MWCNTs was increased to nearly 0.35 wt% over 0.1 wt% for the pristine sample and increased further to 0.4 wt%, with improved stability after subsequent heat-treatment. The increase in the storage capacity by the microwave treatment was mostly attributed to the introduction of micropore surfaces, while the stability improvement after the subsequent heat treatment was related to the removal of functional groups. We also propose a measurement method that eliminates the moisture effect by measuring the storage capacity with hydrogen and deuterium gas. (author)

  12. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    Energy Technology Data Exchange (ETDEWEB)

    Stetson, Ned T., E-mail: ned.stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); McWhorter, Scott [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-12-15

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided.

  13. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    International Nuclear Information System (INIS)

    Stetson, Ned T.; Ordaz, Grace; Adams, Jesse; Randolph, Katie; McWhorter, Scott

    2013-01-01

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided

  14. Simultaneous purification and storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Weber, R.; Carlson, E. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-08-01

    Specially coated magnesium particles have been shown to selectively absorb hydrogen from a hydrogen-rich gas stream such as reformate. These coated magnesium particles can store the absorbed hydrogen as required and subsequently deliver pure hydrogen, just as uncoated magnesium particles can. These coated magnesium particles could be used in a device that accepts a steady stream of reformate, as from a methane reformer, stores the selectively absorbed hydrogen indefinitely, and delivers purified hydrogen on demand. Unfortunately, this coating (magnesium nitride) has been shown to degrade over a period of several weeks, so that the magnesium within evidences progressively lower storage capacity. The authors are investigating two other coatings, one of which might be applicable to hydridable metals other than magnesium, to replace magnesium nitride.

  15. Combining computation and experiment to accelerate the discovery of new hydrogen storage materials

    Science.gov (United States)

    Siegel, Donald

    2009-03-01

    The potential of emerging technologies such as fuel cells (FCs) and photovoltaics for environmentally-benign power generation has sparked renewed interest in the development of novel materials for high density energy storage. For applications in the transportation sector, the demands placed upon energy storage media are especially stringent, as a potential replacement for fossil-fuel-powered internal combustion engines -- namely, the proton exchange membrane FC -- utilizes hydrogen as a fuel. Although hydrogen has about three times the energy density of gasoline by weight, its volumetric energy density (even at 700 bar) is roughly a factor of six smaller. Consequently, the safe and efficient storage of hydrogen has been identified as one of the key materials-based challenges to realizing a transition to FC vehicles. This talk will present an overview of recent efforts at Ford aimed at developing new materials for reversible, solid state hydrogen storage. A tight coupling between first-principles modeling and experiments has greatly accelerated our efforts, and several examples illustrating the benefits of this approach will be presented.

  16. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  17. Hydrogen storage in clathrate hydrates: Current state of the art and future directions

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Rajnish; Linga, Praveen

    2014-01-01

    Hydrogen is looked upon as the next generation clean energy carrier, search for an efficient material and method for storing hydrogen has been pursued relentlessly. Improving hydrogen storage capacity to meet DOE targets has been challenging and research efforts are continuously put forth to achieve the set targets and to make hydrogen storage a commercially realizable process. This review comprehensively summarizes the state of the art experimental work conducted on the storage of hydrogen as hydrogen clathrates both at the molecular level and macroscopic level. It identifies future directions and challenges for this exciting area of research. Hydrogen storage capacities of different clathrate structures – sI, sII, sH, sVI and semi clathrates have been compiled and presented. In addition, promising new approaches for increasing hydrogen storage capacity have been described. Future directions for achieving increased hydrogen storage and process scale up have been outlined. Despite few limitations in storing hydrogen in the form of clathrates, this domain receives prominent attention due to more environmental-friendly method of synthesis, easy recovery of molecular hydrogen with minimum energy requirement, and improved safety of the process

  18. Key study on the potential of hydrazine bisborane for solid- and liquid-state chemical hydrogen storage.

    Science.gov (United States)

    Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B

    2015-05-04

    Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

  19. Chemical grafting of Co9S8 onto C60 for hydrogen spillover and storage.

    Science.gov (United States)

    Han, Lu; Qin, Wei; Zhou, Jia; Jian, Jiahuang; Lu, Songtao; Wu, Xiaohong; Fan, Guohua; Gao, Peng; Liu, Boyu

    2017-04-20

    Metal modified C 60 is considered to be a potential hydrogen storage medium due to its high theoretical capacity. Research interest is growing in various hybrid inorganic compounds-C 60 . While the design and synthesis of a novel hybrid inorganic compound-C 60 is difficult to attain, it has been theorized that the atomic hydrogen could transfer from the inorganic compound to the adjacent C 60 surfaces via spillover and surface diffusion. Here, as a proof of concept experiment, we graft Co 9 S 8 onto C 60 via a facile high energy ball milling process. The Raman, XPS, XRD, TEM, HTEM and EELS measurements have been conducted to evaluate the composition and structure of the pizza-like hybrid material. In addition, the electrochemical measurements and calculated results demonstrate that the chemical "bridges" (C-S bonds) between these two materials enhance the binding strength and, hence, facilitate the hydriding reaction of C 60 during the hydrogen storage process. As a result, an increased hydrogen storage capacity of 4.03 wt% is achieved, along with a favorable cycling stability of ∼80% after 50 cycles. Excluding the direct hydrogen storage contribution from Co 9 S 8 in the hybrid paper, the hydrogen storage ability of C 60 was enhanced by 5.9× through the hydriding reaction caused by the Co 9 S 8 modifier. Based on these experimental measurements and theoretical calculations, the unique chemical structure reported here could potentially inspire other C 60 -based advanced hybrids.

  20. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    Science.gov (United States)

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  1. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  2. CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

    Science.gov (United States)

    Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.

    2018-04-01

    Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

  3. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  4. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  5. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Falcao, D.S. [Departamento de Eng. Quimica, Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, R.A.; Rangel, C.M. [Instituto Nacional de Engenharia e Tecnologia e Inovacao, Paco do Lumiar 22, 1649-038 (Portugal)

    2006-08-15

    The catalytic hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH{sub 4} concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. (author)

  6. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  7. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    Science.gov (United States)

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  8. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  9. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  10. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    Science.gov (United States)

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  11. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

    CSIR Research Space (South Africa)

    Annamalai, Perushini

    2017-01-01

    Full Text Available -defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1...

  12. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  13. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  14. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  15. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  16. Contribution to the study of new hydrogen production, purification and storage processes

    International Nuclear Information System (INIS)

    Manaud, Jean-Pierre

    1984-01-01

    This research thesis addresses the various aspects of hydrogen production, purification and process within the scope of hydrogen-based energy production. Hydrogen production is achieved by water decomposition through a thermo-chemical process. The author reports the thermodynamic assessment of a water decomposition thermo-chemical cycle for chlorine and sulphur-related cycles. He reports the experimental investigation of hydrogen purification by selective diffusion, the study of contamination of a CeMg12 alloy by nitrogen, oxygen and water vapour with application to hydrogen storage under the form of hydrides [fr

  17. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  18. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  19. Storage of hydrogen in advanced high pressure container. Appendices

    International Nuclear Information System (INIS)

    Bentzen, J.J.; Lystrup, A.

    2005-07-01

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  20. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions.

    Science.gov (United States)

    Lueking, Angela D; Yang, Ralph T; Rodriguez, Nelly M; Baker, R Terry K

    2004-02-03

    A series of graphite nanofibers (GNFs) that were subjected to various pretreatments were used to determine how modifications in the carbon structure formed during either synthesis or pretreatment steps results in active or inactive materials for hydrogen storage. The nanofibers possessing a herringbone structure and a high degree of defects were found to exhibit the best performance for hydrogen storage. These materials were exposed to several pretreatment procedures, including oxidative, reductive, and inert environments. Significant hydrogen storage levels were found for several in situ pretreatments. Examination of the nanofibers by high-resolution transmission electron microscopy (TEM) after pretreatment and subsequent hydrogen storage revealed the existence of edge attack and an enhancement in the generation of structural defects. These findings suggest that pretreatment in certain environments results in the creation of catalytic sites that are favorable toward hydrogen storage. The best pretreatment resulted in a 3.8% hydrogen release after exposure at 69 bar and room temperature.

  3. Property changes of some hydrogen storage alloys upon hydrogen absorption-desorption cycling

    International Nuclear Information System (INIS)

    Park, C.N.; Cho, S.W.; Choi, J.

    2005-01-01

    Hydrogen absorption-desorption cycling induced by pressure change in a closed system were carried out with LaNi 5 , La 0.7 Ce 0.3 Ni 4 Cu and TiFe 0.9 Ni 0.1 alloys. PC isotherms measured during the cycling showed some changes in hydrogen storage capacity, plateau pressure and hysteresis of the alloys. The half capacity life of LaNi 5 alloy can be projected as 70,000 cycles for room temperature pressure cycling. When La 0.7 Ce 0.3 Ni 4 Cu alloy was pressure cycled both of the plateau pressures were decreased significantly and continuously. TiFe 0.9 Ni 0.1 alloy showed a good resistance to cyclic degradation. Heat treatments of the degraded alloys under 1 atm of hydrogen gas recovered most of the hydrogen storage properties to the initial level even though they were degraded again more rapidly upon subsequent cycling. (orig.)

  4. Simulation of Porous Medium Hydrogen Storage - Estimation of Storage Capacity and Deliverability for a North German anticlinal Structure

    Science.gov (United States)

    Wang, B.; Bauer, S.; Pfeiffer, W. T.

    2015-12-01

    Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.

  5. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    D Cazorla Amoros; D Lozano Castello; F Suarez Garcia; M Jorda Beneytoa; A Linares Solano

    2005-01-01

    Full text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ). [1] A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous carbons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  6. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    Cazorla-Amoros, D.; Lozano-Castello, D.; Suarez-Garcia, F.; Jorda-Beneyto, M.; Linares-Solano, A.

    2005-01-01

    Complete text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ) [1]. A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous cartons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  7. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  8. Activation of hydrogen storage materials in the Li-Mg-N-H system: Effect on storage properties

    International Nuclear Information System (INIS)

    Yang, Jun; Sudik, Andrea; Wolverton, C.

    2007-01-01

    We investigate the thermodynamics, kinetics, and capacity of the hydrogen storage reaction: Li 2 Mg(NH) 2 + 2H 2 ↔ Mg(NH 2 ) 2 + 2LiH. Starting with LiNH 2 and MgH 2 , two distinct procedures have been previously proposed for activating samples to induce the reversible storage reaction. We clarify here the impact of these two activation procedures on the resulting capacity for the Li-Mg-N-H reaction. Additionally, we measure the temperature-dependent kinetic absorption data for this hydrogen storage system. Finally, our experiments confirm the previously reported formation enthalpy (ΔH), hydrogen capacity, and pressure-composition-isotherm (PCI) data, and suggest that this system represents a kinetically (but not thermodynamically) limited system for vehicular on-board storage applications

  9. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  10. Computational investigation of hydrogen storage on B5V3

    Science.gov (United States)

    Guo, Chen; Wang, Chong

    2018-05-01

    Based on density functional theory method with 6-311+G(d,p) basis set, the structures, stability and hydrogen storage capacity of B5V3 have been theoretically investigated. It is found that a maximum of seven hydrogen molecules can be adsorbed on B5V3 with gravimetric uptake capacity of 6.39 wt%. The uptake capacity exceeds the target set by the US Department of Energy for vehicular application. Moreover, the average adsorption energy of B5V3 01 (7H2) is 0.60 eV/H2 in the desirable range of reversible hydrogen storage. The kinetic stability of H2 adsorbed on B5V3 01 is confirmed by using gap between highest occupied molecular orbital (HOMO)and the lowest unoccupied molecular orbital (LUMO). The gap value of B5V3 01 (7H2) is 2.81 eV, which indicates the compound with high stability. In addition, the thermochemistry calculation (Gibbs free energy corrected adsorption energy) is used to analyse if the adsorption is favourable or not at different temperatures. It can be found that the Gibbs corrected adsorption energy of B5V3 01 (7H2) is still positive at 400 K at 1 atm. It means that the adsorption of seven hydrogen molecules on B5V3 01 is energetically favourable in a fairly wide temperature range. All the results show that B5V3 01 can be considered as a promising material for hydrogen storage.

  11. Hydrogen storage behavior of ZrCo1-xNix alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Parida, S.C.; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Intermetallic compound ZrCo is proposed as a candidate material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER) Storage and Delivery System (SDS). However, it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes disproportionation as per the reaction; 2ZrCo + H 2 ↔ ZrH 2 + ZrCO 2 . This results in reduction in hydrogen storage capacity of ZrCo, which is not a desirable property for SDS. Konishi et al. reported that the disproportionation reaction can be suppressed by decreasing the desorption temperature. It is anticipated that suitable ternary alloying of ZrCo can elevated the hydrogen equilibrium pressure and hence decrease the desorption temperature for supply of 100 kPa of hydrogen. In this study, we have investigated the effect of Ni content on the hydrogenation behavior of ZrCo 1-x Ni x alloys

  12. A nanostructured Ni/graphene hybrid for enhanced electrochemical hydrogen storage

    International Nuclear Information System (INIS)

    Choi, Moon-Hyung; Min, Young-Je; Gwak, Gyeong-Hyeon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    Highlights: • Graphene oxide(GO) was hybridized with the Ni(OH) 2 . • The Ni(OH) 2 /GO was reduced to Ni/graphene. • XRD, TEM, and X-ray absorption spectroscopy were examined. • The hydrogen storage property of Ni/graphene was significantly enhanced. - Abstract: To fabricate electrochemical hydrogen storage materials with delaminated structure, the graphene oxide (GO) in the ethylene glycol solution was reassembled in the presence of the precursor of Ni nanoparticles, and then, the reassembled hybrid was reduced under hydrogen atmosphere to obtain Ni/graphene hybrid. X-ray diffraction patterns and X-ray absorption spectscopic (XAS) analysis clearly show that Ni nanoparticles in Ni/graphene hybrid maintain its nanosized nature even after hybridization with graphene nanosheet (GNS). According to the TEM analysis, the Ni nanoparticles with an average size of 5.2 nm are homogeneously distributed onto the GNS in such a way that the nanoporous structure with much amount of void spaces could be fabricated. The obtained Ni/GNS exhibits a hydrogen storage capacity of 160 mA h/g, while the specific capacity of the graphene nanosheet was only 21 mA h/g. A flexible delaminated structure of Ni/GNS nanocomposite could provide additional intercalation sites for accommodation of hydrogen, leading to the enhancement of hydrogen storage capacity

  13. Solid NMR characterization of hydrogen solid storage matrices

    International Nuclear Information System (INIS)

    Pilette, M.A.; Charpentier, T.; Berthault, P.

    2007-01-01

    The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)

  14. High Capacity Hydrogen Storage on Nanoporous Biocarbon

    Science.gov (United States)

    Burress, Jacob; Wood, Mikael; Gordon, Michael; Parilla, Phillip; Benham, Michael; Wexler, Carlos; Hawthorne, Fred; Pfeifer, Peter

    2008-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) has been optimizing nanoporous biocarbon for high capacity hydrogen storage. The hydrogen storage was measured gravimetrically and volumetrically (Sievert's apparatus). These measurements have been validated by NREL and Hiden Isochema. Sample S-33/k, our current best performer, stores 73-91 g H2/kg carbon at 77 K and 47 bar, and 1.0-1.6 g H2/kg carbon at 293 K and 47 bar. Hydrogen isotherms run by Hiden Isochema have given experimental binding energies of 8.8 kJ/mol compared to the binding energy of graphite of 5 kJ/mol. Results from a novel boron doping technique will also be presented. The benefits and validity of using boron-doping on carbon will also be discussed.

  15. GAT 4 production and storage of hydrogen. Report July 2004; GAT 4 procduction et stockage de l'hydrogene. Rapport juillet 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  16. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  17. A study on the Development of Zr-Ti-Mn-V-Ni hydrogen Storage Alloy for Ni-MH Rechargeable Battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Myung; Jung, Jae Han; Lee, Sang Min; Lee, Jae Young [Department of Meterial Science and Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-12-15

    The Zr-based AB{sub 5} type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized AB{sub 5} type hydrogen storage alloys. In this work, we tried to develop the Zr-based AB type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability (author). 21 refs., 2 tabs., 13 figs.

  18. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  19. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  20. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.

    Science.gov (United States)

    Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; Hirose, Takuji; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2017-03-22

    A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two -OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h -1 and a turnover number of 7280 at 25 °C, which are higher than ever reported. Moreover, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2 -storage system in water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrogen storage by polylithiated molecules and nanostructures

    NARCIS (Netherlands)

    Er, S.; de Wijs, Gilles A.; Brocks, G.

    2009-01-01

    We study polylithiated molecules as building blocks for hydrogen storage materials, using first-principles calculations. CLi4 and OLi2 bind 12 and 10 hydrogen molecules, respectively, with an average binding energy of 0.10 and 0.13 eV, leading to gravimetric densities of 37.8 and 40.3 wt % of H2.

  2. Hydrogen isotope storage behavior of Zr1-xTixCo alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Tritium storage properties similar to uranium make ZrCo as a suitable candidate material for storage, supply and recovery of hydrogen isotopes in various tritium facilities. Beside non-radioactive, nonpyrophoric at room temperature and higher storage capacity (H/f.u. up to 3, f.u. = ZrCo), it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes dis-proportionation as per the reaction; ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The present study is aimed to investigate the effect of Ti content on the hydrogen storage behavior of Zr 1-x Ti x Co alloys and the hydrogen isotope effect

  3. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage.

    Science.gov (United States)

    Zhou, Chunyu; Szpunar, Jerzy A; Cui, Xiaoyu

    2016-06-22

    We have designed a Ni-graphene composite for hydrogen storage with Ni nanoparticles of 10 nm in size, uniformly dispersed over a graphene substrate. This system exhibits attractive features like high gravimetric density, ambient conditions, and low activation temperature for hydrogen release. When charged at room temperature and an atmospheric hydrogen pressure of 1 bar, it could yield a hydrogen capacity of 0.14 wt %. When hydrogen pressure increased to 60 bar, the sorbent had a hydrogen gravimetric density of 1.18 wt %. The hydrogen release could occur at an operating temperature below 150 °C and completes at 250 °C.

  4. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  5. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  6. Properties of Mg-Al alloys in relation to hydrogen storage

    DEFF Research Database (Denmark)

    Andreasen, A.

    2005-01-01

    storage e.g. in stationary applications. In this report the properties of Mg-Al alloys are reviewed in relation to solid state hydrogen storage. Alloying with Al reduces the hydrogen capacity since Al doesnot form a hydride under conventional hydriding conditions, however both the thermodynamical......Magnesium theoretically stores 7.6 wt. % hydrogen, although it requires heating to above 300 degrees C in order to release hydrogen. This limits its use for mobile application. However, due to its low price and abundance magnesium should still beconsidered as a potential candidate for hydrogen...... properties (lower desorption temperature), and kinetics of hydrogenation/dehydrogenation are improved. In addition to this, the low price of the hydride isretained along with improved heat transfer properties and improved resistance towards oxygen contamination....

  7. Nickel foam/polyaniline-based carbon/palladium composite electrodes for hydrogen storage

    International Nuclear Information System (INIS)

    Skowronski, Jan M.; Urbaniak, Jan

    2008-01-01

    The sandwich-like nickel/palladium/carbon electrodes exhibiting ability to absorb hydrogen in alkaline solution are presented. Electrodes were prepared by successive deposition of palladium and polyaniline layers on nickel foam substrate followed by heat treatment to give Ni/Pd/C electrode. It was shown that thermal conversion of polymer into carbon layer and subsequent thermal activation of carbon component bring about the modification of the mechanism of reversible hydrogen sorption. It was proven that carbon layer, interacting with Pd catalyst, plays a considerable role in the process of hydrogen storage. In the other series of experiments, Pd particles were dispersed electrochemically on carbon coating leading to Ni/C/Pd system. The adding of the next carbon layer resulted in Ni/C/Pd/C electrodes. Electrochemical properties of the electrodes depend on both the sequence of Pd and C layers and the preparation/activation of carbon coating. Electrochemical behavior of sandwich-like electrodes in the reaction of hydrogen sorption/desorption was characterized in 6 M KOH using the cyclic voltammetry method and the results obtained were compared to those for Ni/Pd electrode. The anodic desorption of hydrogen from electrodes free and containing carbon layer was considered after the potentiodynamic as well as potentiostatic sorption of hydrogen. The influence of the sorption potential and the time of rest of electrodes at a cut-off circuit on the kinetics of hydrogen recovery were examined. The results obtained for Ni/Pd/C electrodes indicate that the displacement of hydrogen between C and Pd phase takes place during the rest at a cut-off circuit. Electrodes containing carbon layer require longer time for hydrogen electrosorption. On the other hand, the presence of carbon layer in electrodes is advantageous because a considerable longer retention of hydrogen is possible, as compared to Pd/Ni electrode. Hydrogen stored in sandwich-like electrodes can instantly be

  8. Metal–organic frameworks for hydrogen storage

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-08-01

    Full Text Available Over the past decade, hydrogen storage in metal-organic frameworks (MOFs) has received increasing attention worldwide because they possess versatile structures, high surface areas, large free volumes, ultrahigh porosities, and tunable pore...

  9. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  10. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer

    Science.gov (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel

    2017-04-01

    Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.

  11. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 1. Structural, Hydrogen Storage, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-11-01

    Full Text Available The effects of Fe partially replacing Ni in a misch metal-based superlattice hydrogen absorbing alloy (HAA were studied. Addition of Fe increases the lattice constants and abundance of the main Ce2Ni7 phase, decreases the NdNi3 phase abundance, and increases the CaCu5 phase when the Fe content is above 2.3 at%. For the gaseous phase hydrogen storage (H-storage, Fe incorporation does not change the storage capacity or equilibrium pressure, but it does decrease the change in both entropy and enthalpy. With regard to electrochemistry, >2.3 at% Fe decreases both the full and high-rate discharge capacities due to the deterioration in both bulk transport (caused by decreased secondary phase abundance and consequent lower synergetic effect and surface electrochemical reaction (caused by the lower volume of the surface metallic Ni inclusions. In a low-temperature environment (−40 °C, although Fe increases the reactive surface area, it also severely hinders the ability of the surface catalytic, leading to a net increase in surface charge-transfer resistance. Even though Fe increases the abundance of the beneficial Ce2Ni7 phase with a trade-off for the relatively unfavorable NdNi3 phase, it also deteriorates the electrochemical performance due to a less active surface. Therefore, further surface treatment methods that are able to increase the surface catalytic ability in Fe-containing superlattice alloys and potentially reveal the positive contributions that Fe provides structurally are worth investigating in the future.

  12. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  13. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage.

    Science.gov (United States)

    Wang, Xianfu; Xie, Yiming; Tang, Kai; Wang, Chao; Yan, Chenglin

    2018-05-11

    Hydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen-ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO 3 ) electrode with high Coulombic efficiency and stability. The as-obtained electrode exhibits ultrafast hydrogen-ion storage properties with a specific capacity of 88 mA hg -1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO 3 electrode in the hydrogen-ion cell was investigated in detail. The results reveal a conversion reaction of the MoO 3 electrode into H 0.88 MoO 3 during the first hydrogen-ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H 0.88 MoO 3 and H 0.12 MoO 3 during the following cycles. This study reveals new opportunities for the development of high-power energy storage devices with lightweight elements. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  15. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO2 (coal) or CO2 and H2O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability. This

  16. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    Dixon, David A.; Arduengo, Anthony J. III

    2010-01-01

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO 2 (coal) or CO 2 and H 2 O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability

  17. Modeling of hydrogen storage in hydride-forming materials : statistical thermodynamics

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Rey, W.J.J.; Notten, P.H.L.

    2006-01-01

    A new lattice gas model has been developed, describing the hydrogen storage in hydride-forming materials. This model is based on the mean-field theory and Bragg-Williams approximation. To describe first-order phase transitions and two-phase coexistence regions, a binary alloy approach has been

  18. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  19. Tests of a polarized source of hydrogen and deuterium based on spin-exchange optical pumping and a storage cell for polarized deuterium

    International Nuclear Information System (INIS)

    Holt, R.J.; Gilman, R.; Kinney, E.R.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which is based on the principle of spin-exchange optical pumping has been developed at Argonne. The advantages of this method over conventional polarized sources for internal target experiments is discussed. At present, the laser-driven polarized source delivers hydrogen 8 x 10 16 atoms/s with a polarization of 24% and deuterium at 6 x 10 16 atoms/s with a polarization of 25%. A passive storage cell for polarized deuterium was tested in the VEPP-3 electron storage ring. The storage cell was found to increase the target thickness by approximately a factor of three and no loss in polarization was observed. 10 refs., 4 figs., 2 tabs

  20. Hydrogen Storage Characteristics of CNT doped NaAlH4

    International Nuclear Information System (INIS)

    Pukazhselvan, D.; Sterlin Leo Hudson, M.; Bipin Kumar Gupta; Srivastava, O.N.

    2006-01-01

    The current Hydrogen based energy infrastructure required a high energy density consumer friendly hydrogen storage media. Although the desired goals for the hydrogen fueled vehicular transport has not yet met by any hydrogen storage material, complex Sodium Alanate is said to be a promising candidate under this demand due to its high hydrogen storage capacity and the thermodynamically permissible reversible hydrogen storage capacity. However its poor sorption behavior under moderate conditions (NaAlH 4 →Na 3 AlH 6 ; 3.7 wt % vs 50 hrs at ∼170 C and Na 3 AlH 6 →NaH; 1.85 wt % vs 30 hrs at ∼220 C) urges their limited uses in ages. But these limitations can be removed by using catalysts particularly transition elements but the location of catalyst in NaAlH 4 matrix and the possible mechanism is not yet clearly understood. The aim of the present investigation is to improve the overall sorption characteristics of NaAlH 4 by a new light weighted high surface area (1315 sq mtr/gm) material (CNT) admixing and to obtain a best doping level to NaAlH 4 . So far only Ti has been attempted as a suitable catalyst. It is believed that the high surface area of CNT can provide an additional solid-gas (H 2 ) surface/interface and it can produce thermal contact between grains (thermal conductivity Kth of MWCNT: 3000 w/k and Kth of NaAlH 4 : 0.32 w/k) for stimulating their thermally activated dissociation in NaAlH 4 . In parallel with this approach XRD of NaAlH 4 reveals that there was no change in lattice structure after doping by CNT, SEM picture depicts that CNT precipitation in grain surfaces. Catalytic concentration of various mole % of x values finds that x = 8 is the best doping level as it gives 3.3 wt % of hydrogen within 2 hrs. The comparative sorption behavior with Ti:NaAlH 4 also shows CNTs as an optimum alternative catalyst to NaAlH 4 and besides this CNT doped desorbed ingredients shown good re-hydrogenation behavior(3.7 wt % at 8. cycle and 4.2 wt % maximum at

  1. Modulated synthesis of Cr-MOF (MIL 101) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Segakweng, T

    2014-08-01

    Full Text Available as a fuel into fuel cell technologies is only possible when safe and effective hydrogen storage systems become available. Complete usage of hydrogen is only possible if proper and effective storage systems with fast kinetics becomes available. Porous...

  2. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  3. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  4. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  5. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  6. Phase transition and hydrogen storage properties of Mg–Ga alloy

    International Nuclear Information System (INIS)

    Wu, Daifeng; Ouyang, Liuzhang; Wu, Cong; Wang, Hui; Liu, Jiangwen; Sun, Lixian; Zhu, Min

    2015-01-01

    Highlights: • A fully reversible transformation in Mg–Ga–H system with reduced dehydrogenation enthalpy is realized. • The mechanism of phase transformation in the de/hydrogenation of Mg–Ga alloy is revealed. • The de/hydrogenation process of Mg 5 Ga 2 compound is expressed as: Mg 5 Ga 2 + H 2 ↔ 2Mg 2 Ga + MgH 2 . - Abstract: Mg-based alloys are viewed as one of the most promising candidates for hydrogen storage; however, high desorption temperature and the sluggish kinetics of MgH 2 hinder their practical application. Alloying and changing the reaction pathway are effective methods to solve these issues. As the solid solubility of Ga in Mg is 5 wt% at 573 K, the preparation of a Mg(Ga) solid solution at relatively high temperatures was designed in this paper. The phase transition and hydrogen storage properties of the MgH 2 and Mg 5 Ga 2 composite (hereafter referred to as Mg–Ga alloy) were investigated by X-ray diffraction (XRD), pressure–composition-isotherm (PCI) measurements, and differential scanning calorimetry (DSC). The reversible hydrogen storage capacity of Mg–Ga alloy is 5.7 wt% H 2 . During the dehydrogenation process of Mg–Ga alloy, Mg 2 Ga reacts with MgH 2 , initially releasing H 2 and forming Mg 5 Ga 2 ; subsequently, MgH 2 decomposes into Mg with further release of H 2 . The phase transition mechanism of the Mg 5 Ga 2 compound during the dehydrogenation process was also investigated by using in situ XRD analysis. In addition, the dehydrogenation enthalpy and entropy changes, and the apparent activation energy were also calculated

  7. Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

    2008-12-31

    The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay

  8. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  9. Hydrogen storage in carbon nanofibres for defence applications : the influence of growth parameters on graphitic quality and storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, M.; Mellor, I. [Morgan Materials Technology Ltd., Worcestershire (United Kingdom); Shatwell, R.A.; Prentice, C. [QinetiQ Farnborough, Hampshire (United Kingdom); Browning, D.J. [QinetiQ Haslar, Gosport, Hampshire (United Kingdom); Lakeman, J.B. [Dstl Portsdown, Cosham, Hampshire (United Kingdom); Gerrard, M.L.; Mortimer, R.J. [Loughborough Univ. of Technology, Loughborough, Leicestershire (United Kingdom). Dept. of Chemistry

    2002-07-01

    The results of a study on hydrogen storage in carbon or graphite nanofibres (GNFs) were presented. Graphite nanofibres used in hydrogen storage treatment were synthesized at 600 degrees C by passing ethylene over a series of Fe:Ni:Cu catalysts. It was shown that while hydrogen storage can occur for up to 6.5 wt per cent, this number can vary depending on the method of preparation and heat treatment. Hydrogen storage requires an effective method, such as Raman spectroscopy, for characterising the product. Transmission Electron Microscopy also helped in the optimisation of the process to produce highly graphitic nanofibres. The main role of heat treatment is to remove carbon from the surface of the GNFs, allowing access to the graphene planes. Hydrogen storage experiments were conducted at 120 bar, using a bespoke apparatus with differential pressure. A detailed error analysis was performed on the uptake measurement system. The rate of penetration by hydrogen into a layer of carbon capping graphene planes is found to be negligible. It is concluded that hydrogen adsorption will not be observed unless the layer is removed. A maximum uptake of 4.2 wt per cent was achieved, increasing to more than 6.5 wt per cent following heat treatment at 1000 degrees C. 32 refs., 3 tabs., 7 figs.

  10. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  11. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  12. Properties of MgAl alloys in relation to hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-08-01

    Magnesium theoretically stores 7.6 wt. % hydrogen, although it requires heating to above 300 degrees C in order to release hydrogen. This limits its use for mobile application. However, due to its low price and abundance magnesium should still be considered as a potential candidate for hydrogen storage e.g. in stationary applications. In this report the properties of Mg-Al alloys are reviewed in relation to solid state hydrogen storage Alloying with Al reduces the hydrogen capacity since Al does not form a hydride under conventional hydriding conditions, however both the thermodynamical properties (lower desorption temperature), and kinetics of hydrogenation/dehydrogenation are improved. In addition to this, the low price of the hydride is retained along with improved heat transfer properties and improved resistance towards oxygen contamination. (au)

  13. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  14. Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage.

    Science.gov (United States)

    Shin, Kyuchul; Kim, Yongkwan; Strobel, Timothy A; Prasad, P S R; Sugahara, Takeshi; Lee, Huen; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-06-11

    In this study, we demonstrate that tetra-n-butylammonium borohydride [(n-C(4)H(9))(4)NBH(4)] can be used to form a hybrid hydrogen storage material. Powder X-ray diffraction measurements verify the formation of tetra-n-butylammonium borohydride semiclathrate, while Raman spectroscopic and direct gas release measurements confirm the storage of molecular hydrogen within the vacant cavities. Subsequent to clathrate decomposition and the release of physically bound H(2), additional hydrogen was produced from the hybrid system via a hydrolysis reaction between the water host molecules and the incorporated BH(4)(-) anions. The additional hydrogen produced from the hydrolysis reaction resulted in a 170% increase in the gravimetric hydrogen storage capacity, or 27% greater storage than fully occupied THF + H(2) hydrate. The decomposition temperature of tetra-n-butylammonium borohydride semiclathrate was measured at 5.7 degrees C, which is higher than that for pure THF hydrate (4.4 degrees C). The present results reveal that the BH(4)(-) anion is capable of stabilizing tetraalkylammonium hydrates.

  15. Calcium-decorated carbyne networks as hydrogen storage media.

    Science.gov (United States)

    Sorokin, Pavel B; Lee, Hoonkyung; Antipina, Lyubov Yu; Singh, Abhishek K; Yakobson, Boris I

    2011-07-13

    Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of ∼0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed ∼8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.

  16. Prediction of hydrogen storage on Y-decorated graphene: A density functional theory study

    International Nuclear Information System (INIS)

    Liu, Wenbo; Liu, Yang; Wang, Rongguo

    2014-01-01

    Highlight: • Rare earth metal Y has an excellent performance on hydrogen storage. • After decoration, each Y can attach six hydrogen molecules without dissociation. • The Y atoms disperse uniformly and stably on B/graphene. • The enhancement of H binding is caused by hybridization and electrostatic attraction. - Abstract: Yttrium decorated graphene has been investigated as a potential carrier for high density hydrogen storage. The adsorption energy and optimized geometry for yttrium on pristine and boron doped graphene have been studied by DFT calculations. The clustering and stability of isolated yttrium atoms on graphene has also been considered. For yttrium decorated boron doped graphene, each yttrium can attach six hydrogen molecules with average adsorption energy of −0.568 eV per hydrogen molecule and the hydrogen storage capacity of this material is 5.78 wt.%, indicating yttrium decorated boron doped graphene as a promising hydrogen storage candidate

  17. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  18. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.

    Science.gov (United States)

    de Jongh, Petra E; Adelhelm, Philipp

    2010-12-17

    Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.

  19. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  20. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  1. Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2016-10-01

    Full Text Available It is of great economic value to produce high-value PET-based MOF materials by the veritable elimination of waste PET, and provide sufficient MOF materials for hydrogen storage applications. Consequently, this work demonstrates the use of waste PET...

  2. Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE H2 Storage Program: Trends toward Future Development

    Directory of Open Access Journals (Sweden)

    Scott McWhorter

    2012-05-01

    Full Text Available Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG emissions. However, conventional methods of storing H2 via high-pressure or liquid H2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H2 uptake and release. Therefore, the US Department of Energy (DOE initiated three Centers of Excellence focused on developing H2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC applications.

  3. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  4. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Dekura, Shun; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi

    2014-07-23

    Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.

  5. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Science.gov (United States)

    2011-01-25

    ... Hydrogen Storage Workshops AGENCY: Fuel Cell Technologies Program, Office of Energy Efficiency and... the National Renewable Energy Laboratory, in conjunction with the Hydrogen Storage team of the EERE... hydrogen storage in the Washington, DC metro area. DATES: The workshops will be held on Monday, February 14...

  6. Sodium hydrazinidoborane: a chemical hydrogen-storage material.

    Science.gov (United States)

    Moury, Romain; Demirci, Umit B; Ichikawa, Takayuki; Filinchuk, Yaroslav; Chiriac, Rodica; van der Lee, Arie; Miele, Philippe

    2013-04-01

    Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

    Directory of Open Access Journals (Sweden)

    Zaļeskis Genadijs

    2016-12-01

    Full Text Available This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

  8. Nanoconfined Alkali-metal borohydrides for Reversible Hydrogen Storage

    NARCIS (Netherlands)

    Ngene, P.

    2012-01-01

    Hydrogen has been identified as a promising energy carrier. Its combustion is not associated with pollution when generated from renewable energy sources like solar and wind. The large-scale use of hydrogen for intermittent energy storage and as a fuel for cars can contribute to the realization of a

  9. Hydrogen Storage and Release Properties of Transition Metal-Added Magnesium Hydride Alloy Fabricated by Grinding in a Hydrogen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of); Park, Hye Ryoung [Chonnam National University, Gwangju (Korea, Republic of)

    2016-07-15

    90 wt% MgH{sub 2}+5 wt% Ni+2.5 wt% Fe+2.5 wt% Ti (called MgH{sub 2}+Ni+Fe+Ti), a hydrogen storage and release material, was fabricated by grinding in a hydrogen atmosphere, and then its quantities of stored and released hydrogen as a function of time were examined. A nanocrystalline MgH{sub 2}+Ni+Fe+Ti specimen was made by grinding in a hydrogen atmosphere and subsequent hydrogen storage-release cycling. The crystallite size of Mg and the strain of the Mg crystallite after ten hydrogen storage-release cycles, which were obtained using the Williamson-Hall method, were 38.6 (±1.4) nm and 0.025 (±0.0081) %, respectively. The MgH{sub 2}+Ni+Fe+Ti sample after the process of grinding in a hydrogen atmosphere was highly reactive with hydrogen. The sample exhibited an available storage capacity of hydrogen (the amount of hydrogen stored during 60 minutes) of about 5.7 wt%. At the first cycle, the MgH2+Ni+Fe+Ti sample stored hydrogen of 5.53 wt% in 5 minutes, 5.66 wt% in 10 minutes and 5.73 wt% in 60 minutes at 573 K and 12 bar of hydrogen. The MgH{sub 2}+Ni+Fe+Ti after activation released hydrogen of 0.56 wt% in 5 minutes, 1.26 wt% in 10 minutes, 2.64 wt% in 20 minutes, 3.82 wt% in 30 minutes, and 5.03 wt% in 60 minutes.

  10. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrogen storage in carbon nano-tubes; Stockage d'hydrogene dans les nanotubes de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Becher, M.; Haluska, M.; Hirscher, M. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Quintel, A.; Skakalova, V.; Dettlaff-Weglikovska, U.; Chen, X.; Hulman, M.; Choi, Y.; Roth, S.; Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Strobel, R.; Jorissen, L. [Zentrum fur Sonnenenergie und Wasserstoff-Forschung, Ulm (Germany); Kappes, M.M. [Karlsruhe Univ., Institut fur Physikalische Chemie(Germany); Fink, J. [Institut fur Festkorper-Und Werkstoffforschun, Dresden (Germany); Zuttel, A. [Fribourg Univ., Dept. Physique (Switzerland); Stepanek, I.; Bernier, P. [Montpellier-2 Univ., GDPC, 34 (France)

    2003-11-01

    Hydrogen storage in new nano-structured carbonic materials is a topic for lively discussion. The measured storage capacities of these materials, which have been announced in the literature during the last ten years are spread over an enormous range from about 0.1 wt% up to 67 wt%. This paper will give a report on the state of the art of hydrogen storage in carbon nano-structures. We shall critically review the recent 'key publications' on this topic, which claim storage capacities clearly above the technological bench mark set by the US Department of Energy, and we shall report new results which have been obtained in a joint project sponsored by the Federal Ministry for Education and Research in Germany (BMBF). (authors)

  12. Chemical storage of hydrogen in few-layer graphene

    Science.gov (United States)

    Subrahmanyam, K. S.; Kumar, Prashant; Maitra, Urmimala; Govindaraj, A.; Hembram, K. P. S. S.; Waghmare, Umesh V.; Rao, C. N. R.

    2011-01-01

    Birch reduction of few-layer graphene samples gives rise to hydrogenated samples containing up to 5 wt % of hydrogen. Spectroscopic studies reveal the presence of sp3 C-H bonds in the hydrogenated graphenes. They, however, decompose readily on heating to 500 °C or on irradiation with UV or laser radiation releasing all the hydrogen, thereby demonstrating the possible use of few-layer graphene for chemical storage of hydrogen. First-principles calculations throw light on the mechanism of dehydrogenation that appears to involve a significant reconstruction and relaxation of the lattice. PMID:21282617

  13. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... deals with the development of a simulation tool to design and compare different vehicular storage options with respect to targets based upon storage and fueling efficiencies. The set targets represent performance improvements with regard to the state-of-the-art technology and are separately defined...... volume. Heat transfer augmentation techniques (e.g. encapsulation) are found to be the reward strategy to achieve the same stored mass and fueling time of the standard technology, while enabling ambient temperature fueling and save the energy cooling demand (4.2 MJ per fueling) at the refueling station....

  14. Hydrogen storage alloy for a battery; Denchiyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    Saito, N.; Takahashi, M.; Sasai, T. [Japan Metals and Chemicals Co. Ltd., Tsukuba (Japan)

    1997-11-18

    Cobalt contained in a hydrogen storage alloy has an effect to improve a cycle life, but it gives a problem of inferior discharge characteristics. Moreover, cobalt is a rather expensive constituent and therefore, it is desirable to suppress its use as far as possible. This invention aims to present a hydrogen storage alloy with a long service life and high discharge characteristics for a negative electrode of a hydrogen battery without containing a large amount of cobalt. The hydrogen storage alloy of this invention has a composition of a general formula: RNi(a)Co(b)Al(c)Mn(d)Fe(e), where R is a mixture of rare earth elements and La content in this alloy is 25 to 70wt%, 3.7{<=}a{<=}4.0, 0.1{<=}b{<=}0.4, 0.20{<=}c{<=}0.4, 0.30{<=}d{<=}0.45, 0.2{<=}e{<=}0.4, 0.5{<=}b+e{<=}0.7 and 5.0{<=}a+b+c+d+e{<=}5.1. 1 tab.

  15. Study of hydrogen vehicle storage in enclosed parking facilities

    Energy Technology Data Exchange (ETDEWEB)

    Belzile, M A [Transport Canada, Ottawa, ON (Canada). ecoTECHNOLOGY for Vehicles; Cook, S [Canadian Hydrogen and Fuel Cell Association, Vancouver, BC (Canada)

    2009-07-01

    This paper reported on a coordinated research program between Transport Canada and Hydrogen and Fuel Cells Canada that examines issues of hydrogen vehicle storage. The ecoTECHNOLOGY for Vehicles (eTV) program focuses on the safety issues of operating and storing hydrogen fuelled vehicles in enclosed parking facilities. The aim of the program is to review existing research, current building standards applied in Canada, standards applied to natural gas vehicles, and standards and recommended practices for the design of fuel cell vehicles. Any potential gaps in safety will be considered in the design of CFD modeling scenarios. Considerations that extend beyond previously performed studies include the effect of Canadian climate on vehicle safety and leak detection equipment, fail-safe mechanism performance, as well as analyses of the frequency of hydrogen leak occurrences and the probability of ignition. The results of the study will facilitate policy makers and authorities in making decisions regarding the storage of hydrogen fuelled vehicles as they become more popular.

  16. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  17. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York (United States)

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  18. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    International Nuclear Information System (INIS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-01-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  19. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  20. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Y. F. [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  1. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-01-01

    In this work, the hydrogen storage behaviors of chemically treated multi-walled carbon nanotubes (MWNTs) were investigated. The surface properties of the functionalized MWNTs were confirmed by Fourier transfer infrared spectroscopy, X-ray diffraction, the Boehm titration method, and zeta-potential measurements. The hydrogen storage capacity of the MWNTs was evaluated at 298 K and 100 bar. In the experimental results, it was found that the chemical treatments introduced functional groups onto the MWNT surfaces. The amount of hydrogen storage was enhanced, by acidic surface treatment, to 0.42 wt.% in the acidic-treated MWNTs compared with 0.26 wt.% in the as-received MWNTs. Meanwhile, the basic surface treatment actually reduced the hydrogen storage capacity, to 0.24 wt.% in the basic-treated MWNTs sample. Consequently, it could be concluded that hydrogen storage is greatly influenced by the acidic characteristics of MWNT surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

  2. "Job-Sharing" Storage of Hydrogen in Ru/Li₂O Nanocomposites.

    Science.gov (United States)

    Fu, Lijun; Tang, Kun; Oh, Hyunchul; Manickam, Kandavel; Bräuniger, Thomas; Chandran, C Vinod; Menzel, Alexander; Hirscher, Michael; Samuelis, Dominik; Maier, Joachim

    2015-06-10

    A "job-sharing" hydrogen storage mechanism is proposed and experimentally investigated in Ru/Li2O nanocomposites in which H(+) is accommodated on the Li2O side, while H(-) or e(-) is stored on the side of Ru. Thermal desorption-mass spectroscopy results show that after loading with D2, Ru/Li2O exhibits an extra desorption peak, which is in contrast to Ru nanoparticles or ball-milled Li2O alone, indicating a synergistic hydrogen storage effect due to the presence of both phases. By varying the ratio of the two phases, it is shown that the effect increases monotonically with the area of the heterojunctions, indicating interface related hydrogen storage. X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance results show that a weak LiO···D bond is formed after loading in Ru/Li2O nanocomposites with D2. The storage-pressure curve seems to favor H(+)/H(-) over H(+)/e(-) mechanism.

  3. Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials.

    Science.gov (United States)

    Pai, Sung Jin; Yeo, Byung Chul; Han, Sang Soo

    2016-01-21

    Liquid CBN (carbon-boron-nitrogen) hydrogen-storage materials such as 3-methyl-1,2-BN-cyclopentane have the advantage of being easily accessible for use in current liquid-fuel infrastructure. To develop practical liquid CBN hydrogen-storage materials, it is of great importance to understand the reaction pathways of hydrogenation/dehydrogenation in the liquid phase, which are difficult to discover by experimental methods. Herein, we developed a reactive force field (ReaxFFCBN) from quantum mechanical (QM) calculations based on density functional theory for the storage of hydrogen in BN-substituted cyclic hydrocarbon materials. The developed ReaxFFCBN provides similar dehydrogenation pathways and energetics to those predicted by QM calculations. Moreover, molecular dynamics (MD) simulations with the developed ReaxFFCBN can predict the stability and dehydrogenation behavior of various liquid CBN hydrogen-storage materials. Our simulations reveal that a unimolecular dehydrogenation mechanism is preferred in liquid CBN hydrogen-storage materials. However, as the temperature in the simulation increases, the contribution of a bimolecular dehydrogenation mechanism also increases. Moreover, our ReaxFF MD simulations show that in terms of thermal stability and dehydrogenation kinetics, liquid CBN materials with a hexagonal structure are more suitable materials than those with a pentagonal structure. We expect that the developed ReaxFFCBN could be a useful protocol in developing novel liquid CBN hydrogen-storage materials.

  4. Paracyclophane functionalized with Sc and Li for hydrogen storage

    Science.gov (United States)

    Sathe, Rohit Y.; Dhilip Kumar, T. J.

    2018-01-01

    Li and Sc metals functionalized on the delocalized π -electrons of benzene rings in [2,2]paracyclophane structure are studied for hydrogen storage efficiency by using the M06 DFT functional with 6-311G(d,p) basis set. It is found that Sc and Li functionalized [2,2]paracyclophane complexes can hold up to 10 H2 molecules and 8 H2 molecules by Kubas-Niu-Jena interaction and charge polarization mechanism with hydrogen weight percentage of 11.4 and 13.5, respectively. Molecular dynamics simulation at various temperatures showed appreciable thermal stability while the chemical potential calculation at room temperature reveals that Sc functionalized [2,2]paracyclophane system will be a promising hydrogen storage material.

  5. Optimizing the hydrogen storage in boron nitride nanotubes by defect engineering

    Energy Technology Data Exchange (ETDEWEB)

    Oezdogan, Kemal; Berber, Savas [Physics Department, Gebze Institute of Technology, Cayirova Kampusu, Gebze, 41400 Kocaeli (Turkey)

    2009-06-15

    We use ab initio density functional theory calculations to study the interaction of hydrogen with vacancies in boron nitride nanotubes to optimize the hydrogen storage capacity through defect engineering. The vacancies reconstruct by forming B-B and N-N bonds across the defect site, which are not as favorable as heteronuclear B-N bonds. Our total energy and structure optimization results indicate that the hydrogen cleaves these reconstructing bonds to form more stable atomic structures. The hydrogenated defects offer smaller charge densities that allow hydrogen molecule to pass through the nanotube wall for storing hydrogen inside the nanotubes. Our optimum reaction pathway search revealed that hydrogen molecules could indeed go through a hydrogenated defect site with relatively small energy barriers compared to the pristine nanotube wall. The calculated activation energies for different diameters suggest a preferential diameter range for optimum hydrogen storage in defective boron nitride nanotubes. (author)

  6. POTENTIAL FOR HYDROGEN BUILDUP IN HANFORD SEALED AIR FILLED NUCLEAR STORAGE VESSELS

    International Nuclear Information System (INIS)

    HEY BE

    2008-01-01

    This calculation is performed in accordance with HNF-PRO-8259, PHMC Calculation Preparation and Issue and addresses the question as to whether a flammable mixture of hydrogen gas can accumulate in a Hanford sealed nuclear storage vessel where the only source of hydrogen is the moisture in the air that initially filled the vessel Of specific concern is nuclear fuel inside IDENT 69-Gs, placed in Core Component Containers (CCCs) located inside Interim Storage Vaults (ISVs) at the Plutonium Finishing Plant (PFP) The CCCs are to be removed from the ISVs and placed inside a Hanford Unirradiated Fuel Package (HUFP) for transport and interim storage. The repackaging procedures mandated that no plastics were permitted, all labels and tape were to be removed and the pins to be clean and inspected Loading of the fuel into the CCC/ISV package was permitted only if it was not raining or snowing. This was to preclude the introduction of any water The purpose was to minimize the presence of any hydrogenous material inside the storage vessels. The scope of NFPA 69, 'Standard on Explosion Prevention Systems', precludes its applicability for this case. The reactor fuel pins are helium bonded. The non-fuel pins, such as the pellet stacks, are also helium bonded. The fuel pellets were sintered at temperatures that preclude any residual hydrogenous material. Hydrogen gas can be formed from neutron and gamma radiolysis of water vapor. The radiolysis reaction is quite complex involving several intermediate radicals, and competing recombination reactions. Hydrogen gas can also be formed through corrosion. This analysis takes a simplistic approach and assumes that all water vapor present in the storage vessel is decomposed into hydrogen gas. Although the analysis is needed to specifically address HUFP storage of nuclear fuel, it is equally applicable to any sealed fuel storage vessel under the assumptions listed

  7. Iron-titanium-mischmetal alloys for hydrogen storage

    Science.gov (United States)

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  8. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    Science.gov (United States)

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  9. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  10. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  11. Adsorption methods for hydrogen isotope storage on zeolite sieves

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, Ion; Vasut, Felicia; Brad, Sebastian; Lazar, Alin

    2001-01-01

    Adsorption molecular sieves and activated carbon were used for hydrogen isotopes. The adsorption process proceeds at liquid nitrogen and liquid hydrogen temperatures. The synthetic zeolites have similar properties as natural zeolites, but they have a regular pore structure and affinity for molecules of different size with defined shapes. Experimental results obtained at liquid nitrogen and liquid hydrogen temperatures evidenced the efficient behavior of the activated carbon and zeolite sieves for hydrogen isotope temporary storage. (authors)

  12. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  13. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  14. Hydrogen storage and fuel cells

    Science.gov (United States)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  15. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.

    Science.gov (United States)

    Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan

    2017-08-30

    Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.

  16. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen (WE-NET) (Sub-task 5. Development of hydrogen transportation and storage technology) (Edition 5. Development of hydrogen absorbing alloys for discrete transportation and storage); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) . Sub tusk 5. Suiso yuso chozo gijutsu no kaihatsu - Dai 5 hen. Bunsan yuso chozo you suiso kyuzo gokin no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Surveys and researches have been performed with an objective to accumulate knowledge required for R and D of a hydrogen transportation and storage technology. With respect to the hydrogen absorbing alloys for hydrogen transportation and storage, surveys have been carried out on the rare earth-nickel based alloy, magnesium based alloy, titanium/zirconium based alloy, vanadium based alloy, and other alloys. Regarding the hydrogen transportation and storage technology using hydrogen absorbing alloys, surveys have been made on R and D cases for hydrogen transporting containers, stationary hydrogen storing equipment, and hydrogen fuel tank for mobile equipment such as automobiles. For the R and D situation in overseas countries, site surveys have been executed on research organizations in Germany and Switzerland, the leader nations in R and D of hydrogen absorbing alloys. As a result of the surveys, the hydrogen absorbing alloys were found to have such R and D assignments as increase of effective hydrogen absorbing quantity, compliance with operating conditions, life extension, development of alloys easy in initial activation and fast in hydrogen discharge speed, and cost reduction. Items of the transportation and storage equipment have such assignments as making them compact, acceleration of heat conduction in alloy filling layers, handling of volume variation and internal stress, and long-term durability. (NEDO)

  17. Synthesis of vanadium-doped palladium nanoparticles for hydrogen storage materials

    Science.gov (United States)

    Yamamoto, Yuki; Miyachi, Mariko; Yamanoi, Yoshinori; Minoda, Ai; Maekawa, Shunsuke; Oshima, Shinji; Kobori, Yoshihiro; Nishihara, Hiroshi

    2011-12-01

    Palladium-vanadium (Pd/V) alloy nanoparticles stabilized with n-pentyl isocyanide were prepared as new hydrogen storage materials by a facile polyol-based synthetic route with tetraethylene glycol and NaOH at 250 °C. The size distribution of the nanoparticles thus obtained featured two peaks at 4.0 ± 1.1 and 1.4 ± 0.3 nm in diameter, which were the mixture of Pd/V alloy and Pd nanoparticles. The ratio between the number of Pd/V and that of Pd nanoparticles was 51:49, and the Pd:V ratio of the overall product was 9:1 in wt%, indicating that the 4.0 nm Pd/V nanoparticles were composed of 81% Pd and 19% V. The inclusion of vanadium caused the increase in the d-spacing and thus expansion of lattice constant. A rapid increase in hydrogen content at low H2 pressures was observed for the Pd/V nanoparticles, and a 0.47 wt% H2 adsorption capacity was achieved under a H2 pressure of 10 MPa at 303 K. Hydrogen storage performances of Pd/V alloy nanoparticles was superior compared with Pd nanoparticles.

  18. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  19. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    International Nuclear Information System (INIS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-01-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm–1 μm) with metal-oxide core–shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg–Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  20. Hydrogen storage by reaction between metallic amides and imides

    International Nuclear Information System (INIS)

    Eymery, J.B.; Cahen, S.; Tarascon, J.M.; Janot, R.

    2007-01-01

    This paper details the various metal-N-H systems reported in the literature as possible hydrogen storage materials. In a first part, we discuss the hydrogen storage performances of the Li-N-H system and the desorption mechanism of the LiH-LiNH 2 mixture is especially presented. The possibility of storing hydrogen using two other binary systems (Mg-N-H and Ca-N-H) is described in a second part. In the third part of the paper, we discuss about the performances of the highly promising Li-Mg-N-H system, for which a nice reversibility is obtained at 200 C with an experimental hydrogen capacity of about 5.0 wt.%. Other ternary systems, as Li-B-N-H and Li-Al-N-H, are presented in the last part of this review paper. We especially emphasize the performances obtained in our Laboratory at Amiens with a LiAl(NH 2 ) 4 -LiH mixture able to desorb around 6.0 wt.% of hydrogen at only 130 C. (authors)

  1. A study on the development of hypo-stoichiometric Zr-based hydrogen storage alloys with ultra-high capacity for anode material of Ni/MH secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-M.; Lee, H.; Kim, J.-H.; Lee, P.S.; Lee, J.-Y. [Korea Advanced Inst. of Science and Technology, Taejon (Korea). Dept. of Materials Science and Engineering

    2000-08-10

    Some hypo-stoichiometric Zr-based Laves phase alloys were prepared and studied from a viewpoint of discharge capacity for electrochemical application. After careful alloy design of ZrMn{sub 2}-based hydrogen storage alloys through changing their stoichiometry while substituting or adding some alloying elements, the Zr(Mn{sub 0.2}V{sub 0.2}Ni{sub 0.6}){sub 1.8} alloy reveals relatively good properties with regard to hydrogen storage capacity, hydrogen equilibrium pressure and electrochemical discharge capacity. In order to improve the discharge capacity and rate-capability, Zr is partially replaced by Ti. The discharge capacity of Zr{sub 1-x}Ti{sub x}(Mn{sub 0.2}V{sub 0.2}Ni{sub 0.6}){sub 1.8} (x=0.0, 0.2, 0.3, 0.4, 0.6) alloy electrodes at 30 C reaches a maximum value and decreases as the Ti fraction increases. In view of electrochemical and thermodynamic characteristics, the occurrence of a maximal phenomenon of the electrochemical discharge capacity of the alloy is attributed to a competition between decreasing hydrogen storage capacity and increasing rate-capability with Ti fraction. However, as the Ti fraction increases, the discharge capacity decreases drastically with repeated electrochemical cycling. Judging from the analysis of surface composition by Auger electron spectroscopy (AES), the rapid degradation with increasing Ti fraction in Zr-based alloy is ascribed to the fast growth of the oxygen-penetrated layer with cycling. Therefore, it is assured that the stoichiometry and Ti fraction should be optimized to obtain a good cycle life of the electrode maintaining high discharge capacity. On the basis of above results, the hydrogen storage capacity of the alloy with optimized composition (Zr{sub 0.65}Ti{sub 0.35}(Mn{sub 0.3}V{sub 0.14}Cr{sub 0.11}Ni{sub 0.65}){sub 1.76}) is about 1.68 wt% under 10 atm of equilibrium hydrogen pressure. (orig.)

  2. A study on hydrogen storage through adsorption in nano-structured carbons

    International Nuclear Information System (INIS)

    Langohr, D.

    2004-10-01

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  3. Storage of hydrogen and the problems it involves

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R; Jonville, P

    1975-01-01

    The limitation of fossil fuel resources has brought about active research in the field of synthetic fuels which, in the more or less near future, could lead to freedom from dependence on production of the former. On a long-term basis, hydrogen would appear to be the best candidate as a substitute for conventional fuels. Among the possibilities of storage in a motor vehicle, its absorption in a metallic hydride provides the most attractive solution. Account taken of the weight limitations of this storage method, the use of hydrogen in an internal combustion engine can be envisaged only for short-range urban vehicles. Optimal use of its energy content will be made possible by means of fuel cells. The development of such a storage-propulsion chain nevertheless requires considerable work in research and development, both for the study of hydrides and the technology of fuel cells.

  4. First-principles study of hydrogen storage in non-stoichiometric TiCx

    International Nuclear Information System (INIS)

    Ding, Haimin; Fan, Xiaoliang; Li, Chunyan; Liu, Xiangfa; Jiang, Dong; Wang, Chunyang

    2013-01-01

    Highlights: ► The absorption of hydrogen in non-stoichiometric TiC x is thermally favorable. ► As many as four hydrogen atoms can be trapped by a carbon vacancy. ► The diffusion of hydrogen in TiC x is difficult, especially in TiC x with high x. - Abstract: In this work, the first principles calculation has been performed to study the hydrogen storage in non-stoichiometric TiC x . It is found that hydrogen absorption in stoichiometric TiC is energetically unfavorable, while it is favorable in non-stoichiometric TiC x . This indicates that the existence of carbon vacancies is essential for hydrogenation storage in TiC x . At the same time, multiple hydrogen occupancy of the vacancy has been confirmed and it is calculated that as many as four hydrogen atoms can be trapped by a carbon vacancy. These absorbed hydrogen atoms tend to uniformly distribute around the vacancy. However, it is also found that the diffusion of hydrogen atoms in TiC x is difficult, especially in TiC x with high x.

  5. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  6. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  7. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid

  8. Density functional theory for hydrogen storage materials: successes and opportunities

    International Nuclear Information System (INIS)

    Hector, L G Jr; Herbst, J F

    2008-01-01

    Solid state systems for hydrogen storage continue to be the focus of considerable international research, driven to a large extent by technological demands, especially for mobile applications. Density functional theory (DFT) has become a valuable tool in this effort. It has greatly expanded our understanding of the properties of known hydrides, including electronic structure, hydrogen bonding character, enthalpy of formation, elastic behavior, and vibrational energetics. Moreover, DFT holds substantial promise for guiding the discovery of new materials. In this paper we discuss, within the context of results from our own work, some successes and a few shortcomings of state-of-the-art DFT as applied to hydrogen storage materials

  9. Hybrid functional calculations of potential hydrogen storage material: Complex dimagnesium iron hydride

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-06-01

    By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  11. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  12. Improvement of hydrogen storage kinetics in ball-milled magnesium doped with antimony

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír; Roupcová, Pavla

    2017-01-01

    Roč. 42, č. 9 (2017), s. 6144-6151 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Hydrogen * Hydrogen storage * Storage capacity * Magnesium alloys * Antimony Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 3.582, year: 2016

  13. Hydrogen storage in sonicated carbon materials

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G.S.; Choi, Y.J.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P.

    2001-01-01

    The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this

  14. A combinatorial characterization scheme for high-throughput investigations of hydrogen storage materials

    International Nuclear Information System (INIS)

    Hattrick-Simpers, Jason R; Chiu, Chun; Bendersky, Leonid A; Tan Zhuopeng; Oguchi, Hiroyuki; Heilweil, Edwin J; Maslar, James E

    2011-01-01

    In order to increase measurement throughput, a characterization scheme has been developed that accurately measures the hydrogen storage properties of materials in quantities ranging from 10 ng to 1 g. Initial identification of promising materials is realized by rapidly screening thin-film composition spread and thickness wedge samples using normalized IR emissivity imaging. The hydrogen storage properties of promising samples are confirmed through measurements on single-composition films with high-sensitivity (resolution <0.3 μg) Sievert's-type apparatus. For selected samples, larger quantities of up to ∼100 mg may be prepared and their (de)hydrogenation and micro-structural properties probed via parallel in situ Raman spectroscopy. Final confirmation of the hydrogen storage properties is obtained on ∼1 g powder samples using a combined Raman spectroscopy/Sievert's apparatus.

  15. Comparison of hydrogen storage properties of pure Mg and milled ...

    Indian Academy of Sciences (India)

    Administrator

    increase the hydriding and dehydriding rates, pure Mg was ground under hydrogen atmosphere (reactive .... Hydrogen storage properties of pure Mg and milled pure Mg. 833. Figure 3. ... elongated and flat shapes via collisions with the steel.

  16. Nickel-hydrogen battery and hydrogen storage alloy electrode; Nikkeru suiso denchi oyobi suiso kyuzo gokin denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Ono, T. [Furukawa Electric Co. Ltd., Tokyo (Japan); Furukawa, J. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1996-03-22

    Hermetically sealed nickel-hydrogen battery has such problem that the inner pressure of the battery elevates when it is overcharged since the oxygen gas evolves from the positive electrode. This invention relates to the hermetically sealed nickel-hydrogen battery consisting of positive electrode composed mainly of nickel hydroxide and negative electrode composed mainly of hydrogen storage alloy. According to the invention, the negative electrode contains organic sulfur compound having carbon-sulfur bond. As a result, the elevation of battery inner pressure due to the hydrogen gas evolution, the decrease in discharge capacity due to the repetition of charge and discharge, and the lowering of voltage after charging can be suppressed. The adequate content of the organic sulfur compound is 0.05 - 1 part in weight to 100 part in weight of hydrogen storage alloy. As for the organic sulfur compound, n-butylthiol, ethylthioethane, phenyldithiobenzene, trimethylsulfonium bromide, thiobenzophenone, 2,4-dinitrobenzenesulfenyl chloride, and ethylene sulphidic acid are employed. 2 figs., 1 tab.

  17. Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2016-06-01

    Full Text Available Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised...

  18. Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation.

    Science.gov (United States)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Huang, Huajun; Peng, Xin; Zeng, Guangming; Zhong, Hua; Liang, Jie; Ren, Miaomiao

    2013-07-01

    Graphene, as an ideal two-dimensional material and single-atom layer of graphite, has attracted exploding interests in multidisciplinary research because of its unique structure and exceptional physicochemical properties. Especially, graphene-based materials offer a wide range of potentialities for environmental remediation and energy applications. This review shows an extensive overview of the main principles and the recent synthetic technologies about designing and fabricating various innovative graphene-based materials. Furthermore, an extensive list of graphene-based sorbents and catalysts from vast literature has been compiled. The adsorptive and catalytic properties of graphene-based materials for the removal of various pollutants and hydrogen storage/production as available in the literature are presented. Tremendous adsorption capacity, excellent catalytic performance and abundant availability are the significant factors making these materials suitable alternatives for environmental pollutant control and energy-related system, especially in terms of the removal of pollutants in water, gas cleanup and purification, and hydrogen generation and storage. Meanwhile, a brief discussion is also included on the influence of graphene materials on the environment, and its toxicological effects. Lastly, some unsolved subjects together with major challenges in this germinating area of research are highlighted and discussed. Conclusively, the expanding of graphene-based materials in the field of adsorption and catalysis science represents a viable and powerful tool, resulting in the superior improvement of environmental pollution control and energy development. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hydrogen storage alloy electrode and the nickel-hydrogen secondary battery using the electrode; Suiso kyuzo gokin denkyoku to sorewo mochiita nikkeru/suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Ono, T. [Furukawa Electric Co. Ltd., Tokyo (Japan); Furukawa, J. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-02-14

    With respect to the conventional nickel-hydrogen secondary battery, pulverization of the hydrogen storage alloy due to repetition of charging-discharging cycles can be prevented by using a fluorocarbon resin as a binder in manufacture of the hydrogen storage alloy electrode; however, the inner pressure increase of the battery in case of overcharging can not be fully controlled. The invention relates to control of the inner pressure increase of the nickel-hydrogen secondary battery in case of overcharging. As to the hydrogen storage alloy electrode, the compound comprising the hydrogen storage alloy powder as a main ingredient is supported by a current collector; further, the compound particularly comprises a fluororubber as a binder. The nickel-hydrogen secondary battery equipped with the hydrogen storage alloy electrode can control the inner pressure increase of the battery in case of overcharging, and lessen decrease of the battery capacity due to repetition of charging-discharging cycles over long time. The effects are dependent on the use of the fluororubber as a binder which has good flexibility, and strong binding capacity as well as water repellency. 1 tab.

  20. A micro-fabricated hydrogen storage module with sub-atmospheric activation and durability in air exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xi; Payer, Joe H. [Corrosion and Reliability Engineering, Department of Chemical and Biomolecular Engineering, University of Akron, 302 Buchtel Common, Akron, OH 44325 (United States); Wainright, Jesse S.; Dudik, Laurie [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2011-01-15

    The objective of this work was to develop a hydrogen storage module for onboard electrical power sources suitable for use in micro-power systems and micro-electro-mechanical systems (MEMS). Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Important design aspects were (a) ready activation at sub-atmospheric hydrogen pressure and room temperature and (b) durability, i.e. capable of hundreds of absorption/desorption cycles and resistance to deactivation on exposure to air. Inks with palladium-treated intermetallic hydrogen storage alloys were developed and are shown here to be compatible with a thin-film micro-fabrication process. These hydrogen storage modules absorb hydrogen readily at atmospheric pressure, and the absorption/desorption rates remained fast even after the ink was exposed to air for 47 weeks. (author)

  1. Study on state equation for hydrogen storage measurement by volumetric method

    International Nuclear Information System (INIS)

    Dai Wei; Xu Jiajing; Wang Chaoyang; Tang Yongjian

    2014-01-01

    Volumetric measurement technique is one of the most popular methods for determining the amount of hydrogen storage. A new state equation was established which extended the limitations from the ideal gas state equation, the van der Waals equation and the Gou equation. The new state equation was then employed to describe the p-V-T character of hydrogen and investigate the adsorption quantity of hydrogen storage in resorcin-formaldehyde aerogel under different temperatures and pressures. The new equation was used to describe the density of hydrogen under different temperatures and pressures. The results are in good agreement with the experimental data. The differences arising from various underlying physics were carefully analyzed. (authors)

  2. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  3. Treatment method of hydrogen storage alloy for battery; Denchiyo suiso kyuzo gokin no shori hoho

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Y.; Kaminaka, H.; Nagata, T.; Takeshita, Y.

    1997-04-04

    A nickel-hydrogen battery using a hydrogen storage alloy takes considerably long time for the initial activation treatment after the assembly of the battery. In this invention, a hydrogen storage alloy containing nickel is immersed in an aqueous acid solution or an aqueous alkaline solution and washed with a solution containing a complexing agent to form a nickel complex by a reaction with Ni(OH)2 in a concentration of 10{sup -6} to 10{sup -1} followed by washing with water. By using this method, hydroxides, particularly, Ni(OH)2 deposited on the alloy surface on the treatment of the hydrogen storage alloy with aqueous acid or alkaline solution can be removed efficiently to afford the hydrogen storage alloy with a high initial activity. The hydrogen storage alloy which is the object of this treatment method is AB5 type and AB2 type alloy used for a nickel-hydrogen battery and an alloy composed of nickel is particularly preferable. The complexing agent is selected from ammonia, ethylenediamine and cyanides. 2 figs., 6 tabs.

  4. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.

    Science.gov (United States)

    Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  5. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  6. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  7. Hydrogen isotope storage in zircaloy scrap

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. S.; Kuk, I. H.; Chung, H.; Paek, S. W.; Kang, H. S

    1999-08-01

    8 MCi of tritium a year will be produced after wolsong TRF is in operation. The metal hydride form is one of useful tritium storage. The metals in use for metal hydride are uranium, titanium, etc., however uranium is limited to use by regulation, and titanium is relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scrap is produced by CANDU nuclear fuel fabrication process, which is also useful for hydrogen storage. The purpose of this study is to evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste by CANDU nuclear fuel fabrication process. The sample evacuated for an hour at 1000 deg C. The strip showed higher capacity : 0.7 at 25 deg C, 2.0 at 200 deg C, 2.0 at 200 deg C, 2.0 at 400 deg C, respectively. The H/M values for commercial zircaloy sponge were 2.0 at 25 deg C and 2.0 at 400 deg C.

  8. Hydrogen isotope storage in zircaloy scrap

    International Nuclear Information System (INIS)

    Lee, H. S.; Kuk, I. H.; Chung, H.; Paek, S. W.; Kang, H. S.

    1999-08-01

    8 MCi of tritium a year will be produced after wolsong TRF is in operation. The metal hydride form is one of useful tritium storage. The metals in use for metal hydride are uranium, titanium, etc., however uranium is limited to use by regulation, and titanium is relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scrap is produced by CANDU nuclear fuel fabrication process, which is also useful for hydrogen storage. The purpose of this study is to evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste by CANDU nuclear fuel fabrication process. The sample evacuated for an hour at 1000 deg C. The strip showed higher capacity : 0.7 at 25 deg C, 2.0 at 200 deg C, 2.0 at 200 deg C, 2.0 at 400 deg C, respectively. The H/M values for commercial zircaloy sponge were 2.0 at 25 deg C and 2.0 at 400 deg C

  9. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    Energy Technology Data Exchange (ETDEWEB)

    Petitpas, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benard, P [Universite du Quebec a Trois-Rivieres (Canada); Klebanoff, L E [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, J [Universite du Quebec a Trois-Rivieres (Canada); Aceves, S M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-01

    While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.

  10. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system

    DEFF Research Database (Denmark)

    Cau, Giorgo; Cocco, Daniele; Petrollese, Mario

    2014-01-01

    This paper presents a novel energy management strategy (EMS) to control an isolated microgrid powered by a photovoltaic array and a wind turbine and equipped with two different energy storage systems: electric batteries and a hydrogen production and storage system. In particular, an optimal...

  11. Ice XVII as a Novel Material for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Leonardo del Rosso

    2017-02-01

    Full Text Available Hydrogen storage is one of the most addressed issues in the green-economy field. The latest-discovered form of ice (XVII, obtained by application of an annealing treatment to a H 2 -filled ice sample in the C 0 -phase, could be inserted in the energy-storage context due to its surprising capacity of hydrogen physisorption, when exposed to even modest pressure (few mbars at temperature below 40 K, and desorption, when a thermal treatment is applied. In this work, we investigate quantitatively the adsorption properties of this simple material by means of spectroscopic and volumetric data, deriving its gravimetric and volumetric capacities as a function of the thermodynamic parameters, and calculating the usable capacity in isothermal conditions. The comparison of ice XVII with materials with a similar mechanism of hydrogen adsorption like metal-organic frameworks shows interesting performances of ice XVII in terms of hydrogen content, operating temperature and kinetics of adsorption-desorption. Any application of this material to realistic hydrogen tanks should take into account the thermodynamic limit of metastability of ice XVII, i.e., temperatures below about 130 K.

  12. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  13. Towards a hydrogen-driven society? Calculations and neutron scattering on potential hydrogen storage materials

    OpenAIRE

    Schimmel, H.G.

    2005-01-01

    For sustainable development, the resources of the earth need to be maintained and carbon dioxide emission should be avoided. In particular, we need to find an alternative for the use of fossil fuels in vehicles. Since long, hydrogen has been recognised as the fuel of the future because it exhausts only water when used in fuel cells and hardly any pollutants when used in conventional internal combustion engines. However, the storage of hydrogen onboard vehicles is a major concern. Hydrogen is ...

  14. Electric field enhanced hydrogen storage on polarizable materials substrates

    Science.gov (United States)

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  15. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41.

    Science.gov (United States)

    Park, Soo-Jin; Lee, Seul-Yi

    2010-06-01

    The objective of the present work was to investigate the possibility of improving the hydrogen-storage capacity of mesoporous MCM-41 containing nickel (Ni) oxides (Ni/MCM-41). The MCM-41 and Ni/MCM-41 were prepared using a hydrothermal process as a function of Ni content (2, 5, and 10 wt.% in the MCM-41). The surface functional groups of the Ni/MCM-41 were identified by Fourier transform infrared spectroscopy (FTIR). The structure and morphology of the Ni/MCM-41 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). XRD results showed a well-ordered hexagonal pore structure; FE-TEM also revealed, as a complementary technique, the structure and pore size. The textural properties of the Ni/MCM-41 were analyzed using N(2) adsorption isotherms at 77 K. The hydrogen-storage capacity of the Ni/MCM-41 was evaluated at 298 K/100 bar. It was found that the presence of Ni on mesoporous MCM-41 created hydrogen-favorable sites that enhanced the hydrogen-storage capacity by a spillover effect. Furthermore, it was concluded that the hydrogen-storage capacity was greatly influenced by the amount of nickel oxide, resulting in a chemical reaction between Ni/MCM-41 and hydrogen molecules. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  16. Hydrogen storage behavior of one-dimensional TiBx chains

    International Nuclear Information System (INIS)

    Li Fen; Zhao Jijun; Chen Zhongfang

    2010-01-01

    We designed a series of one-dimensional TiB x (x = 2-6) chains used for hydrogen storage. Among them, TiB 5 possesses the lowest heat of formation and the highest binding energy, and is the most energetically favorable configuration. The binding energy per atom in TiB 5 is even larger than that in a Ti dimer, which suggests the preference of Ti atoms to combine with B 5 clusters rather than clustering. Each Ti atom in the TiB 5 chain can host four hydrogen molecules (corresponding to a hydrogen storage capacity of 7.3 wt%) with an average binding energy of 43.7 kJ mol -1 /H 2 . The significant charge transfer and strong Kubas σ-H 2 interaction between H 2 and Ti atoms contribute to the ideal dihydrogen binding energies.

  17. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  18. Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage

    Science.gov (United States)

    2017-01-01

    The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar. PMID:28413259

  19. External electric field: An effective way to prevent aggregation of Mg atoms on γ-graphyne for high hydrogen storage capacity

    International Nuclear Information System (INIS)

    Liu, Ping-Ping; Zhang, Hong; Cheng, Xin-Lu; Tang, Yong-Jian

    2016-01-01

    Highlights: • Due to large pores in the sheet of γ-graphyne, it should be a potential materials for energy storage applications. Our calculations might motivate active experimental efforts in designing high-efficiency hydrogen storage media. • For the first time, we use an applied external electric field to prevent Mg atoms from clustering using density functional theory (DFT) calculations. • The results demonstrate that, for Mg-G after electric field (F = 0.05 V/nm) treatment, ten H_2 molecules per Mg atom can be adsorbed and the hydrogen storage capacities reach to 10.64 wt%, with the average binding energies of 0.28 eV/H_2. - Abstract: In this article, we investigate the hydrogen storage capacity of Mg-decorated γ-graphyne (Mg-G) based on DFT calculations. Our results indicate that an external electric field can effectively prevent Mg atoms aggregating on γ-graphyne sheet. The Mg-G, after electric field (F = 0.05 V/nm) treatment, can store up to ten H_2 molecules and the hydrogen storage capacity is 10.64 wt%, with the average adsorption energy of 0.28 eV/H_2. Our calculations demonstrate that Mg-G is a potential material for hydrogen storage with high capacity and might motivate active experimental efforts in designing hydrogen storage media.

  20. Development of porous materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Shinji Oshima; Osamu Kato; Takeshi Kataoka; Yoshihiro Kobori; Michiaki Adachi [Hydrogen and New Energy Research Laboratory Nippon Oil Corporation 8, Chidoricho, Naka-ku, Yokohama, 231-0815 (Japan)

    2006-07-01

    To achieve hydrogen storage of more than 5 mass%, we are focusing on porous materials that consist of light elements. At WHEC 15, we reported that KOH-activated bamboo charcoal showed 0.79 mass% hydrogen uptake at 9.5 MPa and 303 K. After examining various carbon materials, we found that carbonized and KOH-activated polyacrylonitrile fibers showed 1.0 mass% hydrogen uptake at 9.5 MPa and 303 K. When the pressure was raised to 35 MPa, this material showed 1.5 mass% hydrogen uptake at 303 K. Besides porous carbon, other materials, such as coordination polymers, were examined. Since these materials contain elements other than carbon, different adsorption phenomena may be expected. Although the values of their hydrogen uptakes are still lower than those of carbon materials, a coordination polymer which showed 0.38 mass% hydrogen uptake at 9.5 MPa and 303 K was revealed to give an adsorption density of 47 kg/m{sup 3} at 0.1 MPa and 77 K, the highest value reported for a coordination polymer. (authors)

  1. Hydrogen storage properties of Mg-23.3wt.%Ni eutectic alloy prepared via hydriding combustion synthesis followed by mechanical milling

    International Nuclear Information System (INIS)

    Liquan Li; Yunfeng Zhu; Xiaofeng Liu

    2006-01-01

    A Mg-23.3wt.%Ni eutectic alloy was prepared by the process of hydriding combustion synthesis followed by mechanical milling (HCS+MM). The product showed a high hydriding rate at 373 K and the dehydrogenation started at temperature as low as 423 K. Several reasons contributing to the improvement in hydrogen storage properties were presented. The result of this study will provide attractive information for mobile applications of magnesium hydrogen storage materials, and the process of HCS+MM developed in this study showed its potential for synthesizing magnesium based hydrogen storage materials with novel hydriding/de-hydriding properties. (authors)

  2. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States); Liu, Di-Jia [Texas A & M Univ., College Station, TX (United States)

    2017-12-01

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H2/kgsystem and volumetric capacity of 0.040 kg H2/Lsystem at a cost of $400/kg H2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL) collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal

  3. Fabrication of a three-electrode battery using hydrogen-storage materials

    Science.gov (United States)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  4. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  5. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    Science.gov (United States)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  6. Large Scale Production of Densified Hydrogen Using Integrated Refrigeration and Storage

    Science.gov (United States)

    Notardonato, William U.; Swanger, Adam Michael; Jumper, Kevin M.; Fesmire, James E.; Tomsik, Thomas M.; Johnson, Wesley L.

    2017-01-01

    Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage (IRAS) technology at NASA Kennedy Space Center led to the production of large quantities of solid densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. System energy balances and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing (up to 1 K), and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. Twenty silicon diode temperature sensors were recorded over approximately one month for testing at two different fill levels (33 67). The phenomenon, observed at both two fill levels, is described and presented detailed and explained herein., and The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.

  7. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    International Nuclear Information System (INIS)

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used

  8. Fundamental study on hydrogen storage with hydrogen absorbing alloys. Operating characteristics of storage tank; Suiso kyuzo gokin wo mochiita suiso chozo ni kansuru kiso kenkyu. Chozo yoki no dosa tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, S.; Sekiguchi, N.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Hydrogen absorption by a hydrogen storage (MH storage) is investigated for static characteristics, with a constant current applied to the hydrogen generator, and dynamic characteristics, with a fluctuating current applied to the same simulating actual insolation. In the experiment, alloy temperature (MH temperature) in the storage and a current for the generator are preset, and then automatic measurement is allowed to proceed at 10-second intervals of the differential pressure, hydrogen temperature in the piping, absolute pressure, MH temperature, room temperature, and water tank temperature. It is found as the result of the experiment that absorption performance is improved when the MH storage is cooled; that the mean absorption rate which is 1 without cooling increases to 1.62 at 7degC; that the mean absorption rate changes in proportion to the applied current (introduced hydrogen flow rate); that the rate which is 1 at 32A decreases to 0.53 that at 16A; that the absorption rate is dependent more on the current applied to the storage than the temperature of the heat exchanging medium; and that, even in the presence of fluctuation halfway in the applied current, the total absorption will be equal to a case of constant current application if the total amount of applied current is equal. 2 refs., 7 figs., 5 tabs.

  9. Complex hydrides for hydrogen storage - New perspectives

    DEFF Research Database (Denmark)

    Ley, Morten B.; Jepsen, Lars H.; Lee, Young-Su

    2014-01-01

    Since the 1970s, hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached...

  10. Materials for Hydrogen Storage in Nanocavities: Design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Unidad Legaria, Legaria 694, Col. Irrigacion (Mexico)

    2009-11-15

    The adsorption potential for a given adsorbate depends of both, material surface and adsorbate properties. In this contribution the possible guest-host interactions for H{sub 2} within a cavity or on a surface are discussed considering the molecule physical properties. Five different interactions contribute to the adsorption forces for this molecule: 1) quadrupole moment interaction with the local electric field gradient; 1) electron cloud polarization by a charge center; 3) dispersive forces (van der Waals); 4) quadrupole moment versus quadrupole moment between neighboring H{sub 2} molecules, and, 5) H{sub 2} coordination to a metal center. The relative importance of these five interactions for the hydrogen storage in nanocavities is discussed from experimental evidences in order to extract materials design criteria for molecular hydrogen storage. (author)

  11. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

    OpenAIRE

    McPherson, M.; Johnson, N.; Strubegger, M.

    2018-01-01

    Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Y...

  12. Comparative study of hydrogen storage on metal doped mesoporous materials

    Science.gov (United States)

    Carraro, P. M.; Sapag, K.; Oliva, M. I.; Eimer, G. A.

    2018-06-01

    The hydrogen adsorption capacity of mesoporous materials MCM-41 modified with Co, Fe, Ti, Mg and Ni at 77 K and 10 bar was investigated. Various techniques including XRD, N2 adsorption and DRUV-vis were employed for the materials characterization. The results showed that a low nickel loading on MCM-41 support promoted the presence of hydrogen-favorable sites, increasing the hydrogen storage capacity.

  13. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  14. Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction

    Energy Technology Data Exchange (ETDEWEB)

    Luduena, Guillermo Andres

    2011-07-01

    This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding

  15. The storage of hydrogen and the problems it involves

    International Nuclear Information System (INIS)

    Schmitt, R.; Jonville, P.

    1975-01-01

    The limitation of fossil fuel resources has brought about active research in the field of synthetic fuels which, in the more or less near future, could lead to freedom from dependence on production of the former. On a long-term basis, hydrogen would appear to be the best candidate as a substitute for conventional fuels. Among the possibilities of storage in a motor vehicle, its absorption in a metallic hydride provides the most attractive solution. Account taken of the weight limitations of this storage method, the use of hydrogen in an internal combustion engine can be envisaged only for short-range urban vehicles. Optimal use of its energy content will be made possible by means of fuel cells. The development of such a storage-propulsion chain nevertheless requires considerable work in research and development, both for the study of hydrides and the technology of fuel cells [fr

  16. Processing routes evaluation of severely deformed Mg-Fe alloys for hydrogen storage applications

    International Nuclear Information System (INIS)

    Antiqueira, F.J.; Leiva, D.R.; Ishikawa, T.T.; Jorge Junior, A.M.; Botta, W.J.

    2016-01-01

    MgH 2 is considered an interesting material for safe hydrogen storage in the solid state, due to its high gravimetric nominal capacity of 7,6%, and the relative low cost of magnesium. In this study, we attempted to improve the performance of the MgH 2 in the hydrogen storage. Different processing routes for Mg and Mg-Fe by severe plastic deformation were evaluated. The prepared materials were characterized by X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM). The hydrogen storage properties were evaluated by differential scanning calorimetry and the Sievert's method. The results indicate superior properties to materials catalyzed with iron, as well as a high dependence of hydrogen absorption / desorption kinetic in accordance with the microstructures obtained through the various processing routes. (author)

  17. Natural diatomite modified as novel hydrogen storage material

    Science.gov (United States)

    Jin, Jiao; Zheng, Chenghui; Yang, Huaming

    2014-03-01

    Natural diatomite, subjected to different modifications, is investigated for hydrogen adsorption capacities at room temperature. An effective metal-modified strategy is developed to disperse platinum (Pt) and palladium (Pd) nanoparticles on the surface of diatomite. Hydrogen adsorption capacity of pristine diatomite (diatomite) is 0.463 wt.% at 2.63 MPa and 298 K, among the highest of the known sorbents, while that of acid-thermally activated diatomite (A-diatomite) could reach up to 0.833 wt.% due to the appropriate pore properties by activation. By incorporation with a small amount of Pt and Pd ( 0.5 wt.%), hydrogen adsorption capacities are enhanced to 0.696 wt.% and 0.980 wt.%, respectively, indicating that activated diatomite shows interesting application in the field of hydrogen storage at room temperature.

  18. Hydrogen storage in double clathrates with tert-butylamine.

    Science.gov (United States)

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sum, Amadeu K; Sloan, E Dendy; Koh, Carolyn A

    2009-06-18

    The first proof-of-concept of the formation of a double tert-butylamine (t-BuNH(2)) + hydrogen (H(2)) clathrate hydrate has been demonstrated. Binary clathrate hydrates with different molar concentrations of the large guest t-BuNH(2) (0.98-9.31 mol %) were synthesized at 13.8 MPa and 250 K, and characterized by powder X-ray diffraction and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed under hydrogen pressures. Raman spectroscopic data suggested that the hydrogen molecules occupied the small cages and had similar occupancy to hydrogen in the double tetrahydrofuran (THF) + H(2) clathrate hydrate. The hydrogen storage capacity in this system was approximately 0.7 H(2) wt % at the molar concentration of t-BuNH(2) close to the sII stoichiometry.

  19. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 5. Development of hydrogen transportation and storage technology - Edition 3. Development of liquid hydrogen storage facility); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 5: Suiso yuso chozo gijutsu no kaihatsu - Dai 3 hen. Ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    With an intention to establish a technology required to build a hydrogen storage tank with a storage capacity of 50,000 m{sup 3} as the target shown in the basic plan for WE-NET, the current fiscal year has performed the technical literature surveys to identify the existing technologies. In the survey on the similar large storage system, a liquefied natural gas (LNG) was taken up, and the survey on the LNG bases in Japan was carried out. With regard to the existing liquefied hydrogen storage system, surveys were performed on the test site for developing the liquefied hydrogen/liquefied oxygen engines, the rocket launch sites, and liquefied hydrogen manufacturing plant. In relation with peripheral technologies for the underground storage tank being an excellent anti-seismic form, the LNG underground storage facilities were surveyed. Regarding the rock mass storage tank, surveys were carried out on the LPG rock mass storage having been used practically, and the LNG rock mass storage that is in the demonstration phase. In the research on storage facilities, surveys were executed on the forms and heat insulation structures of the similar large low-temperature storage tanks, the use record of the existing liquefied hydrogen storage tanks, heat insulating materials, and heat insulating structures. (NEDO)

  20. Sc-Decorated WS_2 Nanoribbons as Hydrogen Storage Media

    International Nuclear Information System (INIS)

    Xu Bin; Wang Yu-Sheng; Zhang Jing; Song Na-Hong; Li Meng; Yi Lin

    2016-01-01

    The hydrogen storage behavior of Sc-decorated WS_2 monolayer and WS_2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory. The present results indicate that an Sc-decorated WS_2 monolayer is not suitable for storing hydrogen due to the weak interaction between the monolayer WS_2 sheet and the Sc atoms. It is found that both the hybridization mechanism and the Coulomb attraction make the Sc atoms stably adsorb on the edges of WS_2 nanoribbons without clustering. The 2Sc/WS_2 NRs system can adsorb at most eight H_2 molecules with average adsorption energy of 0.20 eV/H_2. The results show that the desorption of H_2 is possible by lowering the pressure or by increasing the temperature. (paper)

  1. Low-Cost alpha Alane for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Tibor [Ardica Technologies, San Francisco, CA (United States); Petrie, Mark [SRI International, Menlo Park, CA (United States); Crouch-Baker, Steven [SRI International, Menlo Park, CA (United States); Fong, Henry [SRI International, Menlo Park, CA (United States)

    2017-10-10

    This project was directed towards the further development of the Savannah River National Laboratory (SRNL) lab-scale electrochemical synthesis of the hydrogen storage material alpha-alane and Ardica Technologies-SRI International (SRI) chemical downstream processes that are necessary to meet DoE cost metrics and transition alpha-alane synthesis to an industrial scale. Ardica has demonstrated the use of alpha-alane in a fuel-cell system for the U.S. Army WFC20 20W soldier power system that has successfully passed initial field trials with individual soldiers. While alpha-alane has been clearly identified as a desirable hydrogen storage material, cost-effective means for its production and regeneration on a scale of use applicable to the industry have yet to be established. We focused on three, principal development areas: 1. The construction of a comprehensive engineering techno-economic model to establish the production costs of alpha-alane by both electrochemical and chemical routes at scale. 2. The identification of critical, cost-saving design elements of the electrochemical cell and the quantification of the product yields of the primary electrochemical process. A moving particle-bed reactor design was constructed and operated. 3. The experimental quantification of the product yields of candidate downstream chemical processes necessary to produce alpha-alane to complete the most cost-effective overall manufacturing process. Our techno-economic model shows that under key assumptions most 2015 and 2020 DOE hydrogen storage system cost targets for low and medium power can be achieved using the electrochemical alane synthesis process. To meet the most aggressive 2020 storage system cost target, $1/g, our model indicates that 420 metric tons per year (MT/y) production of alpha-alane is required. Laboratory-scale experimental work demonstrated that the yields of two of the three critical component steps within the overall “electrochemical process” were

  2. First Principles Based Simulation of Reaction-Induced Phase Transition in Hydrogen Storage and Other Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Qingfeng [Southern Illinois Univ., Carbondale, IL (United States)

    2014-08-31

    This major part of this proposal is simulating hydrogen interactions in the complex metal hydrides. Over the period of DOE BES support, key achievements include (i) Predicted TiAl3Hx as a precursor state for forming TiAl3 through analyzing the Ti-doped NaAlH4 and demonstrated its catalytic role for hydrogen release; (ii) Explored the possibility of forming similar complex structures with other 3d transition metals in NaAlH4 as well as the impact of such complex structures on hydrogen release/uptake; (iii) Demonstrated the role of TiAl3 in hydriding process; (iv) Predicted a new phase of NaAlH4 that links to Na3AlH6 using first-principles metadynamics; (v) Examined support effect on hydrogen release from supported/encapsulated NaAlH4; and (vi) Expanded research scope beyond hydrogen storage. The success of our research is documented by the peer-reviewed publications.

  3. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage

    International Nuclear Information System (INIS)

    Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F.

    2016-01-01

    Highlights: • A conceptual analysis of operation modes in energy storage plants is presented. • Key Performance Indicators to select operation modes are provided. • The approach has been applied to a laboratory hybrid power plant. • The methodology provides guidance for the operation of hybrid power plants. - Abstract: This paper is concerned with Operating Modes in hybrid renewable energy-based power plants with hydrogen as the intermediate energy storage medium. Six operation modes are defined according to plant topology and the possibility of operating electrolyzer and fuel cell at steady-power or partial load. A methodology for the evaluation of plant performance is presented throughout this paper. The approach includes a set of simulations over a fully validated model, which are run in order to compare the proposed operation modes in various weather conditions. Conclusions are drawn from the simulation stage using a set of Key Performance Indicators defined in this paper. This analysis yields the conclusion that certain modes are more appropriate from technical and practical standpoints when they are implemented in a real plant. From the results of the simulation assessment, selected operating modes are applied to an experimental hydrogen-based pilot plant to illustrate and validate the performance of the proposed operation modes. Experimental results confirmed the simulation study, pointing out the advantages and disadvantages of each operation mode in terms of performance and equipment durability.

  4. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    Science.gov (United States)

    2015-10-13

    412TW-PA-15560 Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...TITLE AND SUBTITLE Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...density storage of gases remains a major technological hurdle for many fields. The U.S. Department of Energy (DOE), for example, reduced their hydrogen

  5. Hydrogen storage of Mg1−xMxH2 (M = Ti, V, Fe) studied using first-principles calculations

    International Nuclear Information System (INIS)

    Bhihi, M.; Lakhal, M.; Benyoussef, A.; El Kenz, A.; Labrim, H.; Mounkachi, O.; Hlil, E.K.

    2012-01-01

    In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg 1−x M x H 2 (M = Ti, V, Fe, 0 ≤ x ≤ 0.1), are studied using the Korringa—Kohn—Rostoker (KKR) calculation with the coherent potential approximation (CPA). In particular, the nature and concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities

  6. Treatment of hydrogen storage alloy for battery; Denchiyo suiso kyuzo gokin no shori hoho

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T.; Negi, N.; Kaminaka, Takeshita, Y.

    1997-03-28

    At present, Ni-Cd battery is mainly used for the power source of portable AV devices and back-up power source of computer memory. From an environmental point of view, however, Ni-hydrogen battery in which hydrogen storage alloy is used instead of Cd as for the negative electrode has been developed. The productivity of Ni-hydrogen battery is not so high because it takes a very long time to activate the battery after it is assembled. This invention solves the problem. According to the invention, the hydrogen storage alloy containing Ni is immersed in a non-oxidizing acid aqueous solution containing dissolved oxygen by 1 mg/L or less. If a large amount of dissolved oxygen is contained in the acid solution, metal appearing on the surface of alloy by the acid treatment is directly combined with the dissolved oxygen, resulting in the re-formation of metal oxide. So that the effect of oxide removal by the acid treatment is reduced. Using the treated hydrogen storage alloy in the Ni-hydrogen battery makes it possible to produce the battery which has a high initial activity and a good storage property with less self-discharge. 2 tabs.

  7. Hydrogen storage in Chabazite zeolite frameworks.

    Science.gov (United States)

    Regli, Laura; Zecchina, Adriano; Vitillo, Jenny G; Cocina, Donato; Spoto, Giuseppe; Lamberti, Carlo; Lillerud, Karl P; Olsbye, Unni; Bordiga, Silvia

    2005-09-07

    We have recently highlighted that H-SSZ-13, a highly siliceous zeolite (Si/Al = 11.6) with a chabazitic framework, is the most efficient zeolitic material for hydrogen storage [A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjørgen and K. P. Lillerud, J. Am. Chem. Soc., 2005, 127, 6361]. The aim of this new study is thus to clarify both the role played by the acidic strength and by the density of the polarizing centers hosted in the same framework topology in the increase of the adsorptive capabilities of the chabazitic materials towards H2. To achieve this goal, the volumetric experiments of H2 uptake (performed at 77 K) and the transmission IR experiment of H2 adsorption at 15 K have been performed on H-SSZ-13, H-SAPO-34 (the isostructural silico-aluminophosphate material with the same Brønsted site density) and H-CHA (the standard chabazite zeolite: Si/Al = 2.1) materials. We have found that a H2 uptake improvement has been obtained by increasing the acidic strength of the Brønsted sites (moving from H-SAPO-34 to H-SSZ-13). Conversely, the important increase of the Brønsted sites density (moving from H-SSZ-13 to H-CHA) has played a negative role. This unexpected behavior has been explained as follows. The additional Brønsted sites are in mutual interaction via H-bonds inside the small cages of the chabazitic framework and for most of them the energetic cost needed to displace the adjacent OH ligand is higher than the adsorption enthalpy of the OH...H2 adduct. From our work it can be concluded that proton exchanged chabazitic frameworks represent, among zeolites, the most efficient materials for hydrogen storage. We have shown that a proper balance between available space (volume accessible to hydrogen), high contact surface, and specific interaction with strong and isolated polarizing centers are the necessary characteristics requested to design better materials for molecular H2 storage.

  8. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  9. Process for synthesis of ammonia borane for bulk hydrogen storage

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  10. Hydrogen storage in nanoporous carbon materials: myth and facts.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Terrones, Mauricio; Terrones, Humberto

    2007-04-21

    We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H(2) m(-3)) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H(2) m(-3). The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H(2) m(-3). All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of "clean" energy.

  11. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    Science.gov (United States)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  12. Hydrogen storage in metal-organic frameworks: A review

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2014-05-01

    Full Text Available Metal-organic frameworks (MOFs) for hydrogen storage have continued to receive intense interest over the past decade. MOFs are a class of organic-inorganic hybrid crystalline materials consisting of metallic moieties that are linked by strong...

  13. Empirical Profiling of Cold Hydrogen Plumes Formed from Venting Of LH2 Storage Vessels: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Ciotti, Michael [H2 Fueling and CIP Markets Engineering

    2017-11-16

    Liquid hydrogen (LH2) storage is a viable approach to assuring sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery process. The behaviour of cold hydrogen plumes has not been well-characterized because empirical field data is essentially non-existent. The NFPA 2 Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and CFD modellers, has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessel as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the NREL sensor laboratory, in collaboration with the NFPA 2 Safety Task Group developed the Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. A prototype Analyzer was developed and field-deployed at an actual LH2 venting operation with critical findings that included: - H2 being detected as much as 2 m lower than the release point, which is not predicted by existing models - A small and inconsistent correlation between oxygen depletion and the hydrogen concentration - A negligible to non-existent correlation between in-situ temperature and the hydrogen concentration The Analyzer is currently being upgraded for enhanced metrological capabilities including improved real-time spatial and temporal profiling of the plume and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behaviour under different wind, humidity, and temperatures. This data will be shared with the NFPA 2 Safety Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.

  14. Synthesis of NiPS3 and CoPS and its hydrogen storage capacity

    International Nuclear Information System (INIS)

    Ismail, N.; Madian, M.; El-Meligi, A.A.

    2014-01-01

    Highlights: • Preparation of NiPS 3 and CoPS using solid state reaction. • Characterization of compounds using XRD, TEM, SEM and IR. • Measuring the compounds thermal stability. • Estimation of the hydrogen storage capacity. -- Abstract: Prepared CoPS and NiPS 3 are studied as new materials for hydrogen energy storage. Single phase of CoPS and NiPS 3 were grown separately in evacuated silicatube via solid state reaction at 650 °C with controlled heating rate 1 °C/min. X-ray diffraction patterns confirm the formation of the desired compounds. Both CoPS and NiPS 3 exhibited high thermal stability up to 700 °C and 630 °C, respectively. The morphology of the prepared samples was investigated using scanning electron microscopy and folded sheets appeared in the transmission electron microscopy. The samples were exposed to 20 bar applied hydrogen pressure at 80 K. Both compounds appear to have feasible hydrogen storage capacity. CoPS was capable to adsorb 1.7 wt% while NiPS 3 storage capacity reached 1.2 wt%

  15. Enhanced Hydrogen Storage Capacity over Electro-synthesized HKUST-1

    Directory of Open Access Journals (Sweden)

    Witri Wahyu Lestari

    2017-12-01

    Full Text Available HKUST-1 [Cu3(1,3,5-BTC2] (BTC = benzene-tri-carboxylate was synthesized using an electrochemical method and tested for hydrogen storage. The obtained material showed a remarkably higher hydrogen uptake over reported HKUST-1 and reached until 4.75 wt% at room temperature and low pressure up to 1.2 bar. This yield was compared to HKUST-1 obtained from the solvothermal method, which showed a hydrogen uptake of only 1.19 wt%. Enhancement of hydrogen sorption of the electro-synthesized product was due to the more appropriate surface area and pore size, effected by the preferable physical interaction between the hydrogen gasses and the copper ions as unsaturated metal centers in the frameworks of HKUST-1.

  16. Research on hydrogen storage alloys and their uses

    International Nuclear Information System (INIS)

    Alcock, C.B.; Hewitt, J.S.; Khatamian, D.; Manchester, F.D.; McLean, A.; Ward, C.A.; Weatherly, G.C.

    1984-01-01

    A brief account is given of the work being done by members of the Centre on the development of hydrogen storage alloys having useful, reliable, and predictable, performance characteristics. Metals and alloys which have been studied, in one or more aspects, so far, include FeTi, and also FeTi with small added amounts of C, Mn, Al and Mischmetal. Experimental work on the FeTi family of alloys has been concentrated on surface structure and surface behaviour and the importance of these for determining successful activation for hydrogen absorption. As a part of development work on control devices responding to temperature changes through hydrogen desorption, experiments have been performed on hydrides of Nb, La-Ni-Al and Ca-Ni. Some theoretical modelling on kinetics of hydrogen absorption into metals has also been done

  17. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun [Dongguk University, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications.

  18. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    International Nuclear Information System (INIS)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun

    2016-01-01

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications

  19. Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach

    Energy Technology Data Exchange (ETDEWEB)

    Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Kung, Harold H. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemical and Biological Engineering; Yang, Jun [Ford Scientific Research Lab., Dearborn, MI (United States); Hwang, Sonjong [California Inst. of Technology (CalTech), Pasadena, CA (United States). Dept. of Chemistry and Chemical Engineering; Shore, Sheldon [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry and Biochemistry

    2016-11-28

    The objective of the proposed program is to discover novel mixed hydrides for hydrogen storage, which enable the DOE 2010 system-level goals. Our goal is to find a material that desorbs 8.5 wt.% H2 or more at temperatures below 85°C. The research program will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization. We will combine materials from distinct categories (e.g., chemical and complex hydrides) to form novel multicomponent reactions. Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH2+NH3BH3] and nitrogen-hydrogen based borohydrides [e.g. Al(BH4)3(NH3)3]. The 2010 and 2015 FreedomCAR/DOE targets for hydrogen storage systems are very challenging, and cannot be met with existing materials. The vast majority of the work to date has delineated materials into various classes, e.g., complex and metal hydrides, chemical hydrides, and sorbents. However, very recent studies indicate that mixtures of storage materials, particularly mixtures between various classes, hold promise to achieve technological attributes that materials within an individual class cannot reach. Our project involves a systematic, rational approach to designing novel multicomponent mixtures of materials with fast hydrogenation/dehydrogenation kinetics and favorable thermodynamics using a combination of state-of-the-art scientific computing and experimentation. We will use the accurate predictive power of first-principles modeling to understand the thermodynamic and microscopic kinetic processes involved in hydrogen release and uptake and to design new material/catalyst systems with improved properties. Detailed characterization and atomic-scale catalysis experiments will elucidate the effect of dopants and nanoscale catalysts in achieving fast kinetics and reversibility. And

  20. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  1. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  2. Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Otsuki, Takashi; Fujii, Yasumasa

    2015-01-01

    Although the extensive introduction of VRs (variable renewables) will play an essential role to resolve energy and environmental issues in Japan after the Fukushima nuclear accident, its large-scale integration would pose a technical challenge in the grid management; as one of technical countermeasures, hydrogen storage receives much attention, as well as rechargeable battery, for controlling the intermittency of VR power output. For properly planning renewable energy policies, energy system modeling is important to quantify and qualitatively understand its potential benefits and impacts. This paper analyzes the optimal grid integration of large-scale VRs using hydrogen storage in Japan by developing a high time-resolution optimal power generation mix model. Simulation results suggest that the installation of hydrogen storage is promoted by both its cost reduction and CO 2 regulation policy. In addition, hydrogen storage turns out to be suitable for storing VR energy in a long period of time. Finally, through a sensitivity analysis of rechargeable battery cost, hydrogen storage is economically competitive with rechargeable battery; the cost of both technologies should be more elaborately recognized for formulating effective energy policies to integrate massive VRs into the country's power system in an economical manner. - Highlights: • Authors analyze hydrogen storage coupled with VRs (variable renewables). • Simulation analysis is done by developing an optimal power generation mix model. • Hydrogen storage installation is promoted by its cost decline and CO 2 regulation. • Hydrogen storage is suitable for storing VR energy in a long period of time. • Hydrogen storage is economically competitive with rechargeable battery

  3. Nanoporous materials for hydrogen storage and H2/D2 isotope separation

    International Nuclear Information System (INIS)

    Oh, Hyunchul

    2014-01-01

    This thesis presents a study of hydrogen adsorption properties at RT with noble metal doped porous materials and an efficient separation of hydrogen isotopes with nanoporous materials. Most analysis is performed via thermal desorption spectra (TDS) and Sieverts-type apparatus. The result and discussion is presented in two parts; Chapter 4 focuses on metal doped nanoporous materials for hydrogen storage. Cryogenic hydrogen storage by physisorption on porous materials has the advantage of high reversibility and fast refuelling times with low heat evolution at modest pressures. At room temperature, however, the physisorption mechanism is not abEle to achieve enough capacity for practical application due to the weak van der Waals interaction, i.e., low isosteric heats for hydrogen sorption. Recently, the ''spillover'' effect has been proposed by R. Yang et al. to enhance the room temperature hydrogen storage capacity. However, the mechanism of this storage enhancement by decoration of noble metal particles inside high surface area supports is not yet fully understood and still under debate. In this chapter, noble metal (Pt / Pd) doped nanoporous materials (i.e. porous carbon, COFs) have been investigated for room temperature hydrogen storage. Their textural properties and hydrogen storage capacity are characterized by various analytic techniques (e.g. SEM, HRTEM, XRD, BET, ICP-OES, Thermal desorption spectra, Sievert's apparatus and Raman spectroscopy). Firstly, Pt-doped and un-doped templated carbons possessing almost identical textural properties were successfully synthesized via a single step wet impregnation method. This enables the study of Pt catalytic activities and hydrogen adsorption kinetics on porous carbons at ambient temperature by TDS after H 2 /D 2 gas exposure and PCT measurement, respectively. While the H 2 adsorption kinetics in the microporous structure is enhanced by Pt catalytic activities (spillover), only a small enhancement of the hydrogen

  4. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  5. Hydrogen Storage Activities at HySA from (Nano)materials to Systems

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2012-11-01

    Full Text Available One of HySA’s missions is to deliver technologies for hydrogen storage infrastructure that meet the set cost targets and provide the best balance of safety, reliability, robustness, quality and functionality. HySA aims to develop storage...

  6. Presentation of a methodology for measuring social acceptance of three hydrogen storage technologies and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, I.; Bigay, C. N.

    2005-07-01

    Hydrogen storage is a key technology for the extensive use of H2 as energy carrier. As none of the current technologies satisfies all of the hydrogen storage attributes required by manufacturers and end users, there is intense research works aiming at developing viable solutions. A broad objective of the StorHy European project is to provide technological storage solutions, which are attractive from an economical, environmental and safety point of view. A specific sub-project is dedicated to the comparison of three different potential storage technologies for transport applications (compressed gas, cryogenic liquid, solid media). This evaluation is carried out in a harmonised way, based on common tools and assessment strategies that could be useful for decision makers and stakeholders. The assessment is achieved in a 'sustainable development' spirit, taking into consideration the technical, environmental, economical, safety and social requirements. The latter ones have newly emerged in such evaluations, based on the Quality Function Deployment (QFD) approach, and would require to be further studied. Hydrogen acceptability studies have been conducted in previous projects. They have been reviewed by LBST in the AcceptH2 project Public acceptance of Hydrogen Transport Technologies : Analysis and comparisons of existing studies (www. accepth2. com - August 2003). During these hydrogen acceptance surveys, mainly fuel cell bus passengers from demonstration projects around the world have been questioned. The work presented in this paper goes further in the methodology refinement as it focuses on the evaluation of hydrogen storage solutions. It proposes a methodological tool for efficient social evaluation of new technologies and associated preliminary results concerning France. In a global approach to sustainable development, the CEA has developed a new methodology to evaluate its current research projects : Multicriteria Analysis for Sustainable Industrial

  7. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  8. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia.

    Science.gov (United States)

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-20

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  9. Destabilized and catalyzed borohydride for reversible hydrogen storage

    Science.gov (United States)

    Mohtadi, Rana F [Northville, MI; Nakamura, Kenji [Toyota, JP; Au, Ming [Martinez, GA; Zidan, Ragaiy [Alken, SC

    2012-01-31

    A process of forming a hydrogen storage material, including the steps of: providing a first material of the formula M(BH.sub.4).sub.X, where M is an alkali metal or an alkali earth metal, providing a second material selected from M(AlH.sub.4).sub.x, a mixture of M(AlH.sub.4).sub.x and MCl.sub.x, a mixture of MCl.sub.x and Al, a mixture of MCl.sub.x and AlH.sub.3, a mixture of MH.sub.x and Al, Al, and AlH.sub.3. The first and second materials are combined at an elevated temperature and at an elevated hydrogen pressure for a time period forming a third material having a lower hydrogen release temperature than the first material and a higher hydrogen gravimetric density than the second material.

  10. Hydrogen-based energy storage unit for stand alone PV systems; L'hydrogene electrolytique comme moyen de stockage d'electricite pour systemes photovoltaiques isoles

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, J

    2006-12-15

    Stand alone systems supplied only by a photovoltaic generator need an energy storage unit to be fully self sufficient. Lead acid batteries are commonly used to store energy because of their low cost, despite several operational constraints. A hydrogen-based energy storage unit (HESU) could be another candidate, including an electrolyser, a fuel cell and a hydrogen tank. However many efforts still need to be carried out for this technology to reach an industrial stage. In particular, market outlets must be clearly identified. The study of small stationary applications (few kW) is performed by numerical simulations. A simulator is developed in the Matlab/Simulink environment. It is mainly composed of a photovoltaic field and a storage unit (lead acid batteries, HESU, or hybrid storage HESU/batteries). The system component sizing is achieved in order to ensure the complete system autonomy over a whole year of operation. The simulator is tested with 160 load profiles (1 kW as a yearly mean value) and three locations (Algeria, France and Norway). Two coefficients are set in order to quantify the correlation between the power consumption of the end user and the renewable resource availability at both daily and yearly scales. Among the tested cases, a limit value of the yearly correlation coefficient came out, enabling to recommend the use of the most adapted storage to a considered case. There are cases for which using HESU instead of lead acid batteries can increase the system efficiency, decrease the size of the photovoltaic field and improve the exploitation of the renewable resource. In addition, hybridization of HESU with batteries always leads to system enhancements regarding its sizing and performance, with an efficiency increase by 10 to 40 % depending on the considered location. The good agreement between the simulation data and field data gathered on real systems enabled the validation of the models used in this study. (author)

  11. Are carbon nanostructures an efficient hydrogen storage medium?

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Zeppelin, von F.; Chen, X.; Dettlaff-Weglikowska, U.; Roth, S.

    2003-01-01

    Literature data on the storage capacities of hydrogen in carbon nanostructures show a scatter over several orders of magnitude which cannot be solely explained by the limited quantity or purity of these novel nanoscale materials. With this in mind, this article revisits important experiments.

  12. Hydrogen storing and electrical properties of hyperbranched polymers-based nanoporous materials

    International Nuclear Information System (INIS)

    Abdel Rehim, Mona H.; Ismail, Nahla; Badawy, Abd El-Rahman A.A.; Turky, Gamal

    2011-01-01

    Highlights: · The hydrogen storage capacity of hyperbranched P-Urea, PAMAM and PAMAM and VO x is studied and electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. · Electrical properties measurements for the samples showed complete insulating behavior at hydrogenation measuring temperature. · These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. - Abstract: Hydrogen storage and electrical properties of different hyperbranched polymer systems beside a nanocomposite are studied. The polymers examined are aliphatic hyperbranched poly urea (P-Urea), polyamide amine (PAMAM) and polyamide amine/vanadium oxide (PAMAM/VO x ) nanocomposite. At 80 K and up to 20 bar hydrogen pressure, the hydrogen storage capacity of hyperbranched P-Urea reached 1.6 wt%, 0.9 wt% in case of PAMAM and 0.6 wt% for VO x . The hydrogen storage capacity significantly enhanced when PAMAM and VO x form a nanocomposite and increased up to 2 wt%. At 298 K and up to 20 bar, all the samples did not show measurable hydrogen uptake. Electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage.

  13. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  14. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  15. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  16. Controllable synthesis and electrochemical hydrogen storage properties of Sb₂Se₃ ultralong nanobelts with urchin-like structures.

    Science.gov (United States)

    Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang

    2011-09-01

    The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.

  17. Stand alone solution for generation and storage of hydrogen and electric energy

    International Nuclear Information System (INIS)

    Gany, Alon; Elitzur, Shani; Valery

    2015-01-01

    A novel method enabling safe, simple, and controllable production, storage, and use of hydrogen as well as compact electric energy storage and generation via hydrogen- oxygen fuel cells has been developed. The technology indicates, in our opinion, a significant milestone in the search for practical utilization of hydrogen as an alternative energy source. It consists of an original thermal-chemical treatment / activation of aluminum powders to react spontaneously with water to produce hydrogen at regular conditions according to the reaction Al+3H 2 O=Al (OH) 3 +3/2H 2 . Only about 1-2% of lithium, based activator is applied, and any type of water including tap water, sea water and waste water may be used, making the method attractive for variety of applications. 11% of hydrogen compared to the aluminum mass can be obtained, and our experiments reveal 90% reaction yield and more. The technology has a clear advantage over batteries, providing specific electric energy of over 2 kW h/kg Al, 5-10 times greater than that of commonly used lithium-ion batteries. Combined with a fuel cell it may be particularly beneficial for stand-alone electric power generators, where there is no access to the grid. Such applications include emergency generators (e.g., in hospitals), electricity backup systems, and power generation in remote communication posts. Automotive applications may be considered as well. The technology provides green electric energy and quiet operation as well as additional heat energy resulting mainly from the exothermic aluminum-water reaction. (full text)

  18. Air exposure and sample storage time influence on hydrogen release from tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Moshkunov, K.A., E-mail: moshkunov@gmail.co [National Research Nuclear University ' MEPhI' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Schmid, K.; Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Kurnaev, V.A.; Gasparyan, Yu.M. [National Research Nuclear University ' MEPhI' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation)

    2010-09-30

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D{sub 2}O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of {approx}300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  19. Air exposure and sample storage time influence on hydrogen release from tungsten

    International Nuclear Information System (INIS)

    Moshkunov, K.A.; Schmid, K.; Mayer, M.; Kurnaev, V.A.; Gasparyan, Yu.M.

    2010-01-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2 O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ∼300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  20. Air exposure and sample storage time influence on hydrogen release from tungsten

    Science.gov (United States)

    Moshkunov, K. A.; Schmid, K.; Mayer, M.; Kurnaev, V. A.; Gasparyan, Yu. M.

    2010-09-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ˜300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  1. Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems

    International Nuclear Information System (INIS)

    Langmi, Henrietta W.; McGrady, G. Sean

    2008-01-01

    This paper reports an investigation of hydrogen storage performance of ternary nitrides based on lithium and the Group 13 elements boron, aluminum and gallium. These were prepared by ball milling Li 3 N together with the appropriate Group 13 nitride-BN, AlN or GaN. Powder X-ray diffraction of the products revealed that the ternary nitrides obtained are not the known Li 3 BN 2 , Li 3 AlN 2 and Li 3 GaN 2 phases. At 260 deg. C and 30 bar hydrogen pressure, the Li-Al-N ternary system initially absorbed 3.7 wt.% hydrogen, although this is not fully reversible. We observed, for the first time, hydrogen uptake by a pristine ternary nitride of Li and Al synthesized from the binary nitrides of the metals. While the Li-Ga-N ternary system also stored a significant amount of hydrogen, the storage capacity for the Li-B-N system was near zero. The hydrogenation reaction is believed to be similar to that of Li 3 N, and the enthalpies of hydrogen absorption for Li-Al-N and Li-Ga-N provide evidence that AlN and GaN, as well as the ball milling process, play a significant role in altering the thermodynamics of Li 3 N

  2. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A

    2015-03-01

    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  4. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  5. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  6. Dependence of hydrogen storage characteristics of mechanically milled carbon materials on their host structures

    International Nuclear Information System (INIS)

    Shindo, K.; Kondo, T.; Sakurai, Y.

    2004-01-01

    We investigated whether the hydrogen storage characteristics of carbon materials prepared by mechanical milling in an H 2 atmosphere were dependent on their host structures. We used natural graphite (NG) and activated carbon fibers (ACF) and compared them with activated carbon (AC) powders. The XRD patterns of NG and ACF milled for over 20 h and SEM images of these samples milled for 80 h were almost the same as those of AC. The hydrogen storage capacities of NG and ACF estimated by the inert gas fusion-thermal conductivity method increased with the mechanical milling time up to 10 h and showed little milling time dependence thereafter. The capacities of NG and ACF reached about 3.0 wt.% and were similar to that of AC. However, it should be noted that the hydrogen storage mechanism of NG and ACF mechanically milled in an H 2 atmosphere might be different because the changes in their specific surface areas with milling time were opposite. Thermal desorption mass spectroscopy (TDS) revealed that the desorption spectra of the hydrogen molecules (mass number=2) of NG and ACF milled for 10 h in the same way as AC contained two peaks at about 500 and 800 deg. C. The desorption activation energies of hydrogenated NG and ACF at these peaks calculated from a Kissinger plot were almost with the same as those of hydrogenated AC. This suggests that the state of the hydrogen trapped in the structural defects in NG introduced by the mechanical milling may be almost the same as that of AC. In addition, we assumed the possibility that the state of the hydrogen in ACF hydrogenated by mechanical milling could be almost the same as that in hydrogenated AC. We considered that the nanocarbon materials hydrogenated under our milling conditions had very similar physical shapes and hydrogen storage capacities, independent of their host structures

  7. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  8. Hydrogen storage in porous carbons: modelling and performance improvements

    International Nuclear Information System (INIS)

    Pellenq, R.J.M.; Maresca, O.; Marinelli, F.; Duclaux, L.; Azais, P.; Conard, J.

    2006-01-01

    In this work, we aim at exploring using ab initio calculations, the various ways allowing for an efficient hydrogen docking in carbon porous materials. Firstly, the influence of surface curvature on the chemisorption of atomic hydrogen is considered. Then it is shown that electro-donor elements such as lithium or potassium used as dopant of the carbon substrate induce a strong physi-sorption for H 2 , allowing its storage at ambient temperature under moderate pressure. (authors)

  9. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Oelmez, Rabia; Cakmak, Guelhan; Oeztuerk, Tayfur [Dept. of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-11-15

    A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comprising the equilibrium phases, was then pulverized and screened for hydrogen storage compositions. X-ray diffraction was used as a screening tool, the sample having been examined both in the as processed and the hydrogenated state. The method was successfully applied to Mg-Ni and Mg-Ni-Ti yielding the well known Mg{sub 2}Ni as the storage composition. It is concluded that a partitioning of the alloy system into regions of similar solidus temperature would be required to encompass the full spectrum of equilibrium phases. (author)

  10. New generation of full composite vessels for 70 MPa gaseous hydrogen storage : results and achievements of the French HyBou project

    Energy Technology Data Exchange (ETDEWEB)

    Nony, F. [CEA Materials, Monts (France); Weber, M. [Air Liquide, Paris (France); Tcharkhtchi, A. [Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Lafarie-Frenot, M.C. [Ecole Nationale Superique De Mecanique et d' Aerotechnique, Poitiers (France); Perrier, O. [Raigi, Arbouville (France)

    2009-07-01

    The French collaborative Project known as HyBou explores hydrogen storage as a key enabling technology for the extensive use of hydrogen as an energy carrier. HyBou aims to develop robust, safe and efficient compressed gaseous hydrogen (CGH2) storage systems and validate innovative materials and processes suitable for storage vessel manufacturing with improved performance at low cost. The development of a new generation of type-4 70 MPa vessel was described along with a newly developed liner based on polyurethane materials. The new liner presents increased thermal stability, hydrogen barrier properties and cost effectiveness. The project also aims to evaluate the potential of new high resistance fibers and develop an improved thermosetting resin for composite winding with enhanced mechanical resistance and durability. A specific apparatus was therefore designed to characterize and evaluate coupled thermal and mechanical fatigue resistance in representative conditions.

  11. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hua Kun, E-mail: hua@uow.edu.au

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  12. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    International Nuclear Information System (INIS)

    Liu, Hua Kun

    2013-01-01

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells

  13. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  14. Thermogravimetric research of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kleperis, J; Grinberga, L; Ergle, M; Chikvaidze, G; Klavins, J

    2007-01-01

    During thermogravimetric research of metal hydrides we noticed mass growth of samples above 200 deg. C even in an argon atmosphere. Further heating is leading to the growth of weight up to 2-7 weight% till 500 0 C. Second run of the same sample without taking out of DTA instrument gave only small mass changes, indicating that noticed mass increase during first run is permanent. Microscope and elemental analyses were made to determine the reason of mass growth. XRD inspection revealed the formation of new phase with bunsenite NiO structure with deformed cubic structure. The new phase is no more active to hydrogen sorption/desorption. Our results demonstrated that the usage of hydrogen storage alloys AB 5 must be taken with care - it is important not to exceed some critical temperature were irreversible structural, compositional and morphological changes will occur

  15. Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.

    Science.gov (United States)

    Slavcheva, E; Ganske, G; Schnakenberg, U

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.

  16. Design of hydroforming processes for metallic liners used in high pressure hydrogen storage

    International Nuclear Information System (INIS)

    Gelin, J.C.; Labergere, C.; Thibaud, S.; Boudeau, N.

    2005-01-01

    Within the framework of an European project concerning hydrogen storage, one analyze the way to manufacture high pressure tanks (700bars) for hydrogen storage, intended to be embarked for using in motor vehicles. These tanks consist of a metallic liner, which ensure a barrier role compared to the hydrogen atoms as well as a part of the mechanical resistance, and of a composite envelope built by filament rolling up which ensures the complementary part of the mechanical resistance. The paper describes the work completed within this framework, on the basis of the simulation of the hydroforming process thanks to the complete control of the process, in volume of fluid injected. One was thus brought to develop an optimization module based on finite element calculations. This optimization module includes MPI library in order to launch several calculations in parallel on a Linux cluster. It consists in seeking the optimal evolution of the fluid volume injected vs. time to obtain a good quality component. In our case, the optimization criterion is based on the variation thickness of the tube and the possible appearance of necking. It is shown that such a way for controlling the process provide the way to get minimal thickness variation, comparatively to standard optimization approaches where the process parameters are discretized through processing time in a more standard way

  17. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  18. A study on hydrogen storage through adsorption in nano-structured carbons; Etude du stockage d'hydrogene par adsorption dans des carbones nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Langohr, D

    2004-10-15

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  19. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  20. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.